JP7458136B1 - Method for manufacturing a heating source used in semiconductor processing equipment - Google Patents

Method for manufacturing a heating source used in semiconductor processing equipment Download PDF

Info

Publication number
JP7458136B1
JP7458136B1 JP2023208113A JP2023208113A JP7458136B1 JP 7458136 B1 JP7458136 B1 JP 7458136B1 JP 2023208113 A JP2023208113 A JP 2023208113A JP 2023208113 A JP2023208113 A JP 2023208113A JP 7458136 B1 JP7458136 B1 JP 7458136B1
Authority
JP
Japan
Prior art keywords
quartz
heater
semiconductor processing
heat
continuous annular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2023208113A
Other languages
Japanese (ja)
Inventor
任潮群
クルナル ガジェンダラシンク ギラセ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Xinhuilian Semiconductor Technology Co Ltd
Original Assignee
Suzhou Xinhuilian Semiconductor Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou Xinhuilian Semiconductor Technology Co Ltd filed Critical Suzhou Xinhuilian Semiconductor Technology Co Ltd
Priority to JP2023208113A priority Critical patent/JP7458136B1/en
Application granted granted Critical
Publication of JP7458136B1 publication Critical patent/JP7458136B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

Figure 0007458136000001

【課題】熱処理の品質低下を防止できる半導体処理装置に用いる加熱源の製造方法を提供する。
【解決手段】半導体処理装置10に用いられる加熱源22の製造方法であって、加熱源22は、平面視において連続環状に形成された連続環状部52と、連続環状部52に接続され鉛直方向に延びる鉛直固定部54と、を有し、連続環状部52は一対の半環状石英管56Aを組み合せて形成し、鉛直固定部54は半環状石英管56Aが接続するT型石英管56Bで形成し、半環状石英管56A及びT型石英管56Bの内部にタングステン線58を通してフィラメントを形成してなる。
【選択図】 図12

Figure 0007458136000001

The present invention provides a method for manufacturing a heat source used in a semiconductor processing apparatus that can prevent quality deterioration in heat treatment.
A method for manufacturing a heat source 22 used in a semiconductor processing apparatus 10, in which the heat source 22 includes a continuous annular portion 52 formed in a continuous annular shape in a plan view, and a continuous annular portion 52 connected to the continuous annular portion 52 in a vertical direction. The continuous annular part 52 is formed by combining a pair of semi-annular quartz tubes 56A, and the vertical fixing part 54 is formed by a T-shaped quartz tube 56B to which the semi-annular quartz tubes 56A are connected. A filament is formed by passing the tungsten wire 58 inside the semi-annular quartz tube 56A and the T-shaped quartz tube 56B.
[Selection diagram] Figure 12

Description

本発明は、半導体処理装置に用いられる加熱源の製造方法に関する。 The present invention relates to a method for manufacturing a heat source used in semiconductor processing equipment.

従来の半導体処理装置では、シリコン基板に対する熱処理工程が行われる。熱処理工程では、シリコン基板を摂氏300~1200度に加熱し、アニール処理、酸化処理及び不純物の拡散処理等が数十工程ほど繰り返される。 In conventional semiconductor processing equipment, a heat treatment process is performed on a silicon substrate. In the heat treatment process, the silicon substrate is heated to 300 to 1200 degrees Celsius, and annealing treatment, oxidation treatment, impurity diffusion treatment, etc. are repeated several dozen times.

ここで、熱処理工程では、一度に複数枚(例えば、25~200枚程度)のシリコン基板を一度に熱処理するバッチ処理装置、又は1~4枚のシリコン基板を一度に熱処理する枚葉処理装置がある。 Here, in the heat treatment process, a batch processing device heat-treats multiple silicon substrates (for example, about 25 to 200 silicon substrates) at a time, or a single-wafer processing device heat-treats 1 to 4 silicon substrates at a time. be.

枚葉処理装置として、アルゴンガス又はハロゲンガスを添加及び封入した石英管式のヒータを用いてシリコン基板を急速に加熱するRTP(Rapid Thermal Processor)装置及びアニール装置等が用いられる。 As the single wafer processing apparatus, an RTP (Rapid Thermal Processor) apparatus, an annealing apparatus, etc., which rapidly heat a silicon substrate using a quartz tube type heater to which argon gas or halogen gas is added and sealed, are used.

熱処理工程で用いる熱源は、所謂シングルエンド構造のヒータと、棒状の石英管内にタングステン線を単線又はコイル状に形成した発熱部を連続して配置した石英管の両端から電源を導入する所謂ダブルエンド構造のヒータが代表的である。 The heat source used in the heat treatment process is a so-called single-end structure heater, and a so-called double-end structure in which power is introduced from both ends of a quartz tube in which a heat generating section made of a single wire or a coil of tungsten wire is arranged continuously inside a rod-shaped quartz tube. A typical example is a structural heater.

ここで、例えば、ダブルエンド構造のヒータでは、シリコン基板が円盤であることから円形かつ環状が均熱の観点から好ましい。このヒータを熱処理室で気密状態を保ちながら保持する方法として、エラストマー材料(例えば、バインドゴム又はフッ素ゴム)のOリングが用いられている。Oリングによってヒータが保持されることにより、熱処理室内部での気密状態が維持されている。 Here, for example, in a double-end structure heater, since the silicon substrate is a disk, a circular and annular shape is preferable from the viewpoint of uniform heating. An O-ring made of an elastomer material (for example, bind rubber or fluororubber) is used as a method for holding the heater in an airtight state in the heat treatment chamber. By holding the heater with the O-ring, an airtight state inside the heat treatment chamber is maintained.

特開2006-78019号公報Japanese Patent Application Publication No. 2006-78019

しかしながら、従来の半導体処理装置では、シリコン基板に対する熱処理において、シリコン基板上で加熱ムラが生じ、熱処理の品質が低下する問題がある。 However, in the conventional semiconductor processing apparatus, there is a problem that heating unevenness occurs on the silicon substrate during heat treatment of the silicon substrate, and the quality of the heat treatment deteriorates.

そこで、本発明は、上記事情に鑑み、熱処理の品質低下を防止できる半導体処理装置に用いる加熱源の製造方法を提供する。 In view of the above circumstances, the present invention provides a method for manufacturing a heat source used in a semiconductor processing apparatus, which can prevent quality deterioration in heat treatment.

