KR100821889B1 - Novel fluorophores and a preparing method thereof - Google Patents

Novel fluorophores and a preparing method thereof Download PDF

Info

Publication number
KR100821889B1
KR100821889B1 KR1020010054306A KR20010054306A KR100821889B1 KR 100821889 B1 KR100821889 B1 KR 100821889B1 KR 1020010054306 A KR1020010054306 A KR 1020010054306A KR 20010054306 A KR20010054306 A KR 20010054306A KR 100821889 B1 KR100821889 B1 KR 100821889B1
Authority
KR
South Korea
Prior art keywords
formula
mmol
compound
bis
pph
Prior art date
Application number
KR1020010054306A
Other languages
Korean (ko)
Other versions
KR20030021284A (en
Inventor
김병현
황길태
구자강
손형수
Original Assignee
학교법인 포항공과대학교
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 학교법인 포항공과대학교 filed Critical 학교법인 포항공과대학교
Priority to KR1020010054306A priority Critical patent/KR100821889B1/en
Publication of KR20030021284A publication Critical patent/KR20030021284A/en
Application granted granted Critical
Publication of KR100821889B1 publication Critical patent/KR100821889B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/917Electroluminescent

Abstract

본 발명은 신규 형광물질 및 그의 제조방법에 관한 것으로, 구체적으로 1,4-비스(디브로모비닐)벤젠 (1,4-bis[dibromovinyl]benzene) 및 2,5-비스(디브로모비닐)티오펜 (2,5-bis[bromovinyl]thiophene)의 소노가시라 반응 (Sonogashira reaction)에 의해 합성된 하기 화학식 1로 기재되는 신규 형광물질 및 그의 제조방법에 관한 것이다. 본 발명의 형광물질은 방향족 핵 (aromatic nuclei)과 주변 잔기 (peripheral moieties)에 따라 남색에서부터 붉은 빛의 오렌지색까지 다양한 범위에서 방출 최대치를 나타내므로 전자 및 광자 분야에 있어 변조가능한 (tunable) 형광물질로 유용하게 사용될 수 있다. The present invention relates to a novel fluorescent substance and a method for producing the same, specifically 1,4-bis (dibromovinyl) benzene (1,4-bis [dibromovinyl] benzene) and 2,5-bis (dibromo vinyl) The present invention relates to a novel fluorescent substance represented by the following Chemical Formula 1 synthesized by Sonogashira reaction of thiophene (2,5-bis [bromovinyl] thiophene), and a method for preparing the same. The fluorescent material of the present invention exhibits a maximum emission range from indigo blue to reddish orange depending on the aromatic nuclei and peripheral moieties, and thus is a tunable fluorescent material in the field of electrons and photons. It can be usefully used.

Figure 112001022660618-pat00036
Figure 112001022660618-pat00036

Description

신규 형광물질 및 그의 제조방법{NOVEL FLUOROPHORES AND A PREPARING METHOD THEREOF} New fluorescent substance and its manufacturing method {NOVEL FLUOROPHORES AND A PREPARING METHOD THEREOF}             

도 1은 본 발명에 따라 합성된 신규 형광물질들의 형광 방출 스펙트럼을 분석한 결과이다. 1 is a result of analyzing the fluorescence emission spectrum of the novel fluorescent materials synthesized according to the present invention.

A; 형광물질 12a, 12d, 12c12d의 방출 스펙트럼A; Emission Spectrum of Phosphors 12a , 12d , 12c and 12d

B; 형광물질 13a, 13d, 13c13d의 방출 스펙트럼B; Emission Spectrum of Phosphors 13a , 13d , 13c and 13d

C; 형광물질 12a, 12d, 13a13d의 방출을 시각화한 사진
C; Visualized emission of phosphors 12a , 12d , 13a and 13d

본 발명은 신규 형광물질 및 그의 제조방법에 관한 것으로, 구체적으로 1,4-비스(디브로모비닐)벤젠 (1,4-bis[dibromovinyl]benzene) 및 2,5-비스(디브로모비닐)티오펜 (2,5-bis[bromovinyl]thiophene)의 소노가시라 반응 (Sonogashira reaction)에 의해 합성된 하기 화학식 1로 기재되는 신규 형광물질 및 그의 제조방법에 관한 것이다. The present invention relates to a novel fluorescent substance and a method for producing the same, specifically 1,4-bis (dibromovinyl) benzene (1,4-bis [dibromovinyl] benzene) and 2,5-bis (dibromo vinyl) The present invention relates to a novel fluorescent substance represented by the following Chemical Formula 1 synthesized by Sonogashira reaction of thiophene (2,5-bis [bromovinyl] thiophene), and a method for preparing the same.

<화학식 1><Formula 1>

Figure 112001022660618-pat00037

Figure 112001022660618-pat00037

최근 들어, 높은 광발광 특성을 가지는 유기 화합물이 전자 및 광학 공학의 적용을 위한 진보된 물질로서 다양한 연구분야에서 관심의 대상이 되고 있다. 따라서, 좀더 화학적으로 기능화되고 변형된 신규 형광물질을 효율적으로 합성하는 것이 매우 중요하며, 이는 변조가능한 광전자공학적 성질을 갖는 물질을 얻는데 필수적이다. Recently, organic compounds having high photoluminescence properties have been of interest in various research fields as advanced materials for the application of electronic and optical engineering. Therefore, it is very important to efficiently synthesize novel chemically functionalized and modified new phosphors, which is essential for obtaining materials with modifiable optoelectronic properties.

1,1-디브로모-1-알켄 (1,1-dibromo-1-alkenes)을 이용하여 다양한 형광물질을 제조하는 것이 공지되어 있다. 예를 들면, 하기 반응식 1에서와 같이 1,1-디브로모-1-알켄 1로부터 (Z)-1-브로모-1-알칸 ([Z]-bromo-1-alkanes) 2 (Uenishi, J., Kawahawa, R., Yonemitsu, O., J. Org. Chem. 63:8965, 1998), (Z)-1-아릴(알케닐)-1-브로모-1-알켄 ([Z]-1-aryl[alkenyl]-1-bromo-1-alkenes) 3 (Roush, W. R., Moriarty, K. J., Brown, B. B., Tetrahedron lett. 45:6509, 1998), 1,1-디아르(알케닐)-1-알켄 (1,1-diar[alkenyl]-1-alkenes) 4 (Shen, W., and Wang, L J. Org. Chem. 64:8873, 1999) 및 1,3-디인 (1,3-diynes) 6 (Shen, W., Thomas, S. A., Org. Lett. 2:2857, 2000)으로 전환될 수 있다.It is known to prepare various fluorescent materials using 1,1-dibromo-1-alkenes. For example, to from 1,1-dibromo-1-alkene 1, as shown in Scheme 1 (Z) -1-bromo-1-alkane ([Z] -bromo-1- alkanes) 2 (Uenishi, J., Kawahawa, R., Yonemitsu, O., J. Org.Chem. 63: 8965, 1998), (Z) -1-aryl (alkenyl) -1-bromo-1-alkene ([Z] -1-aryl [alkenyl] -1-bromo-1-alkenes) 3 (Roush, WR, Moriarty, KJ, Brown, BB, Tetrahedron lett . 45: 6509, 1998), 1,1- diar (alkenyl) 1,1-diar [alkenyl] -1-alkenes) 4 (Shen, W., and Wang, L J. Org. Chem . 64: 8873, 1999) and 1,3-diyne (1, 3-diynes) 6 (Shen, W., Thomas, SA, Org. Lett . 2: 2857, 2000).

Figure 112001022660618-pat00003
Figure 112001022660618-pat00003

그러나, 화합물 7로의 합성경로를 통해 형광물질의 개발을 위한 연구는 그 예를 찾아볼 수가 없다.
However, there are no examples of research for the development of fluorescent materials through the synthesis route to compound 7 .

이에 본 발명자들은 1,1-디브로모-1-알켄의 공액 결합 길이 및 치환체를 변화시켜 새로운 변조가능한 형광물질을 제조하기 위해 연구한 결과, 1,4-비스(디브로모비닐)벤젠 (1,4-bis[dibromovinyl]benzene) 및 2,5-비스(디브로모비닐)티오펜 (2,5-bis[dibromovinyl]thiopene)의 소노가시라 반응을 통해 넓은 파장 범위에 걸쳐 형광 특성이 우수한 형광물질을 제공할 수 있음을 알고 본 발명을 완성하게 되 었다.
Accordingly, the present inventors have studied to change the conjugated bond length and substituents of 1,1-dibromo-1-alkene to prepare a new modifiable fluorescent substance. As a result, 1,4-bis (dibromovinyl) benzene ( Sonogashira reaction of 1,4-bis [dibromovinyl] benzene) and 2,5-bis (dibromovinyl) thiopene (2,5-bis [dibromovinyl] thiopene) provides excellent fluorescence over a wide wavelength range Knowing that it can provide a fluorescent material has been completed the present invention.

본 발명의 목적은 다양한 전자 및 광학 분야에 적용될 수 있는 광 발광 특성이 우수한 형광물질을 제공하는 것이다.
SUMMARY OF THE INVENTION An object of the present invention is to provide a fluorescent material having excellent photoluminescence properties that can be applied to various electronic and optical fields.

상기 목적을 달성하기 위하여, 본 발명은 다른 방향족 브로마이드들과 1,4-비스(디브로모비닐)벤젠 및 2,5-비스(디브로모비닐)티오펜과의 소노가시라 반응을 통해 형광물질을 효율적으로 제조하는 방법 및 이로부터 합성된 신규 형광물질을 제공한다.
In order to achieve the above object, the present invention is a fluorescent material through the reaction of other aromatic bromide with 1,4-bis (dibromovinyl) benzene and 2,5-bis (dibromovinyl) thiophene It provides a method for efficiently preparing and a novel fluorescent material synthesized therefrom.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명에 따르면, 하기 반응식 2에서와 같이 소노가시라 반응을 통해 화학식 1의 화합물을 수득할 수 있다. According to the present invention, the compound of Formula 1 can be obtained through the Sonogashira reaction as in Scheme 2 below.

