JP7456954B2 - Reinforcement structure and reinforcement method - Google Patents

Reinforcement structure and reinforcement method Download PDF

Info

Publication number
JP7456954B2
JP7456954B2 JP2021018500A JP2021018500A JP7456954B2 JP 7456954 B2 JP7456954 B2 JP 7456954B2 JP 2021018500 A JP2021018500 A JP 2021018500A JP 2021018500 A JP2021018500 A JP 2021018500A JP 7456954 B2 JP7456954 B2 JP 7456954B2
Authority
JP
Japan
Prior art keywords
tunnel
main girder
connecting portion
reinforcing
trailing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021018500A
Other languages
Japanese (ja)
Other versions
JP2022121244A (en
Inventor
大介 森田
健治 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2021018500A priority Critical patent/JP7456954B2/en
Publication of JP2022121244A publication Critical patent/JP2022121244A/en
Application granted granted Critical
Publication of JP7456954B2 publication Critical patent/JP7456954B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)
  • Lining And Supports For Tunnels (AREA)

Description

本開示は、トンネル覆工体の補強構造及び補強方法に関する。 The present disclosure relates to a reinforcement structure and method for reinforcing a tunnel lining.

特許文献1には、地下構造物の施工方法が記載されている。この地下構造物は、本線シールドトンネルと支線シールドトンネルとの合流領域に施工された大断面トンネルである。地下構造物の内部には、地下構造物の軸線方向に延びる地下空洞が形成されている。地下空洞の断面積は、本線シールドトンネル及び支線シールドトンネルの外形に沿うように、地下構造物の一方端部から他方端部に向けて小さくなっている。地下構造物は、複数のシールドトンネルを連結してなる地下空洞の外郭躯体を備える。外郭躯体では、周方向に隣り合うシールドトンネルを互いに連結する連結路が構築されており、シールドトンネル及び連結路には鉄筋コンクリートが打設されている。複数のシールドトンネルは、外郭躯体において一方端部から他方端部まで延伸される全長シールドトンネルと、全長シールドトンネルよりも短い短尺シールドトンネルにより構成される。 Patent Document 1 describes a method for constructing an underground structure. This underground structure is a large-section tunnel constructed in the confluence area of the main line shield tunnel and the branch line shield tunnel. An underground cavity extending in the axial direction of the underground structure is formed inside the underground structure. The cross-sectional area of the underground cavity decreases from one end of the underground structure to the other end, following the outlines of the main line shield tunnel and the branch line shield tunnel. The underground structure includes an outer skeleton of an underground cavity formed by connecting a plurality of shield tunnels. In the outer skeleton, a connection road is constructed to connect circumferentially adjacent shield tunnels to each other, and reinforced concrete is poured into the shield tunnel and the connection road. The plurality of shield tunnels are composed of a full-length shield tunnel that extends from one end to the other end of the outer shell, and short shield tunnels that are shorter than the full-length shield tunnel.

この地下構造物の施工方法では、地下構造物が構築される予定の場所である地下構造物予定領域の一方端部と他方端部との間において複数のシールドトンネルを周方向に構築し、複数のシールドトンネルを連結してなる外郭躯体を構築した後に、外郭躯体の内周側領域を掘削して地下空洞を形成する。そして、全長シールドトンネルを一方端部から他方端部まで延伸し、短尺シールドトンネルを一方端部から他方端部まで延伸しないように構築し、更に、外郭躯体を、その断面積が一方端部から他方端部に向けて小さくなるように構築する。 In this underground structure construction method, a plurality of shield tunnels are constructed in the circumferential direction between one end and the other end of the planned underground structure area where the underground structure is planned to be constructed. After constructing an outer shell consisting of connected shield tunnels, an underground cavity is formed by excavating the inner peripheral area of the outer shell. Then, the full-length shield tunnel is constructed so that it does not extend from one end to the other, and the short shield tunnel is constructed so that it does not extend from one end to the other. Construct it so that it becomes smaller towards the other end.

特許文献2には、大断面トンネルの構築方法が記載されている。大断面トンネルは、本線トンネル及び支線トンネルを内包可能な大断面覆工体によって形成されている。大断面覆工体は、円筒状に並設された複数本のトンネルと、各トンネルに充填された中詰コンクリートの硬化体と、複数本のトンネルを跨ぐように配置された主筋とを備える。複数本のトンネルは、間隔をあけて形成された複数本の先行トンネルと、隣り合う先行トンネルの間に形成された後行トンネルとを含む。 Patent Document 2 describes a method for constructing a large cross-section tunnel. The large-section tunnel is formed by a large-section lining body that can contain the main tunnel and the branch tunnel. The large cross-section lining body includes a plurality of tunnels arranged in parallel in a cylindrical shape, a hardened concrete filling body filled in each tunnel, and a main reinforcement arranged so as to straddle the plurality of tunnels. The plurality of tunnels include a plurality of leading tunnels formed at intervals and a trailing tunnel formed between adjacent leading tunnels.

先行トンネル内には先行鉄筋及び先行中詰コンクリートが設けられており、後行トンネル内には後行鉄筋及び後行中詰コンクリートが設けられている。隣り合う先行トンネル及び後行トンネルは、一部が重なった状態で並設されている。主筋は、先行トンネル及び後行トンネルを周方向に貫通しており、大断面トンネルの径方向内側と径方向外側のそれぞれに配置されている。一対の主筋の間には、主筋に交差する方向に延びる複数のせん断補強筋が配筋されている。 In the leading tunnel, leading reinforcing bars and leading filling concrete are provided, and in the trailing tunnel, trailing reinforcing bars and trailing filling concrete are provided. Adjacent leading tunnels and trailing tunnels are arranged side by side with some parts overlapping. The main reinforcing bars penetrate the leading tunnel and the trailing tunnel in the circumferential direction, and are arranged on the radially inner side and the radially outer side of the large-section tunnel, respectively. A plurality of shear reinforcing bars extending in a direction intersecting the main reinforcements are arranged between the pair of main reinforcements.

大断面トンネルの構築方法では、複数本の先行トンネルを並設し、各先行トンネル内に先行鉄筋を配筋した後に各先行トンネル内に先行中詰コンクリートを充填する。そして、互いに隣り合う先行トンネルの間に後行トンネルを構築し、後行トンネル内に後行鉄筋を配筋する。後行トンネルの構築では、隣接する先行トンネルの断面の一部を切削すると共に、後行トンネルの外面が先行中詰コンクリートに当接するように後行トンネルを構築する。より具体的には、先行トンネルと後行トンネルとの接合部において後行トンネルのスキンプレートの一部を撤去し、後行トンネルの鋼製セグメントの主桁と先行中詰コンクリートとの間にスペーサを介設する。このスペーサを介して後行トンネルの外面を先行中詰コンクリートに当接させることにより、後行トンネルの変形の抑制を図っている。 In the method of constructing a large cross-section tunnel, a plurality of preceding tunnels are installed in parallel, and after placing preceding reinforcing bars in each preceding tunnel, each preceding tunnel is filled with preceding filling concrete. Then, a trailing tunnel is constructed between adjacent leading tunnels, and trailing reinforcing bars are arranged within the trailing tunnel. In constructing the trailing tunnel, a part of the cross section of the adjacent leading tunnel is cut, and the trailing tunnel is constructed so that the outer surface of the trailing tunnel comes into contact with the leading filling concrete. More specifically, at the joint between the leading tunnel and the trailing tunnel, a part of the skin plate of the trailing tunnel is removed, and a spacer is installed between the main girder of the steel segment of the trailing tunnel and the leading filling concrete. intervene. By bringing the outer surface of the trailing tunnel into contact with the preceding filling concrete via this spacer, deformation of the trailing tunnel is suppressed.

特開2018-3398号公報JP 2018-3398 Publication 特開2018-12945号公報Japanese Patent Application Publication No. 2018-12945

前述したトンネル覆工体では、鋼製セグメントの主桁とコンクリートとの間にスペーサ等の部材を介設することによってトンネルの変形の抑制を図っている。しかしながら、スペーサは主桁とコンクリートの間に設けられるので、外力が付与されたときに当該外力を適切に主桁に伝達できないことが懸念される。従って、外力が付与されたときに、外力を主桁に適切に伝達してトンネルの変形をより確実に抑えることが求められる。 In the tunnel lining described above, deformation of the tunnel is suppressed by interposing members such as spacers between the main girder of the steel segment and the concrete. However, since the spacer is provided between the main girder and concrete, there is a concern that when an external force is applied, the spacer may not be able to appropriately transmit the external force to the main girder. Therefore, when an external force is applied, it is required to appropriately transmit the external force to the main girder to more reliably suppress deformation of the tunnel.

本開示は、トンネルの変形をより確実に抑えることができる補強構造及び補強方法を提供することを目的とする。 The present disclosure aims to provide a reinforcement structure and a reinforcement method that can more reliably suppress deformation of a tunnel.

本開示に係る補強構造は、トンネルの軸方向に所定の間隔で配置されると共に、トンネルの周方向に延在する主桁を有するトンネル覆工体の補強構造であって、主桁に接続される支持部材と、支持部材に接続される補強部材と、を備え、支持部材は、主桁に溶接される接続部と、接続部から接続部に交差する方向に延びる連結部と、接続部及び連結部が固定されていると共に、補強部材に接続される継手部と、を有し、補強部材によってトンネル覆工体の主桁が支持される。 The reinforcement structure according to the present disclosure is a reinforcement structure for a tunnel lining body having main girders arranged at predetermined intervals in the axial direction of the tunnel and extending in the circumferential direction of the tunnel, the reinforcement structure being connected to the main girders. and a reinforcing member connected to the support member, and the support member includes a connection part welded to the main girder, a connection part extending from the connection part to the connection part, The tunnel lining has a fixed connecting part and a joint part connected to a reinforcing member, and the main girder of the tunnel lining is supported by the reinforcing member.

この補強構造では、支持部材を介して外力を直接主桁に伝達できるので、外力を主桁に適切に伝達してトンネルの変形を確実に抑えることができる。また、支持部材は、主桁に接続される接続部と、接続部に交差する方向に延びる連結部と、接続部及び連結部に固定される継手部とを備え、接続部は主桁に溶接されると共に継手部は補強部材に接続される。従って、接続部、連結部及び継手部によって支持部材の強度を高めることができるので、外力を適切に主桁に伝達できると共にトンネルの変形をより確実に抑制することができる。 With this reinforcing structure, external force can be directly transmitted to the main girder via the support member, so the external force can be appropriately transmitted to the main girder and deformation of the tunnel can be reliably suppressed. Further, the support member includes a connecting part connected to the main girder, a connecting part extending in a direction crossing the connecting part, and a joint part fixed to the connecting part and the connecting part, and the connecting part is welded to the main girder. and the joint portion is connected to the reinforcing member. Therefore, the strength of the support member can be increased by the connecting portion, the coupling portion, and the joint portion, so that external force can be appropriately transmitted to the main girder, and deformation of the tunnel can be suppressed more reliably.

接続部は、主桁から延びると共に上下一対に並ぶフランジに設けられ、連結部は、一対のフランジを接続するウェブであってもよい。この場合、H形鋼等の形鋼を支持部材として用いることができるので、汎用性が高い支持部材とすることが可能となる。 The connecting portion may be provided on a pair of upper and lower flanges that extend from the main girder, and the connecting portion may be a web that connects the pair of flanges. In this case, a shaped steel such as an H-shaped steel can be used as the supporting member, so it is possible to provide a highly versatile supporting member.

継手部は、接続部及び連結部の主桁との反対側の端部に固定される継手板であってもよい。この場合、補強部材及び支持部材を介した主桁への外力の伝達をより直接的に行ってより強固な補強構造とすることができる。 The joint portion may be a joint plate fixed to an end of the connecting portion and the connecting portion opposite to the main girder. In this case, the external force can be more directly transmitted to the main girder via the reinforcing member and the supporting member, resulting in a stronger reinforced structure.

支持部材は、主桁が挿し込まれる凹部を有してもよい。この場合、支持部材を主桁に容易に取り付けることができるので、トンネル施工の施工性を向上させることができる。 The support member may have a recess into which the main beam is inserted. In this case, since the support member can be easily attached to the main girder, the workability of tunnel construction can be improved.

本開示の一側面に係る補強方法は、トンネルの軸方向に所定の間隔で配置されると共に、トンネルの周方向に延在する主桁と、主桁に支持されるスキンプレートを有するトンネル覆工体の補強方法であって、主桁に支持部材を接続する工程と、支持部材に補強部材を接続して主桁を支持する工程と、スキンプレートを撤去する工程と、を備え、支持部材は、主桁に溶接される接続部と、接続部から接続部に交差する方向に延びる連結部と、接続部及び連結部が固定されていると共に補強部材に接続される継手部と、を有する。 A reinforcing method according to one aspect of the present disclosure includes a tunnel lining having main girders arranged at predetermined intervals in the axial direction of the tunnel and extending in the circumferential direction of the tunnel, and a skin plate supported by the main girders. A method for reinforcing a body, comprising the steps of: connecting a support member to a main girder; connecting a reinforcing member to the support member to support the main girder; and removing a skin plate. , a connecting portion welded to the main girder, a connecting portion extending in a direction crossing the connecting portion, and a joint portion to which the connecting portion and the connecting portion are fixed and connected to the reinforcing member.

この補強方法では、支持部材を介して外力を直接主桁に伝達できるので、外力を主桁に適切に伝達してトンネルの変形を確実に抑えることができる。支持部材は、主桁に接続される接続部と、接続部に交差する方向に延びる連結部と、接続部及び連結部に固定される継手部とを備え、接続部は主桁に溶接されると共に継手部は補強部材に接続される。従って、接続部、連結部及び継手部によって支持部材の強度を高めることができるので、外力を適切に主桁に伝達できると共にトンネルの変形をより確実に抑制することができる。 With this reinforcement method, the external force can be directly transmitted to the main girder via the support member, so the external force can be appropriately transmitted to the main girder and deformation of the tunnel can be reliably suppressed. The support member includes a connecting part connected to the main girder, a connecting part extending in a direction crossing the connecting part, and a joint part fixed to the connecting part and the connecting part, and the connecting part is welded to the main girder. At the same time, the joint portion is connected to the reinforcing member. Therefore, the strength of the support member can be increased by the connecting portion, the coupling portion, and the joint portion, so that external force can be appropriately transmitted to the main girder, and deformation of the tunnel can be suppressed more reliably.

本開示の別の側面に係る補強方法は、先行トンネルに対し後に施工される後行トンネルであって、後行トンネルの軸方向に所定の間隔で配置されると共に、後行トンネルの周方向に延在する主桁と、主桁に支持されるスキンプレートを有する後行トンネル覆工体の補強方法であって、後行トンネル覆工体の主桁に支持部材を接続する工程と、支持部材に補強部材の一端を接続する工程と、補強部材の他端を、先行トンネルの先行トンネル覆工体、又は先行トンネル内に設置した被支持部材と接続して、主桁を支持する工程と、後行トンネルのスキンプレートを撤去する工程と、を備え、支持部材は、主桁に溶接される接続部と、接続部から接続部に交差する方向に延びる連結部と、接続部及び連結部が固定されていると共に補強部材に接続される継手部と、を有する。 In a reinforcing method according to another aspect of the present disclosure, a trailing tunnel is constructed after the leading tunnel, and the trailing tunnel is arranged at predetermined intervals in the axial direction of the trailing tunnel, and in the circumferential direction of the trailing tunnel. A method for reinforcing a trailing tunnel lining having an extending main girder and a skin plate supported by the main girder, the method comprising: connecting a support member to the main girder of the trailing tunnel lining; a step of connecting one end of the reinforcing member to the reinforcing member, and a step of supporting the main girder by connecting the other end of the reinforcing member to the preceding tunnel lining of the preceding tunnel or a supported member installed in the preceding tunnel; removing the skin plate of the trailing tunnel; a joint portion that is fixed and connected to the reinforcing member.

この補強方法では、補強部材及び支持部材を介して外力が主桁に伝達されるので、外力に主桁を適切に伝達してトンネルの変形を確実に抑制することができる。また、支持部材は、前述と同様、主桁に接続される接続部、連結部及び継手部を有し、接続部が主桁に溶接されると共に継手部が補強部材に接続される。従って、接続部、連結部及び継手部によって外力を適切に主桁に伝達してトンネルの変形をより確実に抑制することができる。 In this reinforcing method, the external force is transmitted to the main girder via the reinforcing member and the support member, so that the external force can be appropriately transmitted to the main girder and deformation of the tunnel can be reliably suppressed. Further, as described above, the support member has a connecting portion, a coupling portion, and a joint portion that are connected to the main girder, and the connecting portion is welded to the main girder and the joint portion is connected to the reinforcing member. Therefore, external force can be appropriately transmitted to the main girder by the connecting portion, the coupling portion, and the joint portion, and deformation of the tunnel can be suppressed more reliably.

後行トンネルは、先行トンネル覆工体の一部を切削しながら構築されるものであって、切削された先行トンネル覆工体を支持する先行支持構造を設ける工程を備えてもよい。この場合、先行トンネル覆工体の切削された部分を先行支持構造によって支持することができる。 The trailing tunnel is constructed by cutting a part of the leading tunnel lining, and may include a step of providing a leading support structure that supports the cut leading tunnel lining. In this case, the cut portion of the preceding tunnel lining can be supported by the preceding support structure.

支持部材を接続する工程では、支持部材に主桁が挿し込まれることによって主桁に支持部材が設置されてもよい。この場合、主桁に支持部材を挿し込むことによって支持部材の設置を行えるので、支持部材を容易に主桁に取り付けることができる。よって、トンネル施工の施工性を向上させることができる。 In the process of connecting the support members, the support members may be installed on the main girders by inserting the main girders into the support members. In this case, the support members can be installed by inserting them into the main girders, so that the support members can be easily attached to the main girders. This can improve the ease of tunnel construction.

本開示によれば、トンネルの変形をより確実に抑えることができる。 According to the present disclosure, deformation of the tunnel can be suppressed more reliably.

第1実施形態に係るトンネル覆工体の補強構造を模式的に示す断面図である。It is a sectional view showing typically the reinforcement structure of the tunnel lining body concerning a 1st embodiment. トンネル覆工体の主桁、支持部材及び補強部材を示す断面図である。It is a sectional view showing a main girder, a supporting member, and a reinforcing member of a tunnel lining body. 図2のA-A線に沿って見た矢視図である。3 is a view taken along the line AA in FIG. 2. FIG. 第2実施形態に係る先行トンネル覆工体及び後行トンネル覆工体の補強構造を模式的に示す断面図である。It is a sectional view showing typically the reinforcement structure of a leading tunnel lining body and a trailing tunnel lining body according to a second embodiment. 図4の後行トンネル覆工体の主桁、支持部材及び補強部材を示す断面図である。FIG. 5 is a cross-sectional view showing the main girder, support member, and reinforcing member of the trailing tunnel lining body of FIG. 4 . 実施形態に係る先行トンネル覆工体及び後行トンネル覆工体の補強方法の工程を示す図である。It is a figure which shows the process of the reinforcement method of the leading tunnel lining body and the following tunnel lining body based on embodiment. 図6の続きの工程を示す図である。7 is a diagram illustrating a process continued from FIG. 6. FIG. 図7の続きの工程を示す図である。FIG. 8 is a diagram showing a process subsequent to that shown in FIG. 7; 図8の続きの工程を示す図である。9 is a diagram illustrating a step continued from FIG. 8. FIG. 図9の続きの工程を示す図である。FIG. 9 is a diagram showing a step continued from FIG. 9;

以下では、図面を参照しながら本開示に係る補強構造及び補強方法の実施形態について説明する。図面の説明において、同一又は相当する要素には同一の符号を付し、重複する説明を適宜省略する。また、図面は、理解の容易化のため、一部を簡略化又は誇張して描いている場合があり、寸法比率等は図面に記載のものに限定されない。 Hereinafter, embodiments of a reinforcing structure and a reinforcing method according to the present disclosure will be described with reference to the drawings. In the description of the drawings, the same or corresponding elements are denoted by the same reference numerals, and redundant description will be omitted as appropriate. In addition, some parts of the drawings may be simplified or exaggerated for ease of understanding, and the dimensional ratios and the like are not limited to those shown in the drawings.

(第1実施形態)
本実施形態に係る補強構造1及び補強方法は、例えば、2体のトンネル覆工体のトンネル間補強を行う補強構造及び補強方法である。一例としての補強構造1は、地下に設けられた2体のトンネル覆工体の切拡げ構造である。すなわち、補強構造1は、2体のトンネル覆工体の切開き躯体を構成する。本実施形態に係る補強方法は、2体のトンネル覆工体の切拡げ方法であって、例えば、2体のトンネル覆工体の切開き施工において実行される。
(First embodiment)
The reinforcing structure 1 and the reinforcing method according to the present embodiment are, for example, a reinforcing structure and a reinforcing method for reinforcing a tunnel between two tunnel lining bodies. The reinforcement structure 1 as an example is a cut-and-spread structure of two tunnel lining bodies provided underground. That is, the reinforcing structure 1 constitutes an incised frame of two tunnel lining bodies. The reinforcing method according to the present embodiment is a method of cutting and widening two tunnel lining bodies, and is executed, for example, in cutting and expanding two tunnel lining bodies.

例えば、補強構造1は、2体のトンネル覆工体の一方である先行トンネル覆工体2Aと、2体のトンネル覆工体の他方である後行トンネル覆工体2Bとの間に介在した状態で先行トンネル覆工体2A及び後行トンネル覆工体2Bを補強する。先行トンネル覆工体2A及び後行トンネル覆工体2Bは、先行トンネル覆工体2A及び後行トンネル覆工体2Bが互いに対向する対向方向D4に沿って並んでいる。先行トンネル覆工体2A及び後行トンネル覆工体2Bのそれぞれは、例えば、シールド掘進工法又はシールド推進工法によって施工された外郭躯体を含むシールドトンネルである。 For example, the reinforcement structure 1 is interposed between a leading tunnel lining 2A, which is one of the two tunnel linings, and a trailing tunnel lining 2B, which is the other of the two tunnel linings. In this state, the leading tunnel lining 2A and the trailing tunnel lining 2B are reinforced. The leading tunnel lining 2A and the trailing tunnel lining 2B are lined up along the opposing direction D4 in which the leading tunnel lining 2A and the trailing tunnel lining 2B face each other. Each of the preceding tunnel lining body 2A and the trailing tunnel lining body 2B is a shield tunnel including an outer skeleton constructed by, for example, a shield excavation method or a shield propulsion method.

