JP7458183B2 - エネルギー需要変動パターンの分類方法及びシステム - Google Patents

エネルギー需要変動パターンの分類方法及びシステム Download PDF

Info

Publication number
JP7458183B2
JP7458183B2 JP2019236360A JP2019236360A JP7458183B2 JP 7458183 B2 JP7458183 B2 JP 7458183B2 JP 2019236360 A JP2019236360 A JP 2019236360A JP 2019236360 A JP2019236360 A JP 2019236360A JP 7458183 B2 JP7458183 B2 JP 7458183B2
Authority
JP
Japan
Prior art keywords
energy demand
fluctuation pattern
evaluation value
fluctuation
representative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019236360A
Other languages
English (en)
Other versions
JP2021105811A (ja
Inventor
直樹 成島
大 橋本
聡 黒坂
慎司 平岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Motors Ltd
Original Assignee
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Jukogyo KK filed Critical Kawasaki Jukogyo KK
Priority to JP2019236360A priority Critical patent/JP7458183B2/ja
Publication of JP2021105811A publication Critical patent/JP2021105811A/ja
Application granted granted Critical
Publication of JP7458183B2 publication Critical patent/JP7458183B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Description

本発明は、エネルギー需要の予測の精度を向上させるための技術に関する。
従来、機械学習アルゴリズムを利用してエネルギー需要を予測するシステムが知られている。このようなシステムには、エネルギー需要の時系列データを収集し、エネルギー需要の変動パターンを機械学習アルゴリズムを用いて特徴が類似するもの同士のクラスタに分類し、各クラスタの代表値を典型的な変動パターンとするものがある。この場合の変動パターンの分類数(即ち、クラスタ数)の適否は、エネルギー需要の予測値の精度、システムの学習量、利用者のユーザビリティなどに影響を与え得る。
一般的なクラスタリングにおいて、クラスタ数は予め指定される。しかし、工場などの独自の操業形態を有する施設では、エネルギー需要の変動パターンの分類数を一概に決定することは適切ではない。しかし、工場ごとにエネルギー需要の変動パターンの分類数を任意に設定する場合には、分類数を設定する利用者の技量によって予測値の精度が変動する。そこで、特許文献1,2では、エネルギー需要の変動パターンを分類する際の分類数(クラスタ数)の適否を評価する方法が提案されている。
特許文献1に係るエネルギー需要予測システムでは、需要パターン生成用データが需要の周期的な変動の傾向が類似しているもの同士の部分集合(クラスタ)に分類される。ここでシステムは、需要パターン生成用単位データの各々について特徴量を抽出し、当該特徴量に基づいて需要パターン生成用単位データを設定された複数種類の分類数の中から選択された分類数に分類する。システムは、分類された各部分集合の凝集性を測る指標や、各部分集合の分離性を測る指標を用いて、分類数についての評価指標値を算出する。システムは、設定された複数種類の分類数の各々で分類処理を行って評価指標値を算出し、各部分集合の内部の凝集性を測る指標が最小値となる数や、各部分集合の分離性を測る指標が最大となる数を最適な分類数として決定する。
特許文献2に係るデータ分析システムでは、需要家の電力使用量の計測データであるロードデータが特徴量の類似する幾つかのクラスタに分類される。ここでシステムは、設定された1~Nの各々のクラスタ数についてロードデータのクラスタリングを行って、各クラスタ内における個々のロードデータの集合の度合いを表すクラスタ内適合度と、クラスタ同士の分離の度合いを表すクラスタ間平均分離度とを算出する。システムは、クラスタ数の変化量に対するクラスタ内適合度の変化量の割合が所定の第1閾値以下となる最小のクラスタ数を適合度最適クラスタ数として算出する。システムは、クラスタ数の変化量に対するクラスタ間平均分離度の変化量の割合が所定の第2閾値以下となる最小のクラスタ数を分離度最適クラスタ数として算出する。更に、システムは、適合度最適クラスタ数と分離度最適クラスタ数の間に少なくとも1つのクラスタ数が存在する場合には、その中央値に最も近い値を最適なクラスタ数として決定し、それ以外は適合度最適クラスタ数及び分離度最適クラスタ数の一方を最適なクラスタ数として決定する。
特開2016-220515号公報 国際公開WO2015/133635号パンフレット
特許文献1に記載された方法では、指標が最小値又は最大値となる分類数を探索することから、精度を出すために十分な数の分類数についてクラスタリングを行わなければならず、その結果、演算量が多くなる。