Figure 112001022660618-pat00004
Figure 112001022660618-pat00004

상기 식에서, A 및 B는 화학식 1에서 정의한 바와 같다.
Wherein A and B are as defined in formula (1) .

본 발명에서 출발물질로 사용되는 상기 반응식 2의 화합물 8은 공지된 방법 (Corey, E. J. and Fuchs, P. L., Tetrahedron lett. 4831, 1972)으로, 예를 들면 하기 반응식 3과 같이하여 얻을 수 있다. Compound 8 of Scheme 2 used as a starting material in the present invention may be obtained by a known method (Corey, EJ and Fuchs, PL, Tetrahedron lett . 4831, 1972), for example, as in Scheme 3 below.

Figure 112001022660618-pat00005
Figure 112001022660618-pat00005

즉, 디알데히드 화합물을 실온 하에서 CH2Cl2와 같은 용매 중에서 CBr4 및 PPh3와 반응시켜 1,4-비스(디브로모비닐)벤젠 (1,4-bis[dibromovinyl]benzene) 또는 2,5-비스(디브로모비닐)티오펜 (2,5-bis[dibromovinyl]thiopene)의 디브로모알켄을 얻을 수 있다.
That is, the dialdehyde compound is reacted with CBr 4 and PPh 3 in a solvent such as CH 2 Cl 2 at room temperature to give 1,4-bis (dibromovinyl] benzene) or 2, Dibromoalkenes of 5-bis (dibromovinyl) thiophene (2,5-bis [dibromovinyl] thiopene) can be obtained.

구체적으로 살펴보면, 단계 a)에서와 같이, (PPh3)2PdCl2, 촉매 CuI 및 Et3N/MeOH 용매 하에서 페닐아세틸렌을 이용한 디브로모알켄의 소노가시라 반응으로, 하기 화학식 2로 표시되는 화합물 8의 디브로모알켄에 페닐아세틸렌을 가하여 45 내지 50℃에서 교반하고, 생성 혼합물을 증발시킨 후 잔사를 컬럼 크로마토그래피 하여 화학식 1의 화합물을 수득할 수 있다. 상기 단계 a)에 의한 공정은 화학식 1의 화합물 중 B가 페닐기인 경우에 이용된다. Specifically, as shown in step a), (PPh 3 ) 2 PdCl 2 , the catalyst CuI and Et 3 N, by the Sonogashira reaction of dibromoalkenes with phenylacetylene in a solvent, represented by the formula (2 ) Phenylacetylene is added to dibromoalkene of 8 , and the mixture is stirred at 45 to 50 ° C., the resulting mixture is evaporated, and then the residue is subjected to column chromatography to obtain a compound of formula 1 . The process according to step a) is used when B in the compound of Formula 1 is a phenyl group.

Figure 112001022660618-pat00038
Figure 112001022660618-pat00038

상기 식에서, A는 화학식 1에서 정의한 바와 같다.
Wherein A is as defined in formula (1) .

화학식 1의 화합물에서 B가 페닐 이외의 나머지 작용기인 경우는, 단계 b 및 c와 같이 TMS-보호 테트라알킨 (TMS-protected tetraalkyne)과 방향족 브로마이드 사이의 변형된 소노가시라 반응으로 제조되는데, 구체적으로 화합물 8의 디브로모알켄에 트리메틸실릴아세틸렌, (PPh3)2PdCl2, 촉매 CuX (이때, X = Cl 또는 I) 및 Et3N/MeOH을 혼합하여 45 내지 50℃에서 교반한 다음 생성 혼합물을 증발시킨 후 잔사를 컬럼 크로마토그래피 하여 하기 화학식 3으로 표시되는 중간체 화합물 9를 얻은 다음 (단계 b) 여기에 B가

Figure 112007078331137-pat00006
인 경우는 상기 화합물 9를 (PPh3)2PdCl2, 촉매 CuX 및 Et2NH/MeOH 용매 존재하에서 KF 및 브로모티오펜과 45 내지 50℃에서 교반하면서 반응시킴으로써 화학식 1의 화합물을 수득할 수 있다. When B is the remaining functional group other than phenyl in the compound of Formula 1 , it is prepared by a modified Sonogashira reaction between TMS-protected tetraalkyne and aromatic bromide, as in steps b and c. Trimethylsilylacetylene, (PPh 3 ) 2 PdCl 2 , catalyst CuX (where X = Cl or I) and Et 3 N / MeOH were mixed with dibromoalkene of 8 and stirred at 45 to 50 ° C., and the resulting mixture was stirred. After evaporation, the residue was subjected to column chromatography to obtain Intermediate Compound 9 represented by the following Chemical Formula 3 (Step b).
Figure 112007078331137-pat00006
The case may give a compound of formula (I) by reacting with under the above compound 9 a (PPh 3) 2 PdCl 2, catalyst CuX and Et 2 NH / MeOH solvent present stirred at KF and-bromothiophene and 45 to 50 ℃ .

Figure 112001022660618-pat00039
Figure 112001022660618-pat00039

상기 식에서, A는 화학식 1에서 정의한 바와 같다.
Wherein A is as defined in formula (1) .

또한, B가 그외 다른 작용기로

Figure 112001022660618-pat00007
인 경우는 상기 화합물 9를 (PPh3)2PdCl2, 촉매 CuX 및 Et3N/MeOH 용매 존재하에서 KF 및 아릴브로마이드와 45 내지 50℃에서 교반하여 반응시킴으로써 화학식 1의 화합물을 수득할 수 있다. In addition, B is another functional group
Figure 112001022660618-pat00007
The case may give a compound of formula (I) by reaction by stirring the compound 9 (PPh 3) 2 PdCl 2, catalyst CuX and KF and an aryl bromide and from 45 to 50 ℃ under Et 3 N / MeOH solvent present.

상기 방법은 KF 존재 하에서 상응하는 TMS-보호 화합물로부터 알킨의 동일 반응계 내 방출 (liberation)과 방향족 브로마이드 화합물과의 결합 (coupling) 과정으로 구성되며, TMS-탈보호 (deprotection) 및 정제 단계를 생략할 수 있기 때문에 불안정하거나 휘발성인 알킨의 연결에 매우 적당하다. The method consists of the in situ liberation of alkyne from the corresponding TMS-protecting compound in the presence of KF and the coupling of the aromatic bromide compound, eliminating the TMS-deprotection and purification steps. It is very suitable for the connection of unstable or volatile alkynes.

상기 제조방법에 의해 합성된 형광물질 10 내지 13e의 구조를 1H NMR과 13 C NMR 분광분석, 질량 분광분석 및 원소 분석에 의해 결정한 결과, 본 발명의 형광물질 12a 내지 13e는 각각 하기 식으로 표시되는 구조를 갖는다. The structures of the fluorescent materials 10 to 13e synthesized by the preparation method were determined by 1 H NMR, 13 C NMR spectroscopy, mass spectrometry, and elemental analysis. As a result, the fluorescent materials 12a to 13e of the present invention are represented by the following formulas, respectively. It has a structure.

형광물질 12a Fluorescent substance 12a

Figure 112001022660618-pat00008

Figure 112001022660618-pat00008

형광물질 12b Fluorescent substance 12b

Figure 112001022660618-pat00009

Figure 112001022660618-pat00009

형광물질 12c Fluorescent substance 12c

Figure 112001022660618-pat00010

Figure 112001022660618-pat00010

형광물질 12d Fluorescent material 12d

Figure 112001022660618-pat00011

Figure 112001022660618-pat00011

형광물질 12e Fluorescent substance 12e

Figure 112001022660618-pat00012

Figure 112001022660618-pat00012

형광물질 13a Fluorescent substance 13a

Figure 112001022660618-pat00013

Figure 112001022660618-pat00013

형광물질 13b Fluorescent substance 13b

Figure 112001022660618-pat00014

Figure 112001022660618-pat00014

형광물질 13c Fluorescent material 13c

Figure 112001022660618-pat00015

Figure 112001022660618-pat00015

형광물질 13d Fluorescent material 13d

Figure 112001022660618-pat00016

Figure 112001022660618-pat00016

형광물질 13e Fluorescent substance 13e

Figure 112001022660618-pat00017

Figure 112001022660618-pat00017

본 발명에 따른 화학식 1의 화합물 및 화학식 3의 중간체 화합물 9는 공기와 통상적으로 사용되는 유기 용매에 대하여 상당히 안정하다. CHCl3 용액상에서 형광물질 12a 내지 13e의 광물리학적 성질 (photophysical properties)을 조사하기 위하여 형광물질들의 형광 양자 수율 (fluorescence quantum yields, ΦF)을 결정한 결과 (Parker, C. A., In Photoluminescence of Solutions, Elsevier, Amsterdam, 1968), 형광물질 12a12b가 모든 형광물질들 중에서 중간정도의 양자 수율과 가장 긴 형광 반감기 (fluorescence life time, τS)를 가지고 있었다 (표 1 참조).The compound of formula 1 and intermediate compound 9 of formula 3 according to the invention are fairly stable with respect to air and commonly used organic solvents. In order to investigate the photophysical properties of the fluorescent materials 12a to 13e on the CHCl 3 solution, the fluorescence quantum yields (Φ F ) of the fluorescent materials were determined (Parker, CA, In Photoluminescence of Solutions, Elsevier , Amsterdam, 1968), phosphors 12a and 12b had a medium quantum yield and the longest fluorescence life time (τ S ) of all phosphors (see Table 1 ).

