JP2023117830A - Bi-tetrahydrofuran dicarboxylic acid compound and method for producing the same - Google Patents

Bi-tetrahydrofuran dicarboxylic acid compound and method for producing the same Download PDF

Info

Publication number
JP2023117830A
JP2023117830A JP2022020603A JP2022020603A JP2023117830A JP 2023117830 A JP2023117830 A JP 2023117830A JP 2022020603 A JP2022020603 A JP 2022020603A JP 2022020603 A JP2022020603 A JP 2022020603A JP 2023117830 A JP2023117830 A JP 2023117830A
Authority
JP
Japan
Prior art keywords
acid compound
acid
catalyst
formula
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022020603A
Other languages
Japanese (ja)
Inventor
裕子 ▲高▼橋
Hiroko Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2022020603A priority Critical patent/JP2023117830A/en
Publication of JP2023117830A publication Critical patent/JP2023117830A/en
Pending legal-status Critical Current

Links

Landscapes

  • Furan Compounds (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

To provide a novel bi-tetrahydrofuran dicarboxylic acid compound and a method for producing the same.SOLUTION: The present invention provides a method for producing a bi-tetrahydrofuran dicarboxylic acid compound that includes hydrogenating a bi-furan dicarboxylic acid compound having a structure represented by the formula (2), using a catalyst carrying a noble metal on an alumina carrier. Preferably the catalyst is a catalyst carrying a noble metal selected from Pd, Ru and Rh on an alumina carrier. (In the formula (2), R's independently represent a hydrogen atom or an alkyl group).SELECTED DRAWING: None

Description

本発明は新規ビテトラヒドロフランジカルボン酸化合物と、その製造方法に関する。 The present invention relates to a novel bitetrahydrofurandicarboxylic acid compound and a method for producing the same.

近年、石油、石炭等の化石燃料消費量を削減し、地球温暖化の緩和に貢献する手段として、バイオマスを原料として製造されるバイオマスポリマーの開発が望まれている。バイオマスポリマーを得る際のモノマー原料として、2つのフラン環が結合したビフラン化合物が注目を集めている。 In recent years, as a means of reducing consumption of fossil fuels such as petroleum and coal and contributing to the mitigation of global warming, the development of biomass polymers produced using biomass as a raw material has been desired. Bifuran compounds, in which two furan rings are bonded, have been attracting attention as raw materials for obtaining monomers for biomass polymers.

フラン環の水素化によるジカルボン酸の合成方法としては、下記反応式に従って、2,5-フランジカルボン酸(以下、「FDCA」と略記することがある。)を酢酸中でPd/活性炭触媒を用いて水素化して2,5-テトラヒドロフランジカルボン酸(以下、「THFDCA」と略記することがある。)を得る方法が報告されている(特許文献1)。 As a method for synthesizing a dicarboxylic acid by hydrogenating a furan ring, 2,5-furandicarboxylic acid (hereinafter sometimes abbreviated as "FDCA") is prepared in acetic acid using a Pd/activated carbon catalyst according to the following reaction formula. A method of obtaining 2,5-tetrahydrofurandicarboxylic acid (hereinafter sometimes abbreviated as "THFDCA") by hydrogenation with tetrahydrofurandicarboxylic acid has been reported (Patent Document 1).

Figure 2023117830000001
Figure 2023117830000001

なお、テトラヒドロフラン化合物の二量体の合成方法として、下記反応式に従って、ジエンジオールをシリル化剤でビスシリルエーテルとした後、N-ヨードスクシンイミド等のヨウ素化剤で分子内ヨードエーテル化で合成する報告例(非特許文献1)がある。 As a method for synthesizing the dimer of the tetrahydrofuran compound, according to the following reaction formula, a diene diol is converted to a bissilyl ether with a silylating agent, and then synthesized by intramolecular iodoetherification with an iodinating agent such as N-iodosuccinimide. There is a reported example (Non-Patent Document 1).

Figure 2023117830000002
Figure 2023117830000002

国際公開第2017/061858号WO2017/061858

Fujioka Hiromichi,et al. Heterocycles(2014),88(2),1323-1336Fujioka Hiromichi, et al. Heterocycles (2014), 88(2), 1323-1336

特許文献1に示されるようなフランジカルボン酸よりも、二量体のビテトラヒドロフランジカルボン酸化合物の方が、その構造上、熱分解開始温度が高く、高耐熱性樹脂原料として期待されることから、その開発が望まれるが、従来において、ビテトラヒドロフランジカルボン酸化合物に関する報告はなされていない。 The dimeric bitettrahydrofurandicarboxylic acid compound has a higher thermal decomposition initiation temperature than the furandicarboxylic acid as shown in Patent Document 1 due to its structure, and is expected as a raw material for highly heat-resistant resins. Although its development is desired, no report has been made so far on a bitetrahydrofurandicarboxylic acid compound.

また、非特許文献1で示された合成方法は、-78℃の低温で反応を行う必要があり、量産化が困難である。また、非特許文献1で合成された化合物はジカルボン酸化合物ではなく、ジカルボン酸化合物に適した製造方法が必要である。 In addition, the synthesis method shown in Non-Patent Document 1 requires the reaction to be carried out at a low temperature of -78°C, making mass production difficult. In addition, the compound synthesized in Non-Patent Document 1 is not a dicarboxylic acid compound, and a manufacturing method suitable for a dicarboxylic acid compound is required.

本発明者は、上述した課題に鑑み、新規ビテトラヒドロフランジカルボン酸化合物及びその製造方法を提供することを課題とする。 In view of the above problems, the present inventors have an object to provide a novel bitetrahydrofurandicarboxylic acid compound and a method for producing the same.

