JP7453032B2 - Exhaust gas purification device and electrically heated carrier with conductor - Google Patents

Exhaust gas purification device and electrically heated carrier with conductor Download PDF

Info

Publication number
JP7453032B2
JP7453032B2 JP2020054895A JP2020054895A JP7453032B2 JP 7453032 B2 JP7453032 B2 JP 7453032B2 JP 2020054895 A JP2020054895 A JP 2020054895A JP 2020054895 A JP2020054895 A JP 2020054895A JP 7453032 B2 JP7453032 B2 JP 7453032B2
Authority
JP
Japan
Prior art keywords
electrically heated
honeycomb structure
heated carrier
exhaust gas
columnar honeycomb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020054895A
Other languages
Japanese (ja)
Other versions
JP2021156185A (en
Inventor
傑士 高田
尚哉 高瀬
英介 鵜飼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Sango Co Ltd
Original Assignee
NGK Insulators Ltd
Sango Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd, Sango Co Ltd filed Critical NGK Insulators Ltd
Priority to JP2020054895A priority Critical patent/JP7453032B2/en
Publication of JP2021156185A publication Critical patent/JP2021156185A/en
Application granted granted Critical
Publication of JP7453032B2 publication Critical patent/JP7453032B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Exhaust Gas After Treatment (AREA)

Description

本発明は、排気ガス浄化装置及び導電体付き電気加熱式担体に関する。 The present invention relates to an exhaust gas purification device and an electrically heated carrier with a conductor.

近年、エンジン始動直後の排気ガス浄化性能の低下を改善するため、電気加熱触媒(EHC)が提案されている。EHCは、例えば、導電性セラミックスからなる柱状のハニカム構造体に金属電極を接続し、通電によりハニカム構造体自体を発熱させることで、エンジン始動前に触媒の活性温度まで昇温できるようにしたものである。 In recent years, electrically heated catalysts (EHCs) have been proposed to improve the deterioration in exhaust gas purification performance immediately after engine startup. EHC, for example, is a system in which a metal electrode is connected to a columnar honeycomb structure made of conductive ceramics, and the honeycomb structure itself generates heat when energized, thereby raising the temperature to the activation temperature of the catalyst before starting the engine. It is.

EHCを自動車等の排気ガスの流路の上流側へ設け、下流側にハニカム構造体を設けた排気ガス浄化装置が知られている。当該排気ガス浄化装置において、EHCに電流を流すためには、EHCを外部配線に電気的に接続させる必要がある。その接続方法として、特許文献1には、導電体を、下流側のハニカム構造体の表面或いは内部へ通して、上流側のEHCまで配線する方法が開示されている。また、特許文献2には、EHCの上流側からEHCまで、導電体で配線する方法が開示されている。 2. Description of the Related Art Exhaust gas purification devices are known in which an EHC is provided on the upstream side of an exhaust gas flow path of an automobile or the like, and a honeycomb structure is provided on the downstream side. In the exhaust gas purification device, in order to flow current through the EHC, it is necessary to electrically connect the EHC to external wiring. As a connection method, Patent Document 1 discloses a method of passing a conductor through the surface or inside of a honeycomb structure on the downstream side and wiring it to an EHC on the upstream side. Further, Patent Document 2 discloses a method of wiring from the upstream side of the EHC to the EHC using a conductor.

特許第6248952号公報Patent No. 6248952 特許第5625796号公報Patent No. 5625796

特許文献1では、導電体を、下流側のハニカム構造体の表面或いは内部へ通して、上流側のEHCまで配線しているが、このような構成では、EHCと下流側のハニカム構造体とは、振動や熱膨張によって個々別々に変位するため、配線が変位によって変形し断線する問題が生じるおそれがある。 In Patent Document 1, the conductor is passed through the surface or inside of the honeycomb structure on the downstream side and is wired to the EHC on the upstream side, but in such a configuration, the EHC and the downstream honeycomb structure are , because they are individually displaced due to vibration or thermal expansion, there is a risk that the wiring may be deformed and disconnected due to the displacement.

特許文献2では、EHCの上流側からEHCまで、導電体で配線しているが、このような構成では、上流側でEHCの圧損によりEHC外周部にススや水蒸気が堆積することが考えられ、EHCと配線とが端部から短絡し、局所発熱することによってEHCのハニカム構造体が破損する問題が生じるおそれがある。 In Patent Document 2, a conductor is used for wiring from the upstream side of the EHC to the EHC, but in such a configuration, soot and water vapor may accumulate on the outer periphery of the EHC due to the pressure loss of the EHC on the upstream side. There is a risk that the EHC and the wiring may be short-circuited from the ends, causing local heat generation and damaging the honeycomb structure of the EHC.

本発明は上記事情に鑑みて創作されたものであり、電気加熱式担体に電気的に接続している導電体の破断及び短絡を良好に抑制することが可能な排気ガス浄化装置及び導電体付き電気加熱式担体を提供することを課題とする。 The present invention was created in view of the above circumstances, and provides an exhaust gas purification device and a conductor that can satisfactorily suppress the breakage and short circuit of the conductor electrically connected to the electrically heated carrier. The object of the present invention is to provide an electrically heated carrier.

上記課題は、以下の本発明によって解決されるものであり、本発明は以下のように特定される。
(1)内部に排気ガスの流路を有する排気ガス浄化装置であって、
前記排気ガスの流路の上流側に設けられている柱状の電気加熱式担体と、
前記排気ガスの流路の下流側において、前記電気加熱式担体と離間して設けられている柱状ハニカム構造体と、
前記電気加熱式担体及び前記柱状ハニカム構造体の外周面を覆うように設けられている缶体状のハウジングと、
前記電気加熱式担体の外周面に電気的に接続されている導電体と、
を備え、
前記ハウジングが、前記電気加熱式担体と前記柱状ハニカム構造体との離間位置に対応する部位に貫通孔を有し、
前記導電体が、前記電気加熱式担体の外周面から、前記電気加熱式担体と前記柱状ハニカム構造体との離間位置まで延びる延伸部を有し、且つ、
前記導電体の延伸部が、外部電源に接続するための電気接続端子を前記ハウジングの外側から前記貫通孔を介して前記電気加熱式担体の径方向に挿入した際に、前記電気接続端子と接続可能な位置に配置されている排気ガス浄化装置。
(2)外周壁と、前記外周壁の内側に配設され、第1の端面から第2の端面まで貫通して流路を形成する複数のセルを区画形成する隔壁と、を有するセラミックス製の柱状ハニカム構造部と、
前記柱状ハニカム構造部の外周壁の表面に配設された電極層と、
を備えた電気加熱式担体と、
前記電気加熱式担体の前記電極層に電気的に接続されている導電体と、
を備え、
前記導電体が、前記電気加熱式担体の第2の端面から軸方向外側に延びる延伸部を有し、
前記導電体の延伸部の少なくとも一部が、前記電気加熱式担体の第2の端面から、前記電気加熱式担体の径方向外側へ向かって傾斜している導電体付き電気加熱式担体。
The above problem is solved by the present invention described below, and the present invention is specified as follows.
(1) An exhaust gas purification device having an exhaust gas flow path inside,
a columnar electrically heated carrier provided on the upstream side of the exhaust gas flow path;
a columnar honeycomb structure provided at a distance from the electrically heated carrier on the downstream side of the exhaust gas flow path;
a can-shaped housing provided to cover the outer peripheral surfaces of the electrically heated carrier and the columnar honeycomb structure;
a conductor electrically connected to the outer peripheral surface of the electrically heated carrier;
Equipped with
The housing has a through hole at a location corresponding to a position where the electrically heated carrier and the columnar honeycomb structure are separated,
The conductor has an extending portion extending from the outer circumferential surface of the electrically heated carrier to a position separated from the electrically heated carrier and the columnar honeycomb structure, and
The extending portion of the conductor connects with the electrical connection terminal when the electrical connection terminal for connection to an external power source is inserted from the outside of the housing through the through hole in the radial direction of the electrically heated carrier. Exhaust gas purification devices located where possible.
(2) A ceramic material having an outer circumferential wall and a partition wall disposed inside the outer circumferential wall and partitioning a plurality of cells penetrating from the first end face to the second end face to form a flow path. A columnar honeycomb structure part,
an electrode layer disposed on the surface of the outer peripheral wall of the columnar honeycomb structure;
an electrically heated carrier with
a conductor electrically connected to the electrode layer of the electrically heated carrier;
Equipped with
the electrical conductor has an extension extending axially outward from the second end surface of the electrically heated carrier;
An electrically heated carrier with a conductor, wherein at least a part of the extending portion of the electrically conductor is inclined from a second end surface of the electrically heated carrier toward the outside in a radial direction of the electrically heated carrier.

本発明によれば、電気加熱式担体に電気的に接続している導電体の破断及び短絡を良好に抑制することが可能な排気ガス浄化装置及び導電体付き電気加熱式担体を提供することができる。 According to the present invention, it is possible to provide an exhaust gas purification device and an electrically heated carrier with a conductor that can effectively suppress breakage and short circuit of the conductor electrically connected to the electrically heated carrier. can.

本発明の実施形態1における排気ガス浄化装置の電気加熱式担体のセルの延伸方向に平行な断面模式図である。FIG. 2 is a schematic cross-sectional view parallel to the extending direction of the cells of the electrically heated carrier of the exhaust gas purification device in Embodiment 1 of the present invention. 本発明の実施形態1における電気加熱式担体の外観模式図である。1 is a schematic external view of an electrically heated carrier in Embodiment 1 of the present invention. 本発明の実施形態1における電気加熱式担体のセルの延伸方向に垂直な断面模式図である。FIG. 2 is a schematic cross-sectional view perpendicular to the stretching direction of the cells of the electrically heated carrier in Embodiment 1 of the present invention. 本発明の実施形態2における排気ガス浄化装置の電気加熱式担体のセルの延伸方向に平行な断面模式図である。FIG. 3 is a schematic cross-sectional view parallel to the extending direction of the cells of the electrically heated carrier of the exhaust gas purification device in Embodiment 2 of the present invention. 図4に示す排気ガス浄化装置の電気加熱式担体の導電体の傾斜部分の拡大図である。5 is an enlarged view of the inclined portion of the conductor of the electrically heated carrier of the exhaust gas purification device shown in FIG. 4. FIG. 本発明の実施形態3における排気ガス浄化装置の電気加熱式担体のセルの延伸方向に平行な断面模式図である。FIG. 7 is a schematic cross-sectional view parallel to the extending direction of the cells of the electrically heated carrier of the exhaust gas purification device in Embodiment 3 of the present invention. 図6に示す排気ガス浄化装置のハウジングの拡径部位の拡大図である。FIG. 7 is an enlarged view of the expanded diameter portion of the housing of the exhaust gas purification device shown in FIG. 6;

次に本発明を実施するための形態を、図面を参照しながら詳細に説明する。本発明は以下の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、当業者の通常の知識に基づいて、適宜設計の変更、改良等が加えられることが理解されるべきである。 Next, embodiments for carrying out the present invention will be described in detail with reference to the drawings. It is understood that the present invention is not limited to the following embodiments, and that design changes, improvements, etc. may be made as appropriate based on the common knowledge of those skilled in the art without departing from the spirit of the present invention. Should.

<実施形態1>
(排気ガス浄化装置)
図1は、本発明の実施形態1における排気ガス浄化装置100の電気加熱式担体10のセル18の延伸方向に平行な断面模式図である。排気ガス浄化装置100は、内部に排気ガスの流路を有し、排気ガスの流路の上流側に設けられている柱状の電気加熱式担体10と、排気ガスの流路の下流側において、電気加熱式担体10と離間して設けられている柱状ハニカム構造体21と、ハウジング15と、導電体14とを備える。
<Embodiment 1>
(Exhaust gas purification device)
FIG. 1 is a schematic cross-sectional view parallel to the extending direction of the cells 18 of the electrically heated carrier 10 of the exhaust gas purification device 100 in Embodiment 1 of the present invention. The exhaust gas purification device 100 has an exhaust gas flow path inside, and includes a columnar electrically heated carrier 10 provided on the upstream side of the exhaust gas flow path, and a columnar electrically heated carrier 10 provided on the downstream side of the exhaust gas flow path. It includes a columnar honeycomb structure 21 provided apart from the electrically heated carrier 10, a housing 15, and a conductor 14.

(1.電気加熱式担体)
図2は、本発明の実施形態1における電気加熱式担体10の外観模式図である。図3は、本発明の実施形態1における電気加熱式担体10のセル18の延伸方向に垂直な断面模式図である。電気加熱式担体10は、外周壁12と、外周壁12の内側に配設され、第1の端面から第2の端面まで貫通して流路を形成する複数のセル18を区画形成する隔壁19とを有するセラミックス製の柱状ハニカム構造部11と、柱状ハニカム構造部11の外周壁12の表面に配設された電極層13a、13bとを備える。
(1. Electrically heated carrier)
FIG. 2 is a schematic external view of the electrically heated carrier 10 in Embodiment 1 of the present invention. FIG. 3 is a schematic cross-sectional view perpendicular to the stretching direction of the cells 18 of the electrically heated carrier 10 in Embodiment 1 of the present invention. The electrically heated carrier 10 includes an outer circumferential wall 12 and a partition wall 19 that is disposed inside the outer circumferential wall 12 and defines a plurality of cells 18 that penetrate from a first end surface to a second end surface to form a flow path. and electrode layers 13a and 13b disposed on the surface of the outer peripheral wall 12 of the columnar honeycomb structure 11.

(1-1.柱状ハニカム構造部)
柱状ハニカム構造部11の外形は柱状である限り特に限定されず、例えば、底面が円形の柱状(円柱形状)、底面がオーバル形状の柱状、底面が多角形(四角形、五角形、六角形、七角形、八角形等)の柱状等の形状とすることができる。また、柱状ハニカム構造部11の大きさは、耐熱性を高める(外周壁の周方向に入るクラックを抑制する)という理由により、底面の面積が2000~20000mm2であることが好ましく、5000~15000mm2であることが更に好ましい。
(1-1. Columnar honeycomb structure part)
The outer shape of the columnar honeycomb structure 11 is not particularly limited as long as it is columnar; for example, it may be columnar with a circular bottom (cylindrical shape), columnar with an oval bottom, or polygonal with a bottom (quadrilateral, pentagon, hexagon, heptagon). , octagonal, etc.). Further, the size of the columnar honeycomb structure 11 is preferably such that the area of the bottom surface is 2000 to 20000 mm 2 , and 5000 to 15000 mm 2 for the reason of increasing heat resistance (suppressing cracks from entering in the circumferential direction of the outer peripheral wall). 2 is more preferable.

柱状ハニカム構造部11は、セラミックス製であり、導電性を有する。導電性の柱状ハニカム構造部11が通電してジュール熱により発熱可能である限り、当該セラミックスの電気抵抗率については特に制限はないが、0.1~200Ωcmであることが好ましく、1~200Ωcmがより好ましく、10~100Ωcmであることが更に好ましい。本発明において、柱状ハニカム構造部11の電気抵抗率は、四端子法により400℃で測定した値とする。 The columnar honeycomb structure section 11 is made of ceramics and has electrical conductivity. There is no particular restriction on the electrical resistivity of the ceramic, as long as the conductive columnar honeycomb structure 11 is energized and can generate heat by Joule heat, but it is preferably 0.1 to 200 Ωcm, and 1 to 200 Ωcm is preferable. More preferably, it is 10 to 100 Ωcm. In the present invention, the electrical resistivity of the columnar honeycomb structure 11 is a value measured at 400° C. using a four-terminal method.

柱状ハニカム構造部11の材質としては、限定的ではないが、アルミナ、ムライト、ジルコニア及びコージェライト等の酸化物系セラミックス、炭化珪素、窒化珪素及び窒化アルミ等の非酸化物系セラミックスからなる群から選択することができる。また、炭化珪素-金属珪素複合材や炭化珪素/グラファイト複合材等を用いることもできる。これらの中でも、耐熱性と導電性の両立の観点から、柱状ハニカム構造部11の材質は、珪素-炭化珪素複合材又は炭化珪素を主成分とするセラミックスを含有していることが好ましい。柱状ハニカム構造部11の材質が、珪素-炭化珪素複合材を主成分とするものであるというときは、柱状ハニカム構造部11が、珪素-炭化珪素複合材(合計質量)を、全体の90質量%以上含有していることを意味する。ここで、珪素-炭化珪素複合材は、骨材としての炭化珪素粒子、及び炭化珪素粒子を結合させる結合材としての珪素を含有するものであり、複数の炭化珪素粒子が、炭化珪素粒子間に細孔を形成するようにして、珪素によって結合されていることが好ましい。柱状ハニカム構造部11の材質が、炭化珪素を主成分とするものであるというときは、柱状ハニカム構造部11が、炭化珪素(合計質量)を、全体の90質量%以上含有していることを意味する。 The material of the columnar honeycomb structure 11 is not limited, but may be selected from the group consisting of oxide ceramics such as alumina, mullite, zirconia, and cordierite, and non-oxide ceramics such as silicon carbide, silicon nitride, and aluminum nitride. You can choose. Further, a silicon carbide-metal silicon composite material, a silicon carbide/graphite composite material, etc. can also be used. Among these, from the viewpoint of achieving both heat resistance and conductivity, the material of the columnar honeycomb structure portion 11 preferably contains a silicon-silicon carbide composite material or a ceramic containing silicon carbide as a main component. When the material of the columnar honeycomb structure 11 is mainly composed of a silicon-silicon carbide composite material, the columnar honeycomb structure 11 contains a silicon-silicon carbide composite material (total mass) of 90% of the total mass. % or more. Here, the silicon-silicon carbide composite material contains silicon carbide particles as an aggregate and silicon as a binder that binds the silicon carbide particles, and a plurality of silicon carbide particles are arranged between the silicon carbide particles. Preferably, they are bonded by silicon in such a way as to form pores. When the material of the columnar honeycomb structure 11 is mainly composed of silicon carbide, it means that the columnar honeycomb structure 11 contains silicon carbide (total mass) in an amount of 90% or more by mass of the whole. means.

柱状ハニカム構造部11が、珪素-炭化珪素複合材を含んでいる場合、柱状ハニカム構造部11に含有される「骨材としての炭化珪素粒子の質量」と、柱状ハニカム構造部11に含有される「結合材としての珪素の質量」との合計に対する、柱状ハニカム構造部11に含有される「結合材としての珪素の質量」の比率が、10~40質量%であることが好ましく、15~35質量%であることが更に好ましい。10質量%以上であると、柱状ハニカム構造部11の強度が十分に維持される。40質量%以下であると、焼成時に形状を保持しやすくなる。 When the columnar honeycomb structure 11 contains a silicon-silicon carbide composite material, the "mass of silicon carbide particles as aggregate" contained in the columnar honeycomb structure 11 and the mass of silicon carbide particles contained in the columnar honeycomb structure 11 It is preferable that the ratio of “mass of silicon as a bonding material” contained in the columnar honeycomb structure portion 11 to the total “mass of silicon as a bonding material” is 10 to 40% by mass, and 15 to 35% by mass. It is more preferable that it is mass %. When the content is 10% by mass or more, the strength of the columnar honeycomb structure portion 11 is sufficiently maintained. When the content is 40% by mass or less, it becomes easier to maintain the shape during firing.

セル18の延伸方向に垂直な断面におけるセルの形状に制限はないが、四角形、六角形、八角形、又はこれらの組み合わせであることが好ましい。これらのなかでも、四角形及び六角形が好ましい。セルの形状をこのようにすることにより、柱状ハニカム構造部11に排気ガスを流したときの圧力損失が小さくなり、触媒の浄化性能が優れたものとなる。構造強度及び加熱均一性を両立させやすいという観点からは、四角形が特に好ましい。 Although there is no restriction on the shape of the cell 18 in a cross section perpendicular to the stretching direction, it is preferably quadrangular, hexagonal, octagonal, or a combination thereof. Among these, quadrilateral and hexagonal shapes are preferred. By configuring the cell shape in this way, the pressure loss when exhaust gas flows through the columnar honeycomb structure 11 is reduced, and the purification performance of the catalyst is improved. A rectangular shape is particularly preferable from the viewpoint of achieving both structural strength and heating uniformity.

セル18を区画形成する隔壁19の厚みは、0.1~0.3mmであることが好ましく、0.15~0.25mmであることがより好ましい。隔壁19の厚みが0.1mm以上であることで、ハニカム構造体の強度が低下するのを抑制可能である。隔壁19の厚みが0.3mm以下であることで、ハニカム構造体を触媒担体として用いて、触媒を担持した場合に、排気ガスを流したときの圧力損失が大きくなるのを抑制できる。本発明において、隔壁19の厚みは、セル18の延伸方向に垂直な断面において、隣接するセル18の重心同士を結ぶ線分のうち、隔壁19を通過する部分の長さとして定義される。 The thickness of the partition walls 19 that define the cells 18 is preferably 0.1 to 0.3 mm, more preferably 0.15 to 0.25 mm. When the thickness of the partition walls 19 is 0.1 mm or more, it is possible to suppress the strength of the honeycomb structure from decreasing. When the thickness of the partition wall 19 is 0.3 mm or less, when a honeycomb structure is used as a catalyst carrier to support a catalyst, it is possible to suppress an increase in pressure loss when exhaust gas flows. In the present invention, the thickness of the partition wall 19 is defined as the length of the portion of the line segment connecting the centers of gravity of adjacent cells 18 that passes through the partition wall 19 in a cross section perpendicular to the extending direction of the cell 18.

柱状ハニカム構造部11は、セル18の流路方向に垂直な断面において、セル密度が40~150セル/cm2であることが好ましく、70~100セル/cm2であることが更に好ましい。セル密度をこのような範囲にすることにより、排気ガスを流したときの圧力損失を小さくした状態で、触媒の浄化性能を高くすることができる。セル密度が40セル/cm2以上であると、触媒担持面積が十分に確保される。セル密度が150セル/cm2以下であると柱状ハニカム構造部11を触媒担体として用いて、触媒を担持した場合に、排気ガスを流したときの圧力損失が大きくなりすぎることが抑制される。セル密度は、外周壁12部分を除く柱状ハニカム構造部11の一つの底面部分の面積でセル数を除して得られる値である。 The cell density of the columnar honeycomb structure 11 in a cross section perpendicular to the flow path direction of the cells 18 is preferably 40 to 150 cells/cm 2 , more preferably 70 to 100 cells/cm 2 . By setting the cell density within such a range, the purification performance of the catalyst can be improved while reducing the pressure loss when the exhaust gas flows. When the cell density is 40 cells/cm 2 or more, a sufficient catalyst supporting area is ensured. When the cell density is 150 cells/cm 2 or less, when the columnar honeycomb structure 11 is used as a catalyst carrier to support a catalyst, the pressure loss when exhaust gas flows is suppressed from becoming too large. The cell density is a value obtained by dividing the number of cells by the area of one bottom surface portion of the columnar honeycomb structure 11 excluding the outer peripheral wall 12 portion.

柱状ハニカム構造部11の外周壁12を設けることは、柱状ハニカム構造部11の構造強度を確保し、また、セル18を流れる流体が外周壁12から漏洩するのを抑制する観点で有用である。具体的には、外周壁12の厚みは好ましくは0.1mm以上であり、より好ましくは0.15mm以上、更により好ましくは0.2mm以上である。但し、外周壁12を厚くしすぎると高強度になりすぎてしまい、隔壁19との強度バランスが崩れて耐熱衝撃性が低下することから、外周壁12の厚みは好ましくは1.0mm以下であり、より好ましくは0.7mm以下であり、更により好ましくは0.5mm以下である。ここで、外周壁12の厚みは、厚みを測定しようとする外周壁12の箇所をセルの延伸方向に垂直な断面で観察したときに、当該測定箇所における外周壁12の接線に対する法線方向の厚みとして定義される。 Providing the outer circumferential wall 12 of the columnar honeycomb structure 11 is useful from the viewpoint of ensuring the structural strength of the columnar honeycomb structure 11 and suppressing leakage of fluid flowing through the cells 18 from the outer circumferential wall 12. Specifically, the thickness of the outer peripheral wall 12 is preferably 0.1 mm or more, more preferably 0.15 mm or more, and even more preferably 0.2 mm or more. However, if the outer peripheral wall 12 is made too thick, the strength will be too high, and the strength balance with the partition wall 19 will be disrupted, resulting in a decrease in thermal shock resistance, so the thickness of the outer peripheral wall 12 is preferably 1.0 mm or less. , more preferably 0.7 mm or less, even more preferably 0.5 mm or less. Here, the thickness of the outer peripheral wall 12 is determined by observing the part of the outer peripheral wall 12 whose thickness is to be measured in a cross section perpendicular to the cell stretching direction. Defined as thickness.

隔壁19は多孔質とすることができる。隔壁19の気孔率は、35~60%であることが好ましく、35~45%であることが更に好ましい。気孔率が35%以上であると、焼成時の変形をより抑制しやすくなる。気孔率が60%以下であるとハニカム構造体の強度が十分に維持される。気孔率は、水銀ポロシメータにより測定した値である。 The partition wall 19 can be porous. The porosity of the partition wall 19 is preferably 35 to 60%, more preferably 35 to 45%. When the porosity is 35% or more, deformation during firing can be more easily suppressed. When the porosity is 60% or less, the strength of the honeycomb structure is sufficiently maintained. The porosity is a value measured using a mercury porosimeter.

柱状ハニカム構造部11の隔壁19の平均細孔径は、2~15μmであることが好ましく、4~8μmであることが更に好ましい。平均細孔径が2μm以上であると、電気抵抗率が大きくなりすぎることが抑制される。平均細孔径が15μm以下であると、電気抵抗率が小さくなりすぎることが抑制される。平均細孔径は、水銀ポロシメータにより測定した値である。 The average pore diameter of the partition walls 19 of the columnar honeycomb structure 11 is preferably 2 to 15 μm, more preferably 4 to 8 μm. When the average pore diameter is 2 μm or more, electrical resistivity is prevented from becoming too large. When the average pore diameter is 15 μm or less, electrical resistivity is prevented from becoming too small. The average pore diameter is a value measured using a mercury porosimeter.

(1-2.電極層)
柱状ハニカム構造部11の外周壁12の表面に、電極層13a、13bが配設されている。電極層13a、13bは、柱状ハニカム構造部11の中心軸を挟んで対向するように配設された一対の電極層13a、13bであってもよい。
(1-2. Electrode layer)
Electrode layers 13a and 13b are provided on the surface of the outer peripheral wall 12 of the columnar honeycomb structure 11. The electrode layers 13a, 13b may be a pair of electrode layers 13a, 13b disposed to face each other with the central axis of the columnar honeycomb structure 11 interposed therebetween.

電極層13a、13bの形成領域に特段の制約はないが、柱状ハニカム構造部11の均一発熱性を高めるという観点からは、各電極層13a、13bは外周壁12の外面上で外周壁12の周方向及びセルの延伸方向に帯状に延設することが好ましい。具体的には、各電極層13a、13bは、柱状ハニカム構造部11の両底面間の80%以上の長さに亘って、好ましくは90%以上の長さに亘って、より好ましくは全長に亘って延びていることが、電極層13a、13bの軸方向へ電流が広がりやすいという観点から望ましい。 Although there is no particular restriction on the formation area of the electrode layers 13a, 13b, from the viewpoint of increasing the uniform heat generation property of the columnar honeycomb structure 11, each electrode layer 13a, 13b is formed on the outer surface of the outer peripheral wall 12. It is preferable to extend in a band shape in the circumferential direction and in the cell stretching direction. Specifically, each electrode layer 13a, 13b extends over 80% or more of the length between the bottom surfaces of the columnar honeycomb structure 11, preferably over 90% of the length, and more preferably over the entire length. It is desirable that the current extend across the electrode layers 13a and 13b from the viewpoint that the current easily spreads in the axial direction of the electrode layers 13a and 13b.

各電極層13a、13bの厚みは、0.01~5mmであることが好ましく、0.01~3mmであることが更に好ましい。このような範囲とすることにより均一発熱性を高めることができる。各電極層13a、13bの厚みが0.01mm以上であると、電気抵抗が適切に制御され、より均一に発熱することができる。5mm以下であると、キャニング時に破損する恐れが低減される。各電極層13a、13bの厚みは、厚みを測定しようとする電極層13a、13bの箇所をセルの延伸方向に垂直な断面で観察したときに、各電極層13a、13bの外面の当該測定箇所における接線に対する法線方向の厚みとして定義される。 The thickness of each electrode layer 13a, 13b is preferably 0.01 to 5 mm, more preferably 0.01 to 3 mm. By setting it within such a range, uniform heating properties can be improved. When the thickness of each electrode layer 13a, 13b is 0.01 mm or more, electrical resistance can be appropriately controlled and heat can be generated more uniformly. If it is 5 mm or less, the risk of damage during canning is reduced. The thickness of each electrode layer 13a, 13b is measured at the measurement point on the outer surface of each electrode layer 13a, 13b when the location of the electrode layer 13a, 13b whose thickness is to be measured is observed in a cross section perpendicular to the stretching direction of the cell. It is defined as the thickness normal to the tangent at .

各電極層13a、13bの電気抵抗率を柱状ハニカム構造部11の電気抵抗率より低くすることにより、電極層13a、13bに優先的に電気が流れやすくなり、通電時に電気がセルの流路方向及び周方向に広がりやすくなる。電極層13a、13bの電気抵抗率は、柱状ハニカム構造部11の電気抵抗率の1/10以下であることが好ましく、1/20以下であることがより好ましく、1/30以下であることが更により好ましい。但し、両者の電気抵抗率の差が大きくなりすぎると対向する電極層13a、13bの端部間に電流が集中して柱状ハニカム構造部の発熱が偏ることから、電極層13a、13bの電気抵抗率は、柱状ハニカム構造部11の電気抵抗率の1/200以上であることが好ましく、1/150以上であることがより好ましく、1/100以上であることが更により好ましい。本発明において、電極層13a、13bの電気抵抗率は、四端子法により400℃で測定した値とする。 By making the electrical resistivity of each electrode layer 13a, 13b lower than the electrical resistivity of the columnar honeycomb structure 11, electricity can preferentially flow through the electrode layers 13a, 13b, and when energized, electricity flows in the flow path direction of the cell. And it becomes easier to spread in the circumferential direction. The electrical resistivity of the electrode layers 13a and 13b is preferably 1/10 or less, more preferably 1/20 or less, and preferably 1/30 or less of the electrical resistivity of the columnar honeycomb structure 11. Even more preferred. However, if the difference in electrical resistivity between the two becomes too large, current will concentrate between the ends of the opposing electrode layers 13a and 13b, and heat generation in the columnar honeycomb structure will be uneven. The electrical resistivity is preferably 1/200 or more, more preferably 1/150 or more, and even more preferably 1/100 or more of the electrical resistivity of the columnar honeycomb structure 11. In the present invention, the electrical resistivity of the electrode layers 13a and 13b is a value measured at 400° C. using a four-terminal method.

各電極層13a、13bの材質は、金属及び導電性セラミックスとの複合材(サーメット)を使用することができる。金属としては、例えばCr、Fe、Co、Ni、Si又はTiの単体金属又はこれらの金属よりなる群から選択される少なくとも一種の金属を含有する合金が挙げられる。導電性セラミックスとしては、限定的ではないが、炭化珪素(SiC)が挙げられ、珪化タンタル(TaSi2)及び珪化クロム(CrSi2)等の金属珪化物等の金属化合物が挙げられる。金属及び導電性セラミックスとの複合材(サーメット)の具体例としては、金属珪素と炭化珪素の複合材、珪化タンタルや珪化クロム等の金属珪化物と金属珪素と炭化珪素の複合材、更には上記の一種又は二種以上の金属に熱膨張低減の観点から、アルミナ、ムライト、ジルコニア、コージェライト、窒化珪素及び窒化アルミ等の絶縁性セラミックスを一種又は二種以上添加した複合材が挙げられる。電極層13a、13bの材質としては、上記の各種金属及び導電性セラミックスの中でも、珪化タンタルや珪化クロム等の金属珪化物と金属珪素と炭化珪素の複合材との組合せとすることが、柱状ハニカム構造部と同時に焼成できるので製造工程の簡素化に資するという理由により好ましい。 As the material of each electrode layer 13a, 13b, a composite material (cermet) of metal and conductive ceramics can be used. Examples of the metal include single metals such as Cr, Fe, Co, Ni, Si, or Ti, or alloys containing at least one metal selected from the group consisting of these metals. Examples of conductive ceramics include, but are not limited to, silicon carbide (SiC) and metal compounds such as metal silicides such as tantalum silicide (TaSi 2 ) and chromium silicide (CrSi 2 ). Specific examples of composites (cermets) of metals and conductive ceramics include composites of metal silicon and silicon carbide, composites of metal silicides such as tantalum silicide and chromium silicide, metal silicon and silicon carbide, and the above. Examples include composite materials in which one or more insulating ceramics such as alumina, mullite, zirconia, cordierite, silicon nitride, and aluminum nitride are added to one or more metals from the viewpoint of reducing thermal expansion. Among the various metals and conductive ceramics mentioned above, the material for the electrode layers 13a and 13b is a combination of metal silicides such as tantalum silicide and chromium silicide, and a composite material of metal silicon and silicon carbide, such as columnar honeycomb. This is preferable because it can be fired at the same time as the structural part, which contributes to simplifying the manufacturing process.

(2.柱状ハニカム構造体)
柱状ハニカム構造体21は、排気ガス浄化装置100の排気ガスの流路の下流側において、電気加熱式担体10と離間して設けられている。柱状ハニカム構造体21は、形状、材質、及び、大きさ等について、電気加熱式担体10の柱状ハニカム構造部11について上述したものと同様に構成することができる。柱状ハニカム構造体21は、形状、材質、及び、大きさ等について、電気加熱式担体10の柱状ハニカム構造部11と同じであってもよく、異なっていてもよい。異なる場合には、従来公知の範囲での、形状、材質、大きさの柱状ハニカム構造体を用いることができる。なお、柱状ハニカム構造体21の大きさが電気加熱式担体10の柱状ハニカム構造部11と異なる場合については、後述の実施形態3で例示している。
(2. Columnar honeycomb structure)
The columnar honeycomb structure 21 is provided at a distance from the electrically heated carrier 10 on the downstream side of the exhaust gas flow path of the exhaust gas purification device 100 . The columnar honeycomb structure 21 can be configured in the same manner as described above for the columnar honeycomb structure portion 11 of the electrically heated carrier 10 in terms of shape, material, size, etc. The columnar honeycomb structure 21 may be the same as or different from the columnar honeycomb structure 11 of the electrically heated carrier 10 in terms of shape, material, size, etc. If different, a columnar honeycomb structure having a shape, material, and size within a conventionally known range can be used. Note that a case where the size of the columnar honeycomb structure 21 is different from the columnar honeycomb structure portion 11 of the electrically heated carrier 10 is exemplified in Embodiment 3, which will be described later.

柱状ハニカム構造体21は、電気加熱式担体10に対して離間する程度については特に限定されないが、排気ガス浄化装置100の設置スペース、柱状ハニカム構造体21及び電気加熱式担体10の大きさ等に基づき、適宜設計することができる。例えば、電気加熱式担体10の柱状ハニカム構造部11及び柱状ハニカム構造体21の底面の面積が、それぞれ2000~20000mm2であり、長さがそれぞれ2~10cmである場合、柱状ハニカム構造体21は、電気加熱式担体10に対して2~10cm離間させることができる。 The distance between the columnar honeycomb structure 21 and the electrically heated carrier 10 is not particularly limited, but it depends on the installation space of the exhaust gas purification device 100, the size of the columnar honeycomb structure 21 and the electrically heated carrier 10, etc. Based on this, it can be designed as appropriate. For example, when the area of the bottom surface of the columnar honeycomb structure 11 and the columnar honeycomb structure 21 of the electrically heated carrier 10 is 2000 to 20000 mm 2 and the length is 2 to 10 cm, the columnar honeycomb structure 21 is , the electrically heated carrier 10 can be spaced 2 to 10 cm apart.

排気ガス浄化装置100の排気ガスの流路の上流側に設けられている電気加熱式担体10、及び、下流側に設けられている柱状ハニカム構造体21に、それぞれ触媒を担持することにより、電気加熱式担体10及び柱状ハニカム構造体21を触媒体として使用することができる。複数のセル18の流路には、例えば、自動車排気ガス等の流体を流すことができる。触媒としては、例えば、貴金属系触媒又はこれら以外の触媒が挙げられる。貴金属系触媒としては、白金(Pt)、パラジウム(Pd)、ロジウム(Rh)といった貴金属をアルミナ細孔表面に担持し、セリア、ジルコニア等の助触媒を含む三元触媒や酸化触媒、又は、アルカリ土類金属と白金を窒素酸化物(NOx)の吸蔵成分として含むNOx吸蔵還元触媒(LNT触媒)が例示される。貴金属を用いない触媒として、銅置換又は鉄置換ゼオライトを含むNOx選択還元触媒(SCR触媒)等が例示される。また、これらの触媒からなる群から選択される2種以上の触媒を用いてもよい。なお、触媒の担持方法についても特に制限はなく、従来、ハニカム構造体に触媒を担持する担持方法に準じて行うことができる。 By supporting catalysts on the electrically heated carrier 10 provided on the upstream side of the exhaust gas flow path of the exhaust gas purification device 100 and the columnar honeycomb structure 21 provided on the downstream side, electricity is generated. The heated carrier 10 and the columnar honeycomb structure 21 can be used as catalyst bodies. For example, fluid such as automobile exhaust gas can flow through the flow paths of the plurality of cells 18. Examples of the catalyst include noble metal catalysts and catalysts other than these. Examples of noble metal catalysts include three-way catalysts, oxidation catalysts, and alkali catalysts that support noble metals such as platinum (Pt), palladium (Pd), and rhodium (Rh) on the surface of alumina pores, and include promoters such as ceria and zirconia. An example is a NO x storage reduction catalyst (LNT catalyst) containing an earth metal and platinum as nitrogen oxide (NO x ) storage components. Examples of catalysts that do not use noble metals include NO x selective reduction catalysts (SCR catalysts) containing copper-substituted or iron-substituted zeolites. Furthermore, two or more types of catalysts selected from the group consisting of these catalysts may be used. Note that there is no particular restriction on the method of supporting the catalyst, and it can be carried out in accordance with the conventional method of supporting the catalyst on a honeycomb structure.

(3.ハウジング)
ハウジング15は、缶体状に形成されており、電気加熱式担体10及び柱状ハニカム構造体21の外周面を覆うように設けられている。ハウジング15としては、例えば、金属製の筒状部材等を用いることができる。ハウジング15は、電気加熱式担体10と柱状ハニカム構造体21との離間位置に対応する部位に貫通孔17を有している。ハウジング15における、電気加熱式担体10と柱状ハニカム構造体21との離間位置に対応する部位とは、図1に点線dで示す部位であり、電気加熱式担体10と柱状ハニカム構造体21とが離間して形成するハウジング15内の空間を構成するハウジング15側面を示す。貫通孔17は、電気加熱式担体10と柱状ハニカム構造体21との離間位置に対応する部位であれば、どこに形成されていてもよい。
(3. Housing)
The housing 15 is formed in a can shape and is provided so as to cover the outer peripheral surfaces of the electrically heated carrier 10 and the columnar honeycomb structure 21. As the housing 15, for example, a metal cylindrical member or the like can be used. The housing 15 has a through hole 17 at a location corresponding to a position where the electrically heated carrier 10 and the columnar honeycomb structure 21 are separated from each other. The part of the housing 15 corresponding to the separated position between the electrically heated carrier 10 and the columnar honeycomb structure 21 is the part shown by the dotted line d in FIG. A side view of the housing 15, which constitutes a space within the housing 15 that is formed at a distance, is shown. The through holes 17 may be formed anywhere as long as they correspond to the distance between the electrically heated carrier 10 and the columnar honeycomb structure 21 .

貫通孔17の形状は特に限定されず、円形状または矩形状など適宜設計することができる。貫通孔17の大きさは、電気接続端子22をハウジング15の外側から貫通孔17へ挿入可能な大きさに形成されていれば、特に限定されず、適宜設計することができる。 The shape of the through hole 17 is not particularly limited, and can be appropriately designed such as a circular shape or a rectangular shape. The size of the through hole 17 is not particularly limited as long as it is formed to a size that allows the electrical connection terminal 22 to be inserted into the through hole 17 from the outside of the housing 15, and can be designed as appropriate.

ハウジング15と電気加熱式担体10との間、及び、ハウジング15と柱状ハニカム構造体21との間に、電気加熱式担体10及び柱状ハニカム構造体21を保持する保持マット16を設けてもよい。保持マット16としては、公知の材料を用いることができ、例えばセラミックファイバーまたはガラスファイバー等で構成することができる。 A holding mat 16 for holding the electrically heated carrier 10 and the columnar honeycomb structure 21 may be provided between the housing 15 and the electrically heated carrier 10 and between the housing 15 and the columnar honeycomb structure 21. The holding mat 16 can be made of a known material, such as ceramic fiber or glass fiber.

(4.導電体)
導電体14は、電気加熱式担体10の外周面に電気的に接続されている。導電体14は、電気加熱式担体10の外周面から、電気加熱式担体10と柱状ハニカム構造体21との離間位置まで延びる延伸部14aを有している。導電体14の延伸部14aは、外部電源に接続するための電気接続端子22をハウジング15の外側から貫通孔17を介して電気加熱式担体10の径方向に挿入した際に、電気接続端子22と接続可能な位置に配置されている。延伸部14aの先端の位置は、電気接続端子22を挿入したときに接続しやすいため、図1に示すように、貫通孔17に隣接する位置であるのが好ましい。実施形態1において、延伸部14aは、電気加熱式担体10の外周面から、電気加熱式担体10と柱状ハニカム構造体21との離間位置まで傾斜せず真っ直ぐに延びている。
(4. Electric conductor)
The conductor 14 is electrically connected to the outer peripheral surface of the electrically heated carrier 10 . The conductor 14 has an extending portion 14 a extending from the outer circumferential surface of the electrically heated carrier 10 to a position where the electrically heated carrier 10 and the columnar honeycomb structure 21 are separated. The extending portion 14a of the conductor 14 is connected to the electrical connection terminal 22 when the electrical connection terminal 22 for connecting to an external power source is inserted from the outside of the housing 15 through the through hole 17 in the radial direction of the electrically heated carrier 10. It is located in a position where it can be connected. The tip of the extending portion 14a is preferably located adjacent to the through hole 17, as shown in FIG. 1, because it facilitates connection when the electrical connection terminal 22 is inserted. In the first embodiment, the extending portion 14a extends straight from the outer circumferential surface of the electrically heated carrier 10 to a position where the electrically heated carrier 10 and the columnar honeycomb structure 21 are separated from each other without being inclined.

導電体14は、上述のように、電気加熱式担体10の外周面から横へ突出するように設けられておらず、電気加熱式担体10の外周面から、電気加熱式担体10と柱状ハニカム構造体21との離間位置まで延びるように形成されている。このような構成によれば、保持マット16等で導電体14を電気加熱式担体10方向へ良好に押圧することができる。従って、導電体14の剥離や破損などを良好に抑制することができる。また、導電体14を電気接続端子22と接合させる部位(接合点)を自由に設計することができる。具体的には、例えば、本実施形態とは異なり、電気加熱式担体の外周面から横へ突出するように設けられている導電体は、電気加熱式担体前方もしくは後方に電気接続端子との接合点を配置すると、当該接合点に直接排気ガスが触れることとなるため、耐食性に問題が生じるおそれがある。これに対し、本実施形態のように、導電体14を電気接続端子22と接合させる部位(接合点)を自由に設計することができると、全面に保持マットを巻くことができ、このような耐食性の問題を抑制することができる。 As described above, the conductor 14 is not provided so as to protrude laterally from the outer circumferential surface of the electrically heated carrier 10 , but is connected to the electrically heated carrier 10 and the columnar honeycomb structure from the outer circumferential surface of the electrically heated carrier 10 . It is formed to extend to a position separated from the body 21. According to such a configuration, the conductor 14 can be favorably pressed in the direction of the electrically heated carrier 10 by the holding mat 16 or the like. Therefore, peeling and damage of the conductor 14 can be effectively suppressed. Further, the portion (junction point) where the conductor 14 is joined to the electrical connection terminal 22 can be freely designed. Specifically, for example, unlike this embodiment, the conductor provided so as to protrude laterally from the outer circumferential surface of the electrically heated carrier may be connected to an electrical connection terminal at the front or rear of the electrically heated carrier. If the points are arranged, the exhaust gas will come into direct contact with the joint points, which may cause problems in corrosion resistance. On the other hand, if the part (junction point) where the conductor 14 is joined to the electrical connection terminal 22 can be freely designed as in this embodiment, the holding mat can be wrapped around the entire surface, and such Corrosion resistance problems can be suppressed.

導電体14は、電極層13a、13bを介して電圧を印加すると通電してジュール熱により柱状ハニカム構造部11を発熱させることが可能である。このため、電気加熱式担体10はヒーターとしても好適に用いることができる。印加する電圧は12~900Vが好ましく、64~600Vが更に好ましいが、印加する電圧は適宜変更可能である。 When a voltage is applied to the conductor 14 via the electrode layers 13a and 13b, the conductor 14 is energized and can generate heat in the columnar honeycomb structure 11 by Joule heat. Therefore, the electrically heated carrier 10 can also be suitably used as a heater. The applied voltage is preferably 12 to 900V, more preferably 64 to 600V, but the applied voltage can be changed as appropriate.

導電体14の材質としては、単体金属及び合金等を採用することができ、耐食性、電気抵抗率及び線膨張率の観点から例えば、Cr、Fe、Co、Ni及びTiよりなる群から選択される少なくとも一種を含む合金とすることが好ましく、ステンレス鋼及びFe-Ni合金がより好ましい。導電体14の形状及び大きさは、特に限定されず、薄板状、線状など、電気加熱式担体10の大きさや通電性能等に応じて、適宜設計することができる。 As the material of the conductor 14, single metals, alloys, etc. can be adopted, and from the viewpoint of corrosion resistance, electrical resistivity, and coefficient of linear expansion, the material is selected from the group consisting of Cr, Fe, Co, Ni, and Ti, for example. It is preferable to use an alloy containing at least one kind, and stainless steel and Fe--Ni alloy are more preferable. The shape and size of the conductor 14 are not particularly limited, and can be appropriately designed, such as a thin plate shape or a linear shape, depending on the size, current carrying performance, etc. of the electrically heated carrier 10.

本発明の実施形態1における排気ガス浄化装置100は、上述のように、ハウジング15における電気加熱式担体10と柱状ハニカム構造体21との離間位置に対応する部位に設けられた貫通孔17を介して、電気接続端子22を電気加熱式担体10の径方向に挿入した際に、導電体14の延伸部14aが、電気接続端子22と接続可能な位置に配置されている。このような構成によれば、排気ガス浄化装置100の振動や熱膨張によって、電気加熱式担体10と柱状ハニカム構造体21とが個々別々に変位しても、導電体14が変位によって変形して断線することを良好に抑制することができる。 As described above, the exhaust gas purification device 100 according to the first embodiment of the present invention has a through-hole 17 provided in a portion of the housing 15 corresponding to the separated position between the electrically heated carrier 10 and the columnar honeycomb structure 21. When the electrical connection terminal 22 is inserted in the radial direction of the electrically heated carrier 10, the extending portion 14a of the conductor 14 is arranged at a position where it can be connected to the electrical connection terminal 22. According to such a configuration, even if the electrically heated carrier 10 and the columnar honeycomb structure 21 are individually displaced due to vibration or thermal expansion of the exhaust gas purification device 100, the conductor 14 is not deformed by the displacement. Disconnection can be well suppressed.

また、電気加熱式担体10の上流側から電気加熱式担体10まで、導電体14で配線する構成ではないため、上流側で電気加熱式担体10の圧損が生じることが抑制される。従って、電気加熱式担体10の外周部にススや水蒸気が堆積し、電気加熱式担体10と導電体14とが端部から短絡することを、良好に抑制することができる。 Moreover, since the structure is not such that the conductor 14 is wired from the upstream side of the electrically heated carrier 10 to the electrically heated carrier 10, pressure loss of the electrically heated carrier 10 is suppressed from occurring on the upstream side. Therefore, it is possible to satisfactorily prevent soot and water vapor from accumulating on the outer periphery of the electrically heated carrier 10 and short-circuit between the electrically heated carrier 10 and the conductor 14 from the ends.

実施形態1における排気ガス浄化装置100は、外部電源に接続するための電気接続端子22を構成要素として含んでもよい。すなわち、図1に示す構成において、排気ガス浄化装置100が、導電体14の延伸部14aの先端に電気的に接続し、且つ、ハウジング15の貫通孔17から突出する電気接続端子22を有していてもよい。 The exhaust gas purification device 100 in the first embodiment may include an electrical connection terminal 22 for connection to an external power source as a component. That is, in the configuration shown in FIG. 1, the exhaust gas purification device 100 has an electrical connection terminal 22 that is electrically connected to the tip of the extension portion 14a of the conductor 14 and protrudes from the through hole 17 of the housing 15. You can leave it there.

(5.排気ガス浄化装置の製造方法)
次に、本発明に係る排気ガス浄化装置100を製造する方法について例示的に説明する。本発明の電気加熱式担体10の製造方法は一実施形態において、電極層形成ペースト付き未焼成ハニカム構造部を得る工程A1と、電極層形成ペースト付き未焼成ハニカム構造部を焼成して柱状ハニカム構造部を得る工程A2と、柱状ハニカム構造部に導電体を溶接または溶射などで固定して電気加熱式担体を得る工程A3と、柱状ハニカム構造体を準備する工程B1と、電気加熱式担体と柱状ハニカム構造体とを、貫通孔を有するハウジングに収容する工程C1とを含む。
(5. Manufacturing method of exhaust gas purification device)
Next, a method for manufacturing the exhaust gas purification device 100 according to the present invention will be exemplified. In one embodiment, the method for manufacturing the electrically heated carrier 10 of the present invention includes step A1 of obtaining an unfired honeycomb structure with electrode layer forming paste, and firing the unfired honeycomb structure with electrode layer forming paste to form a columnar honeycomb structure. Step A2 of obtaining the electrically heated carrier by fixing the conductor to the columnar honeycomb structure by welding or thermal spraying, Step B1 of preparing the columnar honeycomb structure, and Step B1 of preparing the columnar honeycomb structure; and a step C1 of accommodating the honeycomb structure in a housing having a through hole.

工程A1は、ハニカム構造部の前駆体であるハニカム成形体を作製し、ハニカム成形部の側面に電極層形成ペーストを塗布して、電極層形成ペースト付き未焼成ハニカム構造部を得る工程である。ハニカム成形体の作製は、公知のハニカム構造部の製造方法におけるハニカム成形体の作製方法に準じて行うことができる。例えば、まず、炭化珪素粉末(炭化珪素)に、金属珪素粉末(金属珪素)、バインダ、界面活性剤、造孔材、水等を添加して成形原料を作製する。炭化珪素粉末の質量と金属珪素の質量との合計に対して、金属珪素の質量が10~40質量%となるようにすることが好ましい。炭化珪素粉末における炭化珪素粒子の平均粒子径は、3~50μmが好ましく、3~40μmが更に好ましい。金属珪素(金属珪素粉末)の平均粒子径は、2~35μmであることが好ましい。炭化珪素粒子及び金属珪素(金属珪素粒子)の平均粒子径はレーザー回折法で粒度の頻度分布を測定したときの、体積基準による算術平均径を指す。炭化珪素粒子は、炭化珪素粉末を構成する炭化珪素の微粒子であり、金属珪素粒子は、金属珪素粉末を構成する金属珪素の微粒子である。なお、これは、ハニカム構造部の材質を、珪素-炭化珪素系複合材とする場合の成形原料の配合であり、ハニカム構造部の材質を炭化珪素とする場合には、金属珪素は添加しない。 Step A1 is a step of producing a honeycomb molded body which is a precursor of a honeycomb structure, and applying an electrode layer forming paste to the side surface of the honeycomb molded part to obtain an unfired honeycomb structure with electrode layer forming paste. The honeycomb molded body can be manufactured according to a method for manufacturing a honeycomb molded body in a known method for manufacturing a honeycomb structure. For example, first, metal silicon powder (metallic silicon), a binder, a surfactant, a pore former, water, etc. are added to silicon carbide powder (silicon carbide) to produce a molding raw material. It is preferable that the mass of metallic silicon is 10 to 40% by mass based on the total mass of silicon carbide powder and metallic silicon. The average particle diameter of silicon carbide particles in the silicon carbide powder is preferably 3 to 50 μm, more preferably 3 to 40 μm. The average particle diameter of metallic silicon (metallic silicon powder) is preferably 2 to 35 μm. The average particle diameter of silicon carbide particles and metal silicon (metallic silicon particles) refers to the arithmetic mean diameter based on volume when the frequency distribution of particle size is measured by laser diffraction method. The silicon carbide particles are fine particles of silicon carbide that make up silicon carbide powder, and the metal silicon particles are fine particles of metal silicon that make up the metal silicon powder. Note that this is a formulation of forming raw materials when the material of the honeycomb structure is a silicon-silicon carbide composite material, and when the material of the honeycomb structure is silicon carbide, metallic silicon is not added.

バインダとしては、メチルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシプロポキシルセルロース、ヒドロキシエチルセルロース、カルボキシメチルセルロース、ポリビニルアルコール等を挙げることができる。これらの中でも、メチルセルロースとヒドロキシプロポキシルセルロースとを併用することが好ましい。バインダの含有量は、炭化珪素粉末及び金属珪素粉末の合計質量を100質量部としたときに、2.0~10.0質量部であることが好ましい。 Examples of the binder include methylcellulose, hydroxypropylmethylcellulose, hydroxypropoxylcellulose, hydroxyethylcellulose, carboxymethylcellulose, polyvinyl alcohol, and the like. Among these, it is preferable to use methylcellulose and hydroxypropoxylcellulose in combination. The content of the binder is preferably 2.0 to 10.0 parts by mass when the total mass of silicon carbide powder and metal silicon powder is 100 parts by mass.

水の含有量は、炭化珪素粉末及び金属珪素粉末の合計質量を100質量部としたときに、20~60質量部であることが好ましい。 The content of water is preferably 20 to 60 parts by mass when the total mass of silicon carbide powder and metal silicon powder is 100 parts by mass.

界面活性剤としては、エチレングリコール、デキストリン、脂肪酸石鹸、ポリアルコール等を用いることができる。これらは、1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。界面活性剤の含有量は、炭化珪素粉末及び金属珪素粉末の合計質量を100質量部としたときに、0.1~2.0質量部であることが好ましい。 As the surfactant, ethylene glycol, dextrin, fatty acid soap, polyalcohol, etc. can be used. These may be used alone or in combination of two or more. The content of the surfactant is preferably 0.1 to 2.0 parts by mass when the total mass of silicon carbide powder and metal silicon powder is 100 parts by mass.

造孔材としては、焼成後に気孔となるものであれば特に限定されるものではなく、例えば、グラファイト、澱粉、発泡樹脂、吸水性樹脂、シリカゲル等を挙げることができる。造孔材の含有量は、炭化珪素粉末及び金属珪素粉末の合計質量を100質量部としたときに、0.5~10.0質量部であることが好ましい。造孔材の平均粒子径は、10~30μmであることが好ましい。10μmより小さいと、気孔を十分形成できないことがある。30μmより大きいと、成形時に口金に詰まることがある。造孔材の平均粒子径はレーザー回折法で粒度の頻度分布を測定したときの、体積基準による算術平均径を指す。造孔材が吸水性樹脂の場合には、造孔材の平均粒子径は吸水後の平均粒子径のことである。 The pore-forming material is not particularly limited as long as it forms pores after firing, and examples include graphite, starch, foamed resin, water-absorbing resin, and silica gel. The content of the pore-forming material is preferably 0.5 to 10.0 parts by mass when the total mass of silicon carbide powder and metal silicon powder is 100 parts by mass. The average particle diameter of the pore-forming material is preferably 10 to 30 μm. If it is smaller than 10 μm, sufficient pores may not be formed. If it is larger than 30 μm, it may clog the die during molding. The average particle diameter of the pore-forming material refers to the volume-based arithmetic mean diameter when the frequency distribution of particle size is measured by a laser diffraction method. When the pore-forming material is a water-absorbing resin, the average particle diameter of the pore-forming material refers to the average particle diameter after water absorption.

次に、得られた成形原料を混練して坏土を形成した後、坏土を押出成形してハニカム成形体を作製する。押出成形に際しては、所望の全体形状、セル形状、隔壁厚み、セル密度等を有する口金を用いることができる。次に、得られたハニカム成形体について、乾燥を行うことが好ましい。ハニカム成形体の中心軸方向長さが、所望の長さではない場合は、ハニカム成形体の両底部を切断して所望の長さとすることができる。乾燥後のハニカム成形体をハニカム乾燥体と呼ぶ。当該ハニカム成形体またはハニカム乾燥体が、柱状ハニカム構造部となる。 Next, the obtained forming raw materials are kneaded to form a clay, and then the clay is extruded to produce a honeycomb molded body. For extrusion molding, a die having a desired overall shape, cell shape, partition wall thickness, cell density, etc. can be used. Next, it is preferable to dry the obtained honeycomb molded body. If the length of the honeycomb molded body in the central axis direction is not the desired length, it can be made to the desired length by cutting both bottoms of the honeycomb molded body. The honeycomb formed body after drying is called a dried honeycomb body. The formed honeycomb body or dried honeycomb body becomes a columnar honeycomb structure.

また、上記柱状ハニカム構造部をもう一体作製することで、下流側に設置予定の柱状ハニカム構造体とする(工程B1)。なお、下流側に設置予定の柱状ハニカム構造体としては、上流側のハニカム構造部と同じ材質、大きさ、形状等に形成する必要はなく、適宜設計することができる。 Moreover, by producing another columnar honeycomb structure, a columnar honeycomb structure to be installed on the downstream side is obtained (step B1). Note that the columnar honeycomb structure to be installed on the downstream side does not need to be formed of the same material, size, shape, etc. as the honeycomb structure on the upstream side, and can be designed as appropriate.

次に、電極層を形成するための電極層形成ペーストを調合する。電極層形成ペーストは、電極層の要求特性に応じて配合した原料粉(金属粉末、及び、セラミックス粉末等)に各種添加剤を適宜添加して混練することで形成することができる。電極層を積層構造とする場合、第一の電極層用のペースト中の金属粉末の平均粒子径に比べて、第二の電極層用のペースト中の金属粉末の平均粒子径を大きくすることにより、金属端子と電極層の接合強度が向上する傾向にある。金属粉末の平均粒子径はレーザー回折法で粒度の頻度分布を測定したときの、体積基準による算術平均径を指す。 Next, an electrode layer forming paste for forming an electrode layer is prepared. The electrode layer forming paste can be formed by appropriately adding various additives to raw material powder (metal powder, ceramic powder, etc.) blended according to the required characteristics of the electrode layer, and kneading the mixture. When the electrode layer has a laminated structure, by increasing the average particle size of the metal powder in the paste for the second electrode layer compared to the average particle size of the metal powder in the paste for the first electrode layer. , the bonding strength between the metal terminal and the electrode layer tends to improve. The average particle diameter of the metal powder refers to the arithmetic mean diameter based on volume when the frequency distribution of particle size is measured by laser diffraction method.

次に、得られた電極層形成ペーストを、ハニカム成形体(典型的にはハニカム乾燥体)の側面に塗布し、電極層形成ペースト付き未焼成ハニカム構造部を得る。電極層形成ペーストを調合する方法、及び電極層形成ペーストをハニカム成形体に塗布する方法については、公知のハニカム構造体の製造方法に準じて行うことができるが、電極層をハニカム構造部に比べて低い電気抵抗率にするために、ハニカム構造部よりも金属の含有比率を高めたり、金属粒子の粒径を小さくしたりすることができる。 Next, the obtained electrode layer forming paste is applied to the side surface of a formed honeycomb body (typically a dried honeycomb body) to obtain an unfired honeycomb structure with electrode layer forming paste. The method of preparing the electrode layer forming paste and the method of applying the electrode layer forming paste to the honeycomb formed body can be carried out according to the known manufacturing method of honeycomb structure. In order to achieve low electrical resistivity, the content ratio of metal can be made higher than in the honeycomb structure, or the particle size of the metal particles can be made smaller.

柱状ハニカム構造部の製造方法の変更例として、工程A1において、電極層形成ペーストを塗布する前に、ハニカム成形体を一旦焼成してもよい。すなわち、この変更例では、ハニカム成形体を焼成してハニカム焼成体を作製し、当該ハニカム焼成体に、電極層形成ペーストを塗布する。 As a modification of the method for manufacturing the columnar honeycomb structure, the honeycomb formed body may be fired once in step A1 before applying the electrode layer forming paste. That is, in this modification, a honeycomb formed body is fired to produce a honeycomb fired body, and an electrode layer forming paste is applied to the honeycomb fired body.

工程A2では、電極層形成ペースト付き未焼成ハニカム構造部を焼成して、柱状ハニカム構造部を得る。焼成を行う前に、電極層形成ペースト付き未焼成ハニカム構造部を乾燥してもよい。また、焼成の前に、バインダ等を除去するため、脱脂を行ってもよい。焼成条件としては、窒素、アルゴン等の不活性雰囲気において、1400~1500℃で、1~20時間加熱することが好ましい。また、焼成後、耐久性向上のために、1200~1350℃で、1~10時間、酸化処理を行うことが好ましい。脱脂及び焼成の方法は特に限定されず、電気炉、ガス炉等を用いて焼成することができる。 In step A2, the unfired honeycomb structure with electrode layer forming paste is fired to obtain a columnar honeycomb structure. Before firing, the unfired honeycomb structure with electrode layer forming paste may be dried. Further, before firing, degreasing may be performed to remove binder and the like. As for the firing conditions, it is preferable to heat at 1400 to 1500° C. for 1 to 20 hours in an inert atmosphere such as nitrogen or argon. Further, after firing, in order to improve durability, it is preferable to perform oxidation treatment at 1200 to 1350°C for 1 to 10 hours. The method of degreasing and firing is not particularly limited, and firing can be performed using an electric furnace, a gas furnace, or the like.

工程A3では、金属材料等で構成された導電体を、柱状ハニカム構造部の外周面から一方の端面を超えて、さらに延伸部を形成するように固定して電気加熱式担体を得る。固定方法については特に限定されず、公知のレーザー溶接または超音波溶接、溶射等で行うことができる。 In step A3, an electric conductor made of a metal material or the like is fixed so as to extend beyond one end face from the outer peripheral surface of the columnar honeycomb structure to form an extended portion to obtain an electrically heated carrier. The fixing method is not particularly limited, and known laser welding, ultrasonic welding, thermal spraying, etc. can be used.

工程C1では、電気加熱式担体と柱状ハニカム構造体とを、貫通孔を有するハウジングに収容する。このとき、電気加熱式担体と柱状ハニカム構造体とがハウジング内で離間するように配置する。また、ハウジングの貫通孔を、電気加熱式担体と柱状ハニカム構造体との離間位置に対応する部位に配置する。このようにして、排気ガス浄化装置を作製することができる。 In step C1, the electrically heated carrier and the columnar honeycomb structure are housed in a housing having through holes. At this time, the electrically heated carrier and the columnar honeycomb structure are arranged so as to be separated from each other within the housing. Further, the through-hole of the housing is arranged at a position corresponding to a position where the electrically heated carrier and the columnar honeycomb structure are separated from each other. In this way, an exhaust gas purification device can be manufactured.

<実施形態2>
図4は、本発明の実施形態2における排気ガス浄化装置200の電気加熱式担体10のセル18の延伸方向に平行な断面模式図である。排気ガス浄化装置200は、実施形態1における排気ガス浄化装置100に対し、導電体24の構成が異なる以外は、同様の構成とすることができる。
<Embodiment 2>
FIG. 4 is a schematic cross-sectional view parallel to the extending direction of the cells 18 of the electrically heated carrier 10 of the exhaust gas purification device 200 in Embodiment 2 of the present invention. The exhaust gas purification device 200 can have the same configuration as the exhaust gas purification device 100 in Embodiment 1, except that the configuration of the conductor 24 is different.

排気ガス浄化装置200の導電体24は、電気加熱式担体10の外周面から、電気加熱式担体10と柱状ハニカム構造体21との離間位置まで延びる延伸部24aを有している。導電体24は、電気加熱式担体10の第2(下流側)の端面から、電気加熱式担体10の径方向外側へ向かって傾斜するように延びる傾斜部を有している。このように、導電体24の延伸部24aの少なくとも一部が、電気加熱式担体10の下流側の端面から、電気加熱式担体10の径方向外側へ向かって傾斜している。排気ガス浄化装置200の導電体24は、延伸部24aが当該傾斜部を構成していてもよい。このような構成によれば、実施形態1における排気ガス浄化装置100について上述したものと同様に、排気ガス浄化装置200の振動や熱膨張によっても、導電体24が変形して断線することを良好に抑制することができる。また、上流側で電気加熱式担体10の圧損が生じることが抑制されるため、電気加熱式担体10の外周部にススや水蒸気が堆積し、電気加熱式担体10と導電体24とが端部から短絡することを、良好に抑制することができる。さらに、導電体24が、電気加熱式担体10の下流側の端面から、電気加熱式担体10の径方向外側へ向かって傾斜するため、上流側の電気加熱式担体10の柱状ハニカム構造部11を通過したススや水蒸気を、電気接続端子22が直接受けることなく、下流側の柱状ハニカム構造体21の前方に堆積する。ここで、ススや水蒸気が下流側の柱状ハニカム構造体21の前方に堆積しても、電気加熱式担体10の端面にまで堆積する可能性は低い。従って、電気加熱式担体10と柱状ハニカム構造体21との絶縁性が向上する。 The conductor 24 of the exhaust gas purification device 200 has an extending portion 24a extending from the outer peripheral surface of the electrically heated carrier 10 to a position where the electrically heated carrier 10 and the columnar honeycomb structure 21 are separated. The conductor 24 has an inclined portion that extends from the second (downstream side) end surface of the electrically heated carrier 10 toward the outside in the radial direction of the electrically heated carrier 10 . In this way, at least a portion of the extending portion 24a of the conductor 24 is inclined from the downstream end surface of the electrically heated carrier 10 toward the outside in the radial direction of the electrically heated carrier 10. In the conductor 24 of the exhaust gas purification device 200, the extending portion 24a may constitute the inclined portion. According to such a configuration, as described above for the exhaust gas purification device 100 in Embodiment 1, deformation and disconnection of the conductor 24 due to vibration or thermal expansion of the exhaust gas purification device 200 can be effectively prevented. can be suppressed to Moreover, since the pressure loss of the electrically heated carrier 10 is suppressed from occurring on the upstream side, soot and water vapor are deposited on the outer circumference of the electrically heated carrier 10, and the end portions of the electrically heated carrier 10 and the conductor 24 are It is possible to effectively prevent short circuits from occurring. Further, since the conductor 24 is inclined radially outward of the electrically heated carrier 10 from the downstream end face of the electrically heated carrier 10, the columnar honeycomb structure portion 11 of the electrically heated carrier 10 on the upstream side is The passed soot and water vapor are deposited in front of the columnar honeycomb structure 21 on the downstream side without being directly received by the electrical connection terminals 22. Here, even if soot or water vapor is deposited in front of the columnar honeycomb structure 21 on the downstream side, there is a low possibility that it will be deposited on the end face of the electrically heated carrier 10. Therefore, the insulation between the electrically heated carrier 10 and the columnar honeycomb structure 21 is improved.

排気ガス浄化装置200の導電体24の材料は、実施形態1における排気ガス浄化装置100の導電体14と同様の材料を用いることができる。 As the material of the conductor 24 of the exhaust gas purification device 200, the same material as the conductor 14 of the exhaust gas purification device 100 in the first embodiment can be used.

図5に、排気ガス浄化装置200の電気加熱式担体20の導電体24の傾斜部分の拡大図を示す。傾斜部の傾斜角θ1は特に限定されないが、ススや水蒸気の堆積抑制という効果が得られるため、30度以上であるのが好ましい。また、振動による応力緩和という効果が得られるため、60度以下であるのが好ましい。傾斜部の傾斜角θ1は、30~60度であるのがより好ましい。 FIG. 5 shows an enlarged view of the inclined portion of the conductor 24 of the electrically heated carrier 20 of the exhaust gas purification device 200. Although the inclination angle θ1 of the inclination portion is not particularly limited, it is preferably 30 degrees or more since this is effective in suppressing the accumulation of soot and water vapor. Further, since the effect of stress relaxation due to vibration can be obtained, it is preferable that the angle is 60 degrees or less. More preferably, the inclination angle θ1 of the inclined portion is 30 to 60 degrees.

<実施形態3>
図6は、本発明の実施形態3における排気ガス浄化装置300の電気加熱式担体10のセル18の延伸方向に平行な断面模式図である。排気ガス浄化装置300は、実施形態1における排気ガス浄化装置100に対し、柱状ハニカム構造体31、導電体34、及び、ハウジング35の構成が異なる以外は、同様の構成とすることができる。
<Embodiment 3>
FIG. 6 is a schematic cross-sectional view parallel to the extending direction of the cells 18 of the electrically heated carrier 10 of the exhaust gas purification device 300 in Embodiment 3 of the present invention. The exhaust gas purification device 300 can have the same configuration as the exhaust gas purification device 100 in Embodiment 1, except that the configurations of the columnar honeycomb structure 31, the conductor 34, and the housing 35 are different.

柱状ハニカム構造体31の径は、電気加熱式担体10の径より大きく形成されている。特に限定されないが、柱状ハニカム構造体31の径は、電気加熱式担体10の径の1.1~2倍に形成することができる。排気ガス浄化装置300の柱状ハニカム構造体31は、電気加熱式担体10の径より大きく形成されている以外は、実施形態1における排気ガス浄化装置100の柱状ハニカム構造体21と同様の構成とすることができる。 The diameter of the columnar honeycomb structure 31 is larger than the diameter of the electrically heated carrier 10. Although not particularly limited, the diameter of the columnar honeycomb structure 31 can be formed to be 1.1 to 2 times the diameter of the electrically heated carrier 10. The columnar honeycomb structure 31 of the exhaust gas purification device 300 has the same configuration as the columnar honeycomb structure 21 of the exhaust gas purification device 100 in Embodiment 1, except that it is formed larger in diameter than the electrically heated carrier 10. be able to.

導電体34は、電気加熱式担体10の外周面から、電気加熱式担体10と柱状ハニカム構造体31との離間位置まで延びる延伸部34aを有している。導電体34は、電気加熱式担体10の第2(下流側)の端面から、電気加熱式担体10の径方向外側へ向かって傾斜するように延びる傾斜部34bを有している。本実施形態では、導電体34の延伸部34aの先端方向の一部が傾斜部34bを構成している。傾斜部34bの傾斜角は、特に限定されないが、延伸部34aの長さ、ハウジング35の貫通孔37の位置、及び、ハウジング35の拡径部位の傾斜角θ2によって適宜設計することができる。 The conductor 34 has an extending portion 34a extending from the outer circumferential surface of the electrically heated carrier 10 to a position where the electrically heated carrier 10 and the columnar honeycomb structure 31 are separated. The conductor 34 has an inclined portion 34 b that extends from the second (downstream side) end surface of the electrically heated carrier 10 toward the outside in the radial direction of the electrically heated carrier 10 . In this embodiment, a portion of the extending portion 34a of the conductor 34 in the distal direction constitutes the inclined portion 34b. The inclination angle of the inclination part 34b is not particularly limited, but can be appropriately designed depending on the length of the extension part 34a, the position of the through hole 37 of the housing 35, and the inclination angle θ2 of the enlarged diameter portion of the housing 35.

ハウジング35は、缶体状を有し、電気加熱式担体10及び柱状ハニカム構造体31の外周面を覆うように設けられている。ハウジング35は、電気加熱式担体10と柱状ハニカム構造体31との間に対応する部位が、排気ガスの流路の下流側に向かうにつれて拡径している。このような構成によれば、実施形態1における排気ガス浄化装置100について上述したものと同様に、排気ガス浄化装置300の振動や熱膨張によっても、導電体34が変形して断線することを良好に抑制することができる。また、上流側で電気加熱式担体10の圧損が生じることが抑制されるため、電気加熱式担体10の外周部にススや水蒸気が堆積し、電気加熱式担体10と導電体34とが端部から短絡することを、良好に抑制することができる。また、ハウジング35における、電気加熱式担体10と柱状ハニカム構造体31との間に対応する部位が、排気ガスの流路の下流側に向かうにつれて拡径しているため、上流側の電気加熱式担体10の柱状ハニカム構造部11を通過したススや水蒸気を、電気接続端子22が直接受けることなく、下流側の柱状ハニカム構造体31の前方に堆積する。ここで、ススや水蒸気が下流側の柱状ハニカム構造体31の前方に堆積しても、電気加熱式担体10の端面にまで堆積する可能性は低い。従って、電気加熱式担体10と柱状ハニカム構造体31との絶縁性が向上する。さらに、下流側の柱状ハニカム構造体31と、電気接続端子22との距離を長くすることができるため、柱状ハニカム構造体31と、電気接続端子22との絶縁性が高くなる。 The housing 35 has a can shape and is provided so as to cover the outer peripheral surfaces of the electrically heated carrier 10 and the columnar honeycomb structure 31. The diameter of the housing 35 increases toward the downstream side of the exhaust gas flow path at a portion corresponding to the electrically heated carrier 10 and the columnar honeycomb structure 31. According to such a configuration, as described above for the exhaust gas purification device 100 in Embodiment 1, deformation and disconnection of the conductor 34 due to vibration or thermal expansion of the exhaust gas purification device 300 can be effectively prevented. can be suppressed to Moreover, since the pressure loss of the electrically heated carrier 10 is suppressed from occurring on the upstream side, soot and water vapor are deposited on the outer periphery of the electrically heated carrier 10, and the end portion of the electrically heated carrier 10 and the conductor 34 are It is possible to effectively prevent short circuits from occurring. In addition, since the portion of the housing 35 corresponding to the electrically heated carrier 10 and the columnar honeycomb structure 31 increases in diameter toward the downstream side of the exhaust gas flow path, the electrically heated The soot and water vapor that have passed through the columnar honeycomb structure 11 of the carrier 10 are deposited in front of the columnar honeycomb structure 31 on the downstream side without being directly received by the electrical connection terminals 22. Here, even if soot or water vapor is deposited in front of the columnar honeycomb structure 31 on the downstream side, there is a low possibility that it will be deposited on the end face of the electrically heated carrier 10. Therefore, the insulation between the electrically heated carrier 10 and the columnar honeycomb structure 31 is improved. Furthermore, since the distance between the downstream columnar honeycomb structure 31 and the electrical connection terminal 22 can be increased, the insulation between the columnar honeycomb structure 31 and the electrical connection terminal 22 is increased.

排気ガス浄化装置300のハウジング35の材料は、実施形態1における排気ガス浄化装置100のハウジング15と同様の材料を用いることができる。 As the material of the housing 35 of the exhaust gas purification device 300, the same material as the housing 15 of the exhaust gas purification device 100 in the first embodiment can be used.

図7に、排気ガス浄化装置300のハウジング35の拡径部位の拡大図を示す。ハウジング35の拡径部位の傾斜角θ2は特に限定されないが、ススや水蒸気の堆積抑制という効果が得られるため、30度以上であるのが好ましい。また、振動による応力緩和という効果が得られるため、60度以下であるのが好ましい。ハウジング35の拡径部位の傾斜角θ2は、30~60度であるのがより好ましい。 FIG. 7 shows an enlarged view of the enlarged diameter portion of the housing 35 of the exhaust gas purification device 300. Although the inclination angle θ2 of the enlarged diameter portion of the housing 35 is not particularly limited, it is preferably 30 degrees or more, since this is effective in suppressing the accumulation of soot and water vapor. Further, since the effect of stress relaxation due to vibration can be obtained, it is preferable that the angle is 60 degrees or less. More preferably, the inclination angle θ2 of the enlarged diameter portion of the housing 35 is 30 to 60 degrees.

10 電気加熱式担体
11 柱状ハニカム構造部
21、31 柱状ハニカム構造体
12 外周壁
13a、13b 電極層
14、24、34 導電体
14a 延伸部
24a 延伸部(傾斜部)
34a 延伸部
34b 傾斜部
15、35 ハウジング
16 保持マット
17、37 貫通孔
18 セル
19 隔壁
22 電気接続端子
100、200、300 排気ガス浄化装置
10 Electrically heated carrier 11 Columnar honeycomb structures 21, 31 Columnar honeycomb structures 12 Outer peripheral walls 13a, 13b Electrode layers 14, 24, 34 Conductor 14a Extended portion 24a Extended portion (slanted portion)
34a Extension part 34b Slanted part 15, 35 Housing 16 Holding mat 17, 37 Through hole 18 Cell 19 Partition wall 22 Electrical connection terminal 100, 200, 300 Exhaust gas purification device

Claims (6)

内部に排気ガスの流路を有する排気ガス浄化装置であって、
前記排気ガスの流路の上流側に設けられている柱状の電気加熱式担体と、
前記排気ガスの流路の下流側において、前記電気加熱式担体と離間して設けられている柱状ハニカム構造体と、
前記電気加熱式担体及び前記柱状ハニカム構造体の外周面を覆うように設けられている缶体状のハウジングと、
前記電気加熱式担体の外周面に電気的に接続されている導電体と、
を備え、
前記ハウジングが、前記電気加熱式担体と前記柱状ハニカム構造体との離間位置に対応する部位に貫通孔を有し、
前記導電体が、前記電気加熱式担体の外周面から、前記電気加熱式担体と前記柱状ハニカム構造体との離間位置まで延びる延伸部を有し、且つ、
前記導電体の延伸部が、外部電源に接続するための電気接続端子を前記ハウジングの外側から前記貫通孔を介して前記電気加熱式担体の径方向に挿入した際に、前記電気接続端子と接続可能な位置に配置されており、
前記導電体の延伸部の少なくとも一部が、前記電気加熱式担体の下流側の端面から、前記電気加熱式担体の径方向外側へ向かって傾斜している排気ガス浄化装置。
An exhaust gas purification device having an exhaust gas flow path inside,
a columnar electrically heated carrier provided on the upstream side of the exhaust gas flow path;
a columnar honeycomb structure provided at a distance from the electrically heated carrier on the downstream side of the exhaust gas flow path;
a can-shaped housing provided to cover the outer peripheral surfaces of the electrically heated carrier and the columnar honeycomb structure;
a conductor electrically connected to the outer peripheral surface of the electrically heated carrier;
Equipped with
The housing has a through hole at a location corresponding to a position where the electrically heated carrier and the columnar honeycomb structure are separated,
The conductor has an extending portion extending from the outer circumferential surface of the electrically heated carrier to a position separated from the electrically heated carrier and the columnar honeycomb structure, and
The extending portion of the conductor connects with the electrical connection terminal when the electrical connection terminal for connection to an external power source is inserted from the outside of the housing through the through hole in the radial direction of the electrically heated carrier. It is placed in a possible position,
An exhaust gas purification device, wherein at least a portion of the extending portion of the conductor is inclined from a downstream end face of the electrically heating carrier toward the outside in a radial direction of the electrically heating carrier.
前記柱状ハニカム構造体の径が前記電気加熱式担体の径より大きく、
前記ハウジングの、前記電気加熱式担体と前記柱状ハニカム構造体との間に対応する部位が、前記排気ガスの流路の下流側に向かうにつれて拡径している請求項1に記載の排気ガス浄化装置。
The diameter of the columnar honeycomb structure is larger than the diameter of the electrically heated carrier,
The exhaust gas purification according to claim 1, wherein a portion of the housing that corresponds between the electrically heated carrier and the columnar honeycomb structure has a diameter that increases toward the downstream side of the exhaust gas flow path. Device.
前記排気ガス浄化装置が、外部電源に接続するための電気接続端子を有し、
前記電気接続端子が、前記ハウジングの外側から前記貫通孔を介して前記導電体の延伸部と接続されている請求項1または2に記載の排気ガス浄化装置。
The exhaust gas purification device has an electrical connection terminal for connecting to an external power source,
The exhaust gas purification device according to claim 1 or 2, wherein the electrical connection terminal is connected to the extending portion of the conductor from the outside of the housing via the through hole.
前記ハウジングと前記電気加熱式担体との間、及び、前記ハウジングと前記柱状ハニカム構造体との間に設けられ、前記電気加熱式担体及び前記柱状ハニカム構造体を保持する保持マットを更に備えた請求項1~3のいずれか一項に記載の排気ガス浄化装置。 A claim further comprising a holding mat provided between the housing and the electrically heated carrier and between the housing and the columnar honeycomb structure to hold the electrically heated carrier and the columnar honeycomb structure. The exhaust gas purification device according to any one of items 1 to 3. 前記電気加熱式担体が、
外周壁と、前記外周壁の内側に配設され、第1の端面から第2の端面まで貫通して流路を形成する複数のセルを区画形成する隔壁と、を有するセラミックス製の柱状ハニカム構造部と、
前記柱状ハニカム構造部の外周壁の表面に配設された電極層と、
を備え、
前記導電体が、前記電気加熱式担体の前記電極層に電気的に接続されている請求項1~4のいずれか一項に記載の排気ガス浄化装置。
The electrically heated carrier is
A ceramic columnar honeycomb structure having an outer peripheral wall and a partition wall disposed inside the outer peripheral wall and partitioning a plurality of cells penetrating from a first end face to a second end face to form a flow path. Department and
an electrode layer disposed on the surface of the outer peripheral wall of the columnar honeycomb structure;
Equipped with
The exhaust gas purification device according to any one of claims 1 to 4, wherein the conductor is electrically connected to the electrode layer of the electrically heated carrier.
前記電気加熱式担体の前記柱状ハニカム構造部の外周壁の表面に配設された電極層が、前記柱状ハニカム構造部の外周壁の表面に、前記柱状ハニカム構造部の中心軸を挟んで対向するように配設された一対の電極層である請求項5に記載の排気ガス浄化装置。 An electrode layer disposed on the surface of the outer peripheral wall of the columnar honeycomb structure of the electrically heated carrier faces the surface of the outer peripheral wall of the columnar honeycomb structure with the central axis of the columnar honeycomb structure interposed therebetween. The exhaust gas purification device according to claim 5, wherein the exhaust gas purification device is a pair of electrode layers arranged as shown in FIG.
JP2020054895A 2020-03-25 2020-03-25 Exhaust gas purification device and electrically heated carrier with conductor Active JP7453032B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020054895A JP7453032B2 (en) 2020-03-25 2020-03-25 Exhaust gas purification device and electrically heated carrier with conductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020054895A JP7453032B2 (en) 2020-03-25 2020-03-25 Exhaust gas purification device and electrically heated carrier with conductor

Publications (2)

Publication Number Publication Date
JP2021156185A JP2021156185A (en) 2021-10-07
JP7453032B2 true JP7453032B2 (en) 2024-03-19

Family

ID=77919068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020054895A Active JP7453032B2 (en) 2020-03-25 2020-03-25 Exhaust gas purification device and electrically heated carrier with conductor

Country Status (1)

Country Link
JP (1) JP7453032B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016133021A (en) 2015-01-16 2016-07-25 トヨタ自動車株式会社 Exhaust emission control device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08326526A (en) * 1995-05-30 1996-12-10 Nippon Steel Corp Electrically heated metallic catalyst carrier

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016133021A (en) 2015-01-16 2016-07-25 トヨタ自動車株式会社 Exhaust emission control device

Also Published As

Publication number Publication date
JP2021156185A (en) 2021-10-07

Similar Documents

Publication Publication Date Title
JP6716488B2 (en) Conductive honeycomb structure
JP7155054B2 (en) Electrically heated carrier and exhaust gas purification device
US11118493B2 (en) Electric heating type support and exhaust gas purifying device
US11994053B2 (en) Electrically heating converter and electrically heating support
CN111691952A (en) Electric heating carrier, exhaust gas purifying device, and method for manufacturing electric heating carrier
JP7430776B2 (en) Electrically heated converter and method for manufacturing the electrically heated converter
JP7335836B2 (en) Electrically heated carrier, exhaust gas purifier, and method for producing electrically heated carrier
JP7453032B2 (en) Exhaust gas purification device and electrically heated carrier with conductor
US20220287154A1 (en) Honeycomb structure, electrically heating support and exhaust gas purifying device
JP7225470B2 (en) Electrically heated carrier and exhaust gas purification device
CN112443377B (en) Electrically heated carrier, exhaust gas purification device, and method for manufacturing exhaust gas purification device
JP7445674B2 (en) Electrically heated carrier, exhaust gas purification device, and ceramic-metal bonded body
JP7259133B2 (en) Electrically heated carrier and exhaust gas purification device
JP7392109B2 (en) Electrically heated carrier and exhaust gas purification device
JP7445742B2 (en) Electrically heated converter and method for manufacturing the electrically heated converter
JP7523368B2 (en) Honeycomb structure, electrically heated carrier and exhaust gas purification device
JP2022135885A (en) Honeycomb structure, electrically heated carrier, and exhaust gas purification device
WO2021106261A1 (en) Electrical heating-type carrier, and exhaust gas purification device
US20230313721A1 (en) Honeycomb structure, electrically heated carrier, and exhaust gas purification device
JP2023128057A (en) Honeycomb structure, electric heating type catalyst carrier, and exhaust gas purifier
JP2022144219A (en) Honeycomb structure, electrically heated carrier and exhaust emission control device
JP2024140914A (en) Honeycomb structure, electrically heated carrier and exhaust gas purification device
JP2024075359A (en) Electric heating type catalyst converter
JP2023146996A (en) Honeycomb structure, electric heating type carrier, and exhaust gas cleaning apparatus
JP2024142080A (en) Honeycomb structure, electrically heated carrier and exhaust gas purification device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240307

R150 Certificate of patent or registration of utility model

Ref document number: 7453032

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350