シールドトンネルでは、シールド掘進機が地中を掘進しながら当該シールド掘進機の後方でトンネルの壁面となるセグメント10が組み立てられる。シールド掘進機を掘進して組み立てられたセグメント10は、先行トンネル覆工体2A(先行トンネル)及び後行トンネル覆工体2B(後行トンネル)のそれぞれの外郭となる。以下では、先行トンネル覆工体2Aと後行トンネル覆工体2Bを識別する必要がないときには、先行トンネル覆工体2A及び後行トンネル覆工体2Bをまとめてトンネル覆工体2として説明する。 In a shield tunnel, a shield tunneling machine excavates underground, and the segments 10 that become the walls of the tunnel are assembled behind the shield tunneling machine. The segments 10 assembled by excavating with a shield tunneling machine become the respective outer shells of the preceding tunnel lining 2A (preceding tunnel) and the trailing tunnel lining 2B (tracing tunnel). In the following, when there is no need to distinguish between the leading tunnel lining 2A and the trailing tunnel lining 2B, the leading tunnel lining 2A and the trailing tunnel lining 2B will be collectively referred to as the tunnel lining 2. .

例えば、トンネル覆工体2には、トンネル内部補強用支保工4が設けられる。一例として、トンネル内部補強用支保工4は、鉛直方向D1に延びる第1支保工4bと、第1支保工4bの上端部から先行トンネル覆工体2A及び後行トンネル覆工体2Bが互いに対向する対向領域Aに向かって斜め下方に延びる第2支保工4cとを含む。第1支保工4bは、トンネル覆工体2の内周面Sに設置される一対の支持部4dと、一対の支持部4dを互いに接続する棒状部4fとを有する。第2支保工4cは、トンネル覆工体2の内周面Sにおける対向領域Aの隣接位置に設けられる支持部4gと、支持部4d及び支持部4gを互いに接続する棒状部4hとを有する。しかしながら、トンネル内部補強用支保工4の構成は、上記の第1支保工4b及び第2支保工4cの例に限られず適宜変更可能である。 For example, the tunnel lining body 2 is provided with a support 4 for reinforcing the inside of the tunnel. As an example, the tunnel interior reinforcement shoring 4 includes a first shoring 4b extending in the vertical direction D1, and a leading tunnel lining 2A and a trailing tunnel lining 2B facing each other from the upper end of the first shoring 4b. and a second support 4c extending obliquely downward toward the opposing area A. The first shoring 4b includes a pair of support parts 4d installed on the inner circumferential surface S of the tunnel lining body 2, and a rod-shaped part 4f that connects the pair of support parts 4d to each other. The second shoring 4c includes a support portion 4g provided at a position adjacent to the opposing region A on the inner circumferential surface S of the tunnel lining body 2, and a rod-shaped portion 4h that connects the support portions 4d and 4g to each other. However, the configuration of the tunnel interior reinforcement support 4 is not limited to the above-described example of the first support 4b and the second support 4c, and can be changed as appropriate.

例えば、トンネル覆工体2は、複数のセグメント10を含む。複数のセグメント10がトンネルの軸方向D2に沿って連結されることによってトンネルが構築される。セグメント10は、主桁11と、スキンプレート12と、複数の縦リブ13(図2参照)とを備える。なお、図1では、トンネル覆工体2の全体の理解の容易化のため、セグメント10の図示を簡略化している。 For example, the tunnel lining 2 includes a plurality of segments 10. A tunnel is constructed by connecting a plurality of segments 10 along the axial direction D2 of the tunnel. The segment 10 includes a main beam 11, a skin plate 12, and a plurality of longitudinal ribs 13 (see FIG. 2). In addition, in FIG. 1, the illustration of the segments 10 is simplified in order to facilitate understanding of the entire tunnel lining body 2.

補強構造1は、主桁11に接続される支持部材20と、支持部材20に接続される補強部材30とを備える。支持部材20は、トンネル覆工体2の外郭を支持する部材であって、トンネル覆工体2と補強部材30の間に介在する。支持部材20については後に詳述する。補強部材30は、例えば、一対のトンネル覆工体2の間に介在して一対のトンネル覆工体2を補強する突っ張り材として機能する。具体的には、補強部材30は、先行トンネル覆工体2Aに接続する支持部材20と、後行トンネル覆工体2Bに接続する支持部材20とを互いに接続して支持する。 The reinforcement structure 1 includes a support member 20 connected to the main girder 11 and a reinforcement member 30 connected to the support member 20. The support member 20 is a member that supports the outer shell of the tunnel lining body 2 and is interposed between the tunnel lining body 2 and the reinforcing member 30. The support member 20 will be explained in detail later. The reinforcing member 30 functions, for example, as a bracing member that is interposed between the pair of tunnel lining bodies 2 and reinforcing the pair of tunnel lining bodies 2 . Specifically, the reinforcing member 30 connects and supports the support member 20 connected to the preceding tunnel lining 2A and the support member 20 connected to the trailing tunnel lining 2B.

例えば、補強構造1は、鉛直方向D1に沿って並ぶ複数の補強部材30を備える。補強部材30は、例えば、地山の掘削に伴って徐々に設置される部材である。すなわち、先行トンネル覆工体2Aと後行トンネル覆工体2Bの間の地山の掘削に伴って上側に位置する補強部材30が設置され、更に、補強部材30の下方の地山が掘削された後に下側の補強部材30が設置される。図1の例では、トンネル覆工体2の上側、下側、及び鉛直方向D1の中央、のそれぞれに補強部材30が設置されている。一例として、トンネル覆工体2の上側に2本、トンネル覆工体2の下側に1本、トンネル覆工体2の鉛直方向D1の中央に1本、の補強部材30がそれぞれ設置されている。 For example, the reinforcing structure 1 includes a plurality of reinforcing members 30 lined up along the vertical direction D1. The reinforcing member 30 is, for example, a member that is gradually installed as the earth is excavated. That is, as the ground between the leading tunnel lining 2A and the trailing tunnel lining 2B is excavated, the reinforcing member 30 located above is installed, and the ground below the reinforcing member 30 is further excavated. After that, the lower reinforcing member 30 is installed. In the example of FIG. 1, reinforcing members 30 are installed on the upper side, the lower side, and the center of the tunnel lining body 2 in the vertical direction D1, respectively. As an example, two reinforcing members 30 are installed above the tunnel lining 2, one below the tunnel lining 2, and one reinforcing member 30 at the center of the tunnel lining 2 in the vertical direction D1. There is.

補強部材30は、対向方向D4に延在する切梁(中間部材)31と、一対の切梁31の間に介在するジャッキ32と、一対の支持部材20のそれぞれに連結された腹起し33とを有する。腹起し33は、支持部材20と切梁31の間において軸方向D2に延在して、トンネル覆工体2から作用する圧力を切梁31に伝達している。切梁31は、腹起し33とジャッキ32の間において対向方向D4に延在している。ジャッキ32は、油圧ジャッキであってもよいし、キリンジャッキであってもよく、ジャッキ32の種類は特に限定されない。ジャッキ32は、先行トンネル覆工体2Aに向かって延びる切梁31と、後行トンネル覆工体2Bに向かって延びる切梁31との間において、各切梁31を対向方向D4に支持している伸縮自在な部材である。支持部材20及び補強部材30はコンクリートに埋設され、例えば、断面視コの字状の構造物Bを構成する。 The reinforcing member 30 includes a strut (intermediate member) 31 extending in the opposing direction D4, a jack 32 interposed between the pair of struts 31, and a brace 33 connected to each of the pair of support members 20. and has. The riser 33 extends in the axial direction D2 between the support member 20 and the strut 31, and transmits the pressure acting from the tunnel lining body 2 to the strut 31. The strut 31 extends in the opposing direction D4 between the riser 33 and the jack 32. The jack 32 may be a hydraulic jack or a Kirin jack, and the type of jack 32 is not particularly limited. The jack 32 supports each strut 31 in the opposing direction D4 between the strut 31 extending toward the preceding tunnel lining 2A and the strut 31 extending toward the trailing tunnel lining 2B. It is a telescopic member. The supporting member 20 and the reinforcing member 30 are buried in concrete, and constitute a structure B having a U-shape in cross section, for example.

図2は、セグメント10、支持部材20、及び補強部材30の一部を拡大した側断面図である。図3は、図2のA-Aに沿った矢視図である。図2及び図3に示されるように、主桁11は、トンネル覆工体2の周方向D3に延びる鋼製主桁である。スキンプレート12は、トンネル覆工体2の外周面を構成する部材である。スキンプレート12は、主桁11の外周側に連結されて、トンネル覆工体2と地山とを区分する。 FIG. 2 is an enlarged side sectional view of a portion of the segment 10, the support member 20, and the reinforcing member 30. 3 is a view taken along the line AA in FIG. 2. FIG. As shown in FIGS. 2 and 3, the main girder 11 is a steel main girder extending in the circumferential direction D3 of the tunnel lining body 2. The skin plate 12 is a member that constitutes the outer peripheral surface of the tunnel lining body 2. The skin plate 12 is connected to the outer peripheral side of the main girder 11 and separates the tunnel lining body 2 from the ground.

スキンプレート12は、例えば、円弧状断面を有する曲板状の鋼材によって構成されており、トンネル覆工体2と地山とを区分する隔壁として機能する。支持部材20が設けられる部位のスキンプレート12は、支持部材20が設けられる前に予め切除され撤去されている。図3では、切除されたスキンプレート12を2点鎖線で示している。主桁11は、例えば、軸方向D2に沿って並ぶ中主桁11A及び外主桁11Bを含んでいる。主桁11は、トンネルの周方向D3、及びトンネルの径方向に延在すると共に軸方向D2に板厚を有する板状部11bを有する。縦リブ13は、トンネルの軸方向D2、及びトンネルの径方向に延在すると共に周方向D3に板厚を有するリブであって、周方向D3に沿って複数の縦リブ13が並ぶように配置されている。 The skin plate 12 is made of, for example, a curved plate-shaped steel material having an arcuate cross section, and functions as a partition wall that separates the tunnel lining body 2 from the ground. The skin plate 12 at the portion where the support member 20 is provided is cut out and removed in advance before the support member 20 is provided. In FIG. 3, the excised skin plate 12 is indicated by a two-dot chain line. The main girder 11 includes, for example, an inner main girder 11A and an outer main girder 11B arranged along the axial direction D2. The main girder 11 has a plate-like portion 11b that extends in the circumferential direction D3 of the tunnel and in the radial direction of the tunnel and has a thickness in the axial direction D2. The vertical ribs 13 are ribs that extend in the axial direction D2 and the radial direction of the tunnel and have a thickness in the circumferential direction D3, and are arranged so that the plurality of vertical ribs 13 are lined up along the circumferential direction D3. has been done.

支持部材20は、主桁11に接合される接合部21と、接合部21から延びる連結部22と、補強部材30に連結される継手部23を備える。連結部22は、継手部23に固定されている。接合部21は、主桁11に接続される接続部21cを有する。例えば、接続部21cは、上下一対に並ぶフランジの一部であり、連結部22は上下一対に並ぶフランジの接続部21c以外の他部と当該一対のフランジを連結するウェブである。 The support member 20 includes a joining part 21 joined to the main girder 11, a connecting part 22 extending from the joining part 21, and a joint part 23 connected to the reinforcing member 30. The connecting portion 22 is fixed to the joint portion 23. The joint portion 21 has a connecting portion 21c connected to the main girder 11. For example, the connecting portion 21c is a part of a pair of upper and lower flanges, and the connecting portion 22 is a web that connects the pair of flanges to a portion other than the connecting portion 21c of the pair of upper and lower flanges.