本発明者は、上記課題を解決すべく検討を重ね、バイオマス原料から製造されるビフランジカルボン酸化合物を水素化して、新規なビテトラヒドロフランジカルボン酸化合物を開発することに成功した。更に、このビフランジカルボン酸化合物の水素化は、特定の触媒を用いることで高選択率で行うことができることを見出した。
本発明はこのような知見に基づいて達成されたものであり、以下を要旨とする。
The inventors of the present invention conducted extensive studies to solve the above problems, and succeeded in hydrogenating a bifurandicarboxylic acid compound produced from a biomass raw material to develop a novel bittrahydrofurandicarboxylic acid compound. Furthermore, they have found that the hydrogenation of this bifurandicarboxylic acid compound can be carried out with high selectivity by using a specific catalyst.
The present invention has been achieved based on such findings, and the gist thereof is as follows.

[1] 下記式(1)で表される構造を有するビテトラヒドロフランジカルボン酸化合物。 [1] A bittrahydrofurandicarboxylic acid compound having a structure represented by the following formula (1).

Figure 2023117830000003
Figure 2023117830000003

(式(1)中、Rはそれぞれ独立に水素原子又はアルキル基を示す。) (In formula (1), each R independently represents a hydrogen atom or an alkyl group.)

[2] 下記式(2)で表される構造を有するビフランジカルボン酸化合物を、貴金属をアルミナ担体に担持した触媒を用いて水素化することを特徴とする[1]に記載のビテトラヒドロフランジカルボン酸化合物の製造方法。 [2] Bitetrahydrofurandicarboxylic acid according to [1], wherein a bifurandicarboxylic acid compound having a structure represented by the following formula (2) is hydrogenated using a catalyst in which a noble metal is supported on an alumina carrier. A method for producing an acid compound.

Figure 2023117830000004
Figure 2023117830000004

(式(2)中、Rは前記式(1)におけると同義である。) (In formula (2), R has the same definition as in formula (1).)

[3] 前記触媒が、Pd、Ru及びRhから選ばれる貴金属をアルミナ担体に担持した触媒である、[2]に記載のビテトラヒドロフランジカルボン酸化合物の製造方法。 [3] The method for producing a bittrahydrofurandicarboxylic acid compound according to [2], wherein the catalyst is a catalyst in which a noble metal selected from Pd, Ru and Rh is supported on an alumina carrier.

本発明のビテトラヒドロフランジカルボン酸化合物は、バイオマス原料から製造されるビフランジカルボン酸化合物の水素化で製造することができる。
バイオマス原料を化学原料の出発物質として活用する手法は、例えば、植物原料生産が各地に分散して多様化できるので原料供給が非常に安定していること、および大気圏の地球環境下においてなされ、二酸化炭素の吸収および放出の物質収支の較差が比較的均衡することから、化石資源原料には全く期待できないリサイクルを含めた循環型社会の実現性を潜在的に保有する利点を有する。このため、本発明のビテトラヒドロフランジカルボン酸化合物の産業上の利用価値は極めて大きい。
本発明のビテトラヒドロフランジカルボン酸化合物は、ポリエステルやポリアミドの原料モノマーとして使用されるが、その際、本発明のビテトラヒドロフランジカルボン酸化合物は、熱分解開始温度が一般的なテトラヒドロフランジカルボン酸化合物に比べて有意に高く、高耐熱性が要求されるポリエステルやポリアミド等のバイオマスポリマーへの適用が期待される。
本発明のビテトラヒドロフランジカルボン酸化合物の製造方法によれば、このような本発明のビテトラヒドロフランジカルボン酸化合物を高選択率で製造することができる。
The bitetrahydrofurandicarboxylic acid compound of the present invention can be produced by hydrogenation of a bifurandicarboxylic acid compound produced from a biomass raw material.
The method of using biomass raw materials as starting materials for chemical raw materials is, for example, that the production of plant raw materials can be dispersed and diversified in various places, so that the supply of raw materials is extremely stable, and that it is done in the global environment of the atmosphere, and carbon dioxide is produced. Since the material balance of carbon absorption and release is relatively balanced, it has the advantage of potentially possessing the feasibility of a recycling-oriented society, including recycling, which cannot be expected from fossil resource raw materials. Therefore, the industrial utility value of the bitetrahydrofurandicarboxylic acid compound of the present invention is extremely high.
The bitetrahydrofurandicarboxylic acid compound of the present invention is used as a raw material monomer for polyesters and polyamides. It is expected to be applied to biomass polymers such as polyesters and polyamides, which require significantly high heat resistance.
According to the method for producing a bitetrahydrofurandicarboxylic acid compound of the present invention, such a bittrahydrofurandicarboxylic acid compound of the present invention can be produced with high selectivity.

以下、本発明を詳細に説明するが、以下に記載する構成要件の説明は、本発明の実施態様の代表例であり、これらの内容に本発明は限定されるものではない。 Although the present invention will be described in detail below, the descriptions of the constituent elements described below are representative examples of embodiments of the present invention, and the present invention is not limited to these contents.

[ビテトラヒドロフランジカルボン酸化合物]
本発明のビテトラヒドロフランジカルボン酸化合物は、下記式(1)で表される構造を有する。
[bitetrahydrofurandicarboxylic acid compound]
The bitetrahydrofurandicarboxylic acid compound of the present invention has a structure represented by the following formula (1).

Figure 2023117830000005
Figure 2023117830000005

(式(1)中、Rはそれぞれ独立に水素原子又はアルキル基を示す。) (In formula (1), each R independently represents a hydrogen atom or an alkyl group.)

上記式(1)中、Rのアルキル基としては、メチル基、エチル基等の炭素数が1~8のアルキル基が挙げられるが、好ましくは1~3である。
Rとしては、溶解性や経済性の観点から、メチル基、エチル基、プロピル基であることが好ましく、特にメチル基が好ましい。
なお、式(1)中2つのRは同一であってもよく、異なるものであってもよいが、合成の容易さの観点から、同一であることが好ましい。
In the above formula (1), examples of the alkyl group for R include alkyl groups having 1 to 8 carbon atoms such as methyl group and ethyl group, and preferably 1 to 3 carbon atoms.
From the viewpoint of solubility and economy, R is preferably a methyl group, an ethyl group, or a propyl group, and particularly preferably a methyl group.
Two R's in formula (1) may be the same or different, but from the viewpoint of ease of synthesis, they are preferably the same.

[ビテトラヒドロフランジカルボン酸化合物の製造方法]
本発明のビテトラヒドロフランジカルボン酸化合物の製造方法は、下記式(2)で表される構造を有するビフランジカルボン酸化合物(以下、「ビフランジカルボン酸化合物(2)」と称す場合がある。)を、貴金属をアルミナ担体に担持した触媒を用いて水素化することにより、上記の本発明のビテトラヒドロフランジカルボン酸化合物を製造することを特徴とする。
[Method for Producing Bitetrahydrofurandicarboxylic Acid Compound]
In the method for producing a bitettrahydrofurandicarboxylic acid compound of the present invention, a bifurandicarboxylic acid compound having a structure represented by the following formula (2) (hereinafter sometimes referred to as "birfurandicarboxylic acid compound (2)"). is hydrogenated using a catalyst in which a noble metal is supported on an alumina carrier to produce the above bittrahydrofurandicarboxylic acid compound of the present invention.

Figure 2023117830000006
Figure 2023117830000006

(式(2)中、Rは前記式(1)におけると同義である。) (In formula (2), R has the same definition as in formula (1).)

前記式(1)におけると同様、式(2)中、Rのアルキル基としては、メチル基、エチル基等の炭素数が1~8のアルキル基が挙げられるが、好ましくは1~3である。
Rとしては、溶解性や経済性の観点から、メチル基、エチル基、プロピル基であることが好ましく、特にメチル基が好ましい。
なお、式(2)中2つのRは同一であってもよく、異なるものであってもよいが、合成の容易さの観点から、同一であることが好ましい。
As in the formula (1), the alkyl group for R in the formula (2) includes an alkyl group having 1 to 8 carbon atoms such as a methyl group and an ethyl group, preferably 1 to 3. .
From the viewpoint of solubility and economy, R is preferably a methyl group, an ethyl group, or a propyl group, and particularly preferably a methyl group.
Two R's in formula (2) may be the same or different, but from the viewpoint of ease of synthesis, they are preferably the same.

<ビフランジカルボン酸化合物(2)の水素化反応>
本発明のビテトラヒドロフランジカルボン酸化合物の製造方法において、ビフランジカルボン酸化合物(2)の水素化には、貴金属をアルミナ担体に担持した触媒を用いる。
本発明において、この特有の触媒を用いることは、ビフランジカルボン酸化合物(2)の選択的水素化に重要な要件であり、貴金属担持触媒であっても担体がアルミナではないと水素化の選択率が低く、また、貴金属触媒でない場合も水素化の選択率が低い。
貴金属としては、金(Au)、銀(Ag)や、ルテニウム(Ru)、ロジウム(Rh)、パラジウム(Pd)、オスミウム(Os)、イリジウム(Ir)、プラチナ(Pt)の白金属元素が挙げられるが、原料入手や触媒調製の容易さの観点から、好ましくはRd、Ru、Rhである。これらの貴金属は1種のみを用いてもよく、2種以上を用いてもよい。
<Hydrogenation reaction of bifurandicarboxylic acid compound (2)>
In the method for producing a bittrahydrofurandicarboxylic acid compound of the present invention, a catalyst in which a noble metal is supported on an alumina carrier is used for the hydrogenation of the bifurandicarboxylic acid compound (2).
In the present invention, the use of this unique catalyst is an important requirement for the selective hydrogenation of the bifurandicarboxylic acid compound (2). The yield is low, and the hydrogenation selectivity is also low without noble metal catalysts.
Examples of noble metals include platinum metal elements such as gold (Au), silver (Ag), ruthenium (Ru), rhodium (Rh), palladium (Pd), osmium (Os), iridium (Ir), and platinum (Pt). However, Rd, Ru and Rh are preferred from the viewpoint of raw material availability and ease of catalyst preparation. Only one kind of these noble metals may be used, or two or more kinds thereof may be used.

アルミナ担持触媒において、貴金属の担持量は、好ましくは0.1質量%以上、より好ましくは1質量%以上であり、好ましくは15質量%以下、より好ましくは10質量%である。貴金属担持量が上記下限以上であれば高い水素化反応活性を得ることができ、上記上限以下であれば水素化分解が抑制され、高収率となる。 In the alumina-supported catalyst, the supported amount of noble metal is preferably 0.1% by mass or more, more preferably 1% by mass or more, and preferably 15% by mass or less, more preferably 10% by mass. If the amount of noble metal supported is at least the above lower limit, high hydrogenation reaction activity can be obtained, and if it is at most the above upper limit, hydrocracking is suppressed, resulting in a high yield.