또한, 이들의 표준화된 방출 스펙트라 (normalized emission spectra)를 분석한 결과, UV-가시광선 흡수 스펙트라에서 형광물질의 π-π* 전이 (transition)로 나타내어지는 흡수 최대치는 분자들의 중심부 단위 (central unit)에 따라 상당히 의존적인 양상을 나타내었고 (도 1a1b 참조), 방출 최대치 역시 형광물질의 방향족 핵에 따라 서로 다른 양상을 나타내었는데, 남색에서 붉은 빛의 오렌지색 지역까지 다양하였다 (도 1c 참조). In addition, by analyzing their normalized emission spectra, the absorption maximum represented by the π-π * transition of the phosphor in the UV-visible absorption spectra is found in the central unit of the molecules. 1A and 1B , and emission maximums were also different depending on the aromatic nucleus of the phosphor, ranging from indigo to reddish orange regions (see FIG. 1C ).

상기에서 입증된 바와 같이, 본 발명의 제조방법에 의해 합성된 신규 화합물들은 극적인 흡수 및 방출 스펙트라 변화를 보이고 양자 수율이 높으므로 전자 및 광자 분야에 있어 변조가능한 형광물질로 유용하게 사용될 수 있다.
As demonstrated above, the novel compounds synthesized by the preparation method of the present invention exhibit dramatic absorption and emission spectra changes and high quantum yields, and thus can be usefully used as modulators in the electronic and photon fields.

이하, 본 발명을 실시예에 의해 상세히 설명한다.Hereinafter, the present invention will be described in detail by way of examples.

단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 한정되는 것은 아니다.
However, the following examples are merely to illustrate the invention, but the content of the present invention is not limited to the following examples.

<실시예 1> 소노가시라 반응에 의한 신규 형광물질의 합성Example 1 Synthesis of Novel Fluorescent Materials by Sonogashira Reaction

(1-1) 중간체 화합물 10(1-1) Intermediate Compound 10

Et3N (30 ㎖)에 용해된 675.3 ㎎ (1.51 mmol)의 화합물 8, 1.3 ㎖ (9.20 mmol)의 (트리메틸실릴)아세틸렌 [(trimethylsilyl)acetylene], 213 ㎎ (0.303 mmol)의 (PPh3)2PdCl2, 39.8 ㎎ (0.152 mmol)의 CuI 혼합물을 45-50℃에서 교반하였다. 2시간 동안 교반한 후, 상기 혼합물을 증발시켰다. 컬럼 크로마토그래피 (Column chromatography [SiO2, hexane])를 수행하여 고형상으로 714 ㎎ (91%)의 화합물 10을 얻었다.675.3 mg (1.51 mmol) of Compound 8 dissolved in Et 3 N (30 mL) 8 , 1.3 mL (9.20 mmol) of (trimethylsilyl) acetylene, 213 mg (0.303 mmol) of (PPh 3 ) 2 PdCl 2 , 39.8 mg (0.152 mmol) of CuI mixture was stirred at 45-50 ° C. After stirring for 2 hours, the mixture was evaporated. Column chromatography (Column chromatography [SiO 2 , hexane]) was carried out to give 714 mg (91%) of compound 10 in a solid form.

m.p. 118 내지 120℃; m.p. 118 to 120 ° C;

1H NMR (300 MHz, CDCl3) δ 7.86(s, 4H; ArH), 7.04(s, 2H; CCH), 0.27 and 0.24 (2s, 36H; SiCH3); 1 H NMR (300 MHz, CDCl 3 ) δ 7.86 (s, 4H; ArH), 7.04 (s, 2H; CCH), 0.27 and 0.24 (2s, 36H; SiCH 3 );

13C NMR (75 MHz, CDCl3) δ 144.1, 136.2, 128.9, 104.2, 103.8, 102.2, 101.7, 94.2, -0.2, -0.3; 13 C NMR (75 MHz, CDCl 3 ) δ 144.1, 136.2, 128.9, 104.2, 103.8, 102.2, 101.7, 94.2, -0.2, -0.3;

MS (FAB, m/z) 514.3 (M+); MS (FAB, m / z) 514.3 (M &lt; + &gt;);

UV (CHCl3): λmax (ε × 10-5) = 412 (4.7); UV (CHCl 3 ): λ max (ε × 10 −5 ) = 412 (4.7);

Elemental anal. Calcd. for C30H42Si4H2O: C, 67.60; Elemental anal. Calcd. for C 30 H 42 Si 4 H 2 O : C, 67.60;

H, 8.32. Found: C, 67.30; H, 8.32. Found: C, 67.30;

H, 8.19.
H, 8.19.

(1-2) 중간체 화합물 11(1-2) Intermediate Compound 11

Et3N (8.8 ㎖)에 용해된 198 ㎎ (0.442 mmol)의 화합물 9, 749 ㎕ (5.30 mmol)의 (트리메틸실릴)아세틸렌, 62.0 ㎎ (0.088 mmol)의 (PPh3)2PdCl2, 17.0 ㎎ (0.088 mmol)의 CuI 혼합물을 45-50℃에서 교반하였다. 3시간 동안 교반한 후, 상기 혼합물을 증발시켰다. 컬럼 크로마토그래피 (SiO2, hexane)를 수행하여 210 ㎎ (91%)의 화합물 11을 얻었다.198 mg (0.442 mmol) of Compound 9 , 749 μl (5.30 mmol) of (trimethylsilyl) acetylene, 62.0 mg (0.088 mmol) of (PPh 3 ) 2 PdCl 2 , 17.0 mg dissolved in Et 3 N (8.8 mL) (0.088 mmol) of CuI mixture was stirred at 45-50 ° C. After stirring for 3 hours, the mixture was evaporated. Column chromatography (SiO 2 , hexane) was performed to obtain 210 mg (91%) of compound 11 .

m.p. 146 내지 148℃; m.p. 146 to 148 ° C;                     

1H NMR (300 MHz, CDCl3) δ 7.62(s, 4H; ArH), 7.07(s, 2H; CCH), 0.26 and 0.19 (2s, 36H; SiCH3); 1 H NMR (300 MHz, CDCl 3 ) δ 7.62 (s, 4H; ArH), 7.07 (s, 2H; CCH), 0.26 and 0.19 (2s, 36H; SiCH 3 );

13C NMR (75 MHz, CDCl3) δ 141.4, 136.8, 130.0, 104.9, 103.7, 102.0, 101.9, 95.4, -0.2, -0.4; 13 C NMR (75 MHz, CDCl 3 ) δ 141.4, 136.8, 130.0, 104.9, 103.7, 102.0, 101.9, 95.4, -0.2, -0.4;

MS (FAB, m/z) 520.2 (M+); MS (FAB, m / z) 520.2 (M &lt; + &gt;);

UV (CHCl3): λmax (ε × 10-5) = 458 (4.8); UV (CHCl 3 ): λ max (ε 10 −5 ) = 458 (4.8);

Elemental anal. Calcd. for C28H40S1Si4: C, 64.55; Elemental anal. Calcd. for C 28 H 40 S 1 Si 4 : C, 64.55;

H, 7.74. Found: C, 64.20; H, 7.74. Found: C, 64.20;

H, 7.99.
H, 7.99.

(1-3) 형광물질 12a(1-3) Fluorescent substance 12a

Et3N/MeOH (2 ㎖/8 ㎖)에 용해된 화합물 8 (322 ㎎, 0.722 mmol) 및 페닐 아세틸렌 (phenyl acetylene, 1.2 ㎖, 11.6 mmol) 용액에 (PPh3)2PdCl2 (76 ㎎, 0.108 mmol) 및 CuI (21 ㎎, 0.108 mmol)를 첨가하였다. 상기 혼합물을 45-50℃에서 3시간 동안 교반하였다. 진공상태 (in Vacuo)에서 상기 혼합물을 증발시킨 후, 잔사를 헥산을 용출용매로 사용한 실리카 겔 컬럼에 크로마토그래피를 수행하여 화합물 12a (299 ㎎, 60%)를 얻었다. To a solution of Compound 8 (322 mg, 0.722 mmol) and phenyl acetylene (1.2 mL, 11.6 mmol) dissolved in Et 3 N / MeOH (2 mL / 8 mL) (PPh 3 ) 2 PdCl 2 (76 mg, 0.108 mmol) and CuI (21 mg, 0.108 mmol) were added. The mixture was stirred at 45-50 ° C. for 3 hours. After evaporation of the mixture in vacuo ( in Vacuo ), the residue was chromatographed on a silica gel column using hexane as an eluent to obtain compound 12a (299 mg, 60%).

m.p. 182 내지 185℃; m.p. 182 to 185 ° C;

1H NMR (300 MHz, CDCl3) δ 7.98(s, 4H; ArH), 7.55-7.52(m, 8H; ArH), 7.38(m, 12H; ArH), 7.15(s, 2H; CCH); 1 H NMR (300 MHz, CDCl 3 ) δ 7.98 (s, 4H; ArH), 7.55-7.52 (m, 8H; ArH), 7.38 (m, 12H; ArH), 7.15 (s, 2H; CCH);

13C NMR (75 MHz, CDCl3) δ 142.2, 131.7, 131.6, 129.0, 128.8, 128.5, 128.3, 125.9; 13 C NMR (75 MHz, CDCl 3 ) δ 142.2, 131.7, 131.6, 129.0, 128.8, 128.5, 128.3, 125.9;

MS (FAB, m/z) 530.2 (M+); MS (FAB, m / z) 530.2 (M &lt; + &gt;);

UV (CHCl3): λmax (ε × 10-5) = 416 (5.5); UV (CHCl 3 ): λ max (ε 10 −5 ) = 416 (5.5);

Elemental anal. Calcd. for C42H260.5H2O: C, 93.48; Elemental anal. Calcd. for C 42 H 26 0. 5 H 2 O: C, 93.48;

H, 5.04. Found: C, 93.44; H, 5.04. Found: C, 93.44;

H, 4.87.
H, 4.87.