接続部21cは、例えば、板状を呈する部材の一部に構成される。一例として、板状を呈する部材は、軸方向D2及び対向方向D4に延びると共に鉛直方向D1に板厚を有する。接続部21cは、例えば、主桁11に対向する端面21bに設けられる。接続部21cは、例えば、主桁11が挿し込まれる凹部(凹形状)である。当該凹部に主桁11の板状部11bが挿し込まれた状態で主桁11に支持部材20が溶接される。この場合、主桁11及び支持部材20の接続構造をねじれ等に強い構造とすることができ、更に、主桁11に対する接続部21cの接続を挿し込みによって容易に行うことができる。一例として、接続部21cは、端面21bの軸方向D2の中央において対向方向D4に窪んでいる。しかしながら、接続部の態様は、凹部である接続部21cに限られない。例えば、接続部はフランジ形状の貫通孔を有する鋼材とボルトナットからなり、主桁11と支持部材20とを接続するものであればよく、接続部の態様は適宜変更可能である。 The connecting portion 21c is configured as a part of a plate-shaped member, for example. As an example, a plate-shaped member extends in the axial direction D2 and the opposing direction D4, and has a thickness in the vertical direction D1. The connecting portion 21c is provided, for example, on the end surface 21b facing the main girder 11. The connecting portion 21c is, for example, a recessed portion (concave shape) into which the main beam 11 is inserted. The support member 20 is welded to the main girder 11 with the plate-shaped portion 11b of the main girder 11 inserted into the recess. In this case, the connection structure between the main girder 11 and the support member 20 can be made strong against twisting, and furthermore, the connecting portion 21c can be easily connected to the main girder 11 by insertion. As an example, the connecting portion 21c is recessed in the opposing direction D4 at the center of the end surface 21b in the axial direction D2. However, the form of the connecting portion is not limited to the connecting portion 21c, which is a recessed portion. For example, the connecting portion may be made of a steel material having a flange-shaped through hole and a bolt/nut, and may connect the main girder 11 and the support member 20, and the form of the connecting portion may be changed as appropriate.

連結部22は、連結部22は、例えば、板状を呈する。連結部22は、鉛直方向D1及び対向方向D4の双方に延在すると共に軸方向D2に板厚を有する。連結部22は主桁11に対向する端面22bを有し、端面22bは主桁11に沿って延在している。図2の例では、端面22bは主桁11に沿って斜めに延在している。 The connecting portion 22 has, for example, a plate shape. The connecting portion 22 extends in both the vertical direction D1 and the opposing direction D4, and has a thickness in the axial direction D2. The connecting portion 22 has an end surface 22b facing the main beam 11, and the end surface 22b extends along the main beam 11. In the example of FIG. 2, the end surface 22b extends diagonally along the main beam 11.

継手部23は、支持部材20と補強部材30とを互いに接続する継ぎ手として機能する継手板である。継手部23は、接続部21c及び連結部22の主桁11との反対側に位置する。継手部23は、鉛直方向D1及び軸方向D2の双方に延在すると共に対向方向D4に板厚を有する。例えば、継手部23は、連結部22に溶接によって固定されている。継手部23は、例えば、ボルトナット固定部材B1によって補強部材30(腹起し33)に固定される。 The joint portion 23 is a joint plate that functions as a joint connecting the support member 20 and the reinforcing member 30 to each other. The joint portion 23 is located on the opposite side of the connection portion 21c and the connecting portion 22 from the main girder 11. The joint portion 23 extends in both the vertical direction D1 and the axial direction D2 and has a plate thickness in the opposing direction D4. For example, the joint portion 23 is fixed to the connecting portion 22 by welding. The joint portion 23 is fixed to the reinforcing member 30 (belt 33) by, for example, a bolt and nut fixing member B1.

腹起し33は、例えば、一対のフランジ33bとウェブ33cとを備える形鋼(一例としてH形鋼)である。一対のフランジ33bは対向方向D4に並んでおり、ウェブ33cは一対のフランジ33bを互いに接続する。フランジ33bは、鉛直方向D1及び軸方向D2の双方に延在すると共に対向方向D4に板厚を有する。ウェブ33cは、軸方向D2及び対向方向D4の双方に延在すると共に鉛直方向D1に板厚を有する。 The riser 33 is, for example, a section steel (an example is an H section steel) including a pair of flanges 33b and a web 33c. The pair of flanges 33b are lined up in the opposing direction D4, and the web 33c connects the pair of flanges 33b to each other. The flange 33b extends in both the vertical direction D1 and the axial direction D2, and has a thickness in the opposing direction D4. The web 33c extends in both the axial direction D2 and the opposing direction D4, and has a thickness in the vertical direction D1.

一対のフランジ33bのうち、主桁11側に位置するフランジ33bに継手部23がボルトナット固定部材B1によって接合されている。腹起し33は、例えば、スティフナー33dを備える。スティフナー33dはL形状を呈する。スティフナー33dは、フランジ33bの内面に接触する第1面部33fと、第1面部33fから折れ曲がると共にウェブ33cに接触する第2面部33gとを有する。 Of the pair of flanges 33b, the joint portion 23 is joined to the flange 33b located on the main girder 11 side by a bolt/nut fixing member B1. The belly riser 33 includes, for example, a stiffener 33d. The stiffener 33d has an L shape. The stiffener 33d has a first surface portion 33f that contacts the inner surface of the flange 33b, and a second surface portion 33g that is bent from the first surface portion 33f and contacts the web 33c.

スティフナー33dは、その第1面部33fがボルトナット固定部材B2を介してフランジ33bに接合されている。例えば、腹起し33は複数のスティフナー33dを備える。各スティフナー33dは、支持部材20の対向方向D4の延長上、及び切梁31の対向方向D4の延長上、のそれぞれに接合されている。このように腹起し33がスティフナー33dを備えることによって、腹起し33の剛性を高めることができる。 The first surface portion 33f of the stiffener 33d is joined to the flange 33b via a bolt/nut fixing member B2. For example, the tummy tuck 33 includes a plurality of stiffeners 33d. Each stiffener 33d is joined to an extension of the support member 20 in the opposing direction D4 and an extension of the strut 31 in the opposing direction D4, respectively. By providing the tummy tuck 33 with the stiffener 33d in this way, the rigidity of the tummy tuck 33 can be increased.

補強部材30は、例えば、切梁31を腹起し33に接合する接合板34を備える。接合板34は、切梁31の対向方向D4の端部に溶接固定されている。接合板34は、鉛直方向D1及び軸方向D2の双方に延在すると共に、対向方向D4に板厚を有する。接合板34は、腹起し33のフランジ33bにボルトナット固定部材B3を介して接合されている。例えば、切梁31の軸方向D2の位置は、支持部材20の軸方向D2の位置からずれている。 The reinforcing member 30 includes, for example, a joining plate 34 that joins the strut 31 to the rib 33. The joint plate 34 is welded and fixed to the end of the strut 31 in the opposing direction D4. The joint plate 34 extends in both the vertical direction D1 and the axial direction D2, and has a thickness in the opposing direction D4. The joining plate 34 is joined to the flange 33b of the riser 33 via a bolt/nut fixing member B3. For example, the position of the strut 31 in the axial direction D2 is shifted from the position of the support member 20 in the axial direction D2.

切梁31の軸方向D2の位置は、支持部材20の軸方向D2の位置に隣接している。切梁31は、一対のフランジ31bとウェブ31cとを備える形鋼(一例としてH形鋼)である。一対のフランジ31bは鉛直方向D1に並んでおり、ウェブ31cは一対のフランジ31bを互いに接続する。フランジ31bは、軸方向D2及び対向方向D4の双方に延在すると共に鉛直方向D1に板厚を有する。ウェブ31cは、鉛直方向D1及び対向方向D4の双方に延在すると共に軸方向D2に板厚を有する。フランジ31b及びウェブ31cのそれぞれが接合板34を介してボルトナット固定部材B3によって腹起し33に接合されている。 The position of the strut 31 in the axial direction D2 is adjacent to the position of the support member 20 in the axial direction D2. The strut 31 is a shaped steel (an example is an H-shaped steel) including a pair of flanges 31b and a web 31c. The pair of flanges 31b are lined up in the vertical direction D1, and the web 31c connects the pair of flanges 31b to each other. The flange 31b extends in both the axial direction D2 and the opposing direction D4, and has a thickness in the vertical direction D1. The web 31c extends in both the vertical direction D1 and the opposing direction D4, and has a thickness in the axial direction D2. Each of the flange 31b and the web 31c is joined to the riser 33 via the joining plate 34 by a bolt/nut fixing member B3.

次に、本実施形態に係る補強方法について説明する。まず、図1に示されるように、先行トンネル覆工体2Aを構築する(先行トンネル覆工体を構築する工程)。このとき、トンネルの施工予定領域において軸方向D2に延伸する先行トンネル覆工体2Aを構築する。先行トンネル覆工体2Aの構築ではシールド掘進機が用いられ、シールド掘進機によって地山を掘進しつつ先行トンネル覆工体2Aが構築される。 Next, a reinforcing method according to this embodiment will be explained. First, as shown in FIG. 1, a preceding tunnel lining body 2A is constructed (step of constructing a preceding tunnel lining body). At this time, a preceding tunnel lining body 2A extending in the axial direction D2 is constructed in the area where the tunnel is to be constructed. A shield excavator is used to construct the preceding tunnel lining 2A, and the preceding tunnel lining 2A is constructed while excavating the ground with the shield excavating machine.

次に、後行トンネル覆工体2Bを構築する(後行トンネル覆工体を構築する工程)。このとき、トンネルの施工予定領域における先行トンネル覆工体2Aの隣接位置に、軸方向D2に延伸する後行トンネル覆工体2Bを構築する。後行トンネル覆工体2Bの構築でもシールド掘進機が用いられ、シールド掘進機によって地山を掘進しつつ後行トンネル覆工体2Bが構築される。 Next, the trailing tunnel lining body 2B is constructed (step of constructing the trailing tunnel lining body). At this time, a trailing tunnel lining body 2B extending in the axial direction D2 is constructed at a position adjacent to the leading tunnel lining body 2A in the planned tunnel construction area. A shield excavator is also used in constructing the trailing tunnel lining 2B, and the trailing tunnel lining 2B is constructed while digging through the ground with the shield excavator.