ビフランジカルボン酸化合物(2)の水素化反応は、好ましくは温度50℃以上、より好ましくは80℃以上であり、好ましくは温度200℃以下、より好ましくは180℃以下で行い、水素ガス圧力は、好ましくは1MPa以上、より好ましくは2MPa以上であり、好ましくは20MPa以下、より好ましくは10.0MPa以下で行うことが、反応効率と副反応を抑制し、収率向上の観点から好ましい。 The hydrogenation reaction of bifurandicarboxylic acid compound (2) is preferably carried out at a temperature of 50° C. or higher, more preferably 80° C. or higher, preferably 200° C. or lower, more preferably 180° C. or lower, and the hydrogen gas pressure is , preferably 1 MPa or more, more preferably 2 MPa or more, preferably 20 MPa or less, more preferably 10.0 MPa or less, from the viewpoint of suppressing reaction efficiency and side reactions and improving yield.

水素化反応の操作方法としては、水素化触媒をビフランジカルボン酸化合物(2)の溶液中に懸濁させて行う、いわゆる懸濁床による方法、あるいは水素化触媒の固定床にビフランジカルボン酸化合物(2)の溶液を流す、いわゆる固定床による方法等が通常採用することができる。さらに、例えば懸濁床による方法おいては、耐圧容器に水素化触媒と、ビフランジカルボン酸化合物(2)を仕込み、耐圧容器内の空間を水素ガスで置換した後、所定の温度で所定時間攪拌する方法、または水素ガスで置換する代わりに水素ガスを反応容器中に吹き込む方法がある。また例えば固定床による方法おいては、水素化触媒を充填した槽(例えば充填塔)に、ビフランジカルボン酸化合物(2)の溶液と、水素ガスを並流で通じる方法などがある。本発明においては、これらのいかなる方法をも用いることができる。 As a method for operating the hydrogenation reaction, the hydrogenation catalyst is suspended in a solution of the bifurandicarboxylic acid compound (2), a so-called suspended bed method, or a fixed bed of the hydrogenation catalyst and the bifurandicarboxylic acid A so-called fixed-bed method or the like, in which a solution of compound (2) is allowed to flow, can usually be employed. Furthermore, for example, in a method using a suspended bed, a hydrogenation catalyst and a bifurandicarboxylic acid compound (2) are charged in a pressure vessel, and after replacing the space in the pressure vessel with hydrogen gas, the hydrogenation is carried out at a predetermined temperature for a predetermined time. There is a method of stirring, or a method of blowing hydrogen gas into the reaction vessel instead of substituting with hydrogen gas. Further, for example, in the method using a fixed bed, there is a method in which a solution of the bifurandicarboxylic acid compound (2) and hydrogen gas are passed in parallel through a tank (for example, a packed tower) packed with a hydrogenation catalyst. Any of these methods can be used in the present invention.

反応溶媒としては、水素化反応に不活性で、ビフランジカルボン酸化合物(2)を溶解し得るものであればよく、特に制限はなく、テトラヒドロフラン(THF)、ジオキサン等のエーテル類溶媒、酢酸メチル、酢酸エチル等のエステル類溶媒、メタノール、エタノール等のアルコール類溶媒、水等を用いることができる。
このうち、ビフランジカルボン酸化合物の溶解性の観点からTHF、ジオキサン等のエーテル類溶媒が好ましい。
これらの溶媒は、1種のみを用いてもよく、2種以上を混合して用いてもよい。
The reaction solvent is not particularly limited as long as it is inert to the hydrogenation reaction and capable of dissolving the bifurandicarboxylic acid compound (2). , ester solvents such as ethyl acetate, alcohol solvents such as methanol and ethanol, water, and the like can be used.
Among these, ether solvents such as THF and dioxane are preferable from the viewpoint of the solubility of the bifurandicarboxylic acid compound.
These solvents may be used alone or in combination of two or more.

水素化反応に供するビフランジカルボン酸化合物(2)溶液中のビフランジカルボン酸化合物(2)濃度は、好ましくは5質量%以上、より好ましくは10質量%以上であり、好ましくは50質量%以下、より好ましくは30質量%以下である。ビフランジカルボン酸化合物(2)濃度が上記下限以上であれば経済性の点で有利であり、上記上限以下であれば溶媒に対する溶解性の点で有利である。 The concentration of the bifurandicarboxylic acid compound (2) in the bifurandicarboxylic acid compound (2) solution to be subjected to the hydrogenation reaction is preferably 5% by mass or more, more preferably 10% by mass or more, and preferably 50% by mass or less. , more preferably 30% by mass or less. If the concentration of bifurandicarboxylic acid compound (2) is at least the above lower limit, it is advantageous in terms of economy, and if it is at most the above upper limit, it is advantageous in terms of solubility in solvents.

水素化触媒の使用量には特に制限はないが、例えば、懸濁床による方法において、水素化触媒は、ビフランジカルボン酸化合物に対して、好ましくは2質量%以上、より好ましくは5質量%以上であり、好ましくは30質量%以下、より好ましくは20質量%以下で用いることが反応時間を短縮でき、経済性の観点から好ましい。 The amount of the hydrogenation catalyst used is not particularly limited, but for example, in a method using a suspended bed, the hydrogenation catalyst is preferably 2% by mass or more, more preferably 5% by mass, relative to the bifurandicarboxylic acid compound. It is the above, and preferably 30% by mass or less, more preferably 20% by mass or less, can shorten the reaction time and is preferable from the viewpoint of economy.