(1-4) 형광물질 12b(1-4) fluorescent substance 12b

Et2NH/MeOH (25 ㎖/6.3 ㎖)에 용해된 111 ㎎ (0.216 mmol)의 화합물 10, 0.3 ㎖ (3.10 mmol)의 2-브로모티오펜 (2-bromothiophene), 141 ㎎ (2.51 mmol)의 KF, 44 ㎎ (0.0627 mmol)의 (PPh3)2PdCl2 및 12 ㎎ (0.063 mmol)의 CuI 혼합물을 45-50℃에서 교반하였다. 4시간 동안 교반한 후, 상기 혼합물을 증발시켰다. 컬럼 크로마토그래피 (SiO2, hexane : ethyl acetate, 20:1)를 수행하여 고형상으로 54.5 ㎎ (45%)의 화합물 12b를 얻었다.111 mg (0.216 mmol) of compound 10 , 0.3 mL (3.10 mmol) of 2-bromothiophene, 141 mg (2.51 mmol) dissolved in Et 2 NH / MeOH (25 mL / 6.3 mL) KF, 44 mg (0.0627 mmol) of (PPh 3 ) 2 PdCl 2 and 12 mg (0.063 mmol) of CuI mixture was stirred at 45-50 ° C. After stirring for 4 hours, the mixture was evaporated. Column chromatography (SiO 2 , hexane: ethyl acetate, 20: 1) was performed to obtain 54.5 mg (45%) of compound 12b in solid form.

m.p. 190 내지 191℃; m.p. 190 to 191 ° C;

1H NMR (300 MHz, CDCl3) δ 7.92(s, 4H; ArH), 7.33(m, 8H; ThH), 7.11(s, 2H; C=CH), 7.03-6.99(m, 4H; ThH); 1 H NMR (300 MHz, CDCl 3 ) δ 7.92 (s, 4H; ArH), 7.33 (m, 8H; ThH), 7.11 (s, 2H; C = CH), 7.03-6.99 (m, 4H; ThH) ;

13C NMR (75 MHz, CDCl3) δ 142.1, 136.4, 132.7, 132.5, 129.1, 128.4, 127.8, 127.3, 127.2, 122.7, 103.4, 92.5, 90.7, 89.2, 82.7; 13 C NMR (75 MHz, CDCl 3 ) δ 142.1, 136.4, 132.7, 132.5, 129.1, 128.4, 127.8, 127.3, 127.2, 122.7, 103.4, 92.5, 90.7, 89.2, 82.7;

MS (FAB, m/z) 553.9 (M+); MS (FAB, m / z) 553.9 (M &lt; + &gt;);

UV (CHCl3): λmax (ε × 10-5) = 438 (6.0); UV (CHCl 3 ): λ max (ε 10-5) = 438 (6.0);

Elemental anal. Calcd. for C34H18S4: C, 73.61; Elemental anal. Calcd. for C 34 H 18 S 4 : C, 73.61;

H, 3.27. Found: C, 73.95; H, 3.27. Found: C, 73.95;

H, 3.13.
H, 3.13.

(1-5) 형광물질 12c(1-5) Fluorescent substance 12c

Et3N/MeOH (14.3 ㎖/4.8 ㎖)에 용해된 98.1 ㎎ (0.191 mmol)의 화합물 10, 88 ㎎ (1.52 mmol)의 5-브로모-2-푸르알데히드 (5-bromo-2-furaldehyde), 267 ㎎ (1.53 mmol)의 KF, 27 ㎎ (0.0385 mmol)의 (PPh3)2PdCl2 및 2 ㎎ (0.020 mmol)의 CuCl 혼합물을 45-50℃에서 교반하였다. 5시간 동안 교반한 후, 상기 혼합물을 증 발시켰다. 컬럼 크로마토그래피 (SiO2, hexane : ethyl acetate, 1:1)를 수행하여 고형상으로 43 ㎎ (38%)의 화합물 12c를 얻었다.98.1 mg (0.191 mmol) of compound 10 dissolved in Et 3 N / MeOH (14.3 mL / 4.8 mL) 10 , 88 mg (1.52 mmol) of 5-bromo-2-furaldehyde , 267 mg (1.53 mmol) of KF, 27 mg (0.0385 mmol) of (PPh 3 ) 2 PdCl 2 and 2 mg (0.020 mmol) of CuCl mixture were stirred at 45-50 ° C. After stirring for 5 hours, the mixture was evaporated. Column chromatography (SiO 2 , hexane: ethyl acetate, 1: 1) was performed to obtain 43 mg (38%) of compound 12c in solid form.

m.p. > 131℃; m.p. > 131 ° C;

1H NMR (300 MHz, CDCl3) δ 9.66(s, 4H; CHO), 7.96(s, 4H; ArH), 7.31-7.25 (m, 10H; FuH and C=CH); 1 H NMR (300 MHz, CDCl 3 ) δ 9.66 (s, 4H; CHO), 7.96 (s, 4H; ArH), 7.31-7.25 (m, 10H; FuH and C = CH);

13C NMR (75 MHz, CDCl3) δ 177.2, 153.0, 152.8, 145.6, 141.1, 136.4, 129.7, 125.9, 121.3, 118.7, 118.0, 101.4, 94.6, 92.2, 87.2, 85.3; 13 C NMR (75 MHz, CDCl 3 ) δ 177.2, 153.0, 152.8, 145.6, 141.1, 136.4, 129.7, 125.9, 121.3, 118.7, 118.0, 101.4, 94.6, 92.2, 87.2, 85.3;

UV (CHCl3): λmax (ε × 10-5) = 450 (4.5); UV (CHCl 3 ): λ max (ε 10 −5 ) = 450 (4.5);

Elemental anal. Calcd. for C38H18O8: C, 75.75; Elemental anal. Calcd. for C 38 H 18 O 8 : C, 75.75;

H, 3.01. Found: C, 75.52; H, 3.01. Found: C, 75.52;

H, 3.00.
H, 3.00.

(1-6) 형광물질 12d(1-6) fluorescent substance 12d

Et3N/MeOH (21 ㎖/7 ㎖)에 용해된 화합물 10 (144 ㎎, 0.28 mmol) 및 5-브로모-2-티오펜카르복스알데히드 (5-bromo-2-thiophenecarboxaldehyde) (0.33 ㎖, 2.78 mmol) 용액에 (PPh3)2PdCl2 (39 ㎎, 0.0556 mmol) 및 CuI (5 ㎎, 0.0263 mmol)를 첨가하였다. 상기 혼합물을 45-50℃에서 5시간 동안 교반하였다. 상기 용액을 진공상태에서 증발시킨 후, 잔사를 헥산 : 에틸아세테이트 (hexane : ethyl acetate) (1:1)를 용출용매로 한 실리카 겔 컬럼 크로마토그래피를 수행하여 화합물 12d (98.2 ㎎, 53%)를 얻었다.Compound 10 (144 mg, 0.28 mmol) and 5-bromo-2-thiophenecarboxaldehyde (5-bromo-2-thiophenecarboxaldehyde) dissolved in Et 3 N / MeOH (21 mL / 7 mL) (0.33 mL, 2.78 mmol) was added (PPh 3 ) 2 PdCl 2 (39 mg, 0.0556 mmol) and CuI (5 mg, 0.0263 mmol). The mixture was stirred at 45-50 ° C. for 5 hours. After evaporation of the solution in vacuo, the residue was subjected to silica gel column chromatography using hexane: ethyl acetate (1: 1) as an eluting solvent to give compound 12d (98.2 mg, 53%). Got it.

m.p. > 146℃; m.p. > 146 ° C;

1H NMR (300 MHz, CDCl3) δ 9.88(s, 4H; CHO), 7.93(s, 4H; ArH), 7.70(br d, 4H; ThH), 7.38(br d, 4H; ThH), 7.24(s, 2H; C=CH); 1 H NMR (300 MHz, CDCl 3 ) δ 9.88 (s, 4H; CHO), 7.93 (s, 4H; ArH), 7.70 (br d, 4H; ThH), 7.38 (br d, 4H; ThH), 7.24 (s, 2H; C = CH);

13C NMR (75 MHz, CDCl3) δ 182.4, 182.3, 145.1, 144.7, 144.5, 136.5, 136.2, 135.9, 133.5, 133.2, 131.1, 129.5, 128.2, 102.6, 96.2, 94.0, 88.7, 82.7; 13 C NMR (75 MHz, CDCl 3 ) δ 182.4, 182.3, 145.1, 144.7, 144.5, 136.5, 136.2, 135.9, 133.5, 133.2, 131.1, 129.5, 128.2, 102.6, 96.2, 94.0, 88.7, 82.7;

MS (FAB, m/z) 669.9 (M++H); MS (FAB, m / z) 669.9 (M ++ H);

UV (CHCl3): λmax (ε × 10-5) = 456 (2.8);UV (CHCl 3 ): λ max (ε 10 −5 ) = 456 (2.8);

Elemental anal. Calcd. for C38H18O4S4·H2O: C, 66.45; Elemental anal. Calcd. for C 38 H 18 O 4 S 4 H 2 O: C, 66.45;

H, 2.93. Found: C, 66.10; H, 2.93. Found: C, 66.10;

H, 2.64.
H, 2.64.

(1-7) 형광물질 12e(1-7) Fluorescent substance 12e

Et3N/MeOH (14.6 ㎖/4.9 ㎖)에 용해된 화합물 10 (102 ㎎, 0.195 mmol) 및 4- 브로모피리딘 히드로클로라이드 (4-bromopyridine hydrochloride) (384 ㎎, 1.97 mmol) 용액에 (PPh3)2PdCl2 (27 ㎎, 0.0385 mmol) 및 CuI (4 ㎎, 0.021 mmol)를 첨가하였다. 상기 혼합물을 45-50℃에서 8시간 동안 교반하였다. 상기 용액을 진공상태에서 증발시킨 후, 잔사를 에틸아세테이드 : 메틸알콜 (ethyl acetate : methyl alcohol) (10:1)을 용출용매로 사용한 실리카 겔 컬럼 크로마토그래피를 수행하여 화합물 12e (58.1 ㎎, 56%)를 얻었다.To a solution of compound 10 (102 mg, 0.195 mmol) and 4-bromopyridine hydrochloride (384 mg, 1.97 mmol) dissolved in Et 3 N / MeOH (14.6 mL / 4.9 mL) (PPh 3 ) 2 PdCl 2 (27 mg, 0.0385 mmol) and CuI (4 mg, 0.021 mmol) were added. The mixture was stirred at 45-50 ° C. for 8 hours. After evaporation of the solution in vacuo, the residue was subjected to silica gel column chromatography using ethyl acetate: methyl alcohol (10: 1) as the eluent, to obtain compound 12e (58.1 mg, 56%).

m.p. > 380℃; m.p. > 380 ° C .;

1H NMR (300 MHz, CDCl3)δ 8.60(br d, 8H; J = 4.7 Hz; PyH), 7.94(s, 4H; ArH), 7.39-7.30(m, 8H; PyH), 7.27(s, 2H; C=CH); 1 H NMR (300 MHz, CDCl 3 ) δ 8.60 (br d, 8H; J = 4.7 Hz; PyH), 7.94 (s, 4H; ArH), 7.39-7.30 (m, 8H; PyH), 7.27 (s, 2H; C = CH);

13C NMR (75 MHz, CDCl3) δ 149.9, 149.8, 145.1, 136.4, 130.6, 130.4, 129.4, 125.5, 125.3, 120.9, 95.3, 92.6, 92.3, 90.3; 13 C NMR (75 MHz, CDCl 3 ) δ 149.9, 149.8, 145.1, 136.4, 130.6, 130.4, 129.4, 125.5, 125.3, 120.9, 95.3, 92.6, 92.3, 90.3;

MS (FAB, m/z) 535.0 (M++H); MS (FAB, m / z) 535.0 (M ++ H);

UV (CHCl3): λmax (ε × 10-5) = 420 (0.94); UV (CHCl 3 ): λ max (ε 10 −5 ) = 420 (0.94);

Elemental anal. Calcd. for C38H22N4·0.5H2O: C, 83.96; Elemental anal. Calcd. for C 38 H 22 N 4 .0.5H 2 O: C, 83.96;

H, 4.26; N, 10.30. Found: C, 84.08; H, 4. 26; N, 10.30. Found: C, 84.08;

H, 4.09; N, 10.23.
H, 4.09; N, 10.23.

(1-8) 형광물질 13a(1-8) fluorescent material 13a

Et3N/MeOH (2 ㎖/8 ㎖)에 용해된 화합물 9 (232 ㎎, 0.518 mmol) 및 페닐아세틸렌 (0.85 ㎖, 7.77 mmol) 용액에 (PPh3)2PdCl2 (55 ㎎, 0.0784 mmol) 및 CuI (15 ㎎, 0.0788 mmol)를 첨가하였다. 상기 혼합물은 45-50℃에서 3시간 동안 교반하였다. 상기 용액을 진공상태에서 증발시킨 후, 잔사를 헥산을 용출용매로 사용한 실리카 겔 컴럼 크로마토그래피를 수행하여 화합물 13a (228 ㎎, 78%)를 얻었다.To a solution of compound 9 (232 mg, 0.518 mmol) and phenylacetylene (0.85 mL, 7.77 mmol) dissolved in Et 3 N / MeOH (2 mL / 8 mL) (PPh 3 ) 2 PdCl 2 (55 mg, 0.0784 mmol) And CuI (15 mg, 0.0788 mmol). The mixture was stirred at 45-50 ° C. for 3 hours. The solution was evaporated in vacuo, and the residue was subjected to silica gel column chromatography using hexane as an eluent to obtain compound 13a (228 mg, 78%).

m.p. 134 내지 136℃; m.p. 134 to 136 ° C;

1H NMR (300 MHz, CDCl3) δ 7.62-7.56(m, 8H; ArH), 7.48(s, 2H; ArH), 7.43-7.39(m, 6H;ArH), 7.37(s, 2H; C=CH), 7.28-7.26(m, 6H; ArH); 1 H NMR (300 MHz, CDCl 3 ) δ 7.62-7.56 (m, 8H; ArH), 7.48 (s, 2H; ArH), 7.43-7.39 (m, 6H; ArH), 7.37 (s, 2H; C = CH), 7.28-7. 26 (m, 6H; ArH);

13C NMR (75 MHz, CDCl3) δ 142.0, 135.6, 131.6, 131.5, 130.6, 128.6, 128.4, 128.3, 128.2, 122.8, 122.4, 101.7, 98.1, 90.0, 89.2, 87.5; 13 C NMR (75 MHz, CDCl 3) δ 142.0, 135.6, 131.6, 131.5, 130.6, 128.6, 128.4, 128.3, 128.2, 122.8, 122.4, 101.7, 98.1, 90.0, 89.2, 87.5;

MS (FAB, m/z) 536.1 (M+); MS (FAB, m / z) 536.1 (M &lt; + &gt;);

UV (CHCl3): λmax (ε × 10-5) = 468 (3.9); UV (CHCl 3 ): λ max (ε X 10 -5 ) = 468 (3.9);

Elemental anal. Calcd. for C40H24S1: C, 89.52; Elemental anal. Calcd. for C 40 H 24 S 1 : C, 89.52;

H, 4.51. Found: C, 89.23; H, 4.51. Found: C, 89.23;

H, 4.64.
H, 4.64.

(1-9) 형광물질 13b(1-9) fluorescent substance 13b

Et2NH/MeOH (16 ㎖/4 ㎖)에 용해된 107 ㎎ (0.201 mmol)의 화합물 11, 0.19 ㎖ (1.96 mmol)의 2-브로모티오펜 (2-bromothiophene), 90 ㎎ (1.6 mmol)의 KF, 28 ㎎ (0.0399 mmol)의 (PPh3)2PdCl2 및 7.6 ㎎ (0.0399 mmol)의 CuI 혼합액을 45-50℃에서 교반하였다. 상기 혼합액을 5시간 동안 교반한 후, 증발시켰다. 컬럼 크로마토그래피 (SiO2, hexane : ethyl acetate, 10:1)를 수행하여 55.2 ㎎ (49%)의 고형상 화합물 13b를 얻었다.107 mg (0.201 mmol) of compound 11 , 0.19 mL (1.96 mmol) of 2-bromothiophene, 90 mg (1.6 mmol) dissolved in Et 2 NH / MeOH (16 mL / 4 mL) KF, 28 mg (0.0399 mmol) of (PPh 3 ) 2 PdCl 2 and 7.6 mg (0.0399 mmol) of CuI mixture were stirred at 45-50 ° C. The mixture was stirred for 5 hours and then evaporated. Column chromatography (SiO 2 , hexane: ethyl acetate, 10: 1) was carried out to give 55.2 mg (49%) of solid compound 13b .

m.p. > 126℃; m.p. > 126 ° C;

1H NMR (300 MHz, CDCl3) δ 7.35(s, 2H; ArH), 7.25-7.20(m, 10H; ArH and C=CH), 6.96(t, 2H, J = 4.3 Hz; ArH), 6.84(t, 2H, J = 4.3 Hz; ArH); 1 H NMR (300 MHz, CDCl 3 ) δ 7.35 (s, 2H; ArH), 7.25-7.20 (m, 10H; ArH and C = CH), 6.96 (t, 2H, J = 4.3 Hz; ArH), 6.84 (t, 2H, J = 4.3 Hz; ArH);

13C NMR (75 MHz, CDCl3) δ 142.1, 135.3, 132.6, 132.4, 130.7, 128.5, 127.8, 127.2, 122.8, 122.3, 101.2, 92.3, 92.0, 91.0, 83.7; 13 C NMR (75 MHz, CDCl 3 ) δ 142.1, 135.3, 132.6, 132.4, 130.7, 128.5, 127.8, 127.2, 122.8, 122.3, 101.2, 92.3, 92.0, 91.0, 83.7;

MS (FAB, m/z) 559.8 (M+); MS (FAB, m / z) 559.8 (M &lt; + &gt;);

UV (CHCl3): λmax (ε × 10-5) = 486 (5.1); UV (CHCl 3 ): λ max (ε × 10 −5 ) = 486 (5.1);

Elemental anal. Calcd. for C32H16S5: C, 68.54; Elemental anal. Calcd. for C 32 H 16 S 5 : C, 68.54;

H, 2.88. Found: C, 68.54; H, 2.88. Found: C, 68.54;

H, 3.03. H, 3.03.                     

(1-10) 형광물질 13c(1-10) fluorescent substance 13c

Et3N/MeOH (9.7 ㎖/3.2 ㎖)에 용해된 69.2 ㎎ (0.13 mmol)의 화합물 11, 182 ㎎ (1.04 mmol)의 5-브로모-2-푸르알데히드, 75 ㎎ (1.29 mmol)의 KF, 18 ㎎ (0.0256 mmol)의 (PPh3)2PdCl2 및 2.6 ㎎ (0.0263 mmol)의 CuCl 혼합액을 45-50℃에서 교반하였다. 5시간 동안 교반한 후 상기 혼합물을 증발시켰다. 컬럼 크로마토그래피 (SiO2, hexane : ethyl acetate, 3:2)를 수행하여 고형상으로 30 ㎎ (38%)의 화합물 13c를 얻었다.69.2 mg (0.13 mmol) of compound 11 , 182 mg (1.04 mmol) 5-bromo-2-furaldehyde, 75 mg (1.29 mmol) KF dissolved in Et 3 N / MeOH (9.7 mL / 3.2 mL) , 18 mg (0.0256 mmol) of (PPh 3 ) 2 PdCl 2 and 2.6 mg (0.0263 mmol) of CuCl mixture were stirred at 45-50 ° C. After stirring for 5 hours the mixture was evaporated. Column chromatography (SiO 2 , hexane: ethyl acetate, 3: 2) was performed to obtain 30 mg (38%) of compound 13c in solid form.

m.p. > 133℃; m.p. > 133 ° C .;

1H NMR (300 MHz, CDCl3) δ 9.63(s, 2H; CHO), 9.58 (s, 2H; CHO), 7.55-7.51(2d, 8H, J = 3.9 Hz; FuH), 7.45(s, 2H; ThH), 7.27(s, 2H; C=CH); 1 H NMR (300 MHz, CDCl 3 ) δ 9.63 (s, 2H; CHO), 9.58 (s, 2H; CHO), 7.55-7.51 (2d, 8H, J = 3.9 Hz; FuH), 7.45 (s, 2H ThH), 7.27 (s, 2H; C = CH);

13C NMR (75 MHz, CDCl3) δ 177.2(d), 152.8, 138.7, 134.9, 132.9, 130.9, 130.4, 128.8, 128.0, 121.2, 118.4, 118.0, 101.2, 96.3, 93.1, 87.5, 85.8; 13 C NMR (75 MHz, CDCl 3 ) δ 177.2 (d), 152.8, 138.7, 134.9, 132.9, 130.9, 130.4, 128.8, 128.0, 121.2, 118.4, 118.0, 101.2, 96.3, 93.1, 87.5, 85.8;

MS (FAB, m/z) 608.9 (M++H); MS (FAB, m / z) 608.9 (M ++ H);

UV (CHCl3): λmax (ε × 10-5) = 516 (1.4); UV (CHCl 3 ): λ max (ε 10 −5 ) = 516 (1.4);

Elemental anal. Calcd. for C36H16O8S1: C, 71.05; Elemental anal. Calcd. for C 36 H 16 O 8 S 1 : C, 71.05;

H, 2.65. Found: C, 71.28; H, 2.65. Found: C, 71.28;

H, 2.68. H, 2.68.                     

(1-11) 형광물질 13d(1-11) fluorescent material 13d

Et3N/MeOH (11.3 ㎖/3.8 ㎖)에 용해된 화합물 11 (80.2 ㎎, 0.151 mmol) 및 5-브로모-2-티오펜카르복스알데히드 (0.18 ㎖, 1.51 mmol) 용액에 (PPh3)2PdCl2 (21 ㎎, 0.0299 mmol) 및 CuI (3 ㎎, 0.0157 mmol)를 첨가하였다. 상기 혼합물을 45-50℃에서 4시간 동안 교반하였다. 상기 혼합물을 진공상태에서 교반한 후, 잔사를 헥산 : 에틸아세테이트 (hexane : ethyl acetate) (1:1)를 용출용매로 사용한 실리카 겔 컬럼 크로마토그래피를 수행하여 화합물 13d (59.8 ㎎, 59%)를 얻었다.To a solution of compound 11 (80.2 mg, 0.151 mmol) and 5-bromo-2-thiophenecarboxaldehyde (0.18 mL, 1.51 mmol) dissolved in Et 3 N / MeOH (11.3 mL / 3.8 mL) (PPh 3 ) 2 PdCl 2 (21 mg, 0.0299 mmol) and CuI (3 mg, 0.0157 mmol) were added. The mixture was stirred at 45-50 ° C. for 4 hours. The mixture was stirred in vacuo and the residue was subjected to silica gel column chromatography using hexane: ethyl acetate (1: 1) as the eluent to obtain Compound 13d (59.8 mg, 59%). Got it.

m.p. > 88℃; m.p. > 88 ° C .;

1H NMR (300MHz, CDCl3) δ 9.87(s, 2H; CHO), 9.78(s, 2H; CHO), 7.67(d, 2H, J = 3.9 Hz; ThH), 7.47(d, 2H, J = 3.9 Hz; ThH), 7.40(br d, 4H; ThH), 7.34(d, 2H, J=3.9Hz; ThH), 7.25(s, 2H; C=CH); 1 H NMR (300 MHz, CDCl 3 ) δ 9.87 (s, 2H; CHO), 9.78 (s, 2H; CHO), 7.67 (d, 2H, J = 3.9 Hz; ThH), 7.47 (d, 2H, J = 3.9 Hz; ThH, 7.40 (br d, 4H; ThH), 7.34 (d, 2H, J = 3.9 Hz; ThH), 7.25 (s, 2H; C = CH);

13C NMR (75 MHz, CDCl3) δ 182.3, 182.2, 145.1, 144.5, 142.8, 138.0, 135.9, 135.7, 133.2, 132.5, 131.7, 131.1, 102.0, 100.4, 95.9, 94.6, 91.3; 13 C NMR (75 MHz, CDCl 3 ) δ 182.3, 182.2, 145.1, 144.5, 142.8, 138.0, 135.9, 135.7, 133.2, 132.5, 131.7, 131.1, 102.0, 100.4, 95.9, 94.6, 91.3;

MS (FAB, m/z) 672.9 (M++H); MS (FAB, m / z) 672.9 (M ++ H);

UV (CHCl3): λmax (ε × 10-5) = 524 (4.0); UV (CHCl 3 ): λ max (ε × 10 −5 ) = 524 (4.0);

Elemental anal. Calcd. for C36H16O4S5: C, 64.26; Elemental anal. Calcd. for C 36 H 16 O 4 S 5 : C, 64.26;

H, 2.40. Found: C, 63.89; H, 2.40. Found: C, 63.89;                     

H, 2.27.
H, 2.27.

(1-12) 형광물질 13e(1-12) fluorescent substance 13e

Et3N/MeOH (9 ㎖/3 ㎖)에 용해된 화합물 11 (62.4 ㎎, 0.12 mmol) 및 4-브로모피리딘 히드로클로라이드 (4-bromopyridine hydrochloride) (186 ㎎, 0.956 mmol) 용액에 (PPh3)2PdCl2 (17 ㎎, 0.0242 mmol) 및 CuI (2 ㎎, 0.0105 mmol)를 첨가하였다. 상기 혼합물을 45-50℃에서 10시간 동안 교반하였다. 상기 혼합물을 진공상태에서 증발시킨 후, 잔사를 에틸아세테이드 : 메틸알콜 (ethyl acetate : methyl alcohol) (10:1)을 용출용매로 사용한 실리카 겔 컬럼 크로마토그래피를 수행하여 화합물 13e (38.3 ㎎, 59%)를 얻었다.To a solution of Compound 11 (62.4 mg, 0.12 mmol) and 4-bromopyridine hydrochloride (186 mg, 0.956 mmol) dissolved in Et 3 N / MeOH (9 mL / 3 mL) (PPh 3 ) 2 PdCl 2 (17 mg, 0.0242 mmol) and CuI (2 mg, 0.0105 mmol) were added. The mixture was stirred at 45-50 ° C. for 10 hours. After evaporation of the mixture in vacuo, the residue was purified by silica gel column chromatography using ethyl acetate: methyl alcohol (10: 1) as the eluent, and the compound 13e (38.3 mg, 59%).

m.p. 246 내지 249℃; m.p. 246 to 249 ° C;

1H NMR (300 MHz, CDCl3) δ 8.49(d, 4H, J = 4.7 Hz; PyH), 8.32(d, 4H, J = 4.9 Hz; PyH), 7.35(s, 2H; ThH), 7.29(s, 2H; C=CH), 7.26(d, 2H, J = 5.7 Hz; PyH), 7.25(d, 2H, J = 5.6 Hz; PyH); 1 H NMR (300 MHz, CDCl 3 ) δ 8.49 (d, 4H, J = 4.7 Hz; PyH), 8.32 (d, 4H, J = 4.9 Hz; PyH), 7.35 (s, 2H; ThH), 7.29 ( s, 2H; C = CH), 7.26 (d, 2H, J = 5.7 Hz; PyH), 7.25 (d, 2H, J = 5.6 Hz; PyH);

13C NMR (75 MHz, CDCl3) δ 145.9(d), 142.3, 138.7, 132.3, 130.4, 129.7, 125.2, 124.7, 100.2, 95.0, 92.1, 91.8, 90.6; 13 C NMR (75 MHz, CDCl 3 ) δ 145.9 (d), 142.3, 138.7, 132.3, 130.4, 129.7, 125.2, 124.7, 100.2, 95.0, 92.1, 91.8, 90.6;

MS (FAB, m/z) 540.0 (M+); MS (FAB, m / z) 540.0 (M &lt; + &gt;);                     

UV (CHCl3): λmax (ε × 10-5) = 522 (1.1); UV (CHCl 3 ): λ max (ε 10 −5 ) = 522 (1.1);

Elemental anal. Calcd. for C36H20N4S1: C, 79.98; Elemental anal. Calcd. for C 36 H 20 N 4 S 1 : C, 79.98;

H, 3.73; N, 10.36. Found: C, 79.78; H, 3.73; N, 10.36. Found: C, 79.78;

H, 3.85; N, 10.21.
H, 3.85; N, 10.21.