本発明は、気密部材を介して半導体処理装置に用いられる加熱源の製造方法であって、前記加熱源は、平面視において連続環状に形成された連続環状部と、前記連続環状部に接続され鉛直方向に延在するとともに前記気密部材との接触部位に輻射熱を遮断するための輻射熱遮断部が施される鉛直固定部と、を形成し、前記連続環状部は、一対の半環状石英管を組み合せて形成し、前記鉛直固定部は、前記半環状石英管が接続するT型石英管で形成し、前記半環状石英管及び前記T型石英管の内部にタングステン線を通してフィラメントを形成してなる。 The present invention is a method for manufacturing a heat source used in a semiconductor processing apparatus through an airtight member , wherein the heat source includes a continuous annular portion formed in a continuous annular shape in a plan view, and a continuous annular portion connected to the continuous annular portion. a vertical fixing part that extends in the vertical direction and is provided with a radiant heat blocking part for blocking radiant heat at a contact portion with the airtight member, and the continuous annular part includes a pair of semi-annular quartz tubes. The vertical fixing part is formed by a T-shaped quartz tube connected to the semi-annular quartz tube, and a filament is formed by passing a tungsten wire through the semi-annular quartz tube and the T-shaped quartz tube. .

前記タングステン線を前記半環状石英管の内部に挿入した後、前記一対の半環状石英管同士を炎加工により接続し、所定の温度でアニール処理にして加工歪みを除去することが好ましい。 After inserting the tungsten wire into the semi-annular quartz tube, it is preferable to connect the pair of semi-annular quartz tubes together by flame processing and then anneal them at a predetermined temperature to remove processing distortion.

前記T型石英管の先端部は炎加工により封止部を形成することが好ましい。 It is preferable to form a seal at the tip of the T-shaped quartz tube by flame processing.

本発明によれば、半導体処理装置に用いられる加熱源保持機構のシール劣化を防止できる。 According to the present invention, it is possible to prevent seal deterioration of a heat source holding mechanism used in a semiconductor processing apparatus.

本発明の一実施形態に係る半導体処理装置の縦断面図である。1 is a longitudinal cross-sectional view of a semiconductor processing apparatus according to an embodiment of the present invention. 本発明の一実施形態に係る半導体処理装置を構成する蓋部の縦断面図である。FIG. 2 is a longitudinal cross-sectional view of a lid part that constitutes a semiconductor processing apparatus according to an embodiment of the present invention. 本発明の一実施形態に係る半導体処理装置に用いられる加熱源である石英ヒータの平面図である。1 is a plan view of a quartz heater that is a heat source used in a semiconductor processing apparatus according to an embodiment of the present invention. 本発明の一実施形態に係る半導体処理装置に用いられる加熱源である複数の石英ヒータが環状配置された構成の平面図である。1 is a plan view of a configuration in which a plurality of quartz heaters, which are heat sources used in a semiconductor processing apparatus according to an embodiment of the present invention, are arranged in a ring shape. 本発明の一実施形態に係る半導体処理装置に用いられる石英ヒータが蓋部に取り付けられる加熱源保持機構を示す拡大縦断面図である。FIG. 2 is an enlarged vertical cross-sectional view showing a heating source holding mechanism in which a quartz heater used in a semiconductor processing apparatus according to an embodiment of the present invention is attached to a lid. 半導体処理装置に用いられる石英ヒータで発生する加熱エネルギーの熱伝搬を示した縦断面図である。FIG. 2 is a vertical cross-sectional view showing the thermal propagation of heating energy generated in a quartz heater used in a semiconductor processing device. 本発明の一実施形態に係る加熱源保持機構の石英ヒータの一部に金属膜を塗布した構成の縦断面図である。FIG. 2 is a longitudinal cross-sectional view of a configuration in which a metal film is applied to a part of the quartz heater of the heat source holding mechanism according to an embodiment of the present invention. 本発明の一実施形態に係る加熱源保持機構の石英ヒータの一部を不透明石英にした構成の縦断面図である。FIG. 2 is a longitudinal cross-sectional view of a configuration in which a part of the quartz heater of the heating source holding mechanism according to an embodiment of the present invention is made of opaque quartz. 本発明の変形例に係る加熱源保持機構の連続環状石英ヒータの保持機構を示した縦断面図である。It is a longitudinal cross-sectional view showing a holding mechanism for a continuous annular quartz heater of a heating source holding mechanism according to a modification of the present invention. 本発明の変形例に係る加熱源保持機構を構成する1本の連続環状石英ヒータの平面図である。It is a top view of one continuous annular quartz heater which constitutes the heating source holding mechanism concerning the modification of the present invention. 本発明の変形例に係る加熱源保持機構を構成する複数本の連続環状石英ヒータが同心円上に配置された構成の平面図である。FIG. 7 is a plan view of a configuration in which a plurality of continuous annular quartz heaters constituting a heating source holding mechanism according to a modification of the present invention are arranged concentrically. 本発明の変形例に係る加熱源保持機構の連続環状石英ヒータの分解図である。FIG. 7 is an exploded view of a continuous annular quartz heater of a heating source holding mechanism according to a modification of the present invention. 本発明の変形例に係る加熱源保持機構の連続環状石英ヒータを構成するタングステン線を切断するときの写真である。It is a photograph when cutting the tungsten wire which constitutes the continuous annular quartz heater of the heat source holding mechanism based on the modification of this invention. 本発明の変形例に係る加熱源保持機構の連続環状石英ヒータを構成するタングステン線が鉛直固定部を通過して外部に延在した状態の写真である。It is a photograph of the state where the tungsten wire which constitutes the continuous annular quartz heater of the heating source holding mechanism concerning the modification of the present invention passes through the vertical fixing part, and extends outside. 本発明の変形例に係る加熱源保持機構の連続環状石英ヒータに施す封止方法の説明図である。FIG. 7 is an explanatory diagram of a sealing method applied to a continuous annular quartz heater of a heating source holding mechanism according to a modification of the present invention.

本発明の一実施形態に係る半導体処理装置に用いる加熱源保持機構、加熱源保持方法及び半導体処理装置について、図面を参照して説明する。 The heat source holding mechanism, heat source holding method, and semiconductor processing apparatus used in one embodiment of the present invention will be described with reference to the drawings.

[半導体処理装置の全体構成]
図1に示すように、半導体処理装置10は、シリコン基板(例えば半導体ウエハ、シリコンウエハともいう。)を装置内部に形成された空間部12に収容し、シリコン基板に対して加熱して熱処理を実行するための装置である。半導体処理装置10は、シリコン基板を載せる土台部14と、土台部14を上方から覆う蓋部16と、土台部14と蓋部16の周囲を囲む周壁部18と、で構成されている。土台部14と蓋部16と周壁部18とで囲まれた空間部12が、熱処理時においてシリコン基板を大気から遮断可能となる気密空間になる。換言すれば、半導体処理装置10は、熱処理室ともいわれる。
[Overall configuration of semiconductor processing equipment]
As shown in Fig. 1, the semiconductor processing apparatus 10 is an apparatus for accommodating a silicon substrate (e.g., a semiconductor wafer or a silicon wafer) in a space 12 formed inside the apparatus and for heating the silicon substrate to perform a heat treatment. The semiconductor processing apparatus 10 is composed of a base 14 on which the silicon substrate is placed, a lid 16 that covers the base 14 from above, and a peripheral wall 18 that surrounds the base 14 and the lid 16. The space 12 surrounded by the base 14, the lid 16, and the peripheral wall 18 becomes an airtight space that can isolate the silicon substrate from the atmosphere during heat treatment. In other words, the semiconductor processing apparatus 10 is also called a heat treatment chamber.

図2に示すように、蓋部16は、蓋部本体20と、蓋部本体20の内面側に配置された加熱源22と、を有している。加熱源22は、光を透過する部材、例えばハロゲンヒータで構成され、具体的には石英ヒータが使用される。光が透過する部材であれば、石英のほか、ガラス系、サファイアのセラミック材料、アクリル樹脂、プラスチック樹脂、フッ化マグネシウム、フッ化カルシウムなどの結晶材で構成されてもよい。加熱源22は、例えばハロゲンヒータで構成され、具体的には石英ヒータが使用される。以下、加熱源22として、石英ヒータ22Hを用いて説明する。この場合、半導体処理装置10は、ハロゲンヒータ容器と称する。 As shown in FIG. 2, the lid 16 includes a lid main body 20 and a heat source 22 disposed on the inner surface of the lid main body 20. As shown in FIG. The heat source 22 is composed of a light-transmissive member, such as a halogen heater, and specifically a quartz heater is used. In addition to quartz, the member may be made of a crystalline material such as glass-based ceramic material, sapphire ceramic material, acrylic resin, plastic resin, magnesium fluoride, calcium fluoride, etc., as long as it is a member that transmits light. The heat source 22 is composed of, for example, a halogen heater, and specifically a quartz heater is used. Hereinafter, a description will be given using a quartz heater 22H as the heat source 22. In this case, the semiconductor processing apparatus 10 is referred to as a halogen heater container.

図3及び図4に示すように、石英ヒータ22Hは、シリコン基板が平面視において円盤状に形成されていることから、平面視で円形かつ環状に形成されていることが好ましい。 As shown in FIGS. 3 and 4, since the silicon substrate is formed into a disk shape in plan view, it is preferable that the quartz heater 22H is formed in a circular and annular shape in plan view.

ここで、石英ヒータ22Hは、平面視において円周方向に沿って部分的に非連続になる空隙部24が形成されている。この空隙部24は非発光部24Nである。例えば、図4に示す石英ヒータでは、円周上に沿って4カ所の非発光部24Nが形成されているが、個数が4個に限定されるものではない。 Here, in the quartz heater 22H, a gap 24 is formed that is partially discontinuous along the circumferential direction in a plan view. This void portion 24 is a non-light emitting portion 24N. For example, in the quartz heater shown in FIG. 4, four non-light emitting parts 24N are formed along the circumference, but the number is not limited to four.

ここで、石英ヒータ22Hは、径方向に沿って径の異なる複数の円形かつ環状の石英ヒータが配置されている。この配置構造の石英ヒータ22Hは、径方向に沿った直線上に複数の非発光部24Nが存在しているが、径方向に沿って隣接する非発光部24Nと非発光部24Nとの間には、石英ヒータ22Hの発光部25B(図4参照)が介在している。なお、発光部25Bとは、石英ヒータ22Hの石英管が存在している部位をいう。 Here, the quartz heater 22H includes a plurality of circular and annular quartz heaters having different diameters arranged along the radial direction. In the quartz heater 22H with this arrangement structure, a plurality of non-light emitting parts 24N exist on a straight line along the radial direction, but between the non-light emitting parts 24N adjacent to each other along the radial direction. The light emitting part 25B (see FIG. 4) of the quartz heater 22H is interposed. Note that the light emitting portion 25B refers to a portion where the quartz tube of the quartz heater 22H is present.

図1に示すように、蓋部本体20の内面側には、反射処理板26が設けられている。反射処理板26により、石英ヒータ22Hから放出される輻射熱が反射され、蓋部本体20の内部への伝熱を回避している。これにより、蓋部本体20への固定伝導熱による熱ダメージを防止できる。反射処理板26に限定されるものではなく、蓋部本体20の内面に反射処理膜を塗布して形成してもよい。 As shown in FIG. 1, a reflective treatment plate 26 is provided on the inner surface of the lid body 20. The reflective treatment plate 26 reflects the radiant heat emitted from the quartz heater 22H, preventing the heat from being transferred to the inside of the lid body 20. This prevents thermal damage to the lid body 20 due to fixed conduction heat. This is not limited to the reflective treatment plate 26, and a reflective treatment film may be applied to the inner surface of the lid body 20.

蓋部本体20の内部には、冷却液を流すための冷却液流路28が形成されている。冷却液流路28に冷却液を流通させることにより、蓋部16の全体を冷却している。 A coolant flow path 28 for flowing a coolant is formed inside the lid main body 20. By circulating the coolant through the coolant flow path 28, the entire lid portion 16 is cooled.

[加熱源保持機構]
次に、半導体処理装置に用いる加熱源保持機構について説明する。
[Heating source holding mechanism]
Next, a heat source holding mechanism used in a semiconductor processing apparatus will be explained.

図1及び図2に示すように、石英ヒータ22Hは、蓋部16に保持されている。蓋部16には、鉛直方向(重力方向)に延びる取付フランジ30が形成されている。このため、蓋部16には、蓋部16の内面と取付フランジ30で囲まれた凹部32が形成されている。石英ヒータ22Hは、この凹部32に位置している。なお、反射処理板26は、蓋部16の内面から取付フランジ30にわたって設けられており、輻射熱を反射する。 As shown in FIGS. 1 and 2, the quartz heater 22H is held by the lid 16. A mounting flange 30 extending in the vertical direction (direction of gravity) is formed on the lid portion 16 . For this reason, a recess 32 surrounded by the inner surface of the lid 16 and the mounting flange 30 is formed in the lid 16 . The quartz heater 22H is located in this recess 32. Note that the reflective treatment plate 26 is provided from the inner surface of the lid portion 16 to the mounting flange 30, and reflects radiant heat.

図5に示すように、石英ヒータ22Hは、水平方向に延びる第1ヒータ部23Aと、第1ヒータ部23Aと接続するとともに鉛直方向(重力方向)に延びる第2ヒータ部23Bと、で構成されている。蓋部本体20には厚み方向に貫通した貫通孔34が形成されており、石英ヒータ22Hの第2ヒータ部23Bが貫通孔34に挿通されている。なお、例えば、第2ヒータ部23Bは、第1ヒータ部23Aに対して垂直に折り曲げて形成されるが、両者を別部材で形成して相互に接続してもよい。 As shown in FIG. 5, the quartz heater 22H includes a first heater section 23A that extends in the horizontal direction, and a second heater section 23B that is connected to the first heater section 23A and extends in the vertical direction (direction of gravity). ing. A through hole 34 is formed in the lid main body 20 in the thickness direction, and the second heater portion 23B of the quartz heater 22H is inserted into the through hole 34. Note that, for example, the second heater section 23B is formed by being bent perpendicularly to the first heater section 23A, but both may be formed from separate members and connected to each other.