反応時間は、反応温度や水素ガス圧力等の条件によっても異なるが、通常0.5~5時間程度で、ビフランジカルボン酸化合物(2)のフラン環の水素化を行ってテトラヒドロフラン環とすることができる。 Although the reaction time varies depending on conditions such as the reaction temperature and hydrogen gas pressure, it is usually about 0.5 to 5 hours, and the furan ring of the bifurandicarboxylic acid compound (2) is hydrogenated to form a tetrahydrofuran ring. can be done.

水素化反応後、目的物のビテトラヒドロフランジカルボン酸化合物は触媒をろ過することにより分離回収することができ、必要に応じて晶析により精製することができる。 After the hydrogenation reaction, the target bitetrahydrofurandicarboxylic acid compound can be separated and recovered by filtering the catalyst, and can be purified by crystallization if necessary.

本発明のビテトラヒドロフランジカルボン酸化合物の製造方法によれば、例えば、後述の実施例に示すように、前記式(2)において、Rがメチル基のビフランジカルボン酸化合物であるビフランジカルボン酸メチル(以下、「BFDM」と略記することがある。)の水素化で、前記式(1)において、Rがメチル基のビテトラヒドロフランジカルボン酸化合物であるビテトラヒドロフランジカルボン酸メチル(以下、「BTHFDM」と略記することがある。)を高選択率で製造することができる。
なお、この水素化反応では、後述の実施例に示されるように、一方のフラン環が開環したテトラヒドロ-2-(5-メトキシ-5-オキソペンチル)-4-フランカルボン酸メチル(以下、「THFOH」と略記することがある。)や、一方のフラン環のみが水素化されたハーフ水素化物が生成するが、貴金属をアルミナ担体に担持した水素化触媒を用いることで、これらの副生成物の生成量を他の金属担持触媒を用いた場合に比べて大幅に低減することができる。
According to the method for producing a bittrahydrofurandicarboxylic acid compound of the present invention, for example, methyl bifurandicarboxylate, which is a bifurandicarboxylic acid compound in which R is a methyl group in the above formula (2), is shown in Examples below. (hereinafter sometimes abbreviated as "BFDM"), in the above formula (1), methyl bitetrahydrofurandicarboxylate (hereinafter referred to as "BTHFDM"), which is a bittrahydrofurandicarboxylic acid compound in which R is a methyl group. may be abbreviated.) can be produced with high selectivity.
In this hydrogenation reaction, as shown in Examples below, methyl tetrahydro-2-(5-methoxy-5-oxopentyl)-4-furancarboxylate in which one furan ring is opened (hereinafter referred to as It is sometimes abbreviated as "THFOH".) and half hydrides in which only one furan ring is hydrogenated, but by using a hydrogenation catalyst in which a noble metal is supported on an alumina carrier, these by-products The amount of product produced can be greatly reduced compared to when other metal-supported catalysts are used.

<ビテトラヒドロフランジカルボン酸アルキルエステルの加水分解>
ビフランジカルボン酸化合物(2)として、前記式(2)の中のRがアルキル基であるビフランジカルボン酸アルキルエステルを用いた場合、このビフランジカルボン酸化合物(2)の水素化でビテトラヒドロフランジカルボン酸アルキルエステルが得られるが、ポリエステルやポリアミド等の樹脂の製造原料として用いる場合は、ビテトラヒドロフランジカルボン酸アルキルエステルよりも、ビテトラヒドロフランジカルボン酸が好適である場合がある。
この場合には、ビテトラヒドロフランジカルボン酸アルキルエステルを加水分解して塩の形とし、これを中和することでビテトラヒドロフランジカルボン酸として用いることができる。
ビテトラヒドロフランジカルボン酸アルキルエステルの加水分解は、溶媒中で塩基を用いて行うことが好ましい。
<Hydrolysis of Bitetrahydrofurandicarboxylic Acid Alkyl Ester>
When a bifrangicarboxylic acid alkyl ester in which R in the formula (2) is an alkyl group is used as the bifrangicarboxylic acid compound (2), hydrogenation of the bifrangicarboxylic acid compound (2) yields bitetrahydrofuran. A dicarboxylic acid alkyl ester can be obtained, but bitetrahydrofurandicarboxylic acid is sometimes more suitable than bittrahydrofurandicarboxylic acid alkyl ester when used as a raw material for producing resins such as polyesters and polyamides.
In this case, the bitetrahydrofurandicarboxylic acid alkyl ester is hydrolyzed to form a salt, which is then neutralized to be used as bittrahydrofurandicarboxylic acid.
Hydrolysis of the bitetrahydrofurandicarboxylic acid alkyl ester is preferably carried out using a base in a solvent.

加水分解の際に好適に用いられる溶媒としては、メタノール、エタノールなどの1級アルコール;2-プロパノール(イソプロパノール)、sec-ブタノール、シクロペンタノール、シクロヘキサノールなどの2級アルコール;1-エチニル-1-シクロプロパノール、1-アダマンタノール、tert-ブタノール、t-アミルアルコールなどの3級アルコール;テトラヒドロフラン(THF)、1,4-ジオキサンなどのエーテル類;ヘキサン、ヘプタン、ベンゼン、トルエン、キシレン、クメンなどの炭化水素類;塩化メチレン、クロロホルム、トリクロロエチレンなどの塩素系溶剤類;アセトン、2-ブタノンなどのケトン類;N,N-ジメチルホルムアミド、1,3-ジメチル-2-イミダゾリジノン、ジメチルスルホキシド、ヘキサメチルホスホリックトリアミドなどの非プロトン性極性溶媒類;アセトニトリル、プロピオニトリルなどのニトリル類;酢酸エチル、酢酸n-ブチルなどのエステル類;等が挙げられる。これらは1種単独で用いてもよく、2種以上を併用してもよい。
これらのうち、アルコールを含む溶媒を用いることが好ましい。
Preferred solvents for hydrolysis include primary alcohols such as methanol and ethanol; secondary alcohols such as 2-propanol (isopropanol), sec-butanol, cyclopentanol and cyclohexanol; -tertiary alcohols such as cyclopropanol, 1-adamantanol, tert-butanol, t-amyl alcohol; ethers such as tetrahydrofuran (THF) and 1,4-dioxane; hexane, heptane, benzene, toluene, xylene, cumene, etc. Chlorinated solvents such as methylene chloride, chloroform and trichlorethylene; Ketones such as acetone and 2-butanone; N,N-dimethylformamide, 1,3-dimethyl-2-imidazolidinone, dimethylsulfoxide, aprotic polar solvents such as hexamethylphosphoric triamide; nitriles such as acetonitrile and propionitrile; esters such as ethyl acetate and n-butyl acetate; These may be used individually by 1 type, and may use 2 or more types together.
Among these, it is preferable to use a solvent containing alcohol.

加水分解の際に好適に用いられる塩基としては、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、炭酸水素ナトリウム、炭酸水素カリウムなどの無機ブレンステッド塩基;ピリジン、トリエチルアミン、ジメチルアミノピリジン、ジイソプロピルエチルアミン、N-メチルモルフォリンなどの有機ブレンステッド塩基;が挙げられる。これらは1種単独で用いてもよく、2種以上を併用してもよい。
これらのうち、無機ブレンステッド塩基であることが好ましく、入手性および溶解性の観点から、水酸化ナトリウム、水酸化カリウム、水酸化リチウムがより好ましい。
Suitable bases for hydrolysis include inorganic Bronsted bases such as sodium hydroxide, potassium hydroxide, lithium hydroxide, sodium hydrogencarbonate, potassium hydrogencarbonate; pyridine, triethylamine, dimethylaminopyridine, diisopropylethylamine, organic Bronsted bases such as N-methylmorpholine; These may be used individually by 1 type, and may use 2 or more types together.
Among these, inorganic Bronsted bases are preferable, and sodium hydroxide, potassium hydroxide, and lithium hydroxide are more preferable from the viewpoint of availability and solubility.

ビテトラヒドロフランジカルボン酸アルキルエステルを塩にする際の反応条件は特に限定されず、従来公知の加水分解の反応条件を適宜採用することができ、反応温度は、好ましくは-30℃以上、より好ましくは-20℃以上、更に好ましくは-10℃以上であり、好ましくは100℃以下、より好ましくは50℃以下、更に好ましくは40℃以下である。また、反応時間は、好ましくは10分以上、より好ましくは20分以上、更に好ましくは30分以上であり、好ましくは24時間以下、より好ましくは10時間以下、更に好ましくは5時間以下である。 The reaction conditions for converting the bittrahydrofurandicarboxylic acid alkyl ester into a salt are not particularly limited, and conventionally known hydrolysis reaction conditions can be appropriately employed, and the reaction temperature is preferably −30° C. or higher, more preferably. It is -20°C or higher, more preferably -10°C or higher, preferably 100°C or lower, more preferably 50°C or lower, and still more preferably 40°C or lower. The reaction time is preferably 10 minutes or longer, more preferably 20 minutes or longer, still more preferably 30 minutes or longer, and preferably 24 hours or shorter, more preferably 10 hours or shorter, and still more preferably 5 hours or shorter.

ビテトラヒドロフランジカルボン酸アルキルエステルの塩に付与する酸としては、塩酸、臭化水素酸、ヨウ化水素酸、硫酸、硝酸、リン酸などの無機酸類またはこれらの塩類;ギ酸、酢酸、プロピオン酸、シュウ酸、トリフルオロ酢酸、メタンスルホン酸、ベンゼンスルホン酸、p-トルエンスルホン酸、ナフタレンスルホン酸などの有機酸類またはこれらの塩類;テトラフルオロホウ酸リチウム、三フッ化ホウ素、三塩化ホウ素、三臭化ホウ素、三塩化アルミニウム、塩化亜鉛、臭化亜鉛、ヨウ化亜鉛、四塩化錫、四臭化錫、二塩化錫、四塩化チタン、四臭化チタン、トリメチルヨードシランなどのルイス酸類;アルミナ、シリカゲル、チタニアなどの酸化物;モンモリロナイトなどの鉱物;等が挙げられる。これらは1種単独で用いてもよく、2種以上を併用してもよい。 Acids to be added to the bittrahydrofurandicarboxylic acid alkyl ester salts include inorganic acids such as hydrochloric acid, hydrobromic acid, hydroiodic acid, sulfuric acid, nitric acid and phosphoric acid, or salts thereof; formic acid, acetic acid, propionic acid, oxalic acid Acids, organic acids such as trifluoroacetic acid, methanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, naphthalenesulfonic acid, or salts thereof; lithium tetrafluoroborate, boron trifluoride, boron trichloride, tribromide Lewis acids such as boron, aluminum trichloride, zinc chloride, zinc bromide, zinc iodide, tin tetrachloride, tin tetrabromide, tin dichloride, titanium tetrachloride, titanium tetrabromide, trimethyliodosilane; alumina, silica gel , oxides such as titania; minerals such as montmorillonite; These may be used individually by 1 type, and may use 2 or more types together.

