JP7453528B2 - Rubber composition and pneumatic tire using the same - Google Patents
Rubber composition and pneumatic tire using the same Download PDFInfo
- Publication number
- JP7453528B2 JP7453528B2 JP2020065846A JP2020065846A JP7453528B2 JP 7453528 B2 JP7453528 B2 JP 7453528B2 JP 2020065846 A JP2020065846 A JP 2020065846A JP 2020065846 A JP2020065846 A JP 2020065846A JP 7453528 B2 JP7453528 B2 JP 7453528B2
- Authority
- JP
- Japan
- Prior art keywords
- mass
- rubber
- silica
- rubber composition
- inorganic filler
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229920001971 elastomer Polymers 0.000 title claims description 36
- 239000005060 rubber Substances 0.000 title claims description 36
- 239000000203 mixture Substances 0.000 title claims description 28
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 67
- 239000000377 silicon dioxide Substances 0.000 claims description 33
- 239000011256 inorganic filler Substances 0.000 claims description 26
- 229910003475 inorganic filler Inorganic materials 0.000 claims description 26
- 241001474374 Blennius Species 0.000 claims description 24
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 19
- 229920003244 diene elastomer Polymers 0.000 claims description 12
- 239000011575 calcium Substances 0.000 claims description 11
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 10
- 229910052791 calcium Inorganic materials 0.000 claims description 10
- 239000011777 magnesium Substances 0.000 claims description 10
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 9
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims description 9
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 9
- 229910052782 aluminium Inorganic materials 0.000 claims description 9
- 229910052742 iron Inorganic materials 0.000 claims description 9
- 229910052749 magnesium Inorganic materials 0.000 claims description 9
- 239000011591 potassium Substances 0.000 claims description 9
- 229910052700 potassium Inorganic materials 0.000 claims description 9
- 125000005372 silanol group Chemical group 0.000 description 11
- 230000000052 comparative effect Effects 0.000 description 8
- 238000000034 method Methods 0.000 description 8
- 238000002156 mixing Methods 0.000 description 8
- 239000000843 powder Substances 0.000 description 7
- 238000004073 vulcanization Methods 0.000 description 7
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 6
- 238000005299 abrasion Methods 0.000 description 6
- 238000001035 drying Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 239000006087 Silane Coupling Agent Substances 0.000 description 5
- 229910052500 inorganic mineral Inorganic materials 0.000 description 5
- 239000011707 mineral Substances 0.000 description 5
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 description 4
- 241000195493 Cryptophyta Species 0.000 description 4
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 4
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 4
- 239000000654 additive Substances 0.000 description 4
- 238000000227 grinding Methods 0.000 description 4
- 239000012535 impurity Substances 0.000 description 4
- 238000001179 sorption measurement Methods 0.000 description 4
- 229920003048 styrene butadiene rubber Polymers 0.000 description 4
- 239000011593 sulfur Substances 0.000 description 4
- 229910052717 sulfur Inorganic materials 0.000 description 4
- 239000011701 zinc Substances 0.000 description 4
- 229910052725 zinc Inorganic materials 0.000 description 4
- 229920000459 Nitrile rubber Polymers 0.000 description 3
- 239000005062 Polybutadiene Substances 0.000 description 3
- 239000002174 Styrene-butadiene Substances 0.000 description 3
- 239000004927 clay Substances 0.000 description 3
- 238000004132 cross linking Methods 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 229920002857 polybutadiene Polymers 0.000 description 3
- 238000005096 rolling process Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 239000011787 zinc oxide Substances 0.000 description 3
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 229920002943 EPDM rubber Polymers 0.000 description 2
- 244000043261 Hevea brasiliensis Species 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- 235000021355 Stearic acid Nutrition 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000003712 anti-aging effect Effects 0.000 description 2
- 239000006229 carbon black Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 229920003049 isoprene rubber Polymers 0.000 description 2
- 238000004898 kneading Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229920003052 natural elastomer Polymers 0.000 description 2
- 229920001194 natural rubber Polymers 0.000 description 2
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 2
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000000550 scanning electron microscopy energy dispersive X-ray spectroscopy Methods 0.000 description 2
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 239000008117 stearic acid Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000004636 vulcanized rubber Substances 0.000 description 2
- OVSKIKFHRZPJSS-UHFFFAOYSA-N 2,4-D Chemical compound OC(=O)COC1=CC=C(Cl)C=C1Cl OVSKIKFHRZPJSS-UHFFFAOYSA-N 0.000 description 1
- ZZMVLMVFYMGSMY-UHFFFAOYSA-N 4-n-(4-methylpentan-2-yl)-1-n-phenylbenzene-1,4-diamine Chemical compound C1=CC(NC(C)CC(C)C)=CC=C1NC1=CC=CC=C1 ZZMVLMVFYMGSMY-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 241000218476 Phymatolithon calcareum Species 0.000 description 1
- 241000206572 Rhodophyta Species 0.000 description 1
- YKTSYUJCYHOUJP-UHFFFAOYSA-N [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] Chemical compound [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] YKTSYUJCYHOUJP-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 125000005370 alkoxysilyl group Chemical group 0.000 description 1
- 150000001408 amides Chemical group 0.000 description 1
- 150000001412 amines Chemical group 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 239000000378 calcium silicate Substances 0.000 description 1
- 229910052918 calcium silicate Inorganic materials 0.000 description 1
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- -1 fatty acid zinc salts Chemical class 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000013505 freshwater Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000007602 hot air drying Methods 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 125000001181 organosilyl group Chemical group [SiH3]* 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 238000010074 rubber mixing Methods 0.000 description 1
- 238000013040 rubber vulcanization Methods 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- VTHOKNTVYKTUPI-UHFFFAOYSA-N triethoxy-[3-(3-triethoxysilylpropyltetrasulfanyl)propyl]silane Chemical compound CCO[Si](OCC)(OCC)CCCSSSSCCC[Si](OCC)(OCC)OCC VTHOKNTVYKTUPI-UHFFFAOYSA-N 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 150000003752 zinc compounds Chemical class 0.000 description 1
Images
Landscapes
- Tires In General (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Description
本発明は、ゴム組成物およびそれを用いた空気入りタイヤに関するものであり、詳しくは、耐摩耗性を低下させることなく粘弾性バランスが改善されたゴム組成物およびそれを用いた空気入りタイヤに関するものである。 The present invention relates to a rubber composition and a pneumatic tire using the same, and more particularly to a rubber composition with improved viscoelastic balance without reducing wear resistance and a pneumatic tire using the same. It is something.
