JP7456076B2 - Compound, method for producing compound, and organic light emitting device - Google Patents

Compound, method for producing compound, and organic light emitting device Download PDF

Info

Publication number
JP7456076B2
JP7456076B2 JP2019179505A JP2019179505A JP7456076B2 JP 7456076 B2 JP7456076 B2 JP 7456076B2 JP 2019179505 A JP2019179505 A JP 2019179505A JP 2019179505 A JP2019179505 A JP 2019179505A JP 7456076 B2 JP7456076 B2 JP 7456076B2
Authority
JP
Japan
Prior art keywords
compound
present disclosure
solvent
light
naphthalene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019179505A
Other languages
Japanese (ja)
Other versions
JP2021054744A5 (en
JP2021054744A (en
Inventor
稔 山路
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gunma University NUC
Original Assignee
Gunma University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gunma University NUC filed Critical Gunma University NUC
Priority to JP2019179505A priority Critical patent/JP7456076B2/en
Publication of JP2021054744A publication Critical patent/JP2021054744A/en
Publication of JP2021054744A5 publication Critical patent/JP2021054744A5/ja
Application granted granted Critical
Publication of JP7456076B2 publication Critical patent/JP7456076B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

本開示は、新規化合物、化合物の製造方法、青色発光材料及び有機発光素子に関する。 The present disclosure relates to a novel compound, a method for producing the compound, a blue light-emitting material, and an organic light-emitting device.

高効率、省エネルギー、及び低環境負荷という要請が高まり、近年、従来の無機発光材料よりも利点の多い有機電界発光(有機エレクトロルミネッセンス:以下、有機ELと称することがある)を利用したデバイスが注目され、一般の照明においても、蛍光灯から白色発光ダイオード(light emitting diode:LED)光への転換が進んでいる。これは、水銀製品の代替品として、蛍光灯から白色有機EL照明への転換が要求されていることに起因する。
有機EL発光デバイスの発光層、白色LED照明等に用いる発光材料は、赤色発光材料、緑色発光材料、及び青色発光材料の光の三原色である発光体がバランス良く組み合わされることが重要である。特に白色LED照明の場合には、光の三原色の発光材料のバランスが良好であることが重要であり、光の三原色の蛍光発光材料のバランスが良好ではない場合、良好な白色光を得ることが困難であるいう問題がある。
With the increasing demand for high efficiency, energy saving, and low environmental impact, devices using organic electroluminescence (hereinafter sometimes referred to as organic EL), which has many advantages over conventional inorganic light emitting materials, have attracted attention in recent years. As a result, even in general lighting, there is a shift from fluorescent lamps to white light emitting diodes (LEDs). This is due to the demand for switching from fluorescent lamps to white organic EL lighting as a substitute for mercury products.
It is important that the light-emitting materials used for the light-emitting layer of an organic EL light-emitting device, white LED lighting, etc. have a well-balanced combination of light-emitting materials that are the three primary colors of light: red light-emitting material, green light-emitting material, and blue light-emitting material. Especially in the case of white LED lighting, it is important that the luminescent materials of the three primary colors of light have a good balance, and if the balance of the fluorescent luminescent materials of the three primary colors of light is not good, it is difficult to obtain good white light. The problem is that it is difficult.

光の三原色のうち、波長の比較的長い赤色と緑色の光を発する有機化合物は数多く知られている。
しかし、発光材料のなかでも、青色発光する化合物は限定的であり、例えば、溶媒中では青色発光する材料は知られているが、固体で青色発光する材料は少なく、固体状態で波長の短い高エネルギーの青色で発光する有機芳香族化合物はあまり知られていない。
青色発光材料としては、有機EL用として有用とされる新規な芳香族有機アミン誘導体が提案されている(特許文献1参照)。
色純度のよい青色発光を得ることを課題として、ナフタレン骨格が3つ以上連続して結合した化合物としてのオリゴナフタレン誘導体及びそれを用いた発光素子が提案され、短波長の発光が可能であることが記載されている(特許文献2参照)。
また、本発明者は、先に青色個体発光材料として有用なボロンジケトン錯体を合成し、ボロンジケトン錯体を使用したOLEDデバイス(Organic Lighting Emitting Diode Device)の作製を行った(特許文献3及び非特許文献1参照)。
Of the three primary colors of light, many organic compounds are known to emit red and green light, which have relatively long wavelengths.
However, among light-emitting materials, compounds that emit blue light are limited. For example, materials that emit blue light in a solvent are known, but there are few materials that emit blue light in solid state, and Organic aromatic compounds that emit blue energy are not well known.
As a blue light-emitting material, a novel aromatic organic amine derivative that is useful for organic EL has been proposed (see Patent Document 1).
With the aim of obtaining blue light emission with good color purity, oligonaphthalene derivatives, which are compounds in which three or more naphthalene skeletons are bonded consecutively, and light-emitting devices using the same have been proposed, and are capable of emitting light at short wavelengths. is described (see Patent Document 2).
In addition, the present inventor previously synthesized a boron diketone complex useful as a blue solid-state luminescent material, and produced an OLED device (Organic Lighting Emitting Diode Device) using the boron diketone complex (Patent Document 3 and Non-Patent Document 3). (See Reference 1).

Chem.Asian J.2017、Vol.12、P2299-2303.Chem. Asian J. 2017, Vol. 12, P2299-2303.

特開2016-147855号公報JP 2016-147855 A 特開2006-151966号公報Japanese Patent Application Publication No. 2006-151966 再公表2017-065219号公報Re-publication No. 2017-065219

特許文献1に記載の青色発光材料では、比較的長波長側の波長450nm~480nm程度のペールブルーの発光は得られる。しかし、バランスのよい白色光を得るためには、青色発光材料として、極大吸収波長が380nm~460nmといった比較的短波長側に吸収を有する深い青色の発光を実現する材料が求められており、特許文献1に記載の青色発光材料では、発光波長の点でなお改良が必要であった。
引用文献2には、ナフタレン骨格が3つ又は4つ連続して結合した化合物が記載されており、短波長の発光が可能であることが確認されてはいるが、合成経路が複雑であり、中間体の収率が低いという問題がある。また、青色発光は確認されているが、発光効率までは評価されていない。
特許文献3及び非特許文献1に記載のボロンジケトン錯体化合物は、固体にて深い青色発光が可能であり、分子量も300以上であって、真空蒸着法により安定な膜が形成できるため、デバイスの製造に好適ではある。しかし、原料の入手しやすさ、合成経路が複雑であることなど、効率のよい発光材料を製造するという観点では、なお、改良の余地があった。
With the blue light emitting material described in Patent Document 1, pale blue light emission with a relatively long wavelength of about 450 nm to 480 nm can be obtained. However, in order to obtain well-balanced white light, there is a need for a material that emits deep blue light with a maximum absorption wavelength in the relatively short wavelength range of 380 nm to 460 nm. The blue light-emitting material described in Document 1 still required improvement in terms of emission wavelength.
Cited Document 2 describes a compound in which three or four naphthalene skeletons are bonded consecutively, and although it has been confirmed that short wavelength light emission is possible, the synthesis route is complicated; There is a problem that the yield of the intermediate is low. Furthermore, although blue light emission has been confirmed, the luminous efficiency has not been evaluated.
The boron diketone complex compounds described in Patent Document 3 and Non-Patent Document 1 can emit deep blue light in solid state, have a molecular weight of 300 or more, and can form stable films by vacuum evaporation, so they are suitable for devices. It is suitable for manufacturing. However, there is still room for improvement in terms of producing efficient light-emitting materials, such as the availability of raw materials and the complexity of the synthesis route.

本発明の一実施形態が解決しようとする課題は、極大吸収波長が380nm~460nmの深い青色の発光を実現することができ、効率のよい製造が可能な新規化合物及び青色発光材料を提供することである。
本発明の他の実施形態が解決しようとする課題は、極大吸収波長が380nm~460nmの深い青色の発光を実現することができる化合物を高収率で簡易に得ることができる化合物の製造方法を提供することである。
本発明の別の実施形態が解決しようとする課題は、極大吸収波長が380nm~460nmの深い青色の発光を実現する化合物を用いた有機発光素子を提供することである。
The problem to be solved by an embodiment of the present invention is to provide a new compound and a blue light-emitting material that can realize deep blue light emission with a maximum absorption wavelength of 380 nm to 460 nm and can be manufactured efficiently. It is.
The problem to be solved by other embodiments of the present invention is to develop a method for producing a compound that can easily obtain a compound capable of emitting deep blue light with a maximum absorption wavelength of 380 nm to 460 nm in high yield. It is to provide.
A problem to be solved by another embodiment of the present invention is to provide an organic light emitting device using a compound that emits deep blue light with a maximum absorption wavelength of 380 nm to 460 nm.

課題を解決するための手段は、以下の態様が含まれる。 Means for solving the problem include the following aspects.

<1> 下記式(I)で表される化合物。 <1> A compound represented by the following formula (I).


式(I)中、nは0又は1を表す。
<2> 前記式(I)で表される化合物は、下記式(I-2)で表される化合物である<1>に記載の化合物。
In formula (I), n represents 0 or 1.
<2> The compound represented by the formula (I) is the compound according to <1>, which is a compound represented by the following formula (I-2).


<3> 分子量が300以上である<1>又は<2>に記載の化合物。
<4> 下記式(I)で表される青色発光材料。
<3> The compound according to <1> or <2>, having a molecular weight of 300 or more.
<4> A blue light-emitting material represented by the following formula (I):


式(I)中、nは0又は1を表す。
<5> 2,6-ジブロモナフタレン(a1)又は2,6-ジブロモナフタレン(a2)と、1-ブロモナフタレンボロン酸(b)とを、炭酸カリウム及びテトラ(トリフェニルリン)パラジウム(0)の存在下で反応させる工程を含む、<2>に記載の化合物の製造方法。
In formula (I), n represents 0 or 1.
<5> 2,6-dibromonaphthalene (a1) or 2,6-dibromonaphthalene (a2) and 1-bromonaphthaleneboronic acid (b) are combined with potassium carbonate and tetra(triphenylphosphorus)palladium (0). The method for producing the compound according to <2>, comprising a step of reacting in the presence of the compound.


<6> <1>~<3>のいずれか1つに記載の化合物、若しくは、<4>に記載の青色発光材料を含む有機発光素子。 <6> An organic light emitting device comprising the compound according to any one of <1> to <3> or the blue light emitting material according to <4>.

本発明の一実施形態によれば、極大吸収波長が380nm~460nmの深い青色の発光を実現することができ、効率のよい製造が可能な新規化合物及び青色発光材料を提供することができる。
本発明の他の実施形態によれば、極大吸収波長が380nm~460nmの深い青色の発光を実現することができる化合物を高収率で簡易に得ることができる化合物の製造方法を提供することができる。
本発明の別の実施形態によれば、極大吸収波長が380nm~460nmの深い青色の発光を実現する化合物を用いた有機発光素子を提供することができる。
According to one embodiment of the present invention, it is possible to provide a novel compound and a blue light-emitting material that can be efficiently produced and that can realize deep blue light emission with a maximum absorption wavelength of 380 nm to 460 nm.
According to another embodiment of the present invention, it is possible to provide a method for producing a compound that can easily obtain a compound capable of realizing deep blue light emission having a maximum absorption wavelength of 380 nm to 460 nm in high yield.
According to another embodiment of the present invention, it is possible to provide an organic light-emitting device using a compound that realizes deep blue light emission with a maximum absorption wavelength of 380 nm to 460 nm.

実施例1~実施例4で得た例示化合物2611、2612、2711及び2712のクロロホルム溶媒中における吸収スペクトル、クロロホルム溶媒中における発光スペクトル、及び、固体発光スペクトルを示すグラフである。1 is a graph showing absorption spectra in chloroform solvent, emission spectra in chloroform solvent, and solid emission spectra of exemplary compounds 2611, 2612, 2711, and 2712 obtained in Examples 1 to 4. 実施例1で得た例示化合物2611のH NMRスペクトルである。1 is a 1 H NMR spectrum of Exemplary Compound 2611 obtained in Example 1. 実施例1で得た例示化合物2611の13C NMRスペクトルである。13 is a 13 C NMR spectrum of Exemplified Compound 2611 obtained in Example 1. 実施例2で得た例示化合物2612の中間体である2-ブロモ-6-(1-ナフチル)ナフタレン(26B1)のH NMRスペクトルである。1 is a 1 H NMR spectrum of 2-bromo-6-(1-naphthyl)naphthalene (26B1), which is an intermediate of Exemplified Compound 2612 obtained in Example 2. 実施例2で得た例示化合物2612の中間体である2-ブロモ-6-(1-ナフチル)ナフタレン(26B1)の13C NMRスペクトルである。 13C NMR spectrum of 2-bromo-6-(1-naphthyl)naphthalene (26B1), which is an intermediate of Exemplified Compound 2612 obtained in Example 2. 実施例2で得た例示化合物2612のH NMRスペクトルである。1 is a 1 H NMR spectrum of Exemplified Compound 2612 obtained in Example 2. 実施例2で得た例示化合物2612の13C NMRスペクトルである。13 is a 13 C NMR spectrum of Exemplary Compound 2612 obtained in Example 2. 実施例3で例示化合物2711とともに得た、例示化合物2712の中間体である2-ブロモ-7-(1-ナフチル)ナフタレン(27B1)のH NMRペクトルである。This is a 1 H NMR spectrum of 2-bromo-7-(1-naphthyl)naphthalene (27B1), which is an intermediate of Exemplified Compound 2712, obtained together with Exemplified Compound 2711 in Example 3. 実施例3で例示化合物2711とともに得た、例示化合物2712の中間体である2-ブロモ-7-(1-ナフチル)ナフタレン(27B1)の13C NMRスペクトルである。This is a 13 C NMR spectrum of 2-bromo-7-(1-naphthyl)naphthalene (27B1), which is an intermediate of Exemplified Compound 2712, obtained together with Exemplified Compound 2711 in Example 3. 実施例3で得た例示化合物2711のH NMRスペクトルである。1 is a 1 H NMR spectrum of Exemplified Compound 2711 obtained in Example 3. 実施例3で得た例示化合物2711の13C NMRスペクトルである。1 is a 13 C NMR spectrum of the exemplary compound 2711 obtained in Example 3. 実施例4で得た例示化合物2712のH NMRスペクトルである。1 is a 1 H NMR spectrum of Exemplified Compound 2712 obtained in Example 4. 実施例4で得た例示化合物2712の13C NMRスペクトルである。1 is a 13 C NMR spectrum of the exemplary compound 2712 obtained in Example 4.

以下、本開示の化合物、化合物の製造方法、及び有機発光素子について詳細に説明する。
本開示において「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を意味する。
本開示における「固形分」の語は、溶剤を除く成分を意味し、溶剤以外の低分子量成分などの液状の成分も本明細書における「固形分」に含まれる。
本開示において「溶媒」とは、水、有機溶剤、及び水と有機溶剤との混合溶媒を意味する。
本開示において「工程」との語は、独立した工程だけでなく、他の工程と明確に区別できない場合であっても、その工程の所期の目的が達成されれば、本用語に含まれる。
本開示において「置換基」の表記は、特に断りのない限り、無置換のもの、置換基を更に有するものを包含する意味で用いられ、例えば「アルキル基」と表記した場合、無置換のアルキル基と置換基を更に有するアルキル基の双方を包含する意味で用いられる。その他の置換基についても同様である。
本開示中に段階的に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示中に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、実施例に示されている値に置き換えてもよい。
また、本開示において、2以上の好ましい態様の組み合わせは、より好ましい態様である。
Hereinafter, the compound, the method for producing the compound, and the organic light-emitting device of the present disclosure will be described in detail.
In the present disclosure, a numerical range indicated using "~" means a range that includes the numerical values listed before and after "~" as the minimum and maximum values, respectively.
The term "solid content" in the present disclosure refers to components excluding the solvent, and liquid components such as low molecular weight components other than the solvent are also included in the "solid content" herein.
In the present disclosure, "solvent" means water, an organic solvent, and a mixed solvent of water and an organic solvent.
In this disclosure, the term "step" is used not only to refer to an independent process, but also to include a process that is not clearly distinguishable from other processes, as long as the intended purpose of the process is achieved. .
In the present disclosure, unless otherwise specified, the expression "substituent" is used to include unsubstituted groups and those that further have a substituent. For example, when expressed as "alkyl group", unsubstituted alkyl It is used in a meaning that includes both a group and an alkyl group further having a substituent. The same applies to other substituents.
In the numerical ranges described step by step in this disclosure, the upper limit or lower limit described in one numerical range may be replaced with the upper limit or lower limit of another numerical range described step by step. Moreover, in the numerical ranges described in this disclosure, the upper limit or lower limit described in a certain numerical range may be replaced with the value shown in the Examples.
Furthermore, in the present disclosure, a combination of two or more preferred embodiments is a more preferred embodiment.

≪化合物≫
本開示の化合物は、下記式(I)表される化合物である。
下記式(I)で表される化合物は、構造新規な化合物であり、後述するように、青色発光材料として有用である。
≪Compound≫
The compound of the present disclosure is a compound represented by the following formula (I).
The compound represented by the following formula (I) is a compound with a novel structure, and is useful as a blue light-emitting material, as described below.


前記式(I)中、nは0又は1を表し、合成適性の観点から、nは0であることが好ましい。
即ち、式(I)で表される化合物は、下記式(I-2)で表される化合物であることが好ましい。
In the formula (I), n represents 0 or 1, and from the viewpoint of suitability for synthesis, n is preferably 0.
That is, the compound represented by formula (I) is preferably a compound represented by the following formula (I-2).


式(I)及び式(I-2)は、二つのナフタレンの結合位置が以下に示す部分構造を有することが重要と考えている。 It is considered important that the bonding positions of the two naphthalenes in formula (I) and formula (I-2) have the partial structure shown below.


上記部分構造のナフタレン骨格において、3つめのナフタレン骨格の結合位置は、1、3、4、5、6、7、及び8のいずれであってもよいが、合成適性及び得られる化合物の極大吸収波長の観点から、結合位置は、5、6、又は7であることが好ましく、6又は7であることがより好ましい。 In the naphthalene skeleton of the above partial structure, the bonding position of the third naphthalene skeleton may be any of 1, 3, 4, 5, 6, 7, and 8, but depending on synthesis suitability and maximum absorption of the resulting compound. From the viewpoint of wavelength, the bonding position is preferably 5, 6, or 7, more preferably 6 or 7.

本開示の化合物は、極大吸収波長が380nm~460nmの深い青色の発光を実現することができる化合物であり、青色発光材料として好適に用いられる。
本開示の化合物の溶媒中での発光波長及び固体状態での発光波長は、いずれも、380nm~460nmの範囲であることが好ましく、380nm以上450nm未満の範囲であることがより好ましく、390nm~430nmの範囲であることがさらに好ましい。
The compound of the present disclosure is a compound that can realize deep blue light emission with a maximum absorption wavelength of 380 nm to 460 nm, and is suitably used as a blue light emitting material.
The emission wavelength of the compound of the present disclosure in a solvent and in a solid state are both preferably in the range of 380 nm to 460 nm, more preferably in the range of 380 nm or more and less than 450 nm, and 390 nm to 430 nm. More preferably, the range is within the range of .

ナフタレンは有機溶媒中、0.23の量子収率で蛍光を発するが、固体状態では発光しない。本発明者は、ナフタレンを炭素-炭素結合で二量化することにより、溶液状態よりも長波長領域で、高効率で固体発光することを見出した。本開示においては、分子量が300以上であり、ナフタレンを発光原子団(クロモファー)として有する青色発光を示す化合物の作製を目指した。その結果、ナフタレンを炭素-炭素結合で二量化した場合の結合位置から、上記構造の二量体構造に着目し、当該二量体に、さらに1つ又は2つのナフタレン骨格を導入することで、有機溶媒中及び固体状態において、好ましい極大吸収波長を有する化合物を見出した。 Naphthalene emits fluorescence with a quantum yield of 0.23 in organic solvents, but does not emit light in the solid state. The present inventors have discovered that by dimerizing naphthalene with carbon-carbon bonds, solid-state luminescence can be produced with high efficiency in a longer wavelength region than in a solution state. In the present disclosure, we aimed to produce a compound that has a molecular weight of 300 or more and has naphthalene as a luminescent atomic group (chromophore) and emits blue light. As a result, we focused on the dimer structure of the above structure from the bond position when naphthalene was dimerized with a carbon-carbon bond, and by introducing one or two more naphthalene skeletons into the dimer, We have found a compound that has a preferable maximum absorption wavelength in an organic solvent and in a solid state.