ビテトラヒドロフランジカルボン酸アルキルエステルの塩に酸を付与し、ビテトラヒドロフランジカルボン酸を生成する際の反応条件は特に限定されず、酸を用いた従来公知の脱保護反応の反応条件を適宜採用することができ、反応温度は、好ましくは-30℃以上、より好ましくは-20℃以上、更に好ましくは-10℃以上であり、好ましくは100℃以下、より好ましくは50℃以下、更に好ましくは40℃以下である。また、反応時間は好ましくは10分以上、より好ましくは20分以上、更に好ましくは30分以上であり、好ましくは24時間以下、より好ましくは10時間以下、更に好ましくは8時間以下である。 The reaction conditions for producing bittrahydrofurandicarboxylic acid by adding an acid to a salt of bittrahydrofurandicarboxylic acid alkyl ester are not particularly limited, and conventionally known deprotection reaction conditions using an acid can be appropriately employed. The reaction temperature is preferably −30° C. or higher, more preferably −20° C. or higher, still more preferably −10° C. or higher, preferably 100° C. or lower, more preferably 50° C. or lower, further preferably 40° C. or lower. is. The reaction time is preferably 10 minutes or longer, more preferably 20 minutes or longer, still more preferably 30 minutes or longer, and preferably 24 hours or shorter, more preferably 10 hours or shorter, and still more preferably 8 hours or shorter.

加水分解により得られたビテトラヒドロフランジカルボン酸は酢酸エチル等を用いて抽出し、水洗した後に溶媒を留去することで分離回収、精製することができる。 Bitetrahydrofurandicarboxylic acid obtained by hydrolysis can be separated, recovered and purified by extracting with ethyl acetate or the like, washing with water, and distilling off the solvent.

このような加水分解を行うことで、後述の実施例に示されるように、例えばBTHFDMから、ビテトラヒドロフランジカルボン酸(以下、「BTHFDA」と略記することがある。)を得ることができる。 By carrying out such hydrolysis, as shown in the examples below, for example, bittrahydrofurandicarboxylic acid (hereinafter sometimes abbreviated as "BTHFDA") can be obtained from BTHFDM.

以下、実施例により本発明を更に詳しく説明するが、本発明は、その要旨を超えない限り、以下の実施例に何ら限定されるものではない。 EXAMPLES The present invention will be described in more detail below with reference to examples, but the present invention is not limited to the following examples as long as the gist thereof is not exceeded.

以下の実施例及び比較例において、原料BFDMは参考文献(Macromolecules,2018,51,1822-1829)に記載の方法で合成した。また、水素化反応液の分析方法及びジカルボン酸の分析方法は以下の通りである。 In the following examples and comparative examples, the raw material BFDM was synthesized by the method described in Reference (Macromolecules, 2018, 51, 1822-1829). Moreover, the analysis method of the hydrogenation reaction liquid and the analysis method of dicarboxylic acid are as follows.

(1)水素化反応液の分析
水素化反応液の分析は次の条件下におけるガスクロマトグラフィー(GC)分析により行った。
<分析条件>
カラム:アジレント製DB-5、長さ30m、フィルム厚さ0.25μm、直径0.25mm
注入温度:250℃
検出温度:280℃
昇温プログラム条件:50℃(5分保持)→10℃/分→250℃(5分保持)
検出器:FID
(1) Analysis of Hydrogenation Reaction Liquid The hydrogenation reaction liquid was analyzed by gas chromatography (GC) analysis under the following conditions.
<Analysis conditions>
Column: Agilent DB-5, length 30 m, film thickness 0.25 μm, diameter 0.25 mm
Injection temperature: 250°C
Detection temperature: 280°C
Temperature rising program conditions: 50°C (hold for 5 minutes) → 10°C/min → 250°C (hold for 5 minutes)
Detector: FID

(2)ジカルボン酸の分析
ジカルボン酸の分析は、次の条件下における液体クロマトグラフィー(LC)分析により行った。
カラム:三菱ケミカル社製MCIGEL CK08EH、直径8mm,長さ300mm
溶離液:0.1%THF/H
流速:1mL/min
検出器:RI
(2) Analysis of Dicarboxylic Acid Dicarboxylic acid was analyzed by liquid chromatography (LC) analysis under the following conditions.
Column: MCIGEL CK08EH manufactured by Mitsubishi Chemical Corporation, diameter 8 mm, length 300 mm
Eluent: 0.1% THF/ H2O
Flow rate: 1 mL/min
Detector: RI

[実施例1]

Figure 2023117830000007
[Example 1]
Figure 2023117830000007

容量50mLのステンレス製オートクレーブにBFDM 0.25g(1.0mmol)、5%Pd/Al触媒(エヌ・イーケムキャット製 S-Type)0.025g、THF 4.75gと攪拌子を入れて蓋をし、室温で水素ガスを3MPa圧入し、攪拌しながら150℃に昇温し、2時間反応した。反応後、室温まで冷却し、水素ガスをパージした。得られた水素化反応液のガスクロマトグラフィー分析を行った。結果を表1に示す。 BFDM 0.25 g (1.0 mmol), 5% Pd/Al 2 O 3 catalyst (N E Chemcat S-Type) 0.025 g, THF 4.75 g and a stirrer were placed in a stainless steel autoclave having a capacity of 50 mL. The lid was put on, hydrogen gas was injected at 3 MPa at room temperature, the temperature was raised to 150° C. with stirring, and the reaction was carried out for 2 hours. After the reaction, it was cooled to room temperature and purged with hydrogen gas. The obtained hydrogenation reaction liquid was analyzed by gas chromatography. Table 1 shows the results.

