JP7461479B2 - Chemical conversion treatment composition for Zn-Al-Mg alloy plated steel sheet and Zn-Al-Mg alloy plated steel sheet - Google Patents

Chemical conversion treatment composition for Zn-Al-Mg alloy plated steel sheet and Zn-Al-Mg alloy plated steel sheet Download PDF

Info

Publication number
JP7461479B2
JP7461479B2 JP2022537358A JP2022537358A JP7461479B2 JP 7461479 B2 JP7461479 B2 JP 7461479B2 JP 2022537358 A JP2022537358 A JP 2022537358A JP 2022537358 A JP2022537358 A JP 2022537358A JP 7461479 B2 JP7461479 B2 JP 7461479B2
Authority
JP
Japan
Prior art keywords
phosphate
steel sheet
chemical conversion
bis
plated steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022537358A
Other languages
Japanese (ja)
Other versions
JP2023512888A (en
Inventor
デュ-ファン ジョ、
ヒ-ジャ ウン、
キョン-クァン パク、
ウン-ス ハン、
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Posco Holdings Inc
Original Assignee
Posco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Posco Co Ltd filed Critical Posco Co Ltd
Publication of JP2023512888A publication Critical patent/JP2023512888A/en
Application granted granted Critical
Publication of JP7461479B2 publication Critical patent/JP7461479B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates

Description

本発明は、Zn-Al-Mg合金めっき鋼板の化成処理用組成物及びZn-Al-Mg合金めっき鋼板に関するものである。 The present invention relates to a composition for chemical conversion treatment of a Zn-Al-Mg alloy plated steel plate and a Zn-Al-Mg alloy plated steel plate.

一般的に、金属の腐食を防止又は軽減するために、亜鉛及び亜鉛系合金めっきを施す。しかし、自然界の亜鉛の使用量が増加するにつれて、亜鉛金属の価格が上昇し、亜鉛の枯渇が問題となっている。これに対する対策として、合金元素を添加した耐腐食性に優れためっきを行い、めっき量を減少させる方法を講じている。その一環として、亜鉛にアルミニウム及びマグネシウムを添加した合金めっきが多く開発され、主に建築用に使用されてきたが、最近では、家電や自動車用にも拡大して使用される傾向にある。特に、Zn-Al-Mg合金めっき鋼板の表面を保護し、耐腐食性と部品の加工を容易にするために、耐食性に優れたクロメートコーティング処理を行うことが多い。 In general, zinc and zinc-based alloy plating is used to prevent or reduce metal corrosion. However, as the amount of zinc used in nature increases, the price of zinc metal is rising and zinc depletion is becoming a problem. As a countermeasure, methods are being taken to reduce the amount of plating by using plating with excellent corrosion resistance that includes the addition of alloying elements. As part of this, many alloy platings that add aluminum and magnesium to zinc have been developed and have been used mainly for construction, but recently there has been a trend for their use to be expanded to home appliances and automobiles as well. In particular, chromate coating, which has excellent corrosion resistance, is often used to protect the surface of Zn-Al-Mg alloy-plated steel sheets, improve corrosion resistance, and make parts easier to process.

しかし、これらの合金めっき鋼板及びクロメート処理鋼板における最大の問題は、クライアントにおける長期間の保管過程や、気温の差による結露の発生、又は高温多湿の環境でのコイル状態、又は鋼板を積層した状態で保管した際にめっき層の表面で発生する黒変現象である。このような黒変現象は、マグネシウム金属が含まれているめっき層で一般的に起こる現象であって、表層に濃化したマグネシウム金属の優先酸化による亜鉛金属の不完全酸化に起因する。黒変現象は、金属の腐食現象の初期段階であって、空気中に露出すると、白錆に完全酸化しやすいという傾向がある。特に、クロメート処理溶液は、pHが1~1.5の範囲の強い酸性水溶液であり、建材用クロメート製品は、主に鋼板の厚さが1.0mm以上と、乾燥後の潜熱により冷却が容易でなく、乾燥温度を十分に高めることができないという問題がある。よって、このような問題を解決するために、Zn-4.0%Al-0.1%Mgめっき層の冷却過程においてCo(III)塩を噴霧処理する技術(ISIJ,1990,p383-390)を提示しており、最近ではZn-Al-Mg合金めっき鋼板の表面にMg、Al、Zn塩からなる水溶液を処理した後、塩化亜鉛水溶液を処理する技術(韓国特許10-1638307号公報)を提示しているが、設備的に複雑で適用が容易でないという問題点がある。 However, the biggest problem with these alloy-plated steel sheets and chromate-treated steel sheets is the blackening phenomenon that occurs on the surface of the plating layer during long-term storage at the client's facility, condensation due to temperature differences, or storage in a coiled or stacked state in a hot and humid environment. This blackening phenomenon is a common phenomenon in plating layers that contain magnesium metal, and is caused by incomplete oxidation of zinc metal due to preferential oxidation of magnesium metal concentrated on the surface. Blackening is the initial stage of metal corrosion, and when exposed to air, it tends to be easily completely oxidized to white rust. In particular, chromate treatment solutions are strong acidic aqueous solutions with a pH range of 1 to 1.5, and chromate products for building materials mainly have a problem that the thickness of the steel sheet is 1.0 mm or more, and cooling is not easy due to the latent heat after drying, making it difficult to sufficiently increase the drying temperature. To solve this problem, a technology has been proposed in which Co(III) salt is sprayed during the cooling process of the Zn-4.0%Al-0.1%Mg plating layer (ISIJ, 1990, p383-390), and more recently, a technology has been proposed in which an aqueous solution of Mg, Al, and Zn salts is treated on the surface of a Zn-Al-Mg alloy-plated steel sheet, followed by a zinc chloride aqueous solution (Korean Patent No. 10-1638307). However, this technology has problems in that the equipment required is complex and difficult to apply.

本発明では、Zn-Al-Mg合金めっき鋼板及びクロメート処理鋼板で発生する表面の黒変性欠陥を防止するための化成処理用組成物及び化成処理方法を提供する。 The present invention provides a chemical conversion treatment composition and a chemical conversion treatment method for preventing surface blackening defects that occur in Zn-Al-Mg alloy plated steel sheets and chromate-treated steel sheets.