<실시예 2> 광물리학적 분석Example 2 Photophysical Analysis

상기에서 제조된 본 발명의 형광물질 12a 내지 13e 및 중간체 화합물 10 내지 11의 광물리학적 성질 (photophysical properties)을 조사하기 위하여, 형광물질들의 형광 양자 수율 (fluorescence quantum yields, ΦF)을 퀴닌 설페이트 (quinine sulfate in 1.0 N H2SO4), 9,10-디페닐안트라센 (9,10-diphenylanthracenc in EtOH) 및 플루오르세인 (fluorescein in 0.1 N NaOH)을 표준물질로 사용하여 CHCl3 상에서 결정하였다 (Parker, C. A., In Photoluminescence of Solutions, Elsevier, Amsterdam, 1968). 구체적으로, 상기 실시예 1에서 합성된 형광물질의 흡수도를 1 × 10-5 M의 CHCl3 용액 상에서 366 ㎚ (또는 436 ㎚)에서 측정하고, 366 ㎚ (또는 436 ㎚)에서 발광시켰을 때의 방출곡선의 면적을 측정하였다. 이와 동일한 방법으로 퀴닌 설페이트와 9,10-디페닐안트라센의 366 ㎚에서의 흡수도와 방출곡선 면적을 측정한 후 하기 수학식 1에 대입하여 신규 형광물질의 양자 수율 을 결정하였다. 이때, 플루오르세인은 436 ㎚에서의 값들을 이용하였다.In order to investigate the photophysical properties of the phosphors 12a to 13e and the intermediate compounds 10 to 11 of the present invention prepared above, the fluorescence quantum yields (Φ F ) of the phosphors were determined by quinine sulfate ( quinine sulfate in 1.0 NH 2 SO 4 ), 9,10-diphenylanthracene (9,10-diphenylanthracenc in EtOH) and fluorescein (fluorescein in 0.1 N NaOH) were determined on CHCl 3 using standard (Parker, CA, In Photoluminescence of Solutions, Elsevier, Amsterdam, 1968). Specifically, the absorbance of the fluorescent material synthesized in Example 1 was measured at 366 nm (or 436 nm) on a 1 × 10 -5 M CHCl 3 solution, and emitted at 366 nm (or 436 nm). The area of the emission curve was measured. In this same manner, the absorption and emission curve areas of quinine sulfate and 9,10-diphenylanthracene at 366 nm were measured and then substituted into Equation 1 to determine the quantum yield of the new fluorescent material. At this time, fluorescein used values at 436 nm.

Figure 112001022660618-pat00018
Figure 112001022660618-pat00018

Φstd : 표준물질의 양자 수율Φstd: quantum yield of standard

I : 방출곡선의 면적 (Integrated emission intensity)I: Area of Integrated Emission Curve

A: 흡수도 (Absorbance of the sample at the excitation wavelength)A: Absorbance of the sample at the excitation wavelength

n : 굴절지수 (refractive index)n: refractive index

화합물compound λabs/nma λ abs / nm a λem/nmb λ em / nm b ΦF c Φ F c ΦF d Φ F d ΦF e Φ F e τS f τ S f 1010 412412 426,463426,463 0.010.01 0.010.01 0.030.03 0.6±0.10.6 ± 0.1 12a12a 416416 475,506475,506 0.190.19 0.210.21 0.350.35 1.2±0.21.2 ± 0.2 12b12b 438438 498,532498,532 0.290.29 0.320.32 0.250.25 1.6±0.21.6 ± 0.2 12c12c 450450 518,551518,551 0.100.10 0.110.11 0.160.16 0.6±0.10.6 ± 0.1 12d12d 456456 533,566533,566 0.080.08 0.080.08 0.160.16 0.8±0.10.8 ± 0.1 12eg 12e g 420420 472,502472,502 n.d.n.d. n.d.n.d. n.d.n.d. n.d.n.d. 1111 458458 475,503475,503 0.010.01 0.010.01 0.010.01 0.3±0.10.3 ± 0.1 13a13a 468468 528,561528,561 0.090.09 0.090.09 0.080.08 0.4±0.20.4 ± 0.2 13b13b 486486 550,587550,587 0.030.03 0.030.03 0.070.07 0.7±0.20.7 ± 0.2 13c13c 516516 577,618577,618 0.010.01 0.010.01 0.030.03 0.4±0.10.4 ± 0.1 13d13d 524524 595,628595,628 0.010.01 0.010.01 0.030.03 0.5±0.10.5 ± 0.1 13eg 13e g 522522 587,612587,612 n.d.n.d. n.d.n.d. n.d.n.d. n.d.n.d. a: 가장 긴 흡수 최대치만을 나타냄. b: 흡수 최대치에서 여기되는 방출 최대 파장. c: 표준물질로서 1.0 N H2SO4 내 퀴닌 설페이트를 사용한 양자 효율, λex = 366 nm. d: 표준물질로서 EtOH 내 9,10-디페닐안트라센을 사용한 양자 효율, λex = 366 nm. e: 표준물질로서 0.1 N NaOH 내 플루오르세인을 사용한 양자 효율, λex = 436 nm. f: 방출 최대치에서 여기 상태 반감기. g: 양자 수율이 측정하기에 너무 낮음.a: Only the longest absorption maximum is shown. b: emission maximum wavelength excited at the absorption maximum. c: Quantum efficiency with quinine sulfate in 1.0 NH 2 SO 4 as standard, λ ex = 366 nm. d: quantum efficiency with 9,10-diphenylanthracene in EtOH as standard, λ ex = 366 nm. e: quantum efficiency with fluorescein in 0.1 N NaOH as standard, λ ex = 436 nm. f: half life of the excited state at the emission maximum. g: quantum yield is too low to measure.

그 결과, 상기 표 1에 나타난 바와 같이, 형광물질 12a12b가 모든 형광 물질들 중에서 중간정도의 양자 수율과 가장 긴 형광 반감기 (τS)를 가지고 있는데, 이는 화학식 1의 A가 벤젠 고리이고, B가 벤젠 또는 티오펜인 경우에 형광물질의 광물리학적 성질이 우수함을 나타내는 것으로 앞으로의 형광물질 개발을 위한 치환기 성질의 영향 및 형광물질의 광물리학적 성질에 대한 정보를 제공해준다.
As a result, as shown in Table 1 , the fluorescent materials 12a and 12b have a medium quantum yield and the longest fluorescence half-life (τ S ) among all the fluorescent materials, where A in Formula 1 is a benzene ring, When B is benzene or thiophene, it shows that the photophysical properties of the fluorescent material are excellent and provides information on the influence of substituent properties and the photophysical properties of the fluorescent material for future fluorescent material development.

<실시예 3> 방출 스펙트럼 분석Example 3 Emission Spectrum Analysis

본 발명의 형광물질들의 표준화된 방출 스펙트라 (normalized emission spectra)를 얻기 위하여, 우선 각 형광물질들을 1.0 × 10-5 M의 CHCl3 용액으로 희석한 후 CHCl3 용액을 대조군 (blank)으로 사용하여 최대 흡수 파장 (λabs)을 측정하였다. 상기 파장에서 여기 (excitation)되었을 때 나타나는 방출 스펙트럼을 표준화시켜 각 형광물질들의 표준화된 방출 스펙트라를 얻었다 (Parker C. A., In Photoluminescence of solution; Elsevier; Amsterdam, 1968).To obtain a normalized emission spectra of the phosphors of the present invention, first dilute each phosphor with 1.0 x 10 -5 M CHCl 3 solution and then use the CHCl 3 solution as a control (blank) Absorption wavelength (λ abs ) was measured. The emission spectra appearing when excited at this wavelength were normalized to obtain a standardized emission spectra of each phosphor (Parker CA, In Photoluminescence of solution; Elsevier; Amsterdam, 1968).

그 결과, UV-가시광선 흡수 스펙트라에서, 형광물질의 π-π* 전이 (transition)로 나타내어지는 흡수 최대치는 분자들의 중심부 단위 (central unit)에 따라 상당히 의존적인 양상을 나타내었다 (도 1a1b). 구체적으로, 티오펜 핵을 포함하는 형광물질 13a 내지 13c의 흡수 최대량과 벤젠 핵을 포함하는 형광물질 12a 내지 12e의 흡수 최대치를 비교한 결과, 실질적인 붉은 색 존으로의 이동이 보였다. 모든 형광물질들의 형광 스펙트라는 가시광선 부위에서 두 개의 강한 방출 밴드 (emission band)를 나타내었다. 방출 최대치 역시 형광물질의 방향족 핵 에 따라 서로 다른 양상을 나타내었는데, 남색에서 붉은 빛의 오렌지색 지역까지 다양하였다 (도 1c). 본 발명의 형광물질 12a13e는 덜 접합된 중간체 화합물 10 내지 11과 비교했을 때, 약 50 내지 110 nm에서 커다란 스토크 이동 (Stokes shift)을 나타내었다.
As a result, in the UV-visible absorption spectra, the absorption maximum represented by the π-π * transition of the phosphor showed a significantly dependent pattern depending on the central unit of the molecules ( FIGS. 1A and 1B). ). Specifically, when the maximum absorption of the fluorescent materials 13a to 13c including the thiophene nuclei and the maximum absorption of the fluorescent materials 12a to 12e including the benzene nucleus were compared, a shift to the substantially red zone was observed. Fluorescence spectra of all phosphors showed two strong emission bands in the visible region. Emission maximums were also different depending on the aromatic nucleus of the phosphor, varying from indigo to reddish orange region ( FIG. 1C ). Fluorophore 12a and 13e of the present invention as compared to a less bonded intermediate compounds 10 and 11, and showed the large Stoke movement (Stokes shift) from about 50 to 110 nm.

상기에서 살펴본 바와 같이, 본 발명에 따른 신규 형광물질들은 방향족 핵과 주변 잔기로 이루어진 구조에 따라서 남색에서부터 붉은 빛의 오렌지색까지 다양한 범위에서 방출 최대치를 나타내고 양자 수율이 매우 높으므로 전자 및 광자 분야에 있어 조율 가능한 형광물질로 유용하게 사용될 수 있다. As described above, the novel fluorescent materials according to the present invention exhibit emission maximums in various ranges from indigo blue to reddish orange depending on the structure composed of aromatic nuclei and surrounding residues, and are highly tuned in the field of electrons and photons because the quantum yield is very high. It can be usefully used as possible fluorescent material.

Claims (6)

하기 화학식 1로 표시되는 형광물질:Fluorescent material represented by the formula <화학식 1><Formula 1>
Figure 112007078331137-pat00040
Figure 112007078331137-pat00040
제 1항에 있어서, The method of claim 1, 하기 구조식의 화합물들 중에서 선택되는 것을 특징으로 하는 형광물질:Fluorescent material, characterized in that selected from the compounds of the following structural formula:
Figure 112007078331137-pat00020
,
Figure 112007078331137-pat00021
,
Figure 112007078331137-pat00020
,
Figure 112007078331137-pat00021
,
Figure 112007078331137-pat00022
,
Figure 112007078331137-pat00023
,
Figure 112007078331137-pat00022
,
Figure 112007078331137-pat00023
,
Figure 112007078331137-pat00024
,
Figure 112007078331137-pat00025
,
Figure 112007078331137-pat00024
,
Figure 112007078331137-pat00025
,
Figure 112007078331137-pat00026
,
Figure 112007078331137-pat00027
,
Figure 112007078331137-pat00026
,
Figure 112007078331137-pat00027
,
Figure 112007078331137-pat00030
Figure 112007078331137-pat00031
Figure 112007078331137-pat00030
And
Figure 112007078331137-pat00031
(PPh3)2PdCl2, CuI 및 Et3N/알콜 용매 존재하에서 하기 화학식 2의 디브로모 알켄에 페닐아세틸렌을 반응시키는 것을 포함하는, 제 1항의 화학식 1에서 B가 페닐인 화합물의 제조방법:A process for preparing a compound wherein B is phenyl in Formula 1 of claim 1 comprising reacting phenylacetylene with dibromo alkenes of Formula 2 in the presence of (PPh 3 ) 2 PdCl 2 , CuI and Et 3 N / alcohol solvents : <화학식 2><Formula 2>
Figure 112007078331137-pat00041
Figure 112007078331137-pat00041
상기 식에서, A는 제 1항에서 정의한 바와 같다.Wherein A is as defined in claim 1.
(PPh3)2PdCl2, CuX(이때, X는 Cl 또는 I) 및 Et3N/알콜 용매 존재하에서 하기 화학식 2의 디브로모 알켄과 트리메틸실릴아세틸렌을 반응시켜 하기 화학식 3의 화합물을 얻고 이를 (PPh3)2PdCl2, CuX 및 Et2NH/알콜 용매 존재하에서 KF 및 브로모티오펜과 반응시키는 것을 포함하는, 제 1항의 화학식 1에서 B가
Figure 112007078331137-pat00042
인 화합물의 제조방법:
(PPh 3 ) 2 PdCl 2 , wherein CuX (where X is Cl or I) and Et 3 N / alcohol solvent, reacted with dibromo alkenes of Formula 2 and trimethylsilylacetylene to obtain a compound of Formula 3 B in Formula 1 of claim 1 comprising reacting with KF and bromothiophene in the presence of (PPh 3 ) 2 PdCl 2 , CuX and Et 2 NH / alcohol solvents
Figure 112007078331137-pat00042
Process for preparing phosphorus compound:
<화학식 2><Formula 2>
Figure 112007078331137-pat00043
Figure 112007078331137-pat00043
<화학식 3><Formula 3>
Figure 112007078331137-pat00044
Figure 112007078331137-pat00044
상기 식에서, A는 제 1항에서 정의한 바와 같다.Wherein A is as defined in claim 1.
(PPh3)2PdCl2, CuX(이때, X는 Cl 또는 I) 및 Et3N/알콜 용매 존재하에서 하기 화학식 2의 디브로모 알켄과 트리메틸실릴아세틸렌을 반응시켜 하기 화학식 3의 화합물을 얻고 이를 (PPh3)2PdCl2, CuX 및 Et3N/알콜 용매 존재하에서 KF 및 아릴브로마이드와 반응시키는 것을 포함하는, 제 1항의 화학식 1에서 B가
Figure 112007078331137-pat00045
인 화합물의 제조방법:
(PPh 3 ) 2 PdCl 2 , wherein CuX (where X is Cl or I) and Et 3 N / alcohol solvent, reacted with dibromo alkenes of Formula 2 and trimethylsilylacetylene to obtain a compound of Formula 3 B in Formula 1 of claim 1 comprising reacting with KF and arylbromide in the presence of (PPh 3 ) 2 PdCl 2 , CuX and Et 3 N / alcohol solvents
Figure 112007078331137-pat00045
Process for preparing phosphorus compound:
<화학식 2><Formula 2>
Figure 112007078331137-pat00046
Figure 112007078331137-pat00046
<화학식 3><Formula 3>
Figure 112007078331137-pat00047
Figure 112007078331137-pat00047
상기 식에서, A는 제 1항에서 정의한 바와 같다.Wherein A is as defined in claim 1.
삭제delete
KR1020010054306A 2001-09-05 2001-09-05 Novel fluorophores and a preparing method thereof KR100821889B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020010054306A KR100821889B1 (en) 2001-09-05 2001-09-05 Novel fluorophores and a preparing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020010054306A KR100821889B1 (en) 2001-09-05 2001-09-05 Novel fluorophores and a preparing method thereof

Publications (2)

Publication Number Publication Date
KR20030021284A KR20030021284A (en) 2003-03-15
KR100821889B1 true KR100821889B1 (en) 2008-04-16

Family

ID=27722516

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020010054306A KR100821889B1 (en) 2001-09-05 2001-09-05 Novel fluorophores and a preparing method thereof

Country Status (1)

Country Link
KR (1) KR100821889B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5264511A (en) * 1992-06-30 1993-11-23 The United States Of America As Represented By The Secretary Of The Navy Polymers of bis (ethynylstyryl) benzene and related monomers
JPH08157573A (en) * 1994-12-08 1996-06-18 Katsumi Yoshino Conjugated high-molecular compound and electroluminescent element prepared therefrom
KR19990044584A (en) * 1995-09-12 1999-06-25 그레이스 스티븐 에스 Ethynyl-substituted aromatic compounds, their synthesis, their polymers and their uses
US6252001B1 (en) * 1986-09-12 2001-06-26 The Dow Chemical Company Ethynyl substituted aromatic compounds, synthesis, polymers and uses thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6252001B1 (en) * 1986-09-12 2001-06-26 The Dow Chemical Company Ethynyl substituted aromatic compounds, synthesis, polymers and uses thereof
US5264511A (en) * 1992-06-30 1993-11-23 The United States Of America As Represented By The Secretary Of The Navy Polymers of bis (ethynylstyryl) benzene and related monomers
JPH08157573A (en) * 1994-12-08 1996-06-18 Katsumi Yoshino Conjugated high-molecular compound and electroluminescent element prepared therefrom
KR19990044584A (en) * 1995-09-12 1999-06-25 그레이스 스티븐 에스 Ethynyl-substituted aromatic compounds, their synthesis, their polymers and their uses

Also Published As

Publication number Publication date
KR20030021284A (en) 2003-03-15

Similar Documents

Publication Publication Date Title
Mukkala et al. Development of luminescent europium (III) and terbium (III) chelates of 2, 2′: 6′, 2 ″‐terpyridine derivatives for protein labelling
CN110218220B (en) Functionalized metal-organic framework compound, complex formed by functionalized metal-organic framework compound, and preparation method and application of functionalized metal-organic framework compound
Peng et al. Synthesis and application of reversible fluorescent photochromic molecules based on tetraphenylethylene and photochromic groups
Kaur et al. Functionalized 3-pyrrolyl boron-dipyrromethenes
EP3172203B1 (en) Molecules presenting dual emission properties
Zhan et al. Reversible mechanofluorochromism and acidochromism using a cyanostyrylbenzimidazole derivative with aggregation-induced emission
Cardona et al. Δ1-pyrroline based boranyls: Synthesis, crystal structures and luminescent properties
Felouat et al. Excited-state intramolecular proton transfer (ESIPT) emitters based on a 2-(2′-hydroxybenzofuranyl) benzoxazole (HBBO) scaffold functionalised with oligo (ethylene glycol)(OEG) chains
Wang et al. Tetraphenylethene-functionalized diketopyrrolopyrrole solid state emissive molecules: enhanced emission in the solid state and as a fluorescent probe for cyanide detection
CN110194759B (en) Dibenzo tellurium-thiophene organic room temperature phosphorescent material and synthetic method thereof
Knight et al. Synthesis of 3-aminoBODIPY dyes via copper-catalyzed vicarious nucleophilic substitution of 2-halogeno derivatives
Han et al. Synthesis of π-conjugated, pyridine ring functionalized bis-terpyridines with efficient green, blue, and purple emission
CN105348308B (en) Bridged bis-boron-dipyrromethene (BODIPY) derivative containing fluorene at meso-position and preparation method thereof
CN107001926B (en) Aggregation-induced emission and aggregation-promoted photochromism of bis (diarylmethylene) -dihydroacenes
CN106565408A (en) 1, 5, 9-trisubstituted coronene compound and synthesis method thereof
Zhao et al. Facile preparation and investigation of the properties of single molecular POSS-based white-light-emitting hybrid materials using click chemistry
Xu et al. Synthesis of styrylcoumarins from coumarin diazonium salts and studies on their spectra characteristics
JP2012172139A (en) Photochromic molecule
Yılmaz et al. 3, 3, 5 and 2, 6 expanded aza-BODIPYs via palladium-catalyzed Suzuki-Miyaura cross-coupling reactions: synthesis and photophysical properties
KR100821889B1 (en) Novel fluorophores and a preparing method thereof
Cao et al. The synthesis, photophysical properties and fluoride anion recognition of a novel branched organoboron compound
CN105968130B (en) Two pyrroles&#39;s methine derivatives and preparation method thereof are complexed containing double center boron fluorides of carbazole and bridge linkage group in a kind of middle position
Shimomura et al. Push‐Pull Bridged Distyrylbenzene with Highly Bright Solid‐State Red‐Orange Aggregation‐Induced Emission
CN105175310B (en) Asymmetric aza diisoindole methylene compound and its synthesis and use of boron fluoride compound
CN108558595B (en) P-phenylene ethylene bridged trimer indene derivative and preparation method thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120330

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee