JP7452810B2 - Method for producing donepezil by flow reaction using immobilized catalyst - Google Patents

Method for producing donepezil by flow reaction using immobilized catalyst Download PDF

Info

Publication number
JP7452810B2
JP7452810B2 JP2019112062A JP2019112062A JP7452810B2 JP 7452810 B2 JP7452810 B2 JP 7452810B2 JP 2019112062 A JP2019112062 A JP 2019112062A JP 2019112062 A JP2019112062 A JP 2019112062A JP 7452810 B2 JP7452810 B2 JP 7452810B2
Authority
JP
Japan
Prior art keywords
reaction
aldol condensation
reactor
group
donepezil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019112062A
Other languages
Japanese (ja)
Other versions
JP2020203851A (en
Inventor
修 小林
暖郎 石谷
ラロッシュ ベンジャミン
由樹 齋藤
拓哉 市川
久 赤松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Tokyo NUC
Towa Pharmaceutical Co Ltd
Original Assignee
University of Tokyo NUC
Towa Pharmaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Tokyo NUC, Towa Pharmaceutical Co Ltd filed Critical University of Tokyo NUC
Priority to JP2019112062A priority Critical patent/JP7452810B2/en
Publication of JP2020203851A publication Critical patent/JP2020203851A/en
Application granted granted Critical
Publication of JP7452810B2 publication Critical patent/JP7452810B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

特許法第30条第2項適用 平成31年3月1日 日本化学会第99春季年会(2019)講演予稿集DVD「Development of Atom-economical C-C and C-N Bond Forming Reactions for Flow Fine Synthesis」の講演論文にて公開した。 平成31年3月1日 日本化学会第99春季年会(2019)講演予稿集DVD「アルドール縮合・芳香環水素化によるドネペジルの連続フロー合成法の開発」の講演論文にて公開した。 平成31年3月16日 日本化学会第99春季年会(2019)講演番号1F4-25にて公開した。 平成31年3月16日 日本化学会第99春季年会(2019)講演番号1F4-27にて公開した。 平成31年3月26日 American Chemical Society Organic Process Research&Developmentのウェブサイト「https://pubs.acs.org/doi/10.1021/acs.oprd.9b00048」を通じて公開した。Application of Article 30, Paragraph 2 of the Patent Act March 1, 2019 Chemical Society of Japan 99th Spring Annual Meeting (2019) Lecture Proceedings DVD “Development of Atom-economical C-C and C-N Bond Forming Reactions for Flow Fin e Published as a lecture paper on ``Synthesis.'' March 1, 2019 Published as a lecture paper in the 99th Spring Annual Meeting of the Chemical Society of Japan (2019) Lecture Proceedings DVD ``Development of continuous flow synthesis method for donepezil by aldol condensation and aromatic ring hydrogenation''. Published on March 16, 2019 at the 99th Spring Annual Meeting of the Chemical Society of Japan (2019), lecture number 1F4-25. Published on March 16, 2019 at the 99th Spring Annual Meeting of the Chemical Society of Japan (2019), lecture number 1F4-27. March 26, 2019 American Chemical Society Organic Process Research & Development website “https://pubs.acs.org/doi/10.1021/acs.oprd.9b00 It was released through ``048''.

本発明は、アルドール縮合ステップと水素化ステップとを含み、アルドール縮合ステップおよび水素化ステップの少なくともいずれかを触媒を固定化した反応器を用いたフロー法により連続的に行う、ドネペジルの製造方法に関する。 The present invention relates to a method for producing donepezil, which comprises an aldol condensation step and a hydrogenation step, and in which at least one of the aldol condensation step and the hydrogenation step is performed continuously by a flow method using a reactor in which a catalyst is immobilized. .

ドネペジル塩酸塩はアセチルコリンエステラーゼ阻害剤であり、アルツハイマー型認知症の治療に用いられ、日本では「アリセプト」という製品名で販売されている。 Donepezil hydrochloride is an acetylcholinesterase inhibitor used to treat Alzheimer's disease, and is sold in Japan under the product name "Aricept."

ドネペジル塩酸塩は、化学名(2RS)-2-[(1-ベンジルピペリジン-4-イル)メチル]-5,6-ジメトキシ-2,3-ジヒドロ-1H-インデン-1H-オン塩酸塩で表され、構造式は下記式(I)で表される。 Donepezil hydrochloride is represented by the chemical name (2RS)-2-[(1-benzylpiperidin-4-yl)methyl]-5,6-dimethoxy-2,3-dihydro-1H-inden-1H-one hydrochloride. The structural formula is represented by the following formula (I).

Figure 0007452810000001
Figure 0007452810000001

以下に特許文献に記載の代表的なドネペジル塩酸塩の製造スキームを示す。 A typical production scheme of donepezil hydrochloride described in patent documents is shown below.

Figure 0007452810000002
Figure 0007452810000002

これまでに報告されている代表的なドネペジル塩酸塩の製造方法は、上記製造スキームに示すように、まず、式(III)で表される5,6-ジメトキシ-1-インダノンと、式(IV)で表される1-ベンジル-4-ホルミルピペリジンとのアルドール縮合反応にて、式(V)で表される1-ベンジル-4-[(5,6-ジメトキシ-1-インダノン)-2-イリデン]メチルピペリジンを得て、水素化反応を行うことで、式(II)で表されるドネペジルを得る。そしてドネペジルに塩酸を加えることで、式(I)で表されるドネペジル塩酸塩を得ることができる。 A typical method for producing donepezil hydrochloride that has been reported so far is as shown in the above production scheme. First, 5,6-dimethoxy-1-indanone represented by formula (III) and formula (IV ) 1-benzyl-4-[(5,6-dimethoxy-1-indanone)-2- Donepezil represented by formula (II) is obtained by obtaining [ylidene]methylpiperidine and performing a hydrogenation reaction. By adding hydrochloric acid to donepezil, donepezil hydrochloride represented by formula (I) can be obtained.

米国第4895841号明細書(特許文献1)、特許第5001151号公報(特許文献2)においては、5,6-ジメトキシ-1-インダノンと1-ベンジル-4-ホルミルピペリジンを用いるアルドール縮合反応を、リチウムジイソプロピルアミド(LDA)、ナトリウムメトキシド/メタノール溶液などの有機金属塩基を用いた均一系反応で行い、1-ベンジル-4-[(5,6-ジメトキシ-1-インダノン)-2-イリデン]メチルピペリジンを製造する方法が開示されている。また、Navanath Niphade et al., "An Improved and Efficient Process for the Production of Donepezil Hydrochloride: Substitution of Sodium Hydroxide for n-Butyl Lithium via Phase Transfer Catalysis", Org. Process Res. Dev., 2008, 12 (4), pp 731-735(非特許文献1)では、水と、トルエンまたはジクロロメタンとの混合溶媒系中で、テトラブチルアンモニウムブロマイド(TBAB)などの相間移動触媒(PTC)の存在下で、水酸化ナトリウムを用いてアルドール縮合反応を行うことが提案されている。また、これらの製造方法では、各反応終了後に中間体を単離し、次の工程を行っている。 In US Pat. No. 4,895,841 (Patent Document 1) and Patent No. 5,001,151 (Patent Document 2), an aldol condensation reaction using 5,6-dimethoxy-1-indanone and 1-benzyl-4-formylpiperidine, It is carried out in a homogeneous reaction using an organometallic base such as lithium diisopropylamide (LDA) and sodium methoxide/methanol solution to produce 1-benzyl-4-[(5,6-dimethoxy-1-indanone)-2-ylidene]. A method of making methylpiperidine is disclosed. Also, Navanath Niphade et al., "An Improved and Efficient Process for the Production of Donepezil Hydrochloride: Substitution of Sodium Hydroxide for n-Butyl Lithium via Phase Transfer Catalysis", Org. Process Res. Dev., 2008, 12 (4) , pp 731-735 (Non-Patent Document 1), sodium hydroxide was reacted in a mixed solvent system of water and toluene or dichloromethane in the presence of a phase transfer catalyst (PTC) such as tetrabutylammonium bromide (TBAB). It has been proposed to carry out the aldol condensation reaction using Furthermore, in these production methods, the intermediate is isolated after each reaction is completed, and the next step is performed.

国際公開第2007/108011号(特許文献3)、国際公開第2007/043440号(特許文献4)においては、触媒としてパラジウム、白金を用いて1-ベンジル-4-[(5,6-ジメトキシ-1-インダノン)-2-イリデン]メチルピペリジンを水素化反応を行うことでドネペジルを製造する方法が開示されている。 In International Publication No. 2007/108011 (Patent Document 3) and International Publication No. 2007/043440 (Patent Document 4), 1-benzyl-4-[(5,6-dimethoxy- A method for producing donepezil by hydrogenating 1-indanone)-2-ylidene]methylpiperidine is disclosed.

米国第4895841号明細書U.S. No. 4,895,841 特許第5001151号公報Patent No. 5001151 国際公開第2007/108011号International Publication No. 2007/108011 国際公開第2007/043440号International Publication No. 2007/043440

Navanath Niphade et al., "An Improved and Efficient Process for the Production of Donepezil Hydrochloride: Substitution of Sodium Hydroxide for n-Butyl Lithium via Phase Transfer Catalysis", Org. Process Res. Dev., 2008, 12 (4), pp 731-735Navanath Niphade et al., "An Improved and Efficient Process for the Production of Donepezil Hydrochloride: Substitution of Sodium Hydroxide for n-Butyl Lithium via Phase Transfer Catalysis", Org. Process Res. Dev., 2008, 12 (4), pp 731-735

これまでドネペジルは、アルドール縮合反応および水素化反応を行い、製造していたが、アルドール縮合反応では塩基の中和や分液、晶析や結晶の取り出しなどの煩雑な操作が必要であり、また、水素化反応はパラジウムや白金などの金属触媒を用いるため、分離操作が必要である。また、水素化反応が一般に加圧条件で行っているため、反応の制御が難しく、過反応生成物である脱ベンジル体が生成する問題がある。 Up until now, donepezil has been manufactured by performing an aldol condensation reaction and a hydrogenation reaction, but the aldol condensation reaction requires complicated operations such as neutralization of bases, liquid separation, crystallization, and extraction of crystals. Since the hydrogenation reaction uses a metal catalyst such as palladium or platinum, a separation operation is required. Furthermore, since the hydrogenation reaction is generally carried out under pressurized conditions, it is difficult to control the reaction, and there is a problem in that debenzylated products, which are overreaction products, are produced.

これまで開示されているドネペジルの製造はバッチ法で実施されており、バッチサイズが生産量に影響するため、生産量の調整が難しい。また、バッチ法では製造規模が大きくなるほど温度調節が困難になるという問題がある。 The production of donepezil disclosed so far has been carried out by a batch method, and since the batch size affects the production amount, it is difficult to adjust the production amount. In addition, the batch method has a problem in that the larger the production scale, the more difficult it becomes to control the temperature.

従って、より簡便で、容易に反応が制御でき、かつ、容易に生産量が調整できるドネペジルの製造方法が求められているのが現状である。 Therefore, there is currently a need for a method for producing donepezil that is simpler, allows the reaction to be easily controlled, and allows the production amount to be easily adjusted.

本発明はこれらの課題を解決するものであり、精密に反応時間および温度を制御しながら必要なときに必要な量を製造することができ、反応後の中和、分離操作、中間体の単離、精製工程を省略できるため、労働力、作業時間を大幅に削減することができる、ドネペジルの製造方法を提供することを目的とする。 The present invention solves these problems, and allows production in the required amount at the required time while precisely controlling the reaction time and temperature. The purpose of the present invention is to provide a method for producing donepezil that can significantly reduce labor and working time because separation and purification steps can be omitted.

本発明者はこの課題解決のため鋭意研究を重ねた結果、下記式(II) As a result of intensive research to solve this problem, the present inventor has found that the following formula (II)

Figure 0007452810000003
Figure 0007452810000003

で表されるドネペジルの製造方法であって、下記式(III) A method for producing donepezil represented by the following formula (III)

Figure 0007452810000004
Figure 0007452810000004

で表される5,6-ジメトキシ-1-インダノンと、下記式(IV) 5,6-dimethoxy-1-indanone represented by and the following formula (IV)

Figure 0007452810000005
Figure 0007452810000005

で表される1-ベンジル-4-ホルミルピペリジンとをアルドール縮合反応させて下記式(V) The following formula (V) is obtained by carrying out an aldol condensation reaction with 1-benzyl-4-formylpiperidine represented by

Figure 0007452810000006
Figure 0007452810000006

で表される1-ベンジル-4-[(5,6-ジメトキシ-1-インダノン)-2-イリデン]メチルピペリジンを得るアルドール縮合ステップと、1-ベンジル-4-[(5,6-ジメトキシ-1-インダノン)-2-イリデン]メチルピペリジンを水素化反応させて上記式(II)で表されるドネペジルを得る水素化ステップとを含み、前記アルドール縮合ステップおよび前記水素化ステップの少なくともいずれかを、触媒を固定化した反応器を用いたフロー法によって連続的に行う、ドネペジルの製造方法を見出した。 an aldol condensation step to obtain 1-benzyl-4-[(5,6-dimethoxy-1-indanone)-2-ylidene]methylpiperidine, and 1-benzyl-4-[(5,6-dimethoxy- a hydrogenation step of hydrogenating 1-indanone)-2-ylidene]methylpiperidine to obtain donepezil represented by the above formula (II), and at least one of the aldol condensation step and the hydrogenation step. discovered a method for producing donepezil continuously using a flow method using a reactor with an immobilized catalyst.

本発明のドネペジルの製造方法において、前記アルドール縮合ステップに用いる触媒は、塩基性樹脂であることが好ましく、この塩基性樹脂は架橋剤で架橋された樹脂であることがより好ましい。さらに、前記アルドール縮合ステップに用いる触媒は、第三級アミノ基または第四級アンモニウム基が導入された樹脂であることが好ましく、ジアルキルアミノ基、トリアルキルアンモニウム基またはジアルキルアルコールアンモニウム基が導入された樹脂であることがより好ましく、ジメチルアミノ基、トリメチルアンモニウム基またはジメチルエタノールアンモニウム基が導入された樹脂であることがさらに好ましく、ジメチルアミノ基、トリメチルアンモニウム基またはジメチルエタノールアンモニウム基が導入され、ジビニルベンゼンで架橋されたポリスチレン樹脂またはポリアクリル酸エステル樹脂であることがよりさらに好ましく、ジメチルアミノ基、トリメチルアンモニウム基またはジメチルエタノールアンモニウム基が導入され、ジビニルベンゼンで架橋されたポリスチレン樹脂であることが特に好ましい。 In the method for producing donepezil of the present invention, the catalyst used in the aldol condensation step is preferably a basic resin, and the basic resin is more preferably a resin crosslinked with a crosslinking agent. Furthermore, the catalyst used in the aldol condensation step is preferably a resin into which a tertiary amino group or a quaternary ammonium group is introduced, and a dialkylamino group, a trialkylammonium group, or a dialkyl alcohol ammonium group is introduced. It is more preferably a resin, and even more preferably a resin into which a dimethylamino group, a trimethylammonium group, or a dimethylethanolammonium group has been introduced, and a resin into which a dimethylamino group, a trimethylammonium group, or a dimethylethanolammonium group has been introduced, and divinylbenzene. A polystyrene resin or a polyacrylic acid ester resin crosslinked with divinylbenzene is even more preferred, and a polystyrene resin crosslinked with divinylbenzene is particularly preferred. .

本発明のドネペジルの製造方法において、前記水素化ステップに用いる触媒は、パラジウム系触媒、白金系触媒およびニッケル系触媒からなる群から選ばれる少なくともいずれかであることが好ましく、ジメチルポリシリル-パラジウムアルミナ、ジメチルポリシリル-パラジウムシリカゲル、白金炭素、白金アルミナおよびジメチルポリシリル-白金炭素から選ばれる少なくともいずれかであることがより好ましい。 In the method for producing donepezil of the present invention, the catalyst used in the hydrogenation step is preferably at least one selected from the group consisting of palladium-based catalysts, platinum-based catalysts, and nickel-based catalysts, and dimethylpolysilyl-palladium alumina , dimethylpolysilyl-palladium silica gel, platinum carbon, platinum alumina, and dimethylpolysilyl-platinum carbon.

本発明のドネペジルの製造方法において、前記アルドール縮合反応を行うための第1反応器と、前記水素化反応を行うための第2反応器とを連結し、前記第1反応器において前記アルドール縮合ステップをフロー法によって連続的に行って得られた1-ベンジル-4-[(5,6-ジメトキシ-1-インダノン)-2-イリデン]メチルピペリジンを前記第2反応器に供し、前記第2反応器において前記水素化ステップをフロー法によって連続的に行うことが、好ましい。 In the method for producing donepezil of the present invention, a first reactor for performing the aldol condensation reaction and a second reactor for performing the hydrogenation reaction are connected, and the aldol condensation step is performed in the first reactor. 1-benzyl-4-[(5,6-dimethoxy-1-indanone)-2-ylidene]methylpiperidine obtained by continuously carrying out the above by a flow method is provided to the second reactor, and the second reaction Preferably, the hydrogenation step is carried out continuously in the reactor by a flow method.

本発明によれば、精密に反応時間および温度を制御しながら必要なときに必要な量を製造することができ、反応後の中和、分離操作、中間体の単離、精製工程を省略できるため、労働力、作業時間を大幅に削減することができる、ドネペジルの製造方法を提供することができる。 According to the present invention, the required amount can be produced when required while precisely controlling the reaction time and temperature, and post-reaction neutralization, separation operations, isolation of intermediates, and purification steps can be omitted. Therefore, it is possible to provide a method for producing donepezil that can significantly reduce labor force and working time.

図1は、本発明のドネペジルの製造方法の一例を利用して、ドネペジル塩酸塩を製造する場合を示すフローチャートである。FIG. 1 is a flowchart showing the case of producing donepezil hydrochloride using an example of the method for producing donepezil of the present invention. 図2は、従来のバッチ法でドネペジル塩酸塩を製造する場合を示すフローチャートであり、図2(a)は特許第5001151号公報(特許文献2)の実施例1に従ってドネペジル中間体を得るまでを示し、図2(b)は国際公開第2007/043440号(特許文献4)の実施例1に従ってドネペジル中間体を用いてドネペジル塩酸塩を得るまでを示している。FIG. 2 is a flowchart showing the case of producing donepezil hydrochloride by a conventional batch method, and FIG. 2(a) shows the process up to obtaining donepezil intermediate according to Example 1 of Patent No. 5001151 (Patent Document 2). and FIG. 2(b) shows the process up to obtaining donepezil hydrochloride using a donepezil intermediate according to Example 1 of International Publication No. 2007/043440 (Patent Document 4).

以下、本発明に係る実施形態について説明するが、本発明は、これらに限定されるものではない。 Hereinafter, embodiments according to the present invention will be described, but the present invention is not limited thereto.

本発明は、下記反応スキームで示すように、下記式(II)で表されるドネペジルの製造方法であって、下記式(III)で表される5,6-ジメトキシ-1-インダノンと、下記式(IV)で表される1-ベンジル-4-ホルミルピペリジンとをアルドール縮合反応させて下記式(V)で表される1-ベンジル-4-[(5,6-ジメトキシ-1-インダノン)-2-イリデン]メチルピペリジンを得るアルドール縮合ステップ(下記反応スキーム中、ステップA)と、1-ベンジル-4-[(5,6-ジメトキシ-1-インダノン)-2-イリデン]メチルピペリジンを水素化反応させて上記式(II)で表されるドネペジルを得る水素化ステップ(下記反応スキーム中、ステップB)とを含み、前記アルドール縮合ステップおよび前記水素化ステップの少なくともいずれか(すなわち、下記反応スキーム中、ステップAのみ、ステップBのみ、または、ステップA、Bの両方)を、触媒を固定化した反応器を用いたフロー法によって(固定化触媒を用いたフロー反応によって)連続的に行うドネペジルの製造方法である。ここで、「フロー法」とは、反応器に連続的に物質が流入し、反応器から連続的に生成物が流出する方法を指す。また、「触媒を固定化」とは、触媒それ自体は液相に溶解せず、固相表面で反応を触媒するように、固体の触媒を反応器の内部空間に担持(好ましくは充填)させることを指す。本発明において、目的物は塩基であるドネペジルであり、通常、これに塩酸を加えることで、日本では「アリセプト」という製品名で販売されているドネペジル塩酸塩を製造することができる。 As shown in the reaction scheme below, the present invention provides a method for producing donepezil represented by the following formula (II), comprising: 5,6-dimethoxy-1-indanone represented by the following formula (III); 1-Benzyl-4-[(5,6-dimethoxy-1-indanone) represented by the following formula (V) is obtained by subjecting 1-benzyl-4-formylpiperidine represented by the formula (IV) to an aldol condensation reaction. -2-ylidene]methylpiperidine (step A in the reaction scheme below) and 1-benzyl-4-[(5,6-dimethoxy-1-indanone)-2-ylidene]methylpiperidine with hydrogen. a hydrogenation step (step B in the reaction scheme below) to obtain donepezil represented by the above formula (II) through a reaction, and at least one of the aldol condensation step and the hydrogenation step (i.e., the following reaction In the scheme, only step A, only step B, or both steps A and B) are performed continuously by a flow method using a reactor with an immobilized catalyst (by flow reaction using an immobilized catalyst). This is a method for producing donepezil. Here, the "flow method" refers to a method in which a substance continuously flows into a reactor and a product continuously flows out from the reactor. Furthermore, "immobilizing the catalyst" means that the catalyst itself is not dissolved in the liquid phase, but a solid catalyst is supported (preferably packed) in the internal space of the reactor so that the reaction is catalyzed on the surface of the solid phase. refers to something. In the present invention, the target product is donepezil, which is a base, and by adding hydrochloric acid to it, donepezil hydrochloride, which is sold in Japan under the product name "Aricept", can be produced.

Figure 0007452810000007
Figure 0007452810000007

ここで、図1は、本発明のドネペジルの製造方法の一例を利用して、ドネペジル塩酸塩を製造する場合を示すフローチャートである。図1は、後述する実施例1であり、ステップAおよびステップBの両方をフロー法によって連続的に行う場合を例として挙げている。図1に示す例において、フロー反応開始のステップから反応液収集のステップまでが本発明のドネペジルの製造方法に相当し、これら2つのステップを経てドネペジルが製造される。図1に示す例では、得られたドネペジルを用いて最終的にドネペジル塩酸塩を製造している。 Here, FIG. 1 is a flowchart showing a case where donepezil hydrochloride is manufactured using an example of the donepezil manufacturing method of the present invention. FIG. 1 shows Example 1, which will be described later, and exemplifies a case where both step A and step B are performed continuously by a flow method. In the example shown in FIG. 1, the step of starting the flow reaction to the step of collecting the reaction liquid corresponds to the method for producing donepezil of the present invention, and donepezil is produced through these two steps. In the example shown in FIG. 1, donepezil hydrochloride is finally produced using the obtained donepezil.

これに対し、図2は、従来のバッチ法でドネペジル塩酸塩を製造する場合を示すフローチャートであり、図2(a)は特許第5001151号公報(特許文献2)の実施例1に従ってドネペジル中間体(式(V)で表される1-ベンジル-4-[(5,6-ジメトキシ-1-インダノン)-2-イリデン]メチルピペリジン)を得るまでを示す。図2(a)に示すように、バッチ法では、アルドール縮合反応により1-ベンジル-4-[(5,6-ジメトキシ-1-インダノン)-2-イリデン]メチルピペリジンを得るために、(1)仕込み、(2)攪拌、(3)昇温、(4)滴下、(5)反応、(6)冷却、(7)濾取、(8)水での結晶洗浄、(9)メタノールでの結晶洗浄、(10)乾燥、のステップを経る必要がある。 On the other hand, FIG. 2 is a flowchart showing the case of producing donepezil hydrochloride by a conventional batch method, and FIG. The process up to obtaining (1-benzyl-4-[(5,6-dimethoxy-1-indanone)-2-ylidene]methylpiperidine represented by formula (V)) is shown. As shown in Figure 2(a), in the batch method, (1 ) Preparation, (2) Stirring, (3) Elevating temperature, (4) Dripping, (5) Reaction, (6) Cooling, (7) Collection by filtration, (8) Washing of crystals with water, (9) Washing with methanol. It is necessary to go through the steps of crystal washing and (10) drying.

図2(b)は国際公開第2007/043440号(特許文献4)の実施例1に従ってドネペジル中間体(1-ベンジル-4-[(5,6-ジメトキシ-1-インダノン)-2-イリデン]メチルピペリジン)を用いてドネペジル塩酸塩を得るまでを示している。図2(b)に示すように、バッチ法では、1-ベンジル-4-[(5,6-ジメトキシ-1-インダノン)-2-イリデン]メチルピペリジンから水素化反応によってドネペジルを得るために、(11)仕込み、(12)水素置換、(13)反応、(14)濾過、のステップを経る必要がある。 FIG. 2(b) shows donepezil intermediate (1-benzyl-4-[(5,6-dimethoxy-1-indanone)-2-ylidene] according to Example 1 of WO 2007/043440 (Patent Document 4)). methylpiperidine) to obtain donepezil hydrochloride. As shown in Figure 2(b), in the batch method, donepezil is obtained from 1-benzyl-4-[(5,6-dimethoxy-1-indanone)-2-ylidene]methylpiperidine by hydrogenation reaction. It is necessary to go through the steps of (11) charging, (12) hydrogen substitution, (13) reaction, and (14) filtration.

図1および図2を対比すると明らかなように、本発明のドネペジルの製造方法によれば、バッチ法では必要となる反応後の中和、分離操作、中間体の単離、精製工程を省略でき、バッチ法と比較して格段に少ない工程数でドネペジルを製造することができ、労働力、作業時間を大幅に削減することができる。さらに、本発明のドネペジルの製造方法によれば、精密に反応時間および温度を制御しながら必要なときに必要な量を製造することができるという利点もある。 As is clear from comparing Figures 1 and 2, according to the method for producing donepezil of the present invention, post-reaction neutralization, separation operations, intermediate isolation, and purification steps that are required in the batch method can be omitted. Compared to the batch method, donepezil can be produced with a significantly fewer number of steps, and the labor force and working time can be significantly reduced. Furthermore, the method for producing donepezil of the present invention has the advantage that it can be produced in the required amount at the required time while precisely controlling the reaction time and temperature.

〔1〕アルドール縮合ステップ(ステップA)
本発明のドネペジルの製造方法において、触媒を固定化した反応器を用いたフロー法によってアルドール縮合ステップ(ステップA)を連続的に行う場合、原料溶液としては5,6-ジメトキシ-1-インダノンと1-ベンジル-4-ホルミルピペリジンを溶媒に完全に溶解させたものを使用し、一定流量での送液が好ましいが、送液ポンプを用いて送液することがより好ましい。
[1] Aldol condensation step (Step A)
In the method for producing donepezil of the present invention, when the aldol condensation step (Step A) is performed continuously by a flow method using a reactor in which a catalyst is immobilized, 5,6-dimethoxy-1-indanone and 5,6-dimethoxy-1-indanone are used as the raw material solution. It is preferable to use 1-benzyl-4-formylpiperidine completely dissolved in a solvent and to send the liquid at a constant flow rate, but it is more preferable to use a liquid sending pump to send the liquid.

原料溶液の濃度は、原料が溶解する濃度以下であれば良いが、1-ベンジル-4-[(5,6-ジメトキシ-1-インダノン)-2-イリデン]メチルピペリジンが系内で析出する可能性があるため、好ましくは0.5M以下であり、より好ましくは0.01~0.2Mであり、特に好ましくは0.1Mである。 The concentration of the raw material solution should be below the concentration at which the raw material dissolves, but 1-benzyl-4-[(5,6-dimethoxy-1-indanone)-2-ylidene]methylpiperidine may precipitate in the system. Because of its properties, it is preferably 0.5M or less, more preferably 0.01 to 0.2M, and particularly preferably 0.1M.

5,6-ジメトキシ-1-インダノンに対する1-ベンジル-4-ホルミルピペリジンの当量は0.8~2当量の範囲内であることが好ましく、1.0~1.2当量の範囲内であることがより好ましく、1.05~1.1当量の範囲内であることが特に好ましい。5,6-ジメトキシ-1-インダノンに対する1-ベンジル-4-ホルミルピペリジンの当量が0.8当量未満である場合には、未反応の5,6-ジメトキシ-1-インダノンが残留する、不純物が増加するなどの虞があり、また、5,6-ジメトキシ-1-インダノンに対する1-ベンジル-4-ホルミルピペリジンの当量が2当量を超える場合には、未反応の1-ベンジル-4-ホルミルピペリジンが残留する、不純物が増加するなどの虞がある。 The equivalent of 1-benzyl-4-formylpiperidine relative to 5,6-dimethoxy-1-indanone is preferably within the range of 0.8 to 2 equivalents, and preferably within the range of 1.0 to 1.2 equivalents. is more preferable, and particularly preferably within the range of 1.05 to 1.1 equivalents. If the equivalent of 1-benzyl-4-formylpiperidine to 5,6-dimethoxy-1-indanone is less than 0.8 equivalent, unreacted 5,6-dimethoxy-1-indanone remains and impurities occur. In addition, if the equivalent of 1-benzyl-4-formylpiperidine to 5,6-dimethoxy-1-indanone exceeds 2 equivalents, unreacted 1-benzyl-4-formylpiperidine There is a risk that impurities may increase.

原料溶液に用いられる溶媒としては、一般的な有機合成反応に使用する有機溶媒であればよく、特に制限されるものではないが、1-ベンジル-4-[(5,6-ジメトキシ-1-インダノン)-2-イリデン]メチルピペリジンはトルエン、テトラヒドロフランへの溶解性が高い、また、後述するようにアルドール縮合ステップにおいて触媒として塩基性樹脂を用いる場合には、塩基性樹脂がアルコール系溶媒により膨潤し活性化されるという理由からは、トルエン、テトラヒドロフラン、アルコール系溶媒を単独または混合溶媒として使用することが好ましい。また、後述するようにアルドール縮合ステップにおいて触媒として塩基性樹脂を用いる場合には、樹脂の膨潤の度合いを制御でき、水の効果により、樹脂触媒の活性および寿命が向上するという利点があることから、溶媒は水を含んでいてもよい。溶媒が水を含む場合、その量は0.1~20%(v/v)であることが好ましく、1~10%(v/v)であることがより好ましく、2~5%(v/v)であることがさらに好ましく、2%(v/v)であることが特に好ましい。 The solvent used for the raw material solution is not particularly limited, as long as it is an organic solvent used in general organic synthesis reactions, but examples include 1-benzyl-4-[(5,6-dimethoxy-1- Indanone)-2-ylidene]methylpiperidine has high solubility in toluene and tetrahydrofuran, and as described below, when a basic resin is used as a catalyst in the aldol condensation step, the basic resin swells with the alcohol solvent. It is preferable to use toluene, tetrahydrofuran, and alcoholic solvents alone or as a mixed solvent because they are activated. Furthermore, as will be described later, when a basic resin is used as a catalyst in the aldol condensation step, the degree of swelling of the resin can be controlled, and the effect of water improves the activity and life of the resin catalyst. , the solvent may contain water. When the solvent contains water, the amount is preferably 0.1 to 20% (v/v), more preferably 1 to 10% (v/v), and more preferably 2 to 5% (v/v). v), particularly preferably 2% (v/v).

触媒を固定化した反応器を用いたフロー法によってアルドール縮合ステップ(ステップA)を連続的に行う場合、原料溶液の送液量としては、アルドール縮合反応に用いる触媒の量、反応器の容積などに応じ、任意の量を送液するようにすればよく、特に制限されるものではない。 When the aldol condensation step (Step A) is performed continuously by a flow method using a reactor in which a catalyst is immobilized, the amount of raw material solution to be fed depends on the amount of catalyst used for the aldol condensation reaction, the volume of the reactor, etc. Depending on the situation, an arbitrary amount of liquid may be sent, and there is no particular restriction.

アルドール縮合反応を行うために用いられる反応器としては、フロー法によって連続的に反応を行い得るように、反応器の内部空間と外部空間とを連通する流入口および流出口を有するものであればその形状は特に制限されないが、筒状の反応器を用いることが好ましく、後述する実施例で例示するような市販のカラムを好適に用いることができる。反応器の材質は、使用する溶媒に対し耐性を有するものであれば特に制限されないが、ステンレスまたはガラスが好ましい。 The reactor used to carry out the aldol condensation reaction must have an inlet and an outlet that communicate the inner space and the outer space of the reactor so that the reaction can be carried out continuously by the flow method. Although its shape is not particularly limited, it is preferable to use a cylindrical reactor, and commercially available columns such as those exemplified in the Examples described later can be suitably used. The material of the reactor is not particularly limited as long as it has resistance to the solvent used, but stainless steel or glass is preferred.

触媒を固定化した反応器を用いたフロー法によってアルドール縮合ステップ(ステップA)を連続的に行う場合、反応器は、流入口、流出口をいずれの方向に設置して送液してもよい。反応器の流入口および流出口には、送液のためのチューブ(送液チューブ)が取り付けられ、その送液チューブの材質も、使用する溶媒に対し耐性を有するものであれば特に制限されないが、ポリテトラフルオロエチレン(PTFE)またはステンレスが好ましい。 When the aldol condensation step (Step A) is performed continuously by a flow method using a reactor in which a catalyst is immobilized, the reactor may have an inlet and an outlet in either direction to feed the liquid. . A tube for feeding the liquid (liquid feeding tube) is attached to the inlet and outlet of the reactor, and the material of the liquid feeding tube is not particularly limited as long as it is resistant to the solvent used. , polytetrafluoroethylene (PTFE) or stainless steel are preferred.

アルドール縮合反応の反応温度は、反応器および送液チューブを加熱または冷却することで制御でき、この目的のために水浴、油浴、氷浴、恒温槽、カラムオーブンなどを用いることができる。触媒を固定化した反応器を用いたフロー法によってアルドール縮合ステップ(ステップA)を連続的に行う場合、反応温度は0℃から溶媒の沸点以下であればよいが、20~80℃の範囲内であることが好ましい。 The reaction temperature of the aldol condensation reaction can be controlled by heating or cooling the reactor and liquid delivery tube, and for this purpose, a water bath, oil bath, ice bath, constant temperature bath, column oven, etc. can be used. When the aldol condensation step (Step A) is carried out continuously by a flow method using a reactor in which a catalyst is immobilized, the reaction temperature may be from 0°C to below the boiling point of the solvent, but within the range of 20 to 80°C. It is preferable that

触媒を固定化した反応器を用いたフロー法によってアルドール縮合ステップ(ステップA)を連続的に行う場合、アルドール縮合反応の触媒としては、塩基性樹脂を用いることが好ましい。本発明のように触媒を固定化した反応器を用いたフロー法によって連続的にアルドール縮合反応を行う場合には、従来のバッチ法でのアルドール縮合反応の触媒としては通常用いられない塩基性樹脂を触媒として用いることが好ましい。 When the aldol condensation step (step A) is performed continuously by a flow method using a reactor in which a catalyst is immobilized, it is preferable to use a basic resin as the catalyst for the aldol condensation reaction. When performing an aldol condensation reaction continuously by a flow method using a reactor with an immobilized catalyst as in the present invention, a basic resin that is not normally used as a catalyst for an aldol condensation reaction in a conventional batch method is used. It is preferable to use as a catalyst.

触媒を固定化した反応器を用いたフロー法によってアルドール縮合ステップ(ステップA)を連続的に行う場合に触媒として用いられる塩基性樹脂は、強塩基性、弱塩基性のいずれであってもよいが、弱塩基性と比較して、強塩基性の方が反応性が高かったことから、強塩基性であることが好ましい。また、この塩基性樹脂は、架橋剤で架橋された樹脂であることが好ましい。 The basic resin used as a catalyst when performing the aldol condensation step (Step A) continuously by a flow method using a reactor with an immobilized catalyst may be either strongly basic or weakly basic. However, since strong basicity had higher reactivity than weak basicity, strong basicity is preferable. Moreover, it is preferable that this basic resin is a resin crosslinked with a crosslinking agent.

また塩基性樹脂は、市販されているという理由から、第三級アミノ基または第四級アンモニウム基が導入された樹脂であることが好ましい。ここで、第三級アミノ基は、 Moreover, the basic resin is preferably a resin into which a tertiary amino group or a quaternary ammonium group is introduced because it is commercially available. Here, the tertiary amino group is

Figure 0007452810000008
Figure 0007452810000008

(上記式中、R、Rは、水素以外のどのような置換基であってもよい。)
という状態の基を指し、また、第四級アンモニウム基は、
(In the above formula, R 1 and R 2 may be any substituent other than hydrogen.)
A quaternary ammonium group refers to a group in the state of

Figure 0007452810000009
Figure 0007452810000009

(上記式中、R、R、Rは、水素以外のどのような置換基であってもよい。)
という状態の基を指すものとする。中でも、ジアルキルアミノ基、トリアルキルアンモニウム基またはジアルキルアルコールアンモニウム基が導入された樹脂であることがより好ましく、ジメチルアミノ基、トリメチルアンモニウム基またはジメチルエタノールアンモニウム基が導入された樹脂であることがさらに好ましい。また、対アニオンとして水酸化物イオンを持つ第四級アンモニウム基が導入された樹脂は強塩基性の樹脂となり、第三級アミノ基が導入された樹脂は弱塩基性の樹脂となるが、上述のように弱塩基性と比較して強塩基性の方が反応性が高かったことから、第三級アミノ基よりも第四級アンモニウム基の方が好ましい。
(In the above formula, R A , R B , and R C may be any substituent other than hydrogen.)
It refers to the basis of the state. Among these, a resin into which a dialkylamino group, a trialkylammonium group, or a dialkyl alcohol ammonium group is introduced is more preferable, and a resin into which a dimethylamino group, a trimethylammonium group, or a dimethylethanolammonium group is introduced is even more preferable. . Furthermore, resins introduced with quaternary ammonium groups having hydroxide ions as counteranions become strongly basic resins, and resins into which tertiary amino groups are introduced become weakly basic resins. Since strong basicity had higher reactivity than weak basicity, quaternary ammonium groups are preferable to tertiary amino groups.

また、塩基性樹脂は、製造・入手の容易性、適した粒径・形状、本反応条件に耐え得る強度を有するなどの理由からは、ジメチルアミノ基、トリメチルアンモニウム基またはジメチルエタノールアンモニウム基が導入され、ジビニルベンゼンで架橋されたポリスチレン樹脂、または、ポリアクリル酸エステル樹脂であることが好ましく、ポリアクリル酸エステル樹脂に比べ、ポリスチレン樹脂の方が反応性が高かったという理由からは、ジメチルアミノ基、トリメチルアンモニウム基またはジメチルエタノールアンモニウム基が導入され、ジビニルベンゼンで架橋されたポリスチレン樹脂であることがより好ましい。 In addition, basic resins have dimethylamino groups, trimethylammonium groups, or dimethylethanolammonium groups introduced for reasons such as ease of production and availability, suitable particle size and shape, and strength that can withstand the reaction conditions. It is preferable to use polystyrene resin crosslinked with divinylbenzene or polyacrylic acid ester resin.Since polystyrene resin has higher reactivity than polyacrylic acid ester resin, dimethylamino group , a polystyrene resin into which a trimethylammonium group or a dimethylethanolammonium group is introduced and crosslinked with divinylbenzene is more preferable.

このような塩基性樹脂は、たとえば、陰イオン交換樹脂Amberlyst(商標) A26(Sigma-Aldrich、542571-1KG)、陰イオン交換樹脂IRA900(オルガノ、アンバーライト(商標)IRA900J)、陰イオン交換樹脂IRA958(オルガノ、アンバーライト(商標)IRA958)、陰イオン交換樹脂WA30(三菱化学、ダイヤイオン(商標))、ORLITE DS-5(オルガノ)、陰イオン交換樹脂IRA910(オルガノ、アンバーライト(商標)IRA910CT)、陰イオン交換樹脂IRA904(オルガノ、アンバーライト(商標)IRA904)などの市販品を好適に用いることができる。 Such basic resins include, for example, anion exchange resin Amberlyst (trademark) A26 (Sigma-Aldrich, 542571-1KG), anion exchange resin IRA900 (Organo, Amberlyst (trademark) IRA900J), anion exchange resin IRA958. (Organo, Amberlite (trademark) IRA958), anion exchange resin WA30 (Mitsubishi Chemical, Diaion (trademark) ), ORLITE DS-5 (Organo), anion exchange resin IRA910 (Organo, Amberlite (trademark) IRA910CT) Commercially available products such as anion exchange resin IRA904 (Organo, Amberlite (trademark) IRA904) can be suitably used.

触媒を固定化した反応器を用いたフロー法によってアルドール縮合ステップ(ステップA)を連続的に行う場合に用いられる触媒は、粒状物、球状物、カートリッジに内包されて市販されているものなどその形状は特に制限されるものではなく、また、任意の大きさのものを用いることができるが、粒状物である場合、用いるカラムから触媒が流出せずに、本反応条件に耐え得る強度を有するという理由から、その粒径は好ましくは30μm~3mmである。 Catalysts used when the aldol condensation step (Step A) is continuously carried out by a flow method using a reactor in which a catalyst is immobilized include those commercially available in granules, spheres, and cartridges. The shape is not particularly limited, and any size can be used, but if it is a granular material, it has the strength to withstand the reaction conditions without the catalyst flowing out from the column used. For this reason, the particle size is preferably between 30 μm and 3 mm.

〔2〕水素化ステップ(ステップB)
本発明のドネペジルの製造方法において、触媒を固定化した反応器を用いたフロー法によって水素化ステップ(ステップB)を連続的に行う場合、1-ベンジル-4-[(5,6-ジメトキシ-1-インダノン)-2-イリデン]メチルピペリジンの溶媒としては、アルドール縮合ステップについて上述したのと同様の溶媒を好ましく用いることができる。
[2] Hydrogenation step (Step B)
In the method for producing donepezil of the present invention, when the hydrogenation step (Step B) is continuously performed by a flow method using a reactor in which a catalyst is immobilized, 1-benzyl-4-[(5,6-dimethoxy- As the solvent for 1-indanone)-2-ylidene]methylpiperidine, the same solvents as mentioned above for the aldol condensation step can preferably be used.

触媒を固定化した反応器を用いたフロー法によって水素化ステップ(ステップB)を連続的に行う場合、1-ベンジル-4-[(5,6-ジメトキシ-1-インダノン)-2-イリデン]メチルピペリジンの送液量としては、水素化反応に用いる触媒の量、反応器の容積などに応じ、任意の量を送液するようにすればよく、特に制限されるものではない。また、アルドール縮合ステップについて上述したのと同様に、一定流量での送液が好ましいが、送液ポンプを用いて送液することがより好ましい。 When the hydrogenation step (Step B) is carried out continuously by a flow method using a reactor with an immobilized catalyst, 1-benzyl-4-[(5,6-dimethoxy-1-indanone)-2-ylidene] The amount of methylpiperidine to be fed is not particularly limited, and may be any amount depending on the amount of catalyst used in the hydrogenation reaction, the volume of the reactor, etc. Further, as described above regarding the aldol condensation step, it is preferable to feed the liquid at a constant flow rate, but it is more preferable to feed the liquid using a liquid feeding pump.

水素化反応を行うために用いられる反応器およびそれに取り付けられる送液チューブとしては、アルドール縮合ステップについて上述したのと同様の反応器、送液チューブを好ましく用いることができる。 As the reactor used for carrying out the hydrogenation reaction and the liquid feeding tube attached thereto, the same reactor and liquid feeding tube as those described above for the aldol condensation step can be preferably used.

触媒を固定化した反応器を用いたフロー法によって水素化ステップ(ステップB)を連続的に行う場合も、反応器は、流入口、流出口をいずれの方向に設置して送液してもよいが、水素の比重が空気よりも小さいため、下から上に流すと流速に関係なく系外へ排出されるという理由からは、流入口を上側、流出口を下側にし、地面に対して垂直に設置して送液することが好ましい。 Even when the hydrogenation step (Step B) is performed continuously by a flow method using a reactor with an immobilized catalyst, the reactor can be installed with the inlet and outlet in either direction and the liquid can be fed. However, since the specific gravity of hydrogen is smaller than that of air, if it flows from bottom to top it will be discharged out of the system regardless of the flow rate. It is preferable to install the device vertically and send the liquid.

水素化反応の反応温度も、アルドール縮合反応について上述したのと同様に、反応器および送液チューブを加熱または冷却することで制御でき、この目的のために水浴、油浴、氷浴、恒温槽、カラムオーブンなどを用いることができる。触媒を固定化した反応器を用いたフロー法によって水素化ステップ(ステップB)を連続的に行う場合、反応温度は0℃から溶媒の沸点以下であればよいが、触媒活性を十分維持しつつ、不純物である脱ベンジル体の生成を抑制するという理由からは、15~55℃の範囲内であることが好ましく、25~55℃の範囲内であることがより好ましい。 The reaction temperature of the hydrogenation reaction can also be controlled by heating or cooling the reactor and liquid delivery tube in the same way as described above for the aldol condensation reaction, and for this purpose water baths, oil baths, ice baths, thermostatic baths, etc. , column oven, etc. can be used. When the hydrogenation step (Step B) is carried out continuously by a flow method using a reactor with an immobilized catalyst, the reaction temperature may range from 0°C to below the boiling point of the solvent, but the reaction temperature may be between 0°C and below the boiling point of the solvent. The temperature is preferably within the range of 15 to 55°C, and more preferably within the range of 25 to 55°C, for the purpose of suppressing the formation of debenzylated products, which are impurities.

触媒を固定化した反応器を用いたフロー法によって水素化ステップ(ステップB)を連続的に行う場合、水素化反応の触媒としては、パラジウム系触媒、白金系触媒およびニッケル系触媒からなる群から選ばれる少なくともいずれかであることが好ましい。これら触媒は、炭素、ポリアルキルシランおよび金属酸化物のいずれかまたは複数の組み合わせを固相担体として、固相担持されたものであることが好ましい。このような触媒の好ましい例としては、ジメチルポリシリル-パラジウムアルミナ、ジメチルポリシリル-パラジウムシリカゲル、白金炭素、白金アルミナ、ジメチルポリシリル-白金炭素などが挙げられる。このような水素化反応の触媒としても、後述する実施例で例示するように、市販品を好適に用いることができる。 When the hydrogenation step (Step B) is carried out continuously by a flow method using a reactor in which a catalyst is immobilized, the hydrogenation reaction catalyst is selected from the group consisting of palladium-based catalysts, platinum-based catalysts, and nickel-based catalysts. It is preferable that at least one of the following is selected. These catalysts are preferably supported on a solid phase using any one or a combination of carbon, polyalkylsilane, and metal oxide as a solid phase support. Preferred examples of such catalysts include dimethylpolysilyl-palladium alumina, dimethylpolysilyl-palladium silica gel, platinum carbon, platinum alumina, dimethylpolysilyl-platinum carbon, and the like. As a catalyst for such a hydrogenation reaction, commercially available products can be suitably used, as exemplified in the Examples described later.

触媒を固定化した反応器を用いたフロー法によって水素化ステップ(ステップB)を連続的に行う場合に用いられる触媒は、粒状物、球状物、ペレット状物、カートリッジに内包されて市販されているものなどその形状は特に制限されるものではなく、また、任意の大きさのものを用いることができるが、粒状物である場合、用いるカラムから触媒が流出するのを防ぐという理由から、その粒径は好ましくは30μm~3mmである。 The catalyst used when the hydrogenation step (Step B) is continuously carried out by a flow method using a reactor in which a catalyst is immobilized is commercially available in granules, spheres, pellets, or cartridges. There is no particular restriction on the shape of the catalyst, and it can be of any size. However, if it is a granular material, it is necessary to prevent the catalyst from flowing out of the column used. The particle size is preferably between 30 μm and 3 mm.

また、触媒を固定化した反応器を用いたフロー法によって水素化ステップ(ステップB)を連続的に行う場合、上述の触媒に、共充填剤を添加してもよい。共充填剤を添加した場合、共充填剤を添加しない場合と比較して、水素圧力を制御できる、カラムからの触媒の流出を防ぐことができるという利点がある。このような共充填剤としては、1-ベンジル-4-[(5,6-ジメトキシ-1-インダノン)-2-イリデン]メチルピペリジン、溶媒、触媒と反応または溶解しないものであれば使用できるが、粒径・形状の選択肢が豊富で、市販されているという理由からは、アルミナ、ガラスビーズ、セルロース、セライトなどが好ましい。 Furthermore, when the hydrogenation step (step B) is performed continuously by a flow method using a reactor in which a catalyst is immobilized, a co-filling agent may be added to the above-mentioned catalyst. When a co-filling agent is added, there are advantages over the case where no co-filling agent is added in that the hydrogen pressure can be controlled and the outflow of the catalyst from the column can be prevented. As such a co-filler, one can be used as long as it does not react with or dissolve in 1-benzyl-4-[(5,6-dimethoxy-1-indanone)-2-ylidene]methylpiperidine, a solvent, or a catalyst. Alumina, glass beads, cellulose, celite, etc. are preferred because they have a wide range of particle size and shape options and are commercially available.

触媒を固定化した反応器を用いたフロー法によって水素化ステップ(ステップB)を連続的に行う場合、水素化反応は反応器の容積と送液量により任意の水素線速度で水素を流すことができるが、線速度が大きいと反応効率が低下するという理由からは、反応器内の線速度は0.02~0.95cm/secの範囲内であることが好ましい。 When the hydrogenation step (Step B) is performed continuously by a flow method using a reactor with an immobilized catalyst, the hydrogenation reaction is performed by flowing hydrogen at an arbitrary hydrogen linear velocity depending on the volume of the reactor and the amount of liquid fed. However, since the reaction efficiency decreases if the linear velocity is high, the linear velocity within the reactor is preferably within the range of 0.02 to 0.95 cm/sec.

触媒を固定化した反応器を用いたフロー法によって水素化ステップ(ステップB)を連続的に行う場合、反応器内の圧力は、反応器の大きさにより任意に設定できるが、圧力が下記設定値以下の条件であると、未反応の1-ベンジル-4-[(5,6-ジメトキシ-1-インダノン)-2-イリデン]メチルピペリジンが残留する傾向にあり、圧力が下記設定値以上の条件であると、脱ベンジル体が増加するという理由からは、18~120kPaの範囲内であることが好ましい。 When the hydrogenation step (Step B) is performed continuously by a flow method using a reactor with an immobilized catalyst, the pressure inside the reactor can be set arbitrarily depending on the size of the reactor, but the pressure is set as follows. If the conditions are below this value, unreacted 1-benzyl-4-[(5,6-dimethoxy-1-indanone)-2-ylidene]methylpiperidine will tend to remain, and if the pressure is higher than the set value below. The condition is preferably within the range of 18 to 120 kPa because the amount of debenzylated products increases.

本発明のドネペジルの製造方法は、触媒を固定化した反応器を用いたフロー法によってアルドール縮合ステップ(ステップA)のみを連続的に行ってもよいし、触媒を固定化した反応器を用いたフロー法によって水素化ステップ(ステップB)のみを連続的に行ってもよい。触媒を固定化した反応器を用いたフロー法で連続的に行う場合、アルドール縮合ステップで得られた生成物を単離精製した後水素化反応を行ってもよいし、単離精製することなく水素化ステップに用いてもよい。 In the method for producing donepezil of the present invention, only the aldol condensation step (step A) may be performed continuously by a flow method using a reactor with an immobilized catalyst, or the aldol condensation step (step A) may be performed continuously using a reactor with an immobilized catalyst. Only the hydrogenation step (step B) may be performed continuously by a flow method. If the reaction is carried out continuously using a flow method using a reactor with an immobilized catalyst, the hydrogenation reaction may be carried out after the product obtained in the aldol condensation step is isolated and purified, or the hydrogenation reaction may be carried out without isolation and purification. It may also be used in the hydrogenation step.

本発明のドネペジルの製造方法は、好ましくは、前記アルドール縮合反応を行うための第1反応器と、前記水素化反応を行うための第2反応器とを連結し、前記第1反応器において前記アルドール縮合ステップをフロー法によって連続的に行って得られた1-ベンジル-4-[(5,6-ジメトキシ-1-インダノン)-2-イリデン]メチルピペリジンを前記第2反応器に供し、前記第2反応器において前記水素化ステップをフロー法によって連続的に行う。このようにアルドール縮合ステップ(ステップA)および水素化ステップ(ステップB)の両方を、フロー法によって連続的に行うようにすることで、原料溶液から、精密に反応時間および温度を制御しながら必要なときに必要な量のドネペジルを製造することができ、反応後の中和、分離操作、中間体の単離、精製工程を省略できるため、労働力、作業時間を大幅に削減することができる。 In the method for producing donepezil of the present invention, preferably, a first reactor for performing the aldol condensation reaction and a second reactor for performing the hydrogenation reaction are connected, and in the first reactor, the 1-benzyl-4-[(5,6-dimethoxy-1-indanone)-2-ylidene]methylpiperidine obtained by continuously performing the aldol condensation step by a flow method is provided to the second reactor, The hydrogenation step is carried out continuously in the second reactor by a flow process. In this way, by performing both the aldol condensation step (Step A) and the hydrogenation step (Step B) continuously using the flow method, the necessary Donepezil can be produced in the required amount at any time, and post-reaction neutralization, separation operations, isolation of intermediates, and purification steps can be omitted, resulting in a significant reduction in labor and work time. .

本発明の方法で製造されたドネペジルは、医薬品として用いるために塩酸塩化するが、その塩酸塩化工程においてドネペジルは医薬品として適切な純度に精製される。塩酸塩化工程は公知の方法(特許文献3、4に記載の方法)またはそれに準ずる方法で行うことができるが、溶媒としてアセトニトリルまたは水を含むアセトニトリル、塩酸源としては濃塩酸を用いる方法が精製効果が高く、好ましい。 Donepezil produced by the method of the present invention is converted into a hydrochloride for use as a pharmaceutical, and in the hydrochlorination step, donepezil is purified to a purity suitable for use as a pharmaceutical. The hydrochlorination step can be carried out by a known method (methods described in Patent Documents 3 and 4) or a similar method, but a method using acetonitrile or acetonitrile containing water as a solvent and concentrated hydrochloric acid as a hydrochloric acid source has the best purification effect. is high and desirable.

本発明を実施例によりさらに具体的に説明する。ただし、これらの実施例により本発明が限定されるものではない。 The present invention will be explained in more detail with reference to Examples. However, the present invention is not limited to these Examples.

<実施例1>
100gの強塩基性スチレン系陰イオン交換樹脂Amberlyst(商標) A26(Sigma-Aldrich、542571-1KG)(以下、「陰イオン交換樹脂A26」)を水170mL×3、エタノール170mL×3、テトラヒドロフラン:2-プロパノール:蒸留水=88:10:2の混合溶媒170mL×3の順で洗浄した。アルドール縮合ステップをフロー法によって連続的に行うための第1反応器として、直径23mm、長さ300mmのステンレス製カラム(東京理化器械)に100gの前記陰イオン交換樹脂A26を充填し、蓋を閉め、カラムオーブン(東京理化器械)に設置した。これを第1カラムとし、送液ポンプ1(フロム製、UI-22-410D)に繋げたポリテトラフルオロエチレン(PTFE)製チューブを第1カラム下部に接続し、第1カラム上部にはアルドール縮合反応実施後の溶液を次の水素化ステップをフロー法によって連続的に行うための第2反応器である、水素化反応を行うカラムに誘導するためのチューブを取り付けた。
<Example 1>
100 g of strongly basic styrenic anion exchange resin Amberlyst (trademark) A26 (Sigma-Aldrich, 542571-1KG) (hereinafter referred to as "anion exchange resin A26") was mixed with 170 mL of water x 3, ethanol 170 mL x 3, and tetrahydrofuran: 2 - Washed with 170 mL of a mixed solvent of propanol: distilled water = 88:10:2 x 3 in this order. As a first reactor for carrying out the aldol condensation step continuously by a flow method, a stainless steel column (Tokyo Rika Kikai) with a diameter of 23 mm and a length of 300 mm was filled with 100 g of the anion exchange resin A26, and the lid was closed. , and installed in a column oven (Tokyo Rika Kikai). This is used as the first column, and a polytetrafluoroethylene (PTFE) tube connected to liquid pump 1 (UI-22-410D, manufactured by Fromm) is connected to the lower part of the first column. A tube was attached to the tube for guiding the solution after the reaction to a column for carrying out the hydrogenation reaction, which is a second reactor for carrying out the next hydrogenation step continuously by a flow method.

12.47gの5% 白金アルミナ(エヌ・イーケムキャット、AA1501)と90.52gの活性アルミナ(富士フイルム和光純薬、カラムクロマトグラフ用、019-08295、約75μm)を量り取り、均一に混合した後、直径23mm、長さ300mmのステンレス製カラム(東京理化器械)に充填し、蓋を閉め、カラムオーブン(東京理化器械)に設置した。これを第2カラムとした。第2カラム上部は、2本の流路が接続可能な形状であり、片方の流路は第1カラム上部に接続してあるチューブの出口側と繋ぎ、もう一方の流路には送液ポンプ2(フロム製、U1-22-110D)に繋がったチューブに予め水素用流路を合流させたチューブを繋いだ。第2カラム下部にチューブを繋ぎ、チューブの先は反応液を貯蔵する容器に導入した。その後、第1カラムのカラムオーブンを55℃に、第2カラムのカラムオーブンを45℃に設定し、加温した。 12.47 g of 5% platinum alumina (NE Chem Cat, AA1501) and 90.52 g of activated alumina (Fuji Film Wako Pure Chemical, for column chromatography, 019-08295, approximately 75 μm) were weighed out and mixed uniformly. Thereafter, a stainless steel column (Tokyo Rika Kikai) with a diameter of 23 mm and a length of 300 mm was filled, the lid was closed, and the mixture was placed in a column oven (Tokyo Rika Kikai). This was used as the second column. The upper part of the second column has a shape that allows connection of two channels, one of which is connected to the outlet side of the tube connected to the upper part of the first column, and the other channel is connected to a liquid pump. 2 (manufactured by Fromm, U1-22-110D) was connected to a tube with a hydrogen flow path merged in advance. A tube was connected to the bottom of the second column, and the tip of the tube was introduced into a container for storing the reaction solution. Thereafter, the column oven for the first column was set at 55°C, and the column oven for the second column was set at 45°C, and heated.

送液ポンプ1からテトラヒドロフラン:2-プロパノール:蒸留水=88:10:2混合溶媒を毎分2.4mLの流量で、送液ポンプ2からテトラヒドロフランを毎分1.4mLの流量で1時間送液した。 A mixed solvent of tetrahydrofuran:2-propanol:distilled water = 88:10:2 was fed from the liquid pump 1 at a flow rate of 2.4 mL per minute, and tetrahydrofuran was fed from the liquid feed pump 2 at a flow rate of 1.4 mL per minute for 1 hour. did.

1時間送液後、送液を継続しながら水素を0.95cm/sec(毎分240mL)で1時間送気した。水素は水素ボンベから供給し、供給量は水素ボンベに接続したレギュレーターおよびマスフローコントローラー(ブルックス、SLA5850S/H2型)で制御した。 After the liquid was fed for 1 hour, hydrogen was fed at a rate of 0.95 cm/sec (240 mL per minute) for 1 hour while continuing the liquid feeding. Hydrogen was supplied from a hydrogen cylinder, and the supply amount was controlled by a regulator and mass flow controller (Brooks, Model SLA5850S/H2) connected to the hydrogen cylinder.

19.22gの5,6-ジメトキシ-1-インダノン(100mmol)と21.98gの1-ベンジル-4-ホルミルピペリジン(108mmol)をテトラヒドロフラン:2-プロパノール:蒸留水=88:10:2混合溶媒1000mLに完全に溶解させ、0.1Mとした溶液を調製し、送液ポンプ1より毎分2.4mLの流量で送液した。この送液開始時間を反応開始時間とした。 19.22 g of 5,6-dimethoxy-1-indanone (100 mmol) and 21.98 g of 1-benzyl-4-formylpiperidine (108 mmol) were mixed in 1000 mL of a mixed solvent of tetrahydrofuran:2-propanol:distilled water = 88:10:2. A solution was prepared by completely dissolving the solution to a concentration of 0.1M, and the solution was delivered from the liquid delivery pump 1 at a flow rate of 2.4 mL per minute. This liquid feeding start time was defined as the reaction start time.

反応開始2時間後より一定時間サンプリングを行い、HPLCにて純度測定を行った。HPLC測定のためのサンプルは、容器に5分間フロー溶液を回収し、そこから500μL抜き取り、希釈溶液(0.1% トリフルオロ酢酸水溶液:アセトニトリル=1:1)で25mLにすることで調製した。反応開始7時間後のドネペジルの純度は93.9%であった。得られた反応液全量をHPLCにて定量を行い、33.6gのドネペジルを得た(収率:88%)。 Sampling was performed for a certain period of time from 2 hours after the start of the reaction, and the purity was measured by HPLC. A sample for HPLC measurement was prepared by collecting the flow solution in a container for 5 minutes, drawing out 500 μL from there, and making the volume up to 25 mL with a diluted solution (0.1% trifluoroacetic acid aqueous solution: acetonitrile = 1:1). The purity of donepezil 7 hours after the start of the reaction was 93.9%. The total amount of the resulting reaction solution was quantified by HPLC to obtain 33.6 g of donepezil (yield: 88%).

得られた反応液からドネペジル22.7g相当の反応液を分割し、減圧下、濃縮した。残渣を180mLの3%含水アセトニトリルに溶解し、70℃に加熱後、6.3mLの濃塩酸を加え、3時間攪拌した。ドネペジル塩酸塩を種晶として加え、0℃まで冷却した。得られた結晶を濾過し、乾燥を行い、18.3gのドネペジル塩酸塩を得た(収率:74%)。得られたドネペジル塩酸塩の純度は99.6%であった。 A reaction solution equivalent to 22.7 g of donepezil was divided from the obtained reaction solution and concentrated under reduced pressure. The residue was dissolved in 180 mL of 3% aqueous acetonitrile, heated to 70° C., 6.3 mL of concentrated hydrochloric acid was added, and the mixture was stirred for 3 hours. Donepezil hydrochloride was added as a seed and cooled to 0°C. The obtained crystals were filtered and dried to obtain 18.3 g of donepezil hydrochloride (yield: 74%). The purity of the obtained donepezil hydrochloride was 99.6%.

<実施例2>
10gの陰イオン交換樹脂A26を水17mL×3、エタノール17mL×3、テトラヒドロフラン:2-プロパノール:蒸留水=90:10:2の混合溶媒17mL×3の順で洗浄した。アルドール縮合ステップをフロー法によって連続的に行うための第1反応器として、直径10mm、長さ100mmのステンレス製カラム(東京理化器械、CLM-1010)に6.8gの前記陰イオン交換樹脂A26を充填し、蓋を閉め、カラムオーブン(東京理化器械、XCR-1000)に設置した。これを第1カラムとし、送液ポンプ1(フロム製、UI-22-110)に繋げたPTFE製チューブを第1カラム下部に接続し、第1カラム上部にはアルドール縮合反応実施後の溶液を次の水素化ステップをフロー法によって連続的に行うための第2反応器である、水素化反応を行うカラムに誘導するためのチューブを取り付けた。
<Example 2>
10 g of anion exchange resin A26 was washed in the following order: 17 mL x 3 of water, 17 mL x 3 of ethanol, and 17 mL x 3 of a mixed solvent of tetrahydrofuran:2-propanol:distilled water = 90:10:2. As a first reactor for carrying out the aldol condensation step continuously by a flow method, 6.8 g of the above anion exchange resin A26 was placed in a stainless steel column (Tokyo Rika Kikai, CLM-1010) with a diameter of 10 mm and a length of 100 mm. It was filled, the lid was closed, and it was placed in a column oven (Tokyo Rika Kikai, XCR-1000). This is used as the first column, and a PTFE tube connected to liquid pump 1 (Fromm, UI-22-110) is connected to the bottom of the first column, and the solution after the aldol condensation reaction is placed in the top of the first column. A tube was attached to the tube for guiding the hydrogenation reaction column, which was a second reactor for continuously performing the next hydrogenation step by a flow method.

0.46gの5% 白金炭素(エヌ・イーケムキャット、5% Ptカーボン粉末(含水品))と6.0gの活性アルミナ(実施例1と同じ)を量り取り、均一に混合した後、直径10mm、長さ100mmのステンレス製カラム(東京理化器械、CLM-1010)に充填し、蓋を閉め、カラムオーブン(東京理化器械、XCR-1000)に設置した。これを第2カラムとした。第2カラム上部は、2本の流路が接続可能な形状であり、片方の流路は第1カラム上部に接続してあるチューブの出口側と繋ぎ、もう一方の流路には送液ポンプ2(フロム製、KP-22-01)に繋がったチューブに予め水素用流路を合流させたチューブを繋いだ。第2カラム下部にチューブを繋ぎ、チューブの先は反応液を貯蔵する容器に導入した。その後、第1カラムのカラムオーブンを55℃に、第2カラムのカラムオーブンを25℃に設定し、加温した。送液ポンプ1からテトラヒドロフラン:2-プロパノール:蒸留水=88:10:2混合溶媒を毎分1.0mLの流量で25分間送液した。 Weigh out 0.46 g of 5% platinum carbon (NE Chemcat, 5% Pt carbon powder (water-containing product)) and 6.0 g of activated alumina (same as Example 1), mix them uniformly, and then prepare a powder with a diameter of 10 mm. A stainless steel column (Tokyo Rika Kikai, CLM-1010) with a length of 100 mm was filled, the lid was closed, and the column was placed in a column oven (Tokyo Rika Kikai, XCR-1000). This was used as the second column. The upper part of the second column has a shape that allows connection of two channels, one of which is connected to the outlet side of the tube connected to the upper part of the first column, and the other channel is connected to a liquid pump. 2 (manufactured by Fromm, KP-22-01) was connected to a tube with a hydrogen flow path merged in advance. A tube was connected to the bottom of the second column, and the tip of the tube was introduced into a container for storing the reaction solution. Thereafter, the column oven for the first column was set at 55°C, and the column oven for the second column was set at 25°C, and heated. A mixed solvent of tetrahydrofuran:2-propanol:distilled water=88:10:2 was fed from the liquid feed pump 1 at a flow rate of 1.0 mL per minute for 25 minutes.

送液ポンプ1からテトラヒドロフラン:2-プロパノール:蒸留水=88:10:2混合溶媒を毎分0.15mLの流量で、送液ポンプ2からテトラヒドロフランを毎分0.09mLの流量で送液しながら、水素を0.32cm/sec(毎分15mL)で1時間送気した。水素は水素ボンベから供給し、供給量は水素ボンベに接続したレギュレーターおよびマスフローコントローラー(KOFLOC、D8500MC)で制御した。 While feeding a mixed solvent of tetrahydrofuran: 2-propanol: distilled water = 88:10:2 from the liquid feeding pump 1 at a flow rate of 0.15 mL per minute, and feeding tetrahydrofuran from the liquid feeding pump 2 at a flow rate of 0.09 mL per minute. , hydrogen was supplied at a rate of 0.32 cm/sec (15 mL per minute) for 1 hour. Hydrogen was supplied from a hydrogen cylinder, and the supply amount was controlled by a regulator and mass flow controller (KOFLOC, D8500MC) connected to the hydrogen cylinder.

9.6gの5,6-ジメトキシ-1-インダノン(50mmol)と10.7gの1-ベンジル-4-ホルミルピペリジン(52.5mmol)をテトラヒドロフラン:2-プロパノール:蒸留水=88:10:2混合溶媒500mLに完全に溶解させ、0.1Mとした溶液を調製し、送液ポンプ1より毎分0.15mLの流量で送液した。この送液開始時間を反応開始時間とした。 9.6 g of 5,6-dimethoxy-1-indanone (50 mmol) and 10.7 g of 1-benzyl-4-formylpiperidine (52.5 mmol) were mixed in a ratio of tetrahydrofuran: 2-propanol: distilled water = 88:10:2. A 0.1M solution was prepared by completely dissolving the solution in 500 mL of the solvent, and the solution was delivered from the liquid delivery pump 1 at a flow rate of 0.15 mL per minute. This liquid feeding start time was defined as the reaction start time.

反応開始2時間後より一定時間サンプリングを行い、HPLCにて純度測定を行った。HPLC測定のためのサンプルは、容器に10分間フロー溶液を回収し、そこから200μL抜き取り、希釈溶液(0.1% トリフルオロ酢酸水溶液:アセトニトリル=1:1)で10mLにすることで調製した。 Sampling was performed for a certain period of time from 2 hours after the start of the reaction, and the purity was measured by HPLC. A sample for HPLC measurement was prepared by collecting the flow solution in a container for 10 minutes, drawing out 200 μL from there, and making the volume up to 10 mL with a diluted solution (0.1% trifluoroacetic acid aqueous solution: acetonitrile = 1:1).

反応開始6時間後のドネペジルの純度は95.3%、反応開始21時間後のドネペジルの純度は94.3%であった。 The purity of donepezil 6 hours after the start of the reaction was 95.3%, and the purity of donepezil 21 hours after the start of the reaction was 94.3%.

回収したフロー溶液224mLを減圧下で濃縮し、残渣を45mLのトルエンに溶解し、25mLの水で一回洗浄した。有機層を減圧下で濃縮し、6.8gのドネペジルの粗体を得た。得られたドネペジルの粗体0.91gを7.6mLのアセトニトリルに溶解し、0.26mLの水を加えた。この溶液をHPLCにて定量したところ、ドネペジルが0.77g含まれていた。この溶液を70℃で30分攪拌し、その後0.20mLの濃塩酸を加え、3時間攪拌し、種晶を加え、0℃まで冷却した。得られた結晶を濾過し、乾燥を行い、0.59gのドネペジル塩酸塩を得た(収率:70%)。得られたドネペジル塩酸塩の純度は99.7%であった。 224 mL of the collected flow solution was concentrated under reduced pressure, and the residue was dissolved in 45 mL of toluene and washed once with 25 mL of water. The organic layer was concentrated under reduced pressure to obtain 6.8 g of crude donepezil. 0.91 g of the obtained crude donepezil was dissolved in 7.6 mL of acetonitrile, and 0.26 mL of water was added. When this solution was quantified by HPLC, it was found to contain 0.77 g of donepezil. This solution was stirred at 70°C for 30 minutes, then 0.20 mL of concentrated hydrochloric acid was added, stirred for 3 hours, seed crystals were added, and the mixture was cooled to 0°C. The obtained crystals were filtered and dried to obtain 0.59 g of donepezil hydrochloride (yield: 70%). The purity of the obtained donepezil hydrochloride was 99.7%.

<実施例3>
110.7gの陰イオン交換樹脂A26を水185mL×3、エタノール185mL×3、テトラヒドロフラン:2-プロパノール:蒸留水=88:10:2の混合溶媒185mL×3の順で洗浄した。アルドール縮合ステップをフロー法によって連続的に行うための第1反応器として、直径23mm、長さ300mmのステンレス製カラム(実施例1と同じ)に103.0gの前記陰イオン交換樹脂A26を充填し、蓋を閉め、カラムオーブン(実施例1と同じ)に設置した。これを第1カラムとし、送液ポンプ1(実施例1と同じ)に繋げたPTFE製チューブを第1カラム下部に接続し、第1カラム上部にはアルドール縮合反応実施後の溶液を次の水素化ステップをフロー法によって連続的に行うための第2反応器である、水素化反応を行うカラムに誘導するためのチューブを取り付けた。
<Example 3>
110.7 g of anion exchange resin A26 was washed in the following order: 185 mL x 3 of water, 185 mL x 3 of ethanol, and 185 mL x 3 of a mixed solvent of tetrahydrofuran:2-propanol:distilled water = 88:10:2. As a first reactor for continuously performing the aldol condensation step by a flow method, a stainless steel column (same as Example 1) with a diameter of 23 mm and a length of 300 mm was packed with 103.0 g of the anion exchange resin A26. , the lid was closed and placed in a column oven (same as in Example 1). This was used as the first column, and a PTFE tube connected to liquid pump 1 (same as in Example 1) was connected to the bottom of the first column. A tube for guiding the hydrogenation reaction to a column, which is a second reactor for performing the hydrogenation step continuously by a flow method, was attached.

4.3gのジメチルポリシリル-パラジウムアルミナ(日揮触媒化成、PPD-100)と101.5gの活性アルミナ(実施例1と同じ)を量り取り、均一に混合した後、直径23mm、長さ300mmのステンレス製カラム(実施例1と同じ)に充填し、蓋を閉め、カラムオーブン(実施例1と同じ)に設置した。これを第2カラムとした。第2カラム上部は、2本の流路が接続可能な形状であり、片方の流路は第1カラム上部に接続してあるチューブの出口側と繋ぎ、もう一方の流路には送液ポンプ2(実施例1と同じ)に繋がったチューブに予め水素用流路を合流させたチューブを繋いだ。第2カラム下部にチューブを繋ぎ、チューブの先は反応液を貯蔵する容器に導入した。その後、第1カラムのカラムオーブンを55℃に、第2カラムのカラムオーブンを25℃に設定し、加温した。 Weigh out 4.3 g of dimethylpolysilyl-palladium alumina (PPD-100, manufactured by JGC Catalysts Kasei) and 101.5 g of activated alumina (same as in Example 1), mix them uniformly, and prepare a 23 mm diameter, 300 mm long A stainless steel column (same as Example 1) was filled, the lid was closed, and the mixture was placed in a column oven (same as Example 1). This was used as the second column. The upper part of the second column has a shape that allows connection of two channels, one of which is connected to the outlet side of the tube connected to the upper part of the first column, and the other channel is connected to a liquid pump. 2 (same as in Example 1) was connected to a tube in which the hydrogen flow path had been merged in advance. A tube was connected to the bottom of the second column, and the tip of the tube was introduced into a container for storing the reaction solution. Thereafter, the column oven for the first column was set at 55°C, and the column oven for the second column was set at 25°C, and heated.

送液ポンプ1からテトラヒドロフラン:2-プロパノール:蒸留水=88:10:2混合溶媒を毎分2.4mLの流量で、送液ポンプ2からテトラヒドロフランを毎分1.4mLの流量で1時間送液した。 A mixed solvent of tetrahydrofuran:2-propanol:distilled water = 88:10:2 was fed from the liquid pump 1 at a flow rate of 2.4 mL per minute, and tetrahydrofuran was fed from the liquid feed pump 2 at a flow rate of 1.4 mL per minute for 1 hour. did.

1時間送液後、送液を継続しながら水素を0.36cm/sec(毎分90mL)で1時間送気した。水素は水素ボンベから供給し、供給量は水素ボンベに接続したレギュレーターおよびマスフローコントローラー(実施例1と同じ)で制御した。 After liquid feeding for 1 hour, hydrogen was fed at a rate of 0.36 cm/sec (90 mL per minute) for 1 hour while continuing liquid feeding. Hydrogen was supplied from a hydrogen cylinder, and the supply amount was controlled by a regulator and a mass flow controller (same as in Example 1) connected to the hydrogen cylinder.

57.7gの5,6-ジメトキシ-1-インダノン(300mmol)と64.0gの1-ベンジル-4-ホルミルピペリジン(315mol)をテトラヒドロフラン:2-プロパノール:蒸留水=88:10:2混合溶媒3000mLに完全に溶解させ、0.1Mとした溶液を調製し、送液ポンプ1より毎分2.4mLの流量で送液した。この送液開始時間を反応開始時間とした。 57.7 g of 5,6-dimethoxy-1-indanone (300 mmol) and 64.0 g of 1-benzyl-4-formylpiperidine (315 mol) were mixed in 3000 mL of a mixed solvent of tetrahydrofuran:2-propanol:distilled water = 88:10:2. A solution was prepared by completely dissolving the solution to a concentration of 0.1M, and the solution was delivered from the liquid delivery pump 1 at a flow rate of 2.4 mL per minute. This liquid feeding start time was defined as the reaction start time.

反応開始2時間後より一定時間サンプリングを行い、HPLCにて純度測定を行った。HPLC測定のためのサンプルは、容器に10分間フロー溶液を回収し、そこから200μL抜き取り、希釈溶液(0.1% トリフルオロ酢酸水溶液:アセトニトリル=1:1)で10mLにすることで調製した。反応開始7時間後のドネペジルの純度は92.8%であった。 Sampling was performed for a certain period of time from 2 hours after the start of the reaction, and the purity was measured by HPLC. A sample for HPLC measurement was prepared by collecting the flow solution in a container for 10 minutes, drawing out 200 μL from there, and making the volume up to 10 mL with a diluted solution (0.1% trifluoroacetic acid aqueous solution: acetonitrile = 1:1). The purity of donepezil 7 hours after the start of the reaction was 92.8%.

回収したフロー溶液2000mLを減圧下で濃縮し、残渣を180mLのトルエンに溶解し、150mLの水で二回洗浄した。有機層を減圧下で濃縮し、42.8gのドネペジルの粗体を得た。 2000 mL of the collected flow solution was concentrated under reduced pressure, and the residue was dissolved in 180 mL of toluene and washed twice with 150 mL of water. The organic layer was concentrated under reduced pressure to obtain 42.8 g of crude donepezil.

得られたドネペジルの粗体1.0gを9.7mLのアセトニトリルに溶解し、0.3mLの水を加えた。この溶液を70℃で30分間攪拌し、その後0.26mLの濃塩酸を加え、3時間攪拌し、種晶を加え、0℃まで冷却した。得られた結晶を濾過し、乾燥を行い、0.79gのドネペジル塩酸塩を得た(収率:72%)。得られたドネペジル塩酸塩の純度は99.6%であった。 1.0 g of the obtained crude donepezil was dissolved in 9.7 mL of acetonitrile, and 0.3 mL of water was added. This solution was stirred at 70°C for 30 minutes, then 0.26 mL of concentrated hydrochloric acid was added, stirred for 3 hours, seed crystals were added, and cooled to 0°C. The obtained crystals were filtered and dried to obtain 0.79 g of donepezil hydrochloride (yield: 72%). The purity of the obtained donepezil hydrochloride was 99.6%.

<実施例4>
10gの陰イオン交換樹脂A26を水17mL×3、エタノール17mL×3、テトラヒドロフラン:エタノール=90:10の混合溶媒17mL×3の順で洗浄した。直径10mm、長さ100mmのステンレス製カラム(実施例2と同じ)に7.4gの前記陰イオン交換樹脂A26を充填し、蓋を閉め、カラムオーブン(実施例2と同じ)に設置した。送液ポンプ1(実施例2と同じ)に繋げたPTFE製チューブをカラム下部に接続し、カラム上部にチューブを取り付け、アルドール縮合反応実施後の溶液を回収する容器に導入した。その後、カラムオーブンを20℃に設定し、加温した。送液ポンプ1からテトラヒドロフラン:エタノール=90:10の混合溶媒を毎分0.3mLの流量で1時間送液した。
<Example 4>
10 g of anion exchange resin A26 was washed in the following order: 17 mL x 3 of water, 17 mL x 3 of ethanol, and 17 mL x 3 of a mixed solvent of tetrahydrofuran:ethanol = 90:10. A stainless steel column (same as in Example 2) with a diameter of 10 mm and a length of 100 mm was filled with 7.4 g of the anion exchange resin A26, the lid was closed, and the column was placed in a column oven (same as in Example 2). A PTFE tube connected to liquid pump 1 (same as in Example 2) was connected to the bottom of the column, a tube was attached to the top of the column, and the solution was introduced into a container for collecting the solution after the aldol condensation reaction. Thereafter, the column oven was set at 20°C and heated. A mixed solvent of tetrahydrofuran:ethanol=90:10 was fed from the liquid feed pump 1 at a flow rate of 0.3 mL per minute for 1 hour.

1.92gの5,6-ジメトキシ-1-インダノン(10mmol)と2.19gの1-ベンジル-4-ホルミルピペリジン(10.8mmol)をテトラヒドロフラン:エタノール=90:10の混合溶媒100mLに完全に溶解させ、0.1Mとした溶液を調製し、送液ポンプ1より毎分0.3mLの流量で送液した。この送液開始時間を反応開始時間とした。 Completely dissolve 1.92 g of 5,6-dimethoxy-1-indanone (10 mmol) and 2.19 g of 1-benzyl-4-formylpiperidine (10.8 mmol) in 100 mL of a mixed solvent of tetrahydrofuran:ethanol = 90:10. A 0.1M solution was prepared, and the solution was delivered from the liquid delivery pump 1 at a flow rate of 0.3 mL per minute. This liquid feeding start time was defined as the reaction start time.

反応開始2時間後より一定時間サンプリングを行い、HPLCにて純度測定を行った。HPLC測定のためのサンプルは、容器に10分間フロー溶液を回収し、そこから200μL抜き取り、希釈溶液(0.1% トリフルオロ酢酸水溶液:アセトニトリル=1:1)で10mLにすることで調製した。 Sampling was performed for a certain period of time from 2 hours after the start of the reaction, and the purity was measured by HPLC. A sample for HPLC measurement was prepared by collecting the flow solution in a container for 10 minutes, drawing out 200 μL from there, and making the volume up to 10 mL with a diluted solution (0.1% trifluoroacetic acid aqueous solution: acetonitrile = 1:1).

反応開始6時間後の1-ベンジル-4-[(5,6-ジメトキシ-1-インダノン)-2-イリデン]メチルピペリジンの純度は85.5%であった。 The purity of 1-benzyl-4-[(5,6-dimethoxy-1-indanone)-2-ylidene]methylpiperidine 6 hours after the start of the reaction was 85.5%.

<実施例5>
30gの強塩基性スチレン系陰イオン交換樹脂IRA900(オルガノ、アンバーライト(商標)IRA900J)(以下、「陰イオン交換樹脂IRA900」)を水17mL×3、エタノール17mL×3、テトラヒドロフラン17mL×3、トルエン17mL×3の順で洗浄した。直径10mm、長さ300mmのステンレス製カラム(東京理化器械、CLM-1030)に22.0gの前記陰イオン交換樹脂IRA900を充填し、蓋を閉め、カラムオーブン(東京理化器械、XCR-1000 300L)に設置した。送液ポンプ1(実施例2と同じ)に繋げたPTFE製チューブをカラム下部に接続し、カラム上部にチューブを取り付け、アルドール縮合反応実施後の溶液を回収する容器に導入した。その後、カラムオーブンを80℃に設定し、加温した。送液ポンプ1からトルエンを毎分0.3mLの流量で1時間送液した。
<Example 5>
30 g of strongly basic styrenic anion exchange resin IRA900 (Organo, Amberlite (trademark) IRA900J) (hereinafter referred to as "anion exchange resin IRA900") was mixed with 17 mL x 3 of water, 17 mL x 3 of ethanol, 17 mL x 3 of tetrahydrofuran, and toluene. It was washed in the order of 17 mL x 3. A stainless steel column (Tokyo Rika Kikai, CLM-1030) with a diameter of 10 mm and a length of 300 mm was filled with 22.0 g of the anion exchange resin IRA900, the lid was closed, and the column oven (Tokyo Rika Kikai, XCR-1000 300L) was placed. It was installed in A PTFE tube connected to liquid pump 1 (same as in Example 2) was connected to the bottom of the column, a tube was attached to the top of the column, and the solution was introduced into a container for collecting the solution after the aldol condensation reaction. Thereafter, the column oven was set at 80°C and heated. Toluene was fed from the liquid feeding pump 1 at a flow rate of 0.3 mL per minute for 1 hour.

1.92gの5,6-ジメトキシ-1-インダノン(10mmol)と2.19gの1-ベンジル-4-ホルミルピペリジン(10.8mmol)をトルエンに完全に溶解させ、0.05Mとした溶液を200mL調製し、送液ポンプ1より毎分0.3mLの流量で送液した。この送液開始時間を反応開始時間とした。 Completely dissolve 1.92 g of 5,6-dimethoxy-1-indanone (10 mmol) and 2.19 g of 1-benzyl-4-formylpiperidine (10.8 mmol) in toluene to make 0.05M solution, and prepare 200 mL of the solution. The solution was prepared, and the solution was delivered from the delivery pump 1 at a flow rate of 0.3 mL per minute. This liquid feeding start time was defined as the reaction start time.

反応開始2時間後より一定時間サンプリングを行い、NMRにて純度測定を行った。サンプルは、容器に10分間フロー溶液を回収し、そこから正確に4mL抜き取り、濃縮・乾燥後、重クロロホルムに溶解し、NMRを測定し、純度測定を行った。 Sampling was carried out for a certain period of time from 2 hours after the start of the reaction, and the purity was measured by NMR. As for the sample, a flow solution was collected in a container for 10 minutes, and 4 mL was drawn out accurately from there. After concentration and drying, it was dissolved in deuterated chloroform, and NMR was measured to determine the purity.

反応開始7時間後の1-ベンジル-4-[(5,6-ジメトキシ-1-インダノン)-2-イリデン]メチルピペリジンの純度は87.0%であった。 Seven hours after the start of the reaction, the purity of 1-benzyl-4-[(5,6-dimethoxy-1-indanone)-2-ylidene]methylpiperidine was 87.0%.

<実施例6>
10gの陰イオン交換樹脂A26を水17mL×3、エタノール17mL×3、テトラヒドロフラン:2-プロパノール:蒸留水=88:10:2の混合溶媒17mL×3の順で洗浄した。直径10mm、長さ100mmのステンレス製カラム(実施例2と同じ)に6.3gの前記陰イオン交換樹脂A26を充填し、蓋を閉め、カラムオーブン(実施例2と同じ)に設置した。送液ポンプ1(実施例2と同じ)に繋げたPTFE製チューブをカラム下部に接続し、カラム上部にチューブを取り付け、アルドール縮合反応実施後の溶液を回収する容器に導入した。その後カラムオーブンを60℃に設定し、加温した。送液ポンプ1からテトラヒドロフラン:2-プロパノール:蒸留水=88:10:2の混合溶媒を毎分0.15mLの流量で1時間送液した。
<Example 6>
10 g of anion exchange resin A26 was washed in the following order: 17 mL x 3 of water, 17 mL x 3 of ethanol, and 17 mL x 3 of a mixed solvent of tetrahydrofuran:2-propanol:distilled water = 88:10:2. A stainless steel column (same as in Example 2) with a diameter of 10 mm and a length of 100 mm was filled with 6.3 g of the anion exchange resin A26, the lid was closed, and the column was placed in a column oven (same as in Example 2). A PTFE tube connected to liquid pump 1 (same as in Example 2) was connected to the bottom of the column, a tube was attached to the top of the column, and the solution was introduced into a container for collecting the solution after the aldol condensation reaction. Thereafter, the column oven was set at 60°C and heated. A mixed solvent of tetrahydrofuran:2-propanol:distilled water=88:10:2 was fed from the liquid feed pump 1 at a flow rate of 0.15 mL/min for 1 hour.

1.92gの5,6-ジメトキシ-1-インダノン(10mmol)と2.19gの1-ベンジル-4-ホルミルピペリジン(10.8mmol)をテトラヒドロフラン:2-プロパノール:蒸留水=88:10:2の混合溶媒100mLに完全に溶解させ、0.1Mとした溶液を調製し、送液ポンプ1より毎分0.15mLの流量で送液した。この送液開始時間を反応開始時間とした。 1.92 g of 5,6-dimethoxy-1-indanone (10 mmol) and 2.19 g of 1-benzyl-4-formylpiperidine (10.8 mmol) were mixed in a mixture of tetrahydrofuran:2-propanol:distilled water = 88:10:2. A 0.1M solution was prepared by completely dissolving the mixture in 100 mL of the mixed solvent, and the solution was delivered from the liquid delivery pump 1 at a flow rate of 0.15 mL per minute. This liquid feeding start time was defined as the reaction start time.

反応開始2時間後より一定時間サンプリングを行い、HPLCにて純度測定を行った。HPLC測定のためのサンプルは、容器に10分間フロー溶液を回収し、そこから200μL抜き取り、希釈溶液(0.1% トリフルオロ酢酸水溶液:アセトニトリル=1:1)で10mLにすることで調製した。 Sampling was performed for a certain period of time from 2 hours after the start of the reaction, and the purity was measured by HPLC. A sample for HPLC measurement was prepared by collecting the flow solution in a container for 10 minutes, drawing out 200 μL from there, and making the volume up to 10 mL with a diluted solution (0.1% trifluoroacetic acid aqueous solution: acetonitrile = 1:1).

反応開始7時間後の1-ベンジル-4-[(5,6-ジメトキシ-1-インダノン)-2-イリデン]メチルピペリジンの純度は88.3%であった。 Seven hours after the start of the reaction, the purity of 1-benzyl-4-[(5,6-dimethoxy-1-indanone)-2-ylidene]methylpiperidine was 88.3%.

<実施例7>
10gの陰イオン交換樹脂A26を水17mL×3、エタノール17mL×3、テトラヒドロフラン:2-プロパノール:蒸留水=88:10:2の混合溶媒17mL×3の順で洗浄した。直径10mm、長さ100mmのステンレス製カラム(実施例2と同じ)に6.4gの前記陰イオン交換樹脂A26を充填し、蓋を閉め、カラムオーブン(実施例2と同じ)に設置した。送液ポンプ1(実施例2と同じ)に繋げたPTFE製チューブをカラム下部に接続し、カラム上部にチューブを取り付け、アルドール縮合反応実施後の溶液を回収する容器に導入した。その後、カラムオーブンを55℃に設定し、加温した。送液ポンプ1からテトラヒドロフラン:2-プロパノール:蒸留水=88:10:2の混合溶媒を毎分0.15mlの流量で35分間送液した。
<Example 7>
10 g of anion exchange resin A26 was washed in the following order: 17 mL x 3 of water, 17 mL x 3 of ethanol, and 17 mL x 3 of a mixed solvent of tetrahydrofuran:2-propanol:distilled water = 88:10:2. A stainless steel column (same as in Example 2) with a diameter of 10 mm and a length of 100 mm was filled with 6.4 g of the anion exchange resin A26, the lid was closed, and the column was placed in a column oven (same as in Example 2). A PTFE tube connected to liquid pump 1 (same as in Example 2) was connected to the bottom of the column, a tube was attached to the top of the column, and the solution was introduced into a container for collecting the solution after the aldol condensation reaction. Thereafter, the column oven was set at 55°C and heated. A mixed solvent of tetrahydrofuran:2-propanol:distilled water=88:10:2 was fed from the liquid feed pump 1 at a flow rate of 0.15 ml per minute for 35 minutes.

11.54gの5,6-ジメトキシ-1-インダノン(60mmol)と13.19gの1-ベンジル-4-ホルミルピペリジン(64.8mmol)をテトラヒドロフラン:2-プロパノール:蒸留水=88:10:2の混合溶媒600mLに完全に溶解させ、0.1Mとした溶液を調製し、送液ポンプ1より毎分0.15mLの流量で送液した。この送液開始時間を反応開始時間とした。 11.54 g of 5,6-dimethoxy-1-indanone (60 mmol) and 13.19 g of 1-benzyl-4-formylpiperidine (64.8 mmol) were mixed in a mixture of tetrahydrofuran:2-propanol:distilled water = 88:10:2. A 0.1M solution was prepared by completely dissolving the mixture in 600 mL of the mixed solvent, and the solution was delivered from the liquid delivery pump 1 at a flow rate of 0.15 mL per minute. This liquid feeding start time was defined as the reaction start time.

反応開始2時間後より一定時間サンプリングを行い、HPLCにて純度測定を行った。HPLC測定のためのサンプルは、容器に10分間フロー溶液を回収し、そこから200μL抜き取り、希釈溶液(0.1% トリフルオロ酢酸水溶液:アセトニトリル=1:1)で10mLにすることで調製した。 Sampling was performed for a certain period of time from 2 hours after the start of the reaction, and the purity was measured by HPLC. A sample for HPLC measurement was prepared by collecting the flow solution in a container for 10 minutes, drawing out 200 μL from there, and making the volume up to 10 mL with a diluted solution (0.1% trifluoroacetic acid aqueous solution: acetonitrile = 1:1).

反応開始74時間後の1-ベンジル-4-[(5,6-ジメトキシ-1-インダノン)-2-イリデン]メチルピペリジンの純度は91.8%であった。 The purity of 1-benzyl-4-[(5,6-dimethoxy-1-indanone)-2-ylidene]methylpiperidine 74 hours after the start of the reaction was 91.8%.

収集した516.3gの反応液(1-ベンジル-4-[(5,6-ジメトキシ-1-インダノン)-2-イリデン]メチルピペリジン定量値として20.4g)に4.0gの5% 白金炭素を加え、攪拌下、室温にて14時間、バッチ法で水素化反応を行った。水素化反応後、触媒をセライト濾過により除去し、HPLC定量値21.2gでドネペジルを純度95.4%で得た。 4.0 g of 5% platinum carbon was added to 516.3 g of the collected reaction solution (20.4 g as a quantitative value of 1-benzyl-4-[(5,6-dimethoxy-1-indanone)-2-ylidene]methylpiperidine). was added, and the hydrogenation reaction was carried out in a batchwise manner under stirring at room temperature for 14 hours. After the hydrogenation reaction, the catalyst was removed by filtration through Celite to obtain donepezil with a purity of 95.4% as determined by HPLC of 21.2 g.

<実施例8>
0.28gのジメチルポリシリル-パラジウムアルミナPPD-100(実施例3と同じ)と6.4gの活性アルミナ(実施例1と同じ)を量り取り、均一に混合した後、直径10mm、長さ100mmのステンレス製カラム(実施例2と同じ)に充填し、蓋を閉め、カラムオーブン(実施例2と同じ)に設置した。カラム上部は、2本の流路が接続可能な形状であり、片方の流路は送液ポンプ1(実施例2と同じ)に繋がったPTFE製チューブを繋ぎ、もう一方の流路には送液ポンプ2(実施例2と同じ)に繋がったチューブにあらかじめ水素用流路を合流させたチューブを繋いだ。カラム下部にチューブを繋ぎ、チューブの先は反応液を貯蔵する容器に導入した。その後、カラムオーブンを25℃に設定した。送液ポンプ1からテトラヒドロフラン:2-プロパノール:蒸留水=88:10:2混合溶媒を毎分0.15mLの流量で、送液ポンプ2からテトラヒドロフランを毎分0.09mLの流量で1時間送液した。
<Example 8>
Weigh out 0.28 g of dimethylpolysilyl-palladium alumina PPD-100 (same as Example 3) and 6.4 g of activated alumina (same as Example 1), mix them uniformly, and then form a powder with a diameter of 10 mm and a length of 100 mm. The mixture was packed into a stainless steel column (same as Example 2), the lid was closed, and the mixture was placed in a column oven (same as Example 2). The upper part of the column has a shape that allows two channels to be connected; one channel is connected to a PTFE tube connected to liquid feed pump 1 (same as in Example 2), and the other channel is connected to a A tube connected to the liquid pump 2 (same as in Example 2) was connected to a tube in which a hydrogen flow path had been merged in advance. A tube was connected to the bottom of the column, and the tip of the tube was introduced into a container for storing the reaction solution. The column oven was then set at 25°C. A mixed solvent of tetrahydrofuran:2-propanol:distilled water = 88:10:2 was fed from the liquid pump 1 at a flow rate of 0.15 mL per minute, and tetrahydrofuran was fed from the liquid feed pump 2 at a flow rate of 0.09 mL per minute for 1 hour. did.

1時間送液後、送液を継続しながら水素を0.13cm/sec(毎分6mL)で1時間送気した。水素は水素ボンベから供給し、供給量は水素ボンベに接続したレギュレーターおよびマスフローコントローラー(実施例2と同じ)で制御した。 After liquid feeding for 1 hour, hydrogen was fed at a rate of 0.13 cm/sec (6 mL per minute) for 1 hour while continuing liquid feeding. Hydrogen was supplied from a hydrogen cylinder, and the supply amount was controlled by a regulator and a mass flow controller (same as in Example 2) connected to the hydrogen cylinder.

1-ベンジル-4-[(5,6-ジメトキシ-1-インダノン)-2-イリデン]メチルピペリジンを3.77g(10mmol)量り取り、テトラヒドロフラン:2-プロパノール:蒸留水=88:10:2混合溶媒100mLに完全に溶解させ、0.1Mとした溶液を調製し、送液ポンプ1より毎分0.15mLの流量で送液した。この送液開始時間を反応開始時間とした。 Weigh out 3.77 g (10 mmol) of 1-benzyl-4-[(5,6-dimethoxy-1-indanone)-2-ylidene]methylpiperidine, and mix it with tetrahydrofuran:2-propanol:distilled water = 88:10:2. A solution of 0.1M was prepared by completely dissolving it in 100 mL of the solvent, and the solution was fed from the liquid feed pump 1 at a flow rate of 0.15 mL per minute. This liquid feeding start time was defined as the reaction start time.

反応開始2時間後より一定時間サンプリングを行い、HPLCにて純度測定を行った。HPLC測定のためのサンプルは、容器に10分間フロー溶液を回収し、そこから200μL抜き取り、希釈溶液(0.1% トリフルオロ酢酸水溶液:アセトニトリル=1:1)で10mLにすることで調製した。反応開始6時間後のドネペジルの純度は93.3%であった。 Sampling was performed for a certain period of time from 2 hours after the start of the reaction, and the purity was measured by HPLC. A sample for HPLC measurement was prepared by collecting the flow solution in a container for 10 minutes, drawing out 200 μL from there, and making the volume up to 10 mL with a diluted solution (0.1% trifluoroacetic acid aqueous solution: acetonitrile = 1:1). The purity of donepezil 6 hours after the start of the reaction was 93.3%.

<実施例9>
0.46gのジメチルポリシリル-パラジウムアルミナPPD-60(日揮触媒化成)と6.4gの活性アルミナ(実施例1と同じ)を量り取り、均一に混合した後、直径10mm、長さ100mmのステンレス製カラム(実施例2と同じ)に充填し、蓋を閉め、カラムオーブン(実施例2と同じ)に設置した。カラム上部は、2本の流路が接続可能な形状であり、片方の流路は送液ポンプ1(実施例2と同じ)に繋がったPTFE製チューブを繋ぎ、もう一方の流路には送液ポンプ2(実施例2と同じ)に繋がったチューブに予め水素用流路を合流させたチューブを繋いだ。カラム下部にチューブを繋ぎ、チューブの先は反応液を貯蔵する容器に導入した。その後、カラムオーブンを25℃に設定した。送液ポンプ1からテトラヒドロフラン:2-プロパノール:蒸留水=88:10:2混合溶媒を毎分0.15mLの流量で、送液ポンプ2からテトラヒドロフランを毎分0.09mLの流量で1時間送液した。
<Example 9>
Weigh out 0.46 g of dimethylpolysilyl-palladium alumina PPD-60 (JGC Catalysts Kasei) and 6.4 g of activated alumina (same as Example 1), mix them uniformly, and then add a stainless steel plate with a diameter of 10 mm and a length of 100 mm. A manufactured column (same as in Example 2) was filled with the solution, the lid was closed, and the column was placed in a column oven (same as in Example 2). The upper part of the column has a shape that allows two channels to be connected; one channel is connected to a PTFE tube connected to liquid feed pump 1 (same as in Example 2), and the other channel is connected to a A tube connected to the liquid pump 2 (same as in Example 2) was connected to a tube in which a hydrogen flow path had been merged in advance. A tube was connected to the bottom of the column, and the tip of the tube was introduced into a container for storing the reaction solution. The column oven was then set at 25°C. A mixed solvent of tetrahydrofuran:2-propanol:distilled water = 88:10:2 was fed from the liquid pump 1 at a flow rate of 0.15 mL per minute, and tetrahydrofuran was fed from the liquid feed pump 2 at a flow rate of 0.09 mL per minute for 1 hour. did.

1時間送液後、送液を継続しながら水素を0.13cm/sec(毎分6mL)で1時間送気した。水素は水素ボンベから供給し、供給量は水素ボンベに接続したレギュレーターおよびマスフローコントローラー(実施例2と同じ)で制御した。 After liquid feeding for 1 hour, hydrogen was fed at a rate of 0.13 cm/sec (6 mL per minute) for 1 hour while continuing liquid feeding. Hydrogen was supplied from a hydrogen cylinder, and the supply amount was controlled by a regulator and a mass flow controller (same as in Example 2) connected to the hydrogen cylinder.

1-ベンジル-4-[(5,6-ジメトキシ-1-インダノン)-2-イリデン]メチルピペリジンを3.77g(10mmol)量り取り、テトラヒドロフラン:2-プロパノール:蒸留水=88:10:2混合溶媒100mLに完全に溶解させ、0.1Mとした溶液を調製し、送液ポンプ1より毎分0.15mLの流量で送液した。この送液開始時間を反応開始時間とした。 Weigh out 3.77 g (10 mmol) of 1-benzyl-4-[(5,6-dimethoxy-1-indanone)-2-ylidene]methylpiperidine and mix it with tetrahydrofuran:2-propanol:distilled water = 88:10:2. A solution of 0.1M was prepared by completely dissolving the solution in 100 mL of the solvent, and the solution was fed from the liquid feed pump 1 at a flow rate of 0.15 mL per minute. This liquid feeding start time was defined as the reaction start time.

反応開始2時間後より一定時間サンプリングを行い、HPLCにて純度測定を行った。HPLC測定のためのサンプルは、容器に10分間フロー溶液を回収し、そこから200μL抜き取り、希釈溶液(0.1% トリフルオロ酢酸水溶液:アセトニトリル=1:1)で10mLにすることで調製した。反応開始7時間後のドネペジルの純度は94.7%であった。 Sampling was performed for a certain period of time from 2 hours after the start of the reaction, and the purity was measured by HPLC. A sample for HPLC measurement was prepared by collecting the flow solution in a container for 10 minutes, drawing out 200 μL from there, and making the volume up to 10 mL with a diluted solution (0.1% trifluoroacetic acid aqueous solution: acetonitrile = 1:1). The purity of donepezil 7 hours after the start of the reaction was 94.7%.

<実施例10~12>
10gの陰イオン交換樹脂A26を水17mL×3、エタノール17mL×3、下記表1にそれぞれ記載の溶媒組成の混合溶媒17mL×3の順で洗浄した。直径10mm、長さ100mmのステンレス製カラム(実施例2と同じ)に6.4gの前記陰イオン交換樹脂A26を充填し、蓋を閉め、カラムオーブン(実施例2と同じ)に設置した。送液ポンプ1(実施例2と同じ)に繋げたPTFE製チューブをカラム下部に接続し、カラム上部にチューブを取り付け、アルドール縮合反応実施後の溶液を回収する容器に導入した。その後、カラムオーブンを55℃に設定し、加温した。送液ポンプ1から、下記表1にそれぞれ記載の溶媒組成の混合溶媒を毎分0.15mLの流量で1時間送液した。
<Examples 10 to 12>
10 g of anion exchange resin A26 was washed in the following order: 17 mL x 3 of water, 17 mL x 3 of ethanol, and 17 mL x 3 of a mixed solvent having the solvent composition shown in Table 1 below. A stainless steel column (same as in Example 2) with a diameter of 10 mm and a length of 100 mm was filled with 6.4 g of the anion exchange resin A26, the lid was closed, and the column was placed in a column oven (same as in Example 2). A PTFE tube connected to liquid pump 1 (same as in Example 2) was connected to the bottom of the column, a tube was attached to the top of the column, and the solution was introduced into a container for collecting the solution after the aldol condensation reaction. Thereafter, the column oven was set at 55°C and heated. A mixed solvent having the solvent composition shown in Table 1 below was pumped from the liquid pump 1 at a flow rate of 0.15 mL per minute for 1 hour.

3.84gの5,6-ジメトキシ-1-インダノン(20mmol)と4.27gの1-ベンジル-4-ホルミルピペリジン(21mmol)を、下記表1にそれぞれ記載の溶媒組成の混合溶媒に完全に溶解させ、0.1Mとした溶液を調製し、送液ポンプ1より毎分0.15mLの流量で送液した。この送液開始時間を反応開始時間とした。 Completely dissolve 3.84 g of 5,6-dimethoxy-1-indanone (20 mmol) and 4.27 g of 1-benzyl-4-formylpiperidine (21 mmol) in a mixed solvent with the solvent composition listed in Table 1 below. A 0.1M solution was prepared, and the solution was delivered from the liquid delivery pump 1 at a flow rate of 0.15 mL per minute. This liquid feeding start time was defined as the reaction start time.

反応開始2時間後より一定時間サンプリングを行い、HPLCにて純度測定を行った。HPLC測定のためのサンプルは、容器に10分間フロー溶液を回収し、そこから200μL抜き取り、希釈溶液(0.1% トリフルオロ酢酸水溶液:アセトニトリル=1:1)で10mLにすることで調製した。 Sampling was performed for a certain period of time from 2 hours after the start of the reaction, and the purity was measured by HPLC. A sample for HPLC measurement was prepared by collecting the flow solution in a container for 10 minutes, drawing out 200 μL from there, and making the volume up to 10 mL with a diluted solution (0.1% trifluoroacetic acid aqueous solution: acetonitrile = 1:1).

各実施例の反応開始5時間後の1-ベンジル-4-[(5,6-ジメトキシ-1-インダノン)-2-イリデン]メチルピペリジンの純度は下記表1に示す通りである。 The purity of 1-benzyl-4-[(5,6-dimethoxy-1-indanone)-2-ylidene]methylpiperidine 5 hours after the start of the reaction in each example is as shown in Table 1 below.

Figure 0007452810000010
Figure 0007452810000010

<実施例13>
0.28gのジメチルポリシリル-パラジウムアルミナPPD-100(実施例3と同じ)と5.0gの活性アルミナ(実施例1と同じ)を量り取り、均一に混合した後、直径10mm、長さ100mmのガラス製カラム(実施例2と同じ)に充填し、蓋を閉めた。カラム下部は、2本の流路が接続可能な形状であり、片方の流路は送液ポンプ1(実施例2と同じ)に繋がったPTFE製チューブを繋ぎ、もう一方の流路には送液ポンプ2(実施例2と同じ)に繋がったチューブに予め水素用流路を合流させたチューブを繋いだ。カラム上部にチューブを繋ぎ、チューブの先は反応液を貯蔵する容器に導入した。送液ポンプ1からテトラヒドロフラン:2-プロパノール=90:10の混合溶媒を毎分0.3mLの流量で、送液ポンプ2からテトラヒドロフランを毎分0.06mLの流量で1時間送液した。
<Example 13>
Weigh out 0.28 g of dimethylpolysilyl-palladium alumina PPD-100 (same as Example 3) and 5.0 g of activated alumina (same as Example 1), mix them uniformly, and then form a material with a diameter of 10 mm and a length of 100 mm. The mixture was filled into a glass column (same as in Example 2) and the lid was closed. The lower part of the column has a shape that allows two channels to be connected; one channel is connected to a PTFE tube connected to liquid feed pump 1 (same as in Example 2), and the other channel is connected to a A tube connected to the liquid pump 2 (same as in Example 2) was connected to a tube in which a hydrogen flow path had been merged in advance. A tube was connected to the top of the column, and the tip of the tube was introduced into a container for storing the reaction solution. A mixed solvent of tetrahydrofuran:2-propanol=90:10 was fed from the liquid feed pump 1 at a flow rate of 0.3 mL per minute, and tetrahydrofuran was fed from the liquid feed pump 2 at a flow rate of 0.06 mL per minute for 1 hour.

室温にて1時間送液後、送液を継続しながら水素を0.13cm/sec(毎分6mL)で1時間送気した。水素は水素ボンベから供給し、供給量は水素ボンベに接続したレギュレーターおよびマスフローコントローラー(実施例2と同じ)で制御した。 After the liquid was fed for 1 hour at room temperature, hydrogen was fed at a rate of 0.13 cm/sec (6 mL per minute) for 1 hour while continuing the liquid feeding. Hydrogen was supplied from a hydrogen cylinder, and the supply amount was controlled by a regulator and a mass flow controller (same as in Example 2) connected to the hydrogen cylinder.

1-ベンジル-4-[(5,6-ジメトキシ-1-インダノン)-2-イリデン]メチルピペリジンを11.3g(30mmol)量り取り、テトラヒドロフラン:2-プロパノール=90:10混合溶媒に完全に溶解させ、0.1Mとした溶液を300mL調製し、送液ポンプ1より毎分0.3mLの流量で送液した。この送液開始時間を反応開始時間とした。 Weigh out 11.3 g (30 mmol) of 1-benzyl-4-[(5,6-dimethoxy-1-indanone)-2-ylidene]methylpiperidine and completely dissolve it in a mixed solvent of tetrahydrofuran:2-propanol=90:10. 300 mL of a 0.1M solution was prepared, and the solution was delivered from the liquid delivery pump 1 at a flow rate of 0.3 mL per minute. This liquid feeding start time was defined as the reaction start time.

反応開始2時間後より一定時間サンプリングを行い、HPLCにて純度測定を行った。HPLC測定のためのサンプルは、容器に10分間フロー溶液を回収し、そこから200μL抜き取り、希釈溶液(0.1% トリフルオロ酢酸水溶液:アセトニトリル=1:1)で10mLにすることで調製した。反応開始6時間後のドネペジルの純度は98.1%であった。 Sampling was performed for a certain period of time from 2 hours after the start of the reaction, and the purity was measured by HPLC. A sample for HPLC measurement was prepared by collecting the flow solution in a container for 10 minutes, drawing out 200 μL from there, and making the volume up to 10 mL with a diluted solution (0.1% trifluoroacetic acid aqueous solution: acetonitrile = 1:1). The purity of donepezil 6 hours after the start of the reaction was 98.1%.

<実施例14~16>
水素流量および送液ポンプ2の送液量を変更した以外は実施例13と同様の操作を行い、水素化ステップの水素流量の検討を行った。それぞれの実施例において反応開始6時間後のドネペジルの純度を表2に記載した。
<Examples 14 to 16>
The same operation as in Example 13 was performed except that the hydrogen flow rate and the amount of liquid fed by the liquid feed pump 2 were changed, and the hydrogen flow rate in the hydrogenation step was examined. Table 2 shows the purity of donepezil 6 hours after the start of the reaction in each Example.

Figure 0007452810000011
Figure 0007452810000011

<実施例17>
10gの陰イオン交換樹脂A26を水17mL×3、エタノール17mL×3、テトラヒドロフラン:2-プロパノール:蒸留水=88:10:2の混合溶媒17mL×3の順で洗浄した。アルドール縮合ステップをフロー法によって連続的に行うための第1反応器として、直径10mm、長さ100mmのステンレス製カラム(実施例2と同じ)に6.5g充填し、蓋を閉め、カラムオーブン(実施例2と同じ)に設置した。これを第1カラムとし、送液ポンプ1(実施例2と同じ)に繋がったPTFE製チューブを第1カラム下部に接続し、第1カラム上部にはアルドール縮合反応実施後の溶液を次の水素化ステップをフロー法によって連続的に行うための第2反応器である、水素化反応を行うカラムに誘導するためのチューブを取り付けた。
<Example 17>
10 g of anion exchange resin A26 was washed in the following order: 17 mL x 3 of water, 17 mL x 3 of ethanol, and 17 mL x 3 of a mixed solvent of tetrahydrofuran:2-propanol:distilled water = 88:10:2. As the first reactor for carrying out the aldol condensation step continuously by flow method, 6.5 g was packed into a stainless steel column (same as in Example 2) with a diameter of 10 mm and a length of 100 mm, the lid was closed, and the column oven was opened. (same as in Example 2). This will be used as the first column, and a PTFE tube connected to liquid pump 1 (same as in Example 2) will be connected to the bottom of the first column. A tube for guiding the hydrogenation reaction to a column, which is a second reactor for performing the hydrogenation step continuously by a flow method, was attached.

1.7gの5% 白金炭素(実施例2と同じ)と5.4gの活性アルミナ(実施例1と同じ)を量り取り、均一に混合した後、直径10mm、長さ100mmのステンレス製カラム(実施例2と同じ)に充填し、蓋を閉め、カラムオーブン(実施例2と同じ)に設置した。これを第2カラムとした。第2カラム上部は、2本の流路が接続可能な形状であり、片方の流路は第1カラム上部に接続してあるチューブの出口側と繋ぎ、もう一方の流路には送液ポンプ2(実施例2と同じ)に繋がったチューブに予め水素用流路を合流させたチューブを繋いだ。第2カラム下部にチューブを繋ぎ、チューブの先は反応液を貯蔵する容器に導入した。その後、第1カラムのカラムオーブンを55℃に、第2カラムのカラムオーブンを25℃に設定した。送液ポンプ1からテトラヒドロフラン:2-プロパノール:蒸留水=88:10:2混合溶媒を毎分0.15mLの流量で、送液ポンプ2からテトラヒドロフランを毎分0.09mLの流量で1時間送液した。 Weigh out 1.7 g of 5% platinum carbon (same as Example 2) and 5.4 g of activated alumina (same as Example 1), mix them uniformly, and place them in a stainless steel column with a diameter of 10 mm and a length of 100 mm ( The mixture was filled into a column oven (same as in Example 2), closed with a lid, and placed in a column oven (same as in Example 2). This was used as the second column. The upper part of the second column has a shape that allows connection of two channels, one of which is connected to the outlet side of the tube connected to the upper part of the first column, and the other channel is connected to a liquid pump. 2 (same as in Example 2) was connected to a tube in which the hydrogen flow path had been merged in advance. A tube was connected to the bottom of the second column, and the tip of the tube was introduced into a container for storing the reaction solution. Thereafter, the column oven for the first column was set at 55°C, and the column oven for the second column was set at 25°C. A mixed solvent of tetrahydrofuran:2-propanol:distilled water = 88:10:2 was fed from the liquid pump 1 at a flow rate of 0.15 mL per minute, and tetrahydrofuran was fed from the liquid feed pump 2 at a flow rate of 0.09 mL per minute for 1 hour. did.

1時間送液後、送液を継続しながら水素を0.32cm/sec(毎分15mL)で1時間送気した。水素は水素ボンベから供給し、供給量は水素ボンベに接続したレギュレーターおよびマスフローコントローラー(実施例2と同じ)で制御した。 After liquid feeding for 1 hour, hydrogen was fed at a rate of 0.32 cm/sec (15 mL per minute) for 1 hour while continuing liquid feeding. Hydrogen was supplied from a hydrogen cylinder, and the supply amount was controlled by a regulator and a mass flow controller (same as in Example 2) connected to the hydrogen cylinder.

1.92gの5,6-ジメトキシ-1-インダノン(10mmol)と2.19gの1-ベンジル-4-ホルミルピペリジン(10.8mmol)をテトラヒドロフラン:2-プロパノール:蒸留水=88:10:2混合溶媒100mLに完全に溶解させ、0.1Mとした溶液を調製し、送液ポンプ1より毎分0.15mLの流量で送液した。この送液開始時間を反応開始時間とした。 1.92 g of 5,6-dimethoxy-1-indanone (10 mmol) and 2.19 g of 1-benzyl-4-formylpiperidine (10.8 mmol) were mixed in a ratio of tetrahydrofuran:2-propanol:distilled water = 88:10:2. A solution of 0.1M was prepared by completely dissolving the solution in 100 mL of the solvent, and the solution was fed from the liquid feed pump 1 at a flow rate of 0.15 mL per minute. This liquid feeding start time was defined as the reaction start time.

反応開始2時間後より一定時間サンプリングを行い、HPLCにて純度測定を行った。HPLC測定のためのサンプルは、容器に10分間フロー溶液を回収し、そこから200μL抜き取り、希釈溶液(0.1% トリフルオロ酢酸水溶液:アセトニトリル=1:1)で10mLにすることで調製した。反応開始5時間後のドネペジルの純度は95.6%であった。 Sampling was performed for a certain period of time from 2 hours after the start of the reaction, and the purity was measured by HPLC. A sample for HPLC measurement was prepared by collecting the flow solution in a container for 10 minutes, drawing out 200 μL from there, and making the volume up to 10 mL with a diluted solution (0.1% trifluoroacetic acid aqueous solution: acetonitrile = 1:1). The purity of donepezil 5 hours after the start of the reaction was 95.6%.

<実施例18~20>
水素化ステップの触媒共充填剤とその充填量を変更した以外は実施例17と同様の操作を行い、水素化ステップの共充填剤の検討を行った。それぞれの実施例において反応開始5時間後のドネペジルの純度を表3に記載した。
<Examples 18-20>
The same operation as in Example 17 was performed except that the catalyst co-filling agent in the hydrogenation step and its filling amount were changed, and the co-filling agent in the hydrogenation step was examined. Table 3 shows the purity of donepezil 5 hours after the start of the reaction in each Example.

Figure 0007452810000012
Figure 0007452810000012

<実施例21>
弱塩基性スチレン系陰イオン交換樹脂WA30(三菱化学、ダイヤイオン(商標))(以下、「陰イオン交換樹脂WA30」)を200mL太口ナスフラスコに20.2g量り取り、水100mLと水酸化ナトリウム3.97gを加え、エバポレーターを用いて常温常圧で15時間攪拌した。攪拌後の前記陰イオン交換樹脂WA30を濾取し、水17mL×3、エタノール17mL×3、テトラヒドロフラン:2-プロパノール:蒸留水=88:10:2の混合溶媒17mL×3の順で洗浄した。直径10mm、長さ100mmのステンレス製カラム(実施例2と同じ)に洗浄した前記陰イオン交換樹脂WA30を5.9g充填し、蓋を閉め、カラムオーブン(実施例2と同じ)に設置した。送液ポンプ1(実施例2と同じ)に繋げたPTFE製チューブをカラム下部に接続し、カラム上部にチューブを取り付け、アルドール縮合反応実施後の溶液を回収する容器に導入した。その後、カラムオーブンを55℃に設定し、加温した。送液ポンプ1からテトラヒドロフラン:2-プロパノール:蒸留水=88:10:2の混合溶媒を毎分0.15mLの流量で1時間送液した。
<Example 21>
Weigh 20.2 g of weakly basic styrene-based anion exchange resin WA30 (Mitsubishi Chemical, Diaion (trademark) ) (hereinafter referred to as "anion exchange resin WA30") into a 200 mL wide-necked eggplant flask, and add 100 mL of water and sodium hydroxide. 3.97 g was added, and the mixture was stirred at room temperature and pressure for 15 hours using an evaporator. The anion exchange resin WA30 after stirring was collected by filtration and washed in the following order: 17 mL x 3 of water, 17 mL x 3 of ethanol, and 17 mL x 3 of a mixed solvent of tetrahydrofuran:2-propanol:distilled water = 88:10:2. A stainless steel column (same as Example 2) with a diameter of 10 mm and a length of 100 mm was filled with 5.9 g of the washed anion exchange resin WA30, the lid was closed, and the column was placed in a column oven (same as Example 2). A PTFE tube connected to liquid pump 1 (same as in Example 2) was connected to the bottom of the column, a tube was attached to the top of the column, and the solution was introduced into a container for collecting the solution after the aldol condensation reaction. Thereafter, the column oven was set at 55°C and heated. A mixed solvent of tetrahydrofuran:2-propanol:distilled water=88:10:2 was fed from the liquid feed pump 1 at a flow rate of 0.15 mL/min for 1 hour.

0.961gの5,6-ジメトキシ-1-インダノン(5.0mmol)と1.097gの1-ベンジル-4-ホルミルピペリジン(5.4mmol)をテトラヒドロフラン:2-プロパノール:蒸留水=88:10:2の混合溶媒50mLに完全に溶解させ、0.1Mとした溶液を調製し、送液ポンプ1より毎分0.15mLの流量で送液した。この送液開始時間を反応開始時間とした。 0.961 g of 5,6-dimethoxy-1-indanone (5.0 mmol) and 1.097 g of 1-benzyl-4-formylpiperidine (5.4 mmol) were mixed in tetrahydrofuran:2-propanol:distilled water = 88:10: 2 was completely dissolved in 50 mL of a mixed solvent to prepare a 0.1M solution, and the solution was delivered from the liquid delivery pump 1 at a flow rate of 0.15 mL per minute. This liquid feeding start time was defined as the reaction start time.

反応開始2時間後より一定時間サンプリングを行い、HPLCにて純度測定を行った。HPLC測定のためのサンプルは、容器に10分間フロー溶液を回収し、そこから200μL抜き取り、希釈溶液(0.1% トリフルオロ酢酸水溶液:アセトニトリル=1:1)で10mLにすることで調製した。 Sampling was performed for a certain period of time from 2 hours after the start of the reaction, and the purity was measured by HPLC. A sample for HPLC measurement was prepared by collecting the flow solution in a container for 10 minutes, drawing out 200 μL from there, and making the volume up to 10 mL with a diluted solution (0.1% trifluoroacetic acid aqueous solution: acetonitrile = 1:1).

反応開始5時間後の1-ベンジル-4-[(5,6-ジメトキシ-1-インダノン)-2-イリデン]メチルピペリジンの純度は86.2%であった。 Five hours after the start of the reaction, the purity of 1-benzyl-4-[(5,6-dimethoxy-1-indanone)-2-ylidene]methylpiperidine was 86.2%.

<実施例22>
強塩基性アクリル系陰イオン交換樹脂IRA958(オルガノ、アンバーライト(商標)IRA958)(以下、「陰イオン交換樹脂IRA958」)を200mL太口ナスフラスコに12.2g量り取り、水100mLと水酸化ナトリウム2.6gを加え、エバポレーターを用いて常温常圧で15時間攪拌した。攪拌後の前記陰イオン交換樹脂IRA958を濾取し、水17mL×3、エタノール17mL×3、テトラヒドロフラン:2-プロパノール:蒸留水=88:10:2の混合溶媒17mL×3の順で洗浄した。直径10mm、長さ100mmのステンレス製カラム(実施例2と同じ)に洗浄した前記陰イオン交換樹脂IRA958を6.0g充填し、蓋を閉め、カラムオーブン(実施例2と同じ)に設置した。送液ポンプ1(実施例2と同じ)に繋げたPTFE製チューブをカラム下部に接続し、カラム上部にチューブを取り付け、アルドール縮合反応実施後の溶液を回収する容器に導入した。その後、カラムオーブンを55℃に設定し、加温した。送液ポンプ1からテトラヒドロフラン:2-プロパノール:蒸留水=88:10:2の混合溶媒を毎分0.15mLの流量で1時間送液した。
<Example 22>
Weigh 12.2 g of strongly basic acrylic anion exchange resin IRA958 (Organo, Amberlite (trademark) IRA958) (hereinafter referred to as "anion exchange resin IRA958") into a 200 mL wide-necked eggplant flask, and add 100 mL of water and sodium hydroxide. 2.6 g was added and stirred for 15 hours at normal temperature and normal pressure using an evaporator. The anion exchange resin IRA958 after stirring was collected by filtration and washed in the following order: 17 mL x 3 of water, 17 mL x 3 of ethanol, and 17 mL x 3 of a mixed solvent of tetrahydrofuran:2-propanol:distilled water = 88:10:2. A stainless steel column (same as in Example 2) with a diameter of 10 mm and a length of 100 mm was filled with 6.0 g of the washed anion exchange resin IRA958, the lid was closed, and the column was placed in a column oven (same as in Example 2). A PTFE tube connected to liquid pump 1 (same as in Example 2) was connected to the bottom of the column, a tube was attached to the top of the column, and the solution was introduced into a container for collecting the solution after the aldol condensation reaction. Thereafter, the column oven was set at 55°C and heated. A mixed solvent of tetrahydrofuran:2-propanol:distilled water=88:10:2 was fed from the liquid feed pump 1 at a flow rate of 0.15 mL/min for 1 hour.

1.345gの5,6-ジメトキシ-1-インダノン(7.0mmol)と1.536gの1-ベンジル-4-ホルミルピペリジン(7.6mmol)をテトラヒドロフラン:2-プロパノール:蒸留水=88:10:2の混合溶媒70mLに完全に溶解させ、0.1Mとした溶液を調製し、送液ポンプ1より毎分0.15mLの流量で送液した。この送液開始時間を反応開始時間とした。 1.345 g of 5,6-dimethoxy-1-indanone (7.0 mmol) and 1.536 g of 1-benzyl-4-formylpiperidine (7.6 mmol) were mixed in tetrahydrofuran:2-propanol:distilled water = 88:10: 2 was completely dissolved in 70 mL of a mixed solvent to prepare a 0.1M solution, and the solution was delivered from the liquid delivery pump 1 at a flow rate of 0.15 mL per minute. This liquid feeding start time was defined as the reaction start time.

反応開始2時間後より一定時間サンプリングを行い、HPLCにて純度測定を行った。HPLC測定のためのサンプルは、容器に10分間フロー溶液を回収し、そこから200μL抜き取り、希釈溶液(0.1% トリフルオロ酢酸水溶液:アセトニトリル=1:1)で10mLにすることで調製した。 Sampling was performed for a certain period of time from 2 hours after the start of the reaction, and the purity was measured by HPLC. A sample for HPLC measurement was prepared by collecting the flow solution in a container for 10 minutes, drawing out 200 μL from there, and making the volume up to 10 mL with a diluted solution (0.1% trifluoroacetic acid aqueous solution: acetonitrile = 1:1).

反応開始5時間後の1-ベンジル-4-[(5,6-ジメトキシ-1-インダノン)-2-イリデン]メチルピペリジンの純度は67.1%であった。 Five hours after the start of the reaction, the purity of 1-benzyl-4-[(5,6-dimethoxy-1-indanone)-2-ylidene]methylpiperidine was 67.1%.

今回開示された実施の形態及び実施例、実験例は全ての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内で全ての変更が含まれることが意図される。 The embodiments, examples, and experimental examples disclosed this time are illustrative in all respects, and should not be considered restrictive. The scope of the present invention is indicated not by the above description but by the claims, and it is intended that all changes within the meaning and range of equivalency to the claims are included.

Claims (10)

下記式(II)
Figure 0007452810000013

で表されるドネペジルの製造方法であって、
下記式(III)
Figure 0007452810000014

で表される5,6-ジメトキシ-1-インダノンと、下記式(IV)
Figure 0007452810000015

で表される1-ベンジル-4-ホルミルピペリジンとをアルドール縮合反応させて下記式(V)
Figure 0007452810000016

で表される1-ベンジル-4-[(5,6-ジメトキシ-1-インダノン)-2-イリデン]メチルピペリジンを得るアルドール縮合ステップと、
1-ベンジル-4-[(5,6-ジメトキシ-1-インダノン)-2-イリデン]メチルピペリジンを水素化反応させて上記式(II)で表されるドネペジルを得る水素化ステップとを含み、
前記アルドール縮合ステップおよび前記水素化ステップの少なくともいずれかを、触媒を固定化した反応器を用いたフロー法によって連続的に行い、
ここにおいて前記アルドール縮合ステップに用いる触媒が塩基性樹脂である、ドネペジルの製造方法。
The following formula (II)
Figure 0007452810000013

A method for producing donepezil represented by
The following formula (III)
Figure 0007452810000014

5,6-dimethoxy-1-indanone represented by and the following formula (IV)
Figure 0007452810000015

The following formula (V) is obtained by carrying out an aldol condensation reaction with 1-benzyl-4-formylpiperidine represented by
Figure 0007452810000016

an aldol condensation step to obtain 1-benzyl-4-[(5,6-dimethoxy-1-indanone)-2-ylidene]methylpiperidine,
a hydrogenation step of hydrogenating 1-benzyl-4-[(5,6-dimethoxy-1-indanone)-2-ylidene]methylpiperidine to obtain donepezil represented by the above formula (II),
At least one of the aldol condensation step and the hydrogenation step is performed continuously by a flow method using a reactor in which a catalyst is immobilized,
A method for producing donepezil , wherein the catalyst used in the aldol condensation step is a basic resin .
前記塩基性樹脂が架橋剤で架橋された樹脂である、請求項に記載のドネペジルの製造方法。 The method for producing donepezil according to claim 1 , wherein the basic resin is a resin crosslinked with a crosslinking agent. 前記アルドール縮合ステップに用いる触媒が第三級アミノ基または第四級アンモニウム基が導入された樹脂である、請求項またはに記載のドネペジルの製造方法。 The method for producing donepezil according to claim 1 or 2 , wherein the catalyst used in the aldol condensation step is a resin into which a tertiary amino group or a quaternary ammonium group is introduced. 前記アルドール縮合ステップに用いる触媒がジアルキルアミノ基、トリアルキルアンモニウム基またはジアルキルアルコールアンモニウム基が導入された樹脂である、請求項に記載のドネペジルの製造方法。 The method for producing donepezil according to claim 3 , wherein the catalyst used in the aldol condensation step is a resin into which a dialkylamino group, a trialkylammonium group, or a dialkylalcohol ammonium group is introduced. 前記アルドール縮合ステップに用いる触媒がジメチルアミノ基、トリメチルアンモニウム基またはジメチルエタノールアンモニウム基が導入された樹脂である、請求項に記載のドネペジルの製造方法。 The method for producing donepezil according to claim 4 , wherein the catalyst used in the aldol condensation step is a resin into which a dimethylamino group, a trimethylammonium group, or a dimethylethanolammonium group is introduced. 前記樹脂が、ジメチルアミノ基、トリメチルアンモニウム基またはジメチルエタノールアンモニウム基が導入され、ジビニルベンゼンで架橋されたポリスチレン樹脂またはポリアクリル酸エステル樹脂である、請求項に記載のドネペジルの製造方法。 The method for producing donepezil according to claim 5 , wherein the resin is a polystyrene resin or polyacrylic acid ester resin into which a dimethylamino group, a trimethylammonium group, or a dimethylethanolammonium group is introduced and crosslinked with divinylbenzene. 前記樹脂が、ジメチルアミノ基、トリメチルアンモニウム基またはジメチルエタノールアンモニウム基が導入され、ジビニルベンゼンで架橋されたポリスチレン樹脂である、請求項に記載のドネペジルの製造方法。 The method for producing donepezil according to claim 6 , wherein the resin is a polystyrene resin into which a dimethylamino group, a trimethylammonium group, or a dimethylethanolammonium group is introduced and crosslinked with divinylbenzene. 前記水素化ステップに用いる触媒が、パラジウム系触媒、白金系触媒およびニッケル系触媒からなる群から選ばれる少なくともいずれかである、請求項1に記載のドネペジルの製造方法。 The method for producing donepezil according to claim 1, wherein the catalyst used in the hydrogenation step is at least one selected from the group consisting of a palladium-based catalyst, a platinum-based catalyst, and a nickel-based catalyst. 前記水素化ステップに用いる触媒が、ジメチルポリシリル-パラジウムアルミナ、ジメチルポリシリル-パラジウムシリカゲル、白金炭素、白金アルミナおよびジメチルポリシリル-白金炭素から選ばれる少なくともいずれかである、請求項に記載のドネペジルの製造方法。 9. The catalyst used in the hydrogenation step is at least one selected from dimethylpolysilyl-palladium alumina, dimethylpolysilyl-palladium silica gel, platinum carbon, platinum alumina, and dimethylpolysilyl-platinum carbon. Method for producing donepezil. 前記アルドール縮合反応を行うための第1反応器と、前記水素化反応を行うための第2反応器とを連結し、前記第1反応器において前記アルドール縮合ステップをフロー法によって連続的に行って得られた1-ベンジル-4-[(5,6-ジメトキシ-1-インダノン)-2-イリデン]メチルピペリジンを前記第2反応器に供し、前記第2反応器において前記水素化ステップをフロー法によって連続的に行う、請求項1~のいずれか1項に記載のドネペジルの製造方法。 A first reactor for performing the aldol condensation reaction and a second reactor for performing the hydrogenation reaction are connected, and the aldol condensation step is continuously performed in the first reactor by a flow method. The obtained 1-benzyl-4-[(5,6-dimethoxy-1-indanone)-2-ylidene]methylpiperidine is provided to the second reactor, and the hydrogenation step is performed in the second reactor by a flow method. The method for producing donepezil according to any one of claims 1 to 9 , which is carried out continuously by:
JP2019112062A 2019-06-17 2019-06-17 Method for producing donepezil by flow reaction using immobilized catalyst Active JP7452810B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019112062A JP7452810B2 (en) 2019-06-17 2019-06-17 Method for producing donepezil by flow reaction using immobilized catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019112062A JP7452810B2 (en) 2019-06-17 2019-06-17 Method for producing donepezil by flow reaction using immobilized catalyst

Publications (2)

Publication Number Publication Date
JP2020203851A JP2020203851A (en) 2020-12-24
JP7452810B2 true JP7452810B2 (en) 2024-03-19

Family

ID=73837260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019112062A Active JP7452810B2 (en) 2019-06-17 2019-06-17 Method for producing donepezil by flow reaction using immobilized catalyst

Country Status (1)

Country Link
JP (1) JP7452810B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007013395A1 (en) 2005-07-25 2007-02-01 Eisai R & D Management Co., Ltd. Process for producing 1-benzyl-4-[(5,6-dimethoxy-1-indanone)-2-ylidene]methylpiperidine
WO2007108011A2 (en) 2006-03-20 2007-09-27 Ind-Swift Laboratories Limited Process for the preparation of highly pure donepezil

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI95572C (en) * 1987-06-22 1996-02-26 Eisai Co Ltd Process for the preparation of a medicament useful as a piperidine derivative or its pharmaceutical salt
JP3075566B2 (en) * 1990-05-15 2000-08-14 エーザイ株式会社 Optically active indanone derivative
JP3992806B2 (en) * 1997-12-12 2007-10-17 エーザイ・アール・アンド・ディー・マネジメント株式会社 Method for producing donepezil intermediate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007013395A1 (en) 2005-07-25 2007-02-01 Eisai R & D Management Co., Ltd. Process for producing 1-benzyl-4-[(5,6-dimethoxy-1-indanone)-2-ylidene]methylpiperidine
WO2007108011A2 (en) 2006-03-20 2007-09-27 Ind-Swift Laboratories Limited Process for the preparation of highly pure donepezil

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Miyamura, Hiroyuki; Suzuki, Aya; Yasukawa, Tomohiro; Kobayashi, Shu,"Polysilane-Immobilized Rh-Pt Bimetallic Nanoparticles as Powerful Arene Hydrogenation Catalysts: Synthesis, Reactions under Batch and Flow Conditions and Reaction Mechanism",Journal of the American Chemical Society,2018年,Vol.140(36),p.11325-11334
Niphade, Navanath; Mali, Anil; Jagtap, Kunal; Ojha, Ramesh Chandra; et al,"An Improved and Efficient Process for the Production of Donepezil Hydrochloride: Substitution of Sodium Hydroxide for n-Butyl Lithium via Phase Transfer Catalysis",Organic Process Research & Development,2008年,Vol.12(4),p.731-735

Also Published As

Publication number Publication date
JP2020203851A (en) 2020-12-24

Similar Documents

Publication Publication Date Title
EP3661915B1 (en) Processes for preparing pyrrolidine compounds
NO343951B1 (en) Process for Preparation of (1R, 2R) -3- (3-Dimethylamino-1-ethyl-2-methyl-propyl) -phenol
US10611712B2 (en) Hydrogenation method for preparing hydrogenated bisphenol-A having a higher trans/trans isomer ratio
US9663426B2 (en) Composite metal catalyst composition, and method and apparatus for preparing 1,4-cyclohexanedimethanol using same
EP2582659B1 (en) Process for the preparation of substituted 3-(1-amino-2-methylpentane-3-yl)phenyl compounds
JP7452810B2 (en) Method for producing donepezil by flow reaction using immobilized catalyst
CN110156645A (en) A kind of preparation method of florfenicol midbody
JP4979230B2 (en) Tetrahydropyran compound production method and tetrahydropyran compound produced by the production method
KR102352224B1 (en) Method for preparing bile acid derivatives using continuous flow reaction
SK19372001A3 (en) Process for the synthesis of (r)-1-(3,5-bis(trifluoromethyl)- phenyl)ethan-1-ol by asymmetric transfer hydrogenation
CA2750125A1 (en) Methods for preparing s1p receptor agonists and antagonists
CN112521289B (en) Oxaallylamine compound and preparation method and application thereof
CN112300150B (en) Preparation method of milpitant and intermediate thereof
CN113004161B (en) Preparation method of (2R, 3R) -3-methyl-3-phenylalanine
KR20200031934A (en) Preparation method of Penem derivatives using packed-bed continuous flow reaction
CN113582818B (en) Synthesis method of 3-halogen-2-alkylphenol
WO2007086471A1 (en) Process for production of lasofoxifene or analogue thereof
CN117383996A (en) Selective deuteration preparation method of deuterated alcohol
RU2632880C1 (en) Method of producing n-methyl-para-phenetidine
JP6695235B2 (en) A method for producing (4-hydroxy) -1-piperidinoalkylcarboxylic acid ester, and 4- [4-[(4- Method for producing chlorophenyl) (2-pyridyl) methoxy] piperidino] butanoic acid.
CN102766147B (en) Method for preparing fenspiride and halogen acid salt thereof
CN111187175A (en) Method for preparing intermediate of brivaracetam by hydrogenation of microchannel reactor
JP2023117830A (en) Bi-tetrahydrofuran dicarboxylic acid compound and method for producing the same
CN110003022A (en) A kind of synthetic method and its intermediate of Dapoxetine hydrochloride intermediate

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20190625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190723

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190723

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231106

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20231116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240228

R150 Certificate of patent or registration of utility model

Ref document number: 7452810

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150