このため、円周方向に隣接する石英ヒータ22Hは、図3及び図4に示すように、第2ヒータ部23Bの部位において非連続になり、非発光部24Nが形成される。また円周方向に隣接する石英ヒータ22Hの第1ヒータ部23A同士の離間距離を最小距離T(図5参照)に設定することができ、非発光部24Nを最小化にして半導体処理装置10の大型化を回避している。 Therefore, as shown in FIGS. 3 and 4, the circumferentially adjacent quartz heaters 22H become discontinuous at the second heater section 23B, forming a non-light-emitting section 24N. Further, the distance between the first heater parts 23A of the quartz heaters 22H adjacent to each other in the circumferential direction can be set to the minimum distance T (see FIG. 5), and the non-light emitting part 24N can be minimized to improve the performance of the semiconductor processing apparatus 10. Avoids increasing size.

石英ヒータ22Hの第2ヒータ部23Bは、例えば、非発熱部として形成される。 The second heater portion 23B of the quartz heater 22H is formed as a non-heat generating portion, for example.

図5に示すように、蓋部本体20には厚み方向に貫通した貫通孔34の内周面には、気密部材36が配置されている。気密部材36は、石英ヒータ22Hの第2ヒータ部23Bと押圧することにより、石英ヒータ22Hを保持している。気密部材36は、例えば、弾性部材であり、Oリングで構成される。Oリングは、エラストマー材料で形成されている。エラストマー材料として、例えば、バインドゴム又はフッ素ゴムなどが使用される。 As shown in FIG. 5, an airtight member 36 is disposed on the inner circumferential surface of a through hole 34 that penetrates the lid main body 20 in the thickness direction. The airtight member 36 holds the quartz heater 22H by pressing against the second heater portion 23B of the quartz heater 22H. The airtight member 36 is, for example, an elastic member and is composed of an O-ring. The O-ring is made of an elastomeric material. As the elastomer material, for example, bind rubber or fluororubber is used.

貫通孔34の内周面には、気密部材36に対して押圧するための圧縮リング38と、圧縮リング38を蓋部本体20に固定するための抑えフランジ40が設けられている。これにより、気密部材36は、貫通孔34の内周面に固定される。 A compression ring 38 for pressing against the airtight member 36 and a restraining flange 40 for fixing the compression ring 38 to the lid main body 20 are provided on the inner peripheral surface of the through hole 34 . Thereby, the airtight member 36 is fixed to the inner peripheral surface of the through hole 34.

蓋部16の上方側(大気側)には、石英ヒータ22Hの第2ヒータ部23Bに接続する電流導入部42が突出している。電流導入部42に電圧が印加されて、石英ヒータ22Hの第1ヒータ部23Aが発熱し、シリコン基板が加熱される。電流導入部42は大気側に露出しているため、電流導入部42への伝熱がなく、発熱による技術的な問題は生じない。 A current introduction part 42 that connects to the second heater part 23B of the quartz heater 22H protrudes from the upper side (atmosphere side) of the lid part 16. When a voltage is applied to the current introduction part 42, the first heater part 23A of the quartz heater 22H generates heat, and the silicon substrate is heated. Because the current introduction part 42 is exposed to the atmosphere side, there is no heat transfer to the current introduction part 42, and no technical problems due to heat generation occur.

[加熱源保持機構の輻射熱遮断処理]
次に、半導体処理装置10に用いる加熱源保持機構に対する輻射熱遮断処理について説明する。
[Radiant heat blocking treatment of heating source holding mechanism]
Next, a radiant heat cutoff process for the heat source holding mechanism used in the semiconductor processing apparatus 10 will be described.

図7に示すように、石英ヒータ22Hの近傍、すなわち石英ヒータ22Hからの光が気密部材36に対して照射可能な光路上の位置に、輻射熱を遮断する輻射熱遮断部が施されている。例えば、石英ヒータ22Hの外表面であって気密部材36との接触部位に、輻射熱を遮断する輻射熱遮断部が施されている。換言すれば、石英ヒータ22Hの第2ヒータ部23Bの外表面には、輻射熱遮断部としての金属膜(金属反射膜)X1が塗布されている。金属膜X1は、熱反射率が高くて熱を吸収し難い、アルミニウム、アルミニウム合金、銀、金、ニッケルなどを単体で又は任意の材質を混合して構成されている。金属膜X1により石英ヒータ22Hの第1ヒータ部23Aからの輻射熱が反射し、第2ヒータ部23Bの内部への伝熱を防止できる。このため、第2ヒータ部23Bは、非発熱部としての機能が維持される。 As shown in FIG. 7, a radiant heat cutoff portion for blocking radiant heat is provided near the quartz heater 22H, that is, at a position on the optical path where the light from the quartz heater 22H can irradiate the airtight member 36. For example, a radiant heat cutoff portion for blocking radiant heat is provided on the outer surface of the quartz heater 22H at a contact portion with the airtight member 36. In other words, the outer surface of the second heater section 23B of the quartz heater 22H is coated with a metal film (metal reflective film) X1 as a radiant heat blocking section. The metal film X1 is made of aluminum, aluminum alloy, silver, gold, nickel, etc., which have a high heat reflectance and are difficult to absorb heat, either singly or by mixing arbitrary materials. The metal film X1 reflects the radiant heat from the first heater section 23A of the quartz heater 22H, thereby preventing heat transfer into the second heater section 23B. Therefore, the second heater section 23B maintains its function as a non-heat generating section.

なお、石英ヒータ22Hの第2ヒータ部23Bの外表面に金属膜(金属反射膜)X1を塗布する構成以外のものとして、例えば、金属膜X1を別部材で形成し、石英ヒータ22Hの第2ヒータ部23Bの外表面に被せ、又は巻回することも可能である。 In addition, as a configuration other than applying the metal film (metal reflective film) X1 to the outer surface of the second heater portion 23B of the quartz heater 22H, for example, the metal film It is also possible to cover or wind the outer surface of the heater section 23B.

別の実施形態として、石英ヒータ22Hの第2ヒータ部23Bの外表面には、輻射熱遮断部としての光学膜(光学フィルター膜、赤外線フィルター膜、図示省略)が塗布されている。光学膜により石英ヒータ22Hからの輻射熱が反射し、第2ヒータ部23Bの内部への伝熱を防止できる。このため、第2ヒータ部23Bは、非発熱部としての機能が維持される。光学膜として、例えば、曇りガラス、石英に乱反射する材料、発泡させて光散乱、屈折率を変えて光を透過させない金属を使用してもよい。 As another embodiment, the outer surface of the second heater section 23B of the quartz heater 22H is coated with an optical film (an optical filter film, an infrared filter film, not shown) as a radiant heat blocking section. The optical film reflects the radiant heat from the quartz heater 22H, thereby preventing heat transfer into the second heater section 23B. Therefore, the second heater section 23B maintains its function as a non-heat generating section. As the optical film, for example, frosted glass, a material that diffusely reflects quartz, a metal that is foamed to scatter light, or a metal that changes the refractive index so that no light is transmitted may be used.

なお、石英ヒータ22Hの第2ヒータ部23Bの表面には、赤外線フィルター膜(光学フィルター膜)を塗布する構成以外のものとして、例えば、赤外線フィルター膜を別部材で形成し、石英ヒータ22Hの第2ヒータ部23Bの表面に被せ、又は巻回することも可能である。 In addition to the structure in which an infrared filter film (optical filter film) is applied to the surface of the second heater part 23B of the quartz heater 22H, for example, an infrared filter film is formed as a separate member, and the surface of the second heater part 23B of the quartz heater 22H is It is also possible to cover or wind the surface of the second heater section 23B.

別の実施形態として、図8に示すように、石英ヒータ22Hの第2ヒータ部23Bの材質を不透明石英X2で構成し、第1ヒータ部23Aの材質を透明石英で構成し、不透明石英X2の端部と透明石英の端部とで融着させて接続してもよい。不透明石英X2の端部と透明石英の端部との接続部は透明石英になるものの、第2ヒータ部23Bに輻射熱遮断部を形成することができる。これにより、第2ヒータ部23Bは、非発熱部としての機能が維持される。 As another embodiment, as shown in FIG. 8, the material of the second heater part 23B of the quartz heater 22H is made of opaque quartz X2, the material of the first heater part 23A is made of transparent quartz, and the material of the first heater part 23A is made of transparent quartz. The end portion and the end portion of the transparent quartz may be fused and connected. Although the connecting portion between the end of the opaque quartz X2 and the end of the transparent quartz is made of transparent quartz, a radiant heat blocking portion can be formed in the second heater portion 23B. Thereby, the second heater section 23B maintains its function as a non-heat generating section.

なお、石英ヒータ22Hの第2ヒータ部23Bの材質を不透明石英X2で構成する以外のものとして、例えば、別部材として不透明石英X2で形成した輻射熱反射部材を作り、石英ヒータ22Hの第2ヒータ部23Bの外表面に輻射熱反射部材を被せ、又は巻回することも可能である。 In addition, as a material other than opaque quartz X2 for the second heater part 23B of the quartz heater 22H, for example, a radiant heat reflecting member made of opaque quartz X2 is made as a separate member, and the second heater part 23B of the quartz heater 22H is made of a material other than the opaque quartz X2. It is also possible to cover or wrap a radiant heat reflecting member on the outer surface of 23B.

次に、本実施形態の作用について説明する。 Next, the operation of this embodiment will be explained.

図5乃至図8に示すように、石英ヒータ22Hの第2ヒータ部23Bを蓋部本体20の貫通孔34に挿通し、気密部材36が第2ヒータ部23Bと接触して保持する構成では、石英ヒータ22Hの第1ヒータ部23Aで発生した加熱エネルギー(図6の矢印参照)が第2ヒータ部23Bに向かって熱伝搬していき、第2ヒータ部23Bの温度が高温になる。このとき、第2ヒータ部23Bと接触している気密部材36にも加熱エネルギーが熱伝搬し、気密部材36の温度が高温になる。 As shown in FIGS. 5 to 8, in the configuration in which the second heater part 23B of the quartz heater 22H is inserted into the through hole 34 of the lid main body 20, and the airtight member 36 is held in contact with the second heater part 23B, The heating energy generated in the first heater section 23A of the quartz heater 22H (see the arrow in FIG. 6) is thermally propagated toward the second heater section 23B, and the temperature of the second heater section 23B becomes high. At this time, the heating energy also propagates to the airtight member 36 that is in contact with the second heater section 23B, and the temperature of the airtight member 36 becomes high.

詳細には、一般に石英では、熱エネルギーを可視光400nmから赤外光2700nmの範囲で投下することができるが、熱源を中心とした石英管の放射方向(配管断面方向)に透過するとともに、石英管の軸方向にも透過する性質がある。このため、石英ヒータ22Hを気密部材36で鉛直方向(重力方向)に支持する構成では、気密部材36は石英管の壁を伝達した可視光~赤外線の熱の影響を受けることになる。この理由により、第2ヒータ部23Bと接触している気密部材36にも加熱エネルギーが熱伝搬して高温になり、この温度が気密部材36の耐熱温度以上に至る場合には、気密部材36が溶融又は焼損するのである。 In detail, in general, quartz can transmit thermal energy in the range of visible light 400 nm to infrared light 2700 nm, but it is transmitted in the radial direction of the quartz tube (cross-sectional direction of the pipe) centered on the heat source, and the quartz It also has the property of being transparent in the axial direction of the tube. Therefore, in a configuration in which the quartz heater 22H is supported in the vertical direction (in the direction of gravity) by the airtight member 36, the airtight member 36 is affected by visible light to infrared heat transmitted through the wall of the quartz tube. For this reason, the heating energy also propagates to the airtight member 36 that is in contact with the second heater section 23B, resulting in a high temperature. If this temperature reaches the upper limit temperature of the airtight member 36 or higher, the airtight member 36 It melts or burns out.

これらの理由から、半導体処理装置10での熱処理では、気密部材36が異常な程の高温状態になるため、気密部材36が溶融又は炭化、さらには弾性劣化する。このため、石英ヒータ22Hと蓋部本体20の貫通孔34との間に隙間が形成され、隙間から外部に熱が逃げる技術的問題が生じるおそれがある。外部への熱漏れが生じると、シリコン基板に対する熱処理が不十分になり、不良の原因になる。また、気密部材36が溶けると、石英ヒータ22Hを保持する保持力が弱くなり、石英ヒータ22Hが落下する不具合が生じるおそれもある。 For these reasons, the heat treatment in the semiconductor processing apparatus 10 brings the airtight member 36 into an abnormally high temperature state, causing the airtight member 36 to melt or carbonize, and further deteriorate its elasticity. Therefore, a gap is formed between the quartz heater 22H and the through hole 34 of the lid main body 20, which may cause a technical problem in which heat escapes to the outside through the gap. If heat leaks to the outside, the heat treatment of the silicon substrate will be insufficient, leading to defects. Further, if the airtight member 36 melts, the holding force for holding the quartz heater 22H becomes weak, and there is also a risk that the quartz heater 22H may fall.

そこで、本実施形態では、図7に示すように、石英ヒータ22Hの第2ヒータ部23Bの外表面には、輻射熱遮断部としての金属膜(金属反射膜)X1が塗布されている。このため、石英ヒータ22Hの第1ヒータ部23Aで生じた加熱エネルギーは、金属膜X1で遮断されるため、第2ヒータ部23Bに熱が伝導しない。これにより、第2ヒータ部23Bの温度が高温になることを阻止できる。この結果、第2ヒータ部23Bと接触する気密部材36の温度が高温になることも回避でき、気密部材36の劣化を防止できる。 Therefore, in this embodiment, as shown in FIG. 7, the outer surface of the second heater section 23B of the quartz heater 22H is coated with a metal film (metal reflective film) X1 as a radiant heat blocking section. Therefore, the heating energy generated in the first heater section 23A of the quartz heater 22H is blocked by the metal film X1, so that heat is not conducted to the second heater section 23B. Thereby, the temperature of the second heater section 23B can be prevented from becoming high. As a result, the temperature of the airtight member 36 in contact with the second heater portion 23B can be prevented from becoming too high, and deterioration of the airtight member 36 can be prevented.

気密部材36の劣化を防止できるため、気密部材36による第2ヒータ部23Bの保持力を確保できる。このため、外部への熱漏れや石英ヒータ22Hの落下を防止できる。 Since deterioration of the airtight member 36 can be prevented, the holding power of the second heater section 23B by the airtight member 36 can be ensured. Therefore, heat leakage to the outside and falling of the quartz heater 22H can be prevented.

また、石英ヒータ22Hの第2ヒータ部23Bの外表面には、金属や誘電材料等を用いて、輻射熱遮断部としての赤外線フィルター膜(光学フィルター膜)が塗布されている構成でも、同様の作用が得られる。 Furthermore, the same effect can be achieved even in a configuration in which an infrared filter film (optical filter film) is applied as a radiant heat blocking part using metal, dielectric material, etc. on the outer surface of the second heater part 23B of the quartz heater 22H. is obtained.

図8に示すように、石英ヒータ22Hの第2ヒータ部23Bの材質を不透明石英X2で構成しても、同様の作用が得られる。 As shown in FIG. 8, the same effect can be obtained even if the second heater portion 23B of the quartz heater 22H is made of opaque quartz X2.

[改良発明]
次に、本発明の一実施形態に係る半導体処理装置に用いる加熱源保持機構、加熱源保持方法及び半導体処理装置の改良発明について、図面を参照して説明する。なお、上記実施形態の構成と同じ構成には同符号を付し、説明を省略する。
[Improved invention]
Next, a heat source holding mechanism, a heat source holding method, and an improved invention for a semiconductor processing apparatus used in a semiconductor processing apparatus according to an embodiment of the present invention will be described with reference to the drawings. Note that the same components as those in the above embodiment are denoted by the same reference numerals, and the description thereof will be omitted.

[上記実施形態の技術的課題]
上記実施形態によれば、石英ヒータ22Hに非発光部24Nが形成されているが、非発光部24Nにおいて温度が局所的に低下することにより、シリコン基板の非発光部24Nが投影する部位において熱処理温度が局所的に低下するという技術的課題がある(加熱の不均一性)。また、環状構造の石英ヒータを制作することが困難であるという技術的課題もある(加熱源の制作困難性)。
[Technical issues of the above embodiment]
According to the above embodiment, the non-light-emitting portion 24N is formed in the quartz heater 22H, but as the temperature locally decreases in the non-light-emitting portion 24N, the portion of the silicon substrate onto which the non-light-emitting portion 24N projects is subjected to heat treatment. There is a technical problem in that the temperature locally decreases (heating non-uniformity). Additionally, there is a technical problem in that it is difficult to produce a quartz heater with an annular structure (difficulty in producing a heating source).

そこで、改良発明では、加熱源22である石英ヒータ22Hの非発光部分を形成することなく、石英ヒータを完全な環状構造に形成するようにした。このため、変形例では、連続環状石英ヒータ50が完成し、非発熱部が形成されていない。 Therefore, in the improved invention, the quartz heater 22H, which is the heat source 22, is formed into a complete annular structure without forming a non-light-emitting portion. Therefore, in the modified example, the continuous annular quartz heater 50 is completed, and no non-heat generating portion is formed.

図9乃至図11に示すように、改良発明の連続環状石英ヒータ50は、水平方向に延びる連続環状部52と、連続環状部52と接続するとともに鉛直方向(重力方向)に延びる鉛直固定部54と、で構成されている。 As shown in FIGS. 9 to 11, the continuous annular quartz heater 50 of the improved invention includes a continuous annular portion 52 extending in the horizontal direction, and a vertical fixing portion 54 connected to the continuous annular portion 52 and extending in the vertical direction (direction of gravity). It consists of and.

加熱源22は、平面視において、径の異なる複数の連続環状部52が同心円上に配置されて構成されている。このため、連続環状石英ヒータ50の円周方向には非発光部が存在せず、連続環状部52の石英管が連続的に接続された構成である。 The heating source 22 is configured by a plurality of continuous annular portions 52 having different diameters arranged concentrically in a plan view. Therefore, there is no non-light emitting part in the circumferential direction of the continuous annular quartz heater 50, and the quartz tubes of the continuous annular part 52 are continuously connected.

鉛直固定部54には、上記実施形態と同様に、輻射熱を遮断する輻射熱遮断部が施されている。換言すれば、鉛直固定部54の外表面には、輻射熱遮断部としての金属膜(金属反射膜)X1(図9~11では図示省略)が塗布されている。また、別の実施形態として、鉛直固定部54の外表面には、輻射熱遮断部としての赤外線フィルター膜(光学フィルター膜、図示省略)が塗布されている。さらに、鉛直固定部54の材質を不透明石英X2(図9~11では図示省略)で構成し、連続環状部52の材質を透明石英で構成し、不透明石英X2の端部と透明石英の端部とで融着させて接続してもよい。これにより、鉛直固定部54と接触して弾性支持する気密部材36のシール劣化を防止できる。 The vertical fixing part 54 is provided with a radiant heat blocking part that blocks radiant heat, as in the above embodiment. In other words, the outer surface of the vertical fixing part 54 is coated with a metal film (metal reflective film) X1 (not shown in FIGS. 9 to 11) serving as a radiant heat shielding part. Further, as another embodiment, an infrared filter film (optical filter film, not shown) is applied to the outer surface of the vertical fixing part 54 as a radiant heat blocking part. Furthermore, the material of the vertical fixing part 54 is made of opaque quartz X2 (not shown in FIGS. 9 to 11), the material of the continuous annular part 52 is made of transparent quartz, and the end of the opaque quartz X2 and the end of the transparent quartz It may also be connected by fusion bonding. Thereby, seal deterioration of the airtight member 36 that contacts and elastically supports the vertical fixing portion 54 can be prevented.

上記実施形態と同様にして、蓋部本体20には厚み方向に貫通した貫通孔34が形成されており、連続環状石英ヒータ50の鉛直固定部54が貫通孔34に挿通されている。なお、連続環状石英ヒータ50の製造方法については、後述する。 Similar to the above embodiment, a through hole 34 is formed in the lid main body 20 in the thickness direction, and the vertical fixing portion 54 of the continuous annular quartz heater 50 is inserted into the through hole 34. Note that a method for manufacturing the continuous annular quartz heater 50 will be described later.

なお、その他の構成については、上記実施形態と同様である。 Note that the other configurations are the same as those in the above embodiment.

以上のように、本実施形態の改良発明によれば、連続環状石英ヒータ50により、連続した環状構造の発光が発生するため、連続環状石英ヒータ50に非発熱部が形成されないため、熱処理において、シリコン基板上で加熱の不均一が生じることを防止できる。シリコン基板は、平面視において円盤状に形成されているが、連続環状石英ヒータ50も同様にして平面視において円盤状に形成されているため、シリコン基板上の表面を均一に加熱することができ、シリコン基板上における加熱のムラを無くすことができる。これにより、シリコン基板の熱処理において不良の発生を抑制できる。 As described above, according to the improved invention of the present embodiment, since the continuous annular quartz heater 50 generates light emission in a continuous annular structure, no non-heat generating portion is formed in the continuous annular quartz heater 50. It is possible to prevent uneven heating from occurring on the silicon substrate. The silicon substrate is formed into a disk shape in plan view, and the continuous annular quartz heater 50 is similarly formed into a disk shape in plan view, so that it is possible to uniformly heat the surface of the silicon substrate. , it is possible to eliminate uneven heating on the silicon substrate. This makes it possible to suppress the occurrence of defects during heat treatment of silicon substrates.

また、シリコン基板の熱処理において、加熱の不均一性が解消するために、シリコン基板を回転させる必要がなく、基板回転機構を用いる必要がない。このため、部品点数を削減でき、小型化及び低コスト化を実現できるとともに、基板回転機構の高精度な回転制御が不要になる。 Furthermore, in the heat treatment of the silicon substrate, since non-uniformity in heating is eliminated, there is no need to rotate the silicon substrate, and there is no need to use a substrate rotation mechanism. Therefore, the number of parts can be reduced, downsizing and cost can be reduced, and highly accurate rotation control of the substrate rotation mechanism is no longer required.

[連続環状石英ヒータの作製方法]
次に、連続環状石英ヒータ50の作製方法について説明する。
[Method of manufacturing a continuous annular quartz heater]
Next, a method for producing the continuous annular quartz heater 50 will be described.

図12に示すように、非発熱部が存在しない連続環状石英ヒータ50を作製するために、石英部品56と、タングステン線58と、をそれぞれ準備する。石英部品56として、2本の2分割した半環状石英管56A、2個のT型石英管56Bと、各種石英管を支持する4本の石英管支持部56Cと、で構成される。 As shown in FIG. 12, in order to fabricate a continuous annular quartz heater 50 with no non-heat generating portions, a quartz part 56 and a tungsten wire 58 are prepared. The quartz part 56 is composed of two bisected semi-annular quartz tubes 56A, two T-shaped quartz tubes 56B, and four quartz tube support parts 56C that support various quartz tubes.

図13及び図14に示すように、半環状石英管56AにT型石英管56Bを接続するとともに、内部にタングステン線58を通してフィラメントを形成する。 As shown in FIGS. 13 and 14, a T-shaped quartz tube 56B is connected to the semicircular quartz tube 56A, and a tungsten wire 58 is passed inside to form a filament.

具体的には、図15に示すように、加熱体であるタングステン線58を熱密度6-10W/mmの長さと抵抗値を±5%以内に合わせて切断し、半環状石英管56Aの内部に挿入する。次に、タングステン線58を半環状石英管56Aに挿入後、半環状石英管56A同士を炎加工により接続し、約1000度でアニール処理して加工歪みを除去する。 Specifically, as shown in FIG. 15, a tungsten wire 58 serving as a heating element is cut to a length with a heat density of 6-10 W/mm and a resistance value within ±5%, and the inside of a semicircular quartz tube 56A is cut. Insert into. Next, after inserting the tungsten wire 58 into the semi-annular quartz tube 56A, the semi-annular quartz tubes 56A are connected to each other by flame processing, and annealing is performed at about 1000 degrees to remove processing distortion.

T型石英管56Bの先端部に対して封止処理を行う。封止処理は、T型石英管56Bの先端部に対する炎加工により実現される。これにより、T型石英管56Bの先端部に封止部が形成され、封止部が石英管の直径以下に留まるため、蓋部本体20に形成された貫通孔34に挿通させることができる。このようにして、連続環状石英ヒータ50が蓋部16に保持される。 A sealing process is performed on the tip of the T-shaped quartz tube 56B. The sealing process is achieved by flame processing the tip of the T-shaped quartz tube 56B. As a result, a sealing portion is formed at the tip of the T-shaped quartz tube 56B, and since the sealing portion remains smaller than the diameter of the quartz tube, it can be inserted into the through hole 34 formed in the lid main body 20. In this manner, the continuous annular quartz heater 50 is held on the lid 16.

なお、上記実施形態は、本発明の技術的思想を具現した一例に過ぎないものである。本発明は、当然ながらこの実施形態に限定されるものではなく、本発明の技術的思想を利用した全ての態様を含むものである。 Note that the above-described embodiment is merely an example that embodies the technical idea of the present invention. Naturally, the present invention is not limited to this embodiment, but includes all aspects that utilize the technical idea of the present invention.

10 半導体処理装置
12 空間部
14 土台部
16 蓋部(支持部)
18 周壁部
20 蓋部本体
22 加熱源
22H 石英ヒータ
23A 第1ヒータ部
23B 第2ヒータ部
24 空隙部
24N 非発光部
25B 発光部
26 反射処理板
28 冷却液流路
30 取付フランジ
32 凹部
34 貫通孔
36 気密部材
38 圧縮リング
40 抑えフランジ
42 電流導入部
50 連続環状石英ヒータ
52 連続環状部
54 鉛直固定部
56 石英部品
56A 半環状石英管
56B T型石英管
56C 石英管支持部
58 タングステン線
X1 金属膜
X2 不透明石英
10 Semiconductor processing equipment 12 Space section 14 Base section 16 Lid section (support section)
18 Peripheral wall portion 20 Lid body 22 Heat source 22H Quartz heater 23A First heater portion 23B Second heater portion 24 Gap portion 24N Non-light emitting portion 25B Light emitting portion 26 Reflection treatment plate 28 Coolant flow path 30 Mounting flange 32 Recess 34 Through hole 36 Airtight member 38 Compression ring 40 Holding flange 42 Current introduction part 50 Continuous annular quartz heater 52 Continuous annular part 54 Vertical fixing part 56 Quartz component 56A Semi-annular quartz tube 56B T-shaped quartz tube 56C Quartz tube support part 58 Tungsten wire X1 Metal film X2 Opaque quartz

Claims (3)

気密部材を介して半導体処理装置に用いられる加熱源の製造方法であって、
前記加熱源は、平面視において連続環状に形成された連続環状部と、前記連続環状部に接続され鉛直方向に延在するとともに前記気密部材との接触部位に輻射熱を遮断するための輻射熱遮断部が施される鉛直固定部と、を形成し、
前記連続環状部は、一対の半環状石英管を組み合せて形成し、
前記鉛直固定部は、前記半環状石英管が接続するT型石英管で形成し、
前記半環状石英管及び前記T型石英管の内部にタングステン線を通してフィラメントを形成してなる、半導体処理装置に用いられる加熱源の製造方法。
A method for manufacturing a heat source used in a semiconductor processing device through an airtight member , comprising the steps of:
The heating source includes a continuous annular portion formed in a continuous annular shape in a plan view, and a vertical fixing portion connected to the continuous annular portion, extending in a vertical direction, and having a radiant heat blocking portion for blocking radiant heat at a contact portion with the airtight member ,
The continuous annular portion is formed by combining a pair of semi-annular quartz tubes,
The vertical fixing portion is formed of a T-shaped quartz tube to which the semi-annular quartz tube is connected,
A method for manufacturing a heat source for use in a semiconductor processing apparatus, comprising passing a tungsten wire through the inside of the semi-annular quartz tube and the T-shaped quartz tube to form a filament.
前記タングステン線を前記半環状石英管の内部に挿入した後、前記一対の半環状石英管同士を炎加工により接続し、所定の温度でアニール処理にして加工歪みを除去する、請求項1に記載の半導体処理装置に用いられる加熱源の製造方法。 According to claim 1, after the tungsten wire is inserted into the semi-circular quartz tube, the pair of semi-circular quartz tubes are connected by flame processing and annealed at a predetermined temperature to remove processing distortion. A method for manufacturing a heating source used in semiconductor processing equipment. 前記T型石英管の先端部は炎加工により封止部を形成する、請求項1又は2に記載の半導体処理装置に用いられる加熱源の製造方法。 3. The method of manufacturing a heat source used in a semiconductor processing apparatus according to claim 1, wherein a sealing portion is formed at the tip of the T-shaped quartz tube by flame processing.
JP2023208113A 2023-08-01 2023-12-10 Method for manufacturing a heating source used in semiconductor processing equipment Active JP7458136B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023208113A JP7458136B1 (en) 2023-08-01 2023-12-10 Method for manufacturing a heating source used in semiconductor processing equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023125861A JP7433505B1 (en) 2023-08-01 2023-08-01 Heat source holding mechanism, heat source holding method, and semiconductor processing apparatus used in semiconductor processing equipment
JP2023208113A JP7458136B1 (en) 2023-08-01 2023-12-10 Method for manufacturing a heating source used in semiconductor processing equipment

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2023125861A Division JP7433505B1 (en) 2023-08-01 2023-08-01 Heat source holding mechanism, heat source holding method, and semiconductor processing apparatus used in semiconductor processing equipment

Publications (1)

Publication Number Publication Date
JP7458136B1 true JP7458136B1 (en) 2024-03-29

Family

ID=89904373

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2023125861A Active JP7433505B1 (en) 2023-08-01 2023-08-01 Heat source holding mechanism, heat source holding method, and semiconductor processing apparatus used in semiconductor processing equipment
JP2023208113A Active JP7458136B1 (en) 2023-08-01 2023-12-10 Method for manufacturing a heating source used in semiconductor processing equipment

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2023125861A Active JP7433505B1 (en) 2023-08-01 2023-08-01 Heat source holding mechanism, heat source holding method, and semiconductor processing apparatus used in semiconductor processing equipment

Country Status (1)

Country Link
JP (2) JP7433505B1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001217197A (en) 2000-01-31 2001-08-10 Ushio Inc Lamp unit
JP2002075898A (en) 2000-08-31 2002-03-15 Ulvac-Riko Inc Uniformly heating method of sample with circular lamp
JP2003026433A (en) 2001-05-10 2003-01-29 Tokuyama Toshiba Ceramics Co Ltd Method of joining quartz glass member and joining equipment used for this method
JP2010108638A (en) 2008-10-28 2010-05-13 Harison Toshiba Lighting Corp Halogen lamp, heating system and method of manufacturing halogen lamp
JP2011009043A (en) 2009-06-25 2011-01-13 Ushio Inc Filament lamp
JP2014067655A (en) 2012-09-27 2014-04-17 Origin Electric Co Ltd Heat treatment apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001217197A (en) 2000-01-31 2001-08-10 Ushio Inc Lamp unit
JP2002075898A (en) 2000-08-31 2002-03-15 Ulvac-Riko Inc Uniformly heating method of sample with circular lamp
JP2003026433A (en) 2001-05-10 2003-01-29 Tokuyama Toshiba Ceramics Co Ltd Method of joining quartz glass member and joining equipment used for this method
JP2010108638A (en) 2008-10-28 2010-05-13 Harison Toshiba Lighting Corp Halogen lamp, heating system and method of manufacturing halogen lamp
JP2011009043A (en) 2009-06-25 2011-01-13 Ushio Inc Filament lamp
JP2014067655A (en) 2012-09-27 2014-04-17 Origin Electric Co Ltd Heat treatment apparatus

Also Published As

Publication number Publication date
JP7433505B1 (en) 2024-02-19

Similar Documents

Publication Publication Date Title
JP4948701B2 (en) Heating apparatus, heat treatment apparatus having the heating apparatus, and heat treatment control method
KR100512345B1 (en) Temperature measuring method, heat treating device and method, computer program, and radiation thermometer
JP2001308022A (en) Quartz window, reflector, and thermal treatment equipment
JP2001308023A (en) Equipment and method for heat treatment
KR20110004433A (en) Apparatus including heating source reflective filter for pyrometry
JP5338723B2 (en) Heating device
KR100970013B1 (en) Heat treating device
US6825615B2 (en) Lamp having a high-reflectance film for improving directivity of light and heat treatment apparatus having such a lamp
JP7458136B1 (en) Method for manufacturing a heating source used in semiconductor processing equipment
JP6438331B2 (en) Heat treatment equipment
JP7416554B1 (en) Heat source holding mechanism, heat source holding method, and semiconductor processing apparatus used in semiconductor processing equipment
JP4346208B2 (en) Temperature measuring method, heat treatment apparatus and method, and computer-readable medium
JP4710255B2 (en) Heating stage
JP5317462B2 (en) Soaking fast elevator
TW202147491A (en) Heat treatment apparatus
JP5293453B2 (en) Filament lamp
KR101118154B1 (en) Lamp for heat treatment of substrate
JP2002357481A (en) Temperature measurement method and device therefor, heat treatment device and its method
JP2008198548A (en) Heater lamp apparatus
CN102576636A (en) Electrode mount, a high-pressure discharge lamp using same, and production method for same
JP2001217197A (en) Lamp unit
JP2004252063A (en) Fixing device
JP4942880B2 (en) Heat treatment equipment
JP2010238788A (en) Heat treatment apparatus
JP3131012B2 (en) Heating equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231211

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20231211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240315

R150 Certificate of patent or registration of utility model

Ref document number: 7458136

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150