近年、環境意識の高まりやラベリング制度を受けて、当業界では低燃費タイヤが上市されている。従来より、空気入りタイヤの転がり抵抗性はtanδ(60℃)が指標とされ、このtanδ(60℃)を低減するとともに、ウェット性能および耐摩耗性を両立するには、高シリカ配合や小粒径のシリカを配合する等の手法が用いられている。
シリカはゴムに対する親和性が乏しく、分散性の改善が重要となる。そこで図1に示すように、ゴムにシランカップリング剤を添加し、ゴム混合中にシリカ表面のシラノール基とシランカップリング剤とを反応させシリカを分散させる手法があるが、未反応のシラノール基が残存し、所望の効果が得られないという問題点がある。
In recent years, fuel-efficient tires have been put on the market in this industry in response to increased environmental awareness and labeling systems. Conventionally, tan δ (60°C) has been used as an index for the rolling resistance of pneumatic tires, and in order to reduce this tan δ (60°C) and achieve both wet performance and wear resistance, high silica content and small particle Techniques such as blending silica with a certain diameter have been used.
Silica has poor affinity for rubber, so it is important to improve its dispersibility. Therefore, as shown in Figure 1, there is a method in which a silane coupling agent is added to the rubber and the silanol groups on the silica surface react with the silane coupling agent during rubber mixing to disperse the silica, but the unreacted silanol groups remains and the desired effect cannot be obtained.
また、図2に示すように例えば脂肪酸亜鉛塩のような添加剤を加えるとシラノール基と反応しOH基が減少するが、シリカ表面のシラノール基の大部分を消失させるには亜鉛量を増大させる必要があるため、ゴム加硫時に悪影響を及ぼす懸念がある。 Additionally, as shown in Figure 2, when additives such as fatty acid zinc salts are added, they react with silanol groups and reduce the number of OH groups, but in order to eliminate most of the silanol groups on the silica surface, the amount of zinc must be increased. Since this is necessary, there is a concern that it may have an adverse effect during rubber vulcanization.
なお、下記特許文献1には、本発明の実施例に使用される石灰化した海藻が開示されている。しかし、特許文献1は皮膚外用剤に関するものであり、本発明とは技術分野が異なる。また、石灰化した海藻をゴム組成物に配合し、耐摩耗性を低下させることなく粘弾性バランスを改善しようとする技術思想は何ら開示されていない。 Note that Patent Document 1 below discloses calcified seaweed used in Examples of the present invention. However, Patent Document 1 relates to an external skin preparation, and is in a different technical field from the present invention. Moreover, no technical idea is disclosed in which calcified seaweed is blended into a rubber composition to improve the viscoelastic balance without reducing wear resistance.
本発明の目的は、耐摩耗性を低下させることなく粘弾性バランスが改善されたゴム組成物およびそれを用いた空気入りタイヤを提供することにある。 An object of the present invention is to provide a rubber composition with improved viscoelastic balance without reducing wear resistance, and a pneumatic tire using the same.
本発明者らは鋭意研究を重ねた結果、ジエン系ゴムに対し、シリカおよび無機充填材を特定量で配合することにより、上記課題を解決できることを見出し、本発明を完成することができた。 As a result of extensive research, the present inventors have found that the above problems can be solved by blending specific amounts of silica and inorganic filler into diene rubber, and have completed the present invention.
すなわち本発明は、ジエン系ゴム100質量部に対し、シリカを30~200質量部、および無機充填材を前記シリカに対し0.7~2.5質量%配合してなることを特徴とするゴム組成物を提供するものである。
また本発明は、前記無機充填材が、カルシウム、マグネシウム、カリウム、鉄およびアルミニウムからなる群から選択された少なくとも2種を含むことを特徴とする前記ゴム組成物を提供するものである。
また本発明は、前記無機充填材は、石灰化した海藻であることを特徴とする前記ゴム組成物を提供するものである。
また本発明は、前記ゴム組成物を使用した空気入りタイヤを提供するものである。
That is, the present invention provides a rubber characterized in that 30 to 200 parts by mass of silica and 0.7 to 2.5 parts by mass of inorganic filler are blended with respect to 100 parts by mass of diene rubber. A composition is provided.
The present invention also provides the rubber composition, wherein the inorganic filler contains at least two selected from the group consisting of calcium, magnesium, potassium, iron, and aluminum.
The present invention also provides the rubber composition, wherein the inorganic filler is calcified seaweed.
The present invention also provides a pneumatic tire using the rubber composition.
本発明のゴム組成物は、ジエン系ゴム100質量部に対し、シリカを30~200質量部、および無機充填材を前記シリカに対し0.7~2.5質量%配合してなることを特徴としているので、耐摩耗性を低下させることなく粘弾性バランスが改善されたゴム組成物およびそれを用いた空気入りタイヤを提供することができる。
本発明では、無機充填材に含まれるミネラル分が、図1に示すようなシリカ表面の未反応のシラノール基をキャップすることができ、これによりゴム中のシリカの分散性が良好となり、上記所望の効果を発現することができる。
また、無機充填材がカルシウム、マグネシウム、カリウム、鉄およびアルミニウムからなる群から選択された少なくとも2種を含む形態によれば、上記のシリカ表面の未反応のシラノール基のキャップがさらに良好に行われるとともに、図2に示すような亜鉛化合物が添加されている場合は、亜鉛と当該元素の少なくとも2種とがイオン交換して亜鉛が放出され、これがゴムの架橋に関与して本発明の上記効果をさらに高めるものと推察される。
また、無機充填材が石灰化した海藻である形態によれば、該海藻はカルシウム、マグネシウム、カリウム、鉄およびアルミニウムからなる群から選択された少なくとも2種を多く含むことから、少量の配合で上記のシリカ表面の未反応のシラノール基のキャップをさらに良好に行うことが可能となる。
The rubber composition of the present invention is characterized in that it contains 30 to 200 parts by mass of silica and 0.7 to 2.5 parts by mass of inorganic filler to 100 parts by mass of diene rubber. Therefore, it is possible to provide a rubber composition with improved viscoelastic balance without reducing abrasion resistance, and a pneumatic tire using the same.
In the present invention, the mineral content contained in the inorganic filler can cap the unreacted silanol groups on the silica surface as shown in FIG. It is possible to express the effect of
Further, according to an embodiment in which the inorganic filler contains at least two selected from the group consisting of calcium, magnesium, potassium, iron, and aluminum, unreacted silanol groups on the silica surface are more effectively capped. In addition, when a zinc compound as shown in FIG. 2 is added, zinc and at least two of the elements undergo ion exchange and zinc is released, which participates in crosslinking of the rubber and achieves the above-mentioned effects of the present invention. It is assumed that this will further increase the
Moreover, according to the form in which the inorganic filler is calcified seaweed, the seaweed contains a large amount of at least two selected from the group consisting of calcium, magnesium, potassium, iron, and aluminum, so that the above-mentioned ingredients can be added in small amounts. It becomes possible to more effectively cap unreacted silanol groups on the silica surface.
以下、本発明をさらに詳細に説明する。 The present invention will be explained in more detail below.
(ジエン系ゴム)
本発明で使用されるジエン系ゴムは、ゴム組成物に配合することができる任意のジエン系ゴムを用いることができ、例えば、天然ゴム(NR)、イソプレンゴム(IR)、ブタジエンゴム(BR)、スチレン-ブタジエン共重合体ゴム(SBR)、アクリロニトリル-ブタジエン共重合体ゴム(NBR)、エチレン-プロピレン-ジエンターポリマー(EPDM)等が挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。また、その分子量やミクロ構造はとくに制限されず、アミン、アミド、シリル、アルコキシシリル、カルボキシル、ヒドロキシル基等で末端変性されていても、エポキシ化されていてもよい。
(Diene rubber)
The diene rubber used in the present invention can be any diene rubber that can be blended into the rubber composition, such as natural rubber (NR), isoprene rubber (IR), butadiene rubber (BR). , styrene-butadiene copolymer rubber (SBR), acrylonitrile-butadiene copolymer rubber (NBR), ethylene-propylene-diene terpolymer (EPDM), and the like. These may be used alone or in combination of two or more. Moreover, its molecular weight and microstructure are not particularly limited, and it may be terminally modified with amine, amide, silyl, alkoxysilyl, carboxyl, hydroxyl group, etc., or may be epoxidized.
(シリカ)
本発明に使用されるシリカとしては、具体的には、例えば、湿式シリカ(含水ケイ酸)、乾式シリカ(無水ケイ酸)、ケイ酸カルシウム、ケイ酸アルミニウム等が挙げられ、これらを1種単独で用いてもよく、2種以上を併用してもよい。
シリカは、ウェット性能向上の観点から、CTAB吸着比表面積が100~300m2/gであるのが好ましく、120~200m2/gであるのがさらに好ましい。
なお、CTAB吸着比表面積は、シリカ表面への臭化n-ヘキサデシルトリメチルアンモニウムの吸着量をJIS K6217-3:2001「第3部:比表面積の求め方-CTAB吸着法」にしたがって測定した値である。
(silica)
Specific examples of the silica used in the present invention include wet silica (hydrated silicic acid), dry silica (anhydrous silicic acid), calcium silicate, aluminum silicate, etc. may be used, or two or more types may be used in combination.
From the viewpoint of improving wet performance, silica preferably has a CTAB adsorption specific surface area of 100 to 300 m 2 /g, more preferably 120 to 200 m 2 /g.
The CTAB adsorption specific surface area is the value obtained by measuring the adsorption amount of n-hexadecyltrimethylammonium bromide on the silica surface in accordance with JIS K6217-3:2001 "Part 3: How to determine specific surface area - CTAB adsorption method" It is.
(無機充填材)
本発明で使用される無機充填材は、カルシウム、マグネシウム、カリウム、鉄およびアルミニウムからなる群から選択された少なくとも2種を含むことが好ましく、この条件を満たす無機充填材としては、例えばクレーや下記で説明する石灰化した海藻等が挙げられる。
(Inorganic filler)
The inorganic filler used in the present invention preferably contains at least two selected from the group consisting of calcium, magnesium, potassium, iron, and aluminum. Examples of inorganic fillers that meet this condition include clay and the following: Examples include calcified seaweed described in .
クレーの成分分析(SEM-EDX)の一例としては、主な成分として(質量%)、
C:15%
O:56%
Si:14%
K:3.6%
Al:10%
Fe:1.3%
を含むものであり、カルシウム、マグネシウム、カリウム、鉄およびアルミニウムからなる群から選択された少なくとも2種を含んでいる。
As an example of clay component analysis (SEM-EDX), the main components (mass%),
C: 15%
O: 56%
Si: 14%
K: 3.6%
Al: 10%
Fe: 1.3%
It contains at least two selected from the group consisting of calcium, magnesium, potassium, iron and aluminum.
また、前記石灰化した海藻としては、特許文献1に開示されているように、海藻が海中のミネラル成分を吸着して得られるものであり、例えば、紅藻類海藻の石灰質残渣であり、好ましくはサンゴモ科海藻の石灰質残渣である。 Further, as disclosed in Patent Document 1, the calcified seaweed is obtained by adsorbing mineral components in the sea by seaweed, for example, calcareous residue of red algae seaweed, and is preferably It is the calcareous residue of coralline algae.
サンゴモ科海藻としては、例えば、Lithothamnium corallioides、Phymatolithon calcareum、Lithothamnium glacialeなどが挙げられる。これらのサンゴモ科海藻は、冷たく穏やかな海に豊富にある海藻であり、このサンゴモ科海藻が枯れた後に残る石灰質残渣は、90質量%以上が無機質であり、主に炭酸カルシウム及び炭酸マグネシウムからなる。 Examples of the coralline algae include Lithothamnium corallioides, Phymatolithon calcareum, and Lithothamnium glaciale. These coralline algae are abundant in cold, calm seas, and the calcareous residue that remains after the coralline algae withers is over 90% by mass inorganic, mainly consisting of calcium carbonate and magnesium carbonate. .
石灰化した海藻は、海底より浚渫された状態でも使用できるが、砂や貝殻などの夾雑物が含まれることから、これらの一部又は全部を、海水や真水などで洗浄することや、篩別、手作業により選別することなどの上記夾雑物を除去する方法を単独又は2種以上を組合せて、上記夾雑物が除去されたものであることが好ましい。また、石灰化した海藻は、例えば、海底より浚渫された状態から夾雑物を取り除き、さらに過酸化水素水処理や加熱処理などで殺菌し、乾燥したものであることがより好ましい。石灰化した海藻は、加工性の観点から、粉砕及び粉末化されたものであることがさらに好ましい。 Calcified seaweed can be used even if it has been dredged from the seabed, but since it contains impurities such as sand and shells, some or all of it must be washed with seawater or fresh water, or sieved. It is preferable that the above-mentioned impurities are removed by one method or a combination of two or more methods for removing the above-mentioned impurities, such as manual sorting. Further, it is more preferable that the calcified seaweed be dredged from the seabed, remove impurities, further sterilized by hydrogen peroxide treatment, heat treatment, etc., and then dried. From the viewpoint of processability, the calcified seaweed is more preferably crushed and powdered.
該粉末を得るための石灰化した海藻の乾燥手段は特に限定されないが、例えば、水分を含む石灰化した海藻を、日干しや熱風乾燥などにより乾燥することにより乾燥物を得ることができる。乾燥の程度は、石灰化した海藻の水分含有量が十分に低下したことが確認されるまでの程度であればよく、例えば、水分含有量が10wt%以下、好ましくは5wt%以下となるまでの程度である。 The means for drying the calcified seaweed to obtain the powder is not particularly limited, but, for example, a dried product can be obtained by drying the calcified seaweed containing water by sun-drying, hot air drying, or the like. The degree of drying may be as long as it is confirmed that the water content of the calcified seaweed has been sufficiently reduced, for example, until the water content is 10 wt% or less, preferably 5 wt% or less. That's about it.
粉末化の方法としては、例えば、当業者が通常用いる方法であるボールミル、ハンマーミル、ローラーミルなどにより、石灰化した海藻を粉砕及び粉末化する方法が挙げられるが、これらに限定されない。乾燥と粉末化の順序を入れ替えて、乾燥前の石灰化した海藻を予め粉砕しておき、この粉砕物を乾燥して粉末とすることもできる。 Methods of powdering include, but are not limited to, methods commonly used by those skilled in the art, such as grinding and powdering the calcified seaweed using a ball mill, hammer mill, roller mill, etc. It is also possible to reverse the order of drying and powdering, and grind the calcified seaweed before drying, and then dry the ground material to produce a powder.
このような石灰化した海藻の粉末は市販されているものでもよく、例えば、AQUAMIN(MARIGOT社)、海藻カルシウムIT-1(太陽化学株式会社製)、アクアミネラル(日本バイオコン株式会社製)等が挙げられる。 Such calcified seaweed powder may be commercially available, such as AQUAMIN (MARIGOT), Seaweed Calcium IT-1 (Taiyo Kagaku Co., Ltd.), Aqua Mineral (Nippon Biocon Co., Ltd.), etc. Can be mentioned.
石灰化した海藻の粉末の比表面積は、4.0~13.0m2/gが好ましく、6.0~12.0m2/gがさらに好ましい。このような比表面積を有することで、ゴム組成物の混練中に粉末がさらに崩壊して微細化しやすくなり、シリカ表面の未反応のシラノール基を良好にキャップできる効果を奏する。なお、該粉末の粒径は、0.05μm~50μmが好ましい。 The specific surface area of the calcified seaweed powder is preferably 4.0 to 13.0 m 2 /g, more preferably 6.0 to 12.0 m 2 /g. Having such a specific surface area makes it easier for the powder to further disintegrate and become finer during kneading of the rubber composition, and has the effect of successfully capping unreacted silanol groups on the silica surface. Note that the particle size of the powder is preferably 0.05 μm to 50 μm.
石灰化した海藻、例えばアクアミネラル(日本バイオコン社)の成分分析(SEM-EDX)の一例としては、主な成分として(質量%)、
C:16%
O:53%
Ca:28%
Mg:約3%
を含むものであり、カルシウム、マグネシウム、カリウム、鉄およびアルミニウムからなる群から選択された少なくとも2種を含んでいる。
As an example of component analysis (SEM-EDX) of calcified seaweed, such as Aqua Mineral (Nippon Biocon), the main components are (mass%),
C: 16%
O: 53%
Ca: 28%
Mg: about 3%
It contains at least two selected from the group consisting of calcium, magnesium, potassium, iron and aluminum.
本発明で使用される無機充填材において、カルシウム、マグネシウム、カリウム、鉄およびアルミニウムからなる群から選択された少なくとも2種は、11~45質量%含まれているのが好ましく、14~45質量%含まれているのがさらに好ましい。 In the inorganic filler used in the present invention, at least two selected from the group consisting of calcium, magnesium, potassium, iron and aluminum are preferably contained in an amount of 11 to 45% by mass, preferably 14 to 45% by mass. It is even more preferable that it be included.
(ゴム組成物の配合割合)
本発明のゴム組成物は、ジエン系ゴム100質量部に対し、シリカを30~200質量部、および無機充填材を前記シリカに対し0.7~2.5質量%配合してなることを特徴とする。
ジエン系ゴム100質量部に対し、シリカの前記配合量が30質量部未満では、ゴム組成物の機械的特性や耐摩耗性が悪化し、逆に200質量部を超えると加工性が悪化する。
シリカに対し、無機充填材の前記配合量が0.7質量%未満では、添加量が少な過ぎて本発明の効果を奏することができず、逆に2.5質量%を超えると耐摩耗性が低下する。とくに無機充填材として石灰化した海藻を使用した場合、その配合量がシリカに対して2.5質量%を超えると、ゴム中の良好な分散が得られない。
(Ratio of rubber composition)
The rubber composition of the present invention is characterized in that it contains 30 to 200 parts by mass of silica and 0.7 to 2.5 parts by mass of inorganic filler to 100 parts by mass of diene rubber. shall be.
If the amount of silica blended is less than 30 parts by mass with respect to 100 parts by mass of diene rubber, the mechanical properties and abrasion resistance of the rubber composition will deteriorate, and if it exceeds 200 parts by mass, processability will deteriorate.
If the amount of the inorganic filler added to the silica is less than 0.7% by mass, the amount added is too small to achieve the effects of the present invention, and on the other hand, if it exceeds 2.5% by mass, the wear resistance will decrease. decreases. In particular, when calcified seaweed is used as an inorganic filler, if the amount exceeds 2.5% by mass based on silica, good dispersion in the rubber cannot be obtained.
前記シリカの配合量は、ジエン系ゴム100質量部に対し、30~150質量部が好ましい。
前記無機充填材の配合量は、シリカに対し、0.9~2.5質量%が好ましい。
The blending amount of the silica is preferably 30 to 150 parts by mass based on 100 parts by mass of the diene rubber.
The blending amount of the inorganic filler is preferably 0.9 to 2.5% by mass based on silica.
(その他成分)
本発明におけるゴム組成物には、前記した成分に加えて、加硫又は架橋剤;加硫又は架橋促進剤;酸化亜鉛;カーボンブラック;各種充填剤;老化防止剤;可塑剤などのゴム組成物に一般的に配合されている各種添加剤を配合することができ、かかる添加剤は一般的な方法で混練して組成物とし、加硫又は架橋するのに使用することができる。これらの添加剤の配合量も、本発明の目的に反しない限り、従来の一般的な配合量とすることができる。
なお、シランカップリング剤を配合する場合、ジエン系ゴムとシランカップリング剤とを混練した後、無機充填材を配合し、混練するのが好ましい。
(Other ingredients)
In addition to the above-mentioned components, the rubber composition of the present invention includes a vulcanization or crosslinking agent; a vulcanization or crosslinking accelerator; zinc oxide; carbon black; various fillers; anti-aging agents; and plasticizers. Various additives that are commonly blended in can be blended, and such additives can be kneaded by a common method to form a composition and used for vulcanization or crosslinking. The blending amounts of these additives can also be set to conventional and general blending amounts as long as they do not contradict the purpose of the present invention.
In addition, when blending a silane coupling agent, it is preferable to mix the diene rubber and the silane coupling agent, then mix and knead the inorganic filler.
本発明では通常の混練条件によって、無機充填材に含まれる、好ましくはカルシウム、マグネシウム、カリウム、鉄およびアルミニウムからなる群から選択された少なくとも2種が、シリカ表面の未反応のシラノール基をキャップすることが可能となる。 In the present invention, under normal kneading conditions, at least two species contained in the inorganic filler, preferably selected from the group consisting of calcium, magnesium, potassium, iron, and aluminum, cap unreacted silanol groups on the silica surface. becomes possible.
また本発明のゴム組成物は従来の空気入りタイヤの製造方法に従って空気入りタイヤを製造するのに適しており、空気入りタイヤの、トレッド、とくにキャップトレッドに適用するのがよい。 Furthermore, the rubber composition of the present invention is suitable for manufacturing pneumatic tires according to conventional pneumatic tire manufacturing methods, and is preferably applied to treads, particularly cap treads, of pneumatic tires.
以下、本発明を実施例および比較例によりさらに説明するが、本発明は下記例に制限されるものではない。 The present invention will be further explained below with reference to examples and comparative examples, but the present invention is not limited to the following examples.
実施例1~4および比較例1~3
サンプルの調製
表1に示す配合(質量部)において、無機充填材、加硫促進剤および硫黄を除く成分を1.7リットルの密閉式バンバリーミキサーで5分間混練し、次いでそこに無機充填材を投入して混練し、ゴムをミキサー外に放出して室温冷却した。次いで、該ゴムを同ミキサーに再度入れ、加硫促進剤および硫黄を加えてさらに混練し、ゴム組成物を得た。次に得られたゴム組成物を所定の金型中で160℃、20分間プレス加硫して加硫ゴム試験片を得、以下に示す試験法で加硫ゴム試験片の物性を測定した。
Examples 1 to 4 and Comparative Examples 1 to 3
Preparation of sample In the formulation (parts by mass) shown in Table 1, the components excluding the inorganic filler, vulcanization accelerator and sulfur were kneaded for 5 minutes in a 1.7 liter closed Banbury mixer, and then the inorganic filler was added thereto. The rubber was added and kneaded, and the rubber was discharged from the mixer and cooled to room temperature. Next, the rubber was put into the same mixer again, a vulcanization accelerator and sulfur were added, and the mixture was further kneaded to obtain a rubber composition. Next, the obtained rubber composition was press-vulcanized in a predetermined mold at 160° C. for 20 minutes to obtain a vulcanized rubber test piece, and the physical properties of the vulcanized rubber test piece were measured using the test method shown below.
E’(20℃):JIS K6394に準拠し、東洋精機製作所製粘弾性スペクトロメータを用い、初期歪10%、振幅±2%、周波数20Hzの条件下で、20℃における貯蔵弾性率E’(20℃)を求めた。結果は、比較例1を100として指数で示した。指数が大きいほど貯蔵弾性率が高いことを意味する。 E' (20℃): Storage modulus E'( 20°C). The results were expressed as an index with Comparative Example 1 set as 100. The larger the index, the higher the storage modulus.
tanδ(60℃):JIS K6394に準拠して60℃で試験した。結果は、比較例1を100として指数で示した。指数が小さいほど転がり抵抗性が低いことを意味する。 tan δ (60°C): Tested at 60°C in accordance with JIS K6394. The results were expressed as an index with Comparative Example 1 set as 100. The smaller the index, the lower the rolling resistance.
なお、前記E’(20℃)/tanδ(60℃)の値が大きいほど、粘弾性バランスに優れ、高硬度および低転がり抵抗性を両立できることを意味する。 Note that the larger the value of E' (20°C)/tan δ (60°C), the better the viscoelastic balance is, and it means that both high hardness and low rolling resistance can be achieved.
耐摩耗性:岩本製作所株式会社製のランボーン摩耗試験機を用い、荷重5kg(49N)、スリップ率25%、時間4分、室温の条件にて測定し摩耗減量を求めた。結果は、比較例1を100として指数で示した。指数が大きいほど耐摩耗性に優れることを示す。 Abrasion resistance: Using a Lambourn abrasion tester manufactured by Iwamoto Seisakusho Co., Ltd., measurement was performed under the conditions of a load of 5 kg (49 N), a slip ratio of 25%, a time of 4 minutes, and room temperature to determine the abrasion loss. The results were expressed as an index with Comparative Example 1 set as 100. The larger the index, the better the wear resistance.
結果を表1に併せて示す。 The results are also shown in Table 1.
*1:SBR(日本ゼオン株式会社製Nipol 1739、スチレン量40質量%、油展量=SBR100質量部あたり37.5質量部)
*2:BR(日本ゼオン株式会社製Nipol BR1220)
*3:シリカ(ローディア社製Zeosil 1165MP、CTAB比表面積=159m2/g)
*4:カーボンブラック(キャボットジャパン株式会社製ショウブラックN339)
*5:石灰化した海藻(日本バイオコン株式会社製アクアミネラルT、平均粒径=5μm、比表面積=8.1m2/g)
*6:酸化亜鉛(正同化学工業株式会社製酸化亜鉛3種)
*7:ステアリン酸(日油株式会社製ビーズステアリン酸)
*8:老化防止剤(Solutia Europe社製Santoflex 6PPD)
*9:ワックス(大内新興化学工業株式会社製パラフィンワックス)
*10:アロマオイル(昭和シェル石油株式会社製エキストラクト4号S)
*11:シランカップリング剤(Evonik Degussa社製Si69、ビス(3-トリエトキシシリルプロピル)テトラスルフィド)
*12:硫黄(鶴見化学工業株式会社製金華印油入微粉硫黄)
*13:加硫促進剤1(大内新興化学工業株式会社製ノクセラーCZ-G)
*14:加硫促進剤2(住友化学株式会社製ソクシノールD-G)
*15:クレー(山陽クレー社製カタルポY-K)
*1: SBR (Nipol 1739 manufactured by Nippon Zeon Co., Ltd., styrene content 40% by mass, oil extension amount = 37.5 parts by mass per 100 parts by mass of SBR)
*2: BR (Nipol BR1220 manufactured by Zeon Corporation)
*3: Silica (Rhodia Zeosil 1165MP, CTAB specific surface area = 159 m 2 /g)
*4: Carbon black (Show Black N339 manufactured by Cabot Japan Co., Ltd.)
*5: Calcified seaweed (Aqua Mineral T manufactured by Nippon Biocon Co., Ltd., average particle size = 5 μm, specific surface area = 8.1 m 2 /g)
*6: Zinc oxide (3 types of zinc oxide manufactured by Seido Kagaku Kogyo Co., Ltd.)
*7: Stearic acid (bead stearic acid manufactured by NOF Corporation)
*8: Anti-aging agent (Santoflex 6PPD manufactured by Solutia Europe)
*9: Wax (paraffin wax manufactured by Ouchi Shinko Kagaku Kogyo Co., Ltd.)
*10: Aroma oil (Extract No. 4 S manufactured by Showa Shell Sekiyu Co., Ltd.)
*11: Silane coupling agent (Si69 manufactured by Evonik Degussa, bis(3-triethoxysilylpropyl) tetrasulfide)
*12: Sulfur (Kinka-in oil-filled fine powder sulfur manufactured by Tsurumi Chemical Industry Co., Ltd.)
*13: Vulcanization accelerator 1 (Noxeler CZ-G manufactured by Ouchi Shinko Chemical Industry Co., Ltd.)
*14: Vulcanization accelerator 2 (Soccinol DG manufactured by Sumitomo Chemical Co., Ltd.)
*15: Clay (Katalpo Y-K manufactured by Sanyo Clay Co., Ltd.)
表1の結果から、実施例1~4のゴム組成物は、ジエン系ゴム100質量部に対し、シリカを30~200質量部、および無機充填材を前記シリカに対し0.7~2.5質量%配合してなることを特徴としているので、比較例1に比べて、耐摩耗性を低下させることなく粘弾性バランスが改善されていることが分かる。
これに対し、比較例2は、無機充填材の配合量が本発明で規定する下限未満であるので、各種特性が改善されなかった。
比較例3は、無機充填材の配合量が本発明で規定する上限を超えているので、ゴム中の分散性が悪化し、tanδ(60℃)および耐摩耗性が改善されなかった。
From the results in Table 1, the rubber compositions of Examples 1 to 4 contained 30 to 200 parts by mass of silica to 100 parts by mass of diene rubber, and 0.7 to 2.5 parts of inorganic filler to the silica. % by mass, it can be seen that the viscoelastic balance is improved compared to Comparative Example 1 without reducing the wear resistance.
On the other hand, in Comparative Example 2, the amount of inorganic filler blended was less than the lower limit defined by the present invention, so various properties were not improved.
In Comparative Example 3, the blending amount of the inorganic filler exceeded the upper limit specified by the present invention, so the dispersibility in the rubber deteriorated and tan δ (60° C.) and abrasion resistance were not improved.
Claims (3)
前記無機充填材は、石灰化した海藻である
ことを特徴とするゴム組成物。 30 to 200 parts by mass of silica to 100 parts by mass of diene rubber, and 0.7 to 2.5 parts by mass of inorganic filler to the silica ,
The inorganic filler is calcified seaweed.
A rubber composition characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020065846A JP7453528B2 (en) | 2020-04-01 | 2020-04-01 | Rubber composition and pneumatic tire using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020065846A JP7453528B2 (en) | 2020-04-01 | 2020-04-01 | Rubber composition and pneumatic tire using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021161313A JP2021161313A (en) | 2021-10-11 |
JP7453528B2 true JP7453528B2 (en) | 2024-03-21 |
Family
ID=78002642
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020065846A Active JP7453528B2 (en) | 2020-04-01 | 2020-04-01 | Rubber composition and pneumatic tire using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7453528B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023053925A1 (en) | 2021-09-30 | 2023-04-06 | 富士フイルム株式会社 | Inkjet recording ink and inkjet recording method |
CN115746438B (en) * | 2022-10-10 | 2024-04-30 | 茂泰(福建)新材料科技有限公司 | EVA composite foaming sole containing itaconate rubber and preparation method thereof |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006306965A (en) | 2005-04-27 | 2006-11-09 | Sumitomo Rubber Ind Ltd | Starch composite and rubber composition containing the same |
JP2008303325A (en) | 2007-06-08 | 2008-12-18 | Sumitomo Rubber Ind Ltd | Rubber composition for bead apex and pneumatic tire using the same |
JP2011219560A (en) | 2010-04-06 | 2011-11-04 | Yokohama Rubber Co Ltd:The | Rubber composition for tire tread part, and pneumatic tire using the same |
JP2013072004A (en) | 2011-09-28 | 2013-04-22 | Bridgestone Corp | Rubber composition for tread and tire using the same |
JP2014162810A (en) | 2013-02-21 | 2014-09-08 | Sumitomo Rubber Ind Ltd | High attenuation composition and viscoelastic damper |
JP2015013974A (en) | 2013-07-08 | 2015-01-22 | 住友ゴム工業株式会社 | Rubber composition for tire, and pneumatic tire |
JP2015232114A (en) | 2014-05-15 | 2015-12-24 | 住友ゴム工業株式会社 | Rubber composition and pneumatic tire |
-
2020
- 2020-04-01 JP JP2020065846A patent/JP7453528B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006306965A (en) | 2005-04-27 | 2006-11-09 | Sumitomo Rubber Ind Ltd | Starch composite and rubber composition containing the same |
JP2008303325A (en) | 2007-06-08 | 2008-12-18 | Sumitomo Rubber Ind Ltd | Rubber composition for bead apex and pneumatic tire using the same |
JP2011219560A (en) | 2010-04-06 | 2011-11-04 | Yokohama Rubber Co Ltd:The | Rubber composition for tire tread part, and pneumatic tire using the same |
JP2013072004A (en) | 2011-09-28 | 2013-04-22 | Bridgestone Corp | Rubber composition for tread and tire using the same |
JP2014162810A (en) | 2013-02-21 | 2014-09-08 | Sumitomo Rubber Ind Ltd | High attenuation composition and viscoelastic damper |
JP2015013974A (en) | 2013-07-08 | 2015-01-22 | 住友ゴム工業株式会社 | Rubber composition for tire, and pneumatic tire |
JP2015232114A (en) | 2014-05-15 | 2015-12-24 | 住友ゴム工業株式会社 | Rubber composition and pneumatic tire |
Also Published As
Publication number | Publication date |
---|---|
JP2021161313A (en) | 2021-10-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9284439B2 (en) | Tire rubber composite and pneumatic tire | |
JP4294070B2 (en) | Rubber composition for tire | |
JP5737324B2 (en) | Rubber composition for tire | |
JP2008169314A (en) | Pneumatic tire | |
JP7453528B2 (en) | Rubber composition and pneumatic tire using the same | |
JP2006241216A (en) | Rubber composition | |
JP2006213803A (en) | Rubber composition for pneumatic tire | |
EP3569656A1 (en) | Wax, rubber composition, and pneumatic tire | |
JP5044903B2 (en) | Rubber composition for tire | |
WO2019163519A1 (en) | Rubber composition and pneumatic tire obtained using same | |
JP2005272630A (en) | Rubber composition | |
JP6424594B2 (en) | Rubber composition and pneumatic tire using the same | |
JP2006265400A (en) | Method of manufacturing rubber composition and pneumatic tire using the same | |
JP2005213353A (en) | Manufacturing method of rubber composition, rubber composition and pneumatic tire | |
JP6147618B2 (en) | Rubber composition and pneumatic tire | |
JP4357220B2 (en) | Rubber composition | |
JP2006131718A (en) | Rubber composition | |
JP3530088B2 (en) | Rubber composition and method for producing the same | |
WO2018079312A1 (en) | Rubber composition for tire, and pneumatic tire | |
JP2007217465A (en) | Rubber composition for tire | |
JP2006321827A (en) | Rubber composition and pneumatic tire | |
CN108794828B (en) | Rubber composition for tire and pneumatic tire | |
JPH1060175A (en) | Tire tread rubber composition | |
JP7545024B2 (en) | Rubber composition for tires | |
WO2024085031A1 (en) | Masterbatch, method for producing masterbatch, tire rubber composition, method for producing tire rubber composition, tire rubber material, and tire |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20230307 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20231201 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20231212 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20240111 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240206 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240219 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7453528 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |