JP7460524B2 - エネルギー装置の起動 - Google Patents

エネルギー装置の起動 Download PDF

Info

Publication number
JP7460524B2
JP7460524B2 JP2020535140A JP2020535140A JP7460524B2 JP 7460524 B2 JP7460524 B2 JP 7460524B2 JP 2020535140 A JP2020535140 A JP 2020535140A JP 2020535140 A JP2020535140 A JP 2020535140A JP 7460524 B2 JP7460524 B2 JP 7460524B2
Authority
JP
Japan
Prior art keywords
circuit
surgical
generator
sensor
ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020535140A
Other languages
English (en)
Other versions
JP2021508525A (ja
Inventor
キンボール・コリー・ジー
ニコラエスク・イオン・ブイ
キャロル・アンドリュー・ダブリュ
イェイツ・デビッド・シー
プライス・ダニエル・ダブリュ
ワイゼンバーグ・ウィリアム・ビー・ザ・セカンド
アルドリッジ・ジェフリー・エル
リヴァール・モニカ・ルイーズ・ゼッケル
ドーク・ヘザー・エヌ
ムートゥー・メアリー・イー
ロバーソン・エリック・エム
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ethicon LLC
Original Assignee
Ethicon LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US16/115,238 external-priority patent/US11304720B2/en
Application filed by Ethicon LLC filed Critical Ethicon LLC
Publication of JP2021508525A publication Critical patent/JP2021508525A/ja
Application granted granted Critical
Publication of JP7460524B2 publication Critical patent/JP7460524B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

(関連出願の相互参照)
本願は、その開示全体が参照により本明細書に組み込まれる、2018年8月28日に出願された「ACTIVATION OF ENERGY DEVICES」と題する米国特許非仮出願第16/115,238号に対する優先権の利益を主張する。
本出願は、米国特許法第119条(e)の下で、その開示全体が参照により本明細書に組み込まれる、「CONTROLLING AN ULTRASONIC SURGICAL INSTRUMENT ACCORDING TO TISSUE LOCATION」と題する2018年8月23日出願の米国仮特許出願第62/721,995号に対する優先権を主張する。
本出願は、米国特許法第119条(e)の下で、その開示全体が参照により本明細書に組み込まれる、「SITUATIONAL AWARENESS OF ELECTROSURGICAL SYSTEMS」と題する2018年8月23日出願の米国仮特許出願第62/721,998号に対する優先権を主張する。
本出願は、米国特許法第119条(e)の下で、その開示全体が参照により本明細書に組み込まれる、「INTERRUPTION OF ENERGY DUE TO INADVERTENT CAPACITIVE COUPLING」と題する2018年8月23日出願の米国仮特許出願第62/721,999号に対する優先権を主張する。
本出願は、米国特許法第119条(e)の下で、その開示全体が参照により本明細書に組み込まれる、「BIPOLAR COMBINATION DEVICE THAT AUTOMATICALLY ADJUSTS PRESSURE BASED ON ENERGY MODALITY」と題する2018年8月23日出願の米国仮特許出願第62/721,994号に対する優先権を主張する。
本出願は、米国特許法第119条(e)の下で、その開示全体が参照により本明細書に組み込まれる、「RADIO FREQUENCY ENERGY DEVICE FOR DELIVERING COMBINED ELECTRICAL SIGNALS」と題する2018年8月23日出願の米国仮特許出願第62/721,996号に対する優先権を主張する。
本出願は更に、米国特許法第119条(e)の下で、各開示の全体が参照により本明細書に組み込まれる、「SMART ACTIVATION OF AN ENERGY DEVICE BY ANOTHER DEVICE」と題する2018年6月30日出願の米国仮特許出願第62/692,747号、「SMART ENERGY ARCHITECTURE」と題する2018年6月30日出願の米国仮特許出願第62/692,748号、及び「SMART ENERGY DEVICES」と題する2018年6月30日出願の米国仮特許出願第62/692,768号に対する優先権を主張する。
本出願は更に、米国特許法第119条(e)の下で、各開示の全体が参照により本明細書に組み込まれる、「TEMPERATURE CONTROL IN ULTRASONIC DEVICE AND CONTROL SYSTEM THEREFOR」と題する2018年3月8日出願の米国仮特許出願第62/640,417号、及び「ESTIMATING STATE OF ULTRASONIC END EFFECTOR AND CONTROL SYSTEM THEREFOR」と題する2018年3月8日出願の米国仮特許出願第62/640,415号の優先権の利益を主張する。
本出願は更に、米国特許法第119条(e)の下で、各開示の全体が参照により本明細書に組み込まれる、「CAPACITIVE COUPLED RETURN PATH PAD WITH SEPARABLE ARRAY ELEMENTS」と題する2018年3月30日出願の米国仮特許出願第62/650,898号、「SURGICAL SYSTEMS WITH OPTIMIZED SENSING CAPABILITIES」と題する2018年3月30日出願の米国仮特許出願第62/650,887号、「SMOKE EVACUATION MODULE FOR INTERACTIVE SURGICAL PLATFORM」と題する2018年3月30日出願の米国仮特許出願第62/650,882号、及び「SURGICAL SMOKE EVACUATION SENSING AND CONTROLS」と題する2018年3月30日出願の米国仮特許出願第62/650,877号の優先権の利益を主張する。
本出願は更に、米国特許法第119条(e)の下で、各開示の全体が参照により本明細書に組み込まれる、「INTERACTIVE SURGICAL PLATFORM」と題する2017年12月28日出願の米国仮特許出願第62/611,341号、「CLOUD-BASED MEDICAL ANALYTICS」と題する2017年12月28日出願の米国仮特許出願第62/611,340号、及び「ROBOT ASSISTED SURGICAL PLATFORM」と題する2017年12月28日出願の米国仮特許出願第62/611,339号の優先権の利益を主張する。
外科環境では、スマートエネルギーアーキテクチャ環境内のスマートエネルギー装置が必要とされる場合がある。
1つの一般的な態様において、外科用器具は、超音波ブレードと、開放位置と閉鎖位置との間で超音波ブレードに対して枢動可能なアームと、超音波ブレードに接続されたトランスデューサアセンブリと、開放位置と閉鎖位置との間のアームの位置を感知するように構成されたセンサと、トランスデューサアセンブリ及びセンサに接続された制御回路と、を含む。トランスデューサアセンブリは、超音波ブレードを超音波振動させるように構成された少なくとも2つの圧電素子を含む。制御回路は、センサによって検出された、閾値位置に対するアームの位置に応じて、トランスデューサアセンブリを起動するように構成されている。
別の一般的な態様において、外科用器具は、超音波ブレードと、開放位置と閉鎖位置との間で超音波ブレードに対して枢動可能なアームと、超音波ブレードに接続されたトランスデューサアセンブリと、アームが閉鎖位置に移行するときに第1の力を感知するように構成された第1のセンサと、アームが開放位置に移行するときに第2の力を感知するように構成された第2のセンサと、トランスデューサアセンブリ、第1のセンサ、及び第2のセンサに接続された制御回路と、を含む。トランスデューサアセンブリは、超音波ブレードを超音波振動させるように構成された少なくとも2つの圧電素子を含む。制御回路は、第1のセンサによって感知された、第1の閾値に対する第1の力、及び第2のセンサによって感知された、第2の閾値に対する第2の力に応じて、トランスデューサアセンブリを起動させるように構成されている。
更に別の一般的な態様では、外科用器具は、超音波ブレードと、超音波ブレードに接続されたトランスデューサアセンブリと、それに対して力を感知するように構成されたセンサと、トランスデューサアセンブリ及びセンサに接続された制御回路と、を含む。トランスデューサアセンブリは、超音波ブレードを超音波振動させるように構成された少なくとも2つの圧電素子を含む。制御回路は、センサにより感知された、閾値力に対する力に応じてトランスデューサアセンブリを起動するように構成されている。
様々な態様の特徴が、添付された特許請求の範囲で詳細に説明される。ただし、機構、及び動作の方法の両方についての様々な態様は、それらの更なる目的及び利点と共に、以降の添付図面と併せて、以下の説明を参照することにより最もよく理解することができる。
本開示の少なくとも1つの態様による、コンピュータ実装インタラクティブ外科システムのブロック図である。 本開示の少なくとも1つの態様による、手術室内で外科処置を行うために使用される外科システムである。 本開示の少なくとも1つの態様による可視化システム、ロボットシステム、及びインテリジェント器具とペアリングされた外科用ハブである。 本開示の少なくとも1つの態様による、外科用ハブ筐体、及び外科用ハブ筐体のドロアー内に摺動可能に受容可能な発生器モジュールコンボの部分斜視図である。 本開示の少なくとも1つの態様による、双極、超音波、及び単極接点、並びに排煙構成要素を備える生成モジュールコンボの斜視図である。 本開示の少なくとも1つの態様による、複数のモジュールを受容するように構成された横方向モジュール式ハウジングの複数の横方向ドッキングポートの個々の電力バスアタッチメントを示す。 本開示の少なくとも1つの態様による、複数のモジュールを受容するように構成された垂直モジュール式ハウジングを示す。 本開示の少なくとも1つの態様による、医療施設の1つ又は2つ以上の手術室、又は外科処置のための専門設備を備えた医療施設内の任意の部屋に配置されたモジュール式装置をクラウドに接続するように構成されたモジュール式通信ハブを備える外科用データネットワークを示す。 本開示の少なくとも1つの態様による、コンピュータ実装インタラクティブ外科システムを示す。 本開示の少なくとも1つの態様による、モジュール式制御タワーに接続された複数のモジュールを備える外科用ハブを示す。 本開示の少なくとも1つの態様による、ユニバーサルシリアルバス(USB)ネットワークハブ装置の一態様を示す。 本開示の少なくとも1つの態様による、外科用器具又はツールの制御システムのロジック図を示す。 本開示の少なくとも1つの態様による、外科用器具又はツールの態様を制御するように構成された制御回路を示す。 本開示の少なくとも1つの態様による、外科用器具又はツールの態様を制御するように構成された組み合わせ論理回路を示す。 本開示の少なくとも1つの態様による、外科用器具又はツールの態様を制御するように構成された順序論理回路を示す。 本開示の少なくとも1つの態様による、変位部材の遠位並進を制御するようにプログラムされた外科用器具のブロック図を示す。 本開示の少なくとも1つの態様による、様々な機能を制御するように構成された外科用器具の回路図である。 本開示の少なくとも1つの態様による、モジュール式通信ハブを備える外科用データネットワーク内で適応型超音波ブレード制御アルゴリズムを実行するように構成されたシステムである。 本開示の少なくとも1つの態様による、発生器の一実施例を示す。 本開示の少なくとも1つの態様による、発生器及び発生器と共に使用可能な様々な外科用器具を備える外科システムである。 本開示の少なくとも1つの態様によるエンドエフェクタである。 本開示の少なくとも1つの態様による、図20の外科システムの図である。 本開示の少なくとも1つの態様による、動作ブランチ電流を示すモデルである。 本開示の少なくとも1つの態様による、発生器のアーキテクチャの構造図である。 本開示の少なくとも1つの態様による、発生器のアーキテクチャの機能図である。 本開示の少なくとも1つの態様による、発生器のアーキテクチャの機能図である。 本開示の少なくとも1つの態様による、発生器のアーキテクチャの機能図である。 本開示の少なくとも1つの態様による、発生器の構造的及び機能的態様である。 本開示の少なくとも1つの態様による、発生器の構造的及び機能的態様である。 超音波駆動回路の一態様の回路図である。 本開示の少なくとも1つの態様による、制御回路の回路図である。 本開示の少なくとも1つの態様による、モジュール式超音波外科用器具内に収容される別の電気回路を図示する、簡略化したブロック回路図を示す。 本開示の少なくとも1つの態様による、複数の段に分割された発生器回路を示す。 本開示の少なくとも1つの態様による、第1段回路が第2段回路と共通している、複数の段に分割された発生器回路を示す。 本開示の少なくとも1つの態様による、高周波電流(RF)を駆動するように構成された駆動回路の一態様の回路図である。 外科用器具のために、デュアル発生器システムがRF発生器エネルギーのモダリティと超音波発生器エネルギーのモダリティとの間で切り替えることを可能にする制御回路を示す。 本開示の一態様による、外科用器具と共に使用するためのフィードバックシステムを備える外科用器具の一態様の図を示す。 本開示の少なくとも1つの態様による、外科用器具で使用するための電気信号波形のための複数の波形を生成するように構成された、直接デジタル合成(DDS)回路などのデジタル合成回路の基本的アーキテクチャの一態様を示す。 本開示の少なくとも1つの態様による、外科用器具で使用するための電気信号波形の複数の波形を生成するように構成された直接デジタル合成(DDS)回路の一態様を示す。 本開示の少なくとも1つの態様による、アナログ波形の本開示の少なくとも1つの態様による、離散時間デジタル電気信号波形の1サイクル(比較目的のために離散時間デジタル電気信号波形に重ね合わされて示される)を示す。 本開示の少なくとも1つの態様による、超音波外科用器具のシステムを示す。 本開示の少なくとも1つの態様による、圧電トランスデューサを示す。 本開示の少なくとも1つの態様による、圧電トランスデューサを示す。 本開示の少なくとも1つの態様による、圧電トランスデューサを示す。 本開示の少なくとも一態様による、超音波導波管、及びその超音波導波管に固定された1つ又は2つ以上の圧電素子を含むD31超音波トランスデューサ構造を例示する。 本開示の少なくとも1つの態様による、超音波外科用器具の破断図を示す。 本開示の少なくとも1つの態様による、図41の超音波外科用器具の分解図を示す。 本開示の少なくとも1つの態様による、外科システムのブロック図を示す。 本開示の少なくとも1つの態様による、ユーザ装着磁気基準を検出するように構成されたセンサアセンブリを含む外科用器具の斜視図を示す。 本開示の少なくとも1つの態様による、一体型磁気基準を検出するように構成されたセンサアセンブリを含む外科用器具の線44-44に沿った断面図を示す。 本開示の少なくとも1つの態様による、第1の位置における図45Aの外科用器具の詳細図を示す。 本開示の少なくとも1つの態様による、第2の位置における図45Aの外科用器具の詳細図を示す。 本開示の少なくとも1つの態様による、直交して配向された外科用器具に対する接触を検出するように構成されたセンサアセンブリを含む外科用器具の斜視図を示す。 本開示の少なくとも1つの態様による、横方向に配向された外科用器具に対する接触を検出するように構成されたセンサアセンブリを含む外科用器具の斜視図を示す。 本開示の少なくとも1つの態様による、図46A又は図46Bの外科用器具の回路図である。 本開示の少なくとも1つの態様による、外科用器具が開放位置にあるとき、外科用器具の閉鎖を検出するように構成されたセンサアセンブリを含む外科用器具の斜視図を示す。 本開示の少なくとも1つの態様による、外科用器具が第1の閉鎖位置にあるとき、外科用器具の閉鎖を検出するように構成されたセンサアセンブリを含む外科用器具の斜視図を示す。 本開示の少なくとも1つの態様による、外科用器具が第2の閉鎖位置にあるとき、外科用器具の閉鎖を検出するように構成されたセンサアセンブリを含む外科用器具の斜視図を示す。 本開示の少なくとも1つの態様による、外科用器具の開放を検出するように構成されたセンサアセンブリを含む外科用器具の斜視図を示す。 本開示の少なくとも1つの態様による、図49Aの外科用器具の線48B-48Bに沿った断面図を示す。 本開示の少なくとも1つの態様による、図49Aの外科用器具の分解斜視図を示す。 本開示の少なくとも1つの態様による、図49Aの外科用器具の斜視図を示す。 本開示の少なくとも1つの様態による、図49Dの一部の詳細図を示す。 本開示の少なくとも1つの態様による、図49Aの外科用器具のアームの内面の斜視図を示す。 本開示の少なくとも1つの態様による、外科用器具の起動を制御するための一対のセンサを含むセンサアセンブリを含む外科用器具の斜視図を示す。 本開示の少なくとも1つの態様による、停止スイッチを含む外科用器具の斜視図を示す。 本開示の少なくとも1つの態様による、センサを含む開創器の斜視図を示す。 本開示の少なくとも1つの態様による、手術部位で用いられるディスプレイを含む開創器の斜視図を示す。 本開示の少なくとも1つの態様による、外科用ハブの状況認識を表す時間線を示す。
本願の出願人は、各開示の全体が参照により本明細書に組み込まれる、2018年8月28日出願の以下の米国特許出願を所有する。
・「ESTIMATING STATE OF ULTRASONIC END EFFECTOR AND CONTROL SYSTEM THEREFOR」と題する米国特許出願整理番号END8536USNP2/180107-2号、
・「TEMPERATURE CONTROL OF ULTRASONIC END EFFECTOR AND CONTROL SYSTEM THEREFOR」と題する米国特許出願整理番号END8560USNP2/180106-2号、
・「RADIO FREQUENCY ENERGY DEVICE FOR DELIVERING COMBINED ELECTRICAL SIGNALS」と題する米国特許出願整理番号END8561USNP1/180144-1号、
・「CONTROLLING AN ULTRASONIC SURGICAL INSTRUMENT ACCORDING TO TISSUE LOCATION」と題する米国特許出願整理番号END8563USNP1/180139-1号、
・「CONTROLLING ACTIVATION OF AN ULTRASONIC SURGICAL INSTRUMENT ACCORDING TO THE PRESENCE OF TISSUE」と題する米国特許出願整理番号END8563USNP2/180139-2号、
・「DETERMINING TISSUE COMPOSITION VIA AN ULTRASONIC SYSTEM」と題する米国特許出願整理番号END8563USNP3/180139-3号、
・「DETERMINING THE STATE OF AN ULTRASONIC ELECTROMECHANICAL SYSTEM ACCORDING TO FREQUENCY SHIFT」と題する米国特許出願整理番号END8563USNP4/180139-4号、
・「DETERMINING THE STATE OF AN ULTRASONIC END EFFECTOR」と題する米国特許出願整理番号END8563USNP5/180139-5号、
・「SITUATIONAL AWARENESS OF ELECTROSURGICAL SYSTEMS」と題する米国特許出願整理番号END8564USNP1/180140-1号、
・「MECHANISMS FOR CONTROLLING DIFFERENT ELECTROMECHANICAL SYSTEMS OF AN ELECTROSURGICAL INSTRUMENT」と題する米国特許出願整理番号END8564USNP2/180140-2号、
・「DETECTION OF END EFFECTOR IMMERSION IN LIQUID」と題する米国特許出願整理番号END8564USNP3/180140-3号、
・「INTERRUPTION OF ENERGY DUE TO INADVERTENT CAPACITIVE COUPLING」と題する米国特許出願整理番号END8565USNP1/180142-1号、
・「INCREASING RADIO FREQUENCY TO CREATE PAD-LESS MONOPOLAR LOOP」と題する米国特許出願整理番号END8565USNP2/180142-2号、
・「BIPOLAR COMBINATION DEVICE THAT AUTOMATICALLY ADJUSTS PRESSURE BASED ON ENERGY MODALITY」と題する米国特許出願整理番号END8566USNP1/180143-1号。
本願の出願人は、各開示の全体が参照により本明細書に組み込まれる、2018年8月23日出願の以下の米国特許出願を所有する。
・「CONTROLLING AN ULTRASONIC SURGICAL INSTRUMENT ACCORDING TO TISSUE LOCATION」と題する米国仮特許出願第62/721,995号、
・「SITUATIONAL AWARENESS OF ELECTROSURGICAL SYSTEMS」と題する米国仮特許出願第62/721,998号、
・「INTERRUPTION OF ENERGY DUE TO INADVERTENT CAPACITIVE COUPLING」と題する米国仮特許出願第62/721,999号、
・「BIPOLAR COMBINATION DEVICE THAT AUTOMATICALLY ADJUSTS PRESSURE BASED ON ENERGY MODALITY」と題する米国仮特許出願第62/721,994号、及び
・「RADIO FREQUENCY ENERGY DEVICE FOR DELIVERING COMBINED ELECTRICAL SIGNALS」と題する米国仮特許出願第62/721,996号。
本願の出願人は、各開示の全体が参照により本明細書に組み込まれる、2018年6月30日出願の以下の米国特許出願を所有する。
・「SMART ACTIVATION OF AN ENERGY DEVICE BY ANOTHER DEVICE」と題する米国仮特許出願第62/692,747号、
・「SMART ENERGY ARCHITECTURE」と題する米国仮特許出願第62/692,748号、
・「SMART ENERGY DEVICES」と題する米国仮特許出願第62/692,768号。
本願の出願人は、各開示の全体が参照により本明細書に組み込まれる、2018年6月29日出願の以下の米国特許出願を所有する。
・「CAPACITIVE COUPLED RETURN PATH PAD WITH SEPARABLE ARRAY ELEMENTS」と題する米国特許出願第16/024,090号、
・「CONTROLLING A SURGICAL INSTRUMENT ACCORDING TO SENSED CLOSURE PARAMETERS」と題する米国特許出願第16/024,057号、
・「SYSTEMS FOR ADJUSTING END EFFECTOR PARAMETERS BASED ON PERIOPERATIVE INFORMATION」と題する米国特許出願第16/024,067号、
・「SAFETY SYSTEMS FOR SMART POWERED SURGICAL STAPLING」と題する米国特許出願第16/024,075号、
・「SAFETY SYSTEMS FOR SMART POWERED SURGICAL STAPLING」と題する米国特許出願第16/024,083号、
・「SURGICAL SYSTEMS FOR DETECTING END EFFECTOR TISSUE DISTRIBUTION IRREGULARITIES」と題する米国特許出願第16/024,094号、
・「SYSTEMS FOR DETECTING PROXIMITY OF SURGICAL END EFFECTOR TO CANCEROUS TISSUE」と題する米国特許出願第16/024,138号、
・「SURGICAL INSTRUMENT CARTRIDGE SENSOR ASSEMBLIES」と題する米国特許出願第16/024,150号、
・「VARIABLE OUTPUT CARTRIDGE SENSOR ASSEMBLY」と題する米国特許出願第16/024,160号、
・「SURGICAL INSTRUMENT HAVING A FLEXIBLE ELECTRODE」と題する米国特許出願第16/024,124号、
・「SURGICAL INSTRUMENT HAVING A FLEXIBLE CIRCUIT」と題する米国特許出願第16/024,132号、
・「SURGICAL INSTRUMENT WITH A TISSUE MARKING ASSEMBLY」と題する米国特許出願第16/024,141号、
・「SURGICAL SYSTEMS WITH PRIORITIZED DATA TRANSMISSION CAPABILITIES」と題する米国特許出願第16/024,162号、
・「SURGICAL EVACUATION SENSING AND MOTOR CONTROL」と題する米国特許出願第16/024,066号、
・「SURGICAL EVACUATION SENSOR ARRANGEMENTS」と題する米国特許出願第16/024,096号、
・「SURGICAL EVACUATION FLOW PATHS」と題する米国特許出願第16/024,116号、
・「SURGICAL EVACUATION SENSING AND GENERATOR CONTROL」と題する米国特許出願第16/024,149号、
・「SURGICAL EVACUATION SENSING AND DISPLAY」と題する米国特許出願第16/024,180号、
・「COMMUNICATION OF SMOKE EVACUATION SYSTEM PARAMETERS TO HUB OR CLOUD IN SMOKE EVACUATION MODULE FOR INTERACTIVE SURGICAL PLATFORM」と題する米国特許出願第16/024,245号、
・「SMOKE EVACUATION SYSTEM INCLUDING A SEGMENTED CONTROL CIRCUIT FOR INTERACTIVE SURGICAL PLATFORM」と題する米国特許出願第16/024,258号、
・「SURGICAL EVACUATION SYSTEM WITH A COMMUNICATION CIRCUIT FOR COMMUNICATION BETWEEN A FILTER AND A SMOKE EVACUATION DEVICE」と題する米国特許出願第16/024,265号、
・「DUAL IN-SERIES LARGE AND SMALL DROPLET FILTERS」と題する米国特許出願第16/024,273号。
本願の出願人は、各開示の全体が参照により本明細書に組み込まれる、2018年6月28日出願の以下の米国仮特許出願を所有する。
・「A METHOD OF USING REINFORCED FLEX CIRCUITS WITH MULTIPLE SENSORS WITH ELECTROSURGICAL DEVICES」と題する米国仮特許出願第62/691,228号、
・「CONTROLLING A SURGICAL INSTRUMENT ACCORDING TO SENSED CLOSURE PARAMETERS」と題する米国仮特許出願第62/691,227号、
・「SURGICAL INSTRUMENT HAVING A FLEXIBLE ELECTRODE」と題する米国仮特許出願第62/691,230号、
・「SURGICAL EVACUATION SENSING AND MOTOR CONTROL」と題する米国仮特許出願第62/691,219号、
・「COMMUNICATION OF SMOKE EVACUATION SYSTEM PARAMETERS TO HUB OR CLOUD IN SMOKE EVACUATION MODULE FOR INTERACTIVE SURGICAL PLATFORM」と題する米国仮特許出願第62/691,257号、
・「SURGICAL EVACUATION SYSTEM WITH A COMMUNICATION CIRCUIT FOR COMMUNICATION BETWEEN A FILTER AND A SMOKE EVACUATION DEVICE」と題する米国仮特許出願第62/691,262号、
・「DUAL IN-SERIES LARGE AND SMALL DROPLET FILTERS」と題する米国仮特許出願第62/691,251号。
本願の出願人は、各開示の全体が参照により本明細書に組み込まれる、2018年4月19日出願の以下の米国仮特許出願を所有する。
・「METHOD OF HUB COMMUNICATION」と題する米国仮特許出願第62/659,900号。
本願の出願人は、各開示の全体が参照により本明細書に組み込まれる、2018年3月30日出願の以下の米国仮特許出願を所有する。
・「CAPACITIVE COUPLED RETURN PATH PAD WITH SEPARABLE ARRAY ELEMENTS」と題する2018年3月30日出願の米国仮特許出願第62/650,898号、
・「SURGICAL SYSTEMS WITH OPTIMIZED SENSING CAPABILITIES」と題する米国仮特許出願第62/650,887号、
・「SMOKE EVACUATION MODULE FOR INTERACTIVE SURGICAL PLATFORM」と題する米国仮特許出願第62/650,882号、
・「SURGICAL SMOKE EVACUATION SENSING AND CONTROLS」と題する米国仮特許出願第62/650,877号。
本願の出願人は、各開示の全体が参照により本明細書に組み込まれる、2018年3月29日出願の以下の米国特許出願を所有する。
・「INTERACTIVE SURGICAL SYSTEMS WITH ENCRYPTED COMMUNICATION CAPABILITIES」と題する米国特許出願第15/940,641号、
・「INTERACTIVE SURGICAL SYSTEMS WITH CONDITION HANDLING OF DEVICES AND DATA CAPABILITIES」と題する米国特許出願第15/940,648号、
・「SURGICAL HUB COORDINATION OF CONTROL AND COMMUNICATION OF OPERATING ROOM DEVICES」と題する米国特許出願第15/940,656号、
・「SPATIAL AWARENESS OF SURGICAL HUBS IN OPERATING ROOMS」と題する米国特許出願第15/940,666号、
・「COOPERATIVE UTILIZATION OF DATA DERIVED FROM SECONDARY SOURCES BY INTELLIGENT SURGICAL HUBS」と題する米国特許出願第15/940,670号、
・「SURGICAL HUB CONTROL ARRANGEMENTS」と題する米国特許出願第15/940,677号、
・「DATA STRIPPING METHOD TO INTERROGATE PATIENT RECORDS AND CREATE ANONYMIZED RECORD」と題する米国特許出願第15/940,632号、
・「COMMUNICATION HUB AND STORAGE DEVICE FOR STORING PARAMETERS AND STATUS OF A SURGICAL DEVICE TO BE SHARED WITH CLOUD BASED ANALYTICS SYSTEMS」と題する米国特許出願第15/940,640号、
・「SELF DESCRIBING DATA PACKETS GENERATED AT AN ISSUING INSTRUMENT」と題する米国特許出願第15/940,645号、
・「DATA PAIRING TO INTERCONNECT A DEVICE MEASURED PARAMETER WITH AN OUTCOME」と題する米国特許出願第15/940,649号、
・「SURGICAL HUB SITUATIONAL AWARENESS」と題する米国特許出願第15/940,654号、
・「SURGICAL SYSTEM DISTRIBUTED PROCESSING」と題する米国特許出願第15/940,663号、
・「AGGREGATION AND REPORTING OF SURGICAL HUB DATA」と題する米国特許出願第15/940,668号、
・「SURGICAL HUB SPATIAL AWARENESS TO DETERMINE DEVICES IN OPERATING THEATER」と題する米国特許出願第15/940,671号、
・「DISPLAY OF ALIGNMENT OF STAPLE CARTRIDGE TO PRIOR LINEAR STAPLE LINE」と題する米国特許出願第15/940,686号、
・「STERILE FIELD INTERACTIVE CONTROL DISPLAYS」と題する米国特許出願第15/940,700号、
・「COMPUTER IMPLEMENTED INTERACTIVE SURGICAL SYSTEMS」と題する米国特許出願第15/940,629号、
・「USE OF LASER LIGHT AND RED-GREEN-BLUE COLORATION TO DETERMINE PROPERTIES OF BACK SCATTERED LIGHT」と題する米国特許出願第15/940,704号、
・「CHARACTERIZATION OF TISSUE IRREGULARITIES THROUGH THE USE OF MONO-CHROMATIC LIGHT REFRACTIVITY」と題する米国特許出願第15/940,722号、
・「DUAL CMOS ARRAY IMAGING」と題する米国特許出願第15/940,742号。
・「ADAPTIVE CONTROL PROGRAM UPDATES FOR SURGICAL DEVICES」と題する米国特許出願第15/940,636号、
・「ADAPTIVE CONTROL PROGRAM UPDATES FOR SURGICAL HUBS」と題する米国特許出願第15/940,653号、
・「CLOUD-BASED MEDICAL ANALYTICS FOR CUSTOMIZATION AND RECOMMENDATIONS TO A USER」と題する米国特許出願第15/940,660号、
・「CLOUD-BASED MEDICAL ANALYTICS FOR LINKING OF LOCAL USAGE TRENDS WITH THE RESOURCE ACQUISITION BEHAVIORS OF LARGER DATA SET」と題する米国特許出願第15/940,679号、
・「CLOUD-BASED MEDICAL ANALYTICS FOR MEDICAL FACILITY SEGMENTED INDIVIDUALIZATION OF INSTRUMENT FUNCTION」と題する米国特許出願第15/940,694号、
・「CLOUD-BASED MEDICAL ANALYTICS FOR SECURITY AND AUTHENTICATION TRENDS AND REACTIVE MEASURES」と題する米国特許出願第15/940,634号、
・「DATA HANDLING AND PRIORITIZATION IN A CLOUD ANALYTICS NETWORK」と題する米国特許出願第15/940,706号、
・「CLOUD INTERFACE FOR COUPLED SURGICAL DEVICES」と題する米国特許出願第15/940,675号。
・「DRIVE ARRANGEMENTS FOR ROBOT-ASSISTED SURGICAL PLATFORMS」と題する米国特許出願第15/940,627号、
・「COMMUNICATION ARRANGEMENTS FOR ROBOT-ASSISTED SURGICAL PLATFORMS」と題する米国特許出願第15/940,637号、
・「CONTROLS FOR ROBOT-ASSISTED SURGICAL PLATFORMS」と題する米国特許出願第15/940,642号、
・「AUTOMATIC TOOL ADJUSTMENTS FOR ROBOT-ASSISTED SURGICAL PLATFORMS」と題する米国特許出願第15/940,676号、
・「CONTROLLERS FOR ROBOT-ASSISTED SURGICAL PLATFORMS」と題する米国特許出願第15/940,680号、
・「COOPERATIVE SURGICAL ACTIONS FOR ROBOT-ASSISTED SURGICAL PLATFORMS」と題する米国特許出願第15/940,683号、
・「DISPLAY ARRANGEMENTS FOR ROBOT-ASSISTED SURGICAL PLATFORMS」と題する米国特許出願第15/940,690号、
・「SENSING ARRANGEMENTS FOR ROBOT-ASSISTED SURGICAL PLATFORMS」と題する米国特許出願第15/940,711号。
本願の出願人は、各開示の全体が参照により本明細書に組み込まれる、2018年3月28日出願の以下の米国仮特許出願を所有する。
・「INTERACTIVE SURGICAL SYSTEMS WITH ENCRYPTED COMMUNICATION CAPABILITIES」と題する米国仮特許出願第62/649,302号、
・「DATA STRIPPING METHOD TO INTERROGATE PATIENT RECORDS AND CREATE ANONYMIZED RECORD」と題する米国仮特許出願第62/649,294号、
・「SURGICAL HUB SITUATIONAL AWARENESS」と題する米国仮特許出願第62/649,300号、
・「SURGICAL HUB SPATIAL AWARENESS TO DETERMINE DEVICES IN OPERATING THEATER」と題する米国仮特許出願第62/649,309号、
・「COMPUTER IMPLEMENTED INTERACTIVE SURGICAL SYSTEMS」と題する米国仮特許出願第62/649,310号、
・「USE OF LASER LIGHT AND RED-GREEN-BLUE COLORATION TO DETERMINE PROPERTIES OF BACK SCATTERED LIGHT」と題する米国仮特許出願第62/649,291号、
・「ADAPTIVE CONTROL PROGRAM UPDATES FOR SURGICAL DEVICES」と題する米国仮特許出願第62/649,296号、
・「CLOUD-BASED MEDICAL ANALYTICS FOR CUSTOMIZATION AND RECOMMENDATIONS TO A USER」と題する米国仮特許出願第62/649,333号、
・「CLOUD-BASED MEDICAL ANALYTICS FOR SECURITY AND AUTHENTICATION TRENDS AND REACTIVE MEASURES」と題する米国仮特許出願第62/649,327号、
・「DATA HANDLING AND PRIORITIZATION IN A CLOUD ANALYTICS NETWORK」と題する米国仮特許出願第62/649,315号、
・「CLOUD INTERFACE FOR COUPLED SURGICAL DEVICES」と題する米国仮特許出願第62/649,313号、
・「DRIVE ARRANGEMENTS FOR ROBOT-ASSISTED SURGICAL PLATFORMS」と題する米国仮特許出願第62/649,320号、
・「AUTOMATIC TOOL ADJUSTMENTS FOR ROBOT-ASSISTED SURGICAL PLATFORMS」と題する米国仮特許出願第62/649,307号、
・「SENSING ARRANGEMENTS FOR ROBOT-ASSISTED SURGICAL PLATFORMS」と題する米国仮特許出願第62/649,323号。
本願の出願人は、各開示の全体が参照により本明細書に組み込まれる、2018年3月8日出願の以下の米国仮特許出願を所有する。
・「TEMPERATURE CONTROL IN ULTRASONIC DEVICE AND CONTROL SYSTEM THEREFOR」と題する米国仮特許出願第62/640,417号、
・「ESTIMATING STATE OF ULTRASONIC END EFFECTOR AND CONTROL SYSTEM THEREFOR」と題する米国仮特許出願第62/640,415号。
本願の出願人は、各開示の全体が参照により本明細書に組み込まれる、2017年12月28日出願の以下の米国仮特許出願を所有する。
・「INTERACTIVE SURGICAL PLATFORM」と題する米国仮特許出願第62/611,341号、
・「CLOUD-BASED MEDICAL ANALYTICS」と題する米国仮特許出願第62/611,340号、
・「ROBOT ASSISTED SURGICAL PLATFORM」と題する米国仮特許出願第62/611,339号。
外科用装置及び発生器の様々な態様を詳細に説明する前に、例示される実施例は、適用又は用途において、添付の図面及び説明で示される部品の構造及び配置の詳細に限定されないことに留意すべきである。例示的な実施例は、他の態様、変形形態、及び修正で実施されるか、又はそれらに組み込まれてもよく、様々な方法で実施又は実行されてもよい。更に、特に明記しない限り、本明細書で用いられる用語及び表現は、読者の便宜のために例示的な実施例を説明する目的で選択されたものであり、それらを限定するためのものではない。更に、以下に記述される態様、態様の具現、及び/又は実施例のうち1つ又は2つ以上を、以下に記述される他の態様、態様の具現、及び/又は実施例のうち任意の1つ又は2つ以上と組み合わせることができるものと理解されたい。
様々な態様が、改善された超音波外科用装置、電気外科用装置、及びこれと共に使用するための発生器を対象とする。超音波外科用装置の態様は、例えば、外科処置中に組織を横切開及び/又は凝固するように構成され得る。電気外科用装置の態様は、例えば、外科処置中に、組織を横切開、凝固、スケーリング、溶接及び/又は乾燥させるように構成され得る。
図1を参照すると、コンピュータ実装インタラクティブ外科システム100は、1つ又は2つ以上の外科システム102と、クラウドベースのシステム(例えば、ストレージ装置105に接続されたリモートサーバ113を含み得るクラウド104)と、を含む。各外科システム102は、リモートサーバ113を含み得るクラウド104と通信する少なくとも1つの外科用ハブ106を含む。一実施例では、図1に示すように、外科システム102は、互いに、及び/又はハブ106と通信するように構成された、可視化システム108と、ロボットシステム110と、ハンドヘルド式インテリジェント外科用器具112と、を含む。いくつかの態様では、外科システム102は、M個のハブ106と、N個の可視化システム108と、O個のロボットシステム110と、P個のハンドヘルド式インテリジェント外科用器具112と、を含んでもよく、ここでM、N、O、及びPは1以上の整数である。
図3は、外科手術室116内の手術台114上に横たわる患者に対して外科処置を実施するために使用される外科システム102の一例を示す。ロボットシステム110は、外科処置において外科システム102の一部として使用される。ロボットシステム110は、外科医のコンソール118と、患者側カート120(外科用ロボット)と、外科用ロボットハブ122と、を含む。患者側カート120は、患者の身体の低侵襲切開中に、外科医が外科医のコンソール118を介して手術部位を見る間、少なくとも1つの取り外し可能に連結された外科用ツール117を操作することができる。手術部位の画像は医療用撮像装置124によって得ることができ、医療用撮像装置124は撮像装置124を配向するために患者側カート120によって操作され得る。ロボットハブ122は、外科医のコンソール118を介して外科医に対するその後の表示のために、手術部位の画像を処理するよう用いることができる。
他のタイプのロボットシステムを、外科システム102と共に使用するために容易に適合させることができる。本開示と共に使用するのに好適なロボットシステム及び外科用ツールの様々な例は、その開示全体が参照により本明細書に組み込まれる、2017年12月28日出願の「ROBOT ASSISTED SURGICAL PLATFORM」と題する米国仮特許出願第62/611,339号に記載されている。
クラウド104によって実施され、本開示と共に使用するのに好適なクラウドベース分析の様々な例は、その開示全体が参照により本明細書に組み込まれる、2017年12月28日出願の「CLOUD-BASED MEDICAL ANALYTICS」と題する米国仮特許出願第62/611,340号に記載されている。
様々な態様では、撮像装置124は、少なくとも1つの画像センサと1つ又は2つ以上の光学構成要素とを含む。好適な画像センサとしては、電荷結合素子(CCD)センサ及び相補型金属酸化膜半導体(CMOS)センサが挙げられるが、これらに限定されない。
撮像装置124の光学構成要素は、1つ若しくは2つ以上の照明光源及び/又は1つ若しくは2つ以上のレンズを含んでもよい。1つ又は2つ以上の照明光源は、手術野の一部を照明するように方向付けられてもよい。1つ又は2つ以上の画像センサは、組織及び/又は外科用器具から反射又は屈折された光を含む、手術野から反射又は屈折された光を受信することができる。
1つ又は2つ以上の照明光源は、可視スペクトル及び不可視スペクトル内の電磁エネルギーを放射するように構成され得る。光学スペクトル又は発光スペクトルと呼ばれることもある可視スペクトルは、人間の目に可視の(すなわち、人間の目で検出可能な)電磁スペクトルの一部分であり、可視光、又は単に光と呼ばれることがある。典型的な人間の目は、空気中の約380nm~約750nmの波長に反応する。
不可視スペクトル(すなわち、非発光スペクトル)は、可視スペクトルの下方及び上方に位置する電磁スペクトルの一部分である(すなわち、約380nm未満及び約750nm超の波長)。不可視スペクトルは、人間の目で検出可能ではない。約750nmを超える波長は、赤色可視スペクトルよりも長く、これらは不可視赤外線(IR)、マイクロ波、及び無線電磁放射線になる。約380nm未満の波長は、紫色スペクトルよりも短く、これらは不可視紫外線、X線、及びガンマ線電磁放射線になる。
様々な態様では、撮像装置124は、低侵襲性手術で使用するように構成されている。本開示と共に使用するのに好適な撮像装置の例としては、関節鏡、血管鏡、気管支鏡、胆道鏡、結腸鏡、サイトスコープ(cytoscope)、十二指腸鏡、腸鏡、食道胃十二指腸鏡(胃鏡)、内視鏡、喉頭鏡、鼻咽喉-腎盂鏡(nasopharyngo-neproscope)、S状結腸鏡、胸腔鏡、及び尿管鏡が挙げられるが、これらに限定されない。
一態様では、撮像装置は、トポグラフィーと下層構造とを区別するためにマルチスペクトルモニタリングを用いる。マルチスペクトル画像は、電磁スペクトルにわたって特定の波長範囲内の画像データを取り込むものである。波長は、フィルタによって、又は可視光範囲を超える周波数、例えば、IR及び紫外光を含む特定の波長からの光に感受性の器具を使用することによって分離することができる。スペクトル撮像法は、人間の目がその赤色、緑色、及び青色の受容体で捕捉することのできない追加情報の抽出を可能にすることができる。マルチスペクトル撮像法の使用は、その開示全体が参照により本明細書に組み込まれる2017年12月28日出願の「INTERACTIVE SURGICAL PLATFORM」と題する米国仮特許出願第62/611,341号の「Advanced Imaging Acquisition Module」の項で詳細に説明されている。マルチスペクトルモニタリングは、1つの手術作業が完了した後に、処置された組織上で上述の試験の1つ又は2つ以上を実施するために手術野を再配置するのに有用なツールであり得る。
いかなる外科手術においても手術室及び外科用器具の厳格な滅菌が必要であることは自明である。「手術現場(surgical theater)」、すなわち手術室又は処置室に必要とされる厳格な衛生及び滅菌条件は、全ての医療装置及び機器の最大級の滅菌性を必要とする。その滅菌プロセスの一部は、撮像装置124並びにその付属品及び構成要素を含む、患者と接触する、又は滅菌野に侵入するあらゆるものを滅菌する必要性である。滅菌野は、トレイ内又は滅菌タオル上などの、微生物を含まないと見なされる特定の領域と見なされ得ること、又は滅菌野は、外科処置のために準備された患者のすぐ周囲の領域と見なされ得ることは理解されよう。滅菌野は、適切な衣類を着用した洗浄済みのチーム構成員、並びにその領域内の全ての備品及び固定具を含み得る。
様々な態様では、可視化システム108は、図2に示されるように、滅菌野に対して戦略的に配置された1つ又は2つ以上の撮像センサと、1つ又は2つ以上の画像処理ユニットと、1つ又は2つ以上のストレージアレイと、1つ又は2つ以上のディスプレイと、を含む。一態様では、可視化システム108は、HL7、PACS、及びEMRのインターフェースを含む。可視化システム108の様々な構成要素については、その開示全体が参照により本明細書に組み込まれる2017年12月28日出願の「INTERACTIVE SURGICAL PLATFORM」と題する米国仮特許出願第62/611,341号の「Advanced Imaging Acquisition Module」の項で説明されている。
図2に示すように、一次ディスプレイ119は、手術台114に位置する操作者に可視であるように、滅菌野内に配置される。加えて、可視化タワー111は、滅菌野の外に位置付けられる。可視化タワー111は、互いに離れる方に面する第1の非滅菌ディスプレイ107及び第2の非滅菌ディスプレイ109を含む。ハブ106によって誘導される可視化システム108は、ディスプレイ107、109、及び119を使用して、滅菌野の内側及び外部の操作者に対する情報フローを調整するように構成されている。例えば、ハブ106は、可視化システム108に、一次ディスプレイ119上の手術部位のライブ映像を維持させながら、撮像装置124によって記録される手術部位のスナップショットを非滅菌ディスプレイ107又は109上に表示させることができる。非滅菌ディスプレイ107又は109上のスナップショットは、例えば、非滅菌操作者が外科処置に関連する診断工程を実施することを可能にすることができる。
一態様では、ハブ106は、滅菌野内で、可視化タワー111に位置する非滅菌操作者によって入力された診断入力又はフィードバックを滅菌領域内の一次ディスプレイ119に送り、これを手術台に位置する滅菌操作者が見ることができるようにも構成される。一実施例では、入力は、ハブ106によって一次ディスプレイ119に送ることのできる、非滅菌ディスプレイ107又は109上に表示されるスナップショットに対する修正の形態であってもよい。
図2を参照すると、外科用器具112は、外科処置において外科システム102の一部として使用されている。ハブ106はまた、外科用器具112のディスプレイへの情報フローを調整するようにも構成されている。例えば、その開示全体が参照により本明細書に組み込まれる、「INTERACTIVE SURGICAL PLATFORM」と題する2017年12月28日出願の米国仮特許出願第62/611,341号における。可視化タワー111の位置で非滅菌操作者によって入力される診断入力又はフィードバックは、滅菌野内でハブ106によって外科用器具ディスプレイ115に送られてもよく、ここで診断入力又はフィードバックは外科用器具112の操作者によって見られてもよい。外科システム102と共に用いるのに好適な例示的外科用器具については、例えば、その開示全体が参照により本明細書に組み込まれる、「Surgical Instrument Hardware」の項目、及び「INTERACTIVE SURGICAL PLATFORM」と題する2017年12月28日出願の米国仮特許出願第62/611,341号で説明されている。
ここで図3を参照すると、ハブ106が、可視化システム108、ロボットシステム110、及びハンドヘルド式インテリジェント外科用器具112と通信している状態で示されている。ハブ106は、ハブディスプレイ135、撮像モジュール138、発生器モジュール140、通信モジュール130、プロセッサモジュール132、及びストレージアレイ134を含む。特定の態様では、図3に示すように、ハブ106は、排煙モジュール126及び/又は吸引/灌注モジュール128を更に含む。
外科処置中、封止及び/又は切断のため組織へのエネルギー印加は、一般に、排煙、過剰な流体の吸引、及び/又は組織の灌注を伴う。異なる供給源からの流体、電力、及び/又はデータラインは、外科処置中に絡まり合うことが多い。外科処置中にこの問題に対処することで貴重な時間が失われる場合がある。ラインの絡まりをほどくには、それらの対応するモジュールからラインを抜くことが必要となる場合があり、そのためにはモジュールをリセットすることが必要となる場合がある。ハブのモジュール式筐体136は、電力、データ、及び流体ラインを管理するための統一環境を提供し、このようなライン間の絡まりの頻度を低減させる。
本開示の態様は、手術部位における組織へのエネルギー印加を伴う外科処置において使用するための外科用ハブを提示する。外科用ハブは、ハブ筐体と、ハブ筐体のドッキングステーション内に摺動可能に受容可能な発生器モジュールコンボと、を含む。ドッキングステーションはデータ及び電力接点を含む。発生器モジュールコンボは、単一ユニット内に収容された、超音波エネルギー発生器構成要素、双極RFエネルギー発生器構成要素、及び単極RFエネルギー発生器構成要素のうちの2つ以上を含む。一態様では、発生器モジュールコンボは、更に、排煙構成要素と、発生器モジュールコンボを外科用器具に接続するための少なくとも1つのエネルギー供給ケーブルと、組織への治療エネルギーの印加によって発生した煙、流体、及び/又は微粒子を排出するように構成された少なくとも1つの排煙構成要素と、遠隔手術部位から排煙構成要素まで延在する流体ラインと、を含む。
一態様では、流体ラインは第1の流体ラインであり、第2の流体ラインは、遠隔手術部位から、ハブ筐体内に摺動可能に受容される吸引及び灌注モジュールまで延在する。一態様では、ハブ筐体は、流体インターフェースを備える。
特定の外科処置は、2つ以上のエネルギータイプを組織に印加することを必要とする場合がある。1つのエネルギータイプは、組織を切断するのにより有益であり得るが、別の異なるエネルギータイプは、組織を封止するのにより有益であり得る。例えば、双極発生器は組織を封止するために使用することができ、一方で、超音波発生器は封止された組織を切断するために使用することができる。本開示の態様は、ハブのモジュール式筐体136が様々な発生器を収容して、これらの間の双方向通信を促進するように構成される解決法を提示する。ハブのモジュール式筐体136の利点の1つは、様々なモジュールの迅速な取り外し及び/又は交換を可能にすることである。
本開示の態様は、組織へのエネルギー印加を伴う外科処置で使用するためのモジュール式外科用筐体を提示する。モジュール式外科用筐体は、組織に印加するための第1のエネルギーを発生させるように構成された第1のエネルギー発生器モジュールと、第1のデータ及び電力接点を含む第1のドッキングポートを備える第1のドッキングステーションと、を含み、第1のエネルギー発生器モジュールは、電力及びデータ接点と電気係合するように摺動可能に移動可能であり、また第1のエネルギー発生器モジュールは、第1の電力及びデータ接点との電気係合から外れるように摺動可能に移動可能である。
上記に加えて、モジュール式外科用筐体は、第1のエネルギーとは異なる、組織に印加するための第2のエネルギーを発生させるように構成された第2のエネルギー発生器モジュールと、第2のデータ及び電力接点を含む第2のドッキングポートを備える第2のドッキングステーションと、を更に含み、第2のエネルギー発生器モジュールは、電力及びデータ接点と電気係合するように摺動可能に移動可能であり、また第2のエネルギー発生器モジュールは、第2の電力及びデータ接点との電気係合から外れるように摺動可能に移動可能である。
更に、モジュール式外科用筐体は、第1のエネルギー発生器モジュールと第2のエネルギー発生器モジュールとの間の通信を容易にするように構成された、第1のドッキングポートと第2のドッキングポートとの間の通信バスを更に含む。
図3~図7を参照すると、発生器モジュール140と、排煙モジュール126と、吸引/灌注モジュール128と、のモジュール式統合を可能にするハブのモジュール式筐体136に関する本開示の態様が提示される。ハブのモジュール式筐体136は、モジュール140、126、128間の双方向通信を更に促進する。図5に示すように、発生器モジュール140は、ハブのモジュール式筐体136に摺動可能に挿入可能な単一のハウジングユニット139内に支持される、統合された単極、双極、及び超音波構成要素を備える発生器モジュールであってもよい。図5に示すように、発生器モジュール140は、単極装置146、双極装置147、及び超音波装置148に接続するように構成され得る。あるいは、発生器モジュール140は、ハブのモジュール式筐体136を介して相互作用する一連の単極、双極、及び/又は超音波発生器モジュールを備えてもよい。ハブのモジュール式筐体136は、複数の発生器が単一の発生器として機能するように、複数の発生器の挿入と、ハブのモジュール式筐体136にドッキングされた発生器間の双方向通信と、を促進するように構成されてもよい。
一態様では、ハブのモジュール式筐体136は、モジュール140、126、128の取り外し可能な取り付け及びそれらの間の双方向通信を可能にするために、外部及び無線通信ヘッダを備えるモジュール式電力及び通信バックプレーン149を備える。
一態様では、ハブのモジュール式筐体136は、モジュール140、126、128を摺動可能に受容するように構成された、本明細書ではドロアーとも称されるドッキングステーション又はドロアー151を含む。図4は、外科用ハブ筐体136、及び外科用ハブ筐体136のドッキングステーション151に摺動可能に受容可能な発生器モジュールコンボ145の部分斜視図を示す。発生器モジュールコンボ145の後側に電力及びデータ接点を有するドッキングポート152は、発生器モジュールコンボ145がハブのモジュール式筐体136の対応するドッキングステーション151内の位置へと摺動されると、対応するドッキングポート150をハブのモジュール式筐体136の対応するドッキングステーション151の電力及びデータ接点と係合するように構成される。一態様では、発生器モジュールコンボ145は、図5に示すように、双極、超音波、及び単極モジュールと、単一のハウジングユニット139と共に一体化された排煙モジュールと、を含む。
様々な態様では、排煙モジュール126は、捕捉/回収された煙及び/又は流体を手術部位から遠ざけて、例えば、排煙モジュール126へと搬送する流体ライン154を含む。排煙モジュール126から発生する真空吸引は、煙を手術部位のユーティリティ導管の開口部に引き込むことができる。流体ラインに連結されたユーティリティ導管は、排煙モジュール126で終端する可撓管の形態であってもよい。ユーティリティ導管及び流体ラインは、ハブ筐体136内に受容される排煙モジュール126に向かって延在する流体経路を画定する。
様々な態様では、吸引/灌注モジュール128は、吸い込み(aspiration)流体ライン及び吸引(suction)流体ラインを含む外科用ツールに連結される。一実施例では、吸い込み及び吸引流体ラインは、手術部位から吸引/灌注モジュール128に向かって延在する可撓管の形態である。1つ又は2つ以上の駆動システムは、手術部位への、及び手術部位からの流体の灌注及び吸い込みを引き起こすように構成され得る。
一態様では、外科用ツールは、その遠位端にエンドエフェクタを有するシャフトと、エンドエフェクタに関連付けられた少なくとも1つのエネルギー処置部と、吸い込み管と、灌注管と、を含む。吸い込み管は、その遠位端に入口ポートを有することができ、吸い込み管はシャフトを通って延在する。同様に、灌注管はシャフトを通って延在することができ、かつ、エネルギー送達器具に近接した入口ポートを有することができる。エネルギー送達器具は、超音波及び/又はRFエネルギーを手術部位に送達するように構成され、最初にシャフトを通って延在するケーブルによって発生器モジュール140に接続される。
灌注管は流体源と流体連通することができ、吸い込み管は真空源と流体連通することができる。流体源及び/又は真空源は、吸引/灌注モジュール128内に収容され得る。一実施例では、流体源及び/又は真空源は、吸引/灌注モジュール128とは別にハブ筐体136内に収容され得る。このような実施例では、流体インターフェースは、吸引/灌注モジュール128を流体源及び/又は真空源に接続するように構成され得る。
一態様では、モジュール140、126、128及び/又はハブのモジュール式筐体136上のそれらの対応するドッキングステーションは、モジュールのドッキングポートを位置合わせして、ハブのモジュール式筐体136のドッキングステーション内でこれらの対応部品と係合させるように構成された位置合わせ機構を含み得る。例えば、図4に示すように、発生器モジュールコンボ145は、ハブのモジュール式筐体136の対応するドッキングステーション151の対応するブラケット156と摺動可能に係合するように構成された側部ブラケット155を含む。ブラケットは協働して、発生器モジュールコンボ145のドッキングポート接点をハブのモジュール式筐体136のドッキングポート接点と電気係合させるように誘導する。
いくつかの態様では、ハブのモジュール式筐体136のドロアー151はサイズが同じ又は実質的に同じであり、モジュールはドロアー151内に受容されるサイズに調整される。例えば、側部ブラケット155及び/又は156は、モジュールのサイズに応じてより大きくなっても小さくなってもよい。他の態様では、ドロアー151はサイズが異なり、それぞれ特定のモジュールを収容するように設計される。
更に、適合しない接点を備えるドロアーにモジュールを挿入することを避けるために、特定のモジュールの接点を、特定のドロアーの接点と係合するように鍵付きにしてもよい。
図4に示されるように、1つのドロアー151のドッキングポート150は、通信リンク157を介して別のドロアー151のドッキングポート150に連結されて、ハブのモジュール式筐体136内に収容されたモジュール間の双方向通信を容易にすることができる。あるいは又は更に、ハブのモジュール式筐体136のドッキングポート150は、ハブのモジュール式筐体136内に収容されたモジュール間の無線双方向通信を容易にしてもよい。例えば、Air Titan-Bluetoothなどの任意の好適な無線通信を用いてもよい。
図6は、外科用ハブ206の複数のモジュールを受容するように構成された横方向モジュール式ハウジング160の複数の横方向ドッキングポートの個々の電力バスアタッチメントを示す。横方向モジュール式ハウジング160は、モジュール161を横方向に受容して相互接続するように構成される。モジュール161は、モジュール161を相互接続するためのバックプレーンを含む横方向モジュール式ハウジング160のドッキングステーション162内に摺動可能に挿入される。図6に示すように、モジュール161は、横方向モジュール式ハウジング160内で横方向に配置される。あるいは、モジュール161は、横方向モジュール式ハウジング内で垂直方向に配置されてもよい。
図7は、外科用ハブ106の複数のモジュール165を受容するように構成された垂直モジュール式ハウジング164を示す。モジュール165は、モジュール165を相互接続するためのバックプレーンを含む垂直モジュール式ハウジング164のドッキングステーション又はドロアー167内に摺動可能に挿入される。垂直モジュール式ハウジング164のドロアー167は垂直方向に配置されているが、特定の場合では、垂直モジュール式ハウジング164は、横方向に配置されたドロアーを含んでもよい。更に、モジュール165は、垂直モジュール式ハウジング164のドッキングポートを介して互いに相互作用し得る。図7の実施例では、モジュール165の動作に関連するデータを表示するためのディスプレイ177が提供される。加えて、垂直モジュール式ハウジング164は、マスタモジュール178内に摺動可能に受容される複数のサブモジュールを収容するマスタモジュール178を含む。
様々な態様では、撮像モジュール138は、内蔵型のビデオプロセッサ及びモジュール式光源を備え、様々な撮像装置と共に使用するように適合されている。一態様では、撮像装置は、光源モジュール及びカメラモジュールと共に組み立てることが可能なモジュール式ハウジングで構成される。ハウジングは、使い捨て式ハウジングであってもよい。少なくとも1つの実施例では、使い捨て式ハウジングは、再利用可能なコントローラ、光源モジュール、及びカメラモジュールと取り外し可能に連結される。光源モジュール及び/又はカメラモジュールは、外科処置の種類に応じて選択的に選択することができる。一態様では、カメラモジュールはCCDセンサを含む。別の態様では、カメラモジュールはCMOSセンサを含む。別の態様では、カメラモジュールは走査されたビームの撮像用に構成される。同様に、光源モジュールは、外科処置に応じて白色光又は異なる光を送達するように構成することができる。
外科処置中に、手術野から外科用装置を除去して異なるカメラ又は異なる光源を含む別の外科用装置と交換することは非効率的であり得る。手術野の視野を一時的に喪失することは、望ましからぬ結果をもたらし得る。本開示のモジュール撮像装置は、手術野から撮像装置を除去する必要なく、外科処置中に光源モジュール又はカメラモジュール中間体(midstream)の交換を可能にするように構成される。
一態様では、撮像装置は、複数のチャネルを含む管状ハウジングを備える。第1のチャネルは、第1のチャネルとスナップ嵌め係合するように構成され得るカメラモジュールを摺動可能に受容するように構成されている。第2のチャネルは、第2のチャネルとスナップ嵌め係合するように構成され得る光源モジュールを摺動可能に受容するように構成されている。別の実施例では、カメラモジュール及び/又は光源モジュールは、これらの対応するチャネル内の最終位置へと回転させることができる。スナップ嵌め係合の代わりにねじ係合が採用されてもよい。
様々な実施例で、複数の撮像装置が、複数の視野を提供するために手術野内の様々な位置に位置決めされる。撮像モジュール138は、最適な視野を提供するために撮像装置間を切り替えるように構成することができる。様々な態様では、撮像モジュール138は、異なる撮像装置からの画像を統合するように構成することができる。
本開示と共に使用するのに好適な様々な画像プロセッサ及び撮像装置は、その全体が参照により本明細書に組み込まれる「COMBINED SBI AND CONVENTIONAL IMAGE PROCESSOR」と題する2011年8月9日発行の米国特許第7,995,045号に記載されている。更に、その全体が参照により本明細書に組み込まれる「SBI MOTION ARTIFACT REMOVAL APPARATUS AND METHOD」と題する2011年7月19日発行の米国特許第7,982,776号は、画像データからモーションアーチファクトを除去するための様々なシステムについて記載している。こうしたシステムは、撮像モジュール138と一体化され得る。更に、「CONTROLLABLE MAGNETIC SOURCE TO FIXTURE INTRACORPOREAL APPARATUS」と題する2011年12月15日公開の米国特許出願公開第2011/0306840号、及び「SYSTEM FOR PERFORMING A MINIMALLY INVASIVE SURGICAL PROCEDURE」と題する2014年8月28日公開の米国特許出願公開第2014/0243597号は、それぞれその全体が参照により本明細書に組み込まれる。
図8は、医療施設の1つ又は2つ以上の手術室、又は外科処置のための専門設備を備えた医療施設内の任意の部屋に配置されたモジュール式装置をクラウドベースのシステム(例えばストレージ装置205に接続されたリモートサーバ213を含み得るクラウド204)に接続するように構成されたモジュール式通信ハブ203を備える外科用データネットワーク201を示す。一態様では、モジュール式通信ハブ203は、ネットワークルータと通信するネットワークハブ207及び/又はネットワークスイッチ209を備える。モジュール式通信ハブ203は更に、ローカルコンピュータ処理及びデータ操作を提供するために、ローカルコンピュータシステム210に接続することができる。外科用データネットワーク201は、受動的、インテリジェント、又は切替式として構成されてもよい。受動的外科用データネットワークはデータの導管として機能し、データが1つの装置(又はセグメント)から別の装置(又はセグメント)に、及びクラウドコンピューティングリソースに行くことを可能にする。インテリジェントな外科用データネットワークは、トラフィックが監視対象の外科用データネットワークを通過することを可能にし、ネットワークハブ207又はネットワークスイッチ209内の各ポートを構成する追加の機構を含む。インテリジェントな外科用データネットワークは、管理可能なハブ又はスイッチと称され得る。スイッチングハブは、各パケットの宛先アドレスを読み取り、次いでパケットを正しいポートに転送する。
手術室に配置されるモジュール式装置1a~1nは、モジュール式通信ハブ203に接続されてもよい。ネットワークハブ207及び/又はネットワークスイッチ209は、ネットワークルータ211に接続され、装置1a~1nをクラウド204又はローカルコンピュータシステム210に接続することができる。装置1a~1nに関連付けられたデータは、遠隔データ処理及び操作のためにルータを介してクラウドベースのコンピュータに転送されてもよい。装置1a~1nに関連付けられたデータはまた、ローカルでのデータ処理及び操作のためにローカルコンピュータシステム210に転送されてもよい。同じ手術室に位置するモジュール式装置2a~2mもまた、ネットワークスイッチ209に接続されてもよい。ネットワークスイッチ209は、ネットワークハブ207及び/又はネットワークルータ211に接続されて、装置2a~2mをクラウド204に接続することができる。装置2a~2nに関連付けられたデータは、データ処理及び操作のためにネットワークルータ211を介してクラウド204に転送されてもよい。装置2a~2mに関連付けられたデータはまた、ローカルでのデータ処理及び操作のためにローカルコンピュータシステム210に転送されてもよい。
複数のネットワークハブ207及び/又は複数のネットワークスイッチ209を複数のネットワークルータ211と相互接続することによって、外科用データネットワーク201が拡張され得ることが理解されるであろう。モジュール式通信ハブ203は、複数の装置1a~1n/2a~2mを受容するように構成されたモジュール式制御タワー内に収容され得る。ローカルコンピュータシステム210もまた、モジュール式制御タワーに収容されてもよい。モジュール式通信ハブ203は、ディスプレイ212に接続されて、例えば外科処置中に、装置1a~1n/2a~2mのうちのいくつかによって取得された画像を表示する。様々な態様では、装置1a~1n/2a~2mとしては、外科用データネットワーク201のモジュール式通信ハブ203に接続され得るモジュール式装置の中でもとりわけ、例えば、内視鏡に接続された撮像モジュール138、エネルギーベースの外科用装置に接続された発生器モジュール140、排煙モジュール126、吸引/灌注モジュール128、通信モジュール130、プロセッサモジュール132、ストレージアレイ134、ディスプレイに接続された外科用装置、及び/又は非接触センサモジュールなどの様々なモジュールが挙げられ得る。
一態様では、外科用データネットワーク201は、装置1a~1n/2a~2mをクラウドに接続する、ネットワークハブ(複数可)、ネットワークスイッチ(複数可)、及びネットワークルータ(複数可)との組み合わせを含んでもよい。ネットワークハブ又はネットワークスイッチに接続された装置1a~1n/2a~2mのいずれか1つ又は全ては、リアルタイムでデータを収集し、データ処理及び操作のためにデータをクラウドコンピュータに転送することができる。クラウドコンピューティングは、ソフトウェアアプリケーションを取り扱うために、ローカルサーバ又はパーソナル装置を有するのではなく、共有コンピューティングリソースに依存することは理解されるであろう。用語「クラウド」は「インターネット」の隠喩として用いられ得るが、この用語はそのように限定はされない。したがって、用語「クラウドコンピューティング」は、本明細書では「インターネットベースのコンピューティングの一種」を指すために用いることができ、この場合、サーバ、ストレージ、及びアプリケーションなどの様々なサービスは、手術現場(例えば、固定式、移動式、一時的、又は現場の手術室又は空間)に位置するモジュール式通信ハブ203及び/又はコンピュータシステム210に、かつインターネットを介してモジュール式通信ハブ203及び/又はコンピュータシステム210に接続された装置に送達される。クラウドインフラストラクチャは、クラウドサービスプロバイダによって維持され得る。この文脈において、クラウドサービスプロバイダは、1つ又は2つ以上の手術室内に位置する装置1a~1n/2a~2mの使用及び制御を調整する事業体であり得る。クラウドコンピューティングサービスは、スマート外科用器具、ロボット、及び手術室内に位置する他のコンピュータ化装置によって収集されたデータに基づいて、多数の計算を実行することができる。ハブハードウェアは、複数の装置又は接続部がクラウドコンピューティングリソース及びストレージと通信するコンピュータに接続することを可能にする。
装置1a~1n/2a~2mによって収集されたデータにクラウドコンピュータデータ処理技術を適用することで、外科用データネットワークは、外科的成果の改善、コスト低減、及び患者満足度の改善を提供する。組織の封止及び切断処置後に、組織の状態を観察して封止された組織の漏出又は灌流を評価するために、装置1a~1n/2a~2mのうちの少なくともいくつかを用いることができる。クラウドベースのコンピューティングを使用して、身体組織の試料の画像を含むデータを診断目的で検査して疾患の影響などの病状を特定するために、装置1a~1n/2a~2mのうちの少なくともいくつかを用いることができる。これは、組織及び表現型の位置特定及びマージン確認を含む。撮像装置と一体化された様々なセンサ、及び複数の撮像装置によってキャプチャされた画像をオーバーレイするなどの技術を使用して、身体の解剖学的構造を特定するために、装置1a~1n/2a~2mのうちの少なくともいくつかを用いることができる。画像データを含む、装置1a~1n/2a~2mによって収集されたデータは、画像処理及び操作を含むデータ処理及び操作のために、クラウド204若しくはローカルコンピュータシステム210又はその両方に転送されてもよい。データは、組織特異的部位及び状態に対する内視鏡的介入、新興技術、標的化放射線、標的化介入、及び精密ロボットの適用などの更なる治療を遂行できるかを判定することによって、外科処置の結果を改善するために分析することができる。こうしたデータ分析は、予後分析処理を更に採用してもよく、標準化されたアプローチを使用することは、外科治療及び外科医の挙動を確認するか、又は外科治療及び外科医の挙動に対する修正を提案するかのいずれかのために有益なフィードバックを提供することができる。
一実装態様では、手術室装置1a~1nは、ネットワークハブに対する装置1a~1nの構成に応じて、有線チャネル又は無線チャネルを介してモジュール式通信ハブ203に接続されてもよい。ネットワークハブ207は、一態様では、開放型システム間相互接続(OSI)モデルの物理層上で機能するローカルネットワークブロードキャスト装置として実装されてもよい。ネットワークハブは、同じ手術室ネットワーク内に位置する装置1a~1nに接続性を提供する。ネットワークハブ207は、パケット形態のデータを収集し、それらを半二重モードでルータに送信する。ネットワークハブ207は、装置データを転送するための任意の媒体アクセス制御/インターネットプロトコル(MAC/IP)は記憶しない。装置1a~1nのうちの1つのみが、ネットワークハブ207を介して一度にデータを送信することができる。ネットワークハブ207は、情報の送信先に関する経路選択テーブル又はインテリジェンスを有さず、全てのネットワークデータを各コネクション全体、及びクラウド204上のリモートサーバ213(図9)にブロードキャストする。ネットワークハブ207は、コリジョンなどの基本的なネットワークエラーを検出することができるが、全ての情報を複数のポートにブロードキャストすることは、セキュリティリスクとなりボトルネックを引き起こすおそれがある。
別の実装形態では、手術室装置2a~2mは、有線チャネル又は無線チャネルを介してネットワークスイッチ209に接続されてもよい。ネットワークスイッチ209は、OSIモデルのデータリンク層内で機能する。ネットワークスイッチ209は、同じ手術室内に位置する装置2a~2mをネットワークに接続するためのマルチキャスト装置である。ネットワークスイッチ209は、フレームの形態のデータをネットワークルータ211に送信し、全二重モードで機能する。複数の装置2a~2mは、ネットワークスイッチ209を介して同時にデータを送信することができる。ネットワークスイッチ209は、データを転送するために装置2a~2mのMACアドレスを記憶かつ使用する。
ネットワークハブ207及び/又はネットワークスイッチ209は、クラウド204に接続するためにネットワークルータ211に接続される。ネットワークルータ211は、OSIモデルのネットワーク層内で機能する。ネットワークルータ211は、装置1a~1n/2a~2mのいずれか1つ又は全てによって収集されたデータを更に処理及び操作するために、ネットワークハブ207及び/又はネットワークスイッチ211から受信したデータパケットをクラウドベースのコンピュータリソースに送信するための経路を作成する。ネットワークルータ211は、例えば、同じ医療施設の異なる手術室、又は異なる医療施設の異なる手術室に位置する異なるネットワークなどの、異なる位置に位置する2つ以上の異なるネットワークを接続するために用いられてもよい。ネットワークルータ211は、パケット形態のデータをクラウド204に送信し、全二重モードで機能する。複数の装置が同時にデータを送信することができる。ネットワークルータ211は、データを転送するためにIPアドレスを使用する。
一実施例では、ネットワークハブ207は、複数のUSB装置をホストコンピュータに接続することを可能にするUSBハブとして実装されてもよい。USBハブは、装置をホストシステムコンピュータに接続するために利用可能なポートが多くなるように、単一のUSBポートをいくつかの階層に拡張することができる。ネットワークハブ207は、有線チャネル又は無線チャネルを介して情報を受信するための有線又は無線能力を含むことができる。一態様では、無線USB短距離高帯域無線通信プロトコルが、手術室内に位置する装置1a~1nと装置2a~2mとの間の通信のために使用されてもよい。
他の実施例では、手術室装置1a~1n/2a~2mは、固定及びモバイル装置から短距離にわたってデータを交換し(2.4~2.485GHzのISM帯域における短波長UHF電波を使用して)、かつパーソナルエリアネットワーク(PAN)を構築するために、Bluetooth無線技術規格を介してモジュール式通信ハブ203と通信することができる。他の態様では、手術室装置1a~1n/2a~2mは、Wi-Fi(IEEE802.11ファミリー)、WiMAX(IEEE802.16ファミリー)、IEEE802.20、ロング・ターム・エボリューション(LTE)、並びにEv-DO、HSPA+、HSDPA+、HSUPA+、EDGE、GSM、GPRS、CDMA、TDMA、DECT、及びこれらのイーサネット派生物、のみならず3G、4G、5G、及びそれ以降と指定される任意の他の無線及び有線プロトコルが挙げられるがこれらに限定されない数多くの無線又は有線通信規格又はプロトコルを介してモジュール式通信ハブ203と通信することができる。コンピューティングモジュールは、複数の通信モジュールを含んでもよい。例えば、第1の通信モジュールは、Wi-Fi及びBluetoothなどの短距離無線通信専用であってもよく、第2の通信モジュールは、GPS、EDGE、GPRS、CDMA、WiMAX、LTE、Ev-DOなどの長距離無線通信専用であってもよい。
モジュール式通信ハブ203は、手術室装置1a~1n/2a~2mの1つ又は全ての中央接続部として機能することができ、フレームとして知られるデータ型を取り扱う。フレームは、装置1a~1n/2a~2mによって生成されたデータを搬送する。フレームがモジュール式通信ハブ203によって受信されると、フレームは増幅されてネットワークルータ211へ送信され、ネットワークルータ211は本明細書に記載される数多くの無線又は有線通信規格又はプロトコルを使用することによってこのデータをクラウドコンピューティングリソースに転送する。
モジュール式通信ハブ203は、スタンドアロンの装置として使用されてもよく、又はより大きなネットワークを形成するために互換性のあるネットワークハブ及びネットワークスイッチに接続されてもよい。モジュール式通信ハブ203は、一般に据え付け、構成、及び維持が容易であるため、モジュール式通信ハブ203は手術室装置1a~1n/2a~2mをネットワーク接続するための良好な選択肢となる。
図9は、コンピュータ実装インタラクティブ外科システム200を示す。コンピュータ実装インタラクティブ外科システム200は、多くの点で、コンピュータ実装インタラクティブ外科システム100と類似している。例えば、コンピュータ実装インタラクティブ外科システム200は、多くの点で外科システム102と類似する1つ又は2つ以上の外科システム202を含む。各外科システム202は、リモートサーバ213を含み得るクラウド204と通信する少なくとも1つの外科用ハブ206を含む。一態様では、コンピュータ実装インタラクティブ外科システム200は、例えば、インテリジェント外科用器具、ロボット、及び手術室内に位置する他のコンピュータ化装置などの複数の手術室装置に接続されたモジュール式制御タワー236を備える。図10に示されるように、モジュール式制御タワー236は、コンピュータシステム210に接続されたモジュール式通信ハブ203を備える。図9の実施例に例示するように、モジュール式制御タワー236は、内視鏡239に接続された撮像モジュール238、エネルギー装置241に接続された発生器モジュール240、排煙器モジュール226、吸引/灌注モジュール228、通信モジュール230、プロセッサモジュール232、ストレージアレイ234、任意でディスプレイ237に接続されたスマート装置/器具235、及び非接触センサモジュール242に接続される。手術室装置は、モジュール式制御タワー236を介してクラウドコンピューティングリソース及びデータストレージに接続される。ロボットハブ222もまた、モジュール式制御タワー236及びクラウドコンピューティングリソースに接続されてもよい。中でもとりわけ、装置/器具235、可視化システム208が、本明細書に記載される有線又は無線通信規格又はプロトコルを介してモジュール式制御タワー236に接続されてもよい。モジュール式制御タワー236は、撮像モジュール、装置/器具ディスプレイ、及び/又は他の可視化システム208から受信した画像を表示及びオーバーレイするためにハブディスプレイ215(例えば、モニタ、スクリーン)に接続されてもよい。ハブディスプレイはまた、画像及びオーバーレイ画像と共にモジュール式制御タワーに接続された装置から受信したデータを表示してもよい。
図10は、モジュール式制御タワー236に接続された複数のモジュールを備える外科用ハブ206を示す。モジュール式制御タワー236は、例えばネットワーク接続装置などのモジュール式通信ハブ203と、例えば局所処理、可視化、及び撮像を提供するためのコンピュータシステム210と、を備える。図10に示すように、モジュール式通信ハブ203は、モジュール式通信ハブ203に接続できるモジュール(例えば、装置)の数を拡張するために階層化構成で接続されて、モジュールに関連付けられたデータをコンピュータシステム210、クラウドコンピューティングリソース、又はその両方に転送することができる。図10に示すように、モジュール式通信ハブ203内のネットワークハブ/スイッチのそれぞれは、3つの下流ポート及び1つの上流ポートを含む。上流のネットワークハブ/スイッチは、クラウドコンピューティングリソース及びローカルディスプレイ217への通信接続を提供するためにプロセッサに接続される。クラウド204への通信は、有線又は無線通信チャネルのいずれかを介して行うことができる。
外科用ハブ206は、非接触センサモジュール242を使用して、手術室の寸法を測定し、また超音波又はレーザ型非接触測定装置のいずれかを使用して手術現場のマップを生成する。その全体が参照により本明細書に組み込まれる「INTERACTIVE SURGICAL PLATFORM」と題する2017年12月28日出願の米国仮特許出願第62/611,341号中の「Surgical Hub Spatial Awareness Within an Operating Room」の項で説明されるように、超音波ベースの非接触センサモジュールは、超音波のバーストを送信し、超音波のバーストが手術室の外壁に反射したときのエコーを受信することによって手術室を走査し、ここでセンサモジュールが、手術室のサイズを判定し、かつBluetoothペアリングの距離限界を調整するように構成される。レーザベースの非接触センサモジュールは、例えば、レーザ光パルスを送信し、手術室の外壁に反射するレーザ光パルスを受信し、送信されたパルスの位相を受信したパルスと比較して、手術室のサイズを判定し、かつBluetoothペアリング距離限界を調整することによって手術室を走査する。
コンピュータシステム210は、プロセッサ244とネットワークインターフェース245とを備える。プロセッサ244は、システムバスを介して、通信モジュール247、ストレージ248、メモリ249、不揮発性メモリ250、及び入力/出力インターフェース251に接続される。システムバスは、9ビットバス、業界標準アーキテクチャ(ISA)、マイクロチャネルアーキテクチャ(MSA)、拡張ISA(EISA)、インテリジェントドライブエレクトロニクス(IDE)、VESAローカルバス(VLB)、周辺装置相互接続(PCI)、USB、アドバンスドグラフィックスポート(AGP)、パーソナルコンピュータメモリカード国際協会バス(PCMCIA)、小型計算機システム・インターフェース(SCSI)、又は任意の他の独自バス(proprietary bus)が挙げられるがこれらに限定されない任意の様々なバスアーキテクチャを用いる、メモリバス若しくはメモリコントローラ、ペリフェラルバス若しくは外部バス、及び/又はローカルバスを含むいくつかのタイプのバス構造(複数可)のうちのいずれかであっってもよい。
プロセッサ244は、Texas Instruments製のARM Cortexの商品名で知られているものなど、任意のシングルコア又はマルチコアプロセッサであってもよい。一態様では、プロセッサは、例えば、その詳細が製品データシートで入手可能である、最大40MHzの256KBのシングルサイクルフラッシュメモリ若しくは他の不揮発性メモリのオンチップメモリ、性能を40MHz超に改善するためのプリフェッチバッファ、32KBのシングルサイクルシリアルランダムアクセスメモリ(SRAM)、StellarisWare(登録商標)ソフトウェアを搭載した内部読み出し専用メモリ(ROM)、2KBの電気的消去可能プログラマブル読み出し専用メモリ(EEPROM)、及び/又は、1つ若しくは2つ以上のパルス幅変調(PWM)モジュール、1つ若しくは2つ以上の直交エンコーダ入力(QEI)アナログ、12個のアナログ入力チャネルを備える1つ若しくは2つ以上の12ビットアナログ-デジタル変換器(ADC)を含む、Texas Instrumentsから入手可能なLM4F230H5QR ARM Cortex-M4Fプロセッサコアであってもよい。
一態様では、プロセッサ244は、同じくTexas Instruments製のHercules ARM Cortex R4の商品名で知られるTMS570及びRM4xなどの2つのコントローラ系ファミリーを含む安全コントローラを含んでもよい。安全コントローラは、拡張性のある性能、接続性、及びメモリの選択肢を提供しながら、高度な集積型安全機構を提供するために、中でも特に、IEC61508及びISO26262の安全限界用途専用に構成されてもよい。
システムメモリとしては、揮発性メモリ及び不揮発性メモリが挙げられる。起動中などにコンピュータシステム内の要素間で情報を転送するための基本ルーチンを含む基本入出力システム(BIOS)は、不揮発性メモリに記憶される。例えば、不揮発性メモリとしては、ROM、プログラマブルROM(PROM)、電気的プログラマブルROM(EPROM)、EEPROM、又はフラッシュメモリが挙げられ得る。揮発性メモリとしては、外部キャッシュメモリとして機能するランダムアクセスメモリ(RAM)が挙げられる。更に、RAMは、SRAM、ダイナミックRAM(DRAM)、シンクロナスDRAM(SDRAM)、ダブルデータレートSDRAM(DDR SDRAM)、エンハンスドSDRAM(ESDRAM)、シンクリンクDRAM(SLDRAM)、及びダイレクトランバスRAM(DRRAM)などの多くの形態で利用可能である。
コンピュータシステム210はまた、取り外し可能/取り外し不可能な揮発性/不揮発性コンピュータストレージ媒体、例えばディスクストレージなどを含む。ディスクストレージとしては、磁気ディスクドライブ、フロッピーディスクドライブ、テープドライブ、Jazドライブ、Zipドライブ、LS-60ドライブ、フラッシュメモリカード、又はメモリスティックのようなデバイスが挙げられるが、これらに限定されない。加えて、ディスクストレージは、ストレージ媒体を、独立して、又はコンパクトディスクROM装置(CD-ROM)、コンパクトディスク記録可能ドライブ(CD-Rドライブ)、コンパクトディスク書き換え可能ドライブ(CD-RWドライブ)、若しくはデジタル多用途ディスクROMドライブ(DVD-ROM)などの光ディスクドライブが挙げられるがこれらに限定されない他のストレージ媒体との組み合わせで含むことができる。ディスクストレージ装置のシステムバスへの接続を容易にするために、取り外し可能な又は取り外し不可能なインターフェースが用いられてもよい。
コンピュータシステム210は、好適な動作環境で説明されるユーザと基本コンピュータリソースとの間で媒介として機能するソフトウェアを含むことを理解されたい。このようなソフトウェアとしてはオペレーティングシステムが挙げられる。ディスクストレージ上に記憶され得るオペレーティングシステムは、コンピュータシステムのリソースを制御及び割り当てするように機能する。システムアプリケーションは、システムメモリ内又はディスクストレージ上のいずれかに記憶されたプログラムモジュール及びプログラムデータを介して、オペレーティングシステムによるリソース管理を活用する。本明細書に記載される様々な構成要素は、様々なオペレーティングシステム又はオペレーティングシステムの組み合わせで実装することができることを理解されたい。
ユーザは、I/Oインターフェース251に接続された入力装置(複数可)を介してコンピュータシステム210にコマンド又は情報を入力する。入力装置としては、マウス、トラックボール、スタイラス、タッチパッドなどのポインティングデバイス、キーボード、マイクロフォン、ジョイスティック、ゲームパッド、サテライト・ディッシュ、スキャナ、TVチューナカード、デジタルカメラ、デジタルビデオカメラ、ウェブカメラなどが挙げられるが、これらに限定されない。これら及び他の入力装置は、インターフェースポート(複数可)を介し、システムバスを通してプロセッサに接続する。インターフェースポート(複数可)としては、例えば、シリアルポート、パラレルポート、ゲームポート、及びUSBが挙げられる。出力装置(複数可)は、入力装置(複数可)と同じ種類のポートのうちのいくつかを使用する。したがって、例えば、USBポートを使用して、コンピュータシステムに入力を提供し、またコンピュータシステムからの情報を出力装置に出力してもよい。出力アダプタは、特別なアダプタを必要とする出力装置の中でもとりわけ、モニタ、ディスプレイ、スピーカ、及びプリンタなどのいくつかの出力装置が存在することを示すために提供される。出力アダプタとしては、例示としてのものであり限定するものではないが、出力装置とシステムバスとの間の接続手段を提供するビデオ及びサウンドカードが挙げられる。遠隔コンピュータ(複数可)などの他の装置及び/又は装置のシステムは、入力及び出力機能の両方を提供することに留意されたい。
コンピュータシステム210は、クラウドコンピュータ(複数可)などの1つ若しくは2つ以上の遠隔コンピュータ又はローカルコンピュータへの論理接続を使用するネットワーク化環境で動作することができる。遠隔クラウドコンピュータ(複数可)は、パーソナルコンピュータ、サーバ、ルータ、ネットワークPC、ワークステーション、マイクロプロセッサベースの機器、ピア装置、又は他の一般的なネットワークノードなどであり得、典型的には、コンピュータシステムに関して説明される要素の多く又は全てを含む。簡潔にするために、遠隔コンピュータ(複数可)と共にメモリストレージ装置のみが示される。遠隔コンピュータ(複数可)は、ネットワークインターフェースを介してコンピュータシステムに論理的に接続され、続いて、通信接続を介して物理的に接続される。ネットワークインターフェースは、ローカルエリアネットワーク(LAN)及びワイドエリアネットワーク(WAN)などの通信ネットワークを包含する。LAN技術としては、光ファイバ分散データインターフェース(FDDI)、銅線分散データインターフェース(CDDI)、Ethernet/IEEE802.3、Token Ring/IEEE802.5などが挙げられる。WAN技術としては、ポイントツーポイントリンク、統合サービスデジタルネットワーク(ISDN)及びその変形などの回路交換ネットワーク、パケット交換ネットワーク、並びにデジタル加入者回線(DSL)が挙げられるがこれらに限定されない。
様々な態様では、図10のコンピュータシステム210、図9~図10の撮像モジュール238、及び/又は可視化システム208、及び/又はプロセッサモジュール232は、画像プロセッサ、画像処理エンジン、メディアプロセッサ、又はデジタル画像の処理に使用される任意の専用デジタル信号プロセッサ(DSP)を含んでもよい。画像プロセッサは、単一命令複数データ(SIMD)、又は複数命令複数データ(MIMD)技術を用いた並列コンピューティングを使用して速度及び効率を高めることができる。デジタル画像処理エンジンは、様々なタスクを実行することができる。画像プロセッサは、マルチコアプロセッサアーキテクチャを備えるチップ上のシステムであってもよい。
通信接続(複数可)とは、ネットワークインターフェースをバスに接続するために用いられるハードウェア/ソフトウェアを指す。例示の明瞭さのために通信接続はコンピュータシステム内部に示されているが、通信接続はコンピュータシステム210の外部にあってもよい。例示のみを目的として、ネットワークインターフェースへの接続に必要なハードウェア/ソフトウェアとしては、通常の電話グレードモデム、ケーブルモデム、及びDSLモデムを含むモデム、ISDNアダプタ、並びにイーサネットカードなどの内部及び外部技術が挙げられる。
図11は、本開示の少なくとも1つの態様による、USBネットワークハブ300装置の一態様の機能ブロック図を示す。図示した態様では、USBネットワークハブ装置300は、Texas Instruments製TUSB2036集積回路ハブを採用する。USBネットワークハブ300は、USB2.0規格に準拠する、上流USB送受信ポート302及び最大3つの下流USB送受信ポート304、306、308を提供するCMOS装置である。上流USB送受信ポート302は、差動データプラス(DP0)入力とペアリングされた差動データマイナス(DM0)入力を含む差動ルートデータポートである。3つの下流USB送受信ポート304、306、308は、各ポートが差動データマイナス(DM1~DM3)出力とペアリングした差動データプラス(DP1~DP3)出力を含む差動データポートである。
USBネットワークハブ300装置は、マイクロコントローラの代わりにデジタル状態マシンを備えて実装され、ファームウェアのプログラミングを必要としない。完全準拠したUSB送受信機が、上流USB送受信ポート302及び全ての下流USB送受信ポート304、306、308の回路に統合される。下流USB送受信ポート304、306、308は、ポートに取り付けられた装置の速度に応じてスルーレートを自動的に設定することによって、最高速度及び低速の装置の両方をサポートする。USBネットワークハブ300装置は、バスパワーモード又はセルフパワーモードのいずれかで構成されてもよく、電力を管理するためのハブパワー論理312を含む。
USBネットワークハブ300装置は、シリアルインターフェースエンジン310(SIE)を含む。SIE310は、USBネットワークハブ300ハードウェアのフロントエンドであり、USB仕様書の第8章に記載されているプロトコルの大部分を取り扱う。SIE310は、典型的には、トランザクションレベルまでのシグナリングを理解する。これが取り扱う機能としては、パケット認識、トランザクションの並べ替え、SOP、EOP、RESET、及びRESUME信号の検出/生成、クロック/データ分離、非ゼロ復帰逆転(NRZI)データ符号化/復号及びビットスタッフィング、CRC生成及びチェック(トークン及びデータ)、パケットID(PID)の生成、及びチェック/復号、並びに/又はシリアル・パラレル/パラレル・シリアル変換が挙げられ得る。310はクロック入力314を受信し、ポート論理回路320、322、324を介して上流USB送受信ポート302と下流USB送受信ポート304、306、308との間の通信を制御するためにサスペンド/レジューム論理並びにフレームタイマー316回路及びハブリピータ回路318に接続される。SIE310は、シリアルEEPROMインターフェース330を介してシリアルEEPROMからコマンドを制御するためのインターフェース論理を介してコマンドデコーダ326に接続される。
様々な態様では、USBネットワークハブ300は、最大6つの論理層(階層)内に構成された127個の機能を単一のコンピュータに接続することができる。更に、USBネットワークハブ300は、通信及び電力分配の両方を提供する標準化された4本のワイヤケーブルを使用して全ての周辺機器に接続することができる。電力構成は、バスパワーモード及びセルフパワーモードである。USBネットワークハブ300は、個々のポート電力管理又は連動ポート電力管理のいずれかを備えるバスパワーハブ、及び個々のポート電力管理又は連動ポート電力管理のいずれかを備えるセルフパワーハブの、電力管理の4つのモードをサポートするように構成されてもよい。一態様では、USBケーブル、USBネットワークハブ300を使用して、上流USB送受信ポート302はUSBホストコントローラにプラグ接続され、下流USB送受信ポート304、306、308はUSBに互換性のある装置を接続するために露出される、といった具合である。
外科用器具のハードウェア
図12は、本開示の1つ又は2つ以上の態様による、外科用器具又はツールの制御システム470の論理図を示す。システム470は制御回路を備える。制御回路は、プロセッサ462及びメモリ468を備えるマイクロコントローラ461を含む。例えば、センサ472、474、476のうちの1つ又は2つ以上が、プロセッサ462にリアルタイムなフィードバックを提供する。モータ駆動器492によって駆動されるモータ482は、長手方向に移動可能な変位部材を動作可能に連結し、クランプアーム閉鎖部材を駆動する。追跡システム480は、長手方向に移動可能な変位部材の位置を決定するように構成されている。位置情報は、長手方向に移動可能な駆動部材の位置及び閉鎖部材の位置を決定するようにプログラム又は構成可能なプロセッサ462に提供される。閉鎖管の移動、シャフトの回転、関節運動、若しくはクランプアームの閉鎖、又は上記の組み合わせを制御するために、ツールドライバインターフェースに追加のモータが提供されてもよい。ディスプレイ473は、器具の様々な動作条件を表示し、データ入力のためのタッチスクリーン機能を含んでもよい。ディスプレイ473上に表示された情報は、内視鏡撮像モジュールを介して取得された画像とオーバーレイさせることができる。
一態様では、マイクロコントローラ461は、Texas Instruments製のARM Cortexの商品名で知られているものなど、任意のシングルコア又はマルチコアプロセッサであってもよい。一態様では、主マイクロコントローラ461は、例えば、その詳細が製品データシートで入手可能である、最大40MHzの256KBのシングルサイクルフラッシュメモリ若しくは他の不揮発性メモリのオンチップメモリ、性能を40MHz超に改善するためのプリフェッチバッファ、32KBのシングルサイクルSRAM、StellarisWare(登録商標)ソフトウェアを搭載した内部ROM、2KBのEEPROM、1つ若しくは2つ以上のPWMモジュール、1つ若しくは2つ以上のQEIアナログ、及び/又は12個のアナログ入力チャネルを備える1つ若しくは2つ以上の12ビットADCを含む、Texas Instrumentsから入手可能なLM4F230H5QR ARM Cortex-M4Fプロセッサコアであってもよい。
一態様では、マイクロコントローラ461は、同じくTexas Instruments製のHercules ARM Cortex R4の商品名で知られるTMS570及びRM4xなどの2つのコントローラ系ファミリーを含む安全コントローラを含んでもよい。安全コントローラは、拡張性のある性能、接続性、及びメモリの選択肢を提供しながら、高度な集積型安全機構を提供するために、中でも特に、IEC61508及びISO26262の安全限界用途専用に構成されてもよい。
マイクロコントローラ461は、ナイフ、関節運動システム、クランプアーム、又は上記の組み合わせの速度及び位置の正確な制御などの様々な機能を実行するようにプログラムされてもよい。一態様では、マイクロコントローラ461は、プロセッサ462及びメモリ468を含む。電動モータ482は、ギアボックス、及び関節運動又はナイフシステムへの機械的連結部を備えたブラシ付き直流(DC)モータであってもよい。一態様では、モータ駆動器492は、Allegro Microsystems,Incから入手可能なA3941であってもよい。他のモータ駆動器を、絶対位置決めシステムを備える追跡システム480で使用するために容易に置き換えることができる。絶対位置決めシステムの詳細な説明は、その全体が参照により本明細書に組み込まれる「SYSTEMS AND METHODS FOR CONTROLLING A SURGICAL STAPLING AND CUTTING INSTRUMENT」と題する2017年10月19日公開の米国特許出願公開第2017/0296213号に記載されている。
マイクロコントローラ461は、変位部材及び関節運動システムの速度及び位置に対する正確な制御を提供するようにプログラムされてもよい。マイクロコントローラ461は、マイクロコントローラ461のソフトウェア内で応答を計算するように構成されてもよい。計算された応答は、実際のシステムの測定された応答と比較されて「観測された」応答が得られ、これが実際のフィードバックの判定に用いられる。観測された応答は、シミュレーションによる応答の滑らかで連続的な性質と、測定による応答とのバランスを取る好適な調整された値であり、これはシステムに及ぼす外部の影響を検出することができる。
一態様では、モータ482は、モータ駆動器492によって制御されてもよく、外科用器具又はツールの発射システムによって使用され得る。様々な形態において、モータ482は、例えば、約25,000RPMの最大回転速度を有するブラシ付きDC駆動モータであってもよい。別の構成において、モータ482はブラシレスモータ、コードレスモータ、同期モータ、ステッパモータ、又は任意の他の好適な電気モータを含んでよい。モータ駆動器492は、例えば、電界効果トランジスタ(FET)を含むHブリッジ駆動器を備えてもよい。モータ482は、外科用器具又はツールに制御電力を供給するために、ハンドルアセンブリ又はツールハウジングに解除可能に装着された電源アセンブリによって給電され得る。電源アセンブリは、外科用器具又はツールに給電するための電源として使用され得る、直列に接続された多数の電池セルを含み得る電池を含んでもよい。特定の状況下では、電源アセンブリの電池セルは、交換可能及び/又は再充電可能な電池セルであってよい。少なくとも1つの例では、電池セルは、電源アセンブリに接続可能かつ電源アセンブリから分離可能であり得るリチウムイオン電池であり得る。
モータ駆動器492は、Allegro Microsystems,Incから入手可能なA3941であってもよい。A3941 492は、特にブラシ付きDCモータなどの誘導負荷を目的として設計された外部Nチャネルパワー金属酸化膜半導体電界効果トランジスタ(MOSFET)と共に使用するためのフルブリッジコントローラである。駆動器492は、固有の電荷ポンプレギュレータを備え、これは、完全(>10V)ゲート駆動を7Vまでの電池電圧に提供し、A3941が5.5Vまでの低減ゲート駆動で動作することを可能にする。NチャネルMOSFETに必要な上記の電池供給電圧を与えるために、ブートストラップコンデンサが用いられてもよい。ハイサイド駆動用の内部電荷ポンプにより、DC(100%デューティサイクル)動作が可能となる。フルブリッジは、ダイオード又は同期整流を用いて高速又は低速減衰モードで駆動され得る。低速減衰モードでは、電流の再循環は、ハイサイドのFETによっても、ローサイドのFETによっても可能である。電力FETは、レジスタで調節可能なデッドタイムによって、シュートスルーから保護される。統合診断は、低電圧、温度過昇、及びパワーブリッジの異常を指示するものであり、ほとんどの短絡状態下でパワーMOSFETを保護するように構成され得る。他のモータ駆動器を、絶対位置決めシステムを備えた追跡システム480で使用するために容易に置換することができる。
追跡システム480は、本開示の一態様による位置センサ472を備える制御されたモータ駆動回路構成を備える。絶対位置決めシステム用の位置センサ472は、変位部材の位置に対応する固有の位置信号を提供する。一態様では、変位部材は、ギア減速機アセンブリの対応する駆動ギアと噛合係合するための駆動歯のラックを備える長手方向に移動可能な駆動部材を表す。他の態様では、変位部材は、駆動歯のラックを含むように適合及び構成され得る発射部材を表す。更に別の態様では、変位部材は、クランプアームを開閉するための長手方向変位部材を表し、これは駆動歯のラックを含むように適合及び構成され得る。他の態様では、変位部材は、ステープラ、超音波、若しくは電気外科用装置のクランプアーム、又は上記の組み合わせを開閉するように構成されたクランプアーム閉鎖部材を表す。したがって、本明細書で使用するとき、変位部材という用語は、一般的に、駆動部材、クランプアーム、又は変位され得る任意の要素など、外科用器具又はツールの任意の可動部材を指すために使用される。したがって、絶対位置決めシステムは、実際には、長手方向に移動可能な駆動部材の直線変位を追跡することによって、クランプアームの変位を追跡することができる。
他の態様では、絶対位置決めシステムは、開閉プロセスにおけるクランプアームの位置を追跡するように構成され得る。様々な他の態様では、変位部材は、直線変位を測定するのに好適な任意の位置センサ472に接続されてもよい。したがって、長手方向に移動可能な駆動部材、若しくはクランプアーム、又はこれらの組み合わせは、任意の好適な直線変位センサに接続されてもよい。直線変位センサは、接触式又は非接触式変位センサを含んでよい。直線変位センサは、線形可変差動変圧器(linear variable differential transformers、LVDT)、差動可変磁気抵抗型変換器(differential variable reluctance transducers、DVRT)、スライドポテンショメータ、移動可能な磁石及び一連の直線上に配置されたホール効果センサを備える磁気感知システム、固定された磁石及び一連の移動可能な直線上に配置されたホール効果センサを備える磁気感知システム、移動可能な光源及び一連の直線上に配置された光ダイオード若しくは光検出器を備える光学検出システム、固定された光源及び一連の移動可能な直線上に配置された光ダイオード若しくは光検出器を備える光学検出システム、又はこれらの任意の組み合わせを含んでもよい。
電動モータ482は、変位部材上の駆動歯のセット又はラックと噛合係合で装着されるギアアセンブリと動作可能にインターフェースする回転式シャフトを含んでもよい。センサ素子は、位置センサ472素子の1回転が、変位部材のいくらかの直線長手方向並進に対応するように、ギアアセンブリに動作可能に連結されてもよい。ギアリング及びセンサ機構を、ラックピニオン機構によって直線アクチュエータに、又はスパーギア若しくは他の接続によって回転アクチュエータに接続することができる。電源は、絶対位置決めシステムに電力を供給し、出力インジケータは、絶対位置決めシステムの出力を表示することができる。変位部材は、ギア減速機アセンブリの対応する駆動ギアと噛合係合するために、その上に形成された駆動歯のラックを備える長手方向に移動可能な駆動部材を表す。変位部材は、クランプアームを開閉する長手方向に移動可能な発射部材を表す。
位置センサ472に付随するセンサ素子の1回転は、変位部材の長手方向直線変位dに相当し、dは、変位部材に連結したセンサ素子の1回転した後で、変位部材が点「a」から点「b」まで移動する長手方向の直線距離である。センサ機構は、位置センサ472が変位部材のフルストロークに対して1回以上の回転を完了する結果をもたらすギアの減速を介して接続されてもよい。位置センサ472は、変位部材のフルストロークに対して複数回の回転を完了することができる。
位置センサ472の2回以上の回転に対する固有の位置信号を提供するために、一連のスイッチ(ここでnは1より大きい整数である)が、単独で用いられても、ギアの減速との組み合わせで用いられてもよい。スイッチの状態はマイクロコントローラ461にフィードバックされ、マイクロコントローラ461は論理を適用して、変位部材の長手方向の直線変位d+d+...dに対応する固有の位置信号を判定する。位置センサ472の出力はマイクロコントローラ461に提供される。センサ機構の位置センサ472は、位置信号又は値の固有の組み合わせを出力する、磁気センサ、電位差計などのアナログ回転センサ、又はアナログホール効果素子のアレイを備えてもよい。
位置センサ472は、例えば、磁界の全磁界又はベクトル成分を測定するか否かに基づいて分類される磁気センサなどの、任意の数の磁気感知素子を備えてもよい。両タイプの磁気センサを生産するために用いられる技術は、物理学及び電子工学の多数の側面を含んでいる。磁界の感知に用いられる技術としては、とりわけ、探りコイル、フラックスゲート、光ポンピング、核摂動(nuclear precession)、SQUID、ホール効果、異方性磁気抵抗、巨大磁気抵抗、磁気トンネル接合、巨大磁気インピーダンス、磁歪/圧電複合材、磁気ダイオード、磁気トランジスタ、光ファイバ、磁気光学、及び微小電気機械システムベースの磁気センサが挙げられる。
一態様では、絶対位置決めシステムを備える追跡システム480の位置センサ472は、磁気回転絶対位置決めシステムを備える。位置センサ472は、Austria Microsystems,AGから入手可能なAS5055EQFTシングルチップ磁気回転位置センサとして実装されてもよい。位置センサ472は、マイクロコントローラ461と連携して絶対位置決めシステムを提供する。位置センサ472は、低電圧低電力の構成要素であり、磁石の上方に位置する位置センサ472の領域に、4つのホール効果素子を含む。更に、高解像度ADC及びスマート電力管理コントローラがチップ上に設けられている。加算、減算、ビットシフト、及びテーブル参照演算のみを必要とする、双曲線関数及び三角関数を計算する簡潔かつ効率的なアルゴリズムを実装するために、桁毎法(digit-by-digit method)及びボルダーアルゴリズム(Volder's algorithm)としても知られる、座標回転デジタルコンピュータ(CORDIC)プロセッサが設けられる。角度位置、アラームビット、及び磁界情報は、シリアル周辺インターフェース(SPI)インターフェースなどの標準的なシリアル通信インターフェースを介してマイクロコントローラ461に伝送される。位置センサ472は、12ビット又は14ビットの解像度を提供する。位置センサ472は、小型のQFN16ピン4×4×0.85mmパッケージで提供されるAS5055チップであってもよい。
絶対位置決めシステムを備える追跡システム480は、PID、状態フィードバック、及び適応コントローラなどのフィードバックコントローラを備えてもよく、かつ/又はこれを実装するようにプログラムされてもよい。電源が、フィードバックコントローラからの信号を、システムへの物理的入力、この場合は電圧へと変換する。他の例としては、電圧、電流、及び力のPWMが挙げられる。位置センサ472によって測定される位置に加えて、物理的システムの物理パラメータを測定するために、他のセンサ(複数化)が設けられてもよい。いくつかの態様では、他のセンサ(複数可)としては、その全体が参照により本明細書に組み込まれる、「STAPLE CARTRIDGE TISSUE THICKNESS SENSOR SYSTEM」と題する2016年5月24日発行の米国特許第9,345,481号、その全体が参照により本明細書に組み込まれる、「STAPLE CARTRIDGE TISSUE THICKNESS SENSOR SYSTEM」と題する2014年9月18日公開の米国特許出願公開第2014/0263552号、及びその全体が参照により本明細書に組み込まれる、「TECHNIQUES FOR ADAPTIVE CONTROL OF MOTOR VELOCITY OF A SURGICAL STAPLING AND CUTTING INSTRUMENT」と題する2017年6月20日出願の米国特許出願第15/628,175号に記載されているものなどのセンサ機構を挙げることができる。デジタル信号処理システムでは、絶対位置決めシステムはデジタルデータ取得システムに接続され、ここで絶対位置決めシステムの出力は有限の解像度及びサンプリング周波数を有する。絶対位置決めシステムは、計算された応答を測定された応答に向けて駆動する加重平均及び理論制御ループなどのアルゴリズムを用いて、計算された応答を測定された応答と組み合わせるために、比較及び組み合わせ回路を備え得る。入力を知ることによって物理的システムの状態及び出力がどうなるかを予測するために、物理的システムの計算された応答は、質量、慣性、粘性摩擦、誘導抵抗などの特性を考慮に入れる。
絶対位置決めシステムは、モータ482が単に前方又は後方に経たステップの数をカウントして装置アクチュエータ、駆動バー、ナイフなどの位置を推定する従来の回転エンコーダで必要となり得るような、変位部材をリセット(ゼロ又はホーム)位置へ後退又は前進させることなしに、器具の電源投入時に変位部材の絶対位置を提供する。
例えば歪みゲージ又は微小歪みゲージなどのセンサ474は、例えば、アンビルに適用される閉鎖力を示すことができる、クランプ動作中にアンビルに及ぼされる歪みの振幅などのエンドエフェクタの1つ又は2つ以上のパラメータを測定するように構成される。測定された歪みは、デジタル信号に変換されて、プロセッサ462に提供される。センサ474の代わりに、又はこれに加えて、例えば、負荷センサなどのセンサ476が、閉鎖駆動システムが超音波又は電気外科用器具内のステープラ又はクランプアーム内のアンビルに加える閉鎖力を測定することができる。例えば、負荷センサなどのセンサ476は、外科用器具若しくはツールのクランプアームに連結された閉鎖部材に加えられる発射力、又はクランプアームによって超音波若しくは電気外科用器具のジョー内に位置する組織に加えられる力を測定することができる。あるいは、モータ482による電流引き込みを測定するために、電流センサ478を用いることができる。変位部材はまた、クランプアームに係合してクランプアームを開閉するように構成されてもよい。力センサは、組織上のクランプ力を測定するように構成されてもよい。変位部材を前進させるのに必要な力は、例えば、モータ482によって引き込まれる電流に相当し得る。測定された力は、デジタル信号に変換されて、プロセッサ462に提供される。
一形態では、歪みゲージセンサ474を使用して、エンドエフェクタによって組織に加えられる力を測定することができる。治療される組織に対するエンドエフェクタによる力を測定するために、歪みゲージをエンドエフェクタに連結することができる。エンドエフェクタによって把持された組織に印加される力を測定するためのシステムは、例えば、エンドエフェクタの1つ又は2つ以上のパラメータを測定するように構成された微小歪みゲージなどの歪みゲージセンサ474を備える。一態様では、歪みゲージセンサ474は、把持動作中にエンドエフェクタのジョー部材に及ぼされる歪みの振幅又は大きさを測定することができ、これは組織の圧縮を示すことができる。測定された歪みはデジタル信号に変換されて、マイクロコントローラ461のプロセッサ462に提供される。負荷センサ476は、例えば、アンビルとステープルカートリッジとの間に捕捉された組織を切断するために、ナイフ要素を操作するのに用いられる力を測定することができる。負荷センサ476は、例えば、クランプアームと超音波ブレードとの間に組織を捕捉するために、又はクランプアームと電気外科用器具のジョーとの間に組織を捕捉するために、クランプアーム要素を操作するのに使用される力を測定することができる。磁界センサは、捕捉された組織の厚さを測定するために用いることができる。磁界センサの測定値もデジタル信号に変換されて、プロセッサ462に提供され得る。
センサ474、476によってそれぞれ測定される、組織の圧縮、組織の厚さ、及び/又はエンドエフェクタを組織上で閉鎖するのに必要な力の測定値は、発射部材の選択された位置、及び/又は発射部材の速度の対応する値を特性決定するために、マイクロコントローラ461によって使用することができる。一例では、メモリ468は、評価の際にマイクロコントローラ461によって用いることができる技術、等式及び/又はルックアップテーブルを記憶することができる。
外科用器具又はツールの制御システム470はまた、図8~図11に示されるようにモジュール式通信ハブと通信するための有線又は無線通信回路を備えてもよい。
図13は、本開示の一態様による、外科用器具又はツールの態様を制御するように構成された制御回路500を示す。制御回路500は、本明細書に説明される様々なプロセスを実装するように構成することができる。制御回路500は、少なくとも1つのメモリ回路504に接続された1つ又は2つ以上のプロセッサ502(例えば、マイクロプロセッサ、マイクロコントローラ)を備えるマイクロコントローラを備えることができる。メモリ回路504は、プロセッサ502によって実行されると、本明細書に記載される様々なプロセスを実装するための機械命令をプロセッサ502に実行させる、機械実行可能命令を記憶する。プロセッサ502は、当該技術分野で既知の多数のシングル又はマルチコアプロセッサのうち任意の1つであってもよい。メモリ回路504は、揮発性及び不揮発性のストレージ媒体を含むことができる。プロセッサ502は、命令処理ユニット506及び演算ユニット508を含んでよい。命令処理ユニットは、本開示のメモリ回路504から命令を受信するように構成されてもよい。
図14は、本開示の一態様による、外科用器具又はツールの態様を制御するように構成された組み合わせ論理回路510を示す。組み合わせ論理回路510は、本明細書に記載される様々なプロセスを実装するように構成することができる。組み合わせ論理回路510は、入力514で外科用器具又はツールと関連付けられたデータを受信し、組み合わせ論理512によってデータを処理し、出力516を提供するように構成された組み合わせ論理512を含む有限状態マシンを含み得る。
図15は、本開示の一態様による、外科用器具又はツールの態様を制御するように構成された順序論理回路520を示す。順序論理回路520又は組み合わせ論理522は、本明細書に記載される様々なプロセスを実装するように構成することができる。順序論理回路520は有限状態マシンを含んでもよい。順序論理回路520は、例えば、組み合わせ論理522、少なくとも1つのメモリ回路524、及びクロック529を含んでもよい。少なくとも1つのメモリ回路524は、有限状態マシンの現在の状態を記憶することができる。特定の例では、順序論理回路520は、同期式又は非同期式であってもよい。組み合わせ論理522は、入力526から外科用器具又はツールと関連付けられたデータを受信し、組み合わせ論理522によってデータを処理し、出力528を提供するように構成される。他の態様では、回路は、プロセッサ(例えば、図13のプロセッサ502)と、本明細書の様々なプロセスを実装する有限状態マシンと、の組み合わせを含んでもよい。他の態様では、有限状態マシンは、組み合わせ論理回路(例えば図14の組み合わせ論理回路510)と順序論理回路520の組み合わせを含むことができる。
図16は、本開示の一態様による、変位部材の遠位並進を制御するように構成された外科用器具750の回路図を示す。一態様では、外科用器具750は、閉鎖部材764などの変位部材の遠位並進を制御するようにプログラムされる。外科用器具750は、クランプアーム766と、閉鎖部材764と、超音波発生器771によって駆動される超音波変換器769に連結された超音波ブレード768と、を備え得るエンドエフェクタ752を備える。
閉鎖部材764などの直線変位部材の位置、移動、変位、及び/又は並進は、絶対位置決めシステム、センサ機構、及び位置センサ784によって測定することができる。閉鎖部材764が長手方向に移動可能な駆動部材に連結されているため、閉鎖部材764の位置は、位置センサ784を使用する長手方向に移動可能な駆動部材の位置を測定することによって判定することができる。したがって、以下の説明では、閉鎖部材764の位置、変位、及び/又は並進は、本明細書に記載される位置センサ784によって達成され得る。制御回路760は、閉鎖部材764などの変位部材の並進を制御するようにプログラムされてもよい。いくつかの実施例では、制御回路760は、1つ若しくは2つ以上のマイクロコントローラ、マイクロプロセッサ、又はプロセッサ若しくは複数のプロセッサに、記載される方法で変位部材、例えば閉鎖部材764を制御させる命令を実行するための他の好適なプロセッサを備えてもよい。一態様では、タイマー/カウンタ781は、経過時間又はデジタルカウントなどの出力信号を制御回路760に提供して、位置センサ784によって判定された閉鎖部材764の位置をタイマー/カウンタ781の出力と相関させ、その結果、制御回路760は、開始位置に対する特定の時間(t)における閉鎖部材764の位置を判定することができる。タイマー/カウンタ781は、経過時間を測定するか、外部イベントを計数するか、又は外部イベントの時間を測定するように構成されてよい。
制御回路760は、モータ設定値信号772を生成してもよい。モータ設定値信号772は、モータコントローラ758に提供されてもよい。モータコントローラ758は、本明細書で説明するように、モータ754にモータ駆動信号774を提供してモータ754を駆動するように構成された1つ又は2つ以上の回路を備えてもよい。いくつかの実施例では、モータ754は、ブラシ付きDC電動モータであってもよい。例えば、モータ754の速度は、モータ駆動信号774に比例してもよい。いくつかの例では、モータ754はブラシレスDC電動モータであってもよく、モータ駆動信号774は、モータ754の1つ又は2つ以上の固定子巻線に提供されるPWM信号を含んでもよい。また、いくつかの実施例では、モータコントローラ758は省略されてもよく、制御回路760がモータ駆動信号774を直接生成してもよい。
モータ754は、エネルギー源762から電力を受信することができる。エネルギー源762は、電池、超コンデンサ、又は任意の他の好適なエネルギー源であってもよく、あるいはそれを含んでもよい。モータ754は、伝達装置756を介して閉鎖部材764に機械的に連結され得る。伝達装置756は、モータ754を閉鎖部材764に連結するための1つ又は2つ以上のギア又は他の連結構成要素を含んでもよい。位置センサ784は、閉鎖部材764の位置を感知し得る。位置センサ784は、閉鎖部材764の位置を示す位置データを生成することができる任意の種類のセンサであってもよく、又はそれを含んでもよい。いくつかの例では、位置センサ784は、閉鎖部材764が遠位方向及び近位方向に並進すると一連のパルスを制御回路760に提供するように構成されたエンコーダを含んでもよい。制御回路760は、パルスを追跡して閉鎖部材764の位置を判定してもよい。例えば近接センサを含む他の好適な位置センサが使用されてもよい。他の種類の位置センサは、閉鎖部材764の動きを示す他の信号を提供することができる。また、一部の実施例では、位置センサ784は省略されてもよい。モータ754がステップモータである場合、制御回路760は、モータ754が実行するように指示されたステップの数及び方向を合計することによって、閉鎖部材764の位置を追跡することができる。位置センサ784は、エンドエフェクタ752内、又は器具の他の任意の部分に位置することができる。
制御回路760は、1つ又は2つ以上のセンサ788と通信することができる。センサ788は、エンドエフェクタ752上に位置付けられ、外科用器具750と共に動作して、間隙距離対時間、組織圧縮対時間、及びアンビル歪み対時間などの様々な導出パラメータを測定するように適合され得る。センサ788は、磁気センサ、磁界センサ、歪みゲージ、圧力センサ、力センサ、渦電流センサなどの誘導センサ、抵抗センサ、容量センサ、光学センサ、及び/又はエンドエフェクタ752の1つ若しくは2つ以上のパラメータを測定するための任意の他の好適なセンサを備え得る。センサ788は、1つ又は2つ以上のセンサを含み得る。
1つ又は2つ以上のセンサ788は、クランプ状態の間のクランプアーム766における歪みの大きさを測定するように構成された、微小歪みゲージなどの歪みゲージを備えてもよい。歪みゲージは、歪みの大きさに伴って振幅が変動する電気信号を提供する。センサ788は、クランプアーム766と超音波ブレード768との間に圧縮された組織の存在によって生成された圧力を検出するように構成された圧力センサを備えてもよい。センサ788は、クランプアーム766と超音波ブレード768との間に位置する組織部分のインピーダンスを検出するように構成されてもよく、このインピーダンスは、それらの間に位置する組織の厚さ及び/又は充満度を示す。
センサ788は、閉鎖駆動システムによってクランプアーム766に及ぼされる力を測定するように構成され得る。例えば、1つ又は2つ以上のセンサ788は、閉鎖管によってクランプアーム766に適用される閉鎖力を検出するために、閉鎖管とクランプアーム766との間の相互作用点に位置してもよい。クランプアーム766に対して及ぼされる力は、クランプアーム766と超音波ブレード768との間に捕捉された組織切片が受ける組織圧縮を表すものであり得る。1つ又は2つ以上のセンサ788は、閉鎖駆動システムに沿った様々な相互作用点に配置されて、閉鎖駆動システムによってクランプアーム766に適用される閉鎖力を検出することができる。1つ又は2つ以上のセンサ788は、制御回路760のプロセッサによるクランプ動作中にリアルタイムでサンプリングされてもよい。制御回路760は、リアルタイムのサンプル測定値を受信して時間ベースの情報を提供及び分析し、クランプアーム766に適用される閉鎖力をリアルタイムで評価する。
モータ754によって出される電流を測定するために、電流センサ786を用いることができる。閉鎖部材764を前進させるのに必要な力は、モータ754によって引き込まれる電流に相当する。力はデジタル信号に変換されて、制御回路760に提供される。
制御回路760は、器具の実際のシステムの応答をコントローラのソフトウェアでシミュレートするように構成され得る。変位部材を作動させて、エンドエフェクタ752内の閉鎖部材764を目標速度又はその付近で移動させることができる。外科用器具750は、フィードバックコントローラを含むことができ、フィードバックコントローラは、例えば、PID、状態フィードバック、LQR、及び/又は適応コントローラが挙げられるがこれらに限定されない任意のフィードバックコントローラのうちのいずれか1つであってもよい。外科用器具750は、フィードバックコントローラからの信号を、例えば、ケース電圧、PWM電圧、周波数変調電圧、電流、トルク、及び/又は力などの物理的入力に変換するための電源を含むことができる。
外科用器具750の実際の駆動システムは、ギアボックス、並びに関節運動及び/又はナイフシステムへの機械的連結部を備えるブラシ付きDCモータによって、変位部材、切断部材、又は閉鎖部材764を駆動するように構成されている。別の例は、交換式シャフト組立体の、例えば変位部材及び関節運動ドライバを操作する電気モータ754である。外部影響とは、組織、周囲体、及び物理系上の摩擦などのものの、測定されていない予測不可能な影響である。こうした外部影響は、電気モータ754に反して作用する抗力と呼ばれることがある。障害などの外部影響は、物理系の動作を物理系の所望の動作から逸脱させることがある。
様々な例示的態様が、モータ駆動の外科用封止及び切断器具を有するエンドエフェクタ752を備える外科用器具750に関する。例えば、モータ754は、エンドエフェクタ752の長手方向軸線に沿って遠位方向及び近位方向に変位部材を駆動してもよい。エンドエフェクタ752は、枢動可能なクランプアーム766と、使用のために構成されるときは、クランプアーム766の反対側に位置付けられた超音波ブレード768と、を備えてもよい。臨床医は、本明細書に記載されるように、クランプアーム766と超音波ブレード768との間に組織を把持してもよい。器具750を使用する準備が整った場合、臨床医は、例えば器具750のトリガを押すことによって発射信号を提供してもよい。発射信号に応答して、モータ754は、変位部材をエンドエフェクタ752の長手方向軸線に沿って、近位のストローク開始位置からストローク開始位置の遠位にあるストローク終了位置まで遠位方向に駆動することができる。変位部材が遠位方向に並進すると、遠位端に位置付けられた切断要素を備える閉鎖部材764は、超音波ブレード768とクランプアーム766との間の組織を切断することができる。
様々な実施例で、外科用器具750は、1つ又は2つ以上の組織状態に基づいて、例えば閉鎖部材764などの変位部材の遠位並進を制御するようにプログラムされた制御回路760を備えてもよい。制御回路760は、本明細書に説明されるように、直接的又は間接的のいずれかで厚さなどの組織状態を感知するようにプログラムされてもよい。制御回路760は、組織状態に基づいて制御プログラムを選択するようにプログラムされてもよい。制御プログラムは、変位部材の遠位運動を記述することができる。様々な組織状態をより良好に処理するために様々な制御プログラムを選択することができる。例えば、より厚い組織が存在する場合、制御回路760は、変位部材をより低速で、かつ/又はより低電力で並進させるようにプログラムされてもよい。より薄い組織が存在する場合、制御回路760は、変位部材をより高速で、かつ/又はより高電力で並進させるようにプログラムされてもよい。
いつくかの実施例では、制御回路760は、最初に、モータ754を、変位部材のストロークの第1の開ループ部分に対する開ループ構成で動作させてもよい。ストロークの開ループ部分の間の器具750の応答に基づいて、制御回路760は、発射制御プログラムを選択してもよい。器具の応答としては、開ループ部分の間の変位部材の並進距離、開ループ部分の間に経過する時間、開ループ部分の間にモータ754に提供されるエネルギー、モータ駆動信号のパルス幅の合計などが挙げられ得る。開ループ部分の後、制御回路760は、変位部材ストロークの第2の部分に対して、選択された発射制御プログラムを実施してもよい。例えば、ストロークの閉ループ部分の間、制御回路760は、変位部材の位置を記述する並進データに基づいてモータ754を閉ループ式に変調して、変位部材を一定速度で並進させてもよい。更なる詳細は、その全体が参照により本明細書に組み込まれる、2017年9月29日出願の「SYSTEM AND METHODS FOR CONTROLLING A DISPLAY OF A SURGICAL INSTRUMENT」と題する米国特許出願第15/720,852号に開示されている。
図17は、本開示の一態様に従った、様々な機能を制御するように構成された外科用器具790の概略図である。一態様では、外科用器具790は、閉鎖部材764などの変位部材の遠位並進を制御するようにプログラムされる。外科用器具790は、クランプアーム766と、閉鎖部材764と、1つ又は2つ以上のRF電極796(破線で示される)と交換されるか、又はそれと連動して動作し得る超音波ブレード768とを備え得るエンドエフェクタ792を備える。超音波ブレード768は、超音波発生器771によって駆動される超音波変換器769に連結されている。
一態様では、センサ788は、とりわけ、リミットスイッチ、電気機械装置、固体スイッチ、ホール効果装置、MR装置、GMR装置、磁力計として実装されてもよい。他の実装形態では、センサ638は、とりわけ光センサ、IRセンサ、紫外線センサなどの光の影響下で動作する固体スイッチであってもよい。更に、スイッチは、トランジスタ(例えば、FET、接合FET、MOSFET、双極など)などの固体装置であってもよい。他の実装形態では、センサ788は、とりわけ、導電体非含有スイッチ、超音波スイッチ、加速度計、及び慣性センサを含んでもよい。
一態様では、位置センサ784は、Austria Microsystems,AGから入手可能なAS5055EQFTシングルチップ磁気回転位置センサとして実装される磁気回転絶対位置決めシステムを備える絶対位置決めシステムとして実装されてもよい。位置センサ784は、制御回路760と連係して絶対位置決めシステムを提供することができる。位置は、磁石の上方に位置し、加算、減算、ビットシフト、及びテーブル参照演算のみを必要とする、双曲線関数及び三角関数を計算する簡潔かつ効率的なアルゴリズムを実装するために設けられた、桁毎法及びボルダーアルゴリズムとしても知られるCORDICプロセッサに接続された、複数のホール効果素子を含み得る。
一部の実施例では、位置センサ784は省略されてもよい。モータ754がステップモータである場合、制御回路760は、モータが実行するように指示されたステップの数及び方向を合計することによって、閉鎖部材764の位置を追跡することができる。位置センサ784は、エンドエフェクタ792内、又は器具の他の任意の部分に位置することができる。
制御回路760は、1つ又は2つ以上のセンサ788と通信することができる。センサ788は、エンドエフェクタ792上に位置付けられ、外科用器具790と共に動作して、間隙距離対時間、組織圧縮対時間、及びアンビル歪み対時間などの様々な導出パラメータを測定するように適合され得る。センサ788は、磁気センサ、磁界センサ、歪みゲージ、圧力センサ、力センサ、渦電流センサなどの誘導センサ、抵抗センサ、容量センサ、光学センサ、及び/又はエンドエフェクタ792の1つ又は2つ以上のパラメータを測定するための任意の他の好適なセンサを備え得る。センサ788は、1つ又は2つ以上のセンサを含み得る。
RFエネルギー源794は、エンドエフェクタ792に接続され、RF電極796が超音波ブレード768の代わりにエンドエフェクタ792内に提供されるとき、又は超音波ブレード768と連動して動作するように提供されるとき、RF電極796に印加される。例えば、超音波ブレードは、導電性金属で作製され、電気外科用RF電流のリターンパスとして使用されてもよい。制御回路760は、RF電極796へのRFエネルギーの送達を制御する。
更なる詳細は、その全体が参照により本明細書に組み込まれる、2017年6月28日出願の「SURGICAL SYSTEM COUPLABLE WITH STAPLE CARTRIDGE AND RADIO FREQUENCY CARTRIDGE,AND METHOD OF USING SAME」と題する米国特許出願第15/636,096号に開示されている。
発生器ハードウェア
適応型超音波ブレード制御アルゴリズム
様々な態様では、スマート超音波エネルギー装置は、超音波ブレードの動作を制御するための適応アルゴリズムを含んでもよい。一態様では、超音波ブレード適応制御アルゴリズムは、組織の種類を特定し、装置パラメータを調整するように構成される。一態様では、超音波ブレード制御アルゴリズムは、組織の種類をパラメータ化するように構成される。超音波ブレードの遠位先端の振幅を調整するために組織のコラーゲン/弾性比を検出するためのアルゴリズムが、本開示の以下の項で説明される。スマート超音波エネルギー装置の様々な態様が、例えば図1~図37に関連して本明細書で説明される。したがって、適応型超音波ブレード制御アルゴリズムの以下の説明は、図1~図37及びこれらに関連する説明と併せて読まれるべきである。
組織種類の識別及び装置パラメータの調節
特定の外科処置では、適応型超音波ブレード制御アルゴリズムを用いることが望ましい。一態様では、超音波ブレードと接触する組織の種類に基づいて、超音波装置のパラメータを調節するために、適応型超音波ブレード制御アルゴリズムを用いてもよい。一態様では、超音波装置のパラメータは、超音波エンドエフェクタのジョー内の組織の位置、例えば、クランプアームと超音波ブレードとの間の組織の位置に基づいて調節されてもよい。超音波変換器のインピーダンスは、組織のどの割合がエンドエフェクタの遠位端又は近位端に位置するかを識別するために用いられてもよい。超音波装置の反応は、組織の種類又は組織の圧縮率に基づき得る。別の態様では、超音波装置のパラメータは、識別された組織の種類又はパラメータ化に基づいて調節されてもよい。例えば、超音波ブレードの遠位先端の機械的変位振幅は、組織識別手順中に検出されたエラスチン組織に対するコラーゲンの割当量(ration)に基づいて調整されてもよい。コラーゲンとエラスチン組織との比は、赤外線(IR)表面反射率及び放射率を含む様々な技術を使用して検出され得る。クランプアーム及び/又はクランプアームのストロークによって組織に加えられて間隙及び圧縮を生じさせる力。電極を備えたジョー全体の電気的導通を用いて、ジョーのどの割合が組織で覆われているかを判定することができる。
図18は、本開示の少なくとも1つの態様による、モジュール式通信ハブを備える外科用データネットワーク内で適応型超音波ブレード制御アルゴリズムを実行するように構成されたシステム800を示す。一態様では、発生器モジュール240は、その全体が参照により本明細書に組み込まれる、「SMART ACTIVATION OF AN ENERGY DEVICE BY ANOTHER DEVICE」と題する2018年6月30日出願の米国仮特許出願第62/692,747号に記載されているように、発生器モジュール24が、適応超音波ブレード制御アルゴリズム(複数可)802を実行するように構成される。別の態様では、装置/器具235が、米国仮出願第62/692,747号に記載されているように、上述の適応型超音波ブレード制御アルゴリズム(複数可)804を実行するように構成される。別の態様では、装置/器具235及び装置/器具235の両方が、米国仮出願第62/692,747号に記載されているように、上述の適応型超音波ブレード制御アルゴリズム802、804を実行するように構成される。
発生器モジュール240は、電力変圧器を介して非絶縁段と通信する患者絶縁段を備えてもよい。電力変圧器の二次巻線は、絶縁段内に収容され、例えば、超音波外科用器具、RF電気外科用器具、並びに単独又は同時に送達可能な超音波及びRFエネルギーモードを含む多機能型外科用器具などの様々な外科用器具に駆動信号を送達するために駆動信号出力部を画定するためのタップ構成(例えば、センタタップ又は非センタタップ構成)を備え得る。具体的には、駆動信号出力部は、超音波駆動信号(例えば、420Vの二乗平均平方根(RMS)駆動信号)を超音波外科用器具241に出力することができ、駆動信号出力部は、RF電気外科駆動信号(例えば、100VのRMS駆動信号)をRF電気外科用器具241に出力することができる。発生器モジュール240の態様は、図19~図26Bを参照して本明細書で説明される。
発生器モジュール240、若しくは装置/器具235、又はその両方は、例えば、図8~図11を参照して説明されている、例えば、インテリジェント外科用器具、ロボット、及び手術室内に位置する他のコンピュータ化装置などの複数の手術室装置に接続されたモジュール式制御タワー236に連結されている。
図19は、超音波器具と連結するように構成され、かつ、図18に示すモジュール式通信ハブを備える外科用データネットワーク内で適応型超音波ブレード制御アルゴリズムを実行するように更に構成された発生器の一形態である、発生器900の一実施例を示す。発生器900は、複数のエネルギーモダリティを外科用器具に送達するように構成されている。発生器900は、エネルギーを外科用器具に送達するためのRF信号及び超音波信号を単独で又は同時にのいずれかで提供する。RF信号及び超音波信号は、単独で、又は組み合わせて提供されてもよく、また同時に提供されてもよい。上述したように、少なくとも1つの発生器出力部は、単一のポートを通して複数のエネルギーモダリティ(例えば、とりわけ超音波、双極若しくは単極RF、不可逆及び/若しくは可逆電気穿孔法、並びに/又はマイクロ波エネルギー)を送達することができ、これらの信号は、組織を治療するために個別に又は同時にエンドエフェクタに送達することができる。発生器900は、波形発生器904に接続されたプロセッサ902を備える。プロセッサ902及び波形発生器904は、プロセッサ902に接続されたメモリに記憶された情報(開示を明瞭にするために示されず)に基づいて、様々な信号波形を発生するように構成されている。波形に関連するデジタル情報は、デジタル入力をアナログ出力に変換するために1つ又は2つ以上のDAC回路を含む波形発生器904に提供される。アナログ出力は、信号調節及び増幅のために、増幅器1106に供給される。増幅器906の調節され増幅された出力は、電力変圧器908に接続される。信号は、電力変圧器908を横断して患者絶縁側にある二次側に接続される。第1のエネルギーモダリティの第1の信号は、外科用器具のENERGY及びRETURNとラベルされた端子間に提供される。第2のエネルギーモダリティの第2の信号は、コンデンサ910を介して接続され、外科用器具のENERGY及びRETURNとラベルされた端子間に提供される。2つを超えるエネルギーモダリティが出力されてもよく、したがって添え字「n」は、最大n個のENERGY端子が提供され得ることを示すために使用することができ、ここでnは、1超の正の整数であることが理解されよう。最大「n」個のリターンパス(RETURN)が、本開示の範囲から逸脱することなく提供されてもよいことも理解されよう。
第1の電圧感知回路912は、ENERGY及びRETURNパスとラベルされた端子を介して接続され、それらの間の出力電圧を測定する。第2の電圧感知回路924は、ENERGY及びRETURNパスとラベルされた端子を介して接続され、それらの間の出力電圧を測定する。電流感知回路914は、いずれかのエネルギーモダリティの出力電流を測定するために、図示される電力変圧器908の二次側のRETURN区間と直列に配設される。異なるリターンパスが各エネルギーモダリティに対して提供される場合、別個の電流感知回路が、各リターン区間で提供されねばならない。第1の電圧感知回路912及び第2の電圧感知回路924の出力が対応の絶縁変圧器916、922に提供され、電流感知回路914の出力は、別の絶縁変圧器918に提供される。電力変圧器908の一次側(非患者絶縁側)上における絶縁変圧器916、928、922の出力は、1つ又は2つ以上のADC回路926に提供される。ADC回路926のデジタル化された出力は、更なる処理及び計算のためにプロセッサ902に提供される。出力電圧及び出力電流のフィードバック情報は、外科用器具に提供される出力電圧及び電流を調整するために、またいくつかあるパラメータの中で出力インピーダンスを計算するために使用することができる。プロセッサ902と患者絶縁回路との間の入力/出力通信は、インターフェース回路920を通して提供される。センサもまた、インターフェース回路920を介してプロセッサ902と電気通信してもよい。
一態様では、インピーダンスは、ENERGY/RETURNとラベルされた端子を介して接続された第1の電圧感知回路912又はENERGY/RETURNとラベルされた端子を介して接続された第2の電圧感知回路924のいずれかの出力を、電力変圧器908の二次側のRETURN区間と直列に配置された電流感知回路914の出力で割ることによって、プロセッサ902により判定され得る。第1の電圧感知回路912及び第2の電圧感知回路924の出力は、個別の絶縁変圧器916、922に提供され、電流感知回路914の出力は、別の絶縁変圧器916に提供される。ADC回路926からのデジタル化された電圧及び電流感知測定値は、インピーダンスを計算するためにプロセッサ902に提供される。一例として、第1のエネルギーモダリティENERGYは超音波エネルギーであってもよく、第2のエネルギーモダリティENERGYはRFエネルギーであってもよい。それでも、超音波エネルギーモダリティ及び双極又は単極RFエネルギーモダリティに加えて、他のエネルギーモダリティには、数ある中でも不可逆並びに/又は可逆電気穿孔法及び/若しくはマイクロ波エネルギーが挙げられる。また、図19に例示された例は、単一のリターンパス(RETURN)が2つ以上のエネルギーモダリティに提供され得ることを示しているが、他の態様では、複数のリターンパスRETURNが、各エネルギーモダリティENERGYに提供されてもよい。したがって、本明細書に記載されるように、超音波変換器のインピーダンスは、第1の電圧感知回路912の出力を電流感知回路914で割ることによって測定されてもよく、組織のインピーダンスは、第2の電圧感知回路924の出力を電流感知回路914で割ることによって測定されてもよい。
図19に示すように、少なくとも1つの出力ポートを含む発生器900は、実行される組織の処置の種類に応じて、電力を、例えば、とりわけ、超音波、双極若しくは単極RF、不可逆及び/若しくは可逆電気穿孔法、並びに/又はマイクロ波エネルギーなどの1つ又は2つ以上のエネルギーモダリティの形態でエンドエフェクタに提供するために単一の出力部を有し、かつ複数のタップを有する電力変圧器908を含むことができる。例えば、発生器900は、単極又は双極RF電気外科用電極のいずれかを用いて、超音波変換器を駆動するために高電圧かつ低電流で、組織封止のためのRF電極を駆動するために低電圧かつ高電流で、又はスポット凝固のための凝固波形で、エネルギーを送達することができる。発生器900からの出力波形は、周波数を外科用器具のエンドエフェクタに提供するために、誘導、切り替え、又はフィルタリングされ得る。超音波変換器の発生器900の出力部への接続部は、好ましくは、図19に示すようにENERGYとラベルされた出力部とRETURNとの間に位置するであろう。一実施例では、RF双極電極の発生器900の出力部への接続部は、好ましくは、ENERGYとラベルされた出力部とRETURNとの間に位置するであろう。単極出力部の場合、好ましい接続部は、ENERGY出力部及びRETURN出力部に接続された好適なリターンパッドへの活性電極(例えば、ペンシル型又は他のプローブ)であろう。
更なる詳細は、その全体が参照により本明細書に組み込まれる、「TECHNIQUES FOR OPERATING GENERATOR FOR DIGITALLY GENERATING ELECTRICAL SIGNAL WAVEFORMS AND SURGICAL INSTRUMENTS」と題する2017年3月30日公開の米国特許出願公開第2017/0086914号に開示されている。
本説明全体で使用される用語「無線」及びその派生語は、非固体媒体を介して変調電磁放射線の使用を通じてデータを通信し得る回路、装置、システム、方法、技術、通信チャネルなどを説明するために使用されてもよい。この用語は、関連する装置がいかなる有線も含まないことを意味するものではないが、一部の態様では、それらは存在しない可能性がある。通信モジュールは、Wi-Fi(IEEE802.11ファミリー)、WiMAX(IEEE802.16ファミリー)、IEEE802.20、ロング・ターム・エボリューション(LTE)、Ev-DO、HSPA+、HSDPA+、HSUPA+、EDGE、GSM、GPRS、CDMA、TDMA、DECT、Bluetooth、これらのイーサネット派生物、のみならず3G、4G、5G、及びそれ以降と指定される任意の他の無線及び有線プロトコルが挙げられるがこれらに限定されない多数の無線又は有線通信規格又はプロトコルのうちのいずれかを実装してもよい。コンピューティングモジュールは、複数の通信モジュールを含んでもよい。例えば、第1の通信モジュールは、Wi-Fi及びBluetoothなどの短距離無線通信専用であってもよく、第2の通信モジュールは、GPS、EDGE、GPRS、CDMA、WiMAX、LTE、Ev-DOなどの長距離無線通信専用であってもよい。
本明細書で使用するとき、プロセッサ又は処理ユニットは、いくつかの外部データソース、通常はメモリ又は何らかの他のデータストリーム上で動作を実行する電子回路である。この用語は、本明細書では、多くの専用「プロセッサ」を組み合わせたシステム又はコンピュータシステム(特にシステムオンチップ(SoC))内の中央プロセッサ(中央処理ユニット)を指すために使用される。
本明細書で使用するとき、チップ上のシステム又はシステムオンチップ(SoC又はSOC)は、コンピュータ又は他の電子システムの全ての構成要素を統合する集積回路(「IC」又は「チップ」としても知られる)である。これは、デジタル、アナログ、混合信号、及び多くの場合は高周波数機能を、全て単一の基材上に含むことができる。SoCは、マイクロコントローラ(又はマイクロプロセッサ)を、グラフィックス処理ユニット(GPU)、Wi-Fiモジュール、又はコプロセッサなどの最新の周辺装置と統合する。SoCは、内蔵メモリを含んでもよく、含まなくてもよい。
本明細書で使用するとき、マイクロコントローラ又はコントローラは、マイクロプロセッサを周辺回路及びメモリと統合するシステムである。マイクロコントローラ(又はマイクロコントローラユニットのMCU)は、単一の集積回路上の小型コンピュータとして実装されてもよい。これはSoCと同様であってもよく、SoCは、その構成要素の1つとしてマイクロコントローラを含み得る。マイクロコントローラは、1つ又は2つ以上のコア処理ユニット(CPU)と共にメモリ及びプログラム可能な入力/出力周辺機器を収容することができる。強誘電性のRAM、NORフラッシュ、又はOTP ROMの形態のプログラムメモリ、及び少量のRAMもまた、チップ上にしばしば含まれる。マイクロコントローラは、パーソナルコンピュータ又は様々な個別のチップで構成された他の汎用用途で使用されるマイクロプロセッサとは対照的に、組み込み型用途用に採用され得る。
本明細書で使用するとき、コントローラ又はマイクロコントローラという用語は、周辺装置とインターフェースするスタンドアロンIC又はチップ装置であってもよい。これは、その装置の動作(及び装置との接続)を管理する外部装置上のコンピュータ又はコントローラの2つの部分間のリンクであってもよい。
本明細書で説明されるプロセッサ又はマイクロコントローラはいずれも、Texas Instruments製のARM Cortexの商品名で知られているものなど、任意のシングルコア又はマルチコアプロセッサであってもよい。一態様では、プロセッサは、例えば、その詳細が製品データシートで入手可能である、最大40MHzの256KBのシングルサイクルフラッシュメモリ若しくは他の不揮発性メモリのオンチップメモリ、性能を40MHz超に改善するためのプリフェッチバッファ、32KBのシングルサイクルシリアルランダムアクセスメモリ(SRAM)、StellarisWare(登録商標)ソフトウェアを搭載した内部読み出し専用メモリ(ROM)、2KBの電気的消去可能プログラマブル読み出し専用メモリ(EEPROM)、1つ又は2つ以上のパルス幅変調(PWM)モジュール、1つ又は2つ以上の直交エンコーダ入力(QEI)アナログ、12個のアナログ入力チャネルを備える1つ又は2つ以上の12ビットアナログ-デジタル変換器(ADC)を含む、Texas Instrumentsから入手可能なLM4F230H5QR ARM Cortex-M4Fプロセッサコアであってもよい。
一態様では、プロセッサは、同じくTexas Instruments製のHercules ARM Cortex R4の商品名で知られるTMS570及びRM4xなどの2つのコントローラ系ファミリーを含む安全コントローラを含んでもよい。安全コントローラは、拡張性のある性能、接続性、及びメモリの選択肢を提供しながら、高度な集積型安全機構を提供するために、中でも特に、IEC61508及びISO26262の安全限界用途専用に構成されてもよい。
モジュール式装置は、外科用ハブ内に受容可能な(例えば図3及び図9に関連して説明される)モジュールと、対応する外科用ハブと接続又はペアリングするために様々なモジュールに接続され得る外科用装置又は器具と、を含む。モジュール式装置としては、例えば、インテリジェント外科用器具、医療用撮像装置、吸引/灌注装置、排煙器、エネルギー発生器、ベンチレータ、吸入器、及びディスプレイが挙げられる。本明細書に記載されるモジュール式装置は、制御アルゴリズムによって制御することができる。制御アルゴリズムは、モジュール式装置自体上で、特定のモジュール式装置がペアリングされる外科用ハブ上で、又はモジュール式装置及び外科用ハブの両方の上で(例えば、分散コンピューティングアーキテクチャを介して)、実行され得る。いくつかの例示では、モジュール式装置の制御アルゴリズムは、モジュール式装置自体によって(すなわち、モジュール式装置内の、モジュール式装置上の、又はモジュール式装置に接続されたセンサによって)感知されたデータに基づいて装置を制御する。このデータは、手術中の患者(例えば、組織特性又は注入圧)又はモジュール式装置自体(例えば、前進するナイフの速度、モータ電流、又はエネルギーレベル)に関連し得る。例えば、外科用ステープル留め及び切断器具の制御アルゴリズムは、ナイフが前進する際にナイフが遭遇する抵抗に基づき、器具のモータが組織を貫いてそのナイフを駆動させる速度を制御することができる。
図20は、発生器1100と、これと共に使用可能な様々な外科用器具1104、1106、1108と、を備える外科システム1000の一形態を示し、外科用器具1104は超音波外科用器具であり、外科用器具1106はRF電気外科用器具であり、多機能型外科用器具1108は組み合わせ超音波/RF電気外科用器具である。発生器1100は、様々な外科用器具と共に使用するように構成可能である。様々な形態によれば、発生器1100は、例えば、超音波外科用器具1104、RF電気外科用器具1106、並びに発生器1100から同時に送達されるRFエネルギー及び超音波エネルギーを統合する多機能型外科用器具1108を含む様々な種類の様々な外科用装置と共に使用するように構成可能であり得る。図20の形態では、発生器1100は、外科用器具1104、1106、1108とは別個に示されているが、一形態では、発生器1100は、外科用器具1104、1106、1108のうちのいずれかと一体的に形成されて、一体型外科システムを形成してもよい。発生器1100は、発生器1100のコンソールの前側パネル上に位置する入力装置1110を含む。入力装置1110は、発生器1100の動作をプログラムするのに適した信号を生成する任意の適切な装置を含むことができる。発生器1100は、有線又は無線通信用に構成されてもよい。
発生器1100は、複数の外科用器具1104、1106、1108を駆動するように構成される。第1の外科用器具は超音波外科用器具1104であり、ハンドピース1105(HP)、超音波変換器1120、シャフト1126、及びエンドエフェクタ1122を備える。エンドエフェクタ1122は、超音波変換器1120と音響的に連結された超音波ブレード1128及びクランプアーム1140を備える。ハンドピース1105は、クランプアーム1140を動作させるトリガ1143と、超音波ブレード1128又は他の機能に通電し、駆動するためのトグルボタン1134a、1134b、1134cの組み合わせと、を備える。トグルボタン1134a、1134b、1134cは、発生器1100を用いて超音波変換器1120に通電するように構成することができる。
発生器1100はまた、第2の外科用器具1106を駆動するようにも構成される。第2の外科用器具1106は、RF電気外科用器具であり、ハンドピース1107(HP)、シャフト1127、及びエンドエフェクタ1124を備える。エンドエフェクタ1124は、クランプアーム1142a、1142b内に電極を備え、シャフト1127の導電体部分を通って戻る。電極は、発生器1100内の双極エネルギー源に接続され、双極エネルギー源によって通電される。ハンドピース1107は、クランプアーム1142a、1142bを動作させるためのトリガ1145と、エンドエフェクタ1124内の電極に通電するためのエネルギースイッチを作動するためのエネルギーボタン1135と、を備える。
発生器1100はまた、多機能型外科用器具1108を駆動するようにも構成される。多機能型外科用器具1108は、ハンドピース1109(HP)、シャフト1129、及びエンドエフェクタ1125を備える。エンドエフェクタ1125は、超音波ブレード1149及びクランプアーム1146を備える。超音波ブレード1149は、超音波変換器1120と音響的に連結される。ハンドピース1109は、クランプアーム1146を動作させるトリガ1147と、超音波ブレード1149又は他の機能に通電し、駆動するためのトグルボタン1137a、1137b、1137cの組み合わせと、を備える。トグルボタン1137a、1137b、1137cは、発生器1100を用いて超音波変換器1120に通電し、かつ同様に発生器1100内に収容された双極エネルギー源を用いて超音波ブレード1149に通電するように構成することができる。
発生器1100は、様々な外科用器具と共に使用するように構成可能である。様々な形態によれば、発生器1100は、例えば、超音波外科用器具1104、RF電気外科用器具1106、並びに発生器1100から同時に送達されるRFエネルギー及び超音波エネルギーを統合する多機能型外科用器具1108を含む様々な種類の様々な外科用装置と共に使用するように構成可能であり得る。図20の形態では、発生器1100は、外科用器具1104、1106、1108とは別個に示されているが、別の形態では、発生器1100は、外科用器具1104、1106、1108のうちのいずれか1つと一体的に形成されて、一体型外科システムを形成してもよい。上述したように、発生器1100は、発生器1100のコンソールの前側パネル上に位置する入力装置1110を含む。入力装置1110は、発生器1100の動作をプログラムするのに適した信号を生成する任意の適切な装置を含むことができる。発生器1100はまた、1つ又は2つ以上の出力装置1112を含んでもよい。電気信号波形をデジタル的に生成するための発生器、及び外科用器具の更なる態様は、その全体が参照により本明細書に組み込まれる米国特許出願公開第2017-0086914-A1号に記載されている。
図21は、本開示の少なくとも1つの態様による、例示の超音波装置1104のエンドエフェクタ1122を示す。エンドエフェクタ1122は、導波管を介して超音波変換器1120に連結され得るブレード1128を含み得る。本明細書で説明されるように、超音波変換器1120によって駆動されると、ブレード1128は振動することができ、組織と接触すると、組織を切断及び/又は凝固することができる。様々な態様によると、また図21に例示するように、エンドエフェクタ1122は、エンドエフェクタ1122のブレード1128と協働作用するように構成され得るクランプアーム1140を更に含み得る。ブレード1128と共に、クランプアーム1140は、一連のジョーを含み得る。クランプアーム1140は、器具部分1104のシャフト1126の遠位端に枢動可能に接続され得る。クランプアーム1140は、TEFLON(登録商標)又は他の好適な低摩擦材料から形成され得るクランプアーム組織パッド1163を含み得る。パッド1163は、ブレード1128と協働するように装着されて、クランプアーム1140の枢動運動が、クランプパッド1163をブレード1128と実質的に平行な関係で、かつこれと接触するように位置決めすることができる。この構成により、クランプされる組織片は、組織パッド1163とブレード1128との間に把持され得る。組織パッド1163は、ブレード1128と協働して組織の把持を改善するために、軸方向に離間して近位方向に延在する複数の把持歯1161含む鋸歯様構成を備えてもよい。クランプアーム1140は、図21に示される開放位置から、閉鎖位置(クランプアーム1140がブレード1128と接触するか又は近接する)まで、任意の好適な様式で移行し得る。例えば、ハンドピース1105は、ジョー閉鎖トリガを含み得る。臨床医によって作動されると、ジョー閉鎖トリガはクランプアーム1140を任意の好適な様式で枢動させ得る。
発生器1100は、駆動信号を任意の好適な方法で超音波変換器1120に提供するように起動され得る。例えば、発生器1100は、フットスイッチケーブル1432を介して発生器1100に接続されたフットスイッチ1430(図22)を含んでもよい。臨床医は、フットスイッチ1430を押し下げることにより、超音波変換器1120を起動させ、またそれによって超音波変換器1120及びブレード1128を起動させ得る。フットスイッチ1430に加えて、又はこの代わりに、装置1104のいくつかの態様は、ハンドピース1105上に位置付けられた1つ又は2つ以上のスイッチを用いてもよく、これは、起動されると、発生器1100に超音波変換器1120を作動させることができる。一態様では、例えば、1つ又は2つ以上のスイッチは、例えば、装置1104の動作モードを決定するために、一対のトグルボタン1134a、1134b、1134cを含んでもよい(図20)。例えば、トグルボタン1134aが押し下げられると、超音波発生器1100は、最大駆動信号を超音波変換器1120に提供して、超音波変換器1120に最大超音波エネルギー出力を生成させることができる。トグルボタン1134bを押すことにより、超音波発生器1100がユーザ選択可能な駆動信号を超音波変換器1120に提供して、超音波変換器1120に最大未満の超音波エネルギー出力を生成させることができる。装置1104は、追加的に又は代替的に、例えば、エンドエフェクタ1122のクランプアーム1140を介してジョーを操作するために、ジョー閉鎖トリガの位置を指示するための第2のスイッチを含んでもよい。また、いくつかの態様では、超音波発生器1100は、ジョー閉鎖トリガの位置に基づいて起動することができる(例えば、臨床医がジョー閉鎖トリガを押し下げてクランプアーム1140を介してジョーを閉鎖すると、超音波エネルギーを印加することができる)。
更に又はあるいは、1つ又は2つ以上のスイッチは、押し下げられると、発生器1100にパルス出力を提供させるトグルボタン1134cを含むことができる(図20)。パルスは、例えば、任意の好適な周波数及び分類で提供されてもよい。ある特定の態様では、パルスの電力レベルは、例えば、トグルボタン1134a、1134bに関連付けられた電力レベル(最大、最大未満)であってもよい。
装置1104は、トグルボタン1134a、1134b、1134cの任意の組み合わせを含み得ることが理解されよう(図20)。例えば、装置1104は、最大超音波エネルギー出力を生成するためのトグルボタン1134a、及び1回毎に最大又は最大未満の電力レベルのいずれかでパルス出力を生成するトグルボタン1134cの2つのトグルボタンのみを有するように構成され得る。このように、発生器1100の駆動信号出力構成は、5つの連続信号、又は任意の個別の数の個々のパルス信号(1、2、3、4、又は5回)であってもよい。特定の態様では、特定の駆動信号構成は、例えば、発生器1100のEEPROM設定、及び/又はユーザの電力レベル選択(複数可)、に基づき制御され得る。
特定の態様では、トグルボタン1134cの代替として2位置スイッチが提供され得る(図20)。例えば、装置1104は、最大電力レベルで連続出力を発生させるためのトグルボタン1134aと、2位置トグルボタン1134bと、を含んでもよい。第1の戻り止め位置では、トグルボタン1134bは最大電力レベル未満で連続出力を発生させてもよく、第2の戻り止め位置では、トグルボタン1134bは(例えば、EEPROM設定に応じて、最大又は最大未満のいずれかの出力レベルで)パルス出力を発生させてもよい。
いくつかの態様では、RF電気外科用エンドエフェクタ1124、1125(図20)はまた、一対の電極を備えてもよい。電極は、例えばケーブルを介して、発生器1100と通信し得る。電極は、例えば、クランプアーム1142a、1146とブレード1142b、1149との間に存在する組織片のインピーダンスを測定するために使用され得る。発生器1100は、電極に信号(例えば、非治療的信号)を提供し得る。組織片のインピーダンスは例えば、信号の電流、電圧などをモニタリングすることによって見出され得る。
様々な態様では、発生器1100は、図20の外科システム1000の図である図22に示すモジュール及び/又はブロックなどのいくつかの別個の機能的要素を備えてもよい。様々な機能要素又はモジュールが、様々な種類の外科用装置1104、1106、1108を駆動するように構成され得る。例えば、超音波発生器モジュールは、超音波装置1104などの超音波装置を駆動し得る。電気外科/RF発生器モジュールは、電気外科用装置1106を駆動し得る。モジュールは、外科用装置1104、1106、1108を駆動するために対応する駆動信号を生成することができる。様々な態様では、超音波発生器モジュール及び/又は電気外科/RF発生器モジュールはそれぞれ、発生器1100と一体的に形成されてもよい。あるいは、モジュールのうち1つ又は2つ以上が、発生器1100と電気的に接続された個別の回路モジュールとして提供されてもよい。(モジュールはこの選択肢を例示するために仮想線で示されている)。また、いくつかの態様では、電気外科/RF発生器モジュールは、超音波発生器モジュールと一体的に形成されてもよく、又はその逆であってもよい。
記載される態様によれば、超音波発生器モジュールは、特定の電圧、電流、及び周波数(例えば、55,500サイクル/秒、又はHz)の駆動信号又は複数の駆動信号を生成し得る。駆動信号又は複数の駆動信号は、超音波装置1104、特に、例えば上記のように動作し得る変換器1120に提供され得る。一態様では、発生器1100は、高い分解能、精度、及び再現性を備え得る(stepped with)特定の電圧、電流、及び/又は周波数出力信号の駆動信号を生成するように構成することができる。
記載される態様によれば、電気外科/RF発生器モジュールは、無線周波数(RF)エネルギーを使用して、双極電気外科処置を実施するのに十分な出力電力で駆動信号又は複数の駆動信号を生成し得る。双極電気外科用途では、例えば、駆動信号は、上述したように、例えば電気外科用装置1106の電極に提供されてもよい。したがって、発生器1100は、組織を治療するのに十分な電気エネルギーを組織に適用することにより、治療目的のために構成され得る(例えば、凝固、焼灼、組織溶接など)。
発生器1100は、例えば、発生器1100のコンソールの前側パネル上に位置する入力装置2150(図25B)を備えることができる。入力装置2150は、発生器1100の動作をプログラムするのに適した信号を生成する任意の適切な装置を含むことができる。動作中、ユーザは、入力装置2150を使用して発生器1100の動作をプログラムする、ないしは別の方法で制御することができる。入力装置2150は、発生器1100の動作(例えば、超音波発生器モジュール及び/又は電気外科/RF発生器モジュールの動作)を制御するために、発生器によって(例えば、発生器内に収容される1つ又は2つ以上のプロセッサによって)使用され得る信号を生成する、任意の好適な装置を含み得る。様々な態様では、入力装置2150は、ボタン、スイッチ、サムホイール、キーボード、キーパッド、タッチスクリーンモニタ、ポインティング装置、汎用又は専用のコンピュータへの遠隔接続のうちの1つ又は2つ以上を含む。他の態様では、入力装置2150は、例えば、タッチスクリーンモニタ上に表示される1つ又は2つ以上のユーザインターフェーススクリーンなどの好適なユーザインターフェースを含んでもよい。したがって、入力装置2150により、ユーザは、例えば、超音波発生器モジュール及び/又は電気外科/RF発生器モジュールによって生成される駆動信号又は複数の駆動信号の、電流(I)、電圧(V)、周波数(f)、及び/又は期間(T)などの、発生器の様々な動作パラメータを設定又はプログラミングすることができる。
発生器1100はまた、例えば、発生器1100コンソールの前側パネル上に位置する出力装置2140(図25B)を含み得る。出力装置2140は、ユーザに感覚フィードバックを提供するための1つ又は2つ以上の装置を含む。このような装置は、例えば、視覚的フィードバック装置(例えば、LCD表示画面、LEDインジケータ)、可聴フィードバック装置(例えば、スピーカー、ブザー)又は触覚フィードバック装置(例えば、触覚作動装置)を含んでもよい。
発生器1100の特定のモジュール及び/又はブロックが例として記載され得るが、より多くの又はより少ない数のモジュール及び/又はブロックが使用されてもよく、これは依然として態様の範囲内にあることが理解できよう。更に、説明を容易にするために、モジュール及び/又はブロックに関して様々な態様が記載され得るが、そのようなモジュール及び/又はブロックは、1つ又は2つ以上のハードウェア構成要素、例えば、プロセッサ、デジタル信号プロセッサ(DSP)、プログラム可能な論理機構(PLD)、特定用途向け集積回路(ASIC)、回路、レジスタ並びに/又はソフトウェア構成要素、例えば、プログラム、サブルーチン、論理及び/若しくはハードウェア構成要素とソフトウェア構成要素との組み合わせによって実装されてもよい。
一態様では、超音波発生器駆動モジュール及び電気外科/RF駆動モジュール1110(図20)は、ファームウェア、ソフトウェア、ハードウェア、又はそれらの任意の組み合わせとして実装される1つ又は2つ以上の埋め込みアプリケーションを含んでもよい。モジュールは、ソフトウェア、プログラム、データ、ドライバ、アプリケーションプログラムインターフェース(API)などのような様々な実行可能なモジュールを備えることができる。ファームウェアは、ビットマスクされた読み出し専用メモリ(ROM)又はフラッシュメモリのような不揮発性メモリ(NVM)に記憶することができる。様々な実装形態では、ファームウェアをROMに記憶することにより、フラッシュメモリが保存され得る。NVMは、例えば、プログラマブルROM(PROM)、消去可能プログラマブルROM(EPROM)、電気的消去可能プログラマブルROM(EEPROM)、又はダイナミックRAM(DRAM)、ダブルデータレートDRAM(DDRAM)、及び/若しくは同期DRAM(SDRAM)のような電池バックアップ式ランダムアクセスメモリ(RAM)を含む、他のタイプのメモリを含んでもよい。
一態様では、モジュールは、装置1104、1106、1108の様々な測定可能な特性をモニタリングするためのプログラム命令を実行し、装置1104、1106、1108を動作させるための対応する出力駆動信号又は複数の出力駆動信号を生成するためのプロセッサとして実施されるハードウェア構成要素を含む。発生器1100が装置1104と共に使用される態様では、駆動信号は、切断及び/又は凝固動作モードにおいて、超音波変換器1120を駆動し得る。装置1104及び/又は組織の電気的特性は、発生器1100の動作態様を制御するために測定及び使用され、かつ/又はユーザにフィードバックとして提供されてもよい。発生器1100が装置1106と共に使用される態様では、駆動信号は、切断、凝固及び/又は乾燥モードにおいて、エンドエフェクタ1124に電気エネルギー(例えば、RFエネルギー)を供給し得る。装置1106及び/又は組織の電気的特性は、発生器1100の動作態様を制御するために測定及び使用され、及び/又はユーザにフィードバックとして提供されてもよい。様々な態様では、上述したように、ハードウェア構成要素はDSP、PLD、ASIC、回路、及び/又はレジスタとして実施され得る。一態様では、プロセッサは、コンピュータソフトウェアプログラム命令を記憶及び実行して、超音波変換器1120及びエンドエフェクタ1122、1124、1125などの装置1104、1106、1108の様々な構成要素を駆動するための階段関数出力信号を生成するように構成されてもよい。
電気機械的超音波システムは、超音波変換器、導波管、及び超音波ブレードを含む。電気機械的超音波システムは、超音波変換器、導波管、及び超音波ブレードの物理的特性によって定義される初期共振周波数を有する。超音波変換器は、電気機械的超音波システムの共振周波数と等しい交流電圧V(t)及び電流I(t)信号によって励起される。電気機械的超音波システムが共振するとき、電圧V(t)信号と電流I(t)信号との間の位相差はゼロである。換言すると、共振時、誘導性インピーダンスは容量性インピーダンスと等しい。超音波ブレードが加熱すると、超音波ブレード(等価静電容量としてモデル化される)のコンプライアンスによって、電気機械的超音波システムの共振周波数が変化する。したがって、誘導性インピーダンスは容量性インピーダンスともはや等しくなく、それにより電気機械的超音波システムの駆動周波数と共振周波数との間に不整合が引き起こされる。ここでシステムは、「オフレゾナンス(off-resonance)」を動作させる。駆動周波数と共振周波数との間の不整合は、超音波変換器に印加される電圧V(t)信号と電流I(t)信号との間の位相差として現れる。発生器電子機器は、電圧V(t)信号と電流I(t)信号との間の位相差を容易に監視することができ、位相差が再びゼロになるまで駆動周波数を連続的に調整することができる。この時点で、新しい駆動周波数は、電気機械的超音波システムの新しい共振周波数に等しい。位相及び/又は周波数の変化は、超音波ブレード温度の間接的測定値として使用することができる。
図23に示すように、超音波変換器の電気機械特性は、静電容量を有する第1ブランチと、共振器の電気機械特性を規定する直列接続されたインダクタンス、抵抗、及び容量を有する第2「動作」ブランチと、を含む等価回路としてモデル化されてもよい。既知の超音波発生器は、発生器駆動信号電流の実質的に全部が動作ブランチ内に流れるように、ある共振周波数において静電容量をチューンアウトするための調整インダクタを含み得る。したがって、調整インダクタを使用することにより、発生器の駆動信号電流は、動作ブランチ電流を表し、したがって発生器はその駆動信号を制御して超音波変換器の共振周波数を維持することができる。調整インダクタはまた、発生器の周波数固定能力を改善するために、超音波変換器の相インピーダンスプロットを変換することができる。しかしながら、調整インダクタは、動作共振周波数において、超音波変換器の特定の静電容量と適合しなくてはならない。換言すると、異なる静電容量を有する異なる超音波変換器は、異なる調整インダクタを必要とする。
図23は、一態様による、超音波変換器1120などの超音波変換器の等価回路1500を示す。回路1500は、共振器の電気機械特性を規定する、直列接続されたインダクタンスL、抵抗R、及び容量Cを有する第1の「動作」ブランチと、静電容量Cを有する第2の容量性ブランチと、を含む。動作電流I(t)が第1ブランチを通って流れ、電流I(t)~I(t)が容量性ブランチを通って流れる状態で、駆動電流I(t)は、発生器から駆動電圧V(t)で受信されてもよい。超音波変換器の電気機械特性の制御は、I(t)及びV(t)を好適に制御することによって達成されてもよい。上述のように、既知の発生器アーキテクチャは、発生器の電流出力I(t)の実質的に全てが動作ブランチを通って流れるように、並列共振回路内で共振周波数において静電容量Cをチューンアウトするための調整インダクタL(図23に仮想線で示される)を含むことができる。この方法では、動作ブランチ電流I(t)の制御は、発生器の電流出力I(t)を制御することによって達成される。調整インダクタLは、超音波変換器の静電容量Cに特有であるが、異なる静的静電容量を有する異なる超音波変換器は、異なる調整インダクタLを必要とする。また、調整インダクタLは、単一の共振周波数で静電容量Cの公称値と一致するため、動作ブランチ電流I(t)の正確な制御は、その周波数でのみ保証される。周波数が変換器の温度によって低下すると、動作ブランチ電流の正確な制御が損なわれる。
発生器1100の様々な態様が、調整インダクタLに頼ることなく動作ブランチ電流I(t)を監視することができる。むしろ、発生器1100は、動的及び継続的に(例えば、リアルタイムで)動作ブランチ電流I(t)の値を判定するために、特定の超音波外科用装置1104のための電力の印加間の静電容量Cの測定値を使用し得る(駆動信号の電圧及び電流フィードバックデータと共に)。したがって、発生器1100のこうした態様は、静電容量Cの公称値によって決定される単一の共振周波数のみにおいてではなく、任意の周波数で静電容量Cの任意の値と調整される又は共振するシステムをシミュレートするために、仮想調整を提供することが可能である。
図24は、利点の中でもとりわけ、上述のインダクタレス調整を提供するための発生器1100の一態様の簡略化ブロック図である。図25A~図25Cは、一態様による図24の発生器1100のアーキテクチャを示す。図24を参照すると、発生器1100は、電力変圧器1560を介して非絶縁段1540と通信する患者絶縁段1520を含んでもよい。電力変圧器1560の二次巻線1580は、絶縁段1520に含まれ、かつタップ構成を含んでもよく(例えば、センタタップ又は非センタタップ構成)、例えば、超音波外科用装置1104及び電気外科用装置1106などの様々な外科用装置に駆動信号を出力するための、駆動信号出力部1600a、1600b、1600cを画定する。特に、駆動信号出力部1600a、1600b、1600cは、超音波外科用装置1104に駆動信号(例えば、420VのRMS駆動信号)を出力してもよく、駆動信号出力部1600a、1600b、1600cは、電気外科用装置1106に駆動信号(例えば、100VのRMS駆動信号)を出力してもよく、ここで出力部1600bは電力変圧器1560のセンタタップに対応する。非絶縁段1540は、電力変圧器1560の一次巻線1640に接続された出力部を有する電力増幅器1620を含むことができる。特定の態様では、電力増幅器1620は、例えば、プッシュプル増幅器を含み得る。非絶縁段1540は、デジタル出力をデジタル/アナログ変換器(DAC)1680に供給するための、プログラム可能な論理機構1660を更に含んでもよく、続いてデジタル/アナログ変換器(DAC)1680は、対応するアナログ信号を電力増幅器1620の入力部に供給する。特定の態様では、プログラム可能な論理機構1660は、例えば、フィールドプログラマブルゲートアレイ(FPGA)を含むことができる。プログラム可能な論理機構1660は、DAC1680を介して電力増幅器1620の入力を制御することにより、その結果、駆動信号出力部1600a、1600b、1600cに現れる駆動信号の多数のパラメータ(例えば、周波数、波形形状、波形振幅)のいずれかを制御することができる。特定の態様では、また以下で説明するように、プログラム可能な論理機構1660、プロセッサ(例えば、以下で説明するプロセッサ1740)と共に、多くのデジタル信号処理(DSP)ベースの及び/又はその他の制御アルゴリズムを実行して、発生器1100によって出力される駆動信号のパラメータを制御することができる。
電力は、スイッチモードレギュレータ1700によって電力増幅器1620の母線に供給することができる。特定の態様では、スイッチモードレギュレータ1700は、例えば調節可能なバックレギュレータを含むことができる。上述したように、非絶縁段1540はプロセッサ1740を更に含むことができ、これは、一態様では、例えば、Analog Devices(Norwood,Mass.)から入手可能なADSP-21469 SHARC DSPなどのDSPプロセッサを含むことができる。特定の態様では、プロセッサ1740は、アナログデジタル変換器(ADC)1760を介してプロセッサ1740が電力増幅器1620から受信した電圧フィードバックデータに応答して、スイッチモード電力変換器1700の動作を制御することができる。例えば、一態様では、プロセッサ1740は、電力増幅器1620によって増幅される信号(例えば、RF信号)の波形エンベロープを、ADC1760を介して入力として受信することができる。プロセッサ1740は、続いて、電力増幅器1620に供給されるレール電圧が増幅信号の波形エンベロープを追跡するように、スイッチモードレギュレータ1700を(例えば、パルス幅変調(PWM)出力を介して)制御することができる。波形エンベロープに基づいて、電力増幅器1620のレール電圧を動的に変調することにより、電力増幅器1620の効率は、固定レール電圧増幅器スキームと比較して顕著に改善され得る。プロセッサ1740は、有線又は無線通信用に構成されてもよい。
特定の態様では、かつ図26A~図26Bに関連して更に詳細に記載されるように、プログラム可能な論理機構1660は、プロセッサ1740と共に、直接デジタルシンセサイザ(DDS)制御スキームを実行して、発生器1100によって出力された駆動信号の波形形状、周波数、及び/又は振幅を制御し得る。一態様では、例えば、プログラム可能な論理機構1660は、FPGAに内蔵され得る、RAM LUTなどの動的に更新されたルックアップテーブル(LUT)内に記憶された波形サンプルを呼び出すことによって、DDS制御アルゴリズム2680(図26A)を実行し得る。この制御アルゴリズムは、超音波変換器1120などの超音波変換器が、その共振周波数における明瞭な正弦波電流によって駆動され得る超音波用途で特に有用である。他の周波数が寄生共振を励起し得るため、動作分岐電流の全歪みの最小化又は低減は、これに対応して望ましくない共振効果を最小化又は低減することができる。発生器1100によって出力される駆動信号の波形形状は、出力駆動回路内に存在する様々な歪み源(例えば、電力変圧器1560、電力増幅器1620)によって影響され得るため、駆動信号に基づく電圧及び電流フィードバックデータを、プロセッサ1740によって実行される誤差制御アルゴリズムなどのアルゴリズムに入力することができ、このアルゴリズムは、動的な、進行中ベースで(例えば、リアルタイムで)、LUTに記憶された波形サンプルを適切に予歪みさせるか又は修正することによって、歪みを補償する。一態様では、LUTサンプルに加えられる予歪みの量又は程度は、計算された動作ブランチ電流と所望の電流波形形状との間の誤差に基づいてもよく、誤差は、サンプル毎に判定される。このようにして、予め歪ませたLUTサンプルは、駆動回路により処理される場合、超音波変換器を最適に駆動するために、所望の波形形状(例えば、正弦波)を有する動作ブランチ駆動信号を生じ得る。したがって、そのような態様では、LUT波形サンプルは、駆動信号の所望の波形形状ではなく、むしろ歪み効果を考慮した際の、所望の波形の動作ブランチ駆動信号を最終的に生成するのに必要な波形形状を表す。
非絶縁段1540は、発生器1100によって出力された駆動信号の電圧及び電流をそれぞれサンプリングするために、それぞれの絶縁変圧器1820、1840を介して電力変圧器1560の出力部に接続されたADC1780及びADC1800を更に含むことができる。特定の態様では、ADC1780、1800は、駆動信号のオーバーサンプリングを可能にするために高速(例えば、80Msps)でサンプリングするように構成することができる。一態様では、例えば、ADC1780、1800のサンプリング速度は、駆動信号の約200倍(駆動周波数に応じて)のオーバーサンプリングを可能にすることができる。特定の態様では、ADC1780、1800のサンプリング動作は、双方向マルチプレクサを介し、入力電圧及び電流信号を受信する単一のADCによって行われ得る。発生器1100の態様における高速サンプリングの使用は、とりわけ、動作ブランチを流れる複素電流の計算(これは、特定の態様で上述したDDSベースの波形形状制御を実施するために使用され得る)、サンプリングされた信号の正確なデジタルフィルタリング、及び高精度な実消費電力の計算を可能にすることができる。ADC1780、1800によって出力される電圧及び電流フィードバックデータは、プログラム可能な論理機構1660によって受信され、かつ処理されてもよく(例えば、FIFOバッファリング、マルチプレクシング)、例えばプロセッサ1740による以後の読み出しのために、データメモリに記憶されてもよい。上記のように、電圧及び電流のフィードバックデータは、動的及び進行に応じたベースで、LUT波形サンプルを予め歪ませるか又は修正するための、アルゴリズムへの入力として使用され得る。特定の態様では、これは、電圧及び電流フィードバックデータのペアが取得されたときに、各記憶された電圧及び電流フィードバックデータのペアが、プログラム可能な論理機構1660によって出力された対応するLUTサンプルに基づいてインデックス付けされる、又は他の方法でこれと関連付けされることを必要とする場合がある。この方法によるLUTサンプルと電圧及び電流のフィードバックデータとの同期は、予歪みアルゴリズムの正確なタイミング及び安定性に寄与する。
特定の態様では、電圧及び電流フィードバックデータは、駆動信号の周波数及び/又は振幅(例えば、電流振幅)を制御するために使用することができる。一態様では、例えば、電圧及び電流フィードバックデータを使用して、インピーダンス位相、例えば、電圧駆動信号と電流駆動信号との間の位相差を判定することができる。続いて、駆動信号の周波数を制御して、判定されたインピーダンス位相とインピーダンス位相設定値(例えば、0°)との間の差を最小化又は低減し、それによって高調波歪みの影響を最小化又は低減し、それに対応してインピーダンス位相の測定精度を向上させることができる。位相インピーダンス及び周波数制御信号の判定は、例えばプロセッサ1740で実行されてもよく、周波数制御信号は、プログラム可能な論理機構1660によって実行されるDDS制御アルゴリズムへの入力として供給される。
インピーダンス位相は、フーリエ解析によって判定され得る。一態様では、発生器電圧V(t)駆動信号と発生器電流I(t)駆動信号との間の位相差は、以下のように高速フーリエ変換(FFT)又は離散フーリエ変換(DFT)を使用して決定され得る。
Figure 0007460524000001
正弦波の周波数でのフーリエ変換を評価することで、以下が得られる。
Figure 0007460524000002
他のアプローチとしては、加重最小二乗推定法、カルマンフィルタ処理法、及び空間ベクトルベース技術が挙げられる。FFT又はDFT技術における処理の実質的に全てが、例えば、2チャネル高速ADC1780、1800を用いてデジタル領域内で実行されてもよい。1つの技術では、電圧信号及び電流信号のデジタル信号サンプルは、FFT又はDFTでフーリエ変換される。任意の時点における位相角φは、以下の式によって計算することができ:
Figure 0007460524000003
式中、φは位相角であり、fは周波数であり、tは時間であり、φは、t=0における位相である。
電圧V(t)信号と電流I(t)信号との間の位相差を判定するための別の技術はゼロ交差法であり、これは高精度な結果を生成する。同じ周波数を有する電圧V(t)信号及び電流I(t)信号の場合、電圧信号V(t)の各負から正のゼロ交差はパルスの開始をトリガし、一方で、電流信号I(t)の各負から正のゼロ交差はパルスの終了をトリガする。結果は、電圧信号と電流信号との間の位相角に比例するパルス幅を有するパルス列である。一態様では、パルス列を平均化フィルタに通して、位相差の測定値を得ることができる。更に、正から負のゼロ交差も、同様の方法で使用され、結果が平均化されると、DC及び高調波成分の任意の効果が低減され得る。一実装形態では、アナログ電圧V(t)信号及び電流I(t)信号は、アナログ信号が正である場合には高く、アナログ信号が負である場合には低いデジタル信号に変換される。高精度な位相評価は、高低間の急激な移行を必要とする。一態様では、RC安定化ネットワークと共にシュミットトリガを用いて、アナログ信号をデジタル信号に変換することができる。他の態様では、エッジトリガ型RSフリップフロップ及び補助回路が用いられてもよい。更に別の態様では、ゼロ交差技術は、eXclusive OR(XOR)ゲートを用いてもよい。
電圧信号と電流信号との間の位相差を決定するための他の技術としては、リサージュ図及び画像の監視、三電圧計法、交差コイル法、ベクトル電圧計、及びベクトルインピーダンス法などの方法、並びに相測定、位相ロックループ、本明細書に援用される、Phase Measurement,Peter O’Shea,2000 CRC Press LLC,<http://www.engnetbase.com>に記載されたその他の技術を含む。
別の態様では、例えば、電流のフィードバックデータは、駆動信号の電流振幅を電流振幅設定値に維持するために監視することができる。電流振幅設定値は、直接指定されてもよく、又は指定された電圧振幅及び電力設定値に基づいて間接的に判定されてもよい。特定の態様では、電流振幅の制御は、例えば、プロセッサ1740内の比例積分微分(PID)制御アルゴリズムなどの制御アルゴリズムによって実行され得る。駆動信号の電流振幅を適切に制御するために制御アルゴリズムによって制御される変数としては、例えば、プログラム可能な論理機構1660に記憶されるLUT波形サンプルのスケーリング、及び/又はDAC1860を介したDAC1680(これは電力増幅器1620に入力を供給する)のフルスケール出力電圧を挙げることができる。
非絶縁段1540は、とりわけ、ユーザインターフェース(UI)機能を提供するために、プロセッサ1900を更に含むことができる。一態様では、プロセッサ1900は、例えば、Atmel Corporation(San Jose,Calif.)から入手可能なARM926EJ-Sコアを有するAtmel AT91 SAM9263プロセッサを含むことができる。プロセッサ1900によってサポートされるUI機能の例としては、聴覚的及び視覚的なユーザフィードバック、周辺装置との通信(例えば、ユニバーサルシリアルバス(USB)インターフェースを介して)、フットスイッチ1430との通信、入力装置2150(例えば、タッチスクリーンディスプレイ)との通信、並びに出力装置2140(例えば、スピーカ)との通信を挙げることができる。プロセッサ1900は、プロセッサ1740及びプログラム可能な論理機構と通信することができる(例えば、シリアル周辺インターフェース(SPI)バスを介して)。プロセッサ1900は、主にUI機能をサポートすることができるが、これはまた、特定の態様ではプロセッサ1740と協働して危険の緩和を実現することができる。例えば、プロセッサ1900は、ユーザ入力及び/又は他の入力(例えば、タッチスクリーン入力2150、フットスイッチ1430入力、温度センサ入力2160)の様々な態様を監視するようにプログラムされてもよく、かつ誤った状態が検出された場合は発生器1100の駆動出力を無効化することができる。
特定の態様では、プロセッサ1740(図24、図25A)及びプロセッサ1900(図24、図25B)の両方が、発生器1100の動作状態を判定し、監視することができる。プロセッサ1740の場合は、発生器1100の動作状態は、例えば、どちらの制御及び/又は診断プロセスがプロセッサ1740によって実行されるかを決定することができる。プロセッサ1900の場合は、発生器1100の動作状態は、例えば、ユーザインターフェース(例えば、ディスプレイスクリーン、音)のどの要素がユーザに提供されるかを決定することができる。プロセッサ1740、1900は、発生器1100の現在の動作状態を別個に維持し、現在の動作状態からの可能な遷移を認識及び評価する。プロセッサ1740は、この関係におけるマスタとして機能し、動作状態間の遷移がいつ生じるかを判定することができる。プロセッサ1900は、動作状態間の有効な遷移を認識することができ、かつ特定の遷移が適切であるかを確認することができる。例えば、プロセッサ1740がプロセッサ1900に特定の状態に遷移するように命令すると、プロセッサ1900は要求される遷移が有効であることを確認することができる。プロセッサ1900によって要求される状態間の遷移が無効であると判定された場合、プロセッサ1900は発生器1100を故障モードにすることができる。
非絶縁段1540は、入力装置2150(例えば、発生器1100をオン及びオフするために使用される静電容量式タッチセンサ、静電容量式タッチスクリーン)を監視するためのコントローラ1960(図24、図25B)を更に含むことができる。特定の態様では、コントローラ1960は、プロセッサ1900と通信する少なくとも1つのプロセッサ及び/又は他のコントローラ装置を備えることができる。一態様では、例えば、コントローラ1960は、1つ又は2つ以上の静電容量式タッチセンサを介して提供されるユーザ入力を監視するように構成されたプロセッサ(例えば、Atmelから入手可能なMega168 8ビットコントローラ)を備えることができる。一態様では、コントローラ1960は、静電容量式タッチスクリーンからのタッチデータの取得を制御及び管理するためのタッチスクリーンコントローラ(例えば、Atmelから入手可能なQT5480タッチスクリーンコントローラ)を備えることができる。
特定の態様では、発生器1100が「電源オフ」状態にあるとき、コントローラ1960は(例えば、後述する電源2110(図24)などの、発生器1100の電源からのラインを介して)動作電力を受信し続けることができる。このようにして、コントローラ1960は、発生器1100をオンオフするための入力装置2150(例えば、発生器1100の前側パネルに配置された静電容量式タッチセンサ)を監視し続けることができる。発生器1100が「電源オフ」状態にあるときに、コントローラ1960は、ユーザによる「オン/オフ」入力装置2150の起動が検出されると、電源を起動することができる(例えば、電源2110の1つ又は2つ以上のDC/DC電圧変換器2130(図24)の動作を有効化する)。その結果、コントローラ1960は、発生器1100を「電源オン」状態に移行させるためのシーケンスを開始することができる。逆に、発生器1100が「電源オン」状態にあるときに「オン/オフ」入力装置2150の起動が検出されると、コントローラ1960は発生器1100を「電源オフ」状態に移行させるためのシーケンスを開始することができる。特定の態様では、例えば、コントローラ1960は、「オン/オフ」入力装置2150の起動をプロセッサ1900に報告することができ、続いてプロセッサ1900は、発生器1100を「電源オフ」状態に移行させるために必要な処理シーケンスを実行する。こうした態様では、コントローラ1960は、その「電源オン」状態が確立された後に、発生器1100から電力の除去を引き起こすための独立した能力を有さない場合がある。
特定の態様では、コントローラ1960は、「電源オン」又は「電源オフ」シーケンスが開始されたことをユーザに警告するために、発生器1100に聴覚又は他の感覚フィードバックを提供させることができる。こうした警告は、「電源オン」又は「電源オフ」シーケンスの開始時、及びシーケンスと関連する他のプロセスの開始前に提供されてもよい。
特定の態様では、絶縁段1520は、例えば、外科用装置の制御回路(例えば、ハンドピーススイッチを備える制御回路)と、非絶縁段1540の構成要素(例えば、プログラム可能な論理機構1660、プロセッサ1740、及び/又はプロセッサ1900など)との間の通信インターフェースを提供するために、器具インターフェース回路1980を含むことができる。器具インターフェース回路1980は、例えば赤外線(IR)ベースの通信リンクなどの、段1520、1540間の適切な程度の電気的絶縁を維持する通信リンクを介して、非絶縁段1540の構成要素と情報を交換することができる。例えば、非絶縁段1540から駆動される絶縁変圧器によって電力供給される低ドロップアウト電圧レギュレータを使用して、器具インターフェース回路1980に電力を供給することができる。
一態様では、器具インターフェース回路1980は、信号調整回路2020(図24及び図25C)と通信するプログラム可能な論理機構2000(例えば、FPGA)を備えることができる。信号調整回路2020は、プログラム可能な論理機構2000から周期信号(例えば、2kHzの方形波)を受信して同一の周波数を有する双極呼掛け信号を生成するように構成することができる。呼掛け信号は、例えば、差動増幅器によって供給される双極電流源を使用して発生させることができる。呼掛け信号は、(例えば、発生器1100を外科用装置に接続するケーブル内の導電性のペア(conductive pair)を使用することによって)外科用装置制御回路に伝達され、制御回路の状態又は構成を判定するために監視され得る。例えば、制御回路は、制御回路の状態又は構成が1つ又は2つ以上の特性に基づいて個別に識別可能であるように、呼掛け信号の1つ又は2つ以上の特性(例えば、振幅、整流)を修正するために、多数のスイッチ、レジスタ、及び/又はダイオードを含んでもよい。例えば、一態様では、信号調整回路2020は、呼掛け信号が通過することによって生じる制御回路の入力間に現れる電圧信号のサンプルを生成するためのADCを備えることができる。プログラム可能な論理機構2000(又は非絶縁段1540の一構成要素)は、続いて、ADCサンプルに基づく制御回路の状態又は構成を判定することができる。
一態様では、器具インターフェース回路1980は、プログラム可能な論理機構2000(又は器具インターフェース回路1980の他の要素)と、外科用装置の内部に配置された、又は別の方法で外科用装置と関連付けられた第1のデータ回路との間の情報交換を可能にする第1のデータ回路インターフェース2040を備えることができる。特定の態様では、例えば、第1のデータ回路2060は、外科用装置のハンドピースに一体的に取り付けられたケーブル内、又は特定の外科用装置タイプ又はモデルを発生器1100とインターフェースさせるためのアダプタ内に配置されてもよい。特定の態様では、第1のデータ回路は、電気的消去可能プログラマブル読み出し専用メモリ(EEPROM)装置などの、不揮発性記憶装置を備えることができる。特定の態様では、また図24を再び参照すると、第1のデータ回路インターフェース2040は、プログラム可能な論理機構2000とは別に実装することができ、プログラム可能な論理機構2000と第1のデータ回路との間の通信を可能にする好適な回路(例えば、個別論理機構、プロセッサ)を備えることができる。他の態様では、第1のデータ回路インターフェース2040はプログラム可能な論理機構2000と一体的であってもよい。
特定の態様では、第1のデータ回路2060は、第1のデータ回路2060が関連付けられる特定の外科用装置に関する情報を記憶することができる。そのような情報は、例えば、モデル番号、シリアル番号、外科用装置が使用された動作数、及び/又は他のタイプの情報を含むことができる。この情報は、器具インターフェース回路1980によって(例えば、プログラム可能な論理機構2000によって)読み取られて、出力装置2140を介してユーザに提示するために、及び/又は発生器1100の機能若しくは動作を制御するために、非絶縁段1540の構成要素(例えば、プログラム可能な論理機構1660、プロセッサ1740、及び/又はプロセッサ1900)に転送され得る。更に、任意の種類の情報を、第1のデータ回路2060内に記憶するために、第1のデータ回路インターフェース2040を介して第1のデータ回路2060に伝達することができる(例えば、プログラム可能な論理機構2000を使用して)。そのような情報は例えば、外科用装置が使用された最新の動作数、並びに/又は、その使用の日付及び/若しくは時間を含むことができる。
上記のように、外科用器具は、器具の互換性及び/又は廃棄性を促進するために、ハンドピースから取り外し可能であってもよい(例えば、器具1106は、ハンドピース1107から取り外し可能であってもよい)。そのような場合、既知の発生器は、使用されている特定の器具構成を認識し、これに対応して制御及び診断プロセスを最適化する能力を制限されている場合がある。しかしながら、この問題に対処するために、外科用装置器具に読み取り可能なデータ回路を追加することは、適合性の観点から問題がある。例えば、必要なデータ読み取り機能を欠く発生器との下位互換性を保つように、外科用装置を設計することは、例えば、異なる信号スキーム、設計の複雑さ、及び費用のために、実用的でない場合がある。器具の他の態様は、既存の外科用器具に実装され得るデータ回路を経済的に使用し、外科用装置と最新の発生器プラットフォームとの互換性を維持するために設計変更を最小限にすることによってこれらの懸念に対処する。
更に、発生器1100の態様は、器具ベースのデータ回路との通信を可能にすることができる。例えば、発生器1100は、外科用装置の器具(例えば、器具1104、1106、又は1108)内に収容される第2のデータ回路(例えば、データ回路)と通信するように構成され得る。器具インターフェース回路1980は、この通信を可能にする第2のデータ回路インターフェース2100を含むことができる。一態様では、第2のデータ回路インターフェース2100は、トライステートデジタルインターフェースを含むことができるが、他のインターフェースを使用することもできる。特定の態様では、第2のデータ回路は、概して、データを送信及び/又は受信するための任意の回路であることができる。一態様では、例えば、第2のデータ回路は、この回路が関連付けられる特定の外科用器具に関する情報を記憶してもよい。そのような情報は、例えば、モデル番号、シリアル番号、外科用器具が使用された動作数、及び/又は任意の他のタイプの情報を含むことができる。更に又はあるいは、任意の種類の情報を、第2のデータ回路内に記憶するために、第2のデータ回路インターフェース2100を介して第2のデータ回路に伝達することができる(例えば、プログラム可能な論理機構2000を使用して)。そのような情報は例えば、器具が使用された最新の動作数、並びに/又は、その使用の日付及び/若しくは時間を含んでもよい。特定の態様では、第2のデータ回路は、1つ又は2つ以上のセンサ(例えば、器具ベースの温度センサ)によって取得されたデータを送信することができる。特定の態様では、第2のデータ回路は、発生器1100からデータを受信して、受信したデータに基づきユーザに表示(例えば、LED表示又は他の可視表示)を提供することができる。
特定の態様では、第2のデータ回路及び第2のデータ回路インターフェース2100は、この目的のために追加の導体(例えば、ハンドピースを発生器1100に接続するケーブルの専用導体)を設ける必要なしにプログラム可能な論理機構2000と第2のデータ回路との間の通信を達成できるように構成することができる。一態様では、例えば、使用される導体のうちの1つが、信号調整回路2020からハンドピース内の制御回路へ呼掛け信号を送信するなど、既存のケーブル配線上に実装されたワンワイヤバス通信方式を使用して、第2のデータ回路との間で情報を伝達することができる。このようにして、元来必要であり得る外科用装置の設計変更又は修正が最小化又は低減される。更に、様々な種類の通信が(周波数帯域分離を伴うか又は伴わないかのいずれかで)一般的な物理チャネルを介して実施され得るため、第2のデータ回路の存在は、必要なデータ読み取り機能を有さない発生器にとっては「不可視」であり、したがって、外科用装置器具の下位互換性を可能にすることができる。
特定の態様では、絶縁段1520は、患者にDC電流が通電するのを防ぐために駆動信号出力部1600bに接続された少なくとも1つのブロッキングコンデンサ2960-1(図25C)を含むことができる。単一のブロッキングコンデンサは、例えば、医学的規制又は基準に準拠することが必要とされる場合がある。単一コンデンサ設計における故障は比較的稀であるが、それでもなおそのような故障は否定的な結果をもたらす恐れがある。一態様では、第2のブロッキングコンデンサ2960-2をブロッキングコンデンサ2960-1と直列に設けて、ブロッキングコンデンサ2960-1、2960-2の間の点からの電流漏れを、例えば、漏れ電流によって誘起された電圧をサンプリングするためのADC2980によって監視することができる。サンプルは、例えば、プログラム可能な論理機構2000によって受信され得る。漏れ電流(図24の態様で電圧サンプルによって示される)の変化に基づいて、発生器1100は、ブロッキングコンデンサ2960-1、2960-2のうちの少なくとも1つが故障したときを判定することができる。したがって、図24の態様は、単一の故障点を有する単一コンデンサ設計に対して利益を提供することができる。
特定の態様では、非絶縁段1540は、好適な電圧及び電流でDC電力を出力するための電源2110を備えることができる。電源は、例えば、48VDCシステム電圧を出力するための、400W電源を備えることができる。上述したように、電源2110は、電源の出力を受信して、発生器1100の様々な構成要素によって必要とされる電圧及び電流でDC出力を生成するための、1つ又は2つ以上のDC/DC電圧変換器2130を更に備えることができる。コントローラ1960と関連して上述したように、DC/DC電圧変換器2130のうちの1つ又は2つ以上は、ユーザによる「オン/オフ」入力装置2150の起動がコントローラ1960によって検出されたときにコントローラ1960から入力を受信し、DC/DC電圧変換器2130の動作又は起動を可能にしてもよい。
図26A~図26Bは、発生器1100の一態様の特定の機能的及び構造的態様を示す。電力変圧器1560の二次巻線1580から出力される電流及び電圧を示すフィードバックは、それぞれADC1780、1800によって受信される。示されるように、ADC1780、1800は、2チャンネルADCとして実装することができ、また、駆動信号のオーバーサンプリング(例えば、およそ200倍のオーバーサンプリング)を可能にするように高速(例えば、80Msps)でフィードバック信号をサンプリングすることができる。電流及び電圧フィードバック信号は、ADC1780、1800による処理の前に、アナログ領域で適切に調整され得る(例えば、増幅、フィルタリング)。ADC1780、1800からの電流及び電圧フィードバックサンプルは、個別にバッファリングされ、その後、プログラム可能な論理機構1660のブロック2120内の単一データストリーム内に、多重化又はインターリーブされ得る。図26A~図26Bの態様では、プログラム可能な論理機構1660はFPGAを備える。
多重化された電流及び電圧フィードバックサンプルは、プロセッサ1740のブロック2144内に実装される並列データ収集ポート(PDAP)によって受信され得る。PDAPは、多重化フィードバックサンプルとメモリアドレスを相関付けるための多くの方法のいずれかを実施するためのパッキングユニットを含むことができる。一態様では、例えば、プログラム可能な論理機構1660によって出力される特定のLUTサンプルに対応するフィードバックサンプルは、LUTサンプルのLUTアドレスと関連付けられるか又はインデックス付けされる1つ又は2つ以上のメモリアドレスで記憶され得る。別の態様では、プログラム可能な論理機構1660によって出力される特定のLUTサンプルに対応するフィードバックサンプルは、LUTサンプルのLUTアドレスと共に、共通の記憶場所で記憶され得る。いずれにせよ、フィードバックサンプルの特定のセットが由来するLUTサンプルのアドレスがその後確認され得るように、フィードバックサンプルは記憶され得る。上記のように、LUTサンプルアドレス及びフィードバックサンプルの同期が、このようにして、予歪みアルゴリズムの正確なタイミング及び安定性に寄与する。プロセッサ1740のブロック2166で実装されるダイレクトメモリアクセス(DMA)コントローラは、プロセッサ1740の指定された記憶場所2180(例えば、内部RAM)でフィードバックサンプル(及び適用可能な場合は任意のLUTサンプルアドレスデータ)を記憶することができる。
プロセッサ1740のブロック2200は、プログラム可能な論理機構1660に記憶されたLUTサンプルを、動的な進行中ベースで予め歪ませ、又は修正するために、予歪みアルゴリズムを実施することができる。上記のように、LUTサンプルのプリディストーションは、発生器1100の出力駆動回路に存在する歪みの様々な原因を補償することができる。予め歪ませたLUTサンプルはしたがって、駆動回路により処理される場合、超音波変換器を最適に駆動するために、所望の波形形状(例えば、正弦波)を有する駆動信号を生じる。
予歪みアルゴリズムのブロック2220において、超音波変換器の動作ブランチを流れる電流が判定される。動作ブランチ電流は、例えば、記憶場所2180に記憶された電流及び電圧フィードバックサンプル(これは、好適にスケーリングされると、上記の図23のモデルのI及びVを表わし得る)、超音波変換器静電容量Cの値(測定されるか又は先験的に既知である)、及び駆動周波数の既知の値に基づき、キルヒホッフの電流則を使用して判定され得る。LUTサンプルと関連する、記憶された電流及び電圧フィードバックサンプルの各セットにおける、動作ブランチ電流サンプルが判定され得る。
予歪みアルゴリズムのブロック2240では、ブロック2220で判定された各動作ブランチ電流サンプルは、所望の電流波形形状のサンプルと比較されて、比較されるサンプル間の差又はサンプル振幅誤差を判定する。この判定のために、電流波形形状のサンプルが、例えば、所望の電流波形形状の1サイクルに関する振幅サンプルを含む波形形状LUT2260から供給され得る。比較のために使用される、LUT2260からの所望の電流波形形状の特定のサンプルは、比較に使用される動作ブランチ電流サンプルと関連付けられたLUTサンプルアドレスによって決定され得る。したがって、動作ブランチ電流のブロック2240への入力は、その関連するLUTサンプルアドレスのブロック2240への入力と同期され得る。したがって、プログラム可能な論理機構1660に記憶されるLUTサンプルと、波形形状LUT2260に記憶されるLUTサンプルは、同等の数値であることができる。特定の態様では、波形形状LUT2260に記憶されたLUTサンプルによって表される所望の電流波形形状は、基本正弦波であることができる。他の波形形状が望ましい場合がある。例えば、横方向又は他の様式の有益な振動のために、少なくとも2つの機械的共振を駆動するための第3次高調波などの他の波長における1つ又は2つ以上の他の駆動信号と重なり合った超音波変換器の主要な長手方向の運動を駆動するための、基本的な正弦波が使用され得ることが想到される。
ブロック2240で判定されるサンプル振幅誤差の各値は、その関連付けられたLUTアドレスの指標と共に、プログラム可能な論理機構1660のLUT(図26Aのブロック2280に示される)に伝達することができる。サンプル振幅誤差の値、及びその関連付けされたアドレス(並びに、任意により、先に受信された同じLUTアドレスに関するサンプル振幅誤差の値)に基づき、LUT2280(又はプログラム可能な論理機構1660の他の制御ブロック)は、LUTアドレスに記憶されるLUTサンプルの値を予め歪ませるか又は修正することができ、それによってサンプル振幅誤差は低減又は最小化される。LUTアドレスの全範囲にわたる反復的な方法での各LUTサンプルのそのような予歪み又は修正が、発生器の出力電流の波形形状を、波形形状LUT2260のサンプルによって表される所望の電流波形形状と一致又は適合させることは理解されよう。
電流及び電圧振幅測定値、電力測定値、及びインピーダンス測定値が、記憶場所2180に記憶される電流及び電圧フィードバックサンプルに基づいて、プロセッサ1740のブロック2300で判定され得る。これらの数値の判定の前に、フィードバックサンプルを適切にスケーリングして、特定の態様では、適切なフィルタ2320を通じて処理して、例えば、データ取得プロセスにより生じるノイズ及び誘発された高調波成分を除去することができる。フィルタリングされた電圧及び電流サンプルはしたがって、発生器の駆動出力信号の基本周波数を実質的に表し得る。特定の態様では、フィルタ2320は周波数領域において適用される有限インパルス応答(FIR)フィルタであってよい。こうした態様は、出力駆動信号電流及び電圧信号の高速フーリエ変換(FFT)を使用することができる。特定の態様では、生じる周波数スペクトルは、追加的な発生器機能を提供するために使用することができる。一態様では、例えば、基本周波数成分に対する第2次及び/又は第3次高調波成分の比率を、診断指標として使用することができる。
ブロック2340(図26B)では、駆動信号出力電流を表す測定値Irmsを生成するために、駆動信号のサイクルの整数を表す電流フィードバックサンプルのサンプルサイズに、二乗平均平方根(RMS)計算が適用され得る。
ブロック2360では、駆動信号出力電圧を表す測定値Vrmsを判定するために、駆動信号のサイクルの整数を表す電圧フィードバックサンプルのサンプルサイズに、二乗平均平方根(RMS)計算が適用され得る。
ブロック2380では、電流及び電圧フィードバックサンプルは逐一乗算されてもよく、平均計算が駆動信号のサイクルの整数を表すサンプルに適用されて、発生器の実際の出力電力の測定値Pが判定される。
ブロック2400では、発生器の皮相出力電力の測定値Pは、積Vrms・Irmsとして判定され得る。
ブロック2420では、負荷インピーダンスの大きさの測定値Zは、商Vrms/Irmsとして判定され得る。
特定の態様では、ブロック2340、2360、2380、2400、及び2420において判定される数値Irms、Vrms、P、P、及びZは、多数の制御及び/又は診断プロセスのうちのいずれかを実施するために発生器1100により使用され得る。特定の態様では、これらの数値のいずれかを、例えば、発生器1100と一体の出力装置2140、又は発生器1100と接続された出力装置2140を介して、適切な通信インターフェース(例えば、USBインターフェース)を通じてユーザに伝達することができる。様々な診断プロセスとしては、例えば、ハンドピース一体性、器具一体性、器具取り付け一体性、器具オーバーロード、器具オーバーロード接近、周波数固定不良、過電圧状態、過電流状態、過電力状態、電圧感知不良、電流感知不良、可聴指標不良、視覚指標不良、短絡回路状態、電力供給不良、又はブロッキングコンデンサ不良が挙げられ得るが、これらに限定されない。
プロセッサ1740のブロック2440は、発生器1100によって駆動される電気負荷(例えば、超音波変換器)のインピーダンス位相を判定及び制御するための位相制御アルゴリズムを実施することができる。上述のように、駆動信号の周波数を制御して、判定されたインピーダンス位相とインピーダンス位相設定値(例えば、0°)との間の差を最小化又は低減することによって、高調波歪みの影響を最小化又は低減し、位相測定の精度を向上させることができる。
位相制御アルゴリズムは、記憶場所2180に記憶された電流及び電圧フィードバックサンプルを、入力として受信する。位相制御アルゴリズムでこれらを使用する前に、フィードバックサンプルが適切にスケーリングされ、特定の態様では、例えば、データ取得プロセス及び誘発された高調波成分から生じるノイズを除去するために、適切なフィルタ2460(フィルタ2320と同一でもよい)を通して処理されてもよい。フィルタリングされた電圧及び電流サンプルはしたがって、発生器の駆動出力信号の基本周波数を実質的に表し得る。
位相制御アルゴリズムのブロック2480で、超音波変換器の動作ブランチを流れる電流が判定される。この判定は、予歪みアルゴリズムのブロック2220と関連して上記で説明されたものと同一であってもよい。したがって、ブロック2480の出力は、LUTサンプルと関連する記憶された電流及び電圧フィードバックサンプルの各セットに関して、動作ブランチ電流サンプルであることができる。
位相制御アルゴリズムのブロック2500では、インピーダンス位相は、ブロック2480で判定された動作ブランチ電流サンプル及び対応する電圧フィードバックサンプルの同期された入力に基づいて判定される。特定の態様では、インピーダンス位相は、波形の立ち上がりエッジで測定されたインピーダンス位相と波形の立ち下がりエッジで測定されたインピーダンス位相の平均として判定される。
位相制御アルゴリズムのブロック2520では、ブロック2220で判定されたインピーダンス位相の値は位相設定値2540と比較されて、比較される値の間の差異又は位相誤差が判定される。
位相制御アルゴリズムのブロック2560(図26A)では、ブロック2520で判定された位相誤差の値、及びブロック2420で判定されたインピーダンスの大きさに基づいて、駆動信号の周波数を制御するための周波数出力が判定される。ブロック2500において判定されたインピーダンス位相を位相設定値(例えば、ゼロ位相誤差)に維持するため、周波数出力値は、ブロック2560によって連続的に調節されてDDS制御ブロック2680(後述)に転送され得る。特定の態様では、インピーダンス位相は、0°位相設定値に調節され得る。このようにして、なんらかの高調波歪み量があれば電圧波形の頂部周囲で中央に合わせられ、相インピーダンス決定の正確性を向上させる。
プロセッサ1740のブロック2580は、ユーザが指定する設定値に従って、又は発生器1100によって実施される他のプロセス若しくはアルゴリズムによって指定される要件に従って、駆動信号電流、電圧、及び電力を制御するために、駆動信号の電流振幅を変調するためのアルゴリズムを実施することができる。これらの数値の制御は、例えば、LUT2280のLUTサンプルのスケーリングによって、及び/又はDAC1860を介したDAC1680(電力増幅器1620に入力を供給する)のフルスケール出力電圧を調節することによって、実現することができる。ブロック2600(特定の態様では、PIDコントローラとして実装され得る)は、記憶場所2180から入力として電流フィードバックサンプル(適切にスケーリング及びフィルタリングされ得る)を受信することができる。電流フィードバックサンプルは、駆動信号が必要な電流を供給しているかどうかを判定するために、制御された変数(例えば、電流、電圧、又は電力)によって決定される「電流需要」I値と比較され得る。駆動信号電流が制御変数である態様では、電流需要Iは、電流設定値2620A(Isp)によって直接指定され得る。例えば、電流フィードバックデータのRMS値(ブロック2340で判定される)は、適切なコントローラ作用を判定するために、ユーザ指定のRMS電流設定値Ispと比較され得る。例えば、電流フィードバックデータが電流設定値Ispよりも低いRMS値を示す場合、LUTスケーリング及び/又はDAC1680のフルスケール出力電圧は、駆動信号電流が増加するようにブロック2600によって調節されてもよい。逆に、電流フィードバックデータが電流設定値Ispよりも高いRMS値を示す場合、ブロック2600は、駆動信号電流を低減させるように、LUTスケーリング及び/又はDAC1680のフルスケール出力電圧を調節してもよい。
駆動信号電圧が制御変数である態様では、電流需要Iは、例えば、ブロック2420で測定された負荷インピーダンスの大きさZが与えられた場合に所望の電圧設定値2620B(Vsp)を維持するのに必要な電流に基づいて間接的に指定され得る(例えば、I=Vsp/Z)。同様に、駆動信号電力が制御変数である態様では、電流需要Iは、例えばブロック2360で測定された電圧Vrmsを与えられた場合に所望の電力設定値2620C(Psp)を維持するのに必要な電流に基づいて間接的に指定され得る(例えばI=Psp/Vrms)。
ブロック2680(図26A)は、LUT2280に記憶されたLUTサンプルを再呼び出しすることによって駆動信号を制御するために、DDS制御アルゴリズムを実施することができる。特定の態様では、DDS制御アルゴリズムは、ポイント(記憶場所)スキップ技術を使用して固定クロックレートで波形のサンプルを生成するための数値制御発振器(NCO)アルゴリズムであってよい。NCOアルゴリズムは、LUT2280からLUTサンプルを再呼び出しするためのアドレスポインタとして機能する、位相アキュムレータ、又は周波数/位相変換器を実装することができる。一態様では、位相アキュムレータは、Dステップサイズ、モジュロN位相アキュムレータであることができ、ここでDは周波数制御値を表す正の整数であり、NはLUT2280内のLUTサンプルの数である。例えば、D=1の周波数制御値により、例えば、位相アキュムレータにLUT2280の全てのアドレスを連続的に指定させ、LUT2280に記憶された波形を複製する波形出力を生じさせることができる。D>1である場合、位相アキュムレータは、LUT2280のアドレスをスキップして、より高い周波数を有する波形出力を生じさせることができる。これにより、DDS制御アルゴリズムによって生成される波形の周波数がしたがって、周波数制御値を適切に変化させることによって制御され得る。特定の態様では、周波数制御値は、ブロック2440で実施された位相制御アルゴリズムの出力に基づいて判定され得る。ブロック2680の出力は、DAC1680の入力を供給することができ、これが次に対応するアナログ信号を電力増幅器1620の入力に供給する。
プロセッサ1740のブロック2700は、増幅されている信号の波形エンベロープに基づいて電力増幅器1620のレール電圧を動的に変調し、それによって電力増幅器1620の効率を改善するための、スイッチモード変換器制御アルゴリズムを実施することができる。特定の態様では、波形エンベロープの特性は、電力増幅器1620に含まれる1つ又は2つ以上の信号を監視することによって判定することができる。一態様では、例えば、波形エンベロープの特性は、増幅信号のエンベロープに従って変調されるドレイン電圧(例えば、MOSFETドレイン電圧)の最小値を監視することによって判定することができる。最小電圧信号は、例えば、ドレイン電圧に接続された電圧最小検出器によって生成され得る。最小電圧信号は、ADC1760よってサンプリングされ、出力最小電圧サンプルは、スイッチモード変換器制御アルゴリズムのブロック2720で受信されてもよい。最小電圧サンプルの値に基づき、ブロック2740は、PWM発生器2760によって出力されるPWM信号を制御してもよく、これが続いて、スイッチモードレギュレータ1700によって電力増幅器1620に供給されるレール電圧を制御する。特定の態様では、最小電圧サンプルの値がブロック2720に入力される最小ターゲット2780未満である限り、レール電圧は、最小電圧サンプルによって特徴付けられる波形エンベロープに従って変調され得る。例えば、最小電圧サンプルが低いエンベロープ電力レベルを示すときは、ブロック2740によって低いレール電圧が電力増幅器1620に供給され、完全なレール電圧は、最小電圧サンプルが最大エンベロープ電力レベルを示すときにのみ供給されてもよい。最小電圧サンプルが最小ターゲット2780を下回るときは、ブロック2740によって、レール電圧が電力増幅器1620の適切な動作を確実にするのに好適な最小値に維持されてもよい。
図27は、本開示の少なくとも1つの態様による、超音波変換器1120などの超音波変換器を駆動するのに好適な電気回路2900の一態様の概略図である。電気回路2900は、アナログマルチプレクサ2980を備える。アナログマルチプレクサ2980は、超音波、電池、及び電力制御回路などの上流チャネルSCL-A、SDA-Aからの様々な信号を多重化する。電流センサ2982は、電源回路の戻り又は接地区間と直列に接続され、電源によって供給される電流を測定する。電界効果トランジスタ(FET)温度センサ2984は、周囲温度を提供する。パルス幅変調(PWM)ウォッチドッグタイマー2988は、主プログラムが定期的なシステムリセットの提供を怠る場合にシステムリセットを自動的に生じさせる。これは、ソフトウェア又はハードウェア障害のために電気回路2900がハング又はフリーズした場合に、電気回路2900を自動的にリセットするように設けられている。電気回路2900は、超音波変換器を駆動するため、又は例えば図32に示す電気回路3600などのRF電極を駆動するためのRFドライバ回路として構成され得ることが理解されるであろう。したがって、ここで図27を再び参照すると、電気回路2900を使用して、超音波変換器及びRF電極の両方を交互に駆動することができる。同時に駆動する場合、超音波波形又はRF波形のいずれかを選択するように、対応する第1段回路3404(図30)内にフィルタ回路を設けてもよい。かかるフィルタリング技術は、共同所有の米国公開特許第2017/0086910号、表題TECHNIQUES FOR CIRCUIT TOPOLOGIES FOR COMBINED GENERATORに記載されており、参照によりその全体が本明細書に組み込まれる。
駆動回路2986は、左右の超音波エネルギー出力を提供する。信号波形を表すデジタル信号は、制御回路3200(図28)などの制御回路からアナログマルチプレクサ2980のSCL-A、SDA-A入力に供給される。デジタル/アナログ変換器2990(DAC)は、デジタル入力をアナログ出力に変換して、発振器2994に接続されたPWM回路2992を駆動する。PWM回路2992は、第1のトランジスタ出力段2998aに接続された第1のゲート駆動回路2996aに第1の信号を提供して、第1の超音波(左側)エネルギー出力を駆動する。PWM回路2992はまた、第2のトランジスタ出力段2998bに接続された第2のゲート駆動回路2996bに第2の信号を提供して、第2の超音波(右側)エネルギー出力を駆動する。電圧センサ2999は、出力電圧を測定するために超音波左/右出力端子間に接続される。駆動回路2986、第1の駆動回路2996a及び第2の駆動回路2996b、並びに第1のトランジスタ出力段2998a及び第2のトランジスタ出力段2998bは、第1段増幅器回路を画定する。動作中、制御回路3200(図28)は、直接デジタル合成(DDS)回路4100、4200(図35及び図36)などの回路を用いてデジタル波形4300(図37)を生成する。DAC2990は、デジタル波形4300を受信し、それをアナログ波形に変換し、これが第1段増幅器回路によって受信及び増幅される。
図28は、本開示の少なくとも1つの態様による、制御回路3212などの制御回路3200の概略図である。制御回路3200は、電池アセンブリのハウジング内に位置する。電池アセンブリは、様々な局所電源3215のためのエネルギー源である。制御回路は、例えば、出力SCL-A及びSDA-A、SCL-B及びSDA-B、SCL-C及びSDA-Cによって、インターフェースマスタ3218を介して様々な下流回路に接続された主プロセッサ3214を備える。一態様では、インターフェースマスタ3218は、ICシリアルインターフェースなどの汎用シリアルインターフェースである。主プロセッサ3214はまた、汎用入出力(GPIO)3220を介してスイッチ3224を、ディスプレイ3226(例えば、及びLCDディスプレイ)を、及びGPIO3222を介して様々なインジケータ3228を駆動するように構成される。ウォッチドッグプロセッサ3216は、主プロセッサ3214を制御するために設けられている。スイッチ3230は、電池アセンブリを外科用器具のハンドルアセンブリに挿入したときに制御回路3212を起動させるように、電池3211と直列に設けられている。
一態様では、主プロセッサ3214は、出力端子SCL-A、SDA-Aによって電気回路2900(図27)に接続されている。主プロセッサ3214は、例えば、超音波変換器1120を駆動するために電気回路2900に伝送されるデジタル化駆動信号又は波形のテーブルを記憶するためのメモリを備える。他の態様では、主プロセッサ3214は、デジタル波形を生成して、それを電気回路2900に伝送し得るか、又は後で電気回路2900へと伝送するためにデジタル波形を記憶し得る。主プロセッサ3214はまた、出力端子SCL-B、SDA-BによってRF駆動を、及び出力端子SCL-C、SDA-Cによって様々なセンサ(例えば、ホール効果センサ、磁気粘性流体(MRF)センサなど)を提供してもよい。一態様では、主プロセッサ3214は、適切なソフトウェア及びユーザインターフェース機能を可能にするために、超音波駆動回路及び/又はRF駆動回路の存在を感知するように構成される。
一態様では、主プロセッサ3214は、例えば、Texas Instrumentsから入手可能なLM 4F230H5QRであってもよい。少なくとも一例では、Texas InstrumentsのLM4F230H5QRは、製品データシートから容易に入手可能な機構の中でもとりわけ、最大40MHzの256KBのシングルサイクルフラッシュメモリ若しくは他の不揮発性メモリのオンチップメモリ、性能を40MHz超に改善するためのプリフェッチバッファ、32KBのシングルサイクルシリアルランダムアクセスメモリ(SRAM)、StellarisWare(登録商標)ソフトウェアを搭載した内部読み出し専用メモリ(ROM)、2KBの電気的消去可能プログラマブル読み出し専用メモリ(EEPROM)、1つ又は2つ以上のパルス幅変調(PWM)モジュール、1つ又は2つ以上の直交エンコーダ入力(QED)アナログ、12個のアナログ入力チャネルを備える1つ又は2つ以上の12ビットアナログ-デジタル変換器(ADC)を含むARM Cortex-M4Fプロセッサコアである。他のプロセッサが容易に代用されてもよく、したがって、本開示は、この文脈に限定されるべきではない。
図29は、本開示の少なくとも1つの態様による、モジュール式超音波外科用器具3334内に収容される別の電気回路3300を示す、簡略化したブロック回路図を示す。電気回路3300は、プロセッサ3302、クロック3330、メモリ3326、電源3304(例えば、電池)、酸化金属半導体電界効果トランジスタ(MOSFET)電源スイッチなどのスイッチ3306、駆動回路3308(PLL)、変圧器3310、信号平滑化回路3312(整合回路とも呼ばれ、例えば、タンク回路であり得る)、感知回路3314、変換器1120、及び本明細書では単に導波管とも称され得る、超音波ブレード(例えば超音波ブレード1128、1149)で終端する超音波伝送導波管を備えるシャフトアセンブリ(例えばシャフトアセンブリ1126、1129)を含む。
高電圧(120VAC)入力電力への依存性(一般的な超音波切断装置の特性)を断つ本開示の1つの特徴は、波形成プロセスの全体にわたる低電圧スイッチングの利用及び変圧器の段の直前に限った駆動信号の増幅である。この理由のため、本開示の一態様では、電力は、ハンドルアセンブリ内にいずれかを適合させるのに十分に小さい電池又は電池群からのみ導出される。最新技術の電池技術は、高さ及び幅が数センチメートル、奥行きが数ミリメートルの強力な電池を提供する。本開示の特徴を組み合わせて、自己完結型及び自己動力式超音波装置を提供することによって、製造コストの低減を達成することができる。
電源3304の出力は、プロセッサ3302に供給されて電力を供給する。プロセッサ3302は、信号を受信及び出力し、また、以下に説明するように、プロセッサ3302によって実行されるカスタム論理に従って、又はコンピュータプログラムに従って機能する。上述したように、電気回路3300はまた、コンピュータ可読命令及びデータを記憶するメモリ3326、好ましくはランダムアクセスメモリ(RAM)を含むことができる。
電源3304の出力はまた、プロセッサ3302によって制御されるデューティサイクルを有するスイッチ3306に向けられる。スイッチ3306のオン時間を制御することにより、プロセッサ3302は、最終的に変換器1120に送達される総電力量を決定することができる。一態様では、スイッチ3306はMOSFETであるが、他のスイッチ及びスイッチング構成も同様に適応可能である。スイッチ3306の出力は、例えば、位相検出位相同期ループ(PLL)及び/又はローパスフィルタ及び/又は電圧制御発振器を含む駆動回路3308に供給される。スイッチ3306の出力は、プロセッサ3302によってサンプリングされ、出力信号の電圧及び電流(それぞれVIN及びIIN)を判定する。これらの値は、スイッチ3306のパルス幅変調を調整するためにフィードバックアーキテクチャで使用される。例えば、スイッチ3306のデューティサイクルは、スイッチ3306からの所望される実際の出力に応じて約20%~約80%まで変化し得る。
スイッチ3306からの信号を受信する駆動回路3308は、スイッチ3306の出力を超音波周波数、例えば55kHz(VCO)の電気信号に変換する発振回路を含む。上述のように、この超音波波形の平滑化バージョンが、最終的に超音波変換器1120に供給されて、超音波伝送導波管に沿って共振正弦波を生成する。
駆動回路3308の出力には、低電圧信号(複数可)をより高い電圧に昇圧させることができる変圧器3310がある。現在まで超音波切断及び焼灼装置では不可能であったことだが、変圧器3310の前に、低(例えば、電池駆動)電圧で上流スイッチングが実施されることに注意されたい。これは、装置が、低オン抵抗MOSFETスイッチング装置を有利に使用するという事実に少なくとも部分的に起因する。低オン抵抗MOSFETスイッチは、従来のMOSFET装置よりも低いスイッチング損失及び少ない熱を生じ、より高い電流を通過させることができるため有利である。したがって、スイッチング段(プレトランスフォーマ)は、低電圧/高電流として特徴付けられ得る。増幅器MOSFET(複数可)のより低いオン抵抗を保証するために、MOSFET(複数可)は、例えば10Vで稼働される。そのような場合、別個の10VDC電源を使用して、MOSFETゲートに供給することができ、MOSFETが完全にオンであり、合理的に低いオン抵抗が達成されることを保証する。本開示の一態様では、変圧器3310は、電池電圧を120Vの二乗平均平方根(RMS)に昇圧させる。変圧器は、当該技術分野で既知であるため、ここでは詳細に説明されていない。
記載の回路構成において、回路構成要素の劣化は、回路の回路性能に負の影響を及ぼし得る。構成要素の性能に直接影響する1つの要因は熱である。既知の回路は、一般にスイッチング温度(例えば、MOSFET温度)を監視する。しかしながら、MOSFET設計における技術的進歩及び対応するサイズの低減により、MOSFET温度は、もはや回路負荷及び熱の有効なインジケータではない。このため、本開示の少なくとも1つの態様によると、感知回路3314は変圧器3310の温度を感知する。変圧器3310は装置の使用中にその最高温度又はその至近で稼働されるため、この温度感知は有利である。追加の温度は、コア材料、例えばフェライトを破壊することになり、永久的な損傷が起こり得る。本開示は、例えば、変圧器3310内の駆動電力を低減すること、ユーザに信号伝達すること、電源をオフにすること、電力をパルスすること、又は他の適切な応答によって、変圧器3310の最高温度に応答することができる。
本開示の一態様では、プロセッサ3302は、エンドエフェクタ(例えば1122、1125)に通信可能に接続され、エンドエフェクタは、材料を超音波ブレード(例えば1128、1149)と物理的に接触するように配置するために使用される。エンドエフェクタにおいて、クランプ力値(既知の範囲内に存在する)を測定するセンサが提供され、受信されたクランプ力値に基づいて、プロセッサ3302は、動作電圧Vを変化させる。設定された動作速度と組み合わされた高い力値は高いブレード温度をもたらし得るため、温度センサ3332は、プロセッサ3302に通信可能に接続されてもよく、ここでプロセッサ3302は、温度センサ3336からブレードの現在温度を示す信号を受信して解釈し、かつ受信した温度に基づいてブレード運動のターゲット周波数を決定するように動作可能である。別の態様では、歪みゲージ又は圧力センサなどの力センサは、トリガ(例えば1143、1147)に接続されて、ユーザによってトリガに加えられる力を測定することができる。別の態様では、ユーザによってスイッチボタンに加えられた力に変位強度が対応するように、歪みゲージ又は圧力センサなどの力センサがスイッチボタンに接続されてもよい。
本開示の少なくとも1つの態様によると、プロセッサ3302に接続された駆動回路3308のPLL部分は、導波管運動の周波数を決定し、その周波数をプロセッサ3302に伝達することができる。プロセッサ3302は、装置がオフにされたときに、この周波数値をメモリ3326に記憶する。クロック3330を読み取ることによって、プロセッサ3302は、装置がシャットオフされた後の経過時間を判定し、経過時間が所定の値未満である場合は、導波管運動の最後の周波数を読み出すことができる。次いで、装置は、推定可能に現在の負荷に対して最適な周波数である最後の周波数で起動することができる。
多段発生器回路を備えるモジュール式電池駆動ハンドヘルド外科用器具
別の態様では、本開示は、多段発生器回路を備えるモジュール式電池駆動ハンドヘルド外科用器具を提供する。電池アセンブリ、ハンドルアセンブリ、及びシャフトアセンブリを含む外科用器具が開示され、電池アセンブリ及びシャフトアセンブリは、ハンドルアセンブリと機械的及び電気的に接続するように構成されている。電池アセンブリは、デジタル波形を生成するように構成された制御回路を含む。ハンドルアセンブリは、デジタル波形を受信し、デジタル波形をアナログ波形に変換し、アナログ波形を増幅するように構成された第1段回路を含む。シャフトアセンブリは、アナログ波形を受信、増幅して、負荷装置に適用するために、第1段回路と接続した第2段回路を含む。
一態様では、本開示は、電池を含む制御回路と、電池に接続したメモリと、メモリ及び電池に接続したプロセッサと、を含み、プロセッサはデジタル波形を生成するように構成された、電池アセンブリ;プロセッサと接続した第1段回路を含み、第1段回路はデジタル/アナログ(DAC)変換器及び第1段増幅器回路を含み、DACはデジタル波形を受信してデジタル波形をアナログ波形に変換するように構成され、第1段増幅器回路はアナログ波形を受信して増幅するように構成された、ハンドルアセンブリ;並びにアナログ波形を受信し、アナログ波形を増幅し、アナログ波形を負荷装置に適用するために、第1段増幅器回路に接続した第2段回路を含むシャフトアセンブリを備え、電池アセンブリ及びシャフトアセンブリは、ハンドルアセンブリと機械的及び電気的に接続するように構成されている、外科用器具を提供する。
負荷装置は、超音波変換器、電極、若しくはセンサ、又はこれらの任意の組み合わせのうちのいずれか1つを含んでもよい。第1段回路は、第1段超音波駆動回路及び第1段高周波電流駆動回路を備えてもよい。制御回路は、第1段超音波駆動回路及び第1段高周波電流駆動回路を個別に又は同時に駆動するように構成され得る。第1段超音波駆動回路は、第2段超音波駆動回路に接続するように構成されてもよい。第2段超音波駆動回路は、超音波変換器と接続するように構成されてもよい。第1段高周波電流駆動回路は、第2段高周波駆動回路に接続するように構成されてもよい。第2段高周波駆動回路は、電極に接続するように構成されてもよい。
第1段回路は、第1段センサ駆動回路を備えてもよい。第1段センサ駆動回路は、第2段センサ駆動回路に対して構成されてもよい。第2段センサ駆動回路は、センサに接続するように構成されてもよい。
別の態様では、本開示は、電池を含む制御回路と、電池に接続したメモリと、メモリ及び電池に接続したプロセッサと、を含み、プロセッサはデジタル波形を生成するように構成された、電池アセンブリ;プロセッサと接続した共通の第1段回路を含み、共通の第1段回路はデジタル/アナログ(DAC)変換器及び共通の第1段増幅器回路を含み、DACはデジタル波形を受信してデジタル波形をアナログ波形に変換するように構成され、共通の第1段増幅器回路はアナログ波形を受信して増幅するように構成された、ハンドルアセンブリ;並びにアナログ波形を受信し、アナログ波形を増幅し、アナログ波形を負荷装置に適用するために、共通の第1段増幅器回路に接続した第2段回路を含むシャフトアセンブリを備え、電池アセンブリ及びシャフトアセンブリは、ハンドルアセンブリと機械的及び電気的に接続するように構成されている、外科用器具を提供する。
負荷装置は、超音波変換器、電極、若しくはセンサ、又はこれらの任意の組み合わせのうちのいずれか1つを含んでもよい。共通の第1段回路は、超音波、高周波電流、又はセンサ回路を駆動するように構成されてもよい。共通の第1段駆動回路は、第2段超音波駆動回路、第2段高周波駆動回路、又は第2段センサ駆動回路と接続するように構成されてもよい。第2段超音波駆動回路は超音波変換器と接続するように構成されてもよく、第2段高周波駆動回路は電極と接続するように構成され、第2段センサ駆動回路はセンサと接続するように構成されている。
別の態様では、本開示は、プロセッサと接続したメモリを含む制御回路であって、プロセッサはデジタル波形を生成するように構成されている、制御回路;プロセッサと接続した共通の第1段回路を含み、共通の第1段回路は、デジタル波形を受信し、デジタル波形をアナログ波形に変換し、アナログ波形を増幅するように構成された、ハンドルアセンブリ;及びアナログ波形を受信して増幅するために、共通の第1段回路と接続した第2段回路を含むシャフトアセンブリを備え、シャフトアセンブリは、ハンドルアセンブリと機械的及び電気的に接続するように構成されている、外科用器具を提供する。
共通の第1段回路は、超音波、高周波電流、又はセンサ回路を駆動するように構成されてもよい。共通の第1段駆動回路は、第2段超音波駆動回路、第2段高周波駆動回路、又は第2段センサ駆動回路と接続するように構成されてもよい。第2段超音波駆動回路は超音波変換器と接続するように構成されてもよく、第2段高周波駆動回路は電極と接続するように構成され、第2段センサ駆動回路はセンサと接続するように構成されている。
図30は、本開示の少なくとも1つの態様による、第1段回路3404と第2段回路3406とに分割された、発生器回路3400を示す。一態様では、本明細書に記載される外科システム1000の外科用器具は、複数の段に分割された発生器回路3400を含み得る。例えば、外科システム1000の外科用器具は、少なくとも2つの回路、つまりRFエネルギーのみ、超音波エネルギーのみ、及び/又はRFエネルギーと超音波エネルギーとの組み合わせの動作を可能にする増幅の第1段回路3404及び第2段回路3406に分割された発生器回路3400を備えてもよい。コンビネーションモジュール式シャフトアセンブリ3414は、ハンドルアセンブリ3412内に位置する共通の第1段回路3404、及びモジュール式シャフトアセンブリ3414と一体のモジュール式第2段回路3406によって給電され得る。外科システム1000の外科用器具に関連してこの説明全体を通して上述したように、電池アセンブリ3410及びシャフトアセンブリ3414は、ハンドルアセンブリ3412と機械的及び電気的に接続するように構成されている。エンドエフェクタアセンブリは、シャフトアセンブリ3414と機械的及び電気的に接続するように構成されている。
ここで図30を参照すると、発生器回路3400は、本明細書に記載される外科システム1000の外科用器具などの外科用器具の複数のモジュール式アセンブリ内に位置する複数の段に分割される。一態様では、制御段回路3402は、外科用器具の電池アセンブリ3410内に位置してもよい。制御段回路3402は、図28に関連して説明される制御回路3200である。制御回路3200は、内部メモリ3217(図30)(例えば、揮発性及び不揮発性メモリ)を含むプロセッサ3214を備え、電池3211と電気的に接続している。電池3211は、第1段回路3404、第2段回路3406、及び第3段回路3408にそれぞれ電力を供給する。上述したように、制御回路3200は、図35及び図36に関連して説明した回路及び技術を使用してデジタル波形4300(図37)を生成する。再び図30を参照すると、デジタル波形4300は、超音波変換器、高周波(例えば、RF)電極、又はそれらの組み合わせを個別に又は同時に駆動するように構成され得る。同時に駆動する場合、超音波波形又はRF波形のいずれかを選択するように、対応する第1段回路3404内にフィルタ回路を設けてもよい。かかるフィルタリング技術は、共同所有の米国公開特許第2017/0086910号、表題TECHNIQUES FOR CIRCUIT TOPOLOGIES FOR COMBINED GENERATORに記載されており、参照によりその全体が本明細書に組み込まれる。
第1段回路3404(例えば、第1段超音波駆動回路3420、第1段RF駆動回路3422、及び第1段センサ駆動回路3424)は、外科用器具のハンドルアセンブリ3412内に位置する。制御回路3200は、制御回路3200の出力SCL-A、SDA-Aを介して、超音波駆動信号を第1段超音波駆動回路3420に提供する。第1段超音波駆動回路3420を、図27に関連して詳細に説明する。制御回路3200は、制御回路3200の出力SCL-B、SDA-Bを介して、RF駆動信号を第1段RF駆動回路3422に提供する。第1段RF駆動回路3422を、図32に関連して詳細に説明する。制御回路3200は、制御回路3200の出力SCL-C、SDA-Cを介して、センサ駆動信号を第第1段センサ駆動回路3424に提供する。一般に、第1段回路3404のそれぞれは、第2段回路3406を駆動するためのデジタル/アナログ(DAC)変換器及び第1段増幅器部を含む。第1段回路3404の出力は、第2段回路3406の入力に提供される。
制御回路3200は、どのモジュールが制御回路3200にプラグ接続されているかを検出するように構成されている。例えば、制御回路3200は、ハンドルアセンブリ3412内に位置する第1段超音波駆動回路3420、第1段RF駆動回路3422、又は第1段センサ駆動回路3424が電池アセンブリ3410に接続されているかどうかを検出するように構成されている。同様に、第1段回路3404のそれぞれは、どの第2段回路3406がこれに接続されているかを検出することができ、その情報は、生成する信号波形の種類を決定するために制御回路3200に戻される。同様に、第2段回路3406のそれぞれは、どの第3段回路3408又は構成要素がこれに接続されているかを検出することができ、その情報は、生成する信号波形の種類を決定するために制御回路3200に戻される。
一態様では、第2段回路3406(例えば、超音波駆動第2段回路3430、RF駆動第2段回路3432、及びセンサ駆動第2段回路3434)は、外科用器具のシャフトアセンブリ3414内に位置する。第1段超音波駆動回路3420は、出力US左/US右を介して、第2段超音波駆動回路3430に信号を提供する。第2段超音波駆動回路3430は、例えば、変圧器、フィルタ、増幅器、及び/又は信号調整回路を含むことができる。第1段高周波(RF)電流駆動回路3422は、出力RF左/RF右を介して、第2段RF駆動回路3432に信号を提供する。変圧器及びブロッキングコンデンサに加えて、第2段RF駆動回路3432は更に、フィルタ、増幅器、及び信号調整回路を含んでもよい。第1段センサ駆動回路3424は、出力センサ1/センサ2を介して、第2段センサ駆動回路3434に信号を提供する。第2段センサ駆動回路3434は、センサの種類に応じてフィルタ、増幅器、及び信号調整回路を含んでもよい。第2段回路3406の出力は、第3段回路3408の入力に提供される。
一態様では、第3段回路3408(例えば、超音波変換器1120、RF電極3074a、3074b、及びセンサ3440)は、外科用器具の様々なアセンブリ3416内に位置してよい。一態様では、第2段超音波駆動回路3430は、超音波変換器1120の圧電スタックに駆動信号を提供する。一態様では、超音波変換器1120は、外科用器具の超音波変換器アセンブリ内に位置する。しかしながら、他の態様では、超音波変換器1120は、ハンドルアセンブリ3412、シャフトアセンブリ3414、又はエンドエフェクタ内に位置してもよい。一態様では、第2段RF駆動回路3432は、概ね外科用器具のエンドエフェクタ部分内に位置する、RF電極3074a、3074bに駆動信号を提供する。一態様では、第2段センサ駆動回路3434は、外科用器具全体に位置する様々なセンサ3440に駆動信号を提供する。
図31は、本開示の少なくとも1つの態様による、第1段回路3504が第2段回路3506と共通している、複数の段に分割された発生器回路3500を示す。一態様では、本明細書に記載される外科システム1000の外科用器具は、複数の段に分割された発生器回路3500を含み得る。例えば、外科システム1000の外科用器具は、少なくとも2つの回路、つまり高周波(RF)エネルギーのみ、超音波エネルギーのみ、及び/又はRFエネルギーと超音波エネルギーとの組み合わせの動作を可能にする増幅の第1段回路3504及び第2段回路3506に分割された発生器回路3500を備えてもよい。コンビネーションモジュール式シャフトアセンブリ3514は、ハンドルアセンブリ3512内に位置する共通の第1段回路3504、及びモジュール式シャフトアセンブリ3514と一体のモジュール式第2段回路3506によって給電され得る。外科システム1000の外科用器具に関連してこの説明全体を通して上述したように、電池アセンブリ3510及びシャフトアセンブリ3514は、ハンドルアセンブリ3512と機械的及び電気的に接続するように構成されている。エンドエフェクタアセンブリは、シャフトアセンブリ3514と機械的及び電気的に接続するように構成されている。
図31の実施例に示すように、外科用器具の電池アセンブリ3510部分は、前述の制御回路3200を含む第1の制御回路3502を備える。電池アセンブリ3510に接続するハンドルアセンブリ3512は、共通の第1段駆動回路3420を備える。前述したように、第1段駆動回路3420は、超音波、高周波(RF)電流、及びセンサ負荷を駆動するように構成されている。共通の第1段駆動回路3420の出力は、第2段超音波駆動回路3430、第2段高周波(RF)電流駆動回路3432、及び/又は第2段センサ駆動回路3434などの第2段回路3506のうちの任意の1つを駆動することができる。共通の第1段駆動回路3420は、シャフトアセンブリ3514がハンドルアセンブリ3512に接続されているときに、どの第2段回路3506がシャフトアセンブリ3514内に位置しているかを検出する。シャフトアセンブリ3514がハンドルアセンブリ3512に接続されると、共通の第1段駆動回路3420が、第2段回路3506(例えば、第2段超音波駆動回路3430、第2段RF駆動回路3432、及び/又は第2段センサ駆動回路3434)のうちのどの1つがシャフトアセンブリ3514内に位置しているかを判定する。この情報は、適切なデジタル波形4300(図37)を第2段回路3506に供給して、適切な負荷(例えば超音波、RF、又はセンサ)を駆動するために、ハンドルアセンブリ3512内に位置する制御回路3200に提供される。超音波変換器1120、電極3074a、3074b、又はセンサ3440などの第3段回路3508内の様々なアセンブリ3516に識別回路が含まれ得ることは理解されるであろう。したがって、第3段回路3508が第2段回路3506に接続されると、第2段回路3506は、識別情報に基づいて要求される負荷の種類を知る。
図32は、本開示の少なくとも1つの態様による、高周波電流(RF)を駆動するように構成された電気回路3600の一態様の概略図である。電気回路3600は、アナログマルチプレクサ3680を備える。アナログマルチプレクサ3680は、RF、電池、及び電力制御回路などの上流チャネルSCL-A、SDA-Aからの様々な信号を多重化する。電流センサ3682は、電源回路の戻り又は接地区間と直列に接続され、電源によって供給される電流を測定する。電界効果トランジスタ(FET)温度センサ3684は、周囲温度を提供する。パルス幅変調(PWM)ウォッチドッグタイマー3688は、主プログラムが定期的なシステムリセットの提供を怠る場合にシステムリセットを自動的に生じさせる。これは、ソフトウェア又はハードウェア障害のために電気回路3600がハングアップ又はフリーズした場合に、電気回路3600を自動的にリセットするように設けられている。電気回路3600は、例えば、図27に関して記載されるように、RF電極を駆動するため又は超音波変換器1120を駆動するために構成され得ることは理解されるであろう。したがって、ここで図32を再び参照すると、電気回路3600を使用して、超音波及びRF電極の両方を交互に駆動することができる。
駆動回路3686は、左右のRFエネルギー出力を提供する。信号波形を表すデジタル信号は、制御回路3200(図28)などの制御回路からアナログマルチプレクサ3680のSCL-A、SDA-A入力に供給される。デジタル/アナログ変換器3690(DAC)は、デジタル入力をアナログ出力に変換して、発振器3694に接続されたPWM回路3692を駆動する。PWM回路3692は、第1のトランジスタ出力段3698aに接続された第1のゲート駆動回路3696aに第1の信号を提供して、第1のRF+(左側)エネルギー出力を駆動する。PWM回路3692はまた、第2のトランジスタ出力段3698bに接続された第2のゲート駆動回路3696bに第2の信号を提供して、第2のRF(右側)エネルギー出力を駆動する。電圧センサ3699は、出力電圧を測定するためにRF左/RF出力端子間に接続される。駆動回路3686、第1の駆動回路3696a及び第2の駆動回路3696a、並びに第1のトランジスタ出力段3698a及び第2のトランジスタ出力段3698bは、第1段増幅器回路を画定する。動作中、制御回路3200(図28)は、直接デジタル合成(DDS)回路4100、4200(図35及び図36)などの回路を用いてデジタル波形4300(図37)を生成する。DAC3690は、デジタル波形4300を受信し、それをアナログ波形に変換し、これが第1段増幅器回路によって受信及び増幅される。
ここで図33を参照すると、本開示の少なくとも1つの態様による、外科用器具と共に使用するために電池3901によって電力供給されるRF発生器回路3902を動作させるための制御回路3900を示す。外科用器具は、超音波振動及び高周波電流の両方を用いて生体組織上で外科的凝固/切断処置を行い、高周波電流を用いて生体組織上で外科的凝固処置を行うように構成されている。
図33は、外科システム1000の外科用器具のために、デュアル発生器システムがRF発生器回路3902のエネルギーモダリティと超音波発生器回路3920のエネルギーモダリティとの間で切り替えることを可能にする制御回路3900を示す。一態様では、RF信号における電流閾値が検出される。組織のインピーダンスが低い場合、RFエネルギーが組織の処置源として使用されるとき、組織を通る高周波電流は高い。一態様によれば、外科システム1000の外科用器具上に位置する視覚インジケータ3912又は光は、この高電流期間中にオン状態となるように構成されてもよい。電流が閾値を下回ると、視覚インジケータ3912はオフ状態になる。したがって、フォトトランジスタ3914は、図33で示す制御回路3900に示すように、オン状態からオフ状態への遷移を検出し、RFエネルギーを解除するように構成することができる。このため、エネルギーボタンが解除され、エネルギースイッチ3926が開放されると、制御回路3900はリセットされ、RF発生器回路3902及び超音波発生器回路3920の両方がオフ状態に保たれる。
図39を参照すると、一態様では、RF発生器回路3902及び超音波発生器回路3920を管理する方法が提供される。RF発生器回路3902及び/又は超音波発生器回路3920は、例えば、多機能型電気外科用器具1108のハンドルアセンブリ1109、超音波変換器/RF発生器アセンブリ1120、電池アセンブリ、シャフトアセンブリ1129及び/又はノズル内に位置してもよい。制御回路3900は、エネルギースイッチ3926がオフ(例えば、開く)である場合はリセット状態に保たれる。したがって、エネルギースイッチ3926が開かれると、制御回路3900はリセットされ、RF発生器回路3902及び超音波発生器回路3920の両方がオフにされる。エネルギースイッチ3926が押され、エネルギースイッチ3926が係合される(例えば、閉鎖される)と、RFエネルギーが組織に送達され、電流感知昇圧変圧器3904によって動作される視覚インジケータ3912は、組織インピーダンスが低い間に点灯する。視覚インジケータ3912からの光は、超音波発生器回路3920をオフ状態に維持するための論理信号を提供する。一旦、組織インピーダンスが閾値より上に増加し、組織を通る高周波電流が閾値より下に減少すると、視覚インジケータ3912はオフになり、光はオフ状態に移行する。この移行により発生した論理信号によってリレー3908がオフになり、それによってRF発生器回路3902がオフになり、超音波発生器回路3920がオンになって凝固及び切断サイクルが完了する。
引き続き図39を参照すると、一態様では、デュアル発生器回路構成は、1つのモダリティに対して、電池3901により電力供給されるオンボードのRF発生器回路3902と、例えば、多機能型電気外科用器具1108のハンドルアセンブリ1109、電池アセンブリ、シャフトアセンブリ1129、ノズル、及び/又は超音波変換器/RF発生器アセンブリ1120内でオンボードであってもよい第2のオンボードの超音波発生器回路3920と、を用いる。超音波発生器回路3920はまた、電池3901によって動作する。様々な態様では、RF発生器回路3902及び超音波発生器回路3920は、ハンドルアセンブリ1109の一体型又は分離可能な構成要素であり得る。様々な態様によれば、デュアルRF/超音波発生器回路3902、3920をハンドルアセンブリ1109の一部として有することにより、複雑な配線の必要性が排除され得る。RF/超音波発生器回路3902、3920は、コードレス発生器システムの機能を同時に利用しながら、既存の発生器の全機能を提供するように構成されてもよい。
いずれかのタイプのシステムは、互いに通信していないモダリティに対して別個の制御を有することができる。外科医は、RF及び超音波を別々にかつ随意に活性化する。別のアプローチは、ボタン、組織の状態、器具作動パラメータ(例えばジョー閉鎖、力など)及び組織の処置を管理するためのアルゴリズムを共有する、完全に一体化された通信スキームを提供することである。この一体化の様々な組み合わせは、適切なレベルの機能及び性能を提供するために実装され得る。
上述したように、一態様では、制御回路3900は、電池をエネルギー源として備える、電池3901により電力供給されるRF発生器回路3902を含む。図示のように、RF発生器回路3902は、本明細書において電極3906a、3906b(すなわち活性電極3906a及び戻り電極3906b)と称される2つの導電表面に接続され、電極3906a、3906bをRFエネルギー(例えば、高周波電流)で駆動するように構成される。昇圧変圧器3904の第1の巻線3910aは、双極RF発生器回路3902及び戻り電極3906bの一方の極に直列に接続されている。一態様では、第1の巻線3910a及び戻り電極3906bは、双極RF発生器回路3902の負極に接続されている。双極RF発生器回路3902のもう一方の極は、リレー3908のスイッチ接点3909を通して活性電極3906aに接続されるか、又は電磁石3936によって移動されてスイッチ接点3909を動作させる可動鉄片を含む任意の適切な電磁切り替え装置に接続されている。電磁石3936が通電されるとスイッチ接点3909は閉じ、電磁石3936が非通電にされるとスイッチ接点3909は開く。スイッチ接点が閉じると、RF電流は、電極3906aと電極3906bとの間に位置する導電性組織(図示せず)を通って流れる。一態様では、活性電極3906aが双極RF発生器回路3902の正極に接続されることは理解されるであろう。
視覚インジケータ回路3905は、昇圧変圧器3904、直列レジスタR2、及び視覚インジケータ3912を備える。視覚インジケータ3912は、外科用器具1108並びに本明細書に記載されるものなどの他の電気外科システム及びツールと共に使用するように適合され得る。昇圧変圧器3904の第1の巻線3910aは、戻り電極3906bと直列に接続され、昇圧変圧器3904の第2の巻線3910bは、レジスタR2、及び例えばNE-2型ネオンバルブを含む視覚インジケータ3912と直列に接続されている。
動作時、リレー3908のスイッチ接点3909が開くと、活性電極3906aは双極RF発生器回路3902の正極から分離され、組織、戻り電極3906b、及び昇圧変圧器3904の第1の巻線3910aを通って電流が流れなくなる。そのため、視覚インジケータ3912は通電されず、発光しない。リレー3908のスイッチ接点3909が閉じると、活性電極3906aは双極RF発生器回路3902の正極に接続され、それにより、組織、戻り電極3906b、及び昇圧変圧器3904の第1の巻線3910aを通って電流が流れて、組織上で動作する、例えば、組織を切断し焼灼することが可能となる。
第1の電流は、活性電極3906aと戻り電極3906bとの間に位置する組織のインピーダンスの関数として第1の巻線3910aを通って流れ、昇圧変圧器3904の第1の巻線3910a全体に第1の電圧を提供する。昇圧した第2の電圧は、昇圧変圧器3904の第2の巻線3910b全体に誘導される。二次電圧はレジスタR2全体に現れ、組織を通る電流が所定の閾値よりも大きいときは視覚インジケータ3912に通電してネオンバルブを点灯させる。回路及び構成要素の値は例示的であり、それに限定されないことが理解されるであろう。リレー3908のスイッチ接点3909が閉じると、電流が組織を通って流れ、視覚インジケータ3912がオンになる。
ここで制御回路3900のエネルギースイッチ3926部分を参照すると、エネルギースイッチ3926が開放位置であるとき、論理ハイが第1のインバータ3928の入力に適用され、論理ローがANDゲート3932の2つの入力のうちの1つに適用される。したがって、ANDゲート3932の出力はローであり、トランジスタ3934はオフであり、電流が電磁石3936の巻線を通って流れるのを防ぐ。電磁石3936が非通電状態であると、リレー3908のスイッチ接点3909は開いたままであり、電流が電極3906a、3906bを通って流れるのを防ぐ。第1のインバータ3928の論理ロー出力も第2のインバータ3930に適用され、出力をハイにして、フリップフロップ3918(例えば、D型フリップフロップ)をリセットする。このとき、Q出力はローになり、超音波発生器回路3920の回路をオフにし、
Figure 0007460524000004
出力はハイになり、ANDゲート3932の他の入力に適用される。
ユーザが器具ハンドル上のエネルギースイッチ3926を押して、電極3906aと電極3906bとの間の組織にエネルギーを印加すると、エネルギースイッチ3926は閉じて、第1のインバータ3928の入力に論理ローを適用し、これがANDゲート3932の他の入力に論理ハイを適用してANDゲート3932の出力をハイにして、トランジスタ3934をオンにする。オン状態では、トランジスタ3934は、電磁石3936の巻線を通して電流を伝導及びシンクして電磁石3936に通電し、リレー3908のスイッチ接点3909を閉じる。上述のように、スイッチ接点3909が閉じると、組織が電極3906aと電極3906bとの間に位置するときに、電流は、電極3906a、3906b及び昇圧変圧器3904の第1の巻線3910aを通って流れることができる。
上述のように、電極3906a、3906bを通って流れる電流の大きさは、電極3906aと電極3906bとの間に位置する組織のインピーダンスに依存する。最初に、組織のインピーダンスは低く、組織及び第1の巻線3910aを通る電流の大きさは高い。そのため、第2の巻線3910bに印加される電圧は、視覚インジケータ3912をオンにするほど十分に高い。視覚インジケータ3912が発する光は、フォトトランジスタ3914をオンにし、これがインバータ3916の入力をローに引き下げ、インバータ3916の出力をハイにする。フリップフロップ3918のCLKに適用されるハイ入力は、フリップフロップ3918のQ又は
Figure 0007460524000005
出力に影響を与えず、Q出力はローのままであり、
Figure 0007460524000006
出力はハイのままである。したがって、視覚インジケータ3912は通電されたままであり、超音波発生器回路3920はオフとなり、多機能型電気外科用器具の超音波変換器3922及び超音波ブレード3924は起動しなくなる。
組織を通って流れる電流によって発生した熱に起因して、電極3906aと電極3906bとの間の組織が乾燥すると、組織のインピーダンスは増加して、そこを通る電流は減少する。第1の巻線3910aを通る電流が減少すると、第2の巻線3910bにわたる電圧も減少し、電圧が視覚インジケータ3912を動作させるために必要な最小閾値を下回ると、視覚インジケータ3912及びフォトトランジスタ3914はオフになる。フォトトランジスタ3914がオフになると、論理ハイがインバータ3916の入力に適用され、論理ローがフリップフロップ3918のCLK入力に適用されて論理ハイをQ出力に、論理ローを
Figure 0007460524000007
出力にクロックする。Q出力における論理ハイによって、超音波発生器回路3920がオンになり、超音波変換器3922及び超音波ブレード3924を起動させて電極3906aと電極3906aとの間に位置する組織の切断を開始させる。超音波発生器回路3920がオンになるのと同時に又はほぼ同時に、フリップフロップ3918の
Figure 0007460524000008
出力はローになり、ANDゲート3932の出力をローにして、トランジスタ3934をオフにし、それにより、電磁石3936を非通電にして、リレー3908のスイッチ接点3909を開いて電極3906a、3906bを通る電流の流れを遮断する。
リレー3908のスイッチ接点3909が開いている間、電流は、電極3906a、3906b、組織、及び昇圧変圧器3904の第1の巻線3910aを通って流れない。このため、第2の巻線3910bにわたって電圧は発生せず、視覚インジケータ3912を通って電流は流れない。
ユーザが器具ハンドル上のエネルギースイッチ3926を握ってエネルギースイッチ3926を閉じた状態に維持する間、フリップフロップ3918のQ及び
Figure 0007460524000009
出力の状態は同じままである。したがって、双極RF発生器回路3902から電極3906a、3906bを通って電流が流れていない間は、超音波ブレード3924は起動した状態を維持してエンドエフェクタのジョーの間の組織を切断し続ける。ユーザが器具ハンドルのエネルギースイッチ3926を解放すると、エネルギースイッチ3926が開いて、第1のインバータ3928の出力はローになり、第2のインバータ3930の出力はハイになってフリップフロップ3918をリセットし、Q出力をローにして超音波発生器回路3920をオフにする。同時に、
Figure 0007460524000010
出力はハイになり、ここで回路はオフ状態になって、ユーザが器具ハンドル上のエネルギースイッチ3926を作動させて、エネルギースイッチ3926を閉じ、電極3906aと電極3906bとの間に位置する組織に電流を印加し、上述のように組織にRFエネルギーを印加し、組織に超音波エネルギーを印加するサイクルを繰り返す準備が整う。
図34は、本明細書で説明される特徴の多くを含むか又は実装することができる、外科システム1000の外科用器具のうちの任意の1つと共に使用するためのフィードバックシステムを含む外科システム1000の一態様を表す、外科システム4000の図である。外科システム4000は、臨床医がトリガ4010を操作すると起動され得るエンドエフェクタ4006を含む外科用器具に接続された発生器4002を含んでもよい。様々な態様では、エンドエフェクタ4006は、超音波振動を送達して、生体組織に対して外科的凝固/切断処置を行うための超音波ブレードを含むことができる。他の態様では、エンドエフェクタ4006は、生体組織に対して外科的凝固又は焼灼処置を行うために電気外科用高周波電流エネルギー源に接続された導電性素子と、生体組織に対して切断処置を行うための鋭利な刃部を有する機械的ナイフ又は超音波ブレードのいずれかと、を含み得る。トリガ4010が作動されると、力センサ4012はトリガ4010に加えられている力の量を示す信号を生成することができる。力センサ4012に加えて、又はその代わりに、外科用器具は、トリガ4010の位置(例えば、どれだけ深くトリガが押下されたか、又は他の方法で作動されたか)を示す信号を生成し得る、位置センサ4013を含むことができる。一態様では、位置センサ4013は、外管状シースと共に位置決めされたセンサ、又は外科用器具の外管状シース内に位置する往復運動管状作動部材であってもよい。一態様では、センサは、磁界に応答してその出力電圧を変化させるホール効果センサ又は任意の適切な変換器であってもよい。ホール効果センサは、近接スイッチング、位置決め、速度検出及び電流感知用途に使用することができる。一態様では、ホール効果センサは、アナログ変換器として動作し、電圧を直接戻す。既知の磁界により、ホールプレートからの距離を判定することができる。
制御回路4008は、センサ4012及び/又は4013から信号を受信することができる。制御回路4008は、任意の適切なアナログ又はデジタル回路構成要素を含むことができる。制御回路4008は、更に、発生器4002及び/又は変換器4004と通信して、トリガ4010に加えられる力、及び/又はトリガ4010の位置、及び/又は外管状シース内に位置する往復運動管状作動部材に対する上記の外管状シースの位置(例えば、ホール効果センサと磁石との組み合わせによって測定される)に基づいて、エンドエフェクタ4006に送達される電力、及び/又はエンドエフェクタ4006の発生器レベル若しくは超音波ブレード振幅を変調することができる。例えば、より大きな力がトリガ4010に加えられると、より多くの電力及び/又はより高い超音波ブレード振幅がエンドエフェクタ4006に送達され得る。様々な態様によれば、力センサ4012は、マルチポジションスイッチによって置換されてもよい。
様々な態様によれば、エンドエフェクタ4006は、クランプ又はクランプ機構を含んでもよい。トリガ4010が最初に作動されると、クランプ機構は閉じて、クランプアームとエンドエフェクタ4006との間に組織をクランプすることができる。トリガに加えられる力が増加すると(例えば、力センサ4012によって感知されるように)、制御回路4008は、変換器4004によってエンドエフェクタ4006に送達される電力及び/又はエンドエフェクタ4006のあたりでもたらされる発生器レベル若しくは超音波ブレード振幅を増加させることができる。一態様では、位置センサ4013によって感知されるトリガ位置、又は位置センサ4013によって(例えば、ホール効果センサを用いて)感知されるクランプ若しくはクランプアーム位置は、エンドエフェクタ4006の電力及び/又は振幅を設定するために制御回路4008によって使用され得る。例えば、トリガが完全作動位置に向かって更に移動されるか、又はクランプ若しくはクランプアームが超音波ブレード(又はエンドエフェクタ4006)に向かって更に移動すると、エンドエフェクタ4006の電力及び/又は振幅は増加され得る。
様々な態様によれば、外科システム4000の外科用器具はまた、エンドエフェクタ4006に送達された電力の量を示すために、1つ又は2つ以上のフィードバック装置を含むことができる。例えば、スピーカ4014は、エンドエフェクタの電力を示す信号を発することができる。様々な態様によれば、スピーカ4014は一連のパルス音を発することができ、その音の周波数は電力を示す。スピーカ4014に加えて、又はその代わりに、外科用器具は、視覚ディスプレイ4016を含むことができる。視覚ディスプレイ4016は、任意の好適な方法に従ってエンドエフェクタの電力を示すことができる。例えば、視覚ディスプレイ4016は一連のLEDを含んでもよく、ここでエンドエフェクタの電力は照明されたLEDの数によって示される。スピーカ4014及び/又は視覚ディスプレイ4016は、制御回路4008によって駆動され得る。様々な態様によれば、外科用器具は、トリガ4010に接続されたラチェット装置を含むことができる。より強い力がトリガ4010に加えられると、ラチェット装置は可聴音を生成して、エンドエフェクタの電力の間接的指標を提供することができる。外科用器具は、安全性を高めることができる他の機構を含むことができる。例えば、制御回路4008は、所定の閾値を超えてエンドエフェクタ4006に電力が送達されることを防止するように構成され得る。また、制御回路4008は、エンドエフェクタの電力の変化が指示される(例えば、スピーカ4014又は視覚ディスプレイ4016によって)時刻と、エンドエフェクタの電力の変化が送達される時刻との間に遅延を設けることができる。このようにして、臨床医は、エンドエフェクタ4006に送達される超音波出力のレベルが変化しようとしているという警告を十分なゆとりを持って得ることができる。
一態様では、外科システム1000の超音波又は高周波電流発生器は、ルックアップテーブル内に記憶される所定の数の位相点を望ましく用いて波形をデジタル化するように、電気信号波形をデジタル的に発生させるように構成され得る。メモリ、フィールドプログラマブルゲートアレイ(FPGA)、又は任意の好適な不揮発性メモリで定義されたテーブル内に、位相点を記憶させてよい。図35は、電気信号波形のための複数の波形を発生させるように構成された、直接デジタル合成(DDS)回路4100などのデジタル合成回路のための、基本的アーキテクチャの一態様を示す。発生器ソフトウェア及びデジタル制御は、ルックアップテーブル4104内のアドレスを走査するようにFPGAに指示を出すことができ、これが続いて電力増幅器に給電するDAC回路4108に様々なデジタル入力値を提供する。アドレスは、目的の周波数に従って走査されてよい。こうしたルックアップテーブル4104を使用することは、組織内、又は変換器、RF電極、複数の変換器内に同時に、複数のRF電極内に同時に、若しくはRF及び超音波器具の組み合わせ内に供給され得る、様々なタイプの波形を発生させることを可能にする。更に、複数の波形を表す複数のルックアップテーブル4104を作成し、記憶し、発生器から組織に適用することができる。
波形信号は、超音波変換器及び/若しくはRF電極、又はそれらの複数(例えば、2つ若しくはそれ以上の超音波変換器及び/又は2つ若しくはそれ以上のRF電極)の出力電流、出力電圧、又は出力電力のうち、少なくとも1つを制御するように構成されてよい。更に、外科用器具が超音波コンポーネントを備える場合、波形信号は、少なくとも1つの外科用器具の超音波変換器の少なくとも2つの振動モードを駆動させるように構成されてよい。したがって、発生器は、波形信号を少なくとも1つの外科用器具へと提供するように構成されてよく、波形信号は、テーブル内の複数の波形の少なくとも1つの波形に応答する。なお、2つの外科用器具に提供される波形信号は、2つ又はそれ以上の波形を含んでよい。テーブルは複数の波形に関係した情報を含んでよく、またテーブルは発生器内に記憶されてよい。一態様又は一実施例では、テーブルは、直接デジタル合成テーブルであってよく、発生器のFPGA内に記憶されてよい。テーブルは、波形をカテゴリー化するのに便利である任意の方法によってアドレス指定されてよい。一態様によれば、直接デジタル合成テーブルであり得るテーブルは、波形信号の周波数に従ってアドレス指定される。更に、複数の波形に関係した情報は、デジタル情報としてテーブル内に記憶されてよい。
アナログ電気信号波形は、超音波変換器及び/若しくはRF電極、又はそれらの複数(例えば、2つ若しくはそれ以上の超音波変換器及び/又は2つ若しくはそれ以上のRF電極)の出力電流、出力電圧、又は出力電力のうち、少なくとも1つを制御するように構成されてよい。更に、外科用器具が超音波コンポーネントを備える場合、アナログ電気信号波形は、少なくとも1つの外科用器具の超音波変換器の少なくとも2つの振動モードを駆動させるように構成されてよい。したがって、発生器回路は、アナログ電気信号波形を少なくとも1つの外科用器具へと提供するように構成されてよく、アナログ電気信号波形は、ルックアップテーブル4104内に記憶された複数の波形の少なくとも1つの波形に対応する。なお、2つの外科用器具に提供されるアナログ電気信号波形は、2つ又はそれ以上の波形を含んでよい。ルックアップテーブル4104は、複数の波形に関連した情報を含んでよく、またルックアップテーブル4104は、発生器回路又は外科用器具のいずれかに記憶されてよい。一態様又は実施例では、ルックアップテーブル4104は、直接デジタル合成テーブルであってよく、これは発生器回路又は外科用器具のFPGAに記憶されてよい。ルックアップテーブル4104は、波形をカテゴリー化に便利である任意の方法によってアドレス指定されてよい。一態様によれば、直接デジタル合成テーブルであり得るルックアップテーブル4104は、所望のアナログ電気信号波形の周波数に従ってアドレス指定される。更に、複数の波形に関係した情報は、デジタル情報としてルックアップテーブル4104に記憶されてよい。
計装システム及び通信システムにおけるデジタル技術の広範な使用を伴い、基準周波数から複数の周波数を発生させるデジタル的制御法が発展し、直接デジタル合成と呼ばれている。基本アーキテクチャを図35に示す。簡略化された本ブロック図では、DDS回路は、発生器回路のプロセッサ、コントローラ、又は論理機構、及び外科システム1000の発生器回路内に位置するメモリ回路に接続されている。DDS回路4100は、アドレスカウンタ4102、ルックアップテーブル4104、レジスタ4106、DAC回路4108、及びフィルタ4112を備える。安定クロックfは、アドレスカウンタ4102により受信され、レジスタ4106は、正弦波(又は他の任意の波形)のサイクルの1つ又は2つ以上の整数をルックアップテーブル4104内に記憶するプログラマブル読み出し専用メモリ(PROM)を駆動する。アドレスカウンタ4102が記憶場所をステップスルーすると、ルックアップテーブル4104内に記憶された値は、DAC回路4108に接続されたレジスタ4106に書き込まれる。ルックアップテーブル4104の記憶場所における信号の対応するデジタル振幅は、続いてアナログ出力信号4110を発生させるDAC回路4108を駆動する。アナログ出力信号4110のスペクトル純度は、主としてDAC回路4108により決定される。位相雑音は、基本的に基準クロックfのものである。DAC回路4108から出力される第1のアナログ出力信号4110は、フィルタ4112によりフィルタリングされ、フィルタ4112により出力される第2のアナログ出力信号4114は、発生器回路の出力に接続された出力を有する増幅器へと提供される。第2のアナログ出力信号は、周波数foutを有する。
DDS回路4100は、サンプリングされたデータシステムであるため、量子化雑音、エイリアシング、フィルタリングなどのサンプリングに伴う問題を考慮しなければならない。例えば、位相ロックループ(PLL)ベースのシンセサイザの出力の高次高調波がフィルタリングされ得るのに対して、DAC回路4108出力周波数の高次高調波はナイキスト帯域幅に折り返して、それらをフィルタリング不可にする。ルックアップテーブル4104は、サイクルの整数に関する信号データを含む。最終出力周波数foutは、基準クロック周波数fを変更することで、又はPROMを再プログラミングすることによって変更することができる。
DDS回路4100は、複数のルックアップテーブル4104を含んでもよく、ルックアップテーブル4104は、所定のサンプル数により表される波形を記憶し、サンプルは、所定の波形形状を画定する。したがって、独自の形状を有する複数の波形は、複数のルックアップテーブル4104内に記憶されて、器具設定又は組織フィードバックに基づく様々な組織処置を提供することができる。波形の例としては、表面組織凝固のための高い波高率のRF電気信号波形、より深い組織貫通のための低い波高率のRF電気信号波形、及び効果的な修正凝固を促進する電気信号波形が挙げられる。一態様では、DDS回路4100は、複数の波形ルックアップテーブル4104を作成することができ、組織処置手順の間(例えば、ユーザ入力又はセンサ入力に基づく「オンザフライ」又は実質実時間にて)、所望の組織効果及び/又は組織フィードバックに基づいて、個別のルックアップテーブル4104に記憶された様々な波形間で切り替えを行うことができる。
したがって、波形間の切り替えは、例えば、組織インピーダンス及び他の要素に基づくことができる。他の態様では、ルックアップテーブル4104は、サイクル毎に組織内へと送達される電力を最大化するよう形成される電気信号波形(すなわち、台形波又は方形波)を記憶することができる。他の態様では、ルックアップテーブル4104は、同期された波形を記憶することができ、その結果、この波形が、RF及び超音波駆動信号を送達しながら、外科システム1000の多機能型外科用器具による電力送達を最大化する。更に他の態様では、ルックアップテーブル4104は、超音波周波数のロックを維持しながら、超音波並びにRF治療用及び/又は治療量以下のエネルギーを同時に駆動する電気信号波形を記憶することができる。様々な器具及びそれらの組織効果に特有のカスタム波形は、発生器回路の不揮発性メモリ内、又は外科システム1000の不揮発性メモリ(例えば、EEPROM)内に記憶され得、また多機能型外科用器具を発生器回路に接続する際にフェッチされる。多くの高波高率「凝固」波形に使用される、指数関数的に減衰する正弦曲線の例を図37に示す。
DDS回路4100のよりフレキシブルで効果的な実装は、数値制御発振器(NCO)と呼ばれるデジタル回路を用いる。DDS回路4200などの、よりフレキシブルで効果的なデジタル合成回路のブロック図を図36に示す。この簡略化されたブロック図では、DDS回路4200は、発生器のプロセッサ、コントローラ、又は論理機構に、及び発生器又は外科システム1000の外科用器具のうちのいずれかに位置するメモリ回路に接続されている。DDS回路4200は、負荷レジスタ4202、並列デルタ位相レジスタ4204、加算器回路4216、位相レジスタ4208、ルックアップテーブル4210(位相-振幅変換器)、DAC回路4212、及びフィルタ4214を備える。加算器回路4216及び位相レジスタ4208は、位相アキュムレータ4206の一部を形成する。クロック周波数fは、位相レジスタ4208及びDAC回路4212に適用される。負荷レジスタ4202は、基準クロック周波数信号fの分数としての出力周波数を特定する調整ワードを受信する。負荷レジスタ4202の出力は、調整ワードMと共に、並列デルタ位相レジスタ4204に提供される。
DDS回路4200は、クロック周波数fを発生させるサンプルクロック、位相アキュムレータ4206、及びルックアップテーブル4210(例えば、位相-振幅変換器)を含む。位相アキュムレータ4206の内容は、クロックサイクルf毎に一度更新される。位相アキュムレータ4206が更新されると、並列デルタ位相レジスタ4204内に記憶されたデジタル数Mは、加算器回路4216により位相レジスタ4208内の数に加算される。並列デルタ位相レジスタ4204内の数は、00...01であり、位相アキュムレータ4206の初期の内容は、00...00であると仮定する。位相アキュムレータ4206は、クロックサイクル毎に00...01と更新される。位相アキュムレータ4206が32-ビット幅である場合、位相アキュムレータ4206が00...00へと戻るまでに232クロックサイクル(40億超)が必要とされ、サイクルは繰り返される。
位相アキュムレータ4206の切り捨てられた出力4218は、位相-振幅変換器のルックアップテーブル4210へと提供され、またルックアップテーブル4210の出力はDAC回路4212に接続される。位相アキュムレータ4206の切り捨てられた出力4218は、正弦(又は余弦)ルックアップテーブルへのアドレスとして機能する。ルックアップテーブル内のアドレスは、正弦波における0°~360°の位相点に対応する。ルックアップテーブル4210は、正弦波の1つの完全サイクルの対応するデジタル振幅情報を含む。したがって、ルックアップテーブル4210は、位相情報を位相アキュムレータ4206からデジタル振幅ワードにマッピングし、続いてこれがDAC回路4212を駆動させる。DAC回路の出力は、第1のアナログ信号4220であり、フィルタ4214によりフィルタリングされる。フィルタ4214の出力は、発生器回路の出力に接続された電力増幅器へと提供される、第2のアナログ信号4222である。
一態様では、デジタル化され得る波形が、256(28)~281、474、976、710、656(248)の範囲(表1に示すように、nは正の整数である)の任意の好適な2n位相点の数であるにもかかわらず、電気信号波形を1024(210)位相点へとデジタル化してよい。電気信号波形はA(θ)として表されてもよく、点nにおける正規化された振幅Aは位相角θにより表され、点nにおける位相点と呼ばれる。個別の位相点nの数は、DDS回路4200(及び図35に示すDDS回路4100)の調整分解能を決定する。
表1は、多数の位相点にデジタル化された電気信号波形を特定する。
Figure 0007460524000011
発生器回路アルゴリズム及びデジタル制御回路は、ルックアップテーブル4210内のアドレスを走査し、次にルックアップテーブル4210はフィルタ4214及び電力増幅器に給電するDAC回路4212に様々なデジタル入力値を提供する。アドレスは、目的の周波数に従って走査されてよい。ルックアップテーブルを使用することで、DAC回路4212によりアナログ出力信号へと変換され、フィルタ4214によりフィルタリングされ、発生器回路の出力に接続した電力増幅器により増幅され、RFエネルギーの形態で組織に供給されるか又は超音波変換器に供給され、かつ熱の形態でエネルギーを組織へと送達する超音波振動形態で組織に適用され得る、様々な種類の形状を発生させることが可能である。増幅器の出力は、例えば、単一のRF電極、同時に複数のRF電極、単一の超音波変換器、同時に複数の超音波変換器又はRF変換器及び超音波変換器の組み合わせに適用することができる。更に、複数の波形テーブルを作成し、記憶して、発生器回路から組織に適用することができる。
再び図35を参照すると、n=32及びM=1の場合、位相アキュムレータ4206はオーバフローして再起動する前に、232個の可能な出力をステップスルーする。対応する出力波周波数は、232で除算された入力クロック周波数に等しい。M=2である場合は、位相レジスタ1708は2倍の速度で「ロールオーバー」し、出力周波数は倍増する。これは、以下のように一般化され得る。
n-ビットを蓄積するように構成された位相アキュムレータ4206の場合(nは、一般にほとんどのDDSシステムで24~32の範囲であるが、前述したように、nは広範囲の選択肢から選択されてよい)、2の可能な位相点が存在する。デルタ位相レジスタにおけるデジタルワードMは、位相アキュムレータがクロックサイクル毎に増分する量を表す。fがクロック周波数である場合、出力正弦波の周波数は、以下に等しい。
Figure 0007460524000012
上記の式は、DDS「調整方程式」として知られている。システムの周波数分解能は、
Figure 0007460524000013
と等しいことに留意されたい。n=32では、分解能は40億における一部よりも高い。DDS回路4200の一態様では、位相アキュムレータ4206外の全てのビットがルックアップテーブル4210に伝えられるわけではなく、切り捨てられて、例えば、最初の13~15個の最上位ビット(MSB)のみが残される。これはルックアップテーブル4210のサイズを低減し、かつ周波数分解能に影響を及ぼさない。位相の切り捨ては、少量だが許容できる位相雑音の量のみを最終出力に追加する。
電気信号波形は、所定周波数における電流、電圧、又は電力により特徴付けられてよい。更に、外科システム1000の外科用器具が超音波コンポーネントを備える場合、電気信号波形は、少なくとも1つの外科用器具の超音波変換器の少なくとも2つの振動モードを駆動させるように構成されてよい。したがって、発生器回路は、電気信号波形を少なくとも1つの外科用器具に提供するように構成されてよく、電気信号波形は、ルックアップテーブル4210(又は、図35のルックアップテーブル4104)内に記憶された所定の波形を特徴とする。なお、電気信号波形は、2つ又はそれ以上の波形の組み合わせであってよい。ルックアップテーブル4210は、複数の波形に関係した情報を含んでよい。一態様又は一実施例では、ルックアップテーブル4210はDDS回路4200により生成されてよく、直接デジタル合成テーブルと呼ばれることもある。DDSは、オンボードメモリにおける大きな反復波形の第1記憶動作により、作動する。波形(正弦、三角形、方形、任意)のサイクルは、テーブル1に示すように、所定の数の位相点によって表され、メモリに記憶され得る。一度波形がメモリ内部に記憶されると、非常に正確な周波数にて波形が発生され得る。直接デジタル合成テーブルは、発生器回路の不揮発性メモリ内に記憶され得、かつ/又は発生器回路内のFPGA回路と共に実装され得る。ルックアップテーブル4210は、波形をカテゴリー化するのに便利な任意の好適な技術によってアドレス指定されてよい。一態様によれば、ルックアップテーブル4210は、電気信号波形の周波数に従ってアドレス指定される。更に、複数の波形に関連する情報は、メモリ内のデジタル情報として、又はルックアップテーブル4210の一部として記憶されてよい。
一態様では、発生器回路は、電気信号波形を少なくとも2つの外科用器具へと同時に提供するように構成されてよい。発生器回路はまた、発生器回路の単一の出力チャネルを介して、2つの外科用器具へと同時に電気信号波形(2つ又はそれ以上の波形によって特徴付けられ得る)を提供するように構成されてもよい。例えば、一態様では、電気信号波形は、超音波変換器を駆動する第1の電気信号(例えば、超音波駆動信号)、第2のRF駆動信号及び/又はそれらの組み合わせを含む。更に、電気信号波形は、複数の超音波駆動信号、複数のRF駆動信号、並びに/又は複数の超音波駆動信号及びRF駆動信号の組み合わせを含んでよい。
更に、本開示に従った発生器回路の操作方法は、電気信号波形を発生させること、及び発生した電気信号波形を外科システム1000の外科用器具のうちのいずれか1つに提供することを含み、電気信号波形を発生させることは、メモリから電気信号波形に関係した情報を受信することを含む。発生した電気信号波形は、少なくとも1つの波形を含む。更に、発生した電気信号波形を少なくとも1つの外科用器具へと提供することは、電気信号波形を少なくとも2つの外科用器具へと同時に提供することを含む。
本明細書に記載される発生器回路は、様々な種類の直接デジタル合成テーブルの生成を可能にし得る。発生器回路により発生する、種々の組織の処置に好適なRF/電気外科用信号の波形の例としては、高波高率を伴うRF信号(RFモードで表面凝固に使用され得る)、低波高率を伴うRF信号(より深い組織貫通のために使用され得る)及び効率的な修正凝固を促進する波形が挙げられる。発生器回路はまた、直接デジタル合成ルックアップテーブル4210を用いて複数の波形を発生させることができ、また、オンザフライで所望の組織効果に基づく特定の波形間で切り替えを行うことができる。切り替えは、組織インピーダンス及び/又は他の要素に基づいてよい。
従来の正弦/余弦波形に加えて、発生器回路は、サイクル毎の組織への電力を最大化する波形(複数可)(すなわち、台形波又は方形波)を発生させるように構成されてよい。発生器回路が、RF信号及び超音波信号を同時に駆動することを可能にする回路トポロジーを含むのであるならば、発生器回路は、RF信号及び超音波信号を同時に駆動する場合に、負荷へと送達される電力を最大化するように、かつ超音波周波数ロックを維持するように同期される波形(複数可)を提供することができる。更に、器具及びその組織効果に固有のカスタム波形は、不揮発性メモリ(NVM)内又は器具のEEPROM内に記憶され得、また外科システム1000の外科用器具のうちのいずれか1つを発生器回路に接続する際にフェッチされ得る。
DDS回路4200は、複数のルックアップテーブル4104を備えてよく、ルックアップテーブル4210は、所定数の位相点(サンプルと呼ばれる場合もある)により表される波形を記憶し、位相点は所定の波形の形状を画定する。したがって、独自の形状を有する複数の波形は、複数のルックアップテーブル4210内に記憶されて、器具設定又は組織フィードバックに基づく様々な組織処置を提供することができる。波形の例としては、表面組織凝固のための高い波高率のRF電気信号波形、より深い組織貫通のための低い波高率のRF電気信号波形、及び効果的な修正凝固を促進する電気信号波形が挙げられる。一態様では、DDS回路4200は、複数の波形ルックアップテーブル4210を作成することができ、組織処置手順の間(例えば、ユーザ入力又はセンサ入力に基づく「オンザフライ」又は実質実時間にて)、所望の組織効果及び/又は組織フィードバックに基づいて、様々なルックアップテーブル4210に記憶された様々な波形間で切り替えを行うことができる。
したがって、波形間の切り替えは、例えば、組織インピーダンス及び他の要素に基づくことができる。他の態様では、ルックアップテーブル4210は、サイクル毎に組織内へと送達される電力を最大化するよう形成される電気信号波形(すなわち、台形波又は方形波)を記憶することができる。他の態様では、ルックアップテーブル4210は、同期した波形を記憶することができ、その結果、この波形が、RF及び超音波駆動信号を送達するときに、外科システム1000の外科用器具のうちの任意の1つによる電力送達を最大化する。更に他の態様では、ルックアップテーブル4210は、超音波周波数のロックを維持しながら、超音波並びにRF治療用及び/又は治療量以下のエネルギーを同時に駆動する電気信号波形を記憶することができる。一般に、出力波形は、正弦波、余弦波、脈波、方形波などの形態であってもよい。それにもかかわらず、異なる器具及びそれらの組織効果に特有のより複雑なカスタム波形は、発生器回路の不揮発性メモリ内、又は外科用器具の不揮発性メモリ(例えば、EEPROM)内に記憶することができ、また外科用器具を発生器回路に接続する際にフェッチされ得る。カスタム波形の一例は、図37に示されるような、多くの高波高率「凝固」波形に使用される、指数関数的に減衰する正弦波形である。
図37は、アナログ波形4304の本開示の少なくとも1つの態様による(比較目的のために離散時間デジタル電気信号波形4300に重ね合わされて示される)、離散時間デジタル電気信号波形4300の1サイクルを示す。水平軸は、時間(t)を表し、縦軸はデジタル位相点を表す。デジタル電気信号波形4300は、例えば、所望のアナログ波形4304のデジタル離散時間バージョンである。デジタル電気信号波形4300は、1サイクル又は期間TにわたるクロックサイクルTclk毎の振幅を表す、振幅位相点4302を記憶することにより生成される。デジタル電気信号波形4300は、任意の好適なデジタル処理回路により、1期間Tにわたって生成される。振幅位相点は、メモリ回路内に記憶されたデジタルワードである。図35、図36に示す実施例では、デジタルワードは、26又は64ビットの分解能を有する、振幅位相点を記憶することができる6ビットワードである。図35、図36に示す実施例は、例証目的のためのものであり、実際の実装では分解能ははるかに高くなり得ることが理解されるであろう。1サイクルTにわたるデジタル振幅位相点4302は、例えば、図35及び図36に関連して記載されているようなルックアップテーブル4104、4210内のストリングワードのストリングとして、メモリ内に記憶される。これも図35、図36に関して記載されるように、アナログバージョンのアナログ波形4304を発生させるために、振幅位相点4302は、クロックサイクルTclk毎に0~Tでメモリから順番に読み取られ、かつDAC回路4108、4212によって変換される。追加のサイクルは、所望され得るだけのサイクル又は期間にわたって0~Tで、デジタル電気信号波形4300の振幅位相点4302を繰り返し読み取ることによって生成することができる。平滑アナログバージョンのアナログ波形4304は、フィルタ4112、4214(図35及び図36)によってDAC回路4108、4212の出力をフィルタリングすることにより達成される。フィルタリングされたアナログ出力信号4114、4222(図35及び図36)は、電力増幅器の入力に適用される。
超音波外科用器具アーキテクチャー
図38は、一態様の超音波システム137010を例示している。一態様の超音波システム137010は、超音波トランスデューサ137014に結合された超音波信号発生器137012、ハンドピースハウジング137016を備えるハンドピースアセンブリ137060、及び超音波ブレード137050を備える。「ランジュヴァンスタック」として知られている超音波トランスデューサ137014は、一般に、変換部分137018と、第1の共振器又はエンドベル137020と、第2の共振器又はフォアベル137022と、補助構成要素と、を含む。様々な態様では、超音波トランスデューサ137014は、以下により詳細に説明されるように、好ましくは、長さが、1つのシステム波長の半分の整数倍(nλ/2)である。音響アセンブリ137024は、超音波トランスデューサ137014と、マウント137026と、速度変換器137028と、表面137030とを含むことができる。
本明細書では、「近位」及び「遠位」という用語は、ハンドピースアセンブリ137060を握っている臨床医に対して使用されることが理解されよう。したがって、超音波ブレード137050は、より近位側のハンドピースアセンブリ137060に対して遠位側である。便宜上及び明瞭さのため、「上部」及び「下部」のような空間的用語もまた、本明細書では、ハンドピースアセンブリ137060を把持する臨床医に対して使用されることが更に理解されよう。しかしながら、外科器具は、多くの向き及び位置で使用されるものであり、これらの用語は、限定的かつ絶対的なものであることを意図するものではない。
エンドベル137020の遠位端は、変換部137018の近位端に接続され、フォアベル137022の近位端は、変換部137018の遠位端に接続されている。フォアベル137022及びエンドベル137020は、多くの変数によって決定される長さを有し、それらの変数には、変換部137018の厚さ、エンドベル137020及びフォアベル137022を製造するのに使用される材料の密度及び弾性率、並びに超音波トランスデューサ137014の共振周波数が含まれる。フォアベル137022は、速度変換器137028の超音波振動の振幅を増幅するため、近位端からその遠位端まで内向きにテーパ状にしてもよく、あるいは、フォアベル137022は、増幅を有さなくてもよい。
図38を再度参照すると、エンドベル137020は、そこから延びるねじ付き部材を含むことができ、このねじ付き部材は、フォアベル137022の中のねじ山付き開口とねじ込み可能に係合されるように構成されることができる。様々な態様では、圧電素子137032などの圧電素子は、例えば、エンドベル137020及びフォアベル137022が一緒に組み立てられるとき、エンドベル137020とフォアベル137022との間で圧縮され得る。圧電素子137032は、例えば、ジルコン酸チタン酸鉛、メタニオブ酸鉛、チタン酸鉛、及び/又は、例えば任意の好適な圧電性結晶材料などの任意の好適な材料から作られてもよい。
様々な態様では、以下に更に詳細に考察されるように、トランスデューサ137014は、正電極137034及び負電極137036などの電極を更に備えることができ、例えば、これらの電極は、1つ又は2つ以上の圧電素子137032の両端に電位を作り出すように構成され得る。正電極137034、負電極137036、及び圧電素子137032のそれぞれは、中心を通る穴を含むことができ、この穴は、エンドベル137020のねじ付き部材を受容するように構成され得る。様々な態様では、正電極137034及び負電極137036は、ワイヤ137038及び137040とそれぞれ電気的に接続され、ワイヤ137038及び137040は、ケーブル137042内に入れられ、超音波システム137010の超音波信号発生器137012と電気的に接続可能とすることができる。
様々な態様において、音響アセンブリ137024の超音波トランスデューサ137014は、超音波信号発生器137012からの電気信号を機械的エネルギーに変換し、機械的エネルギーは、主として、超音波トランスデューサ137014及びエンドエフェクタ137050の超音波周波数における長手方向の振動運動をもたらす。超音波外科用発生器137012は、例えば、発生器1100(図18)又は発生器137012(図38)を含み得る。音響アセンブリ137024が通電されると、振動運動定在波が、音響アセンブリ137024を通して発生する。好適な振動周波数範囲は、約20Hz~120kHzとし、適切な振動周波数範囲は、約30kHz~70kHzとし、動作振動周波数の1つの例は、約55.5kHzとすることができる。
音響アセンブリ137024に沿った任意の点での振動運動の振幅は、音響アセンブリ137024に沿った振動運動が測定される位置によって様々であり得る。振動運動定在波において、最小又はゼロの交差は、一般的に波節(即ち、運動が通常は最小の場所)と呼ばれ、定在波において、最大絶対値(absolute value maximum)又はピークは、一般的に波腹(即ち、運動が通常は最大の場所)と呼ばれる。波腹点とそれに最も近い波節点との間の距離は4分の1波長(λ/4)である。
上記に概略されるように、ワイヤ137038及び137040は、超音波信号発生器137012から正電極137034及び負電極137036に電気信号を伝達する。圧電素子137032は、例えば、音響アセンブリ137024において音響定在波を生成するためのフットスイッチ137044に応答して、超音波信号発生器137012から供給される電気信号によって通電される。電気信号により、結果的に材料内の大きな圧縮力となる繰り返される小変位の形態で、圧電素子137032内に擾乱が生じる。繰り返される小さな変位は、圧電素子137032を電圧勾配の軸に沿って連続的に膨張及び収縮させ、超音波エネルギーの長手方向の波を生成する。
様々な態様では、トランスデューサ137014により生成された超音波エネルギーは、超音波伝達導波管137046を介して超音波ブレード137050に音響アセンブリ137024を通って伝達されることができる。音響アセンブリ137024が超音波ブレード137050にエネルギーを供給するために、音響アセンブリ137024の構成要素は、超音波ブレード137050に音響的に連結される。例えば、超音波トランスデューサ137014の遠位端は、表面137030において超音波伝達導波管137046の近位端に、スタッド137048のようなねじ接続により音響的に連結されてもよい。
音響アセンブリ137024の構成要素は、いずれかのアセンブリの長さが2分の1波長の整数倍(nλ/2)となるように音響的に調整されることができ、式中、波長λは、音響アセンブリ137024の予め選択された波長、又は動作する長手方向振動駆動周波数fdであり、nは、任意の正の整数である。また、音響アセンブリ137024は、音響素子の任意の好適な配列を組み込み得ることも考えられる。
超音波ブレード137050は、1つのシステム半波長(λ/2)の整数倍に実質的に等しい長さを有することができる。超音波ブレード137050の遠位端137052は、遠位端の最大、又は少なくともほぼ最大の長手方向の振動幅を提供するために、波腹の位置に、又は少なくともその近くに配設されてもよい。トランスデューサアセンブリが通電されるとき、様々な態様では、ブレード137050の遠位端137052は、例えば、所定の振動周波数において、おおよそ10~500ミクロンのピークツーピークの範囲、及び好ましくはおおよそ30~150ミクロンの範囲で動くように構成されてもよい。
上記に概略されるように、超音波ブレード137050は、超音波伝達導波管137046に連結されてもよい。様々な態様では、示されるような超音波ブレード137050及び超音波伝達導波管137046は、例えば、Ti6Al4V(アルミニウム及びバナジウムを含むチタン合金)、アルミニウム、ステンレス鋼、及び/又は任意の他の好適な材料などの、超音波エネルギーの伝達に適した材料による単一ユニット構造体として形成される。或いは、超音波ブレード137050は、超音波伝達導波管137046から分離可能(かつ異なる組成のもの)であって、例えば、スタッド、溶接、接着剤、急速接続、又は他の好適な既知の方法によって接合されてもよい。超音波伝達導波管137046は、例えば、1つのシステム半波長(λ/2)の整数倍に実質的に等しい長さを有してもよい。超音波伝送導波管137046は、例えば、チタン合金(即ち、Ti6Al4V)又はアルミニウム合金など、超音波エネルギーを効率的に伝搬する材料から構成された中実コア軸から好ましくは作製されてもよい。
図38に例示された態様では、超音波伝達導波管137046は、複数の波節の位置、又は少なくともその近くに配置される、複数の安定化シリコーンリング又は適合支持体137056を含む。シリコーンリング137056は、望ましくない振動を弱め、かつ導波管137046を少なくとも部分的に囲む外装137058から超音波エネルギーを隔離することができ、それによって、超音波エネルギーが超音波ブレード137050の遠位端137052まで長手方向に最高効率で流れるのを確実にする。
図38に示されるように、外装137058は、ハンドピースアセンブリ137060の遠位端に連結され得る。外装137058は、一般に、アダプタ又はノーズコーン137062と、細長い管状部材137064とを含む。管状部材137064は、アダプタ137062に取り付けられ及び/又はアダプタ137062から延び、かつ、そこを通って長手方向に延びる開口部を有する。様々な態様では、外装137058は、ハウジング137016の遠位端上に螺合されてもよく、又はスナップ嵌めされてもよい。少なくとも一態様では、超音波伝達導波管137046は、管状部材137064の開口部を通って延在し、シリコーンリング137056は、開口部の側壁と接触し、内部で超音波伝達導波管137046を分離することができる。様々な態様では、外装137058のアダプタ137062は、例えば、Ultem(登録商標)から構成されるのが好ましく、管状部材137064は、例えば、ステンレス鋼から製造される。少なくとも1つの態様では、超音波伝達導波管137046は、例えば、その超音波伝達導波管を外部接触から分離するために、これを取り囲む高分子材料を有してもよい。
上述のように、電圧源又は電力源は、トランスデューサのうちの1つ又は2つ以上の圧電素子と動作可能に接続されることができ、圧電素子の各々に印加される電位によって、圧電素子を長手方向に膨張及び収縮、又は振動させることができる。同様に上に記載されるように、電圧ポテンシャルは、周期的であり得、様々な態様では、電圧ポテンシャルは、例えば、トランスデューサ137014、導波管137046、及び超音波ブレード137050を備える構成要素のシステムの共振周波数と同じか、又はほとんど同じ周波数で周期的にサイクルすることができる。しかしながら、様々な態様では、トランスデューサ内のある特定の圧電素子が、トランスデューサ内の他の圧電素子よりも、長手方向振動の定在波に対してより大きく寄与する場合がある。より詳細には、長手方向の変位を制御、又は制限することができる長手方向のひずみプロファイルが、トランスデューサ内で生じ得、そうして、特にシステムが共振周波数で又はその近くで振動する場合に、圧電素子の一部は、振動の定在波に寄与することができる。
圧電素子137032は、「ランジュバンスタック」内に構成されており、そこでは圧電素子137032と、それらの作動電極137034及び137036(共に、トランスデューサ137014)とが、交互配置されている。活性化された圧電素子137032の機械的振動は、トランスデューサ137014の長手方向軸に沿って伝搬し、音響アセンブリ137024を介して導波管137046の端に接続されている。圧電素子のこのような動作モードは、その素子、特に、例えばジルコン酸チタン酸鉛、メタニオブ酸鉛、又はチタン酸鉛を含むセラミック圧電素子のD33モードとして度々説明されている。このセラミック圧電素子のD33モードは、図39A~39Cに例示されている。
図39Aは、セラミック圧電材料から製造された圧電素子137200を示す。圧電セラミック材料は、複数の別々の微晶質ドメインからなる多結晶材料である。各微結晶性ドメインは、分極軸を有し、ドメインは、この軸に沿って、与えられた電界に応じて伸長又は収縮することができる。しかしながら、本来のセラミックでは、微晶質ドメインの偏光軸は、ランダムに配列されているため、バルクセラミックにおける正味の圧電効果はない。偏光軸の正味の再配向は、セラミックをその材料のキュリー温度以上の温度にさらし、かつ強電界内にその材料を置くことによって誘発され得る。ひとたび試料の温度をキュリー温度以下に下げると、別々の偏光軸の大部分が再配向され、バルク偏光方向に固定されるであろう。図39Aは、誘導電界軸Pに沿って分極された後のそのような圧電素子137200を例示する。無分極圧電素子137200は、正味の圧電軸を欠いているが、分極素子137200は、誘導電界軸P方向に平行な分極軸d3を有するとして説明することができる。完全を期すために、d3軸に直交する軸はd1軸と呼ばれ得る。圧電素子137200の寸法は、長さ(length、L)、幅(width、W)、及び厚さ(thickness、T)として、ラベル付けされている。
図39B及び39Cは、圧電素子137200をd3(又はP)軸に沿って配向された作動電界Eに供することによって誘発され得る圧電素子137200の機械的変形を例示する。図39Bは、d3軸に沿って分極場Pと同じ方向を有する電界Eが圧電素子137205に及ぼす影響を例示する。図39Bに例示するように、圧電素子137205は、d1軸に沿って圧縮しながら、d3軸に沿って膨張することによって変形し得る。図39Cは、d3軸に沿って分極場Pとは反対方向を有する電界Eが圧電素子137210に及ぼす影響を例示する。図39Cに例示するように、圧電素子137210は、d1軸に沿って膨張しながら、d3軸に沿って圧縮することによって変形し得る。d3軸に沿った電界の印加中のd3軸に沿った振動結合は、D33結合、又は圧電素子のD33モードを使った活性化と呼ばれ得る。図1に例示するトランスデューサ137014は、導波管46に沿って、機械的振動を超音波ブレード137050に伝達するために、圧電素子137032のD33モードを使用することができる。圧電素子は、また、d1軸に沿っても変形するため、d3軸に沿った電界の印加中のd1軸に沿った振動結合もまた、機械的振動の有効なソースとなり得る。このような結合は、D31結合、又は圧電素子のD31モードを使った活性化と呼ばれ得る。
図39A~39Cによって例示されるように、D31モードでの動作中に、圧電素子137200、137205、137210の横伸長は、以下の式によって数学的にモデル化することができる。
Figure 0007460524000014
式中、L、W、及びTは、それぞれ、圧電素子の長さ、幅、及び厚さ寸法を示す。Vd31は、D31モードで動作する圧電素子に印加される電圧を表す。上記のD31結合から得られる横方向膨張の量は、ΔL(すなわち、長さ寸法に沿った圧電素子の膨張)と、ΔW(すなわち、幅寸法に沿った圧電素子の膨張)と、によって表される。付加的に、横方向膨張方程式は、ΔL及びΔWと印加電圧Vd31との間の関係をモデル化する。以下に開示されるのは、圧電素子によるD31活性化に基づく超音波外科用器具の態様である。
以下に記載するように、様々な態様において、超音波外科用器具は、長手方向の振動を生成するように構成されたトランスデューサ、及びトランスデューサ、エンドエフェクタ、及びその間の導波管に動作可能に連結されたトランスデューサベースプレート(例えばトランスデューサ装着部分)を有する外科用器具を備えることができる。特定の態様では、同様に以下のように、トランスデューサは、エンドエフェクタに伝達され得る振動を生成することができ、この振動は、トランスデューサベースプレート、導波管、エンドエフェクタ、及び/又は超音波外科用器具の他の様々な構成要素を、共振周波数で又はその近くで駆動することができる。共振状態では、例えば、長手方向ひずみパターン、又は長手方向応力パターンが、トランスデューサ、導波管、及び/又はエンドエフェクタ内に発現する可能性がある。様々な態様では、このような長手方向のひずみパターン、又は長手方向の応力パターンは、トランスデューサベースプレート、導波管、及び/又はエンドエフェクタの長さに沿って、正弦曲線手法、又は少なくとも実質的に正弦曲線手法で、長手方向のひずみ、又は長手方向の応力を変化させることができる。少なくとも一態様では、例えば、長手方向ひずみパターンは、最大ピーク及びゼロ点を有することができ、ひずみ値は、かかるピークとゼロ点との間で非線形状に変化し得る。
図40は、本開示の一態様による、超音波外科用器具137250がD31モードで動作するように構成されている接合材料によって超音波トランスデューサ137264に取り付けられた超音波導波管137252を含む超音波外科用器具137250を例示する。超音波トランスデューサ137264は、結合材料によって超音波導波管137252に取り付けられた第1及び第2の圧電素子137254a、137254bを含む。圧電素子137254a、137254bは、圧電素子137254a、137254bを駆動するのに好適な電圧源の一方の極(例えば、通常は高電圧)と電気的に接続するための導電性プレート137256a、137256bを含む。電圧源の反対側の極は、導電性継手137258a、137258bによって超音波導波管137252に電気的に接続されている。一態様では、導電性プレート137256a、137256bは、電圧源の正極に接続され、導電性継手137258a、137258bは、金属超音波導波管137252を通って接地電位に電気的に接続されている。一態様では、超音波導波管137252は、チタン又はチタン合金(すなわち、Ti6Al4V)で作製され、圧電素子137254a、137254bはPZTで作製される。圧電素子137254a、137254bのポーリング軸(P)は、方向矢印137260によって示されている。圧電素子137254a、137245bの励振に応答する超音波導波管137252の運動軸は、超音波導波管137252の超音波ブレード部と一般的に呼ばれる、超音波導波管137252の遠位端の運動矢印137262によって示されている。運動軸137262は、ポーリング軸(P)137260に直交している。
図38に示すように、従来のD33超音波トランスデューサ構造では、ボルト締めされた圧電素子137032は、電極137034、137036を利用して、各圧電素子137033の両方のサイズに対して電気的接触を作り出す。しかしながら、本開示の一態様によるD31アーキテクチャ137250は、各圧電素子137254a、137254bの両側への電気的接触を作成するために異なる技術を使用する。圧電素子137254a、137254bに電気的接触を提供する様々な技術には、導電性素子(例えば、ワイヤ)を高電位接続用の各圧電素子137254a、137254bの自由表面に結合させること、及び、はんだ、導電性エポキシ、又は本明細書に記載された他の技術を使って、各圧電素子137254a、137254bを接地接続用の超音波導波管137252に結合させることが挙げられる。圧縮を用いて、恒久的な接続をすることなく、音響列に対する電気的接触を維持し得る。これにより、装置の厚さが増大し得るため、圧電素子137254a、137254bの損傷を回避するように制御される必要がある。弱い圧縮では、スパークギャップにより圧電素子137254a、137254bを損傷させる可能性があり、強い圧縮では、局所的な機械的摩耗により圧電素子137254a、137254bを損傷させる可能性がある。他の技術では、金属製ばね接触が用いられ、圧電素子137254a、137254bとの電気的接触を作り出し得る。他の技術としては、金属箔で覆われた発砲樹脂パッキン、導電性発砲樹脂、はんだを含み得る。一部の態様では、圧電素子137254a、137254bの両側への電気的接続部は、D31音響トレーン構成である。電気的接地接続は、金属超音波導波管137252に対して作製され得、圧電素子137254a、137254bと超音波導波管137252との間に電気的接触が存在する場合、その導波管は導電性を示す。
図38に示すように、従来のD33超音波トランスデューサ構造では、ボルトが、圧電素子リングを超音波導波管に音響的に結合させる圧縮を提供する。本開示の一態様によるD31アーキテクチャ137250は、圧電素子137254a、137254bを超音波導波管137252に音響的に連結するために様々な異なる技術を使用する。更なる詳細は、その全体が参照により本明細書に組み込まれる、2017年8月17日出願の「ULTRASONIC TRANSDUCER TECHNIQUES FOR ULTRASONIC SURGICAL INSTRUMENT」と題する米国特許出願第15/679,940号に開示されている。
図41~42は、超音波外科用器具137400の様々な図を例示する。様々な態様では、外科用器具137400は、一般に一対の超音波剪断機として具現化することができる。超音波外科用器具137400が一対の超音波剪断機として具体化される態様では、外科用器具137400は、枢動点137413において第2のアーム137412bに枢動可能に(例えば、止め金具により)接続された第1のアーム137412aを含むことができる。第1のアーム137412aは、第2のアーム137412bから遠位方向に延びる超音波ブレード137415と協働するように構成された協働表面(例えば、パッド)を含む、その遠位端に位置決めされたクランプアーム137416を含む。クランプアーム137416及び超音波ブレード137415は、集合的にエンドエフェクタ137410を画定することができる。第1のアーム137412aを第1の方向に作動させると、クランプアーム137416が超音波ブレード137415に向かって枢動し、第1のアーム137412aを第2の方向に作動させると、クランプアーム137416が超音波ブレード137415から離れて枢動する。一部の態様では、クランプアーム13716は、ポリマー又は他の弾性材料から構築され、超音波ブレード137415と係合するパッドを更に含む。外科用器具137400は、図38~図40に関して上記で説明されたようなトランスデューサアセンブリを更に含む。トランスデューサアセンブリは、例えばD31又はD33アーキテクチャに配列することができる。外科用器具137400は、D31アーキテクチャに配列された超音波トランスデューサ137418の第1及び第2の圧電素子137419a、137419bを含む、超音波システム137010(図38)の様々な構成要素を包囲するハウジング137414と、圧電素子137419a、137419bを受容するために、対向側部に平坦な面を備えるトランスデューサベースプレート137428(例えば、トランスデューサ装着部分)と、超音波トランスデューサ137418から超音波ブレード137415へ振動を長手方向に移す導波管137417と、を更に備える。更に、外科用器具137400は、上述したように超音波トランスデューサ137418を駆動するための超音波信号発生器に接続可能である。導波管137417は、複数の波節(即ち、振動運動定在波の最小又はゼロ交差に位置する点)又は少なくともその近くに位置決めされた複数の安定化シリコーンリング又は弾性支持体137411を備えることができる。弾性支持体137411は、超音波エネルギーが長手方向に超音波ブレード137415に確実に伝達されるように、望ましくない横方向の振動を減衰させるように構成される。導波管137417は、ハウジング137414及び第2のアーム137412bを通って延び、超音波ブレード137415においてハウジング137414の外部に終端する。超音波ブレード137415及びクランプアーム137416は、組織を把持するように構成された協働要素であり、エンドエフェクタ137410が組織をクランプ及び切断/凝固させることを可能にする。クランプアーム137416を超音波ブレード137415に向かって移動すると、それらの間に載置された組織をクランプアーム137415に接触させ、超音波ブレード137415が把持した組織に対して動作することが可能になる。超音波ブレード137415が把持された組織に対して超音波振動すると、超音波ブレード137415は、摩擦力を発生させ、それが組織を凝固させ、最終的に超音波ブレード137415の切断長さに沿って切断する。
外科用器具137400の切断長さは、クランプアーム137416の超音波ブレード137415及びクランプアーム137416の協働表面の長さに対応する。超音波ブレード137415とクランプアーム137416の協働表面との間に十分な時間期間保持されている組織は、上に記載されるように、超音波ブレード137415によって切断される。超音波ブレード137415及びクランプアーム137416の対応する部分は、様々な形状を有することができる。様々な態様では、超音波ブレード137415及び/又はクランプアーム137416は、実質的に直線状の形状であってもよく、又は湾曲を有してもよい。一部の態様では、組織を超音波ブレード137415と接触させるように構成されたクランプアーム137416の部分は、超音波ブレード137415の形状に対応し、それによってクランプアーム137416はそれと整列する。
超音波トランスデューサアセンブリ及び超音波剪断機に関する様々な更なる詳細は、参照によりその全体が本明細書に組み込まれる、2017年8月17日に出願された「ULTRASONIC TRANSDUCER TECHNIQUES FOR ULTRASONIC SURGICAL INSTRUMENT」と題された米国特許出願第15/679,940号から見出すことができる。
高度なエネルギー装置の起動オプション
図43は、本開示の少なくとも1つの態様に係る、外科システム137500のブロック図を示す。外科システム137500は、例えば、図20に示される外科システム1000、及び/又は図38に示す超音波外科用器具システム137010を含み得る。外科システム137500は、電気外科用発生器137504に電気的に接続可能な超音波外科用器具1104(図18)又は超音波外科用器具137300(図29)などの外科用器具137400を含み得る。電気外科用発生器137504は、外科用器具137400を駆動するための超音波エネルギー、単極若しくは双極高周波(RF)エネルギー、他の種類のエネルギー、及び/又はこれらの組み合わせを生成することが可能な発生器1100(図18)又は発生器137012(図38)などである。
図43に示される態様では、外科用器具137400は、少なくとも2つの圧電素子を備えるトランスデューサアセンブリ137510を含む。トランスデューサアセンブリ137510は、図38~40に関連して説明されるように、トランスデューサアセンブリ137510が起動されると、トランスデューサアセンブリ137510が超音波ブレード137512を超音波振動させることができるように、超音波ブレード137512に動作可能に連結される。トランスデューサアセンブリ137510は、次に発生器137504に電気的に接続されて、そこからエネルギーを受け取る。したがって、発生器137504によって通電されると、トランスデューサアセンブリ137510は、外科用器具137400によって捕捉された組織を切断及び/又は凝固させるために超音波ブレード137512を超音波振動させるように構成される。
別の態様では、外科用器具137400は、1つ又は2つ以上の電極796(図17)又はエンドエフェクタ792に位置する他の導電要素(図17)を含む。電極796は、次に発生器137504に電気的に接続されて、そこからエネルギーを受け取る。発生器137504によって通電されると、電極796は、図17に関連して説明されるように、外科用器具137400によって捕捉された組織を切断及び/又は凝固させるためにRFエネルギーを印加するように構成される。
外科用器具137400は、センサ137508に通信可能に接続され、発生器137504に通信可能に接続可能な制御回路137506を更に含む。制御回路137506は、例えば、メモリに記憶された命令を実行するための一次及び/又は二次コンピュータメモリに接続されたプロセッサ、マイクロコントローラ、特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレイ(FPGA)、及び他のそのようなデバイスを含むことができる。センサ137508は、環境及び/又は外科用器具137400の特性を感知し、感知された特性の存在又は大きさに対応する出力を提供するように構成されている。制御回路137506は、次に、感知された特性が閾値を上回るか、下回るか、又は閾値であるかに応じて、トランスデューサアセンブリ137510及び/又は電極796の起動を選択的に制御するように構成される。言い換えれば、制御回路137506は、閾値に対するセンサ出力に従ってトランスデューサアセンブリ137510及び/又は電極796の起動を制御するように構成されている。一態様では、閾値は、外科用器具137400のメモリ内に格納され、制御回路137506によって取得されて、センサ137508からの出力信号と比較することができる。
様々な他の例示では、制御回路137506及び/又はセンサ137508は、外科用器具137400の外部にあってもよい。これらの例示では、制御回路137506及び/又はセンサ137508は、任意の有線通信プロトコル(例えば、IC)又は無線通信プロトコル(例えば、Bluetooth)を介して、互いに及び/又は発生器137504に通信可能に接続することができ、特定の通信プロトコルを達成するために適切なハードウェア及び/又はソフトウェアを含む。更に他の例示では、発生器137504は、図18及び図38に示されるように、外科用器具137400の外部にあるのではなく、外科用器具137400と一体であってもよく、内部に位置してもよく、別の方法で組み込まれていてもよい。
図44~45Cは、本開示の少なくとも1つの態様による磁気基準137404を検出するように構成されたセンサアセンブリ137508を含む外科用器具137400の様々な図を示す。図44~45Cの以下の説明では、図43もまた参照されたい。一態様では、センサアセンブリ137508は、磁気基準137404の対応する位置又は位置を検出することによって、外科用器具137400の位置又は状態(例えば、開閉)を検出するように構成されたセンサ137402を含む。センサ137402は、例えば、それに対する磁気基準137404の位置を検出するように構成されたホール効果センサを含むことができる。したがって、磁気基準137404は、その位置が外科用器具137400の位置及び/又は状態に対応するように構成される。ホール効果センサは、例えば、磁気基準137404とセンサ137402との間の相対距離を検出するように構成されたホール素子、又はセンサ137402に対する磁気基準137404の多次元位置或いは向きを検出するように構成された複数のホール素子のアセンブリ(例えば、Infineon TechnologiesのTLV493D-A1B6 3D磁気センサ)を含むことができる。更に、ホール効果センサは、線形ホール効果センサ(すなわち、出力が磁束密度と共に直線的に変化するホール効果センサ)又は閾値ホール効果センサ(すなわち、磁束密度の減少に従って出力が急激に低下するホール効果センサ)を含むことができる。
図44に示す態様では、磁気基準137404は、ウェアラブル磁石137406を含む。したがって、センサ137402は、例えば、外科医の手で着用されたときのウェアラブル磁石137406の相対位置を検出するように構成される。様々な態様では、センサ137402に対するウェアラブル磁石137406の相対位置は、例えば、ウェアラブル磁石137406とセンサ137402との間の相対距離、及び/又はセンサ137402に対するウェアラブル磁石137406の相対的な向きを含むことができる。一実施例では、ウェアラブル磁石137406は、外科医の指(例えば、外科用グローブ上)に装着されるリングに組み込まれるか、又はリング内に又はその上に配置され得る。別の実施例では、ウェアラブル磁石137406は、外科医によってウェアラブルな外科用グローブに取り付けられるか、又は一体化されて得る。これらの態様では、ウェアラブル磁石137406が外科医の手に位置し、使用中に外科医の手が外科用器具137400のアーム137412を把持すると、センサ137402によって検出されたウェアラブル磁石137406の位置は、外科用器具137400.のアーム137412の相対位置に対応する。外科用器具137400のアーム137412の相対位置を感知することにより、制御回路137506は、外科用器具137400が開放されるか、閉鎖されているか、又はそれらの間の中間位置にあるかを判定することができる。
別の例示では、ウェアラブル磁石137406及びセンサ137402の位置は、上記の態様とは逆であってもよい。言い換えれば、磁石は、外科用器具137400上又は外科用器具137400内に位置付けられることができ、センサ137402は、外科医の上に位置付けられるか、又は外科医によって装着されてもよい(例えば、上述のようにリング又は外科用手袋に組み込まれる)。それ以外の場合、この例示的な機能は、上述の例示と同様の方法で機能する。
図45A~45Cに示される態様では、磁気基準137404は、アーム137412などの外科用器具137400の可動構成要素内又はその上に位置付けられた一体型磁石137408を含む。したがって、センサ137402は、外科用器具137400のアーム137412内の一体型磁石137408の相対位置を検出するように構成される。一体型磁石137408及びセンサ137402はそれぞれ、外科用器具137400を開閉することによって、一体型磁石137408がセンサ137402に対して移動するように配置され得る。図示の態様では、一体型磁石137408は、外科用器具137400の可動アーム137412上又はその中に位置付けられ得、センサ137402は、外科用器具137400のハウジング137414上又はハウジング137414内に位置付けられ得る。これらの態様では、センサ137402によって検出された一体型磁石137408の位置は、外科用器具137400のアーム137412の相対位置に対応する。外科用器具137400のアーム137412の相対位置を感知することにより、制御回路137506は、外科用器具137400が開放されるか、閉鎖されているか、又はそれらの間の中間位置にあるかを判定することができる。
別の例示では、一体型磁石137408及びセンサ137402の位置は、上記の態様とは逆であってもよい。言い換えれば、一体型磁石137408は、外科用器具137400のハウジング137414上又はその中に位置付けられ得、センサ137402は、追跡されている外科用器具137400の対応する可動構成要素(例えば、アーム137412)の上、又はその中に位置付けられ得る。それ以外の場合、この例示的な機能は、上述の例示と同様の方法で機能する。
センサ137402は、それに対する磁気基準137404の位置(例えば、磁気基準137404とセンサ137402との間の距離、及び/又はセンサ137402に対する磁気基準137404の向き)に対応する出力を生成するように構成されている。したがって、磁気基準137404及び/又はセンサ137402が、外科用器具137400が閉鎖されるか、開放されるか、又は別の方法で外科医に操作される際に、互いに対して移動すると、センサ137400は、磁気基準137404の感知された磁場に従って磁気基準137404の相対位置を検出することができる。センサ137402は次に、磁気基準137404の感知された磁界に対応する出力を生成することができる。センサ137402がホール効果センサを含む一態様では、センサ出力は電圧であってもよく、出力電圧の大きさは、センサ137402によって感知された磁気基準137404からの磁場の強度に対応する。
一態様では、制御回路137506は、センサ137402からの出力を受信し、次いでセンサ137402の出力を閾値と比較するように構成される。制御回路137506は、センサ137402の出力と閾値との間の比較に従って、外科用器具137400を更に起動又は停止させることができる。閾値は、例えば、外科用器具137400のユーザによって予め決定されるか又は設定され得る。センサ137402の出力は(図45A~45Cに示される態様のように直接的に、又は図44に示される態様のように間接的に)外科用器具137400のアームの位置に対応することができ、次に超音波ブレード137512に対するクランプアーム137416(図41)の位置を制御する。したがって、センサ137402の出力は、例えば開放位置と閉鎖位置との間の外科用器具137402のクランプアーム137416の位置に対応する。更に、これらの例示では、閾値は、磁気基準137404とセンサ137402との間の閾値距離に対応し得る。図45Bは、例えば、外科用器具137400の開放位置を表すことができる(すなわち、一体型磁石137408はセンサ137402に対して閾値距離内にない)。図45Cは、例えば、外科用器具137400の閉鎖位置を表すことができる(すなわち、一体型磁石137408はセンサ137402に対して閾値距離内にある)。
一実施例では、制御回路137506は、磁気基準137404がセンサ137402からの閾値距離以下に位置するか否かを判定することができる。この例では、制御回路137506がセンサ出力が閾値を超えていると判定した場合、制御回路137506は、外科用器具137400を起動することができる。別の例では、制御回路137506は、磁気基準137404がセンサ137402からの閾値距離以上に位置するか否かを判定することができる。この例では、制御回路137506が、センサ137402の電圧出力が閾値以下であると判定した場合、制御回路137506は、外科用器具137400を起動することができる。制御回路137506は、発生器137504に信号を送信して、発生器137504にトランスデューサアセンブリ137510及び/又はRF電極796に通電させて、外科用器具137400によって捕捉された組織を切断及び/又は凝固させることによって外科用器具137400を起動する。要するに、一部の態様では、制御回路137506は、外科用器具137400が十分に閉鎖されているか否かを判定し、前者の場合、外科用器具137400を起動させるように構成され得る。
他の態様では、制御回路137506は、図1~11に関連して記載されているように、外科用器具137400が十分に閉鎖されていると判定した場合、ユーザを催促するか、データを外科用ハブ106に送信することなどの他の動作をとるように構成され得る。更に他の態様では、制御回路137506は、外科用器具137400が十分に開放されているか、或いは外科用器具137400が開放位置と閉鎖位置との間の特定の位置(又は位置の範囲)にあるかを判定するように構成され得る。外科用器具137400が画定された位置(単数又は複数)又は当該位置内にある場合、制御回路137506は、それに従って、外科用器具137400を起動するか、外科用器具137400を停止させるか、又は様々な他の動作を行うことができる。
一部の態様では、制御回路137506は、センサ137402を介して検出された磁気基準137404の運動の振幅、周波数、及び/又は方向に基づいて、タッピング、摩擦、及び他の種類の運動を検出するように構成することができる。このような運動は、センサ137402によって検出された時間にわたる磁場の強度の変化が(経験的に又は他の方法で)特徴付けられ、異なる種類の運動について定義され得るため、検出されることができる。例えば、タッピング運動は、センサ137402によって検出された磁界の変化における、外科用器具137400の長手方向軸に対して実質的に垂直な方向において検出される周波数に従って検出可能であり得る。別の例として、摩擦運動は、センサ137402によって検出された磁界の変化における、外科用器具137400の長手方向軸に実質的に平行な方向において検出される周波数に従って検出可能であり得る。一部の態様では、制御回路137506は、検出された運動に従って外科用器具137400の状態、モード、及び/又は特性を変化させるように構成され得る。例えば、制御回路137506は、センサ137402を介してタップ運動を検出すると、外科用器具137400を作動させるように構成され得る。
図46A~46Bは、本開示の少なくとも1つの態様による、接触を検出するように構成されたセンサアセンブリ137508を含む外科用器具137400の斜視図を示し、図47は、対応する回路図を示す。図46A~47の以下の説明では、図43もまた参照されたい。一態様では、センサアセンブリ137508は、それに対する力、接触、及び/又は圧力を検出するように構成されたタッチセンサ137420を含むことができる。タッチセンサ137420は、例えば、力覚レジスタ(FSR)137421を含むことができる。図46Aに示される例示では、タッチセンサ137420は、外科用器具137400の長手方向軸に対して横方向に配向されている。この例示では、タッチセンサ137420は、外科用器具137400の長手方向軸に対してハウジング137414から直角に延在する表面を画定する。図46Bに示す別の例示的な例示では、タッチセンサ137420は、筐体137414の側面(複数可)に沿って延在する。この例示では、タッチセンサ137420は、外科用器具137400のハウジング137414と一体であるか、又は外科用器具137400のハウジング137414の上に位置付けられてもよい。これらの例示のいずれかにおいて、タッチセンサ137420は(例えば、外科用器具137400の1つ又は2つ以上の機能を制御するために)外科医に使用され、例えば、外科用器具137400のトランスデューサアセンブリ137510を起動するか、又は別の方法外科用器具137400に入力を提供することができる。
タッチセンサ137420が図47に示されるFSR137421を含む一態様では、外科用器具137400は、外科用器具137400に電気的に接続可能な電気外科用発生器137426の起動を制御する回路を含み得る。この例示では、FSR137421は、アナログデジタル変換器(ADC)137422及び制御回路137424(例えば、マイクロコントローラ又はASIC)に電気的に接続される。FSR137421に力Fが印加されると、それに従ってFSR137721の電圧出力は変化する。ADC137422は次に、FSR137421からのアナログ信号をデジタル信号に変換し、これを次に制御回路137424に供給する。一例示では、制御回路137424は、次いで、受信信号(FSR137421の出力電圧、進んではFSR137421が経験する力F又は圧力を示す)と閾値とを比較して、電気外科用発生器137426を起動させるか否かを判定することができる。1つの例示では、受信した信号が閾値を超える場合、制御回路137424は、信号を電気外科用発生器137426に送信して、それを起動させ、トランスデューサアセンブリ137510及び/又はRF電極796に通電して、外科用器具137400によって捕捉された組織を切断及び/又は凝固させることができる。別の例示では、制御回路137424は、FSR137421の出力又はその信号を電気外科用発生器137426の制御回路に送信し、次いで、受信した信号(FSR137421が経験する力F又は圧力を示す)を閾値と比較して、電気外科用発生器137426を起動するか否かを判定することができる。受信した信号が閾値を超える場合、電気外科用発生器137426の制御回路は、電気外科用発生器137426に、電気的に接続された外科用器具137400のトランスデューサアセンブリ137510へのエネルギーの供給を(例えば、駆動信号を介して)開始させることができる。要するに、一部の態様では、制御回路137506は、十分な量の力がタッチセンサ137420に加えられているか否かを判定し、それに従ってトランスデューサアセンブリ137510を起動させることができる。
図48A~48Cは、本開示の少なくとも1つの態様による外科用器具137400の閉鎖を検出するように構成されたセンサアセンブリ137429を含む外科用器具137400の斜視図を示す。図48A~48Cの以下の説明では、図43もまた参照されたい。一態様では、閉鎖センサアセンブリ137429は、外科用器具137400のアーム137412が閉鎖位置にあるときを検出するように構成された閉鎖センサ137430、一部の態様では、外科用器具137400が閉鎖位置にある後に追加の力がアーム137412に加えられているか否かを検出するように構成された閉鎖センサ137430を含むことができる。一例示では、閉鎖センサ137430は2段触覚スイッチを含み、外科用器具のアームが閉鎖位置にあるとき、第1の段において、外科用器具137400のアーム137412が閉鎖位置にある後に追加の力又は圧力が加えられたときに、更には、第2の段において、外科用器具137400のアーム137412が閉鎖位置にある後に追加の力又は圧力が加えられているときに検出するように構成されている。このような閉鎖センサ137430は、例えば、トランスデューサアセンブリ137510及び/又はRF電極796を必ずしも自動的に起動させることなく、外科用器具137400を閉鎖することを可能にすることができる。
図48A~48Cに示される一態様では、アーム137412が第1の方向Rに回転して開放位置(図48A)から閉鎖位置(図48B)へとアーム137412が回転されるときに、アーム137412が閉鎖センサ137430と係合するように、閉鎖センサ137430がハウジング137414上に位置付けられる。アーム137412が閉鎖位置にあるとき、アーム137412は、ハウジング137414(囲い板)及び/又は閉鎖センサ137430に対して底部を底にすることができる。外科用器具137400が開放される(或いは閉鎖されていない)とき、又は外科用器具137400のアーム137412が閉鎖されているが、追加の力が加えられていないとき、閉鎖センサ137430は、図48Bに示されるように、第1の位置又は第1の状態にあり得る。外科用器具137400のアーム137412が閉鎖され、追加の力Fがアーム137412に加えられると、図48Cに示すように、閉鎖センサ137430は第2の位置又は第2の状態にあり得る。一部の態様では、アーム137412が初期閉位置にあるとき、アーム137412は、ハウジング137414から第1の角度θにあり得、力Fが初期閉鎖位置でアーム137412に加えられると、力Fが閉鎖センサ137430を押下させ、アーム137412がハウジング137414から第2の角度θになる。
一態様では、閉鎖センサ137430の出力は、閉鎖センサ137430がある位置及び/又は状態に従って変化し得る。言い換えれば、閉鎖センサ137430が第1の状態にあるとき、外科用器具137400の制御回路137506に第1の出力を提供することができ、閉鎖センサ137430が第2の状態にあるとき、外科用器具137400の制御回路137506に第2の出力を提供することができる。したがって、閉鎖センサ137430は、(i)外科用器具137400が閉じられているか否か、及び(ii)外科用器具137400が閉鎖されているとき、追加の力が印加されているか否かを検出するように構成され得る。一態様では、トランスデューサアセンブリ137510及び/又はRF電極796は、閉鎖センサ137430が第2の状態/位置にあるときにのみ起動する、及び/又は供給エネルギーを供給されることができる。この態様により、トランスデューサアセンブリ137510及び/又はRF電極796の起動がない状態でも組織を把持及び操作する能力を失うことなく、アーム137412の操作のみにより、外科医が外科用器具137400を作動させることを可能にする。
一態様では、制御回路137506は、閉鎖センサ137430からの出力を受信し、次いで、閉鎖センサ137430の出力を閾値と比較して、閉鎖センサ137430が第2の位置/状態にあるか否かを判定するように構成される。閾値は、例えば、外科用器具137400のユーザによって予め決定されるか又は設定され得る。閉鎖センサ137430は、外科用器具137400のアーム137412が閉鎖されているか否か、更には、アーム137412が閉じられているときに追加の力がアーム137412に加えられているか否かを検出する上記の例示では、閉鎖センサ137430の出力は、それにしたがって変化する。更に、これらの例示において、閾値は、アーム137412が閉じた後にアーム137412(つまり閉鎖センサ137430)に加えられる閾値力に対応することができる。例えば、制御回路137506が、閉鎖センサ137430の出力が閾値を超えていると判定した場合、制御回路137506は、発生器137504にトランスデューサアセンブリにエネルギーの供給を開始させる信号を発生器137504に送ることによって、トランスデューサアセンブリ137510及び/又はRF電極796を起動することができる。要するに、一部の態様では、制御回路137506は、十分な量の力が外科用器具137400の閉鎖アーム137412に加えられているか否かを判定することができ、力が加えられているの場合、トランスデューサアセンブリ137510及び/又はRF電極796を起動させる。
図49A~49Fは、本開示の少なくとも1つの態様による外科用器具137400の開口部を検出するように構成されたセンサアセンブリ137439を含む外科用器具137400の様々な図を示す。図49A~49Fの以下の説明では、図43もまた参照されたい。一態様では、開放センサアセンブリ137439は、外科用器具137400のアーム137412が第2の方向Rに開放位置に回転されたときを検出するように構成された開放センサ137440を含む。1つの例示では、開放センサ137440は、外科用器具137400のアーム137412が十分に開放位置にあるときを検出するように構成された触覚スイッチ(例えば、一段触覚スイッチ)を含む。開放センサ137440は、例えば、外科用器具137400が、未クランプ状態の組織に対する電気外科又は超音波エネルギーの印加に用いられる、後方(前方)スコアリングや他の外科技術を実行できる完全又は十分に開放された位置にあるときに、外科用器具137400を通電させるために利用することができ、外科用器具137400が任意の程度に開放されているときは、外科用器具137400を通電させない。
様々な態様では、開放センサ137440は、外科用器具137400の枢動点137413に、又は隣接して位置付けられ得る。図49A~49Fに示される一態様では、開放センサ137440は、ハウジング137414の第1の側方部分上の陥凹部137443内に位置付けられる。対応するタブ137442は、ハウジング137414の第2の側方部分上に位置付けられ、陥凹部137443を通って移動して開放センサ137440に接触し、外科用器具137400のクランプアーム137416が十分に開いている(すなわち、少なくとも特定の角度に開放される)ときに、開放センサ137440に接触して力Fを加えるように構成されている。開放センサ137440がタブ137442と接触していないとき、開放センサ137440は第1の位置又は第1の状態にあることができる。図49Dに示すように、外科用器具137400のアーム137412が、タブ137422が開放センサ137440と接触するように十分な角度に開放されると、開放センサ137440は、第2の位置又は第2の状態にあることができる。一態様では、開放センサ137440の出力は、開放センサ137440がある位置及び/又は状態に従って変化し得る。言い換えれば、開放センサ137440が第1の状態にあるとき、外科用器具137400の制御回路137506に第1の出力を提供することができ、開放センサ137440が第2の状態にあるとき、外科用器具137400の制御回路137506に第2の出力を提供することができる。したがって、開放センサ137440は、少なくとも、(例えば、そこに加えられる力Fによって)開放センサ137440がトリガされるか、又は起動される角度まで、外科用器具137400が開放されるか否かを検出することができる。一態様では、トランスデューサアセンブリ137510及び/又はRF電極796は、上述のように、センサが第2の状態/位置にあるときにのみ起動及び/又は通電され得る。
一態様では、制御回路137506は、開放センサ137440からの出力を受信し、開放センサ137440の出力を閾値と比較するように構成され、閾値は、開放センサ137440が第2の位置/状態にあることに対応する。閾値は、例えば、外科用器具137400のユーザによって予め決定されるか又は設定され得る。開放センサ137440が、外科用器具137400のアーム137412が特定の角度に開放されているか否かを検出する上記の例示では、開放センサ137440の出力はそれに応じて変化する。更に、これらの例示では、閾値は、外科用器具137400のアーム137412が位置付けられる閾値角度に対応し得る。一態様では、制御回路137506が、開放センサ137440の出力が閾値を超えていると判定した場合、制御回路137506は、発生器137504のトランスデューサアセンブリ137510及び/又はRF電極796へのエネルギーの供給を開始させる信号を発生器137504に送ることによって、トランスデューサアセンブリ137510及び/又はRF電極796を起動することができる。要するに、一部の態様では、制御回路137506は、外科用器具137400のアーム137412が十分な角度に開放されているか否かを判定することができ、十分な角度に開放されている場合、次にトランスデューサアセンブリ137510及び/又はRF電極796を起動させる。
特定の態様では、図44~49Fに関連して上述した外科用器具137400を起動させるためのセンサアセンブリは、互いに様々な組み合わせで実装することができる。例えば、図50は、センサアセンブリ137508が、図48A~48Cに関連して説明される閉鎖センサアセンブリ137429と、図49A~49Fに関連して記載された開放センサアセンブリ137439との両方を含む、外科用器具137400の例示を示す。本明細書に記載されるセンサアセンブリ137508の様々な態様は、外科用器具137400への入力を起動及び/又は入力を提供するための補助的及び/又は代替的方法を提供すべく、外科用器具137400内で一緒に組み合わされ得る。図50に示される例示は単なる例示であることが意図されており、外科用器具137400の他の例示は、前述のセンサアセンブリ137508の任意の他の組み合わせを含み得ることに留意されたい。
図51は、本開示の少なくとも1つの態様による、停止制御137450を含む外科用器具の斜視図を示す。様々な態様において、外科用器具137400は、図44~49Fに関連して上述した様々なセンサアセンブリ137508など、外科用器具137400の様々なセンサのうちの1つ又は2つ以上の起動又は停止を制御するための停止制御137450を含み得る。停止制御137450は、例えば、外科用器具137400のハウジング137414上に配置された物理的トグル又はスイッチ、又はタッチスクリーンディスプレイを含むことができる。停止制御137450は、外科用器具137400の制御回路137506に通信可能に接続され得、停止制御137450からの入力に応じて、制御回路137506は、例えば、停止制御137450によって制御されたセンサアセンブリ137508を停止するか、又は停止制御部137450によって制御されたセンサアセンブリ137508からの出力を無視するか、或いはそれに対して一切の動作を行わない。
図41~51を参照すると、外科用器具137400は、LED、ディスプレイ、及び他のそのような出力装置などのインジケータを更に含み得る。インジケータは、制御回路137506に接続され、それによって制御され得る。一部の態様では、制御回路137506は、センサアセンブリ137508から受信した入力に応答してインジケータを起動するように構成され得る。例えば、制御回路137506は、制御回路137506が、(例えば、センサアセンブリ137508を介して感知されるように)外科用器具137400が閉鎖位置にあると判定すると、インジケータを起動させるように構成され得る。
スマート開創器
図52は、本開示の少なくとも1つの態様による、センサ137602を含む開創器137600の斜視図を示す。様々な態様では、手術部位開口部137650を固定するための開創器137600は、取り外し可能に又は一体的に取り付けられたセンサ137602を含むことができる。一態様では、センサ137602は、磁石を介して開創器137600に取り外し可能に固定することができる。センサ137602は、開創器137600がタップ、ジョイシング、移動、又は別にユーザー(例えば外科医)によって操作されたときを検出するように構成され得る。一例示では、センサ137602は、センサ137602が取り付けられる開創器137600による振動又は動きを検出するように構成された振動センサ(例えば、ADIS16223デジタル軸方向振動センサ)を含むことができる。一態様では、センサ137602は再利用可能であってもよい。すなわち、センサ137602は、滅菌プロセスを通じてその有効性を維持することができる(センサ137602は、手術野にある開創器137600に取り付けられているため、再利用する場合には、外科的処置で使用された後に滅菌される)。センサ137602は、開創器137600の検出された運動又は振動の振幅、周波数、及び/又は方向に従って、ユーザの異なる種類の運動又は動作(例えば、タップ)を検出するように構成することができる。
センサ137602は、開創器137600の検出された振動又は運動を示す信号を送信するように構成することができる。一態様では、センサ137602は、例えば有線接続137604を介して外科用器具137606(例えば、外科用器具又は電気外科用器具)及び/又は別の装置(例えば、発生器)に通信可能に接続され得る。センサ137602によって検出された動き又は動きに基づいて、センサ137602は、センサ137602に通信可能に接続された外科用器具(複数可)137606及び/又は他の装置(複数可)の状態を変化させることができる。外科用器具(複数可)137606及び/又は他の装置(複数可)の状態は、例えば、器具(複数可)137606及び/又は装置(複数可)のモード、或いは、器具(複数可)137606及び/又は装置(複数可)の特性に対応し得る。例えば、センサ137602が開創器137600がタップされていることを検出すると、センサ137602は、センサ137602と通信可能に接続された外科用器具137606に信号を送信することができ、この信号は、外科用器具137606を不活性状態から起動状態に変化させる(又はその逆)。別の例として、センサ137602が開創器137600が触れられていることを検出すると、センサ137602は、それと通信可能に接続された発生器を停止モードから起動モードに変化させる(又はその逆)信号を外科用発生器に伝達することができる。一部の態様では、開創器センサ137602は、図1~11に関連して説明されるように、データ及び/又は信号を外科用ハブ106に送信するように構成され得る。それによって、上述したように、外科用器具(複数可)137606及び/又は他の装置(複数可)を制御するなど、様々な動作をとることができる。
図53は、本開示の少なくとも1つの態様による、手術部位137900で用いられるディスプレイを含む開創器137902の斜視図を示す。外科用開創器137902は、外科医及び手術室の専門家が外科手術中に切開又は創傷を開いたままに保持するのを助ける。外科用開創器137902は、下にある臓器又は組織を保持するのを助け、医師/看護者がより良好な視認性及び露出領域へのアクセスを可能にする。開創器137902は、ディスプレイ137904、又は実行される外科手術に関連する警告及び/又は情報を表示するように構成された他の制御装置を含むことができ、外科手術の過程中に利用される器具又は装置を制御する手段、又は外科手術が行われる環境(例えば、手術室)を提供し、他のそのような機能を実行する。図示の態様では、制御装置は開創器137902と一体である。別の態様では、制御装置は、例えば、開創器137902に取り外し可能に取り付けることができるタッチスクリーンディスプレイ(例えば、タブレットコンピュータ)を含む携帯型電子デバイスを含むことができる。更に別の態様では、制御装置は、患者の身体/皮膚又は別の表面に取り付け可能な可撓性ステッカーディスプレイを含む。
一態様では、制御装置は、ユーザから入力を受信するための入力装置(例えば、キーパッド、容量性タッチスクリーン、又はこれらの組み合わせ)と、警告、情報、又は他の出力をユーザに提供するための出力装置(例えば、ディスプレイ)と、エネルギー源(例えば、コイン電池、電池、光起電力電池、又はこれらの組み合わせ)と、制御装置を、外科用器具、動作室内のデバイス(例えば、図1~11に記載される外科用ハブ106)、及び/又は他の装置(外科用又は他の装置)に、通信可能に接続するための通信プロトコル(例えば、Wi-Fi、Bluetooth)のためのネットワークインターフェースコントローラと、を含む。制御装置は、ユーザ(例えば、外科医)に情報を表示し、ユーザから入力又はコマンドを受信するためのグラフィカルユーザインターフェース(GUI)を提供するように構成することができる。一態様では、制御装置は、開創器137902が固定のために利用されている手術視野137908を照明するように構成された光源137906(例えば、LEDのアレイ)を更に含む。
一態様では、制御装置は、外科用開創器137902に取り外し可能に固定可能である。別の態様では、制御装置は、「スマート」外科用開創器137902を画定する開創器137902と一体である。スマート外科用開創器137902は、スマート外科用開創器137902によって操作される入力ディスプレイを備えてもよい。スマート外科用開創器137902は、外科用ハブに連結された発生器モジュールに接続された装置と通信するための無線通信デバイスを含んでもよい。スマート外科用開創器137902の入力ディスプレイを使用して、外科医は、組織を切断及び/又は凝固させるために、発生器モジュールの電力レベル又はモードを調節することができる。組織上のエンドエフェクタの閉鎖上のエネルギー送達のための自動オン/オフを使用する場合、自動オン/オフの状態は、光、スクリーン、又はスマート開創器ハウジング上に位置する他の装置によって示されてもよい。使用される電力は、変更及び表示されてもよい。
様々な態様では、制御装置は、電力パラメータなどの制御装置に通信可能に接続される外科用器具の様々な機能を制御するように構成され得る(例えば、電気外科用器具及び/又は超音波器具の電力パラメータ、或いは、例えば、電気外科用器具の「切断」モード及び「凝固」モード、又は自動など、外科用器具の動作モード)。様々な態様では、制御装置は、実行される外科手術に関連する情報、及び/又は外科手術の過程中に使用される装置に関連する情報を表示するように構成され得る。情報として超音波ブレード(エンドエフェクタ)の温度、外科手術の過程中に発生する警告若しくは警報、又は手術野内の神経の位置などが挙げられる。警告又は警報は、例えば、外科用器具、及び/又は、外科用器具(又は他のモジュール式外科装置)が通信可能に接続される外科用ハブ106によって生成され得る。様々な態様では、制御装置は、手術室内のフィールドライトの強度及び/又は位置など、外科処置が実行されている環境(例えば、手術室)の機能を制御するように構成することができる。
様々な態様では、制御装置は、いずれの外科用器具又は他の装置が制御装置の近傍にあるかを感知し、次いで制御装置に接続された任意の外科用器具又は他の装置の操作制御を制御装置に渡すように構成され得る。一態様では、スマート外科用開創器137902は、外科用ハブ106、RFID、又は装置/器具やスマート外科用開創器137902上に配置された他の装置を介して、外科医がどの装置/器具を使用しているかを感知又は知ることができ、適切なディスプレイを提供することができる。警告及び警報は、状況に応じて起動されてもよい。他の特徴は、超音波ブレードの温度、神経モニタリング、光源、又は蛍光を表示することを含む。光源137906は、外科用視野137908を照明し、スマート開創器137902に付着する単回使用ステッカーディスプレイ上で光セルを充電するために用いられてもよい。別の態様では、スマート外科用開創器137902は、患者の解剖学的構造(例えば、静脈ビューワ)上に投影される拡張現実を含んでもよい。
他の態様では、制御装置は、患者の身体/皮膚に取り付け可能なスマート可撓性ステッカーディスプレイを含み得る。スマート可撓性ステッカーディスプレイは、例えば、外科用開創器によって露出された領域の間の患者の身体/皮膚に付着することができる。一態様では、スマート可撓性ステッカーディスプレイは、光、オンボードバッテリ、又は接地パッドによって電力供給されてもよい。可撓性ステッカーディスプレイは、装置に近距離無線(例えば、Bluetooth)を介して通信することができ、読み出し、電力ロック、又は電力変更を提供することができる。スマート可撓性ステッカーディスプレイはまた、周辺光エネルギーを使用してスマート可撓性ステッカーディスプレイに電力を供給するための光セルを含む。可撓性ステッカーディスプレイは、制御パネルユーザインタフェースのディスプレイ137904を含み、外科医が、外科用ハブに接続された制御装置又は他のモジュールを制御することを可能にする。
スマート開創器に関する様々な更なる詳細は、参照によりその全体が本明細書に組み込まれる、2018年3月29日に出願された「DISPLAY OF ALIGNMENT OF STAPLE CARTRIDGE TO PRIOR LINEAR STAPLE LINE」と題された米国特許出願第15/940,686号から見出すことができる。
状況認識
ここで図54を参照すると、例えば、外科用ハブ106又は206(図1~11)などのハブの状況認識を示す時間線5200が示されている。時間線5200は例示的な外科処置、及び外科用ハブ106、206が、外科処置の各工程でデータソースから受信したデータから導き出すことができるコンテキスト情報である。時間線5200は、手術室を設置することから開始し、患者を術後回復室に移送することで終了する肺区域切除手術の過程で、看護師、外科医、及び他の医療関係者によって取られるであろう典型的な工程を示す。
状況認識外科用ハブ106、206は、外科処置の過程全体にわたって、医療関係者が外科用ハブ106、206とペアリングされたモジュール式装置を使用する度に生成されるデータを含むデータをデータソースから受信する。外科用ハブ106、206は、ペアリングされたモジュール式装置及び他のデータソースからこのデータを受信して、任意の所与の時間に処置のどの工程が実施されているかなどの新しいデータが受信されると、進行中の処置に関する推定(すなわち、コンテキスト情報)を継続的に導出することができる。外科用ハブ106、206の状況認識システムは、例えば、レポートを生成するために処置に関するデータを記録する、医療関係者によって取られている工程を検証する、特定の処置工程に関連し得るデータ又はプロンプトを(例えば、ディスプレイスクリーンを介して)提供する、コンテキストに基づいてモジュール式装置を調節する(例えば、モニタを起動する、医療用撮像装置の視界(FOV)を調節する、又は超音波外科用器具若しくはRF電気外科用器具のエネルギーレベルを変更するなど)、及び上記の任意の他のこうした動作を行うことが可能である。
この例示的な処置における第1の工程5202として、病院職員は、病院のEMRデータベースから患者のEMRを読み出す。EMRにおける選択された患者データに基づいて、外科用ハブ106、206は、実行される処置が胸郭処置であることを判定する。
第2の工程5204では、職員は、処置のために入来する医療用品をスキャンする。外科用ハブ106、206は、スキャンされた用品を様々な種類の処置で利用される用品のリストと相互参照し、用品の組み合わせ(mix of supplies)が胸郭処置に対応することを確認する。更に、外科用ハブ106、206はまた、処置がウェッジ処置ではないと判定することができる(入来する用品が、胸郭ウェッジ処置に必要な特定の用品を含まないか、又は別の点で胸郭ウェッジ処置に対応していないかのいずれかであるため)。
第3の工程5206では、医療関係者は、外科用ハブ106、206に通信可能に接続されたスキャナを介して患者のバンドをスキャンする。続いて、外科用ハブ106、206は、スキャンされたデータに基づいて患者の識別情報を確認することができる。
第4の工程5208では、医療スタッフが補助装置をオンにする。利用される補助装置は、外科処置の種類及び外科医によって使用される技術に従って変わり得るが、この例示的な場合では、これらとしては、排煙器、吸入器、及び医療用撮像装置が挙げられる。起動されると、モジュール式装置である補助装置は、その初期化プロセスの一部として、モジュール式装置の特定の近傍内に位置する外科用ハブ106、206と自動的にペアリングすることができる。続いて、外科用ハブ106、206は、この術前又は初期化段中にそれとペアリングされるモジュール式装置の種類を検出することによって、外科処置に関するコンテキスト情報を導出することができる。この特定の実施例では、外科用ハブ106、206は、ペアリングされたモジュール式装置のこの特定の組み合わせに基づいて、外科処置がVATS手術であると判定する。患者のEMRからのデータの組み合わせ、手術に用いられる医療用品のリスト、及びハブに接続するモジュール式装置の種類に基づいて、外科用ハブ106、206は、外科チームが実施する特定の処置を概ね推定することができる。外科用ハブ106、206が、何の特定の処置が実施されているかを知ると、続いて外科用ハブ106、206は、メモリから、又はクラウドからその処置の工程を読み出して、次に接続されたデータソース(例えば、モジュール式装置及び患者監視装置)からその後受信したデータを相互参照して、外科処置のどの工程を外科チームが実行しているかを推定することができる。
第5の工程5210では、職員は、EKG電極及び他の患者監視装置を患者に取り付ける。EKG電極及び他の患者監視装置は、外科用ハブ106、206とペアリングすることができる。外科用ハブ106、206が患者監視装置からデータの受信を開始すると、外科用ハブ106、206は患者が手術室にいることを確認する。
第6の工程5212では、医療関係者は患者に麻酔を誘発する。外科用ハブ106、206は、例えば、EKGデータ、血圧データ、ベンチレータデータ、又はこれらの組み合わせを含む、モジュール式装置及び/又は患者監視装置からのデータに基づいて、患者が麻酔下にあることを推定することができる。第6の工程5212が完了すると、肺区域切除手術の術前部分が完了し、手術部分が開始する。
第7の工程5214では、操作されている患者の肺が虚脱される(換気が対側肺に切り替えられる間に)。外科用ハブ106、206は、例えば、患者の肺が虚脱されたことをベンチレータデータから推定することができる。外科用ハブ106、206は、患者の肺が虚脱したのを検出したことを、処置の予期される工程(事前にアクセス又は読み出すことができる)と比較することができるため、処置の手術部分が開始したことを推定して、それによって肺を虚脱させることがこの特定の処置における第1の手術工程であると判定することができる。
第8の工程5216では、医療用撮像装置(例えば、スコープ)が挿入され、医療用撮像装置からのビデオ映像が開始される。外科用ハブ106、206は、医療用撮像装置への接続を通じて医療用撮像装置データ(すなわち、ビデオ又は画像データ)を受信する。医療用撮像装置データを受信すると、外科用ハブ106、206は、外科処置の腹腔鏡部分が開始したことを判定することができる。更に、外科用ハブ106、206は、実施されている特定の処置が、肺葉切除とは対照的に区域切除術であると判定することができる(処置の第2の工程5204で受信したデータに基づいて、ウェッジ処置は外科用ハブ106、206によって既に割り引かれていることに留意されたい)。医療用撮像装置124(図2)からのデータは、患者の解剖学的構造の可視化に関して配向されている医療用撮像装置の角度を判定することによる、用いられている(すなわち、起動されており、外科用ハブ106、206とペアリングされている)数又は医療用撮像装置を監視することによる、及び用いられている可視化装置の種類を監視することによる、ことを含む多くの異なる方法の中から実施されている処置の種類に関するコンテキスト情報を判定するために用いられ得る。例えば、VATS肺葉切除術を実施するための1つの技術は、カメラを患者の胸腔の前下方角部の横隔膜上方に配置し、一方、VATS区域切除術を実施するための1つの技術は、カメラを、区域裂に対して前肋間位置に配置する。例えば、パターン認識又は機械学習技術を使用して、状況認識システムは、患者の解剖学的構造の可視化に基づいて、医療用撮像装置の位置を認識するように訓練され得る。別の例として、VATS肺葉切除術を実施するための1つの技術は単一の医療用撮像装置を利用するが、VATS区域切除術を実施するための別の技術は複数のカメラを利用する。更に別の例として、VATS区域切除術を実施するための1つの技術は、区域裂を可視化するために赤外線光源(可視化システムの一部として外科用ハブに通信可能に接続され得る)を使用し、これはVATS肺葉切除術では使用されない。医療用撮像装置からのこのデータのいずれか又は全てを追跡することによって、外科用ハブ106、206は、実行中の特定の種類の外科処置、及び/又は特定の種類の外科処置に使用されている技術を判定することができる。
第9の工程5218で、外科チームは、処置の切開工程を開始する。外科用ハブ106、206は、エネルギー器具が発射されていることを示すRF又は超音波発生器からのデータを受信するため、外科医が患者の肺を切開して分離するプロセスにあると推定することができる。外科用ハブ106、206は、受信されたデータを外科処置の読み出しされた工程と相互参照して、プロセスのこの時点(すなわち、上述された処置の工程が完了した後)で発射されているエネルギー器具が切開工程に対応していると判定することができる。特定の例では、エネルギー器具は、ロボット外科システムのロボットアームに取り付けられたエネルギーツールであり得る。
第10の工程5220で、外科チームは、処置の結紮工程に進む。外科用ハブ106、206は、器具が発射されていることを示す外科用ステープル留め及び切断器具からのデータを受信するため、外科医が動脈及び静脈を結紮していると推定することができる。前工程と同様に、外科用ハブ106、206は、外科用ステープル留め及び切断器具からのデータの受信を、読み出しされたプロセス内の工程と相互参照することによって、この推定を導出することができる。特定の例では、外科用器具は、ロボット外科システムのロボットアームに取り付けられた外科用ツールであり得る。
第11の工程5222では、処置の区域部分切除が実施される。外科用ハブ106、206は、そのカートリッジからのデータを含む外科用ステープル留め及び切断器具からのデータに基づいて、外科医が実質組織を横切開していると推定することができる。カートリッジのデータは、例えば、器具によって発射されるステープルのサイズ又は種類に対応することができる。異なる種類のステープルが異なる種類の組織に利用されているため、カートリッジのデータは、ステープル留め及び/又は横切開されている組織の種類を示すことができる。この場合、発射されるステープルの種類は実質組織(又は他の同様の組織種)に用いられ、これにより、外科用ハブ106、206は、処置の区域切除部分が実行されていると推定することができる。
続いて第12の工程5224で、結節切開工程が実行される。外科用ハブ106、206は、RF又は超音波器具が発射されていることを示す発生器から受信したデータに基づいて、外科チームが結節を切開し、漏れ試験を実施していると推定することができる。この特定の処置の場合、実質組織が横切開された後に用いられるRF又は超音波器具は結節切開工程に対応しており、この結節切開工程により外科用ハブ106、206がこの推定を行うことが可能となる。異なる器具が特定の作業に対してより良好に適合するため、外科医は、処置中の特定の工程に応じて、定期的に外科用ステープル留め/切断器具と外科用エネルギー(すなわち、RF又は超音波)器具との間で交互に切り替えることに留意されたい。したがって、ステープル留め/切断器具及び外科用エネルギー器具が使用される特定のシーケンスは、外科医が処置のどの工程を実施中であるかを示すことができる。更に、特定の例では、外科処置中の1つ又は2つ以上の工程にロボットツールを使用することができ、かつ/又は外科処置中の1つ又は2つ以上の工程にハンドヘルド外科用器具を使用することができる。外科医(複数可)は、例えば、ロボットツールとハンドヘルド外科用器具とを順に交代させることができ、かつ/又は、例えば、装置を同時に使用することができる。第12の工程5224が完了すると、切開部が閉鎖され、処置の術後部分が開始する。
第13の工程5226では、患者の麻酔が逆転される。外科用ハブ106、206は、例えば、ベンチレータデータに基づいて(すなわち、患者の呼吸速度が増加し始める)、患者が麻酔から覚醒しつつあると推定することができる。
最後に、第14の工程5228は、医療関係者が患者から様々な患者監視装置を除去することである。したがって、外科用ハブ106、206は、ハブがEKG、BP、及び患者監視装置からの他のデータを喪失したとき、患者が回復室に移送されていると推定することができる。この例示的な処置の説明から分かるように、外科用ハブ106、206と通信可能に接続された各種データソースから受信されたデータに基づいて、外科用ハブ106、206は、所与の外科処置の各工程が発生しているときを判定又は推定することができる。
状況認識については、その全体が参照により本明細書に組み込まれる、2018年4月19日出願の「METHOD OF HUB COMMUNICATION」と題する米国仮特許出願第62/659,900号で更に説明されている。特定の例では、例えば本明細書で開示される様々なロボット外科システムを含むロボット外科システムの動作は、その状況認識、及び/若しくはその構成要素からのフィードバックに基づいて、並びに/又はクラウド102からの情報に基づいて、ハブ106、206によって制御され得る。
いくつかの形態が例示され説明されてきたが、添付の「特許請求の範囲」をそのような詳述に制限又は限定することは、本出願人が意図するところではない。多数の修正、変形、変化、置換、組み合わせ及びこれらの形態の等価物を実装することができ、本開示の範囲から逸脱することなく当業者により想到されるであろう。更に、記述する形態に関連した各要素の構造は、その要素によって行われる機能を提供するための手段として代替的に説明することができる。また、材料が特定の構成要素に関して開示されているが、他の材料が使用されてもよい。したがって、上記の説明文及び添付の特許請求の範囲は、全てのそのような修正、組み合わせ、及び変形を、開示される形態の範囲に含まれるものとして網羅することを意図としたものである点を理解されたい。添付の特許請求の範囲は、全てのそのような修正、変形、変化、置換、修正、及び等価物を網羅することを意図する。
上記の詳細な説明は、ブロック図、フローチャート、及び/又は実施例を用いて装置及び/又はプロセスの様々な形態について記載してきた。そのようなブロック図、フローチャート、及び/又は実施例が1つ若しくは2つ以上の機能及び/又は動作を含む限り、当業者に理解されたいこととして、そのようなブロック図、フローチャート、及び/又は実施例に含まれる各機能及び/又は動作は、多様なハードウェア、ソフトウェア、ファームウェア、又はこれらの事実上の任意の組み合わせによって、個々にかつ/又は集合的に実装することができる。当業者には、本明細書で開示される形態のうちのいくつかの態様の全部又は一部が、1台以上のコンピュータ上で稼働する1つ又は2つ以上のコンピュータプログラムとして(例えば、1台以上のコンピュータシステム上で稼働する1つ又は2つ以上のプログラムとして)、1つ又は2つ以上のプロセッサ上で稼働する1つ又は2つ以上のプログラムとして(例えば、1つ又は2つ以上のマイクロプロセッサ上で稼働する1つ又は2つ以上のプログラムとして)、ファームウェアとして、又はこれらの実質的に任意の組み合わせとして集積回路上で等価に実現することができ、また、回路を設計すること、並びに/又はソフトウェア及び/若しくはファームウェアのコードを記述することは、本開示を鑑みれば当業者の技能の範囲内に含まれることが理解されよう。更に、当業者には理解されることとして、本明細書に記載した主題の機構は、多様な形式で1つ又は2つ以上のプログラム製品として配布されることが可能であり、本明細書に記載した主題の具体的な形態は、配布を実際に行うために使用される信号搬送媒体の特定の種類にかかわらず用いられる。
様々な開示された態様を実行するように論理をプログラムするために使用される命令は、ダイナミックランダムアクセスメモリ(DRAM)、キャッシュ、フラッシュメモリ、又は他のストレージなどのシステム内メモリに記憶され得る。更に、命令は、ネットワークを介して、又は他のコンピュータ可読媒体によって分配され得る。したがって、機械可読媒体としては、機械(例えば、コンピュータ)によって読み出し可能な形態で情報を記憶又は送信するための任意の機構が挙げられ得るが、フロッピーディスケット、光ディスク、コンパクトディスク、読み出し専用メモリ(CD-ROM)、並びに磁気光学ディスク、読み出し専用メモリ(ROM)、ランダムアクセスメモリ(RAM)、消去可能プログラマブル読み出し専用メモリ(EPROM)、電気的消去可能プログラマブル読み出し専用メモリ(EEPROM)、磁気若しくは光カード、フラッシュメモリ、又は、電気的、光学的、音響的、若しくは他の形態の伝播信号(例えば、搬送波、赤外線信号、デジタル信号など)を介してインターネットを介した情報の送信に使用される有形機械可読ストレージに限定されない。したがって、非一時的コンピュータ可読媒体としては、機械(例えば、コンピュータ)によって読み出し可能な形態で電子命令又は情報を記憶又は送信するのに好適な任意の種類の有形機械可読媒体が挙げられる。
本明細書の任意の態様で使用されるとき、用語「制御回路」は、例えば、ハードワイヤード回路、プログラマブル回路(例えば、1つ又は2つ以上の個々の命令処理コアを含むコンピュータプロセッサ、処理ユニット、プロセッサ、マイクロコントローラ、マイクロコントローラユニット、コントローラ、デジタル信号プロセッサ(DSP)、プログラマブル論理機構(PLD)、プログラマブル論理アレイ(PLA)、又はフィールドプログラマブルゲートアレイ(FPGA))、状態機械回路、プログラマブル回路によって実行される命令を記憶するファームウェア、及びこれらの任意の組み合わせを指すことができる。制御回路は、集合的に又は個別に、例えば、集積回路(IC)、特定用途向け集積回路(ASIC)、システムオンチップ(SoC)、デスクトップコンピュータ、ラップトップコンピュータ、タブレットコンピュータ、サーバ、スマートフォンなどの、より大きなシステムの一部を形成する回路として具現化され得る。したがって、本明細書で使用するとき、「制御回路」としては、少なくとも1つの個別の電気回路を有する電気回路、少なくとも1つの集積回路を有する電気回路、少なくとも1つの特定用途向け集積回路を有する電気回路、コンピュータプログラムによって構成された汎用コンピューティング装置(例えば、本明細書で説明したプロセス及び/若しくは装置を少なくとも部分的に実行するコンピュータプログラムによって構成された汎用コンピュータ、又は本明細書で説明したプロセス及び/若しくは装置を少なくとも部分的に実行するコンピュータプログラムによって構成されたマイクロプロセッサ)を形成する電気回路、メモリ装置(例えば、ランダムアクセスメモリの形態)を形成する電気回路、及び/又は通信装置(例えばモデム、通信スイッチ、又は光-電気設備)を形成する電気回路が挙げられるが、これらに限定されない。当業者は、本明細書で述べた主題が、アナログ若しくはデジタルの形式又はこれらのいくつかの組み合わせで実現されてもよいことを認識するであろう。
本明細書の任意の態様で使用される場合、用語「論理」は、前述の動作のいずれかを実行するように構成されたアプリケーション、ソフトウェア、ファームウェア、及び/又は回路を指し得る。ソフトウェアは、非一時的コンピュータ可読記憶媒体上に記録されたソフトウェアパッケージ、コード、命令、命令セット、及び/又はデータとして具現化されてもよい。ファームウェアは、メモリ装置内のコード、命令、若しくは命令セット、及び/又はハードコードされた(例えば、不揮発性の)データとして具現化されてもよい。
本明細書の任意の態様で使用するとき、用語「構成要素」、「システム」、「モジュール」などは、ハードウェア、ハードウェアとソフトウェアとの組み合わせ、ソフトウェア、又は実行中のソフトウェアのどちらかであるコンピュータ関連エンティティを指すことができる。
本明細書の任意の態様で使用するとき、「アルゴリズム」とは、所望の結果につながる工程の自己無撞着シーケンスを指し、「工程」とは、必ずしも必要ではないが、記憶、転送、結合、比較、及び別様に操作されることが可能な電気又は磁気信号の形態をなすことができる物理量及び/又は論理状態の操作を指す。これらの信号を、ビット、値、要素、記号、文字、用語、番号などとして言及することが一般的な扱い方である。これらの及び類似の用語は、適切な物理量と関連付けられてもよく、また単に、これらの量及び/又は状態に適用される便利なラベルである。
ネットワークとしては、パケット交換ネットワークが挙げられ得る。通信装置は、選択されたパケット交換ネットワーク通信プロトコルを使用して、互いに通信することができる。1つの例示的な通信プロトコルとしては、伝送制御プロトコル/インターネットプロトコル(TCP/IP)を使用して通信を可能にすることができるイーサネット通信プロトコルを挙げることができる。イーサネットプロトコルは、Institute of Electrical and Electronics Engineers(IEEE)によって発行された2008年12月発行の表題「IEEE802.3 Standard」、及び/又は本規格の後のバージョンのイーサネット規格に準拠するか、又は互換性があり得る。代替的に又は追加的に、通信装置は、X.25通信プロトコルを使用して互いに通信することができる。X.25通信プロトコルは、International Telecommunication Union-Telecommunication Standardization Sector(ITU-T)によって公布された規格に準拠するか、又は互換性があり得る。代替的に又は追加的に、通信装置は、フレームリレー通信プロトコルを使用して互いに通信することができる。フレームリレー通信プロトコルは、Consultative Committee for International Telegraph and Telephone(CCITT)及び/又はthe American National Standards Institute(ANSI)によって公布された規格に準拠するか、又は互換性があり得る。代替的に又は追加的に、送受信機は、非同期転送モード(ATM)通信プロトコルを使用して互いに通信することが可能であり得る。ATM通信プロトコルは、ATM Forumによって「ATM-MPLS Network Interworking2.0」という題で2001年8月に公開されたATM規格及び/又は本規格の後のバージョンに準拠するか、又は互換性があり得る。当然のことながら、異なる及び/又は後に開発されたコネクション型ネットワーク通信プロトコルは、本明細書で等しく企図される。
別段の明確な定めがない限り、前述の開示から明らかなように、前述の開示全体を通じて、「処理する」、「計算する」、「算出する」、「決定する」、「表示する」などの用語を使用する議論は、コンピュータシステムのレジスタ及びメモリ内で物理(電子的)量として表現されるデータを、コンピュータシステムのメモリ若しくはレジスタ又はそのような情報記憶、伝送、若しくは表示装置内で物理量として同様に表現される他のデータへと操作し変換する、コンピュータシステム又は類似の電子計算装置の動作及び処理を指していることが理解されよう。
1つ又は2つ以上の構成要素が、本明細書中で、「ように構成される(configured to)」、「ように構成可能である(configurable to)」、「動作可能である/ように動作する(operable/operative to)」、「適合される/適合可能である(adapted/adaptable)」、「ことが可能である(able to)」、「準拠可能である/準拠する(conformable/conformed to)」などと言及され得る。当業者は、「ように構成される」は、一般に、文脈上他の意味に解釈すべき場合を除き、アクティブ状態の構成要素及び/又は非アクティブ状態の構成要素及び/又はスタンドバイ状態の構成要素を包含し得ることを理解するであろう。
「近位」及び「遠位」という用語は、本明細書では、外科用器具のハンドル部分を操作する臨床医を基準として使用される。「近位」という用語は、臨床医に最も近い部分を指し、「遠位」という用語は、臨床医から離れた位置にある部分を指す。便宜上及び明確性のために、「垂直」、「水平」、「上」、及び「下」などの空間的用語が、本明細書において図面に対して使用され得ることが更に理解されよう。しかしながら、外科用器具は、多くの向き及び位置で使用されるものであり、これらの用語は限定的及び/又は絶対的であることを意図したものではない。
当業者は、一般に、本明細書で使用され、かつ特に添付の特許請求の範囲(例えば、添付の特許請求の範囲の本文)で使用される用語は、概して「オープンな」用語として意図されるものである(例えば、「含む(including)」という用語は、「~を含むが、それらに限定されない(including but not limited to)」と解釈されるべきであり、「有する(having)」という用語は「~を少なくとも有する(having at least)」と解釈されるべきであり、「含む(includes)」という用語は「~を含むが、それらに限定されない(includes but is not limited to)」と解釈されるべきであるなど)ことを理解するであろう。更に、導入された請求項記載(introduced claim recitation)において特定の数が意図される場合、かかる意図は当該請求項中に明確に記載され、またかかる記載がない場合は、かかる意図は存在しないことが、当業者には理解されるであろう。例えば、理解を助けるものとして、後続の添付の特許請求の範囲は、「少なくとも1つの(at least one)」及び「1つ以上の(one or more)」という導入句を、請求項記載を導入するために含むことがある。しかしながら、かかる句の使用は、「a」又は「an」という不定冠詞によって請求項記載を導入した場合に、たとえ同一の請求項内に「1つ以上の」又は「少なくとも1つの」といった導入句及び「a」又は「an」という不定冠詞が含まれる場合であっても、かかる導入された請求項記載を含むいかなる特定の請求項も、かかる記載事項を1つのみ含む請求項に限定されると示唆されるものと解釈されるべきではない(例えば、「a」及び/又は「an」は通常、「少なくとも1つの」又は「1つ以上の」を意味するものと解釈されるべきである)。定冠詞を使用して請求項記載を導入する場合にも、同様のことが当てはまる。
更に、導入された請求項記載において特定の数が明示されている場合であっても、かかる記載は、典型的には、少なくとも記載された数を意味するものと解釈されるべきであることが、当業者には認識されるであろう(例えば、他に修飾語のない、単なる「2つの記載事項」という記載がある場合、一般的に、少なくとも2つの記載事項、又は2つ以上の記載事項を意味する)。更に、「A、B、及びCなどのうちの少なくとも1つ」に類する表記が用いられる場合、一般に、かかる構文は、当業者がその表記を理解するであろう意味で意図されている(例えば、「A、B、及びCのうちの少なくとも1つを有するシステム」は、限定するものではないが、Aのみ、Bのみ、Cのみ、AとBの両方、AとCの両方、BとCの両方、及び/又はAとBとCの全てなどを有するシステムを含む)。「A、B、又はCなどのうちの少なくとも1つ」に類する表記が用いられる場合、一般に、かかる構文は、当業者がその表記を理解するであろう意味で意図されている(例えば、「A、B、又はCのうちの少なくとも1つを有するシステム」は、限定するものではないが、Aのみ、Bのみ、Cのみ、AとBの両方、AとCの両方、BとCの両方、及び/又はAとBとCの全てなどを有するシステムを含む)。更に、典型的には、2つ若しくは3つ以上の選択的な用語を表わすあらゆる選言的な語及び/又は句は、文脈上他の意味に解釈すべき場合を除いて、明細書内であろうと、請求の範囲内であろうと、あるいは図面内であろうと、それら用語のうちの1つ、それらの用語のうちのいずれか、又はそれらの用語の両方を含む可能性を意図すると理解されるべきであることが、当業者には理解されよう。例えば、「A又はB」という句は、典型的には、「A」又は「B」又は「A及びB」の可能性を含むものと理解されよう。
添付の特許請求の範囲に関して、当業者は、本明細書における引用した動作は一般に、任意の順序で実施され得ることを理解するであろう。また、様々な動作のフロー図がシーケンス(複数可)で示されているが、様々な動作は、例示されたもの以外の順序で行われてもよく、又は同時に行われてもよいことが理解されるべきである。かかる代替の順序付けの例は、文脈上他の意味に解釈すべき場合を除いて、重複、交互配置、割り込み、再順序付け、増加的、予備的、追加的、同時、逆、又は他の異なる順序付けを含んでもよい。更に、「~に応答する」、「~に関連する」といった用語、又は他の過去時制の形容詞は、一般に、文脈上他の意味に解釈すべき場合を除き、かかる変化形を除外することが意図されるものではない。
「一態様」、「態様」、「例示」、「一例示」などへの任意の参照は、その態様に関連して記載される特定の機構、構造、又は特性が少なくとも1つの態様に含まれると意味することは特記に値する。したがって、本明細書の全体を通じて様々な場所に見られる語句「一態様では」、「態様では」、「例示では」、及び「一例示では」は、必ずしも全てが同じ態様を指すものではない。更に、特定の特徴、構造、又は特性は、1つ又は2つ以上の態様において任意の好適な様態で組み合わせることができる。
本明細書で参照され、かつ/又は任意の出願データシートに列挙される任意の特許出願、特許、非特許刊行物、又は他の開示資料は、組み込まれる資料が本明細書と矛盾しない範囲で、参照により本明細書に組み込まれる。それ自体、また必要な範囲で、本明細書に明瞭に記載される開示内容は、参考として本明細書に組み込まれているあらゆる矛盾する記載に優先するものとする。現行の定義、見解、又は本明細書に記載されるその他の開示内容と矛盾する任意の内容、又はそれらの部分は本明細書に参考として組み込まれるものとするが、参照内容と現行の開示内容との間に矛盾が生じない範囲においてのみ、参照されるものとする。
要約すると、本明細書に記載した構想を用いる結果として得られる多くの利益が記載されてきた。1つ又は2つ以上の形態の上述の記載は、例示及び説明を目的として提示されているものである。包括的であることも、開示された厳密な形態に限定することも意図されていない。上記の教示を鑑みて、修正又は変形が可能である。1つ又は2つ以上の形態は、原理及び実際の応用について例示し、それによって、様々な形態を様々な修正例と共に、想到される特定の用途に適するものとして当業者が利用できるようにするために、選択され記載されたものである。本明細書と共に提示される特許請求の範囲が全体的な範囲を定義することが意図される。
本明細書に記載される主題の様々な態様は、以下の番号付けされた実施例において説明される。
実施例1.外科用器具は、超音波ブレードと、開放位置と閉鎖位置との間で超音波ブレードに対して枢動可能なアームと、超音波ブレードに連結されたトランスデューサアセンブリと、開放位置と閉鎖位置との間のアームの位置を感知するように構成されたセンサと、トランスデューサアセンブリ及びセンサに接続された制御回路と、を含む。トランスデューサアセンブリは、超音波ブレードを超音波振動させるように構成された少なくとも2つの圧電素子を含む。制御回路は、センサによって検出された、閾値位置に対するアームの位置に応じてトランスデューサアセンブリを起動するように構成される。
実施例2.第1のセンサはホール効果センサを含む、実施例1に記載の外科用器具。
実施例3.アームが、ホール効果センサによって検出可能な磁石を備える、実施例2に記載の外科用器具。
実施例4.ホール効果センサが、ユーザに配設された磁石を検出するように構成されている、実施例2に記載の外科用器具。
実施例5.閾値位置が開放位置に対応する、実施例1~4のいずれか1つに記載の外科用器具。
実施例6.閾値位置が閉鎖位置に対応する、実施例1~5のいずれか1つに記載の外科用器具。
実施例7.外科用器具は、超音波ブレードと、開放位置と閉鎖位置との間で超音波ブレードに対して枢動可能なアームと、超音波ブレードに連結されたトランスデューサアセンブリと、アームが閉鎖位置に移行するときに第1の力を感知するように構成された第1のセンサと、アームが開放位置に移行するときに第2の力を感知するように構成された第2のセンサと、トランスデューサアセンブリ、第1のセンサ、及び第2のセンサに接続された制御回路と、を含む。トランスデューサアセンブリは、超音波ブレードを超音波振動させるように構成された少なくとも2つの圧電素子を含む。記制御回路は、第1の閾値に対して第1のセンサによって感知された第1の力、及び第2の閾値に対して第2のセンサによって感知された第2の力に応じて、トランスデューサアセンブリを起動させるように構成されている。
実施例8.前記第1のセンサが触覚スイッチを含む、実施例7に記載の外科用器具。
実施例9.触覚スイッチが2段触覚スイッチを含む、実施例8に記載の外科用器具。
実施例10.第1の閾値は、2段触覚スイッチの第2の段に対応する、実施例9に記載の外科用器具。
実施例11.第1のセンサは、アームが前記閉鎖位置に移行する際にアームが第1のセンサに当接するように、外科用器具のハウジング上に配設される、実施例7~10のいずれか1つに記載の外科用器具。
実施例12.第2のセンサが触覚スイッチを含む、実施例7~11のいずれか1つに記載の外科用器具。
実施例13.触覚スイッチが1段触覚スイッチを含む、実施例12に記載の外科用器具。
実施例14.第2の閾値がゼロ以外の力に対応する、実施例7~13のいずれか1つに記載の外科用器具。
実施例15.第2のセンサは、アームが前記開放位置に移行する際にアームが第2のセンサに当接するように、アームと超音波ブレードとの間の回転点に隣接して配設される、実施例7~14のいずれか1つに記載の外科用器具。
実施例16.外科用器具は、超音波ブレードと、超音波ブレードに連結されたトランスデューサアセンブリと、自身に対する力を感知するように構成されたセンサと、トランスデューサアセンブリ及びセンサに接続された制御回路と、を含む。トランスデューサアセンブリは、超音波ブレードを超音波振動させるように構成された少なくとも2つの圧電素子を含む。制御回路は、センサにより感知された、閾値力に対する力に応じてトランスデューサアセンブリを起動するように構成される。
実施例17.前記センサが、力感知レジスタを含む、実施例16に記載の外科用器具。
実施例18.制御回路は、センサによって感知された力が閾値力を超えるとき、トランスデューサアセンブリを起動するように構成されている、実施例16又は17に記載の外科用器具。
実施例19.センサは、外科用器具の外面上に配設されている、実施例16~18のいずれか1つに記載の外科用器具。
実施例20.センサの出力は、自身に対する力の程度に従って変化し、制御回路は、閾値力を表す閾値に対するセンサの出力に応じてトランスデューサアセンブリを起動させるように構成されている、実施例16~19のいずれか1つに記載の外科用器具。
〔実施の態様〕
(1) 外科用器具であって、
超音波ブレードと、
開放位置と閉鎖位置との間で、前記超音波ブレードに対して枢動可能なアームと、
前記超音波ブレードに連結されたトランスデューサアセンブリであって、前記超音波ブレードを超音波振動させるように構成された少なくとも2つの圧電素子を備えるトランスデューサアセンブリと、
前記開放位置と前記閉鎖位置との間の前記アームの位置を感知するように構成されたセンサと、
前記トランスデューサアセンブリ及び前記センサに接続された制御回路と、を含み、前記制御回路は、前記センサによって検出された、閾値位置に対する前記アームの位置に応じて、前記トランスデューサアセンブリを起動するように構成されている、外科用器具。
(2) 前記センサは、ホール効果センサを含む、実施態様1に記載の外科用器具。
(3) 前記アームは、前記ホール効果センサによって検出可能な磁石を含む、実施態様2に記載の外科用器具。
(4) 前記ホール効果センサは、ユーザに配置された磁石を検出するように構成されている、実施態様2に記載の外科用器具。
(5) 前記閾値位置は、前記開放位置に対応する、実施態様1に記載の外科用器具。
(6) 前記閾値位置は、前記閉鎖位置に対応する、実施態様1に記載の外科用器具。
(7) 外科用器具であって、
超音波ブレードと、
開放位置と閉鎖位置との間で、前記超音波ブレードに対して枢動可能なアームと、
前記超音波ブレードに接続されたトランスデューサアセンブリであって、前記超音波ブレードを超音波振動させるように構成された少なくとも2つの圧電素子を備えるトランスデューサアセンブリと、
前記アームが前記閉鎖位置に移行するときに第1の力を感知するように構成された第1のセンサと、
前記アームが前記開放位置に移行するときに第2の力を感知するように構成された第2のセンサと、
前記トランスデューサアセンブリ、前記第1のセンサ、及び前記第2のセンサに接続された制御回路と、を含み、前記制御回路は、前記第1のセンサによって感知された、第1の閾値に対する前記第1の力、及び前記第2のセンサによって感知された、第2の閾値に対する前記第2の力に応じて、前記トランスデューサアセンブリを起動するように構成されている、外科用器具。
(8) 前記第1のセンサは、触覚スイッチを含む、実施態様7に記載の外科用器具。
(9) 前記触覚スイッチは、2段階触覚スイッチを含む、実施態様8に記載の外科用器具。
(10) 前記第1の閾値は、前記2段階触覚スイッチの第2段階に対応する、実施態様9に記載の外科用器具。
(11) 前記第1のセンサは、前記アームが前記閉鎖位置に移行する際に前記アームが前記第1のセンサに当接するように、前記外科用器具のハウジング上に配設されている、実施態様7に記載の外科用器具。
(12) 前記第2のセンサは、触覚スイッチを含む、実施態様7に記載の外科用器具。
(13) 前記触覚スイッチは、1段階触覚スイッチを含む、実施態様12に記載の外科用器具。
(14) 前記第2の閾値は、ゼロ以外の力に対応する、実施態様7に記載の外科用器具。
(15) 前記第2のセンサは、前記アームが前記開放位置に移行する際に前記アームが前記第2のセンサに当接するように、前記アームと前記超音波ブレードとの間の回転点に隣接して配設されている、実施態様7に記載の外科用器具。
(16) 外科用器具であって、
超音波ブレードと、
前記超音波ブレードに連結されたトランスデューサアセンブリであって、前記超音波ブレードを超音波振動させるように構成された少なくとも2つの圧電素子を備えるトランスデューサアセンブリと、
自身に対する力を感知するように構成されたセンサと、
前記トランスデューサアセンブリ及び前記センサに連結された制御回路と、を備え、前記制御回路は、前記センサによって感知された、閾値力に対する前記力に応じて、前記トランスデューサアセンブリを起動するように構成されている、外科用器具。
(17) 前記センサは、力感知レジスタを含む、実施態様16に記載の外科用器具。
(18) 前記制御回路は、前記センサによって感知された前記力が前記閾値力を超えるとき、前記トランスデューサアセンブリを起動するように構成されている、実施態様16に記載の外科用器具。
(19) 前記センサは、前記外科用器具の外面上に配設されている、実施態様16に記載の外科用器具。
(20) 前記センサの出力は、それに対する力の程度に従って変化し、前記制御回路は、前記閾値力を表す閾値に対する、前記センサの前記出力に応じて、前記トランスデューサアセンブリを起動するように構成されている、実施態様16に記載の外科用器具。

Claims (3)

  1. 外科用器具であって、
    超音波ブレードと、
    開放位置と閉鎖位置との間で、前記超音波ブレードに対して枢動可能なアームと、
    前記超音波ブレードに連結されたトランスデューサアセンブリであって、前記超音波ブレードを超音波振動させるように構成された少なくとも2つの圧電素子を備えるトランスデューサアセンブリと、
    前記開放位置と前記閉鎖位置との間の前記アームの位置を感知するように構成されたセンサと、
    前記トランスデューサアセンブリ及び前記センサに接続された制御回路と、を含み、
    前記センサは、前記超音波ブレードのハウジングに固定された開放センサであり、前記アームは、前記開放センサと接触可能なタブを含み、
    前記アームが開放方向に移動して、前記アームの前記タブが前記開放センサに接触していない状態から前記開放センサに接触する状態に移動することで、前記アームが前記開放位置となった際に、前記開放センサが前記制御回路に出力を提供し、それにより、前記制御回路は、前記トランスデューサアセンブリを起動させて、前記超音波ブレードを超音波振動させるように構成されている、外科用器具。
  2. 前記開放センサは、ホール効果センサである、請求項1に記載の外科用器具。
  3. 前記タブは、前記ホール効果センサによって検出可能な磁石である、請求項2に記載の外科用器具。
JP2020535140A 2018-03-08 2019-02-28 エネルギー装置の起動 Active JP7460524B2 (ja)

Applications Claiming Priority (31)

Application Number Priority Date Filing Date Title
US201862640417P 2018-03-08 2018-03-08
US201862640415P 2018-03-08 2018-03-08
US62/640,415 2018-03-08
US62/640,417 2018-03-08
US201862650882P 2018-03-30 2018-03-30
US201862650887P 2018-03-30 2018-03-30
US201862650898P 2018-03-30 2018-03-30
US201862650877P 2018-03-30 2018-03-30
US62/650,887 2018-03-30
US62/650,898 2018-03-30
US62/650,877 2018-03-30
US62/650,882 2018-03-30
US201862692748P 2018-06-30 2018-06-30
US201862692747P 2018-06-30 2018-06-30
US201862692768P 2018-06-30 2018-06-30
US62/692,768 2018-06-30
US62/692,747 2018-06-30
US62/692,748 2018-06-30
US201862721998P 2018-08-23 2018-08-23
US201862721995P 2018-08-23 2018-08-23
US201862721994P 2018-08-23 2018-08-23
US201862721996P 2018-08-23 2018-08-23
US201862721999P 2018-08-23 2018-08-23
US62/721,996 2018-08-23
US62/721,995 2018-08-23
US62/721,998 2018-08-23
US62/721,999 2018-08-23
US62/721,994 2018-08-24
US16/115,238 US11304720B2 (en) 2017-12-28 2018-08-28 Activation of energy devices
US16/115,238 2018-08-28
PCT/US2019/020147 WO2019134007A1 (en) 2017-12-28 2019-02-28 Activation of energy devices

Publications (2)

Publication Number Publication Date
JP2021508525A JP2021508525A (ja) 2021-03-11
JP7460524B2 true JP7460524B2 (ja) 2024-04-02

Family

ID=71900679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020535140A Active JP7460524B2 (ja) 2018-03-08 2019-02-28 エネルギー装置の起動

Country Status (2)

Country Link
JP (1) JP7460524B2 (ja)
CN (1) CN111526822A (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112255944A (zh) * 2020-10-16 2021-01-22 同济大学 多路并行超声波传感器驱动结构

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012505680A (ja) 2008-10-18 2012-03-08 プロ メディカル イノベイションズ リミテッド 鉗子
JP2012075906A (ja) 2010-10-04 2012-04-19 Tyco Healthcare Group Lp 管密封器具
US20120116391A1 (en) 2010-11-05 2012-05-10 Houser Kevin L Surgical instrument with sensor and powered control
US20160270841A1 (en) 2015-03-17 2016-09-22 Ethicon Endo-Surgery, Llc Managing tissue treatment
US20170172608A1 (en) 2015-12-21 2017-06-22 Ethicon Endo-Surgery, Llc Surgical instrument with variable clamping force
WO2017106238A1 (en) 2015-12-17 2017-06-22 Ethicon Endo-Surgery, Llc Surgical instrument with multi-functioning trigger
WO2017123841A2 (en) 2016-01-15 2017-07-20 Ethicon Llc Modular battery powered handheld surgical instrument with selective application of energy based on button displacement, intensity, or local tissue characterization
WO2017187524A1 (ja) 2016-04-26 2017-11-02 オリンパス株式会社 エネルギー処置具、処置システム及び制御装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10959769B2 (en) * 2010-11-05 2021-03-30 Ethicon Llc Surgical instrument with slip ring assembly to power ultrasonic transducer
US9743946B2 (en) * 2013-12-17 2017-08-29 Ethicon Llc Rotation features for ultrasonic surgical instrument

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012505680A (ja) 2008-10-18 2012-03-08 プロ メディカル イノベイションズ リミテッド 鉗子
JP2012075906A (ja) 2010-10-04 2012-04-19 Tyco Healthcare Group Lp 管密封器具
US20120116391A1 (en) 2010-11-05 2012-05-10 Houser Kevin L Surgical instrument with sensor and powered control
US20160270841A1 (en) 2015-03-17 2016-09-22 Ethicon Endo-Surgery, Llc Managing tissue treatment
WO2017106238A1 (en) 2015-12-17 2017-06-22 Ethicon Endo-Surgery, Llc Surgical instrument with multi-functioning trigger
US20170172608A1 (en) 2015-12-21 2017-06-22 Ethicon Endo-Surgery, Llc Surgical instrument with variable clamping force
WO2017123841A2 (en) 2016-01-15 2017-07-20 Ethicon Llc Modular battery powered handheld surgical instrument with selective application of energy based on button displacement, intensity, or local tissue characterization
WO2017187524A1 (ja) 2016-04-26 2017-11-02 オリンパス株式会社 エネルギー処置具、処置システム及び制御装置

Also Published As

Publication number Publication date
JP2021508525A (ja) 2021-03-11
CN111526822A (zh) 2020-08-11

Similar Documents

Publication Publication Date Title
EP3505098B1 (en) Activation of energy devices
US20230037577A1 (en) Activation of energy devices
US11147607B2 (en) Bipolar combination device that automatically adjusts pressure based on energy modality
JP7305651B2 (ja) 電気外科用システムの状況認識
JP7463067B2 (ja) 超音波エンドエフェクタの温度制御、及びそのための制御システム
JP7279051B2 (ja) 超音波エンドエフェクタの状態の決定
JP2021510555A (ja) エネルギーモダリティに基づいて圧力を自動的に調節する双極組み合わせ装置
JP7383615B2 (ja) 周波数シフトによる超音波電気機械システムの状態の決定
JP2023166617A (ja) 超音波システムを介した組織組成の決定
JP7391852B2 (ja) 液体中のエンドエフェクタの出現の検出
JP7460524B2 (ja) エネルギー装置の起動
JP7350746B2 (ja) 超音波エンドエフェクタの温度制御、及びそのための制御システム
JP7275144B2 (ja) パッドなしの単極ループを生成するための無線周波数の増加
JP7263364B2 (ja) 不慮の容量結合によるエネルギーの遮断
JP7286654B2 (ja) 組織の存在に従う超音波外科用器具の作動の制御
JP7258892B2 (ja) 組織の位置に従った超音波外科用器具の制御

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230207

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230502

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230822

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20231122

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20240122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240321