JP7456182B2 - Single crystal manufacturing method - Google Patents

Single crystal manufacturing method Download PDF

Info

Publication number
JP7456182B2
JP7456182B2 JP2020026157A JP2020026157A JP7456182B2 JP 7456182 B2 JP7456182 B2 JP 7456182B2 JP 2020026157 A JP2020026157 A JP 2020026157A JP 2020026157 A JP2020026157 A JP 2020026157A JP 7456182 B2 JP7456182 B2 JP 7456182B2
Authority
JP
Japan
Prior art keywords
diameter
crucible
crystal
single crystal
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020026157A
Other languages
Japanese (ja)
Other versions
JP2021130573A (en
Inventor
利行 小見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2020026157A priority Critical patent/JP7456182B2/en
Publication of JP2021130573A publication Critical patent/JP2021130573A/en
Application granted granted Critical
Publication of JP7456182B2 publication Critical patent/JP7456182B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

本発明は、単結晶の製造方法に関する。特に、本発明は、高周波誘導加熱炉を用いたチョクラルスキー(以下、Czと略称する)法による単結晶の製造方法に関する。また、例えば、上記の単結晶は、酸化物単結晶であってよく、タンタル酸リチウム、若しくはニオブ酸リチウムであってもよい。 The present invention relates to a method for producing a single crystal. In particular, the present invention relates to a method for producing a single crystal by the Czochralski (hereinafter abbreviated as Cz) method using a high-frequency induction heating furnace. Further, for example, the above single crystal may be an oxide single crystal, lithium tantalate, or lithium niobate.

強誘電体であるタンタル酸リチウム(LiTaO3:以下、「LT」と略称する)やニオブ酸リチウム(LiNbO3:以下、「LN」と略称する)単結晶から加工される酸化物単結晶基板は、主に移動体通信機器において電気信号ノイズを除去する表面弾性波素子(SAWフィルター)の材料として用いられている。 Oxide single crystal substrates processed from ferroelectric single crystals of lithium tantalate ( LiTaO3 : hereafter abbreviated as "LT") or lithium niobate (LiNbO3: hereafter abbreviated as "LN") are used primarily as materials for surface acoustic wave elements (SAW filters) that remove electrical signal noise in mobile communication devices.

SAWフィルターの材料となるLT、LN単結晶は、産業的には、主にCz法により育成され、例えば、特許文献1に記載の高周波誘電加熱式育成炉が使用される。Cz法とは、図1に示すように、坩堝内の原料融液表面に種結晶となる単結晶片を接触させ、該種結晶を回転させながら上方に引き上げることにより種結晶と同一方位の円筒状単結晶を育成する方法である。例えば、LT単結晶育成の場合、LT結晶の融点が1650℃と高温であることから、高融点金属であるイリジウム(Ir)製の坩堝を用い、所定のLT原料を充填し、高周波誘導加熱式の電気炉(育成炉)を用いて育成されている。育成時の引上速度は、一般的には数mm/H程度、回転速度は数~数十rpm程度で行われる。また、育成時の炉内は、酸素濃度数%程度の窒素-酸素の混合ガス雰囲気とするのが一般的である。このような条件下で、肩と呼ばれるコーン状の成長部を形成した後、円形の基板を得るための円柱状の成長部(以下、直胴部)を形成することで単結晶インゴットが得られる。所望の長さまで直胴部を育成した後は、引上速度の変更や融液温度を徐々に高くする等の操作を行うことで、育成結晶を融液から切り離し、その後、育成炉のパワーを所定の速度で低下させることで徐冷し、炉内温度が室温近傍となった後に育成炉内から結晶を取り出す。結晶育成後のイリジウム坩堝内には、育成開始時のおよそ半分程度のLT原料が残る。坩堝内に残ったLT原料は次の育成に使用され、引き上げた結晶重量に相当するLT原料をイリジウム坩堝に充填して原料を融解し、結晶育成が行われる。このように坩堝内には固化した原料が常に同じ位置に残った状態で原料融解、冷却が繰り返し行われる。 Industrially, LT and LN single crystals, which are the materials of SAW filters, are mainly grown by the Cz method, and for example, a high frequency dielectric heating type growth furnace described in Patent Document 1 is used. As shown in Figure 1, the Cz method is a method in which a single crystal piece serving as a seed crystal is brought into contact with the surface of a raw material melt in a crucible, and the seed crystal is pulled upward while rotating to form a cylinder in the same orientation as the seed crystal. This is a method of growing single crystals. For example, in the case of LT single crystal growth, since the melting point of LT crystal is as high as 1650°C, a crucible made of iridium (Ir), a high melting point metal, is used, filled with a specified LT raw material, and a high-frequency induction heating method is used. It is grown using an electric furnace (growth furnace). The pulling speed during growth is generally about several mm/H, and the rotational speed is about several to several tens of rpm. Furthermore, the inside of the furnace during growth is generally a nitrogen-oxygen mixed gas atmosphere with an oxygen concentration of about several percent. Under these conditions, a single-crystal ingot can be obtained by forming a cone-shaped growth part called a shoulder and then forming a cylindrical growth part (hereinafter referred to as a straight body part) to obtain a circular substrate. . After growing the straight body to the desired length, the grown crystal is separated from the melt by changing the pulling speed and gradually increasing the melt temperature, and then the power of the growth furnace is turned off. The crystals are slowly cooled by lowering the temperature at a predetermined rate, and the crystals are taken out from the growth furnace after the temperature inside the furnace reaches around room temperature. Approximately half of the LT raw material remains in the iridium crucible after crystal growth compared to when the growth was started. The LT raw material remaining in the crucible is used for the next growth, and the iridium crucible is filled with LT raw material corresponding to the weight of the pulled crystal, the raw material is melted, and crystal growth is performed. In this way, the raw material is repeatedly melted and cooled while the solidified raw material always remains at the same position in the crucible.

結晶育成の温度領域で、イリジウム坩堝は熱膨張により1~2mm程度膨張する。結晶育成終了後の冷却過程において、イリジウム坩堝が膨張した状態で融液表面の中央付近の原料が固化し始める。その後、炉内温度が下がるにつれて坩堝底付近から坩堝側壁に向かって固化していき、最後に坩堝内原料の中心部が固化する。イリジウム坩堝は、炉内温度が下がるにつれて収縮してくるが、イリジウムに対してLTの熱膨張係数が小さいために、固化した原料表面付近のイリジウム坩堝の側壁には外向きに応力が発生する。固化した原料表面より上方のイリジウム坩堝側壁には、固化した原料が無いために内向きに応力が発生する。1回の熱サイクルでの変形量は僅かであるが、原料固化表面位置が常に同じ位置で原料融解、冷却を繰り返し行っていくと塑性変形の応力が働き、イリジウム坩堝の変形は徐々に増大してくる(特許文献2参照)。 In the crystal growth temperature range, an iridium crucible expands by about 1 to 2 mm due to thermal expansion. During the cooling process after crystal growth, the raw material near the center of the melt surface begins to solidify while the iridium crucible is expanded. Thereafter, as the temperature inside the furnace decreases, the material solidifies from near the bottom of the crucible toward the side walls of the crucible, and finally the center of the raw material inside the crucible solidifies. The iridium crucible contracts as the temperature inside the furnace decreases, but since the thermal expansion coefficient of LT is smaller than that of iridium, outward stress is generated on the side walls of the iridium crucible near the surface of the solidified raw material. Since there is no solidified raw material on the side wall of the iridium crucible above the surface of the solidified raw material, stress is generated inward. The amount of deformation in one thermal cycle is small, but if the raw material is melted and cooled repeatedly at the same solidified surface position, the stress of plastic deformation will work, and the deformation of the iridium crucible will gradually increase. (See Patent Document 2).

Cz法による単結晶育成では、引上軸の上部に配置されたロードセルにより結晶重量を測定し、制御周期当たりの重量増加量から結晶直径を算出し、目標直径との差分から高周波出力を変化させて直径を制御する直径自動制御(ADC、Automatic Diameter Control)が用いられている。 In single crystal growth using the Cz method, the crystal weight is measured using a load cell placed above the pulling shaft, the crystal diameter is calculated from the weight increase per control cycle, and the high frequency output is changed based on the difference from the target diameter. Automatic Diameter Control (ADC) is used to control the diameter.

特開2019-6612号公報JP 2019-6612 Publication 特開2019-52067号公報JP 2019-52067 Publication

しかしながら、坩堝が変形すると結晶直径は実際の直径と異なった計算結果となるという問題があった。この変形した坩堝で結晶育成を行うと、目標とする直径から外れた結晶直径で単結晶が育成されてしまう。 However, there is a problem in that when the crucible is deformed, the calculated crystal diameter differs from the actual diameter. If crystal growth is performed in this deformed crucible, a single crystal will be grown with a crystal diameter that deviates from the target diameter.

このため、坩堝変形に伴う結晶径の増減などの形状不良、さらには、多結晶化やクラック不良などの結晶不良がしばしば見られ、生産性低下の要因となっていた。 For this reason, shape defects such as increases and decreases in crystal diameter due to crucible deformation, and crystal defects such as polycrystalization and crack defects are often observed, causing a decrease in productivity.

そこで、本発明はこのような問題点に着目してなされたもので、坩堝変形があったとしても、直径自動制御が精度よく有効に働き、酸化物単結晶を生産性良く育成する酸化物単結晶の育成方法を提供することを目的とする。 Therefore, the present invention was made with attention to such problems, and even if there is crucible deformation, automatic diameter control works accurately and effectively, and oxide single crystals can be grown with high productivity. The purpose is to provide a method for growing crystals.

上記目的を達成するため、本発明の一態様に係る単結晶の製造方法は、坩堝内に投入された原料を加熱溶融した後に、原料融液表面に種結晶を接触させて、回転させながら引上げることで単結晶を育成するCz法による単結晶の製造方法であって、
引上軸の上部に配置されたロードセルにより結晶重量を測定し、制御周期当たりの重量増加量から結晶直径を算出する工程と、
目標直径との差分から出力を変化させて育成する結晶直径を制御する直径自動制御において、事前に測定した坩堝内径からの坩堝変形量を算出し、前記坩堝変形量に応じ目標直径補正量及び引上速度の補正係数を算出する工程と、
前記目標直径補正量により補正した目標直径及び前記引上速度の補正係数により補正した引上速度で前記直径自動制御を行う工程と、を有し、
前記単結晶がタンタル酸リチウム、ニオブ酸リチウム、およびイットリウムアルミニウムガーネットから選択された1種である。

In order to achieve the above object, a method for producing a single crystal according to one embodiment of the present invention heats and melts a raw material introduced into a crucible, and then brings a seed crystal into contact with the surface of the raw material melt and draws it while rotating. A method for producing a single crystal by the Cz method of growing a single crystal by raising the
A step of measuring the crystal weight with a load cell placed above the pulling shaft and calculating the crystal diameter from the amount of weight increase per control cycle;
In automatic diameter control that controls the diameter of a crystal to be grown by changing the output based on the difference from the target diameter, the amount of crucible deformation from the crucible inner diameter measured in advance is calculated, and the target diameter correction amount is calculated according to the amount of crucible deformation. and a step of calculating a correction coefficient for the pulling speed;
performing the automatic diameter control with the target diameter corrected by the target diameter correction amount and the pulling speed corrected by the pulling speed correction coefficient,
The single crystal is one selected from lithium tantalate, lithium niobate, and yttrium aluminum garnet.

本発明によれば、坩堝変形に伴う結晶形状不良を抑制すると共に多結晶化やクラック不良などの結晶不良を低減し、生産性の向上が図れる。 According to the present invention, it is possible to suppress crystal shape defects due to crucible deformation, reduce crystal defects such as polycrystalization and crack defects, and improve productivity.

高周波誘導加熱式単結晶育成装置の概略構成を示す断面図である。FIG. 1 is a cross-sectional view showing a schematic configuration of a high-frequency induction heating type single crystal growth apparatus. 結晶直径の算出方法を説明するための図である。FIG. 3 is a diagram for explaining a method of calculating a crystal diameter. 変形した坩堝の形状の一例を示した図である。FIG. 3 is a diagram showing an example of the shape of a deformed crucible. 坩堝の内径の測定方法の一例を説明するための図である。FIG. 3 is a diagram for explaining an example of a method for measuring the inner diameter of a crucible. LT単結晶で坩堝直径がφ210mm坩堝を用いた時の引上速度係数を示した図である。FIG. 3 is a diagram showing the pulling rate coefficient when a crucible of LT single crystal and a crucible diameter of φ210 mm is used. 実際に育成した結晶直径Dcから得られた目標直径実績補正量を示した図である。It is a figure showing the target diameter actual correction amount obtained from the crystal diameter Dc actually grown. 坩堝直径が増加した場合の結晶直径の目標値の補正方法を説明するための図である。FIG. 13 is a diagram for explaining a method of correcting the target value of the crystal diameter when the crucible diameter is increased. 結晶直径が減少した場合の結晶直径の目標値の補正方法を説明するための図である。FIG. 3 is a diagram for explaining a method of correcting a target value of a crystal diameter when the crystal diameter decreases.

以下、図面を参照して、本発明を実施するための形態の説明を行う。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.

はじめに、図1を参照して、Cz法による単結晶育成装置の構成例、および、単結晶育成方法の概要について説明する。本発明に係るCz法を用いた単結晶育成装置は、大気中または酸素を含んだ不活性ガス雰囲気中で育成されるニオブ酸リチウムLiNbO(以下、「LN」と略称する場合がある)、タンタル酸リチウムLiTaO(以下、「LT」と略称する場合がある)、イットリウムアルミニウムガーネットYAl12(以下、「YAG」と略称する場合がある)などの酸化物単結晶の製造に用いる単結晶育成装置である。 First, with reference to FIG. 1, a configuration example of a single crystal growth apparatus using the Cz method and an overview of the single crystal growth method will be described. The single crystal growth apparatus using the Cz method according to the present invention uses lithium niobate LiNbO 3 (hereinafter sometimes abbreviated as "LN"), which is grown in the air or in an oxygen-containing inert gas atmosphere. For the production of oxide single crystals such as lithium tantalate LiTaO 3 (hereinafter sometimes abbreviated as "LT") and yttrium aluminum garnet Y 3 Al 5 O 12 (hereinafter sometimes abbreviated as "YAG"). This is the single crystal growth equipment used.

図1は、高周波誘導加熱式単結晶育成装置の概略構成を示す断面図である。高周波誘導加熱式単結晶育成装置は、坩堝10と、耐火物20と、坩堝台30と、ワークコイル40と、引上げ軸50と、ロードセル60と、チャンバー70と、高周波電源80と、制御部90を備える。 FIG. 1 is a sectional view showing a schematic configuration of a high-frequency induction heating type single crystal growth apparatus. The high-frequency induction heating type single crystal growth apparatus includes a crucible 10, a refractory 20, a crucible stand 30, a work coil 40, a pulling shaft 50, a load cell 60, a chamber 70, a high-frequency power source 80, and a control section 90. Equipped with

また、引上軸50の下端には種結晶保持部51が設けられ、種結晶110を保持している。また、坩堝10内には原料融液120が貯留保持されている。 A seed crystal holder 51 is provided at the lower end of the pulling shaft 50, and holds a seed crystal 110. A raw material melt 120 is stored and held within the crucible 10.

図1に示すように、高周波誘導加熱式単結晶育成装置は、チャンバー70内に坩堝10を配置する。坩堝10は、耐火物20を介して、坩堝台30上に載置される。チャンバー70内には、坩堝10を囲むように耐火材20が配置されている。坩堝10を囲むようにワークコイル40が配置され、ワークコイル40が形成する高周波磁場によって坩堝10の壁に渦電流が流れ、坩堝10自体が発熱体となる。このように、高周波誘導加熱式単結晶育成装置では、ワークコイル40によって形成される高周波磁場によりワークコイル40内に設置されている坩堝10の側壁に渦電流が発生し、その渦電流によって坩堝10自体が発熱体となり、坩堝10内にある原料の融解や結晶育成に必要な温度環境の形成を行う。 As shown in FIG. 1, the high-frequency induction heating type single crystal growth apparatus arranges a crucible 10 in a chamber 70. Crucible 10 is placed on crucible stand 30 via refractory 20 . A refractory material 20 is arranged in the chamber 70 so as to surround the crucible 10. A work coil 40 is arranged so as to surround the crucible 10, and a high frequency magnetic field generated by the work coil 40 causes an eddy current to flow in the wall of the crucible 10, so that the crucible 10 itself becomes a heating element. In this manner, in the high-frequency induction heating type single crystal growth apparatus, an eddy current is generated on the side wall of the crucible 10 installed in the work coil 40 due to the high-frequency magnetic field formed by the work coil 40, and the eddy current causes the crucible 10 to The crucible itself becomes a heating element and creates a temperature environment necessary for melting the raw material in the crucible 10 and growing crystals.

チャンバー70の上部には引上げ軸(シード棒)50が回転可能かつ上下方向に移動可能に設けられている。引き上げ軸50は、上方の引上げ軸駆動モータ52により昇降可能に構成されている。また、引上げ軸(シード棒)50の上端の先端部には、結晶重量を計測するためのロードセル60が取り付けられている。引上げ軸(シード棒)50の下端の先端部には、種結晶100を保持するための種結晶保持部51が取り付けられている。そして、引上げ軸50、引上げ軸駆動用モータ52及びロードセル60以外の構成要素を、チャンバー70が覆っている。 A pulling shaft (seed rod) 50 is provided in the upper part of the chamber 70 so as to be rotatable and movable in the vertical direction. The pulling shaft 50 is configured to be movable up and down by an upper pulling shaft drive motor 52. Further, a load cell 60 for measuring the weight of the crystal is attached to the tip of the upper end of the pulling shaft (seed rod) 50. A seed crystal holder 51 for holding the seed crystal 100 is attached to the lower end of the pulling shaft (seed rod) 50 . The chamber 70 covers components other than the pulling shaft 50, the pulling shaft driving motor 52, and the load cell 60.

また、結晶育成装置全体の動作を制御するための制御部90と、実行中の自動直径制御データを記憶するための記憶部100と、高周波コイル40及び単結晶育成装置全体に電力を供給するための電源80がチャンバー70の外部に設けられる。 Also, a control unit 90 for controlling the operation of the entire crystal growth apparatus, a storage unit 100 for storing automatic diameter control data being executed, and a unit for supplying power to the high frequency coil 40 and the entire single crystal growth apparatus. A power source 80 is provided outside the chamber 70.

Cz法では、坩堝10内の単結晶の原料融液120の表面に種結晶110となる単結晶片を接触させ、種結晶110を引上げ軸(シード棒)50により回転させながら上方に引上げることにより、種結晶110と同一方位の円筒状単結晶を育成する。 In the Cz method, a single crystal piece serving as a seed crystal 110 is brought into contact with the surface of a single crystal raw material melt 120 in a crucible 10, and the seed crystal 110 is pulled upward while being rotated by a pulling shaft (seed rod) 50. As a result, a cylindrical single crystal having the same orientation as the seed crystal 110 is grown.

そして、LT単結晶を育成する場合は、LT結晶の融点が1650℃であることから、例えば、高融点金属であるイリジウム(Ir)製の坩堝10が用いられる。なお、坩堝10は、イリジウム製に限定される訳ではなく、LT結晶の融点1650℃を超えている種々の高融点金属を用いることができる。 When growing an LT single crystal, the melting point of the LT crystal is 1650° C., so for example, a crucible 10 made of iridium (Ir), which is a high melting point metal, is used. Note that the crucible 10 is not limited to being made of iridium, and various high melting point metals that exceed the melting point of LT crystal, 1650° C., can be used.

育成時の引上げ速度は、一般的には数mm/H程度、回転速度は数~数十rpm程度で行われる。また、育成時の炉内は、酸素濃度が数%程度の窒素-酸素の混合ガス雰囲気とするのが一般的である。このような条件下で、所望の大きさまで単結晶を育成した後、引上げ速度の変更や融液温度を徐々に高くする等の操作を行うことで、育成結晶を原料融液120から切り離す。その後、育成炉のパワーを所定の速度で低下させることで徐冷し、炉内温度が室温近傍となった後に育成炉内から結晶を取り出す。結晶育成後の坩堝10内には、育成開始時のおよそ半分程度のLT原料が残る。坩堝10内に残ったLT原料は次の育成に使用され、引き上げた結晶重量に相当するLT原料を坩堝10に充填して原料を融解し、繰り返し結晶育成が行われる。 The pulling speed during growth is generally approximately several mm/H, and the rotational speed is approximately several to several tens of rpm. Furthermore, the inside of the furnace during growth is generally a nitrogen-oxygen mixed gas atmosphere with an oxygen concentration of about several percent. After growing a single crystal to a desired size under such conditions, the grown crystal is separated from the raw material melt 120 by performing operations such as changing the pulling speed and gradually increasing the melt temperature. Thereafter, the power of the growth furnace is reduced at a predetermined rate to slowly cool the crystal, and after the temperature inside the furnace reaches around room temperature, the crystal is taken out from inside the growth furnace. Approximately half of the LT raw material remains in the crucible 10 after crystal growth compared to when the growth was started. The LT raw material remaining in the crucible 10 is used for the next growth, and the crucible 10 is filled with LT raw material corresponding to the weight of the pulled crystal, the raw material is melted, and crystal growth is repeated.

Cz法による単結晶育成では、引上げ軸50の上部に配置されたロードセル60により結晶重量を測定し、制御周期当たりの重量増加量から結晶直径を算出し、目標直径との差分から高周波出力を変化させて直径を制御する直径自動制御(ADC: Automatic Diameter Control)が用いられている。なお、制御周期は、特に限定されていないが、1分/回~5分/回の範囲にあるのが一般的であり、例えば、2分/回であってもよい。具体的には、ロードセル60測定された結晶重量Wと、その時に結晶を引き上げた引上げ距離dhと、坩堝直径D、結晶密度ρ、融液密度ρより、式(1)で結晶直径を求めることが出来る。なお、ΔWの時、結晶直径Dc及び坩堝直径はDmの変化を小さいと仮定する。 In single crystal growth using the Cz method, the weight of the crystal is measured by a load cell 60 placed above the pulling shaft 50, the crystal diameter is calculated from the weight increase per control cycle, and the high frequency output is changed based on the difference from the target diameter. Automatic Diameter Control (ADC) is used to control the diameter by adjusting the diameter. Note that the control period is not particularly limited, but is generally in the range of 1 minute to 5 minutes/time, and may be 2 minutes/time, for example. Specifically, from the crystal weight W measured by the load cell 60, the pulling distance dh by which the crystal was pulled at that time, the crucible diameter D m , the crystal density ρ c , and the melt density ρ m , the crystal diameter is determined by formula (1). can be found. In addition, when ΔW, it is assumed that the crystal diameter Dc and the crucible diameter change Dm small.

Figure 0007456182000001

なお、式(1)は以下のように算出される。
Figure 0007456182000001

Note that equation (1) is calculated as follows.

図2に示されるように、単結晶130を育成する際の単結晶130の引上げ距離をdh、原料融液120の液面降下距離をdHとすると、実効成長距離は式(2)のようになる。 As shown in FIG. 2, if the pulling distance of the single crystal 130 when growing the single crystal 130 is dh and the liquid surface drop distance of the raw material melt 120 is dH, the effective growth distance is given by formula (2).

Figure 0007456182000002
微小時間に形成された単結晶130の重量と、原料融液120の減少重量は等しいので、式(3)が成立する。
Figure 0007456182000002
Since the weight of the single crystal 130 formed in a minute time is equal to the reduced weight of the raw material melt 120, equation (3) holds true.

π(D/2)(dh+dH)ρ=π(D/2)dHρ (3)
式(2)と式(3)から、式(4)が求まる。
π(D c /2) 2 (dh+dH)ρ c =π(D m /2) 2 dHρ m (3)
Equation (4) is obtained from Equation (2) and Equation (3).

Figure 0007456182000003
単結晶130が微小成長したときの重量変化量△Wは、単結晶130の微小成長により減少した原料融液120の重量に等しいので、式(5)が成立する。
Figure 0007456182000003
Since the weight change amount ΔW when the single crystal 130 micro-grows is equal to the weight of the raw material melt 120 reduced due to the micro-growth of the single crystal 130, equation (5) holds true.

π(D/2)dHρ=△W (5)
式(4)と式(5)からdHを消去すると、式(1)が得られる。
π(D m /2) 2 dHρ m =△W (5)
By eliminating dH from equations (4) and (5), equation (1) is obtained.

このように、ロードセル60による実測の単結晶130の重量増加量△Wと、引上げ距離dhを用いて、式(1)から結晶直径Dが算出される。 In this way, the crystal diameter D c is calculated from equation (1) using the weight increase amount ΔW of the single crystal 130 actually measured by the load cell 60 and the pulling distance dh.

ここで算出された結晶直径Dを目標とする結晶直径と比較し、所定の結晶直径となるよう育成炉ヒーター出力を調整し制御を行う。 The crystal diameter D c calculated here is compared with the target crystal diameter, and the growth furnace heater output is adjusted and controlled so that the crystal diameter becomes a predetermined crystal diameter.

上述したように、結晶育成では、結晶育成後の坩堝10内には、育成開始時のおよそ半分程度のLT原料が残り、この坩堝10内に残ったLT原料は次の育成に使用され、引き上げた結晶重量Wに相当するLT原料をイリジウム坩堝に充填して原料を融解し、繰り返し結晶育成が行われる。このように、坩堝10内には固化した原料が常に同じ位置に残った状態で原料融解、冷却が繰り返し行われるため、坩堝10内に残った原料表面付近の坩堝側壁は外側に膨らみ、原料表面より上方の坩堝側壁は内側にくびれる変形が徐々に増大してくる。 As described above, in crystal growth, approximately half of the LT raw material at the start of growth remains in the crucible 10 after crystal growth, and this LT raw material remaining in the crucible 10 is used for the next growth. The LT raw material equivalent to the pulled crystal weight W is filled into the iridium crucible, the raw material is melted, and the crystal growth is repeated. In this way, the raw material is repeatedly melted and cooled with the solidified raw material always remaining in the same position in the crucible 10, so the crucible side wall near the surface of the raw material remaining in the crucible 10 bulges outward, and the crucible side wall above the raw material surface gradually becomes constricted inward.

図3は、そのような変形した坩堝10の形状の一例を示した図である。図3において、坩堝側壁が内側にくびれる領域は結晶育成が行われる領域である。坩堝10がくびれて内径が小さくなることにより、径不良や曲がりなどの結晶形状不良、多結晶化やクラックの発生の原因となる。あるいは、外側に膨らむ領域が徐々に上昇し坩堝10内に残った原料表面付近が広がる場合もある。そこで、本発明者は、坩堝10の内径を測定し、坩堝変形量に応じたADCの目標直径の補正及び、坩堝変形に伴う液面降下速度の変化に着目し、変形の進んだ坩堝を用いて試験を行った結果、坩堝変化量に応じたADC目標直径補正量と引上げ速度の調整を行うことで結晶形状不良を抑制し、且つ多結晶化やクラック不良を抑制出来る事を見出すに至った。 FIG. 3 is a diagram showing an example of the shape of such a deformed crucible 10. In FIG. 3, the region where the crucible side wall constricts inward is the region where crystal growth is performed. The crucible 10 becomes constricted and its inner diameter becomes smaller, which causes defects in crystal shape such as diameter defects and bending, polycrystalization, and cracks. Alternatively, the region expanding outward may gradually rise and the vicinity of the surface of the raw material remaining in the crucible 10 may spread. Therefore, the inventor of the present invention measured the inner diameter of the crucible 10, focused on correcting the target diameter of the ADC according to the amount of crucible deformation, and the change in the liquid level drop speed due to crucible deformation, and used a crucible with advanced deformation. As a result of conducting tests, we found that by adjusting the ADC target diameter correction amount and pulling speed according to the amount of crucible change, it was possible to suppress crystal shape defects, as well as polycrystalization and crack defects. .

上記式(1)では、算出する結晶直径Dcは、変形の無い坩堝直径Dmを用いる。坩堝変形がある場合は、この坩堝直径Dmが変化するのでそれに合わせて結晶直径Dcを算出する必要がある。更に、引き上げ速度も併せて補正することが好ましい。これは、坩堝が変形すると液面降下距離が変化する。坩堝直径Dmが大きい場合は、液面降下距離が小さくなり、坩堝直径Dmが小さい場合には、液面降下距離が大きくなる。結晶育成が行われる領域の坩堝直径Dmが徐々に小さくなる様な変形をした場合には、結晶育成中に液面降下距離が徐々に大きくなるため実効成長距離が徐々に大きくなる。 In the above equation (1), the undeformed crucible diameter Dm is used as the calculated crystal diameter Dc. If the crucible is deformed, the crucible diameter Dm changes, so it is necessary to calculate the crystal diameter Dc accordingly. Furthermore, it is preferable to correct the pulling speed as well. This is because when the crucible deforms, the liquid level drop distance changes. When the crucible diameter Dm is large, the liquid level drop distance becomes small, and when the crucible diameter Dm is small, the liquid level fall distance becomes long. When the crucible diameter Dm in the region where crystal growth is performed is deformed so as to gradually become smaller, the effective growth distance gradually increases because the liquid level drop distance gradually increases during crystal growth.

以下、本発明のADCの目標直径の補正方法について詳細に説明する。 Hereinafter, a method for correcting the target diameter of the ADC of the present invention will be described in detail.

図4は、坩堝10の測定方法を説明するための図である。まず、事前に坩堝直径(坩堝内径)Dmを測定する。坩堝直径Dmの測定は、育成した結晶を取り出し後に測定する。測定器具はキャリパゲージなどを用いると良い。坩堝10は対象性を保ったまま変形することは少ない。局所的に膨らんだりくびれたりして変形の仕方はさまざまである。このため、坩堝直径Dmの測定は、測定箇所が多ければ多いほど真の値に近づくが、図4(a)に示すように、図4(b)に示す各高さ位置について、4方向の直径を測定して、その平均値を求めて坩堝直径Dmとしても良い。坩堝直径Dmを測定する位置は、図4(b)に示すように、坩堝10の上端から坩堝内原料の固化部分までの範囲を測定する。測定間隔は特に限定はないが、連続で測定することが好ましい。キャリパゲージでは、例えば10mm間隔で測定してもよい。 FIG. 4 is a diagram for explaining a method of measuring the crucible 10. First, the crucible diameter (crucible inner diameter) Dm is measured in advance. The crucible diameter Dm is measured after the grown crystal is taken out. It is best to use a caliper gauge as a measuring device. The crucible 10 is rarely deformed while maintaining its symmetry. There are various ways of deformation, such as local swelling or constriction. For this reason, the measurement of the crucible diameter Dm approaches the true value as the number of measurement points increases, but as shown in FIG. 4(a), for each height position shown in FIG. 4(b), The diameter may be measured and the average value may be determined as the crucible diameter Dm. The crucible diameter Dm is measured in a range from the upper end of the crucible 10 to the solidified portion of the raw material in the crucible, as shown in FIG. 4(b). The measurement interval is not particularly limited, but it is preferable to measure continuously. A caliper gauge may measure, for example, at intervals of 10 mm.

次に、坩堝内径4方向測定の平均値から変形の無い初期の坩堝内径Dm0を差し引き、坩堝直径の変化量とする。また、上記式(1)で坩堝が変形したときの坩堝直径Dm1により結晶径Dc1を求め、変形が無い時の結晶直径(Dc0-Dc1)を算出した値を目標直径算出補正値とした。 Next, the initial undeformed crucible inner diameter Dm0 is subtracted from the average value of the crucible inner diameter measurements in four directions to obtain the amount of change in the crucible diameter. In addition, the crystal diameter Dc1 was determined from the crucible diameter Dm1 when the crucible was deformed using the above formula (1), and the calculated value of the crystal diameter (Dc0-Dc1) when there was no deformation was used as the target diameter calculation correction value.

また、坩堝直径Dmが変化すると液面降下距離dHが変化する。そこで、結晶直径Dcを一定に固定し、坩堝直径Dmを変化させた時の液面降下距離dHを算出する。坩堝直径Dmが変化した時の液面降下距離をdH'とすると、実効成長距離(dG=dh+dH')となる。新品時の坩堝直径Dm0と同じ実効成長距離(dG=dh+dH)に合わせるためには、引上速度係数aを掛ければ良い。 Furthermore, when the crucible diameter Dm changes, the liquid level drop distance dH changes. Therefore, the liquid level drop distance dH when the crystal diameter Dc is fixed constant and the crucible diameter Dm is varied is calculated. If the liquid level drop distance when the crucible diameter Dm changes is dH', then the effective growth distance is (dG=dh+dH'). In order to match the effective growth distance (dG=dh+dH) which is the same as the crucible diameter Dm0 when new, it is sufficient to multiply it by the pulling rate coefficient a.

つまり、式(6)から引上速度係数aを求める。 That is, the pulling speed coefficient a is determined from equation (6).

a(dh+dH')=(dh+dH) (6)
図5は、LT単結晶で坩堝直径がφ210mm坩堝を用いた時の引上速度係数を示す。液面降下距離dHは、結晶密度ρ、融液密度ρ、坩堝直径Dm、結晶直径Dcで求められる。このため、坩堝直径Dmが変化すると引上速度係数aも変化する。坩堝直径Dmが大きいほど引上速度係数aの傾斜は小さくなる傾向にある。引上速度係数aの関係は、結晶品種、坩堝直径Dmや結晶サイズ(直径)Dcごとに算出することが出来る。このように引上速度の調整を行うことにより、結晶育成中の実効成長距離(dG=dh+dH)が、変形の無い坩堝10を使用した時と同じ実効成長距離(dG=dh+dH)となり、実効成長距離の変動に起因する結晶欠陥の発生を抑制し、多結晶化やクラック不良を低減する事が出来る。
a(dh+dH')=(dh+dH) (6)
FIG. 5 shows the pulling rate coefficient when a LT single crystal crucible with a crucible diameter of φ210 mm is used. The liquid level drop distance dH is determined by the crystal density ρ c , the melt density ρ m , the crucible diameter Dm, and the crystal diameter Dc. Therefore, when the crucible diameter Dm changes, the pulling rate coefficient a also changes. The larger the crucible diameter Dm is, the smaller the slope of the pulling rate coefficient a tends to be. The relationship between the pulling rate coefficient a can be calculated for each crystal type, crucible diameter Dm, and crystal size (diameter) Dc. By adjusting the pulling speed in this way, the effective growth distance (dG = dh + dH) during crystal growth becomes the same effective growth distance (dG = dh + dH) as when using the undeformed crucible 10, and the effective growth It is possible to suppress the occurrence of crystal defects due to distance fluctuations, and reduce polycrystalization and crack defects.

更に、目標直径補正量は、目標直径算出補正量から目標直径実績補正量に変更してもよい。上記の目標直径算出補正量(Dc0-Dc1)および引上速度係数aを用いて試験を行ったが、坩堝変形量が大きい場合、育成した結晶の直径寸法が合わないことがあった。そこで、上記で目標直径補正量(Dc0-Dc1)および引上速度係数aを用いて育成を行い、育成された結晶径を比較した所、算出した計算値より傾きが急峻で大きくなる傾向があった。 Further, the target diameter correction amount may be changed from the target diameter calculation correction amount to the target diameter actual correction amount. A test was conducted using the above target diameter calculation correction amount (Dc0-Dc1) and pulling rate coefficient a, but when the amount of crucible deformation was large, the diameter dimensions of the grown crystals sometimes did not match. Therefore, when we performed the growth using the target diameter correction amount (Dc0-Dc1) and the pulling rate coefficient a and compared the grown crystal diameters, we found that the slope tended to be steeper and larger than the calculated value. Ta.

図6は、坩堝直径がφ210mmであり、変形がある坩堝で、上記目標直径算出補正量(Dc0-Dc1)および引上速度係数aを用いて行なった時の実際に育成した結晶直径Dcから得られた目標直径実績補正量を示す。図6において、直線Aは目標直径算出補正量を示し、直線Bは目標直径実績補正量を示す。 Figure 6 shows the results obtained from the actually grown crystal diameter Dc when the crucible diameter is φ210 mm and the crucible is deformed, using the target diameter calculation correction amount (Dc0-Dc1) and the pulling speed coefficient a. Indicates the target diameter actual correction amount. In FIG. 6, straight line A indicates the target diameter calculation correction amount, and straight line B indicates the target diameter actual correction amount.

図6において、坩堝内径の変化量がプラスの場合には、目標直径算出補正量Aの方が目標直径実績補正量Bよりも大きく、坩堝内径の変化量がマイナスの場合には、目標直径実績補正量Bの方が目標直径算出補正量Aよりも大きい特性が示されている。 In FIG. 6, when the amount of change in the crucible inner diameter is positive, the target diameter calculation correction amount A is larger than the target diameter actual correction amount B, and when the amount of change in the crucible inner diameter is negative, the target diameter actual correction amount B is larger than the target diameter calculation correction amount A.

ここで、坩堝直径Dmが広がっている場合には、結晶直径Dcの目標値を、算出値よりも更に小さくする制御を行うことが好ましい。 Here, when the crucible diameter Dm is widening, it is preferable to perform control to make the target value of the crystal diameter Dc even smaller than the calculated value.

図7は、そのような制御を行うことが好ましい理由を説明するための図である。図7に示されるように、坩堝直径Dmが広がっている場合には、実績値の重量変化量△WがADCの計算上の△Wよりも小さくなってしまう。そうすると、ADCは目標直径に達してしないと判断し、結晶直径が大きくなるような制御を行ってしまい、目標直径よりも直径が大きい単結晶130が育成される可能性が高くなる。そこで、このような場合には、結晶直径の目標値を、算出値よりも小さく設定する調整を行うことが好ましい。 FIG. 7 is a diagram for explaining why it is preferable to perform such control. As shown in FIG. 7, when the crucible diameter Dm is widening, the weight change amount ΔW of the actual value becomes smaller than the calculated ΔW of the ADC. In this case, the ADC determines that the target diameter has not been reached and performs control to increase the crystal diameter, increasing the possibility that a single crystal 130 having a diameter larger than the target diameter will be grown. Therefore, in such a case, it is preferable to adjust the target value of the crystal diameter to be smaller than the calculated value.

一方、坩堝直径Dmが狭くなる場合は、結晶直径Dcの目標値を、算出値よりも大きく設定することが好ましい。 On the other hand, when the crucible diameter Dm becomes narrow, it is preferable to set the target value of the crystal diameter Dc to be larger than the calculated value.

図8は、そのような制御を行うことが好ましい理由を説明するための図である。図8に示される通り、坩堝直径Dmが小さくなると、実績値の重量変化量△W'は大きくなる傾向があり、結晶直径が太くなっていると判断され、ADCが結晶直径を細くする制御を行う可能性が高くなる。そこで、この場合には、結晶直径の目標値を、算出値よりも太く設定し、適切な太さが確保されるように調整を行うことが好ましい。 Figure 8 is a diagram to explain why it is preferable to perform such control. As shown in Figure 8, when the crucible diameter Dm becomes smaller, the weight change amount ΔW' of the actual value tends to become larger, and it is highly likely that the crystal diameter is determined to be thicker and the ADC performs control to make the crystal diameter thinner. Therefore, in this case, it is preferable to set the target value of the crystal diameter thicker than the calculated value and adjust it so that an appropriate thickness is ensured.

なお、図6に示される実績値と算出値との差異は、坩堝変形は、坩堝下部では膨らむ方向に変形するからと考えられる。このため、坩堝下部での発熱分布が緩やかになる傾向にあり、この影響を受けていると推測される。よって、坩堝変量が大きい場合は、目標直径補正量は、算出した計算値より傾きを急峻に補正する目標値直径実績補正量を用いることがより好ましい。 The difference between the actual value and the calculated value shown in FIG. 6 is considered to be because the crucible deforms in the direction of expansion at the lower part of the crucible. For this reason, the distribution of heat generation at the bottom of the crucible tends to be gentle, and it is presumed that this is the effect. Therefore, when the crucible variable is large, it is more preferable to use the actual target diameter correction amount, which corrects the slope more steeply than the calculated value, as the target diameter correction amount.

次に、上述した坩堝10の変形量より育成時の目標直径補正量及び引上速度係数を決定し直径自動制御の設定値を補正し、単結晶の育成を行う。この時の補正は、ルツボの変形を測定した間隔に合わせ補正することが出来る。例えば、結晶育成開始時より10mm間隔で補正値を決定し補正してもよい。 Next, the target diameter correction amount and pulling speed coefficient during growth are determined from the amount of deformation of the crucible 10 described above, the set value of automatic diameter control is corrected, and a single crystal is grown. Correction at this time can be made in accordance with the interval at which the deformation of the crucible is measured. For example, correction values may be determined and corrected at intervals of 10 mm from the start of crystal growth.

補正値の設定は、例えば、図6を参照し、結晶肩部成長時の原料融液高さ位置の坩堝直径が新品時より5mm大きく、直胴下部成長時の原料融液高さ位置の坩堝内径が10mm小さい場合は、肩部の目標直径補正量は-4mm、直胴下部の目標直径補正量は+8mmとなる。肩部成長の目標直径を4mm小さく設定し、直胴下部の目標直径を8mm大きく設定する。肩から直胴下部に至る領域も同様に、測定した坩堝内径から目標直径補正量を求め、ADCステップの目標直径を変更させれば良い。 To set the correction value, for example, with reference to FIG. 6, the diameter of the crucible at the height of the raw material melt during crystal shoulder growth is 5 mm larger than when new, and the crucible diameter at the height of the raw material melt during growth of the lower part of the straight body is set. If the inner diameter is 10 mm smaller, the target diameter correction amount for the shoulder portion is -4 mm, and the target diameter correction amount for the lower part of the straight body is +8 mm. The target diameter for shoulder growth is set 4 mm smaller, and the target diameter for the lower part of the trunk is set 8 mm larger. Similarly, for the region from the shoulder to the lower part of the body, the target diameter correction amount may be determined from the measured crucible inner diameter, and the target diameter of the ADC step may be changed.

次に、図5に示す坩堝内径変化量と引上速度係数の関係図より、引上速度係数を決定する。 Next, the pulling speed coefficient is determined from the relationship diagram of the change in the crucible inner diameter and the pulling speed coefficient shown in Figure 5.

例えば、結晶肩部成長時の原料融液高さ位置の坩堝内径が新品時より5mm大きく、直胴下部成長時の原料融液高さ位置の坩堝内径が10mm小さい場合は、肩部の引上速度係数は1.06、直胴下部の引上速度係数は0.87となる。肩部成長時の引上速度に1.06を乗じた数値を引上速度に設定し、直胴下部の引上速度に0.87を乗じた数値を引上速度に設定する。なお、補正を行う間隔は、坩堝直径(坩堝内径)を測定する間隔になる。この間隔間で補正値に差がある場合、この間を補正値が徐々に変化するように傾斜を付けて制御してもよい。 For example, if the inner diameter of the crucible at the height of the raw material melt during crystal shoulder growth is 5 mm larger than when new, and the inner diameter of the crucible at the height of the raw material melt during crystal shoulder growth is 10 mm smaller, the shoulder should be pulled up. The speed coefficient is 1.06, and the pulling speed coefficient of the lower part of the straight body is 0.87. The pulling speed is set to be the pulling speed during shoulder growth multiplied by 1.06, and the pulling speed is set to be the pulling speed of the lower part of the trunk multiplied by 0.87. Note that the interval at which the correction is performed is the interval at which the crucible diameter (crucible inner diameter) is measured. If there is a difference in the correction value between these intervals, the correction value may be controlled with a slope so that it changes gradually during this interval.

直径自動制御の設定値を補正し、単結晶の育成を行うことで、形状が安定した単結晶を得られる。 By correcting the automatic diameter control setting and growing the single crystal, a single crystal with a stable shape can be obtained.

なお、これらの制御は、図5、6の内容を記憶部100に記憶しておき、制御部90が演算処理を行い、ADCを実行しながら、目標直径、目標直径算出補正量、目標直径実績補正量、引上速度係数を順次演算しながら実行することにより、実施することができる。 These controls can be implemented by storing the contents of Figures 5 and 6 in the memory unit 100, and having the control unit 90 perform calculations and execute ADC while sequentially calculating the target diameter, target diameter calculation correction amount, target diameter actual correction amount, and lifting speed coefficient.

[実施例]
次に、本発明の実施例について具体的に説明する。
[Example]
Next, examples of the present invention will be specifically described.

[実施例1]
図1に示す高周波誘導加熱式単結晶育成装置を用い、内径210mmのイリジウム坩堝を用いて結晶直胴部径がφ160mmのLT結晶育成を行った。
[Example 1]
Using the high-frequency induction heating type single crystal growth apparatus shown in FIG. 1, an LT crystal with a crystal body diameter of 160 mm was grown using an iridium crucible with an inner diameter of 210 mm.

坩堝は、使用回数100回のイリジウム坩堝を用いた。 The crucible used was an iridium crucible that had been used 100 times.

まず、キャリパゲージを用いて坩堝内径測定を行った。図2に示す4方向の直径を坩堝上端から10mm間隔で測定した。原料融液表面位置にあたる坩堝内径変化量は、上端より10mm、20mmは、新品時より+1mmであった。30mm、40mm、50mmの坩堝内径変化量は-2mm、60mm、70mm、80mm位置の坩堝内径変化量は-5mm、90mm位置の坩堝内径変化量は-8mmであった。 First, the inner diameter of the crucible was measured using a caliper gauge. The diameters in the four directions shown in FIG. 2 were measured at 10 mm intervals from the top of the crucible. The amount of change in the inner diameter of the crucible corresponding to the surface position of the raw material melt was 10 mm from the upper end, and 20 mm was +1 mm from when it was new. The amount of change in the crucible inner diameter at the 30 mm, 40 mm, and 50 mm positions was -2 mm, the amount of change in the crucible inner diameter at the 60 mm, 70 mm, and 80 mm positions was -5 mm, and the amount of change in the crucible inner diameter at the 90 mm position was -8 mm.

図3に示す坩堝内径変化量とADC目標直径補正量の関係図より、目標直径補正量を目標直径実績補正量として、上端より10、20mmのADC目標直径補正量は-0.8mm、直胴部長さ30mm、40mm、50mm位置の補正量は+1.6mm、直胴部長さ60mm、70mm、80mm位置は+4mm、直胴部長さ90mm位置は+6.4mmとなり、上端より20mmまでの目標直径を159.2mm、50mmまでの位置を161.6mm、80mm位置までの目標直径を164mm、90mmまでの位置のADC目標直径を166.4mmに変更した。 From the relationship diagram between crucible inner diameter change amount and ADC target diameter correction amount shown in Fig. 3, when the target diameter correction amount is the target diameter actual correction amount, the ADC target diameter correction amount for 10 and 20 mm from the upper end is -0.8 mm, and the direct diameter correction amount is -0.8 mm. The correction amount at the 30mm, 40mm, and 50mm length positions is +1.6mm, the straight body length 60mm, 70mm, and 80mm positions is +4mm, and the straight body length 90mm position is +6.4mm, and the target diameter from the top to 20mm is 159mm. .2mm, the target diameter up to 50mm was changed to 161.6mm, the target diameter up to 80mm was changed to 164mm, and the ADC target diameter up to 90mm was changed to 166.4mm.

次に、図4に示す坩堝直径変化量と引上速度係数の関係図より、上端より20mmまでの位置の引上速度係数は1.01、50mmまでの位置の引上速度係数は0.98、80mmまでの位置は0.94、90mmまでの位置は0.90となり、それぞれの引上速度に引上速度係数を乗じた数値に変更し、LT単結晶育成を行った。 Next, from the relationship diagram between crucible diameter change amount and pulling speed coefficient shown in Fig. 4, the pulling speed coefficient at the position up to 20 mm from the upper end is 1.01, and the pulling speed coefficient at the position up to 50 mm is 0.98. , 0.94 for the position up to 80 mm, and 0.90 for the position up to 90 mm, and the values were changed to the respective pulling speeds multiplied by the pulling speed coefficient, and LT single crystal growth was performed.

直胴部長さ120mmのクラックの無いLT単結晶が得られた。直胴部の直径を測定したところ、結晶直径161mm~157mmで、径不良の発生の無い結晶が得られた。 A crack-free LT single crystal with a straight body length of 120 mm was obtained. When the diameter of the straight body was measured, the crystal diameter was 161 mm to 157 mm, and a crystal with no diameter defect was obtained.

[実施例2]
高周波誘導加熱炉内に使用回数150回のイリジウム坩堝を用いて、図1に示す構成を構築した。構築した坩堝は、坩堝口元が広がり、坩堝側面がくびれるように変形していたために結晶形状不良が発生することが予想された。このため、LT原料を充填する前にキャリパゲージを用いて坩堝内径測定を行い、あらかじめADC目標直径の補正および引上速度の調整を行ってからLT単結晶の育成を行った。
[Example 2]
The configuration shown in FIG. 1 was constructed using an iridium crucible that had been used 150 times in a high-frequency induction heating furnace. The constructed crucible was deformed in such a way that the mouth of the crucible widened and the sides of the crucible became constricted, so it was expected that defects in crystal shape would occur. Therefore, before filling the LT raw material, the inner diameter of the crucible was measured using a caliper gauge, the ADC target diameter was corrected and the pulling speed was adjusted in advance, and then the LT single crystal was grown.

まず、図2に示す4方向の直径を坩堝上端から10mm間隔で測定した。上端より10mm、20mmの位置にあたる坩堝内径変化量は、新品時より+4mmであった。直胴部長さ30mmの原料融液表面位置の坩堝内径変化量は±0mm、40mm、50mm、60mm位置の坩堝直径変化量は-5mm、70、80mm、90mm位置の坩堝内径変化量は-10mmであった。 First, the diameters in the four directions shown in FIG. 2 were measured at 10 mm intervals from the upper end of the crucible. The amount of change in the inner diameter of the crucible at positions 10 mm and 20 mm from the upper end was +4 mm compared to when it was new. The crucible inner diameter change at the surface of the raw material melt with a straight body length of 30 mm is ±0 mm, the crucible inner diameter change at the 40 mm, 50 mm, and 60 mm positions is -5 mm, and the crucible inner diameter change at the 70, 80 mm, and 90 mm positions is -10 mm. there were.

そして、図3に示す坩堝内径変化量とADC目標直径補正量の関係図より、目標直径補正量を目標直径実績補正量として、上端より10mm、20mmの目標直径補正量は-3.2mm、30mm位置の補正量は±0mm、40mm、50mm、60mm位置は+4mm、70mm、80mm、90mm位置は+8mmとなり、上端より20mmまでの目標直径を156.8mm、30mmまでの位置の目標直径を160mm、60mmまでの位置の目標直径を164mm、90mm位置までの目標直径を168mmに設定した。 Then, from the relationship diagram of crucible inner diameter change amount and ADC target diameter correction amount shown in FIG. 3, the target diameter correction amount for 10 mm and 20 mm from the upper end is -3.2 mm and 30 mm, assuming the target diameter correction amount as the target diameter actual correction amount. The position correction amount is ±0mm, 40mm, 50mm, 60mm position is +4mm, 70mm, 80mm, 90mm position is +8mm, target diameter up to 20mm from the top is 156.8mm, target diameter up to 30mm is 160mm, 60mm. The target diameter up to the 90 mm position was set to 164 mm, and the target diameter up to the 90 mm position was 168 mm.

次に、図4に示す坩堝内径変化量と引上速度係数の関係図より、上端より10mm、20mmの引上速度係数は1.05、直胴部長さ30mm位置の引上速度係数は1.00、40mm、50mm、60mm位置の引上速度係数は0.94、70mm、80mm、90mm位置の引上速度係数は0.87となり、それぞれのADCステップの引上速度に調整乗率を乗じた数値に変更した。 Next, from the relationship diagram of crucible inner diameter variation and pulling speed coefficient shown in FIG. 4, the pulling speed coefficient at 10 mm and 20 mm from the upper end is 1.05, and the pulling speed coefficient at a position where the straight body length is 30 mm is 1. The pulling speed coefficient at the 00, 40 mm, 50 mm, and 60 mm positions is 0.94, and the pulling speed coefficient at the 70 mm, 80 mm, and 90 mm positions is 0.87, and the pulling speed of each ADC step is multiplied by the adjustment multiplier. Changed to numerical value.

LT原料を充填し、結晶育成を行ったところ、直胴部長さ120mmのクラックの無いLT単結晶が得られた。直胴部の直径は、160mm~154mmで、径不良の発生の無い結晶が得られた。 When the LT raw material was filled and crystal growth was performed, a crack-free LT single crystal with a straight body length of 120 mm was obtained. The diameter of the straight body was 160 mm to 154 mm, and crystals without diameter defects were obtained.

[実施例3]
使用回数100回のイリジウム坩堝を用いて、実施例1と同様に坩堝内径変化量に応じたADC目標直径の補正および引上速度の調整を行って、LT単結晶育成を20回行った。なお、目標直径補正量は、目標直径実績補正量とした。
[Example 3]
Using an iridium crucible that had been used 100 times, LT single crystal growth was performed 20 times by correcting the ADC target diameter and adjusting the pulling speed in accordance with the amount of change in the crucible inner diameter in the same manner as in Example 1. Note that the target diameter correction amount was the actual target diameter correction amount.

直胴部長さ120mmの径不良の発生及びクラックの無いLT単結晶が18本得られ、育成収率は90%であった。不良内訳は、多結晶が1本、クラック1本であった。 Eighteen LT single crystals with a straight body length of 120 mm and no cracks or defective diameters were obtained, and the growth yield was 90%. The breakdown of defects was one polycrystalline and one crack.

[実施例4]
使用回数100回のイリジウム坩堝を用いて、実施例1と同様に坩堝直径変化量に応じた目標直径算出補正量及び引上速度の調整を行って、LT単結晶育成を20回行った。なお、目標直径補正量は、目標直径算出補正量とした。
[Example 4]
Using an iridium crucible that had been used 100 times, LT single crystal growth was performed 20 times by adjusting the target diameter calculation correction amount and pulling speed according to the amount of change in crucible diameter in the same manner as in Example 1. Note that the target diameter correction amount was the target diameter calculation correction amount.

直胴部長さ120mmの径不良の発生及びクラックの無いLT単結晶が16本得られ、育成収率は80%であった。不良内訳は、多結晶が3本、クラック不良が1本であった。 Sixteen LT single crystals with a straight body length of 120 mm without any diameter defects or cracks were obtained, and the growth yield was 80%. The breakdown of the defects was three due to polycrystalline defects and one defective due to cracking.

[比較例1]
使用回数100回のイリジウム坩堝を用いて、坩堝内径変化量に応じた引上速度の調整のみを行い、ADC目標直径の補正は行わないでLT単結晶育成を20回行った。その他条件は、実施例1と同様とした。
[Comparative example 1]
Using an iridium crucible that has been used 100 times, LT single crystal growth was performed 20 times by adjusting only the pulling speed according to the amount of change in the crucible inner diameter and without correcting the ADC target diameter. Other conditions were the same as in Example 1.

直胴部長さ120mmのクラックの無いLT単結晶が12本得られ、育成収率は60%であった。不良内訳は、多結晶が4本、クラック不良が4本であった。直胴部の直径を測定したところ、直胴部の直径は、163mm~151mmであった。直胴部の一部が153mm未満となり、径不良が発生した。 Twelve crack-free LT single crystals with a straight body length of 120 mm were obtained, and the growth yield was 60%. The breakdown of the defects was that 4 were polycrystalline and 4 were cracked. When the diameter of the straight body part was measured, the diameter of the straight body part was 163 mm to 151 mm. A portion of the straight body was less than 153 mm, resulting in a diameter defect.

このように、本実施例によれば、本実施形態に係る単結晶の製造方法を実施することにより、坩堝10の内径が使用により変化しても、単結晶の製造に影響を与えず、所定の範囲内の均一な径を有する単結晶を製造できることが示された。 As described above, according to this example, by carrying out the method for manufacturing a single crystal according to this embodiment, even if the inner diameter of the crucible 10 changes due to use, it does not affect the manufacturing of the single crystal and can be maintained at a predetermined level. It has been shown that it is possible to produce single crystals with uniform diameters within the range of .

以上説明したように、本発明に係る酸化物単結晶の育成方法によれば、坩堝の内径を測定し、坩堝内径変化量に応じたADC目標直径の補正および引上速度の調整を行うことにより、結晶形状や実効成長距離に起因する多結晶化やクラックなどの結晶不良、および径不良を抑制することが可能となり、生産性の向上、コストダウンが図れる。 As explained above, according to the method for growing an oxide single crystal according to the present invention, the inner diameter of the crucible is measured, and the ADC target diameter is corrected and the pulling speed is adjusted according to the amount of change in the crucible inner diameter. It becomes possible to suppress crystal defects such as polycrystalization and cracks caused by crystal shape and effective growth distance, and diameter defects, thereby improving productivity and reducing costs.

以上、本発明の好ましい実施形態及び実施例について詳説したが、本発明は、上述した実施形態及び実施例に制限されることはなく、本発明の範囲を逸脱することなく、上述した実施例に種々の変形及び置換を加えることができる。 Although the preferred embodiments and examples of the present invention have been described in detail above, the present invention is not limited to the embodiments and examples described above, and can be applied to the examples described above without departing from the scope of the present invention. Various modifications and substitutions may be made.

本発明は、Cz法を用いた単結晶の製造方法に利用することができる。 The present invention can be used in the production of single crystals using the Cz method.

10 坩堝
20 耐火物
30 坩堝台
40 コイルヒータ
50 引上げ軸
51 種結晶保持部
52 引上げ軸駆動用モータ
60 ロードセル
70 チャンバー
80 高周波電源
90 制御部
100 記憶部
10 crucible 20 refractory 30 crucible stand 40 coil heater 50 pulling shaft 51 seed crystal holding section 52 pulling shaft driving motor 60 load cell 70 chamber 80 high frequency power supply 90 control section 100 storage section

Claims (4)

坩堝内に投入された原料を加熱溶融した後に、原料融液表面に種結晶を接触させて、回転させながら引上げることで単結晶を育成するCz法による単結晶の製造方法であって、
引上軸の上部に配置されたロードセルにより結晶重量を測定し、制御周期当たりの重量増加量から結晶直径を算出する工程と、
目標直径との差分から出力を変化させて育成する結晶直径を制御する直径自動制御において、事前に測定した坩堝内径からの坩堝変形量を算出し、前記坩堝変形量に応じて目標直径補正量及び引上速度の補正係数を算出する工程と、
前記目標直径補正量により補正した目標直径及び前記引上速度の補正係数により補正した引上速度で前記直径自動制御を行う工程と、を有し、
前記単結晶がタンタル酸リチウム、ニオブ酸リチウム、およびイットリウムアルミニウムガーネットから選択された1種である単結晶の製造方法。
A method for producing a single crystal by the Cz method, in which a raw material put into a crucible is heated and melted, and then a seed crystal is brought into contact with the surface of the raw material melt and the single crystal is grown by pulling up while rotating, the method comprising:
a step of measuring the crystal weight with a load cell placed above the pulling shaft and calculating the crystal diameter from the amount of weight increase per control cycle;
In automatic diameter control that controls the diameter of a crystal to be grown by changing the output based on the difference from the target diameter, the amount of crucible deformation from the crucible inner diameter measured in advance is calculated, and the target diameter is corrected according to the amount of crucible deformation. a step of calculating a correction coefficient for the amount and the pulling speed;
performing the automatic diameter control with the target diameter corrected by the target diameter correction amount and the pulling speed corrected by the pulling speed correction coefficient,
A method for producing a single crystal, wherein the single crystal is one selected from lithium tantalate, lithium niobate, and yttrium aluminum garnet.
前記目標直径補正量は、目標直径実績補正量である請求項1に記載の単結晶の製造方法。 2. The method for manufacturing a single crystal according to claim 1, wherein the target diameter correction amount is an actual target diameter correction amount. 前記目標直径補正量の算出は、前記坩堝変形量が増加変形か又は縮小変形かに応じて縮小補正か増加補正かが異なる請求項2に記載の単結晶の製造方法。 3. The single crystal manufacturing method according to claim 2, wherein the calculation of the target diameter correction amount differs depending on whether the crucible deformation amount is an increase or a decrease. 前記坩堝変形量に応じて前記目標直径補正量及び前記引上速度の補正係数を算出する工程は、予め定められた換算式又は換算テーブルに基づいて行う請求項1又は2に記載の単結晶の製造方法。 3. The method for producing a single crystal according to claim 1, wherein the step of calculating the target diameter correction amount and the pulling rate correction coefficient in accordance with the amount of crucible deformation is performed based on a predetermined conversion formula or conversion table.
JP2020026157A 2020-02-19 2020-02-19 Single crystal manufacturing method Active JP7456182B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020026157A JP7456182B2 (en) 2020-02-19 2020-02-19 Single crystal manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020026157A JP7456182B2 (en) 2020-02-19 2020-02-19 Single crystal manufacturing method

Publications (2)

Publication Number Publication Date
JP2021130573A JP2021130573A (en) 2021-09-09
JP7456182B2 true JP7456182B2 (en) 2024-03-27

Family

ID=77552044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020026157A Active JP7456182B2 (en) 2020-02-19 2020-02-19 Single crystal manufacturing method

Country Status (1)

Country Link
JP (1) JP7456182B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003321295A (en) 2002-04-30 2003-11-11 Shin Etsu Handotai Co Ltd METHOD FOR PRODUCING InP SINGLE CRYSTAL AND InP SINGLE CRYSTAL
JP2005239442A (en) 2004-02-24 2005-09-08 Oxide Corp Manufacturing method of oxide single crystal
WO2017110966A1 (en) 2015-12-25 2017-06-29 株式会社Sumco Crucible managing system, crucible managing method, method for manufacturing silica glass crucible, method for manufacturing silicon ingot, and method for manufacturing homoepitaxial wafer
JP2019503972A (en) 2016-02-05 2019-02-14 ジルトロニック アクチエンゲゼルシャフトSiltronic AG Method for determining and adjusting the diameter of a single crystal during pulling of the single crystal
JP2019038712A (en) 2017-08-24 2019-03-14 住友金属鉱山株式会社 Evaluation method, production method of single crystal, evaluation device, evaluation program, and single crystal production apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003321295A (en) 2002-04-30 2003-11-11 Shin Etsu Handotai Co Ltd METHOD FOR PRODUCING InP SINGLE CRYSTAL AND InP SINGLE CRYSTAL
JP2005239442A (en) 2004-02-24 2005-09-08 Oxide Corp Manufacturing method of oxide single crystal
WO2017110966A1 (en) 2015-12-25 2017-06-29 株式会社Sumco Crucible managing system, crucible managing method, method for manufacturing silica glass crucible, method for manufacturing silicon ingot, and method for manufacturing homoepitaxial wafer
JP2019503972A (en) 2016-02-05 2019-02-14 ジルトロニック アクチエンゲゼルシャフトSiltronic AG Method for determining and adjusting the diameter of a single crystal during pulling of the single crystal
JP2019038712A (en) 2017-08-24 2019-03-14 住友金属鉱山株式会社 Evaluation method, production method of single crystal, evaluation device, evaluation program, and single crystal production apparatus

Also Published As

Publication number Publication date
JP2021130573A (en) 2021-09-09

Similar Documents

Publication Publication Date Title
JP6583142B2 (en) Method and apparatus for producing silicon single crystal
JP2009007203A (en) Oxide single crystal growth device and method for manufacturing oxide single crystal using the same
JP2021109826A (en) Crucible deformation quantity measuring method and method of manufacturing oxide single crystal
JP7456182B2 (en) Single crystal manufacturing method
KR101862157B1 (en) Method and apparatus for manufacturing silicon monocrystalline ingot
JP7115252B2 (en) Oxide single crystal production method and crystal growth apparatus
JP5051033B2 (en) Method for producing silicon single crystal
JP2019094251A (en) Method for manufacturing single crystal
JP7310339B2 (en) Method for growing lithium niobate single crystal
JP2009292662A (en) Method for forming shoulder in growing silicon single crystal
JP7238709B2 (en) Manufacturing method of silicon single crystal
TW202231945A (en) Method for estimating oxygen concentration in silicon single crystal, method for producing silicon single crystal, and apparataus for producing silicon single crystal
JP7077991B2 (en) CZ silicon single crystal manufacturing method
JP6428574B2 (en) Method for producing silicon single crystal
JP2017043510A (en) Manufacturing method and apparatus for silicon single crystal
JP2022001541A (en) Method for heating iridium crucible for single crystal growth
JP7259242B2 (en) Method for producing lithium niobate single crystal
JP4785762B2 (en) Single crystal manufacturing method
JP4735594B2 (en) Oxide single crystal growth method
JP2019052067A (en) Single crystal growth apparatus
JP2021187690A (en) Crucible shape correction method
JP2022070679A (en) Shape correction method for crucible, and crucible correction tool
JP6993287B2 (en) Method for producing a single crystal
JP7275674B2 (en) Method for growing lithium niobate single crystal
KR20100071507A (en) Apparatus, method of manufacturing silicon single crystal and method of controlling oxygen density of silicon single crystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240226

R150 Certificate of patent or registration of utility model

Ref document number: 7456182

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150