溶媒中での化合物の極大発光波長は、例えば、絶対PL光量子収率測定装置(C9920-02、浜松フォトニクス(株)製)を用いて行なうことができる。
また、固体状態の化合物の極大発光波長の測定は、固体状態の発光材料の粉末状物を測定対象とし、例えば、絶対PL光量子収率測定装置(C9920-02、浜松フォトニクス(株)製)を用いて行なうことができる。絶対PL光量子収率測定装置を用いることで、従来の相対的な計測方法に比べて、信頼性の高い最大発光波長及び蛍光収率の値を得ることができる。
The maximum emission wavelength of a compound in a solvent can be measured using, for example, an absolute PL photon yield measuring device (C9920-02, manufactured by Hamamatsu Photonics Co., Ltd.).
In addition, the maximum emission wavelength of a compound in a solid state can be measured using a powdered material of a solid state luminescent material, for example, using an absolute PL photon yield measuring device (C9920-02, manufactured by Hamamatsu Photonics Co., Ltd.). It can be done using By using the absolute PL photon yield measurement device, more reliable maximum emission wavelength and fluorescence yield values can be obtained than with conventional relative measurement methods.

また、化合物を青色発光材料として使用する場合における重要な物性の一つである発光寿命及び速度定数は、例えば、小型蛍光寿命測定装置(TAU、浜松フォトニクス(株)製)を用いて、単一光子計測法により測定することができる。測定対象である試料は、既述の如く、発光材料の粉末状物を測定試料として行なう。単一光子計測法における励起光源は、パルス化したLEDランプを用いることができる。 In addition, the luminescence lifetime and rate constant, which are one of the important physical properties when using a compound as a blue-emitting material, can be measured using a compact fluorescence lifetime measuring device (TAU, manufactured by Hamamatsu Photonics Co., Ltd.). It can be measured by photon counting. As described above, the sample to be measured is a powdered luminescent material. A pulsed LED lamp can be used as an excitation light source in the single photon measurement method.

なお、化合物を、青色発光材料として、例えば、有機EL等の作製に用いる際、発光層は真空蒸着法により形成させる場合が多い。発光層の耐久性の観点からは、青色発光材料としての本開示の化合物の分子量は300以上であることが好ましく、350以上であることがより好ましい。 Note that when the compound is used as a blue light-emitting material, for example, in producing an organic EL or the like, the light-emitting layer is often formed by a vacuum evaporation method. From the viewpoint of durability of the light emitting layer, the molecular weight of the compound of the present disclosure as a blue light emitting material is preferably 300 or more, more preferably 350 or more.

以下、本開示の化合物の例示化合物を挙げるが、本開示は、以下の例示化合物に限定されない。
上記式(I)で表される化合物であって、式(I-2)で表される化合物としては、例えば、下記例示化合物2611、2612、2711、2712等が挙げられる。
下記例示化合物は、いずれもナフタレン骨格を3つ含む化合物であり、分子量は380.49である。
Exemplary compounds of the compounds of the present disclosure are listed below, but the present disclosure is not limited to the following exemplary compounds.
Examples of the compound represented by the above formula (I) and the compound represented by the formula (I-2) include the following exemplified compounds 2611, 2612, 2711, and 2712.
The following exemplified compounds are all compounds containing three naphthalene skeletons and have a molecular weight of 380.49.


上記例示化合物のなかでも、発光波長、安定性、合成のし易さの観点から、例示化合物2612及び例示化合物2612が好ましく、例示化合物2611がより好ましい。
従って、青色発光材料としては、例示化合物2612及び例示化合物2612を含むことが好ましく、例示化合物2611を含むことがより好ましい。
Among the above exemplary compounds, exemplary compound 2612 and exemplary compound 2612 are preferable, and exemplary compound 2611 is more preferable, from the viewpoint of emission wavelength, stability, and ease of synthesis.
Therefore, the blue light-emitting material preferably contains the exemplified compound 2612 and the exemplified compound 2612, and more preferably contains the exemplified compound 2611.

次に、式(1)で表される化合物であって、式(I-2)に含まれない化合物、即ち、式(I)におけるnが1であって、分子内にナフタレン骨格を4つ有する化合物の例示化合物を挙げる。分子内にナフタレン骨格を4つ有する例示化合物としては、下記例示化合物126261、126262、126271、126272、127271、127272等が挙げられる。
下記例示化合物は、いずれもナフタレン骨格を4つ含む化合物であり、分子量は506.65である。
Next, exemplary compounds that are represented by formula (1) but are not included in formula (I-2), i.e., compounds in which n in formula (I) is 1 and which have four naphthalene skeletons in the molecule, are listed below. Exemplary compounds having four naphthalene skeletons in the molecule include the following exemplary compounds 126261, 126262, 126271, 126272, 127271, 127272, etc.
The following exemplary compounds all contain four naphthalene skeletons and have a molecular weight of 506.65.


式(I)で表される上記各例示化合物は、ナフタレン骨格を少なくとも3つ有するため、いずれも分子量が300以上であり、固体青色発光材料として使用する場合に、耐久性が良好な発光層の形成が可能であるという利点を有する化合物である。
従って、後述の有機発光素子などに、本開示の化合物を青色発光材料として適用する場合、固体状態の薄膜を作製することができる。得られた固体状態の薄膜を電極として、例えば、電子デバイスに適用する場合にも、耐久性が良好であり、且つ、光子を効率よく波長変換して青色光を発光させることが可能となるという効果を奏する。
Each of the above-mentioned exemplified compounds represented by formula (I) has at least three naphthalene skeletons, so all have a molecular weight of 300 or more, and when used as a solid blue light-emitting material, they are suitable for forming a light-emitting layer with good durability. It is a compound that has the advantage that it can be formed.
Therefore, when the compound of the present disclosure is applied as a blue light-emitting material to an organic light-emitting device described below, etc., a solid-state thin film can be produced. When the resulting solid-state thin film is used as an electrode in, for example, electronic devices, it has good durability and can efficiently convert photons into wavelengths to emit blue light. be effective.

≪化合物の製造方法≫
式(I)で表される化合物は、入手容易な化合物を原料として、合成することができる。本開示の化合物の製造方法には特に制限はなく、公知の製造方法により得ることができる。
なかでも、収率がより良好であるという観点から、「Suzuki coupling」を適用する、下記本開示の製造方法により製造されることが好ましい。
本開示の化合物の製造方法は、2,6-ジブロモナフタレン(a1)又は2,7-ジブロモナフタレン(a2)と、1-ブロモナフタレンボロン酸(b)とを、炭酸カリウム〔KCO〕及びテトラ(トリフェニルリン)パラジウム(0)〔Pd(PPh〕の存在下で反応させる工程を含む。ここで、Phはフェニル基を表す。
≪Method for producing compound≫
The compound represented by formula (I) can be synthesized using readily available compounds as raw materials. There are no particular limitations on the method for producing the compound of the present disclosure, and the compound can be obtained by any known production method.
Among these, from the viewpoint of better yield, it is preferable to produce by the production method of the present disclosure below, which applies "Suzuki coupling".
The method for producing the compound of the present disclosure includes combining 2,6-dibromonaphthalene (a1) or 2,7-dibromonaphthalene (a2) and 1-bromonaphthaleneboronic acid (b) with potassium carbonate [K 2 CO 3 ]. and tetra(triphenylphosphorus)palladium(0) [Pd(PPh 3 ) 4 ]. Here, Ph represents a phenyl group.

本開示の製造方法の一例である、例示化合物2611の合成スキームを以下に示す。なお、化合物の製造方法の詳細については、実施例にて合成例を挙げて説明する。 A synthetic scheme for Exemplified Compound 2611, which is an example of the production method of the present disclosure, is shown below. Note that details of the method for producing the compound will be explained in Examples by giving synthetic examples.

本開示の化合物の製造方法によれば、出発物質として、入手容易なジブロモナフタレン、例えば、2,6-ジブロモナフタレン(a1)又は2,7-ジブロモナフタレン(a2)と、1-ブロモナフタレンボロン酸(b)とを用いて本開示の化合物を合成することができる。具体的には、例えば、例示化合物2611では、上記スキームに示すように、1段階の反応で目的とする例示化合物2611を得ることができる。
さらに、上記スキームにおいて、反応温度及び反応時間のいずれかを制御することで、下記合成スキームに示すように、例示化合物2611と、例示化合物2612を合成するための中間体である26B1を得ることができる。
その後、中間体26B1を、さらに2-ブロモナフタレンボロン酸(b2)と反応させることで、溶媒、触媒等が同じである2段階の反応工程により、高収率で例示化合物2612を得ることができる。
According to the method for producing a compound of the present disclosure, easily available dibromonaphthalene, such as 2,6-dibromonaphthalene (a1) or 2,7-dibromonaphthalene (a2), and 1-bromonaphthaleneboronic acid are used as starting materials. (b) can be used to synthesize the compounds of the present disclosure. Specifically, for example, the desired exemplary compound 2611 can be obtained through a one-step reaction as shown in the above scheme.
Furthermore, in the above scheme, by controlling either the reaction temperature or reaction time, it is possible to obtain 26B1, which is an intermediate for synthesizing exemplified compound 2611 and exemplified compound 2612, as shown in the synthesis scheme below. can.
Thereafter, by further reacting intermediate 26B1 with 2-bromonaphthaleneboronic acid (b2), exemplified compound 2612 can be obtained in high yield through a two-step reaction process using the same solvent, catalyst, etc. .


次に、ナフタレン骨格を4つ有する化合物の合成スキームについて説明する。以下のナフタレン骨格を4つ有する化合物の合成もまた、「Suzuki coupling」を適用して、ナフタレン骨格を3つ有する化合物の合成と同様にして行うことができる。 Next, a synthesis scheme of a compound having four naphthalene skeletons will be explained. The following synthesis of a compound having four naphthalene skeletons can also be performed in the same manner as the synthesis of a compound having three naphthalene skeletons by applying "Suzuki coupling."

まず、2,6-ジブロモナフタレン、2,7-ジブロモナフタレンなどのジブロモナフタレン(a)と、1-ブロモナフタレンボロン酸(b)とを用いてナフタレン骨格を2つ有する中間体NNB1を得る。上記反応を、炭酸カリウム〔KCO〕及びテトラ(トリフェニルリン)パラジウム(0)〔Pd(PPh〕の存在下で行う点は、ナフタレン骨格を3つ有する化合物の合成と同様である。 First, an intermediate NNB1 having two naphthalene skeletons is obtained using dibromonaphthalene (a) such as 2,6-dibromonaphthalene or 2,7-dibromonaphthalene and 1-bromonaphthaleneboronic acid (b). The above reaction is carried out in the presence of potassium carbonate [K 2 CO 3 ] and tetra(triphenylphosphorus)palladium(0) [Pd(PPh 3 ) 4 ], similar to the synthesis of compounds having three naphthalene skeletons. It is.

次に、ジブロモナフタレン(a)と、1-ブロモナフタレンボロン酸、2-ブロモナフタレンボロン酸等のブロモナフタレンボロン酸(b3)とを用いてナフタレン骨格を2つ有する中間体NNB2を得る。 Next, dibromonaphthalene (a) and bromonaphthaleneboronic acid (b3), such as 1-bromonaphthaleneboronic acid or 2-bromonaphthaleneboronic acid, are used to obtain intermediate NNB2, which has two naphthalene skeletons.

Figure 0007456076000015
Figure 0007456076000015

次に、上記で得られた中間体NNB2を、-78℃のテトラヒドロフラン(THF)溶媒中で、n-ブチルリチウム〔n-BuLi〕とホウ酸トリイソプロピル〔B(OiPr)〕との存在下で反応させ、ナフタレン骨格を2つ有する化合物に-B(OH)が導入された中間体NNB3を得ることができる。 Next, the intermediate NNB2 obtained above was added in the presence of n-butyllithium [n-BuLi] and triisopropyl borate [B(OiPr) 3 ] in a tetrahydrofuran (THF) solvent at -78°C. An intermediate NNB3 in which -B(OH) 2 is introduced into a compound having two naphthalene skeletons can be obtained by the reaction.

さらに、上記で得られた中間体NNB1と中間体NNB3とを、炭酸カリウム〔KCO〕及びテトラ(トリフェニルリン)パラジウム(0)〔Pd(PPh〕の存在下で反応させることで、ナフタレン骨格を4つ有する化合物NNNN1を得ることができる。
上記反応において、ジブロモナフタレン(a)におけるホウ素の結合位置、ブロモナフタレンボロン酸(b3)における-B(OH)の結合位置等は、目的に応じた原料を選択することで決定できる。そして、原料を選択することで、ナフタレン骨格における第3のナフタレン骨格及び第4のナフタレン骨格の結合位置を制御することができる。
このように、ナフタレン骨格を3つ又は4つ有する本開示の化合物は、入手容易な原料を用いて、簡易な方法にて製造することができる。
Furthermore, the intermediate NNB1 and NNB3 obtained above are reacted in the presence of potassium carbonate [K 2 CO 3 ] and tetra(triphenylphosphorus)palladium(0) [Pd(PPh 3 ) 4 ]. In this way, a compound NNNN1 having four naphthalene skeletons can be obtained.
In the above reaction, the bonding position of boron in dibromonaphthalene (a), the bonding position of -B(OH) 2 in bromonaphthaleneboronic acid (b3), etc. can be determined by selecting raw materials according to the purpose. By selecting the raw materials, the bonding positions of the third naphthalene skeleton and the fourth naphthalene skeleton in the naphthalene skeleton can be controlled.
In this way, the compound of the present disclosure having three or four naphthalene skeletons can be produced by a simple method using easily available raw materials.

上記合成スキームにおいて、50℃~100℃、好ましくは60℃~90℃の温度条件下で、目的に応じて、2時間~10時間反応させ、溶媒を留去し、精製して本開示の化合物を得ることができる。
反応溶媒としては、水、1,2-ジメトキシエタン及びトルエンから選ばれる有機溶媒等が挙げられる。
溶媒は、1種のみを用いてもよく、2種以上を併用してもよい。2種以上を併用する場合、水と少なくとも1種の有機溶媒を併用してもよく、互いに異なる2種以上の有機溶媒を併用してもよい。なかでも、水と1,2-ジメトキシエタンとの混合溶媒、水とトルエンとの混合溶媒が好ましく、収率がより良好であるという観点からは、1,2-ジメトキシエタンと水との混合比〔体積比〕15:1~5:1の混合溶媒がより好ましい。
In the above synthesis scheme, the reaction is carried out for 2 hours to 10 hours depending on the purpose under a temperature condition of 50°C to 100°C, preferably 60°C to 90°C, the solvent is distilled off, and the compound of the present disclosure is purified. can be obtained.
Examples of the reaction solvent include organic solvents selected from water, 1,2-dimethoxyethane, and toluene.
Only one type of solvent may be used, or two or more types may be used in combination. When two or more types are used together, water and at least one type of organic solvent may be used together, or two or more types of mutually different organic solvents may be used together. Among these, a mixed solvent of water and 1,2-dimethoxyethane and a mixed solvent of water and toluene are preferable, and from the viewpoint of better yield, the mixing ratio of 1,2-dimethoxyethane and water is preferable. [Volume ratio] A mixed solvent of 15:1 to 5:1 is more preferable.

使用する溶媒の量としては、例えば、出発物質である(a1)若しくは(a2)、(b)及び炭酸カリウムの総量1質量部に対して、0.5質量部~20質量部であることが好ましく、1質量部~15質量部であることがより好ましい。 The amount of the solvent to be used is, for example, 0.5 parts by mass to 20 parts by mass per 1 part by mass of the starting materials (a1) or (a2), (b) and potassium carbonate. It is preferably 1 part by mass to 15 parts by mass.

反応は、空気中で行ってもよく、不活性ガス(ヘリウム、窒素、アルゴンなど)の雰囲気下又は流通下で行ってもよい。なかでも、収率をより向上させるという観点から、窒素雰囲気下で行うことが好ましい。
また、不活性ガス雰囲気下で反応を行う際には、反応前の原料の混合溶液に対し、不活性ガスを吹き込み、バブリングを行うことも、空気中の酸素などの反応に与える影響をより低減する観点から好ましい。
反応は、常圧下、加圧下、又は減圧下のいずれで行ってもよい。
反応は、攪拌しながら行ってもよく、還流しながら行ってもよい。収率をより向上させるという観点から、還流しながら行うことが好ましい。
The reaction may be performed in air or under an atmosphere or flow of an inert gas (helium, nitrogen, argon, etc.). Among these, from the viewpoint of further improving the yield, it is preferable to carry out under a nitrogen atmosphere.
Additionally, when performing a reaction in an inert gas atmosphere, bubbling the inert gas into the mixed solution of raw materials before the reaction can further reduce the effects of oxygen in the air on the reaction. It is preferable from the viewpoint of
The reaction may be carried out under normal pressure, increased pressure, or reduced pressure.
The reaction may be performed while stirring or under reflux. From the viewpoint of further improving the yield, it is preferable to carry out the reaction under reflux.

精製は常法により行なうことができる。例えば、溶媒を留去して得た粗生成物を、ヘキサン及びクロロホルムの体積比3:1の混合溶媒を展開溶媒としたシリカゲルクロマトグラフィーにより精製することができる。 Purification can be carried out by conventional methods. For example, a crude product obtained by distilling off the solvent can be purified by silica gel chromatography using a mixed solvent of hexane and chloroform at a volume ratio of 3:1 as a developing solvent.

本開示の化合物の製造方法においては、上記した工程以外の任意の工程をさらに含むことができる。
例えば、得られた化合物の粗精製物を、既述のように、シリカゲルクロマトグラフィーなどにより精製する工程を含むことができる。
The method for producing a compound of the present disclosure can further include any steps other than the steps described above.
For example, the method may include a step of purifying the obtained crude product of the compound by silica gel chromatography or the like, as described above.

本開示の化合物の製造方法によれば、入手容易な出発物質を用いて、簡易な方法により、青色発光材料として有用な本開示の化合物を高い収率で得ることができる。このため、青色発光材料として有用な化合物を簡易に得ることができ、広い分野へ青色発光材料を応用する場合に有用である。
なお、本開示における高収率とは、理論収率に対し、10%以上であることを指し、好ましくは、30%以上である。
According to the method for producing the compound of the present disclosure, the compound of the present disclosure useful as a blue-emitting material can be obtained in high yield by a simple method using easily available starting materials. Therefore, it is possible to easily obtain a compound useful as a blue-emitting material, which is useful when applying blue-emitting materials to a wide range of fields.
Note that high yield in the present disclosure refers to a theoretical yield of 10% or more, preferably 30% or more.

≪青色発光材料≫
本開示の青色発光材料は、下記式(I)で表される。
≪Blue luminescent material≫
The blue light-emitting material of the present disclosure is represented by the following formula (I).

式(I)中、nは0又は1を表す。
上記式(I)で表される化青色発光材料は、クロロホルム溶媒などの溶媒中でも、固体状態でも、極大吸収波長が380nm~460nmの範囲にある深い青色を示す発光を得ることができる。
式(I)で表される青色発光材料は、前記本開示の新規化合物と同じ化合物であり、好ましい例も同じである。
In formula (I), n represents 0 or 1.
The blue-blue luminescent material represented by the above formula (I) can emit deep blue light with a maximum absorption wavelength in the range of 380 nm to 460 nm even in a solvent such as chloroform solvent or in a solid state.
The blue light-emitting material represented by formula (I) is the same compound as the novel compound of the present disclosure, and its preferred examples are also the same.

本開示の青色発光材料は、ナフタレン骨格を少なくとも3つ有し、分子量は300以上であることから、青色固体発光材料として、有機発光素子の発光層を、例えば、真空蒸着法などの気相法により形成する際に好適に使用することができ、形成された発光層の耐久性が良好であるため、その応用範囲は広い。 The blue light-emitting material of the present disclosure has at least three naphthalene skeletons and has a molecular weight of 300 or more. Therefore, as a blue solid-state light-emitting material, the light-emitting layer of an organic light-emitting device can be formed by a vapor phase method such as a vacuum evaporation method. Since it can be suitably used when forming a light emitting layer and the durability of the formed light emitting layer is good, its application range is wide.

≪有機発光素子≫
本開示の有機発光素子は、既述の本開示の化合物、若しくは、本開示の青色発光材料を含む。
本開示における有機発光素子は、例えば、表示装置、照明装置の構成部材、電子写真方式の画像形成装置の露光光源、液晶表示装置のバックライト、白色光源にカラーフィルターを有する発光装置等の発光素子として好適に用いられる。
表示装置としては、例えば、有機発光素子を表示部に用い、有機発光素子とトランジスタのドレイン電極又はソース電極と接続させて発光輝度を制御することにより、有機ELテレビ、パーソナルコンピュータのディスプレイ等の画像表示装置が挙げられる。上記の表示装置、さらに、白色LED光源などに、本開示の有機発光素子を適用することができる。
≪Organic light emitting device≫
The organic light-emitting device of the present disclosure includes the compound of the present disclosure described above or the blue light-emitting material of the present disclosure.
The organic light emitting device in the present disclosure is, for example, a display device, a component of a lighting device, an exposure light source of an electrophotographic image forming device, a backlight of a liquid crystal display device, a light emitting device such as a light emitting device having a color filter in a white light source, etc. It is suitably used as
As a display device, for example, an organic light-emitting element is used as a display part, and the organic light-emitting element is connected to the drain electrode or source electrode of a transistor to control the luminance of the light emitted, thereby displaying images on an organic EL television, a personal computer display, etc. Examples include display devices. The organic light emitting device of the present disclosure can be applied to the above display device, furthermore, a white LED light source and the like.

本開示の化合物は、固体状態における発光波長が380nm~460nmの深い青色の発光が得られる。このため、本開示の有機発光素子は、赤色、および緑色の有機発光材料を含む有機発光素子と組み合わせて、例えば、画表示装置に適用した場合に、白色の表示性が良好であり、コントラストに優れた画像が得られる。また、白色LED光源としても好適である。このため、本開示の化合物を含む本開示の有機発光素子は、種々の分野に応用することができる。 The compound of the present disclosure can emit deep blue light with an emission wavelength of 380 nm to 460 nm in a solid state. Therefore, when the organic light emitting device of the present disclosure is combined with an organic light emitting device containing red and green organic light emitting materials and applied to an image display device, for example, the organic light emitting device of the present disclosure has good white display performance and has good contrast. Excellent images can be obtained. It is also suitable as a white LED light source. Therefore, the organic light-emitting device of the present disclosure containing the compound of the present disclosure can be applied to various fields.

以下、本開示の化合物及びその製造方法について、実施例を挙げてより具体的に説明する。しかし本開示は、その主旨を越えない限り、以下の実施例に限定されない。なお、以下の実施例においては、特に断らない限り「%」は質量換算である。
実施例における収率の「%」は、原料が理論上、所望の生成物にすべて変換された場合に対する実際に得られた生成物の量の比率(質量基準)である。
Hereinafter, the compound of the present disclosure and the method for producing the same will be described in more detail with reference to Examples. However, the present disclosure is not limited to the following examples unless the scope thereof is exceeded. In addition, in the following examples, "%" is in terms of mass unless otherwise specified.
The "%" yield in the examples is the ratio (by weight) of the amount of product actually obtained if all of the raw material were theoretically converted to the desired product.

(試薬及び化合物の同定方法)
調製に用いた試薬は、すべて市販のものを用いた。また、合成した生成物については、NMR(Nuclear Magnetic Resonance:核磁気共鳴)及び高分解能質量分析(High-resolution mass-spectrometry:HRMS)測定によって確認した。
NMR測定には、Varian社製のNMR System 600MHzを用いた。高分解能質量分析には、日本電子(株)(JEOL)の高性能二重収束質量分析計(GC-MS)JMS-700を用いた。下記HRMS(FAB)とは、質量分析の際のイオン化を高速電子衝撃(Fast atom bombardment:FAB)にて行う装置により測定された数値を指す。
(Reagent and compound identification method)
All reagents used in the preparation were commercially available. Furthermore, the synthesized product was confirmed by NMR (Nuclear Magnetic Resonance) and high-resolution mass spectrometry (HRMS) measurements.
For NMR measurement, NMR System 600 MHz manufactured by Varian was used. For high-resolution mass spectrometry, a high-performance dual convergence mass spectrometer (GC-MS) JMS-700 manufactured by JEOL Ltd. (JEOL) was used. The following HRMS (FAB) refers to a numerical value measured by an apparatus that performs ionization during mass spectrometry using fast atom bombardment (FAB).

〔実施例1:ビス(1-ナフチル)-2,6-ナフタレン(例示化合物2611)の合成〕
下記スキームに従い、例示化合物(2611)を合成した。
2,6-ジブロモナフタレン(化合物(a1))290mg(1.0mmol〔ミリモル〕)、1-ブロモナフタレンボロン酸(化合物(b))395mg(2.3mmol)及び炭酸カリウム690mgを、5.0 mmolの1,2-ジメトキシエタン(10ml)と水(1ml)との混合溶媒に溶解して得た溶液を、10分間窒素ガスでバブリングを行った後、テトラ(トリフェニルリン)パラジウム(0)(116mg、0.1mmol)を加え、窒素雰囲気下、85℃で7時間還流した。
溶液を室温に戻した後、ベンゼン100mlを加え、飽和食塩水100mlで2度洗浄後、有機層を分離し、これを硫酸ナトリウムで乾燥させた後、溶媒を留去した。
生成物をヘキサン:クロロホルム(体積比 3:1)を展開溶媒としたシリカゲルカラムクロマトグラフィーにて分離を行い、217mgの例示化合物2611を57%の収率で得た。
[Example 1: Synthesis of bis(1-naphthyl)-2,6-naphthalene (exemplified compound 2611)]
Exemplary compound (2611) was synthesized according to the scheme below.
2,6-dibromonaphthalene (compound (a1)) 290 mg (1.0 mmol [mmol]), 1-bromonaphthalene boronic acid (compound (b)) 395 mg (2.3 mmol) and potassium carbonate 690 mg, 5.0 mmol After bubbling the solution obtained by dissolving the above in a mixed solvent of 1,2-dimethoxyethane (10 ml) and water (1 ml) with nitrogen gas for 10 minutes, tetra(triphenylphosphorus) palladium (0) ( 116 mg, 0.1 mmol) was added thereto, and the mixture was refluxed at 85° C. for 7 hours under a nitrogen atmosphere.
After returning the solution to room temperature, 100 ml of benzene was added, and after washing twice with 100 ml of saturated brine, the organic layer was separated, dried over sodium sulfate, and then the solvent was distilled off.
The product was separated by silica gel column chromatography using hexane:chloroform (volume ratio 3:1) as a developing solvent to obtain 217 mg of Exemplified Compound 2611 in a yield of 57%.

既述の方法により、NMR測定を行い、以下に示す結果を得た。例示化合物2611のHNMRチャートを図2Aに、13CNMRチャートを図2Bに、それぞれ示す。
HNMR(600MHz,CDCl) δ=8.06(m,1H),8.02(d,1H,J=8.2Hz),7.99(d,1H,J=8.4Hz),7.96(d,1H,J=7.8Hz),7.30(d,1H,J=7.7Hz),7.71(dd,1H,J=8.2,1.5Hz),7.62-7.56(m,2H),7.54(ddd,1H,J=8.0,6.8,1.2 Hz),7.47(ddd,1H,J=8.4,6.8,1.5 Hz).
13CNMR (600MHz,CDCl)δ=140.26,138.70,133.98,132.67,131.89,129.09,128.72,128.49,127.98,127.96,127.39,126.29,126.22,125.99,125.59.
HRMS(FAB) m/z calcd.for C3020 380.1565,found 380.1563.
NMR measurement was carried out by the method already described, and the following results were obtained: The 1 H NMR chart of Exemplary Compound 2611 is shown in Figure 2A, and the 13 C NMR chart is shown in Figure 2B.
1H NMR (600 MHz, CDCl3 ) δH = 8.06 (m, 1H), 8.02 (d, 1H, J = 8.2 Hz), 7.99 (d, 1H, J = 8.4 Hz), 7.96 (d, 1H, J = 7.8 Hz), 7.30 (d, 1H, J = 7.7 Hz), 7.71 (dd, 1H, J = 8.2, 1.5 Hz), 7.62-7.56 (m, 2H), 7.54 (ddd, 1H, J = 8.0, 6.8, 1.2 Hz), 7.47 (ddd, 1H, J = 8.4, 6.8, 1.5 Hz).
13CNMR (600MHz, CDCl3 ) δC = 140.26, 138.70, 133.98, 132.67, 131.89, 129.09, 128.72, 128.49, 127.98, 127.96, 127.39, 126.29, 126.22, 125.99, 125.59.
HRMS (FAB) m/z calcd. for C30H20 380.1565 , found 380.1563.

〔実施例2:2-(1-ナフチル)-6-(2-ナフチル)ナフタレン(例示化合物2612)の合成〕
1.中間体(26B1)の合成
まず、下記スキームに従い、中間体(26B1)を合成した。
2,6-ジブロモナフタレン(化合物(a1))858mg(3.0mmol)、1-ブロモナフタレンボロン酸(化合物(b))620mg(3.6mmol)及び炭酸カリウム2g(14mmol)を、1,2-ジメトキシエタン40mlと水4mlとの混合溶媒に溶解して得た溶液を、10分間窒素ガスでバブリングを行った後、テトラ(トリフェニルリン)パラジウム(0)346mg(0.3mmol)を加え、窒素雰囲気下、85℃で2時間還流した。
溶液を室温に戻した後、ベンゼン200mlを加え、飽和食塩水100mlで2度洗浄後、有機層を分離し、これを硫酸ナトリウムで乾燥させた後、溶媒を留去した。
生成物をヘキサン:クロロホルム(体積比3:1の混合溶媒)を展開溶媒としたシリカゲルカラムクロマトグラフィーにて分離を行い、408mgの中間体26B1を、41%の収率で得た。
[Example 2: Synthesis of 2-(1-naphthyl)-6-(2-naphthyl)naphthalene (exemplified compound 2612)]
1. Synthesis of Intermediate (26B1) First, Intermediate (26B1) was synthesized according to the scheme below.
858 mg (3.0 mmol) of 2,6-dibromonaphthalene (compound (a1)), 620 mg (3.6 mmol) of 1-bromonaphthaleneboronic acid (compound (b)) and 2 g (14 mmol) of potassium carbonate were added to 1,2- After bubbling the solution obtained by dissolving in a mixed solvent of 40 ml of dimethoxyethane and 4 ml of water with nitrogen gas for 10 minutes, 346 mg (0.3 mmol) of tetra(triphenylphosphorus) palladium (0) was added, and nitrogen gas was added. The mixture was refluxed at 85° C. for 2 hours in an atmosphere.
After returning the solution to room temperature, 200 ml of benzene was added, and after washing twice with 100 ml of saturated brine, the organic layer was separated, dried over sodium sulfate, and the solvent was distilled off.
The product was separated by silica gel column chromatography using hexane:chloroform (mixed solvent at a volume ratio of 3:1) as a developing solvent, and 408 mg of intermediate 26B1 was obtained in a yield of 41%.

既述の方法により、NMR測定を行い、以下に示す結果を得た。中間体26B1のHNMRチャートを図3Aに、13CNMRチャートを図3Bに、それぞれ示す。
HNMR (600MHz,CDCl) 8.11(d,1H,J=1.6Hz),7.97-7.89(m,4H),7.87(d,1H,J=8.4Hz),7.76(d,1H,J=8.6Hz),7.68(dd,1H,J=8.4,1.6Hz),7.62(dd,1H,J=8.7,1.9Hz),7.57(dd,1H,J=7.9,7.1Hz),7.55-7.50(m,2H),7.45(ddd,1H,J=8.2,6.9,1.2Hz).
13CNMR (600MHz,CDCl) δ=139.81,138.96,133.96,133.74,131.97,131.73,129.92,129.86,129.82,129.66,128.78,128.52,128.11,127.37,126.91,126.38,126.05,126.00,125.55,120.09.
HRMS(FAB) m/z calcd.for C2013Br 332.0201,found 332.0185.
NMR measurement was performed using the method described above, and the results shown below were obtained. A 1 H NMR chart and a 13 CNMR chart of intermediate 26B1 are shown in FIG. 3A and FIG. 3B, respectively.
1 HNMR (600MHz, CDCl 3 ) 8.11 (d, 1H, J = 1.6Hz), 7.97-7.89 (m, 4H), 7.87 (d, 1H, J = 8.4Hz) , 7.76 (d, 1H, J = 8.6Hz), 7.68 (dd, 1H, J = 8.4, 1.6Hz), 7.62 (dd, 1H, J = 8.7, 1 .9Hz), 7.57 (dd, 1H, J = 7.9, 7.1Hz), 7.55-7.50 (m, 2H), 7.45 (ddd, 1H, J = 8.2, 6.9, 1.2Hz).
13 CNMR (600 MHz, CDCl 3 ) δ C =139.81, 138.96, 133.96, 133.74, 131.97, 131.73, 129.92, 129.86, 129.82, 129.66 , 128.78, 128.52, 128.11, 127.37, 126.91, 126.38, 126.05, 126.00, 125.55, 120.09.
HRMS (FAB) m/z calcd. for C 20 H 13 Br 332.0201, found 332.0185.

2.例示化合物2612の合成
下記スキームに従い、例示化合物2612を合成した。
上記1.で得た中間体26B1 335mg(1.0mmol),2-ブロモナフタレンボロン酸(化合物(b2))230mg(1.3 mmol)及び炭酸カリウム690mg(5mmol)の1,2-ジメトキシエタン10mlと水1mlとの混合溶媒に溶解して得た溶液を10分間窒素ガスでバブリングを行った後、テトラ(トリフェニルリン)パラジウム(0)346mg(0.3mmol)を加え、窒素雰囲気下、85℃で2時間還流した。
溶液を室温に戻した後、ベンゼン200mlを加え、飽和食塩水100mlで2度洗浄後、有機層を分離し、これを硫酸ナトリウムで乾燥させた後、溶媒を留去した。
生成物をヘキサン:クロロホルム(体積比 3:1の混合溶媒)を展開溶媒としたシリカゲルカラムクロマトグラフィーにて分離を行い、326mgの例示化合物2612を、86%の収率で得た。
2. Synthesis of Exemplified Compound 2612 Exemplified Compound 2612 was synthesized according to the scheme below.
Above 1. 335 mg (1.0 mmol) of intermediate 26B1 obtained in step 2, 230 mg (1.3 mmol) of 2-bromonaphthaleneboronic acid (compound (b2)), and 690 mg (5 mmol) of potassium carbonate in 10 ml of 1,2-dimethoxyethane and 1 ml of water. After bubbling the solution obtained by dissolving it in a mixed solvent of Refluxed for an hour.
After returning the solution to room temperature, 200 ml of benzene was added, and after washing twice with 100 ml of saturated brine, the organic layer was separated, dried over sodium sulfate, and the solvent was distilled off.
The product was separated by silica gel column chromatography using hexane:chloroform (3:1 volume ratio mixed solvent) as a developing solvent to obtain 326 mg of Exemplary Compound 2612 in a yield of 86%.

既述の方法により、NMR測定を行い、以下に示す結果を得た。例示化合物2612のH NMRチャートを図4Aに、13C NMRチャートを図4Bに、それぞれ示す。
H NMR(600MHz,CDCl) δ=8.27(brd,1H,J=1.1Hz),8.22(brd,1H,J=1.2Hz),8.06(d,1H,J=8.2Hz),7.90-8.07(m,10H),7.70(dd,1H,J=8.2,1.6Hz),7.50-7.61(m,5H),7.56(ddd,1H,J=8.2,6.6,1.2Hz).
13C NMR(600MHz,CDCl)δ=140.26,138.81,138.67,138.53,134.01,133.92,133.05,132.86,132.79,131.90,129.17,128.86,128.73,128.68,128.50,128.41,128.16,127.97,127.85,127.40,126.56,126.35,126.31,126.28,126.21,126.10,126.01,125.88,125.60.
HRMS(FAB) m/z calcd.for C3020 380.1565,found 380.1565.
NMR measurement was carried out by the method already described, and the following results were obtained: The 1 H NMR chart of Exemplary Compound 2612 is shown in Figure 4A, and the 13 C NMR chart is shown in Figure 4B.
1H NMR (600MHz, CDCl3 ) δH = 8.27 (brd, 1H, J = 1.1 Hz), 8.22 (brd, 1H, J = 1.2 Hz), 8.06 (d, 1H, J = 8.2 Hz), 7.90-8.07 (m, 10H), 7.70 (dd, 1H, J = 8.2, 1.6 Hz), 7.50-7.61 (m, 5H), 7.56 (ddd, 1H, J = 8.2, 6.6, 1.2 Hz).
13C NMR (600MHz, CDCl3 ) δC = 140.26, 138.81, 138.67, 138.53, 134.01, 133.92, 133.05, 132.86, 132.79, 131.90, 129.17, 128.86, 128.73, 128.68, 128.50, 128.41, 128.16, 127.97, 127.85, 127.40, 126.56, 126.35, 126.31, 126.28, 126.21, 126.10, 126.01, 125.88, 125.60.
HRMS (FAB) m/z calcd. for C30H20 380.1565 , found 380.1565.

〔実施例3:ビス(1-ナフチル)-2,7-ナフタレン(例示化合物2711)及び2-ブロモ-7-(1-ナフチル)ナフタレン(中間体27B1)の合成〕
下記スキームに従い、例示化合物2711と中間体27B1とを合成した。
2,7-ジブロモナフタレン(化合物(a2))600mg(2.1mmol),1-ブロモナフタレンボロン酸(化合物(b))654mg(3.8mmol)及び炭酸カリウム1.4g(10mmol)の1,2-ジメトキシエタン25mlと水3mlとの混合溶媒に溶解して得た溶液を、10分間窒素ガスでバブリングを行った後、テトラ(トリフェニルリン)パラジウム(0)242mg(0.2mmol)を加え、窒素雰囲気下、85℃で16時間還流した。
溶液を室温に戻した後、ベンゼン150mlを加え、飽和食塩水100mlで2度洗浄後、有機層を分離し、これを硫酸ナトリウムで乾燥させた後、溶媒を留去した。
生成物をヘキサン:クロロホルム(体積比3:1の混合溶媒)を展開溶媒としたシリカゲルカラムクロマトグラフィーにて分離を行い、570mgの例示化合物2711を71%の収率で、170mgの中間体27B1を24%の収率で得た。
[Example 3: Synthesis of bis(1-naphthyl)-2,7-naphthalene (exemplified compound 2711) and 2-bromo-7-(1-naphthyl)naphthalene (intermediate 27B1)]
Exemplary compound 2711 and intermediate 27B1 were synthesized according to the scheme below.
1,2 of 2,7-dibromonaphthalene (compound (a2)) 600 mg (2.1 mmol), 1-bromonaphthalene boronic acid (compound (b)) 654 mg (3.8 mmol) and potassium carbonate 1.4 g (10 mmol) - A solution obtained by dissolving in a mixed solvent of 25 ml of dimethoxyethane and 3 ml of water was bubbled with nitrogen gas for 10 minutes, and then 242 mg (0.2 mmol) of tetra(triphenylphosphorus) palladium (0) was added. The mixture was refluxed at 85° C. for 16 hours under a nitrogen atmosphere.
After returning the solution to room temperature, 150 ml of benzene was added, and after washing twice with 100 ml of saturated brine, the organic layer was separated, dried over sodium sulfate, and then the solvent was distilled off.
The product was separated by silica gel column chromatography using hexane:chloroform (mixed solvent at a volume ratio of 3:1) as a developing solvent, and 570 mg of Exemplified Compound 2711 was obtained in a yield of 71%, and 170 mg of Intermediate 27B1 was obtained. Obtained with a yield of 24%.


既述の方法により、中間体27B1のNMR測定を行い、以下に示す結果を得た。中間体27B1のH NMRチャートを図5Aに、13CNMRチャートを図5Bに、それぞれ示す。
H NMR(400MHz,CDCl)δH NMR δ=8.06(d,1H,J=1.7Hz),7.96-7.86(m,5H),7.81(d,1H,J=8.8Hz),7.66(dd,1H,J=8.2,1,6Hz),7.61(dd,1H,J=8.7,1.9Hz),7.57(dd,1H,J=8.1,7.0Hz),7.54-7.49(2H,two ddd signals overlap),7.44(ddd,1H,J=8.7,6.7,1.3Hz).
13C NMR(600MHz,CDCl)δ=139.74,139.59,134.63,133.94,131.73,131.08,130.19,129.55,129.06,128.51,128.14,127.90,127.78,127.38,126.38,126.05,125.98,125.54,120.44.
HRMS(FAB) m/z calcd.for C3020 380.1565,found 380.1564.
Intermediate 27B1 was subjected to NMR measurement using the method described above, and the results shown below were obtained. A 1 H NMR chart and a 13 CNMR chart of intermediate 27B1 are shown in FIG. 5A and FIG. 5B, respectively.
1 H NMR (400 MHz, CDCl 3 ) δ H = 1 H NMR δ H = 8.06 (d, 1 H, J = 1.7 Hz), 7.96-7.86 (m, 5 H), 7.81 ( d, 1H, J=8.8Hz), 7.66 (dd, 1H, J=8.2, 1,6Hz), 7.61 (dd, 1H, J=8.7, 1.9Hz), 7 .57 (dd, 1H, J=8.1, 7.0Hz), 7.54-7.49 (2H, two ddd signals overlap), 7.44 (ddd, 1H, J=8.7, 6. 7,1.3Hz).
13C NMR (600MHz, CDCl3 ) δC = 139.74, 139.59, 134.63, 133.94, 131.73, 131.08, 130.19, 129.55, 129.06, 128. 51,128.14,127.90,127.78,127.38,126.38,126.05,125.98,125.54,120.44.
HRMS (FAB) m/z calcd. for C 30 H 20 380.1565, found 380.1564.

既述の方法により、例示化合物2711のNMR測定を行い、以下に示す結果を得た。例示化合物2711のH NMRチャートを図6Aに、13C NMRチャートを図6Bに、それぞれ示す。
H NMR(400MHz,CDCl)δ=8.06(d,2H,J=8.3Hz),8.02(s,2H),8.00(d,2H,J=8.2Hz),7.96(d,2H,J=8.2Hz),7.92(d,2H,J=7.8Hz),7.71(d,2H,J=8.2Hz),7.61-7.55(m,4H),7.53(t,2H,J=7.3Hz),7.46(t,2H,J=7.7Hz).
13C NMR(600MHz,CDCl)δ=140.26,139.00,133.98,133.95,133.57,131.89,131.85,129.03,128.86,128.49,127.97,127.67,127.40,126.30,126.22,126.00,125.59.
HRMS(FAB) m/z calcd.for C3020 380.1565,found 380.1564.
NMR measurement of Exemplary Compound 2711 was carried out by the method already described, and the following results were obtained: The 1 H NMR chart of Exemplary Compound 2711 is shown in Figure 6A, and the 13 C NMR chart is shown in Figure 6B.
1H NMR (400MHz, CDCl3 ) δH = 8.06 (d, 2H, J = 8.3 Hz), 8.02 (s, 2H), 8.00 (d, 2H, J = 8.2 Hz), 7.96 (d, 2H, J = 8.2 Hz), 7.92 (d, 2H, J = 7.8 Hz), 7.71 (d, 2H, J = 8.2 Hz), 7.61-7.55 (m, 4H), 7.53 (t, 2H, J = 7.3 Hz), 7.46 (t, 2H, J = 7.7 Hz).
13C NMR (600MHz, CDCl3 ) δC = 140.26, 139.00, 133.98, 133.95, 133.57, 131.89, 131.85, 129.03, 128.86, 128.49, 127.97, 127.67, 127.40, 126.30, 126.22, 126.00, 125.59.
HRMS (FAB) m/z calcd. for C30H20 380.1565 , found 380.1564.

〔実施例4:2-(1-ナフチル)-7-(2-ナフチル)ナフタレン(例示化合物2712)の合成〕
下記スキームに従い、例示化合物2712を合成した。
実施例3で得た中間体(27B1)100 mg(0.30 mmol)、2-ブロモナフタレンボロン酸(化合物(b2))67mg(0.39mmol)及び炭酸カリウム207mg(1.5mmol)を1,2-ジメトキシエタン5mlと水1mlとの混合溶媒に溶解して得た溶液を、10分間窒素ガスでバブリングを行った後、テトラ(トリフェニルリン)パラジウム(0)35mg(0.03mmol)を加え、窒素雰囲気下、85℃で3時間還流した。
溶液を室温に戻した後、ベンゼン100mlを加え、飽和食塩水100mlで2度洗浄後、有機層を分離し、これを硫酸ナトリウムで乾燥させた後、溶媒を留去した。
生成物をヘキサン:クロロホルム(体積比 3:1の混合溶媒)を展開溶媒としたシリカゲルカラムクロマトグラフィーにて分離を行い、91mgの例示化合物2712を80%の収率で得た。
[Example 4: Synthesis of 2-(1-naphthyl)-7-(2-naphthyl)naphthalene (exemplified compound 2712)]
Exemplary compound 2712 was synthesized according to the scheme below.
100 mg (0.30 mmol) of the intermediate (27B1) obtained in Example 3, 67 mg (0.39 mmol) of 2-bromonaphthaleneboronic acid (compound (b2)), and 207 mg (1.5 mmol) of potassium carbonate were mixed with 1, A solution obtained by dissolving in a mixed solvent of 5 ml of 2-dimethoxyethane and 1 ml of water was bubbled with nitrogen gas for 10 minutes, and then 35 mg (0.03 mmol) of tetra(triphenylphosphorus) palladium (0) was added. The mixture was refluxed at 85° C. for 3 hours under a nitrogen atmosphere.
After returning the solution to room temperature, 100 ml of benzene was added, and after washing twice with 100 ml of saturated brine, the organic layer was separated, dried over sodium sulfate, and then the solvent was distilled off.
The product was separated by silica gel column chromatography using hexane:chloroform (mixed solvent at a volume ratio of 3:1) as a developing solvent to obtain 91 mg of Exemplary Compound 2712 in a yield of 80%.


既述の方法により、例示化合物2712のNMR測定を行い、以下に示す結果を得た。例示化合物2712のH NMRチャートを図7Aに、13C NMRチャートを図7Bに、それぞれ示す。
H NMR δH=8.23(s,1H),8.21(s,1H),8.08-8.04(m,2H),8.03-7.88(m,9H),7.67(d,1H,J=8.5Hz),7.62-7.48(m,5H),7.45(m,1H).
13C NMR(600MHz,CDCl)δ=140.27,139.09,139.02,138.53,134.00,133.89,132.86,131.95,131.90,129.22,128.83,128.72,128.54,128.49,128.41,127.98,127.84,127.62,127.39,126.53,126.43,126.31,126.23,126.20,126.12,126.01,125.87,125.60.
HRMS(FAB) m/z calcd. for C2020 380.1565,found .380.1563
NMR measurement of Exemplary Compound 2712 was performed by the method described above, and the results shown below were obtained. A 1 H NMR chart and a 13 C NMR chart of Exemplary Compound 2712 are shown in FIG. 7A and FIG. 7B, respectively.
1 H NMR δ H = 8.23 (s, 1H), 8.21 (s, 1H), 8.08-8.04 (m, 2H), 8.03-7.88 (m, 9H), 7.67 (d, 1H, J=8.5Hz), 7.62-7.48 (m, 5H), 7.45 (m, 1H).
13C NMR (600MHz, CDCl3 ) δC = 140.27, 139.09, 139.02, 138.53, 134.00, 133.89, 132.86, 131.95, 131.90, 129. 22, 128.83, 128.72, 128.54, 128.49, 128.41, 127.98, 127.84, 127.62, 127.39, 126.53, 126.43, 126.31, 126.23, 126.20, 126.12, 126.01, 125.87, 125.60.
HRMS (FAB) m/z calcd. for C 20 H 20 380.1565,found. 380.1563

≪評価≫
実施例1~実施例4にて合成した例示化合物2611、例示化合物2612、例示化合物2711及び例示化合物2712のそれぞれの固体状態(粉末)及び化合物を含む溶液(クロロホルム)に対する発光波長、光物理特性(蛍光収率、蛍光寿命及び速度定数)を測定した。
≪Evaluation≫
Emission wavelength, photophysical properties (in solid state (powder)) and solution containing the compound (chloroform) of Exemplified Compound 2611, Exemplified Compound 2612, Exemplified Compound 2711, and Exemplified Compound 2712 synthesized in Examples 1 to 4 Fluorescence yield, fluorescence lifetime and rate constant) were measured.

<各物性の測定方法>
(蛍光収率等の測定)
絶対PL光量子収率測定装置(C9920-02、浜松フォトニクス(株)製)を用いて、クロロホルム溶媒中における上記化合物の極大吸収波長(λabs/nm)及び蛍光数率を測定した。絶対PL光量子収率測定装置を用いることで、信頼性の高い蛍光収率の値を得ることができる。
(吸収スペクトルの測定)
吸収スペクトルについては、紫外可視分光光度計(Ubest-50、JASCO社製)を用いて測定し、蛍光発光スペクトルについては、絶対PL光量子収率測定装置(C9920-02、浜松フォトニクス(株)製)を用いて測定した。
<Measurement method of each physical property>
(Measurement of fluorescence yield, etc.)
Using an absolute PL photon yield measurement device (C9920-02, manufactured by Hamamatsu Photonics Co., Ltd.), the maximum absorption wavelength (λabs/nm) and fluorescence number rate of the above compound in chloroform solvent were measured. By using an absolute PL photon yield measurement device, highly reliable fluorescence yield values can be obtained.
(Measurement of absorption spectrum)
Absorption spectra were measured using a UV-visible spectrophotometer (Ubest-50, manufactured by JASCO), and fluorescence emission spectra were measured using an absolute PL photon yield measuring device (C9920-02, manufactured by Hamamatsu Photonics Co., Ltd.). Measured using

固体状態の測定は、各化合物を固体粉末状の試料とし、得られた試料を上記の絶対PL光量子収率測定装置付属のガラスシャーレにそれぞれ投入し、試料を入れた石英シャーレを上記の絶対PL光量子収率測定装置に設置した以外は、上記の各化合物をクロロホルムに溶解した溶液に対する極大蛍光波長及び蛍光収率を測定した条件と同じ条件で、極大蛍光波長及び蛍光収率の測定を行った。 To measure the solid state, each compound is prepared as a solid powder sample, each of the obtained samples is placed in a glass Petri dish attached to the absolute PL photon yield measurement device described above, and the quartz Petri dish containing the sample is placed in the absolute PL photon yield measurement device described above. The maximum fluorescence wavelength and fluorescence yield were measured under the same conditions as those used to measure the maximum fluorescence wavelength and fluorescence yield for a solution of each of the above compounds dissolved in chloroform, except that it was installed in a photon yield measuring device. .

上記例示化合物のクロロホルム溶媒中の吸収スペクトル、クロロホルム溶媒中の蛍光スペクトル、及び固体の蛍光スペクトルを図1に示す。図1では、吸収スペクトルを実線で、クロロホルム溶媒中の発光スペクトルを破線で、固体状態の蛍光スペクトルを点線で、それぞれ示した。 The absorption spectrum in chloroform solvent, the fluorescence spectrum in chloroform solvent, and the solid fluorescence spectrum of the above exemplary compound are shown in FIG. In FIG. 1, the absorption spectrum is shown by a solid line, the emission spectrum in chloroform solvent is shown by a broken line, and the fluorescence spectrum in a solid state is shown by a dotted line.

また、各例示化合物の基本物性を評価するため、例示化合物のクロロホルム溶媒中の発光極大波長(λf)、固体状態の発光極大波長(λfsolid)、クロロホルム溶媒中の発光量子収率(Φf)及び固体状態の発光量子収率(Φfsolid)を測定し、表1に併記する。 In addition, in order to evaluate the basic physical properties of each exemplified compound, the emission maximum wavelength (λf) of the exemplified compound in chloroform solvent, the emission maximum wavelength in the solid state (λf solid ), the emission quantum yield (Φf) in chloroform solvent, and The solid state luminescence quantum yield (Φf solid ) was measured and is also listed in Table 1.


図1及び表1の結果より、例示化合物2611、2612、2711、及び2712は、いずれも、固体状態において、380nm~410nmに発光極大波長を有し、発光量子収率が実用上問題のないレベルであった。なかでも、例示化合物2611は、発光量子収率が0.9を超えるという、極めて優れた値を示すことがわかる。
また、実施例で得た各化合物は、固体粉末状態において、目視で観察した場合にも、鮮やかな青色蛍光が確認された。
1 and Table 1, all of the exemplary compounds 2611, 2612, 2711, and 2712 had a maximum emission wavelength in the range of 380 nm to 410 nm in the solid state, and had an emission quantum yield at a level that was practically problem-free. Of these, the exemplary compound 2611 exhibited an emission quantum yield of more than 0.9, which is an extremely excellent value.
Furthermore, when each of the compounds obtained in the Examples was in a solid powder state, vivid blue fluorescence was confirmed when observed with the naked eye.

上記実施例の結果より、本開示の化合物は、有機発光素子等として有用なレベルの青色を呈し、良好な発光効率を有する青色発光性材料であることが示された。 From the results of the above examples, it was shown that the compound of the present disclosure is a blue-emitting material that exhibits a blue color at a level useful as an organic light-emitting device, etc., and has good luminous efficiency.

Claims (6)

下記部分構造(A)に3つめのナフタレン骨格が結合し、下記nが1の場合、さらに4つめのナフタレン骨格を有する下記式(I)で表される化合物であり、3つめのナフタレン骨格の結合位置は、下記式(I)における部分構造(A)の6位、又は位である下記式(I)で表される化合物を含む有機発光素子。


式(I)中、nは0又は1を表す。
When the third naphthalene skeleton is bonded to the partial structure (A) below and n is 1, it is a compound represented by the following formula (I) that further has a fourth naphthalene skeleton, and the third naphthalene skeleton is An organic light-emitting device containing a compound represented by the following formula (I) in which the bonding position is the 6th or 7th position of the partial structure (A) in the following formula (I).


In formula (I), n represents 0 or 1.
下記部分構造(A)に3つめのナフタレン骨格が結合してなる化合物であり、3つめのナフタレン骨格の結合位置は、下記式(I-2)における部分構造(A)の6位、又は位である下記式(I-2)で表される化合物。


This is a compound in which a third naphthalene skeleton is bonded to the following partial structure (A) , and the bonding position of the third naphthalene skeleton is the 6th or 7th position of the partial structure (A) in the following formula (I-2). A compound represented by the following formula (I-2).


下記化合物(1)、化合物(2)、化合物(3)及び化合物(4)から選ばれる少なくとも1種である請求項2に記載の化合物。

The compound according to claim 2, which is at least one selected from the following compound (1), compound (2), compound (3), and compound (4).

分子量が300以上である請求項2又は請求項3に記載の化合物。 4. The compound according to claim 2 or 3, which has a molecular weight of 300 or more. 青色発光材料である請求項2~請求項4のいずれか1項に記載の化合物。 The compound according to any one of claims 2 to 4, which is a blue-emitting material. 2,6-ジブロモナフタレン(a1)又は2,7-ジブロモナフタレン(a2)と、1-ブロモナフタレンボロン酸(b)とを、炭酸カリウム及びテトラ(トリフェニルリン)パラジウム(0)の存在下で反応させる工程を含む、請求項2~請求項4のいずれか1項に記載の化合物の製造方法。

2,6-dibromonaphthalene (a1) or 2,7-dibromonaphthalene (a2) and 1-bromonaphthaleneboronic acid (b) in the presence of potassium carbonate and tetra(triphenylphosphorus)palladium (0) A method for producing the compound according to any one of claims 2 to 4, which comprises a step of reacting.

JP2019179505A 2019-09-30 2019-09-30 Compound, method for producing compound, and organic light emitting device Active JP7456076B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019179505A JP7456076B2 (en) 2019-09-30 2019-09-30 Compound, method for producing compound, and organic light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019179505A JP7456076B2 (en) 2019-09-30 2019-09-30 Compound, method for producing compound, and organic light emitting device

Publications (3)

Publication Number Publication Date
JP2021054744A JP2021054744A (en) 2021-04-08
JP2021054744A5 JP2021054744A5 (en) 2022-10-07
JP7456076B2 true JP7456076B2 (en) 2024-03-27

Family

ID=75269790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019179505A Active JP7456076B2 (en) 2019-09-30 2019-09-30 Compound, method for producing compound, and organic light emitting device

Country Status (1)

Country Link
JP (1) JP7456076B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004018510A (en) 2002-06-20 2004-01-22 Nippon Hoso Kyokai <Nhk> Compound, and optical device, electronic device, electroluminescent element, transistor, display device, and display device unit given by using the compound
JP2006151966A (en) 2004-10-29 2006-06-15 Semiconductor Energy Lab Co Ltd Oligonaphthalene derivative, light-emitting element using oligonaphthalene derivative, and light-emitting apparatus
JP2009544743A (en) 2006-07-28 2009-12-17 メルク パテント ゲーエムベーハー Novel materials for organic electroluminescent devices
WO2010038956A2 (en) 2008-09-30 2010-04-08 Daejoo Electronic Materials Co., Ltd. Novel aromatic derivatives and organic electroluminescent device comprising same
KR101123047B1 (en) 2011-04-29 2012-03-16 덕산하이메탈(주) Chemical and organic electronic element using the same, electronic device thereof
US20170179396A1 (en) 2015-12-22 2017-06-22 Samsung Display Co., Ltd. Organic light-emitting device
US20190006609A1 (en) 2016-01-07 2019-01-03 Guangzhou Chinaray Optoelectronic Materials Ltd. Organic functional compound for preparing organic electronic device and application thereof
WO2019043060A1 (en) 2017-08-30 2019-03-07 Reuter Chemische Apparatebau Kg Binaphthyl compounds

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090107208A (en) * 2008-04-08 2009-10-13 동우 화인켐 주식회사 Naphthalene derivatives, the organic thin layer material and the organic electroluminescence element employing the Same
WO2010047551A2 (en) * 2008-10-23 2010-04-29 대주전자재료 주식회사 Aromatic derivatives and organic electroluminescent device comprising the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004018510A (en) 2002-06-20 2004-01-22 Nippon Hoso Kyokai <Nhk> Compound, and optical device, electronic device, electroluminescent element, transistor, display device, and display device unit given by using the compound
JP2006151966A (en) 2004-10-29 2006-06-15 Semiconductor Energy Lab Co Ltd Oligonaphthalene derivative, light-emitting element using oligonaphthalene derivative, and light-emitting apparatus
JP2009544743A (en) 2006-07-28 2009-12-17 メルク パテント ゲーエムベーハー Novel materials for organic electroluminescent devices
WO2010038956A2 (en) 2008-09-30 2010-04-08 Daejoo Electronic Materials Co., Ltd. Novel aromatic derivatives and organic electroluminescent device comprising same
KR101123047B1 (en) 2011-04-29 2012-03-16 덕산하이메탈(주) Chemical and organic electronic element using the same, electronic device thereof
US20170179396A1 (en) 2015-12-22 2017-06-22 Samsung Display Co., Ltd. Organic light-emitting device
US20190006609A1 (en) 2016-01-07 2019-01-03 Guangzhou Chinaray Optoelectronic Materials Ltd. Organic functional compound for preparing organic electronic device and application thereof
WO2019043060A1 (en) 2017-08-30 2019-03-07 Reuter Chemische Apparatebau Kg Binaphthyl compounds

Also Published As

Publication number Publication date
JP2021054744A (en) 2021-04-08

Similar Documents

Publication Publication Date Title
Yang et al. Triphenylethylene carbazole derivatives as a new class of AIE materials with strong blue light emission and high glass transition temperature
JP5812583B2 (en) Triazine derivative, method for producing the same, and organic electroluminescent device comprising the same
CN105073737B (en) Compound, luminescent material and organic illuminating element
JP4900670B2 (en) Organic electroluminescence device
JP5164902B2 (en) Method for synthesizing 9-aryl-10-iodoanthracene derivative and method for synthesizing luminescent material
KR20090081348A (en) Method for manufacturing triarylpyrazine derivative
CN113402561A (en) High-color-purity platinum (II) complex luminescent material based on spirofluorene structure and application thereof
TWI287039B (en) Organic luminous material and method for producing organic material
JP7456076B2 (en) Compound, method for producing compound, and organic light emitting device
KR101418996B1 (en) Light-emitting organic platinum complex, light-emitting material containing this complex and functional device
JP2012176928A (en) Pyrene derivative, production method of pyrene derivative, complex, catalyst, electronic material, light-emitting material and pigment
CN106749076A (en) O-hydroxy-phenyl azole derivative as organic blue light material application
US20220093879A1 (en) Organoiridium complex for organic electroluminescent elements
CN113583056A (en) 6/5/6 tetradentate cyclometalated platinum or palladium complex luminescent material based on spirofluorene-spirofluorene structure and application thereof
WO2015199141A1 (en) Coumalin-based condensed ring compound exhibiting luminescence/semiconductor properties, and method for manufacturing same
JP2020164476A (en) Blue solid light emitting material, method for producing blue solid light emitting material, and organic light emitting element
KR102652111B1 (en) Asymmetric 1,2-bis(diarylamino)benzenes, production method and use thereof
CN111349040B (en) Organic room temperature phosphor and white light luminescent material and preparation method thereof
JP2005035919A (en) New arylvinyl compound having fluorene skeleton, and method for producing the same and organic el element
CN114920774B (en) D-A type triarylphosphine compound and synthetic method and application thereof
CN114409590B (en) Compound with dihydropyridine nitrile structure, and preparation method and application thereof
JP2010138091A (en) New indenobenzoanthracene compound
KR100821889B1 (en) Novel fluorophores and a preparing method thereof
JP2018150472A (en) Fluorescence material, intermediate of fluorescence material, and organic luminescence element
KR101450587B1 (en) new platinum complex, manufacturing method thereof and organic light emitting diode containing the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220920

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230926

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20231127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240213

R150 Certificate of patent or registration of utility model

Ref document number: 7456076

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150