本発明の一側面によると、化成処理用組成物の総重量を基準として、アルキルホスフェート酸とアルキルアミンに由来するリン酸アミン塩0.2~20重量%;リン酸亜鉛0.1~10重量%;シリケート化合物0.1~10重量%;及び残部の水を含むZn-Al-Mg合金めっき鋼板の化成処理用組成物が提供される。 According to one aspect of the present invention, a chemical conversion treatment composition for Zn-Al-Mg alloy-plated steel sheet is provided, which contains, based on the total weight of the chemical conversion treatment composition, 0.2 to 20 wt % of an amine phosphate salt derived from an alkyl phosphate acid and an alkylamine; 0.1 to 10 wt % of zinc phosphate; 0.1 to 10 wt % of a silicate compound; and the balance water.

本発明の他の側面によると、Zn-Al-Mg合金めっき鋼板及び上記めっき鋼板の少なくとも一面に化成処理コーティング層を含み、上記化成処理コーティング層は、上記化成処理用組成物によって形成された化成処理された鋼板が提供される。 According to another aspect of the present invention, a chemically treated steel sheet is provided, which includes a Zn-Al-Mg alloy plated steel sheet and a chemical conversion coating layer on at least one surface of the plated steel sheet, the chemical conversion coating layer being formed from the chemical conversion treatment composition.

本発明による化成処理用組成物は、Zn-Al-Mg合金めっき鋼板の表面に吸着して、コイルや鋼板の積層時に高温高湿の環境又は結露の発生による黒変現象を防止することができる。 The chemical conversion treatment composition according to the present invention can be adsorbed onto the surface of Zn-Al-Mg alloy plated steel sheets, and can prevent blackening caused by high temperature and high humidity environments or dew condensation during lamination of coils and steel sheets. .

(a)は、本発明の一実施例による化成処理後の塗膜構造、(b)は、化成処理された鋼板にクロメート処理した塗膜構造を示すものである。1A shows a coating structure after chemical conversion treatment according to one embodiment of the present invention, and FIG. 1B shows a coating structure obtained by subjecting a chemically treated steel sheet to a chromate treatment. Zn-Al-Mg合金めっき鋼板に、本発明の一実施例による化成処理及びクロメート処理を行う工程を示すものである。This figure shows a process of performing chemical conversion treatment and chromate treatment on a Zn-Al-Mg alloy plated steel sheet according to an embodiment of the present invention.

以下、本発明の好ましい実施形態について説明する。しかし、本発明の実施形態は、様々な異なる形態に変形することができ、本発明の範囲が以下で説明する実施形態に限定されるものではない。 The following describes preferred embodiments of the present invention. However, the embodiments of the present invention can be modified in various different forms, and the scope of the present invention is not limited to the embodiments described below.

通常、クロメートコーティング溶液は、pHが1.0~1.5である強い酸性溶液である。したがって、浸漬、スプレー又はロールコーティング時に鋼板のめっき層の表面をエッチングし、不完全なCr-酸化物あるいは水酸化物が析出してコーティング層を形成する。特に、鉄鋼メーカーの溶融めっきラインの設備制約のためコーティング層を硬化するための乾燥温度を高めることができない点、及び乾燥後に鋼板の冷却が困難な問題により、100℃以下の温度でコーティング層が乾燥されるという特性がある。これにより、コイル又は積層された鋼板を長期間保管すると、表面に黒変の問題が発生する。先行研究によると、黒変現象は、亜鉛めっき鋼板が高温多湿な環境又は酸素の供給が円滑でない雰囲気に長期間晒されたり、表面の不純物や機械的変形によって発生することが知られている。このような黒変現象は、アルミニウム又はマグネシウム添加された亜鉛めっき層で起こりやすく、且つ、めっき層の表面にリン酸化合物又はクロメート処理時に不完全酸化によって促進されることが知られている。 Normally, a chromate coating solution is a strong acid solution with a pH of 1.0 to 1.5. Therefore, during immersion, spraying or roll coating, the surface of the plating layer of the steel sheet is etched, and incomplete Cr-oxide or hydroxide precipitates to form a coating layer. In particular, due to equipment restrictions on the hot-dip plating line of steel manufacturers, the drying temperature for hardening the coating layer cannot be increased, and due to the problem of difficulty in cooling the steel sheet after drying, the coating layer is characterized by being dried at a temperature of 100°C or less. As a result, if the coil or stacked steel sheet is stored for a long period of time, the problem of blackening occurs on the surface. According to previous research, it is known that the blackening phenomenon occurs when the galvanized steel sheet is exposed to a high-temperature and high-humidity environment or an atmosphere with poor oxygen supply for a long period of time, or due to surface impurities or mechanical deformation. It is known that such a blackening phenomenon is likely to occur in a galvanized layer containing aluminum or magnesium, and is promoted by incomplete oxidation during the treatment with a phosphate compound or chromate on the surface of the plating layer.

上記のような問題点を解決するための方法として、図1のようにめっき層表面の粗さ形成部位に有機-無機耐腐食性リン酸アミン塩化合物を含浸させると、酸性度の高い溶液による過度な表面エッチングを防止し、粗さ部分又はめっき層の粒界部分への酸の浸透を防止して、腐食現象を防止することができる。以下では、本発明について詳細に説明する。 As a method to solve the above-mentioned problems, as shown in Figure 1, impregnating the roughness formation site of the plating layer surface with an organic-inorganic corrosion-resistant phosphoric acid amine salt compound will prevent corrosion caused by highly acidic solutions. Corrosion phenomena can be prevented by preventing excessive surface etching and preventing acid from penetrating into rough areas or grain boundary areas of the plating layer. The present invention will be explained in detail below.

本発明の一実施例によると、アルキルホスフェート酸及びアルキルアミンに由来するリン酸アミン塩、リン酸亜鉛、シリケート化合物及び残部の水を含むZn-Al-Mg合金めっき鋼板の化成処理用組成物が提供される。 According to an embodiment of the present invention, a composition for chemical conversion treatment of a Zn-Al-Mg alloy plated steel sheet includes a phosphoric acid amine salt derived from an alkyl phosphate acid and an alkyl amine, zinc phosphate, a silicate compound, and the balance water. provided.

リン酸アミン塩は、アルキルホスフェート酸及びアルキルアミンがイオン結合を形成している化合物であってもよい。本発明において、リン酸アミン塩は、化成処理用組成物の総重量を基準として0.1~20重量%含まれることができる。リン酸アミン塩の含量が0.1重量%未満である場合、鋼板の耐黒変効果が十分に発揮されず、20重量%を超える場合、後続するクロメートコーティング段階でクロメートコーティングが困難であるという問題がある。 The amine phosphate may be a compound in which an alkyl phosphate acid and an alkylamine form an ionic bond. In the present invention, the amine phosphate may be included in an amount of 0.1 to 20% by weight based on the total weight of the chemical conversion treatment composition. If the content of the amine phosphate is less than 0.1% by weight, the effect of preventing blackening of the steel sheet is not fully exhibited, and if it exceeds 20% by weight, there is a problem that chromate coating is difficult in the subsequent chromate coating step.

リン酸アミン塩を構成する上記アルキルホスフェート酸は、下記化学式1で表される化合物であってもよい。
The alkyl phosphate acid constituting the phosphoric acid amine salt may be a compound represented by the following chemical formula 1.

上記化学式1において、R及びRはそれぞれ独立して炭素数3~15の直鎖状アルキル基、炭素数5~15の分岐状アルキル基であり、上記R及びRはそれぞれ独立してヒドロキシ基、エーテル基、エステル基又はエポキシ基で置換されてもよい。 In the above formula 1, R1 and R2 are each independently a linear alkyl group having 3 to 15 carbon atoms or a branched alkyl group having 5 to 15 carbon atoms, and R1 and R2 may each independently be substituted with a hydroxyl group, an ether group, an ester group, or an epoxy group.

本発明において使用できる好ましいアルキルホスフェート酸は、2-エチルヘキシルホスフェート(2-ethylhexyl phosphate)、イソノナノールホスフェート(Iso-nonanol phosphate)、オクチルエトキシレートホスフェート(Octyl ethoxylate phosphate)、デシルエトキシレートホスフェート(Decyl ethoxylate phosphate)、2-エチルヘキシルエトキシレートホスフェート(2-ethylhexyl ethoxylate phosphate)、デシルアルコールエトキシレートホスフェート(Decyl alcohol ethoxylate phosphate)、イソトリデカノールエトキシレートホスフェート(Iso-tridecanol ethoxylate phosphate)、テルギトール15-S-9ホスフェート(Tergitol 15-S-9 phosphate)、セチルアルコールエトキシレートホスフェート(Cetyl alcohol ethoxylate phosphate)、ステアリルアルコールエトキシレートホスフェート(Stearyl alcohol ethoxylate phosphate)、オクチルアルコールエトキシレートホスフェート(Octyl alcohol ethoxylate phosphate)、オレイルアルコールエトキシレートホスフェート(Oleyl alcohol ethoxylate phosphate)及びアルキルフェノールエトキシレートホスフェート(Alkyl phenol ethoxylate phosphate)からなる群から選択された1種以上であってもよいが、これに限定されない。 Preferred alkyl phosphate acids that can be used in the present invention are 2-ethylhexyl phosphate, isononanol phosphate, octyl ethoxylate phosphate, decyl ethoxylate phosphate, 2-ethylhexyl ethoxylate phosphate, decyl alcohol ethoxylate phosphate, and isotridecanol ethoxylate phosphate. ethoxylate phosphate, Tergitol 15-S-9 phosphate, Cetyl alcohol ethoxylate phosphate, Stearyl alcohol ethoxylate phosphate, Octyl alcohol ethoxylate phosphate, Oleyl alcohol ethoxylate phosphate, and Alkyl phenol ethoxylate phosphate The compound may be one or more selected from the group consisting of, but is not limited to, phosphate.

リン酸アミン塩を構成する上記アルキルアミンは、下記化学式2~8で表される化合物の少なくとも1つであってもよい。
The alkylamine constituting the phosphoric acid amine salt may be at least one of the compounds represented by the following chemical formulas 2 to 8.

上記化学式2~8において、R、R及びRはそれぞれ独立して水素又はメチルであり、Rはそれぞれ独立してヒドロキシ基で置換された炭素数3~5の直鎖状又は分岐状アルキル基であり、nは2又は3の整数である。 In the above chemical formulas 2 to 8, R 3 , R 4 and R 5 are each independently hydrogen or methyl, R 6 is each independently a linear or branched alkyl group having 3 to 5 carbon atoms substituted with a hydroxyl group, and n is an integer of 2 or 3.

本発明において使用できる好ましいアルキルアミンは、ビス(N-ジメチルアミノプロピル)アミン(Bis(N-dimethylaminopropyl)amine)、ビス(N-ジメチルアミノエチル)メチルアミン(Bis(N-dimethylaminoethyl)methylamine)、ビス(N-ジメチルアミノプロピル)メチルアミン(Bis(N-dimethylaminopropyl)methylamine)、ビス(N-アミノエチル)メチルアミン(Bis(N-aminoethyl)methylamine)、ビス(N-アミノプロピル)メチルアミン(Bis(N-aminopropyl)methylamine)、ビス(ジメチルアミノエチル)エーテル(Bis(dimethylaminoethyl)ether)、ビス(ジメチルアミノプロピル)エーテル(Bis(dimethylaminopropyl)ether)、ビス(アミノエチル)エーテル(Bis(aminoethyl)ether)、ビス(アミノプロピル)エーテル(Bis(aminopropyl)ether)、ビス(3-ジメチルアミノプロピル)イソプロパノールアミン(Bis(3-dimethylaminopropyl)isopropanolamine)、3-ジメチルアミノプロピルジイソプロパノールアミン(3-dimethylaminopropyldiisopropanolamine)、2-(2-ジメチルアミノエトキシ)エタノール(2-(2-dimethylaminoethoxy)ethanol)、2-(2-ジメチルアミノエトキシエチル)メチルアミノエタノール(2-(2-dimethylaminoethoxyethyl)methylaminoethanol)、2-(2-ジメチルポリノエチル)エーテル(2-(2-dimethylpholinoethyl)ether)及び2-(2-ジメチルアミノエチル)メチルアミノエタノール(2-(2-dimethylaminoethyl)methylaminoethanol)からなる群から選択された1種以上であってもよいが、これに限定されない。 Preferred alkylamines that can be used in the present invention include Bis(N-dimethylaminopropyl)amine, Bis(N-dimethylaminoethyl)methylamine, and Bis(N-dimethylaminoethyl)methylamine. (N-dimethylaminopropyl)methylamine (Bis(N-dimethylaminopropyl)methylamine), Bis(N-aminoethyl)methylamine, Bis(N-aminopropyl)methylamine N-aminopropyl)methylamine), Bis(dimethylaminoethyl)ether, Bis(dimethylaminopropyl)ether, Bis( aminoethyl)ether) , Bis(aminopropyl)ether, Bis(3-dimethylaminopropyl)isopropanolamine, 3-dimethylaminopropyldiisopropanolamine ropyldiisopropanolamine), 2 -(2-dimethylaminoethoxy)ethanol, 2-(2-dimethylaminoethoxyethyl)methylaminoethanol, 2-(2-dimethylaminoethoxyethyl)methylaminoethanol one or more selected from the group consisting of polynoethyl)ether (2-(2-dimethylphorinoethyl)ether) and 2-(2-dimethylaminoethyl)methylaminoethanol (2-(2-dimethylaminoethyl)methylaminoethanol); may be used, but is not limited to this.

上記アルキルホスフェート酸のアニオン及びアルキルアミンのカチオンは、イオン結合によってリン酸アミン塩を形成し、化成処理用組成物の総重量に対してそれぞれ0.1~10重量%含まれることができる。 The anion of the alkyl phosphate acid and the cation of the alkylamine form an amine phosphate salt through an ionic bond, and each can be contained in an amount of 0.1 to 10% by weight based on the total weight of the chemical conversion treatment composition.

本発明の一実施例による化成処理用組成物において、リン酸亜鉛は、組成物の塗布時に鋼板表面にリン酸結晶を形成し、更なる耐腐食性及び耐黒変性を付与する。上記リン酸亜鉛は、化成処理用組成物の総重量を基準として0.1~10重量%の範囲で添加することができる。リン酸亜鉛の含量が0.1重量%未満であると、耐腐食性の効果が僅かであり、10重量%を超えると、表面のクロメートコーティング層が割れやすい(Britlle)という問題がある。 In the chemical conversion coating composition according to one embodiment of the present invention, zinc phosphate forms phosphate crystals on the surface of the steel sheet when the composition is applied, imparting further corrosion resistance and blackening resistance. The zinc phosphate can be added in the range of 0.1 to 10 weight percent based on the total weight of the chemical conversion coating composition. If the zinc phosphate content is less than 0.1 weight percent, the corrosion resistance effect is minimal, and if it exceeds 10 weight percent, there is a problem that the chromate coating layer on the surface is easily cracked (brittle).

本発明の一実施例による化成処理用組成物において、シリケート化合物は、組成物の塗布時に、鋼板表面の微細な粗さ部分に析出して更なる耐腐食性を付与する。上記シリケート化合物の含量が高いほど、耐腐食性と塗膜との密着性が向上するが、一定量以上で添加しても耐腐食性及び塗膜の密着性の向上には限界がある。したがって、シリケート化合物は、化成処理用組成物の総重量を基準として0.1~10重量%の範囲で添加することが好ましい。 In the composition for chemical conversion treatment according to an embodiment of the present invention, the silicate compound precipitates on fine roughness areas on the surface of the steel sheet when the composition is applied, thereby imparting further corrosion resistance. The higher the content of the silicate compound, the better the corrosion resistance and the adhesion to the coating film, but even if it is added in a certain amount or more, there is a limit to the improvement in the corrosion resistance and the adhesion of the coating film. Therefore, the silicate compound is preferably added in an amount of 0.1 to 10% by weight based on the total weight of the chemical conversion treatment composition.

本発明において使用できるシリケート化合物としては、リチウムシリケート、ナトリウムシリケート、カリウムシリケートなどがあり、好ましくは、リチウムシリケート化合物を使用することができる。 Silicate compounds that can be used in the present invention include lithium silicate, sodium silicate, potassium silicate, etc., and preferably lithium silicate compounds can be used.

また、本発明の一実施例による化成処理用組成物は、組成物の酸度を調節するためにリン酸化合物をさらに含むことができる。リン酸化合物は、組成物のpHが3~5になるように添加される。 The chemical conversion coating composition according to one embodiment of the present invention may further include a phosphate compound to adjust the acidity of the composition. The phosphate compound is added so that the pH of the composition is 3 to 5.

本発明の他の側面によると、化成処理されたZn-Al-Mg合金めっき鋼板は、冷延鋼板をアルカリ脱脂、酸洗及び洗浄して乾燥する段階、亜鉛合金を溶融めっきした後に冷却する段階、化成処理後に乾燥する段階、クロメート処理後に乾燥する段階を経て製造することができる。このとき、化成処理用組成物及びクロメート組成物は、スプレー(spray)後のスクイージング(squeezing)又はロールコーティング工程により処理され、乾燥は熱風、赤外線あるいは誘導加熱硬化方法により行われる。 According to another aspect of the present invention, the Zn-Al-Mg alloy coated steel sheet subjected to chemical conversion treatment is prepared by the steps of alkaline degreasing, pickling, washing and drying of the cold-rolled steel sheet, and the steps of cooling after hot-dipping the zinc alloy. , a step of drying after chemical conversion treatment, and a step of drying after chromate treatment. At this time, the chemical conversion treatment composition and the chromate composition are treated by spraying followed by squeezing or roll coating, and drying is performed by hot air, infrared rays, or induction heating curing.

冷延鋼板に亜鉛合金を溶融めっきする段階において、上記亜鉛合金はZn-xAl-yMgの形態であってもよい。このとき、xは0.5~15であり、yは0.5~10であることが好ましい。 In the step of hot-dip plating the cold-rolled steel sheet with a zinc alloy, the zinc alloy may be in the form of Zn-xAl-yMg. In this case, it is preferable that x is 0.5 to 15 and y is 0.5 to 10.

化成処理後に乾燥する段階において、好ましくは10~100mg/mで化成処理用組成物を塗布し、60~120℃の温度で乾燥することができる。また、クロメート処理後に乾燥する段階において、好ましくはクロム元素の重量を基準として10~300mg/mで塗布し、80~120℃の温度で乾燥することができる。 In the stage of drying after the chemical conversion treatment, the chemical conversion treatment composition is preferably applied at 10 to 100 mg/ m2 , and can be dried at a temperature of 60 to 120° C. In addition, in the stage of drying after the chromate treatment, the composition can be preferably applied at 10 to 300 mg/ m2 based on the weight of the chromium element, and can be dried at a temperature of 80 to 120° C.

(実施例)
以下、本発明の実施例について詳細に説明する。下記の実施例は、本発明を理解するためのものであり、本発明を限定するものではない。
1.実施例
(1)化成処理用組成物の製造
純水1Lにイソノナノールホスフェートとビス(N-アミノエチル)メチルアミンからなるリン酸アミン塩、リン酸亜鉛水和物(DUCKSANケミカル社)を溶かし、リチウムシリケート化合物とリン酸を加えてpHが3.5である化成処理用組成物を製造した。上記化成処理用組成物の各組成を下記表1に示した。
(Example)
Examples of the present invention will be described in detail below. The following examples are provided for understanding the invention and are not intended to limit it.
1. Examples (1) Production of composition for chemical conversion treatment Dissolve phosphoric acid amine salt consisting of isononanol phosphate and bis(N-aminoethyl)methylamine and zinc phosphate hydrate (DUCKSAN Chemical Company) in 1 L of pure water. A composition for chemical conversion treatment having a pH of 3.5 was prepared by adding a lithium silicate compound and phosphoric acid. The compositions of the above chemical conversion treatment compositions are shown in Table 1 below.

(2)化成処理鋼板の製造
上記で製造された化成処理用組成物をめっき量が50g/mであり、下記表1のx、y値を有するZn-xAl-yMgめっき鋼板に塗布した後、80℃の熱風加熱炉で乾燥した。上記化成処理された鋼板にクロメート(III)組成物をロールコーティングで塗布した後、80℃の熱風加熱炉で乾燥した。クロメート(III)組成物は、固形分含量が12重量%であり、リン酸クロム、硝酸クロム、シラン化合物及び少量のウレタンバインダーとウェッティング剤等からなる水溶性Cr(III)組成物((株)NOROOコイルコーティング)であって、pHは1.2である。
(2) Manufacture of chemical conversion treated steel sheet After applying the chemical conversion treatment composition manufactured above to a Zn-xAl-yMg plated steel sheet with a plating amount of 50 g/m 2 and having the x and y values shown in Table 1 below. , and dried in a hot air oven at 80°C. A chromate (III) composition was applied to the above-mentioned chemical conversion treated steel plate by roll coating, and then dried in a hot air heating oven at 80°C. The chromate (III) composition has a solid content of 12% by weight and is a water-soluble Cr (III) composition (produced by Co., Ltd. ) NOROO coil coating) and the pH is 1.2.

2.比較例
下記表2のようにめっき量が50g/mであり、下記表2のx、y値を有するZn-xAl-yMgめっき鋼板にクロメート(III)とクロメート(VI)組成物をそれぞれロールコーティングで塗布した後、80℃の熱風加熱炉で乾燥してクロメート処理されためっき鋼板を製造した。
2. Comparative Example Chromate (III) and chromate (VI) compositions were rolled on a Zn-xAl-yMg plated steel sheet with a plating amount of 50 g/m 2 and x and y values shown in Table 2 below, as shown in Table 2 below. After applying the coating, it was dried in a hot air oven at 80° C. to produce a chromate-treated plated steel sheet.

3.Zn-Al-Mg合金めっき鋼板の評価
下記(1)~(5)の項目を評価した後、評価結果を表3に示した。
(1)[Cr]付着量
鋼板の表面に3%標準塩酸溶液30mlを加えてめっき層を溶解した後、[Cr]元素に対してICP定量分析法により測定した。
3. Evaluation of Zn—Al—Mg alloy plated steel sheets The following items (1) to (5) were evaluated, and the evaluation results are shown in Table 3.
(1) [Cr] Coating Weight 30 ml of a 3% standard hydrochloric acid solution was added to the surface of the steel sheet to dissolve the plating layer, and then the [Cr] element was measured by ICP quantitative analysis.

(2)耐黒変性
コーティング鋼板を70mm×70mm(横×縦)のサイズで試験片を製造し、恒温恒湿(65℃、95%の相対湿度条件)条件で120時間放置し、原板と比較して平均色差(ΔE)を測定した。
<評価基準>
◎:平均色差(ΔE)が5.0未満の場合
○:平均色差(ΔE)が5.0以上10.0未満の場合
△:平均色差(ΔE)が10.0以上15.0未満の場合
×:平均色差(ΔE)が15.0以上の場合
(2) Resistance to blackening A test piece of 70 mm x 70 mm (width x length) was prepared from the coated steel plate, left at constant temperature and humidity (65°C, 95% relative humidity) for 120 hours, and compared with the original plate. The average color difference (ΔE) was measured.
<Evaluation criteria>
◎: When the average color difference (ΔE) is less than 5.0 ○: When the average color difference (ΔE) is 5.0 or more and less than 10.0 △: When the average color difference (ΔE) is 10.0 or more and less than 15.0 ×: When the average color difference (ΔE) is 15.0 or more

(3)耐腐食性
平板部の耐腐食性は、鋼板を70mm×150mm(横×縦)のサイズで試験片を製造し、上記試験片に5%の塩水濃度及び35℃の温度を有する塩水を1kg/cmの噴霧圧で均一に噴射した後、鋼板の表面に5%面積の白錆が発生するまでの時間を測定した。また、加工部の耐腐食性は、試験片をエリクセン7mm加工後、上記と同様の方法で評価した。
<評価基準>
◎:平板部168時間以上の場合
○:平板部120時間以上168時間未満の場合
△:平板部48時間以上120時間未満の場合
×:平板部48時間未満の場合
(3) Corrosion Resistance The corrosion resistance of the flat plate portion was evaluated by manufacturing a test piece of 70 mm x 150 mm (horizontal x vertical) from the steel plate, spraying salt water having a salt water concentration of 5% and a temperature of 35°C uniformly onto the test piece at a spray pressure of 1 kg/ cm2 , and then measuring the time until white rust appeared on 5% of the surface area of the steel plate. The corrosion resistance of the processed portion was evaluated in the same manner as above after the test piece was processed to 7 mm by Erichsen.
<Evaluation criteria>
◎: When the flat plate part is 168 hours or more. ○: When the flat plate part is 120 hours or more but less than 168 hours. △: When the flat plate part is 48 hours or more but less than 120 hours. ×: When the flat plate part is less than 48 hours.

(4)耐アルカリ性
鋼板を150mm×70mm(横×縦)のサイズで試験片を製造した。強アルカリ脱脂剤(製造社、DAEHAN PARKERIZING(株))DP FC-L4460A 20g及びDP FC-L4460B 10gを純水1Lに溶かしてから、上記試験片を温度60℃で2分間浸漬した後、原板と比較して平均色差(ΔE)を測定した。
<評価基準>
◎:平均色差(ΔE)が1.0未満の場合
○:平均色差(ΔE)が1.0以上1.5未満の場合
△:平均色差(ΔE)が1.5以上2.0未満の場合
×:平均色差(ΔE)が2.0以上の場合
(4) Alkaline Resistance Test pieces were prepared from steel sheets measuring 150 mm x 70 mm (horizontal x vertical). 20 g of strong alkaline degreasing agent DP FC-L4460A and 10 g of DP FC-L4460B (manufactured by Daehan Parkerizing Co., Ltd.) were dissolved in 1 L of pure water, and the test pieces were immersed at a temperature of 60°C for 2 minutes, and the average color difference (ΔE) was measured in comparison with the original sheet.
<Evaluation criteria>
◎: When the average color difference (ΔE) is less than 1.0 ○: When the average color difference (ΔE) is 1.0 or more and less than 1.5 △: When the average color difference (ΔE) is 1.5 or more and less than 2.0 ×: When the average color difference (ΔE) is 2.0 or more

(5)造管油侵害性
鋼板を10%造管油に24時間浸漬し、放置した後の色差を測定して評価した。
<評価基準>
◎:平均色差(ΔE)が0.5未満の場合
○:平均色差(ΔE)が0.5以上1.0未満の場合
△:平均色差(ΔE)が1.0以上1.5未満の場合
×:平均色差(ΔE)が1.5以上の場合
(5) Corrosion Resistance to Pipe-Making Oil The steel sheet was immersed in 10% pipe-making oil for 24 hours and then the color difference after leaving it was measured and evaluated.
<Evaluation criteria>
◎: When the average color difference (ΔE) is less than 0.5 ○: When the average color difference (ΔE) is 0.5 or more and less than 1.0 △: When the average color difference (ΔE) is 1.0 or more and less than 1.5 ×: When the average color difference (ΔE) is 1.5 or more

比較例1~4のように、化成処理用組成物を使用せずにめっき鋼板上にクロメート処理した場合、耐黒変性が低下することが確認できる。
As in Comparative Examples 1 to 4, when a chromate treatment was performed on a plated steel sheet without using a chemical conversion treatment composition, it was confirmed that the resistance to blackening was reduced.

Claims (9)

化成処理用組成物の総重量を基準として、
アルキルホスフェート酸とアルキルアミンに由来するリン酸アミン塩0.2~20重量%;
リン酸亜鉛0.1~10重量%;
シリケート化合物(SiO及びフルオロシリケートを除く)0.1~10重量%;及び
残部の水を含む、Zn-Al-Mg合金めっき鋼板の化成処理用組成物。
Based on the total weight of the chemical conversion treatment composition,
0.2 to 20% by weight of a phosphoric acid amine salt derived from an alkyl phosphate acid and an alkyl amine;
0.1 to 10% by weight of zinc phosphate;
A composition for chemical conversion treatment of a Zn-Al-Mg alloy-plated steel sheet, comprising: 0.1 to 10% by weight of a silicate compound (excluding SiO2 and fluorosilicates); and the balance being water.
前記アルキルホスフェート酸は、下記化学式1で表される化合物である、請求項1に記
載のZn-Al-Mg合金めっき鋼板の化成処理用組成物。
Figure 0007461479000014

(前記化学式1において、R及びRはそれぞれ独立して炭素数3~15の直鎖状アルキル基、炭素数5~15の分岐状アルキル基であり、前記R及びRはそれぞれ独立してヒドロキシ基、エーテル基、エステル基又はエポキシ基で置換されてもよい。)
The chemical conversion treatment composition for Zn-Al-Mg alloy plated steel sheet according to claim 1, wherein the alkyl phosphate acid is a compound represented by the following chemical formula 1:
Figure 0007461479000014

(In the above formula 1, R1 and R2 are each independently a linear alkyl group having 3 to 15 carbon atoms or a branched alkyl group having 5 to 15 carbon atoms, and R1 and R2 may each independently be substituted with a hydroxyl group, an ether group, an ester group, or an epoxy group.)
前記アルキルアミンは、下記化学式2~8で表される化合物の少なくとも1つである、請求項1に記載のZn-Al-Mg合金めっき鋼板の化成処理用組成物。
Figure 0007461479000015

Figure 0007461479000016

Figure 0007461479000017

Figure 0007461479000018

Figure 0007461479000019

Figure 0007461479000020

Figure 0007461479000021

(前記化学式2~8において、
、R及びRはそれぞれ独立して水素又はメチルであり、
はそれぞれ独立してヒドロキシ基で置換された炭素数3~5の直鎖状又は分岐状のアルキル基であり、
nは2又は3の整数である。)
The composition for chemical conversion treatment of a Zn-Al-Mg alloy plated steel sheet according to claim 1, wherein the alkylamine is at least one of the compounds represented by the following chemical formulas 2 to 8.
Figure 0007461479000015

Figure 0007461479000016

Figure 0007461479000017

Figure 0007461479000018

Figure 0007461479000019

Figure 0007461479000020

Figure 0007461479000021

(In the chemical formulas 2 to 8 above,
R 3 , R 4 and R 5 are each independently hydrogen or methyl;
R 6 is each independently a linear or branched alkyl group having 3 to 5 carbon atoms substituted with a hydroxy group,
n is an integer of 2 or 3. )
前記アルキルホスフェート酸は、2-エチルヘキシルホスフェート(2-ethylhexyl phosphate)、イソノナノールホスフェート(Iso-nonanol phosphate)、オクチルエトキシレートホスフェート(Octyl ethoxylate phosphate)、デシルエトキシレートホスフェート(Decyl ethoxylate phosphate)、2-エチルヘキシルエトキシレートホスフェート(2-ethylhexyl ethoxylate phosphate)、デシルアルコールエトキシレートホスフェート(Decyl alcohol ethoxylate phosphate)、イソトリデカノールエトキシレートホスフェート(Iso-tridecanol ethoxylate phosphate)、テルギトール15-S-9ホスフェート(Tergitol 15-S-9 phosphate)、セチルアルコールエトキシレートホスフェート(Cetyl alcohol ethoxylate phosphate)、ステアリルアルコールエトキシレートホスフェート(Stearyl alcohol ethoxylate phosphate)、オクチルアルコールエトキシレートホスフェート(Octyl alcohol ethoxylate phosphate)、オレイルアルコールエトキシレートホスフェート(Oleyl alcohol ethoxylate phosphate)及びアルキルフェノールエトキシレートホスフェート(Alkyl phenol ethoxylate phosphate)からなる群から選択された1種以上である、請求項1に記載のZn-Al-Mg合金めっき鋼板の化成処理用組成物。 The alkyl phosphate acid is 2-ethylhexyl phosphate, isononanol phosphate, octyl ethoxylate phosphate, decyl ethoxylate phosphate, 2-ethylhexyl ethoxylate phosphate, decyl alcohol ethoxylate phosphate, isotridecanol ethoxylate phosphate, ethoxylate phosphate, Tergitol 15-S-9 phosphate, Cetyl alcohol ethoxylate phosphate, Stearyl alcohol ethoxylate phosphate, Octyl alcohol ethoxylate phosphate, Oleyl alcohol ethoxylate phosphate, and Alkyl phenol ethoxylate phosphate The chemical conversion treatment composition for Zn-Al-Mg alloy-plated steel sheet according to claim 1, which is at least one selected from the group consisting of phosphates. 前記アルキルアミンは、ビス(N-ジメチルアミノプロピル)アミン(Bis(N-dimethylaminopropyl)amine)、ビス(N-ジメチルアミノエチル)メチルアミン(Bis(N-dimethylaminoethyl)methylamine)、ビス(N-ジメチルアミノプロピル)メチルアミン(Bis(N-dimethylaminopropyl)methylamine)、ビス(N-アミノエチル)メチルアミン(Bis(N-aminoethyl)methylamine)、ビス(N-アミノプロピル)メチルアミン(Bis(N-aminopropyl)methylamine)、ビス(ジメチルアミノエチル)エーテル(Bis(dimethylaminoethyl)ether)、ビス(ジメチルアミノプロピル)エーテル(Bis(dimethylaminopropyl)ether)、ビス(アミノエチル)エーテル(Bis(aminoethyl)ether)、ビス(アミノプロピル)エーテル(Bis(aminopropyl)ether)、ビス(3-ジメチルアミノプロピル)イソプロパノールアミン(Bis(3-dimethylaminopropyl)isopropanolamine)、3-ジメチルアミノプロピルジイソプロパノールアミン(3-dimethylaminopropyldiisopropanolamine)、2-(2-ジメチルアミノエトキシ)エタノール(2-(2-dimethylaminoethoxy)ethanol)、2-(2-ジメチルアミノエトキシエチル)メチルアミノエタノール(2-(2-dimethylaminoethoxyethyl)methylaminoethanol)、2-(2-ジメチルポリノエチル)エーテル(2-(2-dimethylpholinoethyl)ether)及び2-(2-ジメチルアミノエチル)メチルアミノエタノール(2-(2-dimethylaminoethyl)methylaminoethanol)からなる群から選択された1種以上である、請求項1に記載のZn-Al-Mg合金めっき鋼板の化成処理用組成物。 The alkylamines include Bis(N-dimethylaminopropyl)amine, Bis(N-dimethylaminoethyl)methylamine, and Bis(N-dimethylaminoethyl)methylamine. Bis(N-aminopropyl)methylamine, Bis(N-aminoethyl)methylamine, Bis(N-aminopropyl)methylamine ne ), Bis(dimethylaminoethyl)ether, Bis(dimethylaminopropyl)ether, Bis(aminoethyl)ether, Bis(aminopropyl) ) ether (Bis(aminopropyl)ether), Bis(3-dimethylaminopropyl)isopropanolamine (Bis(3-dimethylaminopropyl)isopropanolamine), 3-dimethylaminopropyldiisopropanolamine (3-dimethylaminopropyl) iisopropanolamine), 2-(2-dimethyl Ethanol) ethanol (2- (2 -Dimethylaminoethoxy) Ethanol), 2- (2 -dimethylaminominouetoxyethyl) Methylaminoe Tanol (2- (2 -Dimethylaminoethoxyethyl) MethylaminoEtha NOL), 2- (2 -dimethyl polyethyl) ether (2-(2-dimethylphorinoethyl)ether) and 2-(2-dimethylaminoethyl)methylaminoethanol (2-(2-dimethylaminoethyl)methylaminoethanol). A composition for chemical conversion treatment of a Zn-Al-Mg alloy plated steel sheet as described above. 前記シリケート化合物は、リチウムシリケート、ナトリウムシリケート及びカリウムシリケートからなる群から選択された1種以上である、請求項1に記載のZn-Al-Mg合金めっき鋼板の化成処理用組成物。 The composition for chemical conversion treatment of Zn-Al-Mg alloy-plated steel sheet according to claim 1, wherein the silicate compound is at least one selected from the group consisting of lithium silicate, sodium silicate, and potassium silicate. 組成物のpHが3~5となるように前記リン酸アミン塩または前記リン酸亜鉛を除いたリン酸化合物をさらに含む、請求項1に記載のZn-Al-Mg合金めっき鋼板の化成処理用組成物。 The chemical conversion treatment composition for Zn-Al-Mg alloy-plated steel sheet according to claim 1, further comprising the amine phosphate or a phosphate compound other than the zinc phosphate so that the pH of the composition is 3 to 5. Zn-Al-Mg合金めっき鋼板上において、
前記めっき鋼板の少なくとも一面に請求項1から7のいずれか一項に記載の化成処理用組成物を塗布及び乾燥して化成処理コーティング層を製造する段階を含み、
前記コーティング層は10~100mg/mで付着したものである、化成処理された鋼板の製造方法
On a Zn-Al-Mg alloy plated steel sheet,
The method includes the steps of applying the chemical conversion coating composition according to any one of claims 1 to 7 to at least one surface of the plated steel sheet and drying the composition to produce a chemical conversion coating layer ,
The method for producing a chemically treated steel sheet, wherein the coating layer is deposited at 10 to 100 mg/ m2 .
前記化成処理コーティング層上にクロメートコーティング層が存在する、請求項8に記載の化成処理された鋼板の製造方法 The method for producing a chemically treated steel sheet according to claim 8, wherein a chromate coating layer is present on the chemical conversion coating layer.
JP2022537358A 2019-12-17 2020-12-17 Chemical conversion treatment composition for Zn-Al-Mg alloy plated steel sheet and Zn-Al-Mg alloy plated steel sheet Active JP7461479B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2019-0169261 2019-12-17
KR1020190169261A KR102349154B1 (en) 2019-12-17 2019-12-17 CONVERSION COATING COMPOSITION FOR Zn-Al-Mg ALLOY PLATED STEEL SHEET AND Zn-Al-Mg ALLOY PLATED STEEL SHEET
PCT/KR2020/018546 WO2021125830A1 (en) 2019-12-17 2020-12-17 Conversion coating composition for zn-al-mg alloy plated steel sheet and zn-al-mg alloy plated steel sheet

Publications (2)

Publication Number Publication Date
JP2023512888A JP2023512888A (en) 2023-03-30
JP7461479B2 true JP7461479B2 (en) 2024-04-03

Family

ID=76477907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022537358A Active JP7461479B2 (en) 2019-12-17 2020-12-17 Chemical conversion treatment composition for Zn-Al-Mg alloy plated steel sheet and Zn-Al-Mg alloy plated steel sheet

Country Status (4)

Country Link
JP (1) JP7461479B2 (en)
KR (1) KR102349154B1 (en)
CN (1) CN114829674A (en)
WO (1) WO2021125830A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114381721B (en) * 2021-12-03 2022-11-08 上海沸莱德表面处理有限公司 Aluminum product chemical conversion coating spraying equipment and application method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001335964A (en) 2000-05-30 2001-12-07 Nkk Corp Organic compound coated steel sheet excellent in corrosion resistance
JP2011219832A (en) 2010-04-13 2011-11-04 Jfe Steel Corp Coated steel plate, method for manufacturing the same, and chemical conversion treatment liquid
CN104451632A (en) 2014-11-14 2015-03-25 无锡伊佩克科技有限公司 Low-temperature passivating agent for galvanized steel sheet and preparation method of low-temperature passivating agent

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0877062A4 (en) * 1996-10-29 2001-01-10 Sumitomo Metal Ind Coating composition and resin-coated metal sheet
JP3864148B2 (en) * 2002-06-13 2006-12-27 日本ペイント株式会社 Zinc phosphate-containing surface conditioner, phosphate chemical conversion steel sheet and coated steel sheet, and zinc phosphate dispersion
EP1378586B1 (en) * 2002-06-13 2007-02-14 Nippon Paint Co., Ltd. Zinc phosphate-containing conditioning agent for phosphate conversion-treatment of steel plate and corresponding product
JP5424555B2 (en) * 2007-12-06 2014-02-26 株式会社ネオス Method for forming corrosion-resistant film on zinc metal surface
JP2009173996A (en) * 2008-01-24 2009-08-06 Nippon Light Metal Co Ltd Coated steel product
US9828566B2 (en) * 2015-07-06 2017-11-28 Afton Checmical Corporation Boron free corrosion inhibitors for metalworking fluids
KR101868345B1 (en) * 2016-06-28 2018-06-19 주식회사 포스코 Uncombustible or fire retardant color steel sheet, and method of manufacturing the same
KR101988702B1 (en) * 2016-12-22 2019-06-12 주식회사 포스코 Coating Composition Having Superior Corrosion-Resistance and Lubricity and Coated Steel Sheet Using the Same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001335964A (en) 2000-05-30 2001-12-07 Nkk Corp Organic compound coated steel sheet excellent in corrosion resistance
JP2011219832A (en) 2010-04-13 2011-11-04 Jfe Steel Corp Coated steel plate, method for manufacturing the same, and chemical conversion treatment liquid
CN104451632A (en) 2014-11-14 2015-03-25 无锡伊佩克科技有限公司 Low-temperature passivating agent for galvanized steel sheet and preparation method of low-temperature passivating agent

Also Published As

Publication number Publication date
WO2021125830A1 (en) 2021-06-24
KR20210077527A (en) 2021-06-25
JP2023512888A (en) 2023-03-30
CN114829674A (en) 2022-07-29
KR102349154B1 (en) 2022-01-10

Similar Documents

Publication Publication Date Title
JP6806892B2 (en) A surface-treated solution composition containing trivalent chromium and an inorganic compound, a galvanized steel sheet surface-treated using the same, and a method for producing the same.
JP6653026B2 (en) Solution composition for surface treatment of steel sheet, galvanized steel sheet surface-treated using the same, and method for producing the same
TWI326313B (en)
TWI550099B (en) Galvanized steel sheet containing aluminum and its manufacturing method
MX2008013219A (en) Zinc-plated steel material coated with composite film excellent in corrosion resistance, unsusceptibility to blackening, coating adhesion, and alkali resistance.
JP7461479B2 (en) Chemical conversion treatment composition for Zn-Al-Mg alloy plated steel sheet and Zn-Al-Mg alloy plated steel sheet
JP3801463B2 (en) Method for producing a plated steel material having a corrosion resistant coating film having no chromate
JP2003055777A (en) Chromate-free treated hot dip zinc - aluminum alloy plated steel sheet having excellent weldability and corrosion resistance
JP6206112B2 (en) Sn-based plated steel sheet and aqueous treatment liquid
JP5259168B2 (en) Surface treatment agent and steel plate
JP6265050B2 (en) Fused Sn-Zn plated steel sheet having excellent corrosion resistance and paint adhesion and method for producing the same
JP5752880B2 (en) Surface-treated plated steel sheet and manufacturing method thereof
JP2001115273A (en) HOT DIP Zn-Al SERIES PLATED STEEL SHEET EXCELLENT IN SECULAR BLACKENING RESISTANCE
JP5442346B2 (en) Method for producing chemical conversion treated steel sheet
KR20140097466A (en) Dry-in-place corrosion-resistant coating for zinc or zinc-alloy coated substrates
JP7060178B1 (en) Surface-treated steel sheet for organic resin coating and its manufacturing method, and organic resin coated steel sheet and its manufacturing method
CN102560307A (en) Production process of multiple aluminum zinc alloy hot-dipped on surface of carbon steel
JPS60166356A (en) Plated wire with rustproof treatment
JP7099424B2 (en) Zinc-based plated steel sheet with surface treatment film and its manufacturing method
JP3892642B2 (en) Surface-treated steel sheet and manufacturing method thereof
JP3845441B2 (en) Surface-treated steel sheet and manufacturing method thereof
JP4354851B2 (en) Antirust treatment liquid for steel plate and antirust treatment method
JP3845445B2 (en) High corrosion-resistant surface-treated steel sheet and manufacturing method thereof
JP2007321222A (en) Surface treated steel sheet having excellent corrosion resistance and water resistance
JP2006509106A (en) Aqueous coating solution and method for treating metal surface

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240322