特許文献2に記載された方法では、仮にNより小さいクラスタ数が最適を示す場合であっても、1~Nのクラスタ数の各々についてクラスタリングを行う必要があり、高い精度が期待されるものの演算量が多く且つ複雑である。
本発明は以上の事情に鑑みてされたものであり、その目的は、従来よりも単純且つ少ない演算で、エネルギー需要の変動パターンを適切な数に分類する技術を提案する。
本発明の一態様に係るエネルギー需要変動パターンの分類方法は、コンピュータによって行われるエネルギー需要変動パターンの分類方法であって、
連続する所定時間のエネルギー需要量の時系列データを単位変動パターンとして、M個(但し、Mは3以上の自然数)の変動パターンを取得し、
i)前記M個の変動パターンを変動の傾向が類似しているもの同士のN個のクラスタに分類する分類処理と、ii)前記N個のクラスタの各々について、クラスタの代表変動パターンを求める代表変動パターン生成処理と、iii)前記m個の変動パターンの各々について、前記変動パターンと当該変動パターンが分類された前記クラスタの前記代表変動パターンとの乖離度合いを表す評価値f(N)を算出する評価値算出処理とを、N=(n-1)及びN=n(但し、nは3以上且つM以下の自然数)の各々について行って評価値f(n)及び評価値f(n-1)算出し、
前記評価値f(n)と前記評価値f(n-1)との差と所定の閾値とを比較し、前記差が前記閾値より小さい場合は、nを所定数ずつ増やして前記差が前記閾値以上となるまで前記分類処理、前記代表変動パターン生成処理、及び前記評価値算出処理を繰り返し、前記差が前記閾値以上の場合は、前記M個の変動パターンの適切な分類数を(n-1)と決定することを特徴としている。
また、本発明の一態様に係るエネルギー需要変動パターンの分類システムは、
連続する所定時間のエネルギー需要量の時系列データを単位変動パターンとして、多数の変動パターンを記憶した記憶装置と、
前記記憶装置電気的に接続された演算装置と、
前記演算装置と電気的に接続されて前記演算装置の演算結果を出力する出力装置とを備え、
前記演算装置は、
M個(但し、Mは3以上の自然数)の変動パターンを前記記憶装置から取得し、
i)前記M個の変動パターンを変動の傾向が類似しているもの同士のN個のクラスタに分類する分類処理と、ii)前記N個のクラスタの各々について、クラスタの代表変動パターンを求める代表変動パターン生成処理と、iii)前記m個の変動パターンの各々について、前記変動パターンと当該変動パターンが分類された前記クラスタの前記代表変動パターンとの乖離度合いを表す評価値f(N)を算出する評価値算出処理とを、N=(n-1)及びN=n(但し、nは3以上且つM以下の自然数)の各々について行って評価値f(n)及び評価値f(n-1)算出し、
前記評価値f(n)と前記評価値f(n-1)との差と所定の閾値とを比較し、前記差が前記閾値より小さい場合は、nを所定数ずつ増やして前記差が前記閾値以上となるまで前記分類処理、前記代表変動パターン生成処理、及び前記評価値算出処理を繰り返し、前記差が前記閾値以上の場合は、前記M個の変動パターンの適切な分類数を(n-1)と決定し、
決定した前記適切な分類数を前記出力装置へ出力するように構成されていることを特徴としている。
上記エネルギー需要変動パターンの分類方法及びシステムでは、評価値f(N)は変動パターンと代表変動パターンとの乖離度合いを表している。よって、評価値f(N)は、Nが適切な分類数よりも小さいときは分類数の増加に伴って減少し、Nが適切な分類数に近づくほど分類数の増加に伴う減少率が小さくなり、Nが適切な分類数で最小となるような、二次曲線で表される。このような評価値f(N)の特性から、適切な分類数の近傍では、分類数の増加に伴う評価値f(N)の変化が小さい。そこで、評価値f(n)とそれよりも1つ少ない分類数の評価値f(n-1)との差が0に近い負の値となった時点で、「適切な分類数」に到達したと見做すことができる。
上記エネルギー需要変動パターンの分類方法及びシステムでは、評価値fが最小となる分類数を探索するのではなく、評価値f(n)と評価値f(n-1)との差が閾値以上となる分類数nを探索し、このような分類数nが見つかった時点で適切な分類数の探索を終了することができる。つまり、従来のように最小の評価値を特定するために、最小の評価値となる分類数よりも多い分類数について評価値を求める必要がない。これにより、本発明では、従来と比較して演算量が軽減され、且つ、演算が単純となる。
本発明によれば、従来よりも単純且つ少ない演算で、エネルギー需要の時系列データを適切な数の変動パターンに分類することができる。
図1は、本発明の一実施形態に係るエネルギー需要変動パターンの分類システムの全体的な構成を示す図である。 図2は、データ収集装置の構成を示すブロック図である。 図3は、分類装置の構成を示すブロック図である。 図4は、記憶装置に格納されているデータを示す概念図である。 図5は、分類方法の流れを示すフローチャートである。 図6は、分類処理及び代表変動パターン生成処理の概念を説明する図である。 図7は、変動パターンとそれが分類されたクラスタの代表変動パターンとを表した図表である。 図8は、評価値算出処理の概念を説明する図である。 図9は、評価値とクラスタ数との関係を示す図表である。 図10は、評価値f(n)と評価値f(n-1)との差Δとnとの関係を示す図表である。
次に、図面を参照して本発明の実施の形態を説明する。図1は、本発明の一実施形態に係るエネルギー需要変動パターンの分類システム100の概略構成図である。
図1に示すように、エネルギー需要変動パターンの分類システム100は、データ収集装置2と、分類装置3と、通信ネットワーク4とを備える。データ収集装置2及び分類装置3は通信ネットワーク4を介して接続されており、情報の送受信が可能である。
〔データ収集装置2〕
図2は、データ収集装置2の構成を示すブロック図である。データ収集装置2は、工場に設置されてよい。データ収集装置2は、演算装置27、入力装置28、及び記憶装置29を備える。
演算装置27は、所謂コンピュータであって、CPUなどのプロセッサ271と、ROM及びRAMなどのメモリ272と、出入力部273と、通信部274とを備える。演算装置27は、集中処理を行う単独のプロセッサ271を備えてもよいし、分散処理を行う複数のプロセッサ271を備えてもよい。
メモリ272には、プロセッサ271が実行する基本プログラムやソフトウエアプログラム等が格納されている。プロセッサ271がメモリ272からプログラムを読み出して実行することによって、演算装置27は当該プログラムに構成された機能を実現する。
出入力部273には、インターフェース275を介して入力装置28及び記憶装置29が接続されている。入力装置28は、例えば、キーボード、ポインティングデバイス、タッチパネルなどの公知の入力手段であってよい。演算装置27は、利用者から入力装置28を介して取得した就業状況、生産状況、及び、設備運用状況などの情報を日付と関連付けて記憶装置29に格納する。
出入力部273には、時刻同期装置21、少なくとも1つの電力計器22、少なくとも1つの蒸気計器23、及び気温計24を含む各種計器が接続されている。演算装置27は、時刻同期装置21から日付及び時刻に関する情報を取得する。演算装置27は、電力計器22で測定された電力需要量に関する情報を取得する。演算装置27は、蒸気計器23で測定された蒸気需要量に関する情報を取得する。演算装置27は、気温計24で測定された気温に関する情報を取得する。演算装置27は、各種計器から取得した情報を測定日時と関連付けて記憶装置29に格納する。
演算装置27は、通信部274を介して通信ネットワーク4と接続されている。演算装置27は、記憶装置29に格納されている情報を、通信ネットワーク4を介して分類装置3へ送信することができる。
〔分類装置3〕
図3は、分類装置3の構成を示すブロック図である。図3に示すように、分類装置3は、演算装置31と、記憶装置32と、出力装置33とを備える。
演算装置31は、所謂コンピュータであって、CPUなどのプロセッサ311と、ROM及びRAMなどのメモリ312と、出入力部313と、通信部314とを備える。演算装置31は、集中処理を行う単独のプロセッサ311を備えてもよいし、分散処理を行う複数のプロセッサ311を備えてもよい。
メモリ312には、プロセッサ311が実行する基本プログラムやソフトウエアプログラム等が格納されている。プロセッサ311がメモリ312からプログラムを読み出して実行することによって、演算装置31は当該プログラムに構成された機能を実現する。
出入力部313には、インターフェース315を介して記憶装置32及び出力装置33が接続されている。記憶装置32には、データ収集装置2が収集したエネルギー需要データが格納されている。分類装置3は、データ収集装置2から通信ネットワーク4又は図示されない記憶媒体を介してエネルギー需要データを取得し、それを記憶装置32に格納してよい。或いは、分類装置3は、データ収集装置2の記憶装置29を記憶装置32として用いてよい。
図4は、記憶装置32に格納されているエネルギー需要データを示す概念図である。図4では、単位エネルギー需要データの構成が示されている。図4に示すように、記憶装置32には、エネルギー需要データを格納したエネルギー需要データベースが構築されている。エネルギー需要データは、例えば、日付、曜日、時刻、電力需要量、蒸気需要量、気温、就業状況、生産状況、及び、設備運用状況を含む。単位エネルギー需要データに含まれる電力需要量、蒸気需要量、及び気温は、例えば、0時から23時59分までの24時間にわたって30分ごとに測定された経時測定データである。但し、エネルギー需要データの単位は24時間に限定されず、例えば8時から17時までなどの、連続する時間であればよい。また、エネルギー需要データの測定単位は30分に限定されず、例えば、1時間であってもよい。
電力需要量は、工場に設置された電力計器22の測定値に基づいていてよい。また、蒸気需要量は、工場に設置された蒸気計器23の測定値に基づいていてよい。気温は、工場に設置された気温計24の計測値であってもよいし、気象情報供給機関から供給された情報に基づいていてもよい。就業状況は、就業日/非就業日(即ち、休日)/長期非就業日の区別であってよい。生産状況は、製品の生産量又は生産予定量であって、製品に応じた単位で表されていてよい。設備運用状況は、工場内の全設備の運用/非運用の区別、或いは、工場内の一部の特にエネルギー需要の高い設備の運用/非運用の区別であってよい。就業状況、生産状況、及び、設備運用状況は、システム100の利用者が図示されない入力装置を用いて入力された情報であってよい。
出力装置33は、ディスプレイなどの表示出力装置、プリンタなどの印字出力装置、及びスピーカなどの音声出力装置のうち少なくとも1つであってよい。出力装置33には、演算装置31の演算結果が出力される。なお、出力装置33は、演算装置31と直接に接続されているものに限定されず、演算装置31と通信ネットワーク4を介して接続された演算装置(図示略)に接続されているものであってもよい。このように、演算装置31の演算結果が遠隔で出力されてもよい。
〔エネルギー需要変動パターンの分類方法〕
ここで、分類装置3によるエネルギー需要変動パターンの分類方法について説明する。図5は、分類方法の流れを示すフローチャートである。
図5に示すように、分類装置3のプロセッサ311は、記憶装置32からエネルギー需要データを読み出して、エネルギー需要データからM個のエネルギー需要の変動パターンを取得する(ステップS1)。Mは、3よりも大きい自然数であって、大きい数であるほど望ましい。
各変動パターンは、連続する所定時間(例えば、24時間)のエネルギー需要量の実績値の時系列データである。エネルギー需要量は、電力エネルギー需要量及び蒸気エネルギー需要量のうち少なくとも一方を含む。電力エネルギー需要量はエネルギー需要データの電力需要量と対応しており、蒸気エネルギー需要量はエネルギー需要データの蒸気需要量と対応している。
分類装置3は、M個の変動パターンについて前処理を行う(ステップS2)。前処理では、例えば、変動パターンから気温によるエネルギー需要量の変化をキャンセルする正規化処理や、就業状況、生産状況、及び設備運用状況に基づく変動パターンの大別などが行われてもよい。前処理は、省略されてもよい。
分類装置3は、nを初期化する(ステップS3)。nは3以上M以下の自然数である。nの初期値は、3でもよいし、実績から設定された3より大きい自然数であってもよい。
続いて、分類装置3は、M個の変動パターンを変動の傾向が類似しているもの同士のN個のクラスタに分類する分類処理(ステップS5)と、N個のクラスタの各々について、クラスタの代表変動パターンを求める代表変動パターン生成処理(ステップS6)と、変動パターンと当該変動パターンが分類されたクラスタの代表変動パターンとの乖離度合いの累積値を表す評価値f(N)を算出する評価値算出処理(ステップS7)と、算出した評価値f(N)の記憶(ステップS8)とを、N=(n-1)及びN=nの各々について行う。つまり、分類装置3は、N=(n-1)についてステップS5~S8を行い(ステップS4)、次いで、N=nとして(ステップS9,S10)、N=nについてステップS5~S8を行う(ステップS10)。これにより、評価値f(n-1)及び評価値f(n)が得られる。
(i)分類処理
図6は、分類処理及び代表変動パターン生成処理の概念を説明する図である。図6に示すように、分類装置3は、分類処理(ステップS5)において、M個の変動パターンを変動の傾向が類似しているもの同士のN個のクラスタに分類する。各クラスタには少なくとも1つの変動パターンが分類され、各々のクラスタは変動パターン群である。
変動パターンは、エネルギー需要量の時系列データであるから、時系列に並ぶ測定点を直線で繋いだ折れ線グラフによって変動の傾向が表される。そこで、分類装置3は、各変動パターンの周期的な変動を表す特徴量を求め、各変動パターンの特徴量を入力としてEMアルゴリズム、k-means法、及びk-近傍法などの公知の教師なしクラスタリングアルゴリズムを用いて、M個の変動パターンをN個のクラスタに分類する。各クラスタには、少なくとも1つの変動パターンが分類される。
(ii)代表変動パターン生成処理
分類装置3は、代表変動パターン生成処理(ステップS6)において、分類処理の分類結果を用いて各クラスタの代表変動パターンを生成する。クラスタの代表変動パターンは、当該クラスタに分類された変動パターンの平均値又は二乗平均値である。換言すれば、クラスタの代表変動パターンは、当該クラスタに割り当てられた変動パターンの平均値又はその二乗平均値といえる。なお、クラスタに割り当てられた変動パターンが1つの場合は、変動パターンと代表変動パターンとは一致する。
(iii)評価値算出処理
分類装置3は、分類処理及び代表変動パターン生成処理の結果を用いて、評価値算出処理(ステップS7)を行って、評価値f(N)を算出し、それを記憶する(ステップS8)。評価値f(N)は、変動パターンと当該変動パターンが分類されたクラスタの代表変動パターンとの差分dの総和である。
図7は、M個の変動パターンのうちの1つの変動パターンm(m=1~M)と、変動パターンmが分類されたクラスタの代表変動パターンkとを表したグラフである。図7に示す例では、変動パターンmと代表変動パターンkとの間に差が生じている。このことから、変動パターンmが分類されたクラスタには、変動パターンmの他にも少なくとも1つの変動パターンが分類されている。
変動パターンmと代表変動パターンkとの差分dには、変動パターンmと代表変動パターンkとのエネルギー需要量の非類似度を表す第1指標d1が含まれる。第1指標d1は、測定時刻tにおける代表変動パターンkのエネルギー需要量Ek(t)と変動パターンmのエネルギー需要量Em(t)との差の平方根[Ek(t)-Em(t)]2の累積値である。第1指標d1は、即ち、測定時刻tにおける代表変動パターンkと変動パターンmとの二乗距離の累積値である。第1指標d1は、値が小さいほど評価が高い。本実施形態において、変動パターンmは0時から24時まで時系列データであり、測定時刻tの数は0から47までの48個であるから、第1指標d1は次の(2)式で表される。
Figure 0007458183000001
更に、変動パターンmと代表変動パターンkとの差分dには、変動パターンmと代表変動パターンkとのエネルギー需要量の時間変化量の非類似度を表す第2指標d2が含まれる。第2指標d2は、測定時刻tから次の測定時刻(t+30分)までの、代表変動パターンkのエネルギー需要量の時間変化量Δ30k(t)と、変動パターンmのエネルギー需要量の時間変化量Δ30m(t)との差の平方根[Δ30k(t)-Δ30m(t)]2の累積値である。本実施形態において、変動パターンmは0時から24時まで時系列データであり、測定時刻tの数は0から47までの48個であるから、第2指標d2は次の(3)式で表される。
Figure 0007458183000002
(3)式で示す第2指標d2は、測定時刻tから測定周期である30分間の時間変化量を考慮したものである。但し、第2指標d2は、時刻tから測定周期ごとに数時間(例えば、180分)までの時間変化量が考慮されたものであってもよい。この場合の第2指標d2は次の(4)式で表される。
Figure 0007458183000003
図8は、評価値算出処理の概念を説明する図である。図8に示すように、分類装置3は、M個の変動パターンの全てについて差分d(=d1+d2)を求め、差分dの総和を評価値f(N)とする。つまり、評価値f(N)は次の(1)式で表される。但し、(1)式において、変動パターンと当該変動パターンが分類されたクラスタの代表変動パターンとの差分をdm(但し、mは1以上M以下の自然数)とする。
Figure 0007458183000004
分類装置3は、上記のように算出した評価値f(n-1)と評価値f(n)とを用いてクラスタ数Nの適否を評価する。ここで、分類装置3は、評価値f(n)と評価値f(n-1)との差Δf(n)を求め、差Δf(n)と所定の閾値Aとを比較する(ステップS11)。
評価値f(N)は、変動パターンと代表変動パターンとの乖離度合いを表していることから、小さい値であるほど望ましい。しかし、評価値f(N)が最小値となるクラスタ数Nを求めると、分類装置3の演算量が膨大となるおそれがある。図9は、評価値f(N)とクラスタ数Nとの関係を示す図表であって、この図表において縦軸は評価値fを表し、横軸はクラスタ数Nを表している。図9に示すように、評価値f(N)は、Nが適切な分類数よりも小さいときはNの増加に伴って減少し、Nが適切な分類数に近づくほど分類数の増加に伴う減少率が小さくなり、Nが適切な分類数又はその近傍で減少率の変化が小さくなるような、徐々に所定の値に収束する曲線で表される。なお、Nが適切な分類数を超えると評価値f(N)は徐々に増加する場合もあり得る。よって、Nが適切な分類数の近傍にあることを、Nの増加に伴う評価値f(N)の減少率の変化が小さくなったことで推定することができる。
このような評価値f(N)の特性から、図10に示すような、評価値f(n)と評価値f(n-1)との差Δf(n)と分類数nとの関係が導き出される。nが適切な分類数よりも少ないとき、差Δf(n)は負の値である。nが最適な分類数又はその近傍にあるとき、差Δf(n)は0に近い値となる。nが最適な分類数又はその近傍にあるとき、差Δf(n)は閾値A以上0以下となる。閾値Aは、絶対値の小さな負の値である。本実施形態では、差Δf(n)が閾値A以上であれば、nの増加に伴う評価値fの変化が十分に小さく、(n-1)は既に「適切な分類数」に到達している判断する。なお、Nが適切な分類数を超えると評価値f(N)が徐々に増加する場合には、nが最適な分類数よりも多いがその近傍にあるとき、差Δf(n)は0以上B以下となることがある。この閾値Bは絶対値の小さな正の値である。この場合、差Δf(n)が閾値A以上B以下であれば、nの増加に伴う評価値fの変化が十分に小さく、(n-1)は既に「適切な分類数」に到達している判断してもよい。
分類装置3は、評価値f(n)と評価値f(n-1)との差Δf(n)が閾値Aよりも小さい値であれば(ステップS11でNO)、評価値fの改善の余地が残されているとして、nを所定数(本実施形態では1)だけ増やして(ステップS15)、ステップS5~ステップS11の処理を繰り返す。
分類装置3は、評価値f(n)と評価値f(n-1)との差Δf(n)が閾値A以上であれば(ステップS11でYES)、(n-1)をM個の変動パターンの適切な分類数と決定する(ステップS12)。
最後に、分類装置3は、M個の変動パターンの適切な分類数を、出力装置33或いは他の演算装置へ出力する(ステップS13)。例えば、分類装置3は、M個の変動パターンを適切な分類数のクラスタに分類したときの各クラスタの代表変動パターンをエネルギー需要の典型的な変動パターンとして出力装置33に印字出力又は表示出力してもよい。このエネルギー需要の典型的な変動パターンを視認した利用者は、これを利用してエネルギー需要を予測することができる。
また、分類装置3は、M個の変動パターンの適切な分類数をエネルギー需要を予測するエネルギー需要予測装置(図示略)に出力してもよい。エネルギー需要予測装置では、変動パターンの適切な分類数を用いることができるので、高精度のエネルギー需要予測を実現することができる。
以上に説明したように、本実施形態に係るエネルギー需要変動パターンの分類方法は、
連続する所定時間のエネルギー需要量の時系列データを単位変動パターンとして、M個(但し、Mは3以上の自然数)の変動パターンを取得し、
i)M個の変動パターンを変動の傾向が類似しているもの同士のN個のクラスタに分類する分類処理と、ii)N個のクラスタの各々について、クラスタの代表変動パターンを求める代表変動パターン生成処理と、iii)M個の変動パターンの各々について、変動パターンと当該変動パターンが分類されたクラスタの代表変動パターンとの乖離度合いを表す評価値f(N)を算出する評価値算出処理とを、N=(n-1)及びN=n(但し、nは3以上且つM以下の自然数)の各々について行って評価値f(n)及び評価値f(n-1)を求め、
評価値f(n)と評価値f(n-1)との差Δf(n)と所定の閾値Aとを比較し、差Δf(n)が閾値Aより小さい場合は、nを1ずつ増やして差が閾値以上となるまで分類処理、代表変動パターン生成処理、及び評価値算出処理を繰り返し、差Δf(n)が閾値以上の場合は、M個の変動パターンの適切な分類数を(n-1)と決定することを特徴としている。
また、本実施形態に係るエネルギー需要変動パターンの分類システム100は、連続する所定時間のエネルギー需要量の時系列データを単位変動パターンとして、多数の変動パターンを記憶した記憶装置32と、出力装置33と、記憶装置32及び出力装置33と電気的に接続された演算装置31とを備える。
演算装置31は、
M個(但し、Mは3以上の自然数)の変動パターンを取得し、N=(n-1)及びN=n(但し、nは3以上且つM以下の自然数)の各々についてi)、ii)及びiii)を行って評価値f(n)及び評価値f(n-1)を求める。
i)M個の変動パターンを変動の傾向が類似しているもの同士のN個のクラスタに分類する分類処理。
ii)N個のクラスタの各々について、クラスタの代表変動パターンを求める代表変動パターン生成処理。
iii)M個の変動パターンの各々について、変動パターンと当該変動パターンが分類されたクラスタの代表変動パターンとの乖離度合いを表す評価値f(N)を算出する評価値算出処理。
演算装置31は、更に、
評価値f(n)と評価値f(n-1)との差と所定の閾値とを比較し、差が閾値より小さい場合は、nを1ずつ増やして差が閾値以上となるまで分類処理、代表変動パターン生成処理、及び評価値算出処理を繰り返し、差が閾値以上の場合は、M個の変動パターンの適切な分類数を(n-1)と決定し、決定した適切な分類数を出力する。
上記エネルギー需要変動パターンの分類方法及びシステム100では、評価値fが最小となる分類数を探索するのではなく、評価値f(n)と評価値f(n-1)との差Δf(n)が閾値以上となる分類数nを探索し、このような分類数nが見つかった時点で適切な分類数の探索を終了することができる。つまり、従来のように最小の評価値を特定するために、最小の評価値となる分類数よりも多い分類数について評価値を求める必要がない。よって、本実施形態に係るエネルギー需要変動パターンの分類方法及びシステム100によれば、従来と比較して演算量が軽減され、且つ、演算が単純となる。
また、本実施形態に係るエネルギー需要変動パターンの分類方法及びシステム100において、エネルギー需要量は、電力エネルギー需要量及び蒸気エネルギー需要量を含んでいてよい。
工場のエネルギーマネジメントシステムにおいては、電力エネルギー需要量だけではなく、蒸気エネルギー需要量も重要な管理対象となる。電力エネルギー需要量と蒸気エネルギー需要量とは、対応関係がある日もあれば、対応関係が見られない日もある。その要因として、製品毎に電力エネルギーと蒸気エネルギーの生産時における消費量が異なることや、生産設備毎に電力エネルギーと蒸気エネルギーの消費量が異なることが挙げられる。そのため、電力エネルギー需要量及び蒸気エネルギー需要量を含むエネルギー需要量の変動パターンは、電力エネルギー需要量のみ或いは蒸気エネルギー需要量のみの変動パターンと比較して複雑である。電力エネルギー需要量及び蒸気エネルギー需要量を含むエネルギー需要量の変動パターンでは、季節、生産数、就業人数、及び使用可能な設備数などによって各々の変動パターンになることに加えて、電力エネルギー需要量と蒸気エネルギー需要量の対応関係がある変動パターン、対応関係が無い変動パターン、及び、各々のエネルギー需要量が異なる変動パターンが生じる。その結果、電力エネルギー需要量及び蒸気エネルギー需要量の双方を考慮する場合には、いずれか一方に注目した場合に比べて、分類数の探索範囲は飛躍的に広がる。そのため、従来と比較して演算量が軽減され、且つ、演算が単純となる分類方法が求められる。このように複雑な変動パターンを有するエネルギー需要量は、本実施形態に係る分類方法を適用するに好適である。
また、本実施形態に係るエネルギー需要変動パターンの分類方法及びシステム100において、評価値f(N)は、M個の変動パターンの各々について求めた、変動パターンと当該変動パターンが分類されたクラスタの代表変動パターンとの差分dの累積値の総和である。即ち、評価値f(N)は前述の(1)式で表される。
このような評価値f(N)によれば、変動パターンと当該変動パターンが分類されたクラスタの代表変動パターンとの乖離度合いを単純に演算することができる。
また、本実施形態に係るエネルギー需要変動パターンの分類方法及びシステム100において、評価値f(N)は、変動パターンのエネルギー需要量と代表変動パターンのエネルギー需要量との乖離度合いを表す第1指標d1と、変動パターンのエネルギー需要量の時間変化量と代表変動パターンのエネルギー需要量の時間変化量との乖離度合いを表す第2指標d2とを含む。この場合、時間変化量は、エネルギー需要量の測定周期又は測定周期の倍数の時間にわたるエネルギー需要量の変化量であってよい。
このような評価値f(N)によれば、第1指標d1のみでは累積によって相殺されて特定しきれない乖離度合いを、第2指標d2によって特定することができる。よって、分類数の評価の精度を高めることができる。
また、本実施形態に係るエネルギー需要変動パターンの分類方法は、M個の変動パターンを適切な分類数に分類したときの各クラスタの代表変動パターンをエネルギー需要の典型的な変動パターンとして印字出力又は表示出力することを更に含んでいる。同様に、エネルギー需要変動パターンの分類システム100において、出力装置33は、M個の変動パターンを適切な分類数に分類したときの各クラスタの代表変動パターンをエネルギー需要の典型的な変動パターンとして印字出力又は表示出力するように構成されている。
これにより、利用者はエネルギー需要の典型的な変動パターンを視認することができ、これを利用してエネルギー需要の予測を行うことができる。
以上に本発明の好適な実施の形態を説明したが、本発明の思想を逸脱しない範囲で、上記実施形態の具体的な構造及び/又は機能の詳細を変更したものも本発明に含まれ得る。
例えば、上記実施形態においては、評価値f(n)と評価値f(n-1)との差Δf(n)と閾値Aとを比較することにより、(n-1)が適切な分類数であることを決定する。但し、評価値f(n)の減少率に基づいて、適切な分類数を決定してもよい。この場合、例えば、評価値f(n)の減少率を[f(n)-f(n-1)]/f(n)×(-1)と定義し、減少率が所定の値(例えば、0.01~0.05の任意の数)以下となったときに、(n-1)が適切な分類数であることを決定してもよい。
また、上記実施形態においては、nを比較的小さい初期値から1つずつ増やして(ステップS15、参照)、(n-1)が適切な分類数となるnを探索する。但し、nの増分は0を除く整数であればよい。例えば、nの初期値が適切な分類数より小さな場合に、ステップS15におけるnの増分は1以上の整数(正の数)となり、適切な分類数より大きなnの初期値が設定される場合には、ステップS15におけるnの増分は-1以下の整数(負の数)となる。
2 :データ収集装置
3 :分類装置
4 :通信ネットワーク
31 :演算装置
32 :記憶装置
33 :出力装置
100 :エネルギー需要変動パターンの分類システム

Claims (11)

  1. コンピュータによって行われるエネルギー需要変動パターンの分類方法であって、
    連続する所定時間のエネルギー需要量の時系列データを単位変動パターンとして、M個(但し、Mは3以上の自然数)の変動パターンを取得し、
    i)前記M個の変動パターンを変動の傾向が類似しているもの同士のN個のクラスタに分類する分類処理と、ii)前記N個のクラスタの各々について、クラスタの代表変動パターンを求める代表変動パターン生成処理と、iii)前記M個の変動パターンの各々について、前記変動パターンと当該変動パターンが分類された前記クラスタの前記代表変動パターンとの乖離度合いを表す評価値f(N)を算出する評価値算出処理とを、N=(n-1)及びN=n(但し、nは3以上且つM以下の自然数)の各々について行って評価値f(n)及び評価値f(n-1)を求め、
    前記評価値f(n)と前記評価値f(n-1)との差と所定の閾値とを比較し、前記差が前記閾値より小さい場合は、nを所定数ずつ増やして前記差が前記閾値以上となるまで前記分類処理、前記代表変動パターン生成処理、及び前記評価値算出処理を繰り返し、前記差が前記閾値以上の場合は、前記M個の変動パターンの適切な分類数を(n-1)と決定する、
    エネルギー需要変動パターンの分類方法。
  2. 前記エネルギー需要量は、電力エネルギー需要量及び蒸気エネルギー需要量を含む、
    請求項1に記載のエネルギー需要変動パターンの分類方法。
  3. 前記評価値f(N)が、前記変動パターンと当該変動パターンが分類された前記クラスタの前記代表変動パターンとの差分をdm(但し、mは1以上M以下の自然数)としたときに、下記(1)式で表される、
    請求項1又は2に記載のエネルギー需要変動パターンの分類方法。
    Figure 0007458183000005
  4. 前記評価値f(N)は、前記変動パターンの前記エネルギー需要量と前記代表変動パターンの前記エネルギー需要量との乖離度合いを表す第1指標と、前記変動パターンの前記エネルギー需要量の時間変化量と前記代表変動パターンの前記エネルギー需要量の時間変化量との乖離度合いを表す第2指標とを含む、
    請求項1~3のいずれか一項に記載のエネルギー需要変動パターンの分類方法。
  5. 前記時間変化量は、前記エネルギー需要量の測定周期又は前記測定周期の倍数の時間にわたる前記エネルギー需要量の変化量である、
    請求項4に記載のエネルギー需要変動パターンの分類方法。
  6. 連続する所定時間のエネルギー需要量の時系列データを単位変動パターンとして、多数の変動パターンを記憶した記憶装置と、
    前記記憶装置電気的に接続された演算装置と、
    前記演算装置と電気的に接続されて前記演算装置の演算結果を出力する出力装置とを備え、
    前記演算装置は、
    M個(但し、Mは3以上の自然数)の変動パターンを前記記憶装置から取得し、
    i)前記M個の変動パターンを変動の傾向が類似しているもの同士のN個のクラスタに分類する分類処理と、ii)前記N個のクラスタの各々について、クラスタの代表変動パターンを求める代表変動パターン生成処理と、iii)前記M個の変動パターンの各々について、前記変動パターンと当該変動パターンが分類された前記クラスタの前記代表変動パターンとの乖離度合いを表す評価値f(N)を算出する評価値算出処理とを、N=(n-1)及びN=n(但し、nは3以上且つM以下の自然数)の各々について行って評価値f(n)及び評価値f(n-1)を求め、
    前記評価値f(n)と前記評価値f(n-1)との差と所定の閾値とを比較し、前記差が前記閾値より小さい場合は、nを所定数ずつ増やして前記差が前記閾値以上となるまで前記分類処理、前記代表変動パターン生成処理、及び前記評価値算出処理を繰り返し、前記差が前記閾値以上の場合は、前記M個の変動パターンの適切な分類数を(n-1)と決定し、
    決定した前記適切な分類数を前記出力装置へ出力するように構成されている、
    エネルギー需要変動パターンの分類システム。
  7. 前記エネルギー需要量は、電力エネルギー需要量及び蒸気エネルギー需要量を含む、
    請求項6に記載のエネルギー需要変動パターンの分類システム。
  8. 前記評価値f(N)が、前記変動パターンと当該変動パターンが分類された前記クラスタの前記代表変動パターンとの差分をdm(但し、mは1以上M以下の自然数)としたときに、下記(1)式で表される、
    請求項6又は7に記載のエネルギー需要変動パターンの分類システム。
    Figure 0007458183000006
  9. 前記評価値f(N)は、前記変動パターンの前記エネルギー需要量と前記代表変動パターンの前記エネルギー需要量との乖離度合いを表す第1指標と、前記変動パターンの前記エネルギー需要量の時間変化量と前記代表変動パターンの前記エネルギー需要量の時間変化量との乖離度合いを表す第2指標とを含む、
    請求項6~8のいずれか一項に記載のエネルギー需要変動パターンの分類システム。
  10. 前記時間変化量は、前記エネルギー需要量の測定周期又は前記測定周期の倍数の時間にわたる前記エネルギー需要量の変化量である、
    請求項9に記載のエネルギー需要変動パターンの分類システム。
  11. 前記出力装置は、前記M個の変動パターンを前記適切な分類数に分類したときの各クラスタの前記代表変動パターンをエネルギー需要の典型的な変動パターンとして印字出力又は表示出力する、
    請求項6~10のいずれか一項に記載のエネルギー需要変動パターンの分類システム。
JP2019236360A 2019-12-26 2019-12-26 エネルギー需要変動パターンの分類方法及びシステム Active JP7458183B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019236360A JP7458183B2 (ja) 2019-12-26 2019-12-26 エネルギー需要変動パターンの分類方法及びシステム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019236360A JP7458183B2 (ja) 2019-12-26 2019-12-26 エネルギー需要変動パターンの分類方法及びシステム

Publications (2)

Publication Number Publication Date
JP2021105811A JP2021105811A (ja) 2021-07-26
JP7458183B2 true JP7458183B2 (ja) 2024-03-29

Family

ID=76918903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019236360A Active JP7458183B2 (ja) 2019-12-26 2019-12-26 エネルギー需要変動パターンの分類方法及びシステム

Country Status (1)

Country Link
JP (1) JP7458183B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115204321B (zh) * 2022-09-15 2023-07-25 江苏海力达机电制造有限公司 一种自动车床加工的精度波动控制方法及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009277136A (ja) 2008-05-16 2009-11-26 Mitsubishi Electric Corp 類似度分析評価システム
WO2015133635A1 (ja) 2014-03-07 2015-09-11 株式会社日立製作所 データ分析システム及び方法
JP2016220515A (ja) 2015-05-21 2016-12-22 株式会社日立製作所 エネルギー需要予測システム及びエネルギー需要予測方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009277136A (ja) 2008-05-16 2009-11-26 Mitsubishi Electric Corp 類似度分析評価システム
WO2015133635A1 (ja) 2014-03-07 2015-09-11 株式会社日立製作所 データ分析システム及び方法
JP2016220515A (ja) 2015-05-21 2016-12-22 株式会社日立製作所 エネルギー需要予測システム及びエネルギー需要予測方法

Also Published As

Publication number Publication date
JP2021105811A (ja) 2021-07-26

Similar Documents

Publication Publication Date Title
Rajabi et al. A comparative study of clustering techniques for electrical load pattern segmentation
CN110610280B (zh) 一种电力负荷短期预测方法、模型、装置及系统
Räsänen et al. Data-based method for creating electricity use load profiles using large amount of customer-specific hourly measured electricity use data
CN109376971B (zh) 一种面向电力用户的负荷曲线预测方法及系统
CN111724278A (zh) 一种面向电力多元负荷用户的精细分类方法及系统
KR20170078256A (ko) 시계열의 데이터를 예측 하는 방법 및 그 장치
KR20170078252A (ko) 시계열의 데이터를 모니터링 하는 방법 및 그 장치
JP6210867B2 (ja) データ関連性解析システムおよびデータ管理装置
Wang et al. Short-term industrial load forecasting based on ensemble hidden Markov model
Shao et al. Modeling and forecasting the electricity clearing price: A novel BELM based pattern classification framework and a comparative analytic study on multi-layer BELM and LSTM
Junior et al. Optimized hybrid ensemble learning approaches applied to very short-term load forecasting
CN115759393A (zh) 基于集成学习的累积负荷基线预测方法
CN115423158A (zh) 一种水轮发电机组数据趋势的预测分析方法及系统
JP7458183B2 (ja) エネルギー需要変動パターンの分類方法及びシステム
CN117076691A (zh) 一种面向智慧社区的商品资源知识图谱算法模型
CN115907228A (zh) 一种基于pso-lssvm的短期电力负荷预测分析方法
CN114722098A (zh) 一种基于正态云模型和密度聚类算法的典型负荷曲线辨识方法
JP6746946B2 (ja) 電力需要予測装置、及び電力需要予測方法
CN113869601A (zh) 一种电力用户负荷预测方法、装置及设备
Bundasak et al. Predictive maintenance using AI for Motor health prediction system
CN112256735A (zh) 一种用电监测方法、装置、计算机设备和存储介质
Yeh et al. Estimation of a data-collection maturity model to detect manufacturing change
Kim et al. Similarity-based historical input selection to predict irregular holiday traffics in real-time
CN117439146B (zh) 充电桩的数据分析控制方法及系统
CN117791626B (zh) 一种智能综合电力箱电力供给优化方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240318

R150 Certificate of patent or registration of utility model

Ref document number: 7458183

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150