続いて、図2及び図3に示されるように、トンネル覆工体2(例えば、後行トンネル覆工体2B)の主桁11に支持部材20を接続する。具体的には、セグメント10のスキンプレート12の一部を切除して切除したスキンプレート12を撤去する(スキンプレートを撤去する工程)。そして、主桁11に支持部材20の接続部21cを接続する(支持部材を接続する工程)。具体的には、主桁11の板状部11bを支持部材20の接続部21cに嵌め込むことによって、主桁11に対する支持部材20の接続を行う。なお、接続部21cに板状部11bが挿し込まれた状態で板状部11bに接続部21cが溶接固定される。 Subsequently, as shown in FIGS. 2 and 3, the support member 20 is connected to the main girder 11 of the tunnel lining 2 (for example, the trailing tunnel lining 2B). Specifically, a part of the skin plate 12 of the segment 10 is removed and the removed skin plate 12 is removed (step of removing the skin plate). Then, the connecting portion 21c of the support member 20 is connected to the main girder 11 (step of connecting the support member). Specifically, the support member 20 is connected to the main girder 11 by fitting the plate-shaped portion 11b of the main girder 11 into the connecting portion 21c of the support member 20. Note that the connecting portion 21c is welded and fixed to the plate-like portion 11b while the plate-like portion 11b is inserted into the connecting portion 21c.

以上のように主桁11に支持部材20が接続された後には、支持部材20に補強部材30を接続して主桁11を支持する(主桁を支持する工程)。具体的には、継手部23にスティフナー33d付きの腹起し33をボルトナット固定部材B1によって固定する。図1~図3に示されるように、接合板34を支持部材20の軸方向D2の隣接位置に接合し、切梁31を腹起し33にボルトナット固定部材B3によって固定することにより、補強部材30の一端を支持部材20に接続する(補強部材の一端を接続する工程)。 After the support member 20 is connected to the main girder 11 as described above, the reinforcing member 30 is connected to the support member 20 to support the main girder 11 (step of supporting the main girder). Specifically, the riser 33 with the stiffener 33d is fixed to the joint portion 23 with the bolt/nut fixing member B1. As shown in FIGS. 1 to 3, the joint plate 34 is joined to the support member 20 at an adjacent position in the axial direction D2, and the strut 31 is fixed to the upright 33 with bolts and nuts fixing members B3, thereby reinforcing the One end of the member 30 is connected to the support member 20 (step of connecting one end of the reinforcing member).

続いて、支持部材20(被支持部材)の接続、及び切梁31の設置を先行トンネル覆工体2Aにも行う。なお、先行トンネル覆工体2A(先行トンネル覆工体2Aの主桁)には支持部材20(被支持部材)が設置されている。補強部材30の後行トンネル(後行トンネル覆工体2B)との反対側の端部は、先行トンネル覆工体2Aに設置された被支持部材に接続される。そして、ジャッキ32を設置して主桁11を支持し(主桁を支持する工程)、補強部材30を完成させる。 Subsequently, the support member 20 (supported member) is connected and the strut 31 is installed on the preceding tunnel lining body 2A as well. Note that a support member 20 (supported member) is installed on the preceding tunnel lining body 2A (main girder of the preceding tunnel lining body 2A). The end of the reinforcing member 30 on the opposite side from the trailing tunnel (trailing tunnel lining 2B) is connected to a supported member installed in the leading tunnel lining 2A. Then, the jacks 32 are installed to support the main girder 11 (step of supporting the main girder), and the reinforcing member 30 is completed.

支持部材20及び補強部材30の設置は、例えば、地山の掘削に伴って上から順次行われる。そして、最下部の支持部材20及び補強部材30の設置が完了した後に、コンクリートで埋設して構造物Bを構築する(補強部材を埋設する工程)。その後、一連の工程が完了する。 The support member 20 and the reinforcing member 30 are installed, for example, sequentially from the top as the ground is excavated. Then, after the installation of the lowermost support member 20 and the reinforcing member 30 is completed, they are buried in concrete to construct the structure B (step of burying the reinforcing member). After that, the series of steps is completed.

次に、本実施形態に係る補強構造1及び補強方法の作用効果について説明する。補強構造1では、トンネル覆工体2において、複数の主桁11がトンネルの軸方向D2に並ぶように配置されると共に、複数の主桁11のそれぞれがトンネルの周方向D3に延びるように配置されている。補強構造1は、主桁11を支持する支持部材20と、支持部材20を補強する補強部材30とを備え、補強部材30によってトンネル覆工体2の主桁11が支持される。 Next, the effects of the reinforcing structure 1 and reinforcing method according to this embodiment will be explained. In the reinforcement structure 1, in the tunnel lining body 2, the plurality of main girders 11 are arranged so as to be lined up in the axial direction D2 of the tunnel, and each of the plurality of main girders 11 is arranged so as to extend in the circumferential direction D3 of the tunnel. has been done. The reinforcing structure 1 includes a support member 20 that supports the main girder 11 and a reinforcing member 30 that reinforces the support member 20, and the main girder 11 of the tunnel lining body 2 is supported by the reinforcing member 30.

支持部材20は主桁11と補強部材30との間に介在しており、外力が付与されたときに当該外力は補強部材30から支持部材20を介して主桁11に伝達される。従って、支持部材20を介して外力を直接主桁11に伝達できるので、外力を主桁11に適切に伝達してトンネルの変形を確実に抑えることができる。 The support member 20 is interposed between the main girder 11 and the reinforcing member 30, and when an external force is applied, the external force is transmitted from the reinforcing member 30 to the main girder 11 via the support member 20. Therefore, since the external force can be directly transmitted to the main girder 11 via the support member 20, the external force can be appropriately transmitted to the main girder 11 and deformation of the tunnel can be reliably suppressed.

図2及び図3に示されるように、支持部材20は、主桁11に接続される接続部21cと、接続部21cに交差する方向に延びる連結部22と、接続部21c及び連結部22に固定される継手部23とを備え、接続部21cは主桁11に溶接されると共に継手部23は補強部材30に接続される。従って、接続部21c、連結部22及び継手部23によって支持部材20の強度を高めることができるので、外力を適切に主桁11に伝達できると共にトンネルの変形をより確実に抑制することができる。 As shown in FIGS. 2 and 3, the support member 20 includes a connecting portion 21c connected to the main girder 11, a connecting portion 22 extending in a direction crossing the connecting portion 21c, and a connecting portion 21c and the connecting portion 22. The connecting portion 21c is welded to the main girder 11, and the joint portion 23 is connected to the reinforcing member 30. Therefore, the strength of the support member 20 can be increased by the connecting portion 21c, the connecting portion 22, and the joint portion 23, so that external force can be appropriately transmitted to the main girder 11, and deformation of the tunnel can be suppressed more reliably.

接続部21cは、主桁11から延びると共に上下一対に並ぶフランジ(接合部21)に設けられており、連結部22は、一対のフランジを接続するウェブであってもよい。この場合、H形鋼等の形鋼を支持部材として用いることができるので、汎用性が高い支持部材20とすることが可能となる。 The connecting portion 21c extends from the main girder 11 and is provided on a pair of upper and lower flanges (joint portions 21), and the connecting portion 22 may be a web that connects the pair of flanges. In this case, since a shaped steel such as an H-shaped steel can be used as the support member, it is possible to provide the support member 20 with high versatility.

継手部23は、接続部21c及び連結部22の主桁11との反対側の端部に固定される継手板であってもよい。この場合、継手部23を介して補強部材30に支持部材20を強固に接続できるので、補強部材30及び支持部材20を介した主桁11への外力の伝達をより直接的に行ってより強固な補強構造1とすることができる。 The joint part 23 may be a joint plate fixed to the end of the connecting part 21c and the connecting part 22 on the opposite side to the main girder 11. In this case, since the supporting member 20 can be firmly connected to the reinforcing member 30 via the joint part 23, the external force can be more directly transmitted to the main girder 11 via the reinforcing member 30 and the supporting member 20, thereby making it stronger. The reinforcing structure 1 can be made as follows.

接続部21cは、主桁11が挿し込まれる凹部であってもよい。この場合、接続部21cに主桁11を挿し込むことによって主桁11に支持部材20を取り付けることができる。従って、支持部材20を主桁11に容易に取り付けることができるので、トンネル施工の施工性を向上させることができる。 The connecting portion 21c may be a recessed portion into which the main beam 11 is inserted. In this case, the support member 20 can be attached to the main spar 11 by inserting the main spar 11 into the connecting portion 21c. Therefore, since the support member 20 can be easily attached to the main girder 11, the workability of tunnel construction can be improved.

本実施形態に係る補強方法では、先行トンネル覆工体2A及び後行トンネル覆工体2Bのそれぞれにおいて、複数の主桁11がトンネルの軸方向D2に並ぶように配置されると共に、各主桁11がトンネルの周方向D3に延びるように配置されている。この補強方法では、スキンプレート12が撤去され、主桁11に支持部材20が接続され、支持部材20に補強部材30が接続され、補強部材30によって主桁11が支持される。支持部材20は主桁11と補強部材30との間に介在しており、外力が付与されたときに当該外力は補強部材30から支持部材20を介して主桁11に伝達される。 In the reinforcement method according to the present embodiment, in each of the leading tunnel lining body 2A and the trailing tunnel lining body 2B, a plurality of main girders 11 are arranged in line in the axial direction D2 of the tunnel, and each main girder 11 are arranged so as to extend in the circumferential direction D3 of the tunnel. In this reinforcing method, the skin plate 12 is removed, the support member 20 is connected to the main girder 11, the reinforcing member 30 is connected to the supporting member 20, and the main girder 11 is supported by the reinforcing member 30. The support member 20 is interposed between the main girder 11 and the reinforcing member 30, and when an external force is applied, the external force is transmitted from the reinforcing member 30 to the main girder 11 via the support member 20.

従って、支持部材20を介して外力を直接主桁11に伝達できるので、外力を主桁11に適切に伝達してトンネルの変形を確実に抑えることができる。支持部材20は、主桁11に接続される接続部21cと、接続部21cに交差する方向に延びる連結部22と、接続部21c及び連結部22に固定される継手部23とを備え、接続部21cは主桁11に溶接されると共に継手部23は補強部材30に接続される。従って、接続部21c、連結部22及び継手部23によって支持部材20の強度を高めることができるので、外力を適切に主桁11に伝達できると共にトンネルの変形をより確実に抑制することができる。 Therefore, since the external force can be directly transmitted to the main girder 11 via the support member 20, the external force can be appropriately transmitted to the main girder 11 and deformation of the tunnel can be reliably suppressed. The support member 20 includes a connecting part 21c connected to the main girder 11, a connecting part 22 extending in a direction crossing the connecting part 21c, and a joint part 23 fixed to the connecting part 21c and the connecting part 22. The portion 21c is welded to the main girder 11, and the joint portion 23 is connected to the reinforcing member 30. Therefore, the strength of the support member 20 can be increased by the connecting portion 21c, the connecting portion 22, and the joint portion 23, so that external force can be appropriately transmitted to the main girder 11, and deformation of the tunnel can be suppressed more reliably.

支持部材20を設置する工程では、支持部材20に主桁11が挿し込まれることによって主桁11に支持部材20が設置されてもよい。この場合、主桁11に支持部材20を挿し込むことによって支持部材20の設置を行えるので、支持部材20を容易に主桁11に取り付けることができる。よって、トンネル施工の施工性を向上させることができる。 In the step of installing the support member 20, the support member 20 may be installed on the main girder 11 by inserting the main girder 11 into the support member 20. In this case, since the support member 20 can be installed by inserting the support member 20 into the main girder 11, the support member 20 can be easily attached to the main girder 11. Therefore, the workability of tunnel construction can be improved.

本実施形態に係る補強方法は、補強部材30を設置する工程の後に、コンクリートで補強部材30を埋設する工程を備えてもよい。この場合、補強部材30によって先行トンネル覆工体2A及び後行トンネル覆工体2Bを補強した状態でコンクリートが埋設される。よって、トンネル構造を強固にできると共にコンクリートの埋設によってトンネル施工が完了する。すなわち、補強部材30等の撤去を不要とすることができるので、トンネル施工の施工性を一層向上させることができる。 The reinforcing method according to this embodiment may include a step of burying the reinforcing member 30 in concrete after the step of installing the reinforcing member 30. In this case, the concrete is buried in a state in which the leading tunnel lining body 2A and the trailing tunnel lining body 2B are reinforced by the reinforcing member 30. This makes it possible to strengthen the tunnel structure and complete the tunnel construction by burying the concrete. In other words, it is possible to eliminate the need to remove the reinforcing member 30, etc., thereby further improving the ease of tunnel construction.

(第2実施形態)
続いて、第2実施形態に係る補強構造51及び補強方法について図4を参照しながら説明する。図4に示されるように、第2実施形態に係る補強構造51は、一例として、鋼板コンクリート構造物60に設けられる。鋼板コンクリート構造物60は、例えば、先行トンネル70の先行トンネル覆工体71に配置された先行支持構造72と、先行トンネル70の後に施工された後行トンネル80の後行トンネル覆工体81に配置された後行支持構造82と、先行トンネル覆工体71及び後行トンネル覆工体81に打設される躯体コンクリートとを備える。
(Second embodiment)
Next, a reinforcing structure 51 and a reinforcing method according to a second embodiment will be described with reference to FIG. 4. As shown in FIG. 4, a reinforcing structure 51 according to the second embodiment is provided in a steel plate concrete structure 60, as an example. For example, the steel plate concrete structure 60 is attached to a leading support structure 72 disposed on a leading tunnel lining 71 of a leading tunnel 70 and a trailing tunnel lining 81 of a trailing tunnel 80 constructed after the leading tunnel 70. It includes a disposed trailing support structure 82 and a concrete frame to be poured into the leading tunnel lining 71 and the trailing tunnel lining 81.

補強構造51では、鋼板を埋設型枠として、先行支持構造72と後行支持構造82を巻き込んで埋設して躯体コンクリートが打設されて硬化することによって鋼板コンクリート構造物60が構成される。先行支持構造72は、先行トンネル覆工体71及び後行トンネル覆工体81が並設される方向である第1方向A1に延びる複数の先行型鋼73と、第1方向A1に直交する第2方向A2に延びる複数の支保工74とを備える。後行支持構造82は、例えば、複数の後行型鋼83を備える。また、先行トンネル覆工体71の支保工74は、第2方向A2に延在する支保工74の連結部材である先行型鋼73で接続、支持される。鋼板コンクリート構造物60は、更に、先行トンネル覆工体71の内部に配置される先行型鋼73と、後行トンネル覆工体81の内部に配置される後行型鋼83とに架け渡され、接続する中間型鋼110を備える。 In the reinforcing structure 51, a steel plate concrete structure 60 is constructed by using a steel plate as an embedding formwork, enveloping the leading support structure 72 and the trailing support structure 82, and embedding concrete for the frame and hardening. The leading support structure 72 includes a plurality of leading steels 73 extending in a first direction A1, which is a direction in which the leading tunnel lining 71 and the trailing tunnel lining 81 are arranged in parallel, and a second mold steel 73 extending in a first direction A1, which is a direction in which the leading tunnel lining 71 and the trailing tunnel lining 81 are arranged in parallel. A plurality of shoring structures 74 extending in the direction A2 are provided. The trailing support structure 82 includes, for example, a plurality of trailing type steels 83. Further, the shoring 74 of the leading tunnel lining body 71 is connected and supported by a leading steel 73 that is a connecting member of the shoring 74 extending in the second direction A2. The steel plate concrete structure 60 is further bridged over and connected to a leading type steel 73 placed inside the leading tunnel lining 71 and a trailing type steel 83 placed inside the trailing tunnel lining 81. An intermediate type steel 110 is provided.

図5は、先行トンネル70と後行トンネル80の境界付近を拡大した断面図である。図5に示されるように、後行トンネル覆工体81は、シールド掘進機が先行トンネル70の先行トンネル覆工体71と、先行トンネル覆工体71の内部に充填された充填材を切削しながら構築される。この切削と並行して裏込め材85が注入され硬化した裏込め材85が形成されている。後行トンネル覆工体81は主桁84とスキンプレート86とを備える。スキンプレート86の一部は撤去されている。補強構造51は、後行トンネル覆工体81の主桁84に接続される支持部材90と、支持部材90に接続される補強部材100とを備える。支持部材90は、前述した支持部材20と同様、接続部91と、連結部92と、継手部93とを備える。 FIG. 5 is an enlarged cross-sectional view of the vicinity of the boundary between the leading tunnel 70 and the trailing tunnel 80. As shown in FIG. 5, the trailing tunnel lining 81 is obtained by cutting the leading tunnel lining 71 of the leading tunnel 70 and the filling material filled inside the leading tunnel lining 71 by the shield excavator. It is constructed while In parallel with this cutting, backfilling material 85 is injected and hardened backfilling material 85 is formed. The trailing tunnel lining body 81 includes a main girder 84 and a skin plate 86. A portion of the skin plate 86 has been removed. The reinforcing structure 51 includes a supporting member 90 connected to the main girder 84 of the trailing tunnel lining body 81 and a reinforcing member 100 connected to the supporting member 90. The support member 90 includes a connection part 91, a connection part 92, and a joint part 93, like the support member 20 described above.

接続部91は主桁84に溶接されており、連結部92は接続部91から接続部91に交差する方向に延びている。継手部93には接続部91及び連結部92が固定されており、継手部93は補強部材100に接続されている。補強部材100は、後行トンネル覆工体81の主桁84を支持する突っ張り材であり、先行トンネル覆工体71に配置された支保工74から反力を受けて支持される。主桁84の先行トンネル覆工体71側には裏込め材85が充填されており、支持部材90は裏込め材85をつぼ掘り(局所掘り)して少なくとも一部を撤去した状態で設置されている。裏込め材85と支保工74との間には、例えば、充填材88が充填されている。充填材88は、一例として、エアモルタルである。補強部材100は、充填材88をつぼ掘り(局所掘り)して少なくとも一部を撤去した状態で設置されている。 The connecting portion 91 is welded to the main girder 84, and the connecting portion 92 extends from the connecting portion 91 in a direction crossing the connecting portion 91. A connecting portion 91 and a connecting portion 92 are fixed to the joint portion 93, and the joint portion 93 is connected to a reinforcing member 100. The reinforcing member 100 is a strut member that supports the main girder 84 of the trailing tunnel lining 81, and is supported by receiving reaction force from the shoring 74 arranged on the leading tunnel lining 71. A backfill material 85 is filled on the side of the leading tunnel lining body 71 of the main girder 84, and the support member 90 is installed with the backfill material 85 excavated (locally excavated) and removed at least in part. ing. For example, a filler 88 is filled between the backfill material 85 and the shoring 74. The filler 88 is, for example, air mortar. The reinforcing member 100 is installed with the filler 88 excavated (locally excavated) and at least a portion thereof removed.

次に、第2実施形態に係るトンネルの補強方法について説明する。図6に示されるように、まず、先行トンネル70を施工する。先行トンネル70の施工では、先行シールド掘進を行う。先行シールド掘進では、先行トンネル覆工体71の鋼製セグメントピース71bと切削可能セグメントピース71cにより構築され、各セグメントピースとスキンプレートとの間に形成されるテールクリアランスに裏込め材85が充填される。そして、先行トンネル覆工体71を支持する先行支持構造72を設置する(先行支持構造を設ける工程)。このとき、後行シールド掘進時の内部支保のためのコンクリートCを打設して、切削予定エリアRに充填材88(エアモルタル)を打設する。なお、この充填材88は、後行シールド掘進時における地山保持のために設けられる。 Next, a tunnel reinforcing method according to the second embodiment will be described. As shown in FIG. 6, first, a preceding tunnel 70 is constructed. In construction of the preliminary tunnel 70, preliminary shield excavation is performed. In the advance shield excavation, the tunnel is constructed by the steel segment pieces 71b and the cuttable segment pieces 71c of the advance tunnel lining 71, and the tail clearance formed between each segment piece and the skin plate is filled with a backfilling material 85. Ru. Then, a preceding support structure 72 that supports the preceding tunnel lining body 71 is installed (step of providing a preceding support structure). At this time, concrete C is placed for internal support during the subsequent shield excavation, and filler material 88 (air mortar) is placed in the area R to be cut. Note that this filler material 88 is provided for retaining the ground during trailing shield excavation.

以上のように先行トンネル70を施工した後には、図7に示されるように、後行トンネル80を施工する。後行トンネル80の施工では後行シールド掘進を行い、先行トンネル覆工体71の切削可能セグメントピース71cと切削予定エリアRの充填材88(エアモルタル)を切削しながら掘進する。後行シールド掘進では主桁84を含む鋼製セグメントが構築される。このとき、先行シールド掘進のときと同様、裏込め材85が充填される。具体的には、裏込め材85は、切削予定エリアRの充填材88(エアモルタル)と切削可能セグメントピース71cの未切削部分と、後行トンネル80の後行トンネル覆工体81の間隙に充填される。 After constructing the preceding tunnel 70 as described above, a trailing tunnel 80 is constructed as shown in FIG. In construction of the trailing tunnel 80, trailing shield excavation is performed while cutting the cuttable segment piece 71c of the leading tunnel lining 71 and the filler material 88 (air mortar) in the area R to be cut. In the trailing shield excavation, a steel segment including the main girder 84 is constructed. At this time, the backfilling material 85 is filled as in the case of the preceding shield excavation. Specifically, the backfilling material 85 is inserted into the gap between the filling material 88 (air mortar) in the area R to be cut, the uncut portion of the cuttable segment piece 71c, and the trailing tunnel lining body 81 of the trailing tunnel 80. Filled.

主桁84を含む後行トンネル80の鋼製セグメントを構築した後には、図7及び図8に示されるように、まず、支保工74に対向する切削予定エリアRの充填材88と裏込め材85のつぼ掘り(局所掘り)を行い、また、スキンプレート86の一部も撤去される(スキンプレートを撤去する工程)。その結果、支保工74と主桁84が対向する空間が形成される。このとき、先行トンネル覆工体71の隔壁又は先行支持構造72を露出させる。そして、スキンプレート86が撤去された部分の主桁84に支持部材90を設置する(支持部材を設置する工程)。このとき、例えば、上下一対の支持部材90のそれぞれに主桁84を挿し込んで各主桁84に各支持部材90を取り付ける。次に、支持部材90に補強部材100の一端を接続する(補強部材の一端を接続する工程)。そして、先行トンネル70内に設置された被支持部材である支保工74に補強部材100の他端を接続し、補強部材100によって主桁84を支持する(主桁を支持する工程)。先行トンネル覆工体71の内部に配置された支保工74、補強部材100及び支持部材90を介して主桁84が支持されるので、後行トンネル覆工体81の変形を防止できる。従って、主桁84を支持した後に、残りの後行トンネル覆工体81のスキンプレート86、後行トンネル80の裏込め材85、先行トンネル覆工体71の内部の充填材88を撤去して、以降の作業空間を確保できる。すなわち、後行トンネル80の掘進、後行トンネル覆工体81構築後に、そのまま先行トンネル70の充填材88(エアモルタル)と後行トンネルの裏込め材85を撤去して作業空間を確保しようとすると、後行トンネル覆工体81の当該部分の主桁84は支持力が不足して変形する恐れがあるが、第2実施形態においては、後行トンネル覆工体81の変形を防止でき安全に作業空間を確保できる。 After constructing the steel segments of the trailing tunnel 80 including the main girder 84, as shown in FIGS. 85 pot digging (local digging) is performed, and a part of the skin plate 86 is also removed (step of removing the skin plate). As a result, a space is formed in which the shoring 74 and the main girder 84 face each other. At this time, the partition wall or the preceding support structure 72 of the preceding tunnel lining body 71 is exposed. Then, the support member 90 is installed on the main girder 84 in the part where the skin plate 86 has been removed (step of installing the support member). At this time, for example, each support member 90 is attached to each main beam 84 by inserting the main beam 84 into each of the pair of upper and lower support members 90 . Next, one end of the reinforcing member 100 is connected to the supporting member 90 (a step of connecting one end of the reinforcing member). Then, the other end of the reinforcing member 100 is connected to the shoring 74, which is a supported member installed in the preceding tunnel 70, and the main girder 84 is supported by the reinforcing member 100 (step of supporting the main girder). Since the main girder 84 is supported via the shoring 74, reinforcing member 100, and support member 90 arranged inside the leading tunnel lining 71, deformation of the trailing tunnel lining 81 can be prevented. Therefore, after supporting the main girder 84, the skin plate 86 of the remaining trailing tunnel lining 81, the backfill material 85 of the trailing tunnel 80, and the filling material 88 inside the leading tunnel lining 71 are removed. , you can secure the work space after that. That is, after the trailing tunnel 80 is excavated and the trailing tunnel lining 81 is constructed, the filling material 88 (air mortar) of the leading tunnel 70 and the backfilling material 85 of the trailing tunnel are removed to secure a work space. In this case, the main girder 84 of the relevant portion of the trailing tunnel lining body 81 may be deformed due to lack of supporting force, but in the second embodiment, deformation of the trailing tunnel lining body 81 can be prevented and safety can be achieved. It is possible to secure a work space.

そして、図9及び図10に示されるように、後行トンネル覆工体81の内部に後行支持構造82を配置する(後行支持構造を配置する工程)。このとき配置される後行支持構造82は、先行支持構造72と同様、第1方向A1に延びる複数の後行型鋼83と、第2方向A2に延びる複数の支保工87とを備える。そして、中間型鋼110を、後行型鋼83と先行型鋼73の間に架け渡し配置して、後行型鋼83と先行型鋼73に接続する。中間型鋼110と後行型鋼83は、第1方向A1に沿って並ぶ一対の先行型鋼73同士を互いに連結する継手鋼材である。このとき、例えば、第2方向A2に並ぶ一対の後行型鋼83が設置される。その後、一対の後行型鋼83を互いに連結する複数のせん断鋼材及び配力鋼材を設置する。そして、後行シールド内へのエアモルタルの設置、並びに、先行トンネル覆工体71の内部、及び後行トンネル覆工体81の内部への躯体コンクリートの打設を行った後に補強構造51が完成し、一連の工程が終了する。先行支持構造72の第1方向A1の両端に位置する支保工74,74は、先行トンネル70の先行トンネル覆工体71の両端に配置される後行トンネル80の後行トンネル覆工体81,81の主桁84,84のそれぞれに設けられる支持部材90と、支持部材90に接続される補強部材100を介して支持する。 Then, as shown in Figures 9 and 10, the trailing support structure 82 is placed inside the trailing tunnel lining body 81 (step of placing the trailing support structure). The trailing support structure 82 placed at this time has a plurality of trailing steel bars 83 extending in the first direction A1 and a plurality of supports 87 extending in the second direction A2, similar to the leading support structure 72. Then, the intermediate steel bars 110 are placed between the trailing steel bars 83 and the leading steel bars 73 to connect them to the trailing steel bars 83 and the leading steel bars 73. The intermediate steel bars 110 and the trailing steel bars 83 are joint steel materials that connect a pair of leading steel bars 73 arranged along the first direction A1 to each other. At this time, for example, a pair of trailing steel bars 83 arranged in the second direction A2 are installed. After that, a plurality of shear steel materials and distribution steel materials that connect the pair of trailing steel bars 83 to each other are installed. Then, after installing air mortar in the trailing shield and pouring concrete into the interior of the leading tunnel lining 71 and the trailing tunnel lining 81, the reinforcement structure 51 is completed and the series of processes is completed. The supports 74, 74 located at both ends of the leading support structure 72 in the first direction A1 are supported by support members 90 provided on each of the main girders 84, 84 of the trailing tunnel linings 81, 81 of the trailing tunnel 80 located at both ends of the leading tunnel lining 71 of the leading tunnel 70, and reinforcing members 100 connected to the support members 90.

以上、第2実施形態に係る補強構造51では、支持部材90が主桁84と補強部材100との間に介在している。よって、外力が付与されたときに当該外力は補強部材100から支持部材90を介して主桁84に伝達される。従って、支持部材90を介して外力を直接主桁84に伝達できるので、第1実施形態と同様、外力を主桁84に適切に伝達して先行トンネル70及び後行トンネル80の変形を確実に抑えることができる。 As described above, in the reinforcement structure 51 according to the second embodiment, the support member 90 is interposed between the main beam 84 and the reinforcement member 100. Therefore, when an external force is applied, the external force is transmitted from the reinforcing member 100 to the main girder 84 via the supporting member 90. Therefore, since the external force can be directly transmitted to the main girder 84 via the support member 90, the external force can be appropriately transmitted to the main girder 84 and the deformation of the leading tunnel 70 and the trailing tunnel 80 can be reliably prevented, as in the first embodiment. It can be suppressed.

また、第2実施形態に係るトンネルの補強方法では、先行トンネル70の後に施工される後行トンネル80の後行トンネル覆工体81の主桁84に支持部材90を接続し、支持部材90には補強部材100の一端が接続される。補強部材100の他端は、先行トンネル70内に設置された被支持部材(支保工74)に接続される。従って、被支持部材、補強部材100及び支持部材90を介して外力が主桁84に伝達されるので、外力を主桁84に適切に伝達してトンネルの変形を確実に抑制することができる。 In addition, in the tunnel reinforcement method according to the second embodiment, the support member 90 is connected to the main girder 84 of the trailing tunnel lining body 81 of the trailing tunnel 80 that is constructed after the leading tunnel 70 . is connected to one end of the reinforcing member 100. The other end of the reinforcing member 100 is connected to a supported member (shoring 74) installed in the preceding tunnel 70. Therefore, since the external force is transmitted to the main girder 84 via the supported member, the reinforcing member 100, and the support member 90, the external force can be appropriately transmitted to the main girder 84 and deformation of the tunnel can be reliably suppressed.

図5に示されるように、支持部材90は、前述と同様、主桁84に接続される接続部91、連結部92及び継手部93を有し、接続部91が主桁84に溶接されると共に継手部93が補強部材100に接続される。従って、接続部91、連結部92及び継手部93によって外力を適切に主桁84に伝達してトンネルの変形をより確実に抑制することができる。 As shown in FIG. 5, the support member 90 has a connecting portion 91, a connecting portion 92, and a joint portion 93 connected to the main girder 84, and the connecting portion 91 is welded to the main girder 84, as described above. At the same time, the joint portion 93 is connected to the reinforcing member 100. Therefore, external force can be appropriately transmitted to the main girder 84 by the connection part 91, the connection part 92, and the joint part 93, and deformation of the tunnel can be suppressed more reliably.

第2実施形態において、後行トンネル80は、先行トンネル覆工体71の一部を切削しながら構築されるものであって、切削された先行トンネル覆工体71を支持する先行支持構造72を設ける工程を備える。よって、先行トンネル覆工体71の一部が切削されながら後行トンネル80が構築され、切削された先行トンネル覆工体71が先行支持構造72によって支持される。従って、先行トンネル覆工体71の切削された部分を先行支持構造72によって支持することができる。 In the second embodiment, the trailing tunnel 80 is constructed by cutting a part of the leading tunnel lining 71, and includes a leading support structure 72 that supports the cut leading tunnel lining 71. The method includes a step of providing. Therefore, the trailing tunnel 80 is constructed while part of the leading tunnel lining 71 is cut, and the cut leading tunnel lining 71 is supported by the leading support structure 72. Therefore, the cut portion of the preceding tunnel lining body 71 can be supported by the preceding support structure 72.

以上、本開示に係る補強構造及び補強方法の種々の実施形態について説明した。しかしながら、本開示に係る補強構造及び補強方法は、種々の実施形態の一部同士の組み合わせであってもよい。すなわち、前述した第1実施形態の一部、及び第2実施形態の一部が組み合わされたものであってもよい。 Various embodiments of the reinforcing structure and reinforcing method according to the present disclosure have been described above. However, the reinforcing structure and reinforcing method according to the present disclosure may be a combination of parts of various embodiments. That is, a portion of the first embodiment and a portion of the second embodiment described above may be combined.

また、本開示に係る補強構造及び補強方法は、前述した種々の実施形態に対して更に変形することが可能である。すなわち、補強構造の各部の構成、形状、大きさ、数、材料及び配置態様、並びに補強方法の工程の内容及び順序は、特許請求の範囲に記載した要旨を逸脱しない範囲において適宜変更可能である。 Further, the reinforcing structure and reinforcing method according to the present disclosure can be further modified from the various embodiments described above. That is, the configuration, shape, size, number, material, and arrangement of each part of the reinforcing structure, as well as the content and order of the steps of the reinforcing method, can be changed as appropriate without departing from the gist of the claims. .

1…補強構造、2…トンネル覆工体、2A…先行トンネル覆工体、2B…後行トンネル覆工体、4…トンネル内部補強用支保工、4b…第1支保工、4c…第2支保工、4d…支持部、4f…棒状部、4g…支持部、4h…棒状部、10…セグメント、11…主桁、11A…中主桁、11B…外主桁、11b…板状部、12…スキンプレート、13…縦リブ、20…支持部材(被支持部材)、21…接合部、21b…端面、21c…接続部、22…連結部、22b…端面、23…継手部、30…補強部材、31…切梁(中間部材)、31b…フランジ、31c…ウェブ、32…ジャッキ、33…腹起し、33b…フランジ、33c…ウェブ、33d…スティフナー、33f…第1面部、33g…第2面部、34…接合板、51…補強構造、60…鋼板コンクリート構造物、70…先行トンネル、71…先行トンネル覆工体、72…先行支持構造、73…先行型鋼、74…支保工、80…後行トンネル、81…後行トンネル覆工体、82…後行支持構造、83…後行型鋼、84…主桁、85…裏込め材、86…スキンプレート、87…支保工、88…充填材、90…支持部材、91…接続部、92…連結部、93…継手部、100…補強部材、110…中間型鋼、A…対向領域、A1…第1方向、A2…第2方向、B…構造物、B1,B2,B3…ボルトナット固定部材、C…コンクリート、D1…鉛直方向、D2…軸方向、D3…周方向、D4…対向方向、R…切削予定エリア、S…内周面。 1... Reinforcement structure, 2... Tunnel lining body, 2A... Leading tunnel lining body, 2B... Trailing tunnel lining body, 4... Tunnel internal reinforcement shoring, 4b... First shoring, 4c... Second shoring 4d...Support part, 4f...Bar-shaped part, 4g...Support part, 4h...Bar-shaped part, 10...Segment, 11...Main girder, 11A...Middle main girder, 11B...Outer main girder, 11b...Plate-shaped part, 12 ...Skin plate, 13...Vertical rib, 20...Supporting member (supported member), 21...Joint part, 21b...End face, 21c...Connection part, 22...Connecting part, 22b...End face, 23...Joint part, 30...Reinforcement Member, 31...Strut beam (intermediate member), 31b...flange, 31c...web, 32...jack, 33...belly riser, 33b...flange, 33c...web, 33d...stiffener, 33f...first surface portion, 33g...first 2 side part, 34... Joint plate, 51... Reinforcement structure, 60... Steel plate concrete structure, 70... Preceding tunnel, 71... Preceding tunnel lining, 72... Preceding support structure, 73... Preceding type steel, 74... Shoring, 80 ... Trailing tunnel, 81... Trailing tunnel lining, 82... Trailing support structure, 83... Trailing type steel, 84... Main girder, 85... Backfill material, 86... Skin plate, 87... Shoring, 88... Filler, 90... Supporting member, 91... Connecting part, 92... Connecting part, 93... Joint part, 100... Reinforcing member, 110... Intermediate type steel, A... Opposing area, A1... First direction, A2... Second direction, B...Structure, B1, B2, B3...Bolt/nut fixing member, C...Concrete, D1...Vertical direction, D2...Axis direction, D3...Circumferential direction, D4...Opposing direction, R...Cutting area, S...Inner circumference surface.

Claims (8)

トンネルの軸方向に所定の間隔で配置されると共に、前記トンネルの周方向に延在する主桁を有するトンネル覆工体の補強構造であって、
前記主桁に接続される支持部材と、
前記支持部材に接続される補強部材と、
を備え、
前記支持部材は、
前記主桁に溶接される接続部と、
前記接続部から前記接続部に交差する方向に延びる連結部と、
前記接続部及び前記連結部が固定されていると共に、前記補強部材に接続される継手部と、を有し、
前記補強部材によって前記トンネル覆工体の前記主桁が支持される、
補強構造。
A tunnel lining reinforcement structure having main girders arranged at predetermined intervals in the axial direction of the tunnel and extending in the circumferential direction of the tunnel,
a support member connected to the main girder;
a reinforcing member connected to the supporting member;
Equipped with
The support member is
a connection part welded to the main girder;
a connecting portion extending from the connecting portion in a direction crossing the connecting portion;
The connecting portion and the connecting portion are fixed, and a joint portion is connected to the reinforcing member,
the main girder of the tunnel lining is supported by the reinforcing member;
Reinforced structure.
前記接続部は、前記主桁から延びると共に上下一対に並ぶフランジに設けられ、
前記連結部は、一対の前記フランジを接続するウェブである、
請求項1に記載の補強構造。
The connecting portion extends from the main girder and is provided on a pair of upper and lower flanges,
The connecting portion is a web connecting the pair of flanges,
The reinforcing structure according to claim 1.
前記継手部は、前記接続部及び前記連結部の前記主桁との反対側の端部に固定される継手板である、
請求項1又は2に記載の補強構造。
The joint part is a joint plate fixed to an end of the connection part and the connection part on the opposite side to the main girder,
The reinforcing structure according to claim 1 or 2.
前記支持部材は、前記主桁が挿し込まれる凹部を有する、
請求項1~3のいずれか一項に記載の補強構造。
The support member has a recess into which the main girder is inserted.
The reinforcing structure according to any one of claims 1 to 3.
トンネルの軸方向に所定の間隔で配置されると共に、前記トンネルの周方向に延在する主桁と、前記主桁に支持されるスキンプレートを有するトンネル覆工体の補強方法であって、
前記主桁に支持部材を接続する工程と、
前記支持部材に補強部材を接続して前記主桁を支持する工程と、
前記スキンプレートを撤去する工程と、
を備え、
前記支持部材は、前記主桁に溶接される接続部と、前記接続部から前記接続部に交差する方向に延びる連結部と、前記接続部及び前記連結部が固定されていると共に前記補強部材に接続される継手部と、を有する、
補強方法。
A method for reinforcing a tunnel lining body, the method comprising main girders arranged at predetermined intervals in the axial direction of a tunnel and extending in the circumferential direction of the tunnel, and a skin plate supported by the main girders,
connecting a support member to the main girder;
connecting a reinforcing member to the supporting member to support the main girder;
removing the skin plate;
Equipped with
The supporting member includes a connecting portion welded to the main girder, a connecting portion extending from the connecting portion in a direction crossing the connecting portion, and the connecting portion and the connecting portion being fixed to the reinforcing member. a joint portion to be connected;
Reinforcement method.
先行トンネルに対し後に施工される後行トンネルであって、前記後行トンネルの軸方向に所定の間隔で配置されると共に、前記後行トンネルの周方向に延在する主桁と前記主桁に支持されるスキンプレートを有する後行トンネル覆工体の補強方法であって、
前記後行トンネル覆工体の前記主桁に支持部材を接続する工程と、
前記支持部材に補強部材の一端を接続する工程と、
前記補強部材の他端を、前記先行トンネルの先行トンネル覆工体、又は前記先行トンネル内に設置した被支持部材と接続して、前記主桁を支持する工程と、
前記後行トンネルの前記スキンプレートを撤去する工程と、
を備え、
前記支持部材は、前記主桁に溶接される接続部と、前記接続部から前記接続部に交差する方向に延びる連結部と、前記接続部及び前記連結部が固定されていると共に前記補強部材に接続される継手部と、を有する、
補強方法。
A trailing tunnel constructed after the leading tunnel, which is arranged at a predetermined interval in the axial direction of the trailing tunnel, and is connected to a main girder extending in the circumferential direction of the trailing tunnel and the main girder. A method for reinforcing a trailing tunnel lining having a supported skin plate, the method comprising:
connecting a support member to the main girder of the trailing tunnel lining;
connecting one end of the reinforcing member to the supporting member;
connecting the other end of the reinforcing member to the preceding tunnel lining of the preceding tunnel or a supported member installed within the preceding tunnel to support the main girder;
removing the skin plate of the trailing tunnel;
Equipped with
The supporting member includes a connecting portion welded to the main girder, a connecting portion extending from the connecting portion in a direction crossing the connecting portion, and the connecting portion and the connecting portion being fixed to the reinforcing member. a joint portion to be connected;
Reinforcement method.
前記後行トンネルは、前記先行トンネル覆工体の一部を切削しながら構築されるものであって、
切削された前記先行トンネル覆工体を支持する先行支持構造を設ける工程を備える、
請求項6に記載の補強方法。
The trailing tunnel is constructed by cutting a part of the leading tunnel lining,
a step of providing a preceding support structure that supports the cut preceding tunnel lining;
The reinforcing method according to claim 6.
前記支持部材を接続する工程では、前記支持部材に前記主桁が挿し込まれることによって前記主桁に前記支持部材が支持される、
請求項5~7のいずれか一項に記載の補強方法。
In the step of connecting the supporting members, the supporting member is supported by the main girder by inserting the main girder into the supporting member.
The reinforcing method according to any one of claims 5 to 7.
JP2021018500A 2021-02-08 2021-02-08 Reinforcement structure and reinforcement method Active JP7456954B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021018500A JP7456954B2 (en) 2021-02-08 2021-02-08 Reinforcement structure and reinforcement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021018500A JP7456954B2 (en) 2021-02-08 2021-02-08 Reinforcement structure and reinforcement method

Publications (2)

Publication Number Publication Date
JP2022121244A JP2022121244A (en) 2022-08-19
JP7456954B2 true JP7456954B2 (en) 2024-03-27

Family

ID=82849425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021018500A Active JP7456954B2 (en) 2021-02-08 2021-02-08 Reinforcement structure and reinforcement method

Country Status (1)

Country Link
JP (1) JP7456954B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004225386A (en) 2003-01-23 2004-08-12 Nippon Steel Corp Built-up steel shell and tunnel enlarged part lining work
JP2008095473A (en) 2006-10-16 2008-04-24 Taisei Corp Connection structure and construction method of multiple circular arc shaped tunnel
JP2012172483A (en) 2011-02-24 2012-09-10 Taisei Corp Underground structure and construction method of underground structure
JP2012246660A (en) 2011-05-26 2012-12-13 Shimizu Corp Structure for joining steel segment and rc member together
JP2015105513A (en) 2013-11-29 2015-06-08 清水建設株式会社 Construction method for outer shell shield tunnel
JP2020066871A (en) 2018-10-23 2020-04-30 大成建設株式会社 Joining member for joining steel segment and rc member, joining structure and joining method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004225386A (en) 2003-01-23 2004-08-12 Nippon Steel Corp Built-up steel shell and tunnel enlarged part lining work
JP2008095473A (en) 2006-10-16 2008-04-24 Taisei Corp Connection structure and construction method of multiple circular arc shaped tunnel
JP2012172483A (en) 2011-02-24 2012-09-10 Taisei Corp Underground structure and construction method of underground structure
JP2012246660A (en) 2011-05-26 2012-12-13 Shimizu Corp Structure for joining steel segment and rc member together
JP2015105513A (en) 2013-11-29 2015-06-08 清水建設株式会社 Construction method for outer shell shield tunnel
JP2020066871A (en) 2018-10-23 2020-04-30 大成建設株式会社 Joining member for joining steel segment and rc member, joining structure and joining method

Also Published As

Publication number Publication date
JP2022121244A (en) 2022-08-19

Similar Documents

Publication Publication Date Title
JP5308116B2 (en) How to build a tunnel
JP6922280B2 (en) How to build a tunnel skeleton
KR101479267B1 (en) Method for constructing tunnel by using pipe
JP6127193B1 (en) Construction method of large section underground structure
JP2007303155A (en) Construction method of underground cavity and tunnel construction method
KR101677017B1 (en) construction methods of close-twin tunnel using tube hollow
JP3285261B2 (en) Precast formwork for tunnel lining
JP6862237B2 (en) Outer skeleton construction method and outer skeleton
JP6257814B1 (en) Construction method of large section underground structure
JP7456954B2 (en) Reinforcement structure and reinforcement method
JPH10227199A (en) Construction method of large sectional tunnel
JP6062098B1 (en) Construction method of large section underground structure
JP6636774B2 (en) Integrated structure of pipe roof material
JP4760548B2 (en) Side-by-side tunnel structure and its construction method
JP4485373B2 (en) Construction method of tunnel junction
JPH04319198A (en) Construction method of tunnel
JP6874375B2 (en) How to build a tunnel skeleton
JP7403390B2 (en) Synthetic structure and method of constructing the synthetic structure
JP3584416B2 (en) Tunnel and its construction method
JP2020079490A (en) Lining skeleton structure and construction method thereof
JP3900683B2 (en) Construction method of branch / merge part of main line tunnel and rampway
JP6756892B1 (en) Underground skeleton and how to build an underground skeleton
CN220539645U (en) Reinforcing bar type expansion arch foot suitable for large tunnel section
JP6730540B2 (en) Outer shell structure and outer shell structure construction method
JP6687800B2 (en) Outer shell body and outer shell construction method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240314

R150 Certificate of patent or registration of utility model

Ref document number: 7456954

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150