[実施例2]
触媒として、5%Ru/アルミナ触媒(エヌ・イーケムキャット製)0.025gを用い、反応温度を100℃にした以外は実施例1と同様の方法で行った。結果を表1に示す。
[Example 2]
As a catalyst, 0.025 g of a 5% Ru/alumina catalyst (manufactured by N E Chemcat) was used, and the reaction was carried out in the same manner as in Example 1 except that the reaction temperature was 100°C. Table 1 shows the results.

[実施例3]
触媒として、5%Rh/アルミナ触媒(富士フィルム和光純薬製)0.025gを用いた以外は実施例2と同様の方法で行った。結果を表1に示す。
[Example 3]
The same method as in Example 2 was repeated except that 0.025 g of a 5% Rh/alumina catalyst (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) was used as the catalyst. Table 1 shows the results.

[比較例1]
触媒として、5%Pd/SiO触媒(エヌ・イーケムキャット製)0.025gを用いた以外は実施例1と同様の方法で行った。結果を表1に示す。
[Comparative Example 1]
The same procedure as in Example 1 was repeated except that 0.025 g of a 5% Pd/SiO 2 catalyst (manufactured by N E Chemcat) was used as the catalyst. Table 1 shows the results.

[比較例2]
触媒として、5%Pd/活性炭触媒(エヌ・イーケムキャット製 E-Type)0.025gを用い、反応温度を100℃にした以外は実施例1と同様の方法で行った。結果を表1に示す。
[Comparative Example 2]
As a catalyst, 0.025 g of 5% Pd/activated carbon catalyst (E-Type, manufactured by N E Chemcat) was used, and the reaction temperature was changed to 100° C., but the same method as in Example 1 was carried out. Table 1 shows the results.

[比較例3]
反応温度を150℃にした以外は比較例2と同様の方法で行った。結果を表1に示す。
[Comparative Example 3]
It was carried out in the same manner as in Comparative Example 2 except that the reaction temperature was changed to 150°C. Table 1 shows the results.

[比較例4]
触媒として、ラネーニッケル触媒(日興リカ製 R-200)0.1gを用いた以外は実施例1と同様の方法で行った。結果を表1に示す。
[Comparative Example 4]
The same procedure as in Example 1 was repeated except that 0.1 g of Raney nickel catalyst (R-200 manufactured by Nikko Rica) was used as the catalyst. Table 1 shows the results.

Figure 2023117830000008
Figure 2023117830000008

なお、水素化反応液中の生成物のうち、BTHFDM及びTHFOH以外の生成物は下記式で表されるハーフ水素化物と推定される。 Among the products in the hydrogenation reaction solution, products other than BTHFDM and THFOH are presumed to be half hydrides represented by the following formula.

Figure 2023117830000009
Figure 2023117830000009

上記実施例と比較例の結果から、ビフランジカルボン酸化合物の水素化には、貴金属をアルミナ担体に担持した触媒のみが特異的に高い水素化触媒能を有し、貴金属触媒であっても担体の種類が異なると水素化の選択率は格段に悪く、また、ニッケル触媒でも水素化の選択率が非常に低いことが分かる。 From the results of the above examples and comparative examples, only catalysts in which a noble metal is supported on an alumina carrier have a specific high hydrogenation catalytic ability for the hydrogenation of bifurandicarboxylic acid compounds. It can be seen that the hydrogenation selectivity is remarkably poor when the type of catalyst is different, and the hydrogenation selectivity is very low even with a nickel catalyst.

[実施例4]
容量200mLのステンレス製オートクレーブにBFDM 9.95g(39.8mmol)、5%Pd/Al触媒(エヌ・イーケムキャット製 S-Type)1.00g、THF 80mLを仕込み、室温で水素ガスを1MPa圧入した後昇温を行った。オートクレーブの内温が80℃に達した後、更に水素ガスを圧入して内圧を5MPaにし、100℃で2時間反応した。反応後、室温まで冷却し、水素ガスをパージした。反応液を濾過した後ろ液を濃縮し、淡黄色の固体としてBTHFDM 10.8gを得た。(純度99.3%)
BTHFDMの同定はGC-MSで行った。データを以下に記す。
GC-MS calculated for[C1218+1],[M+1]=m/z=259.1,found:259
[Example 4]
A stainless steel autoclave with a capacity of 200 mL was charged with 9.95 g (39.8 mmol) of BFDM, 1.00 g of 5% Pd/Al 2 O 3 catalyst (N E Chemcat S-Type), and 80 mL of THF, and hydrogen gas was added at room temperature. After press-fitting at 1 MPa, the temperature was raised. After the internal temperature of the autoclave reached 80°C, hydrogen gas was further injected to make the internal pressure 5 MPa, and the reaction was carried out at 100°C for 2 hours. After the reaction, it was cooled to room temperature and purged with hydrogen gas. After filtering the reaction solution, the filtrate was concentrated to obtain 10.8 g of BTHFDM as a pale yellow solid. (Purity 99.3%)
Identification of BTHFDM was performed by GC-MS. The data are given below.
GC-MS calculated for [C 12 H 18 O 6 +1] + , [M+1] + = m/z = 259.1, found: 259

[実施例5]

Figure 2023117830000010
BTHFDM 10.8g(41.8mmol)にメタノール50mLと水10mLを添加し、氷浴で4℃に冷却した。これに50質量%水酸化ナトリウム水溶液13.4gをゆっくり添加した後、室温に戻して9時間反応した。ここへ濃塩酸を11mL程度加えてpH7程度まで中和した。メタノールを濃縮した後、酢酸エチル50mLで2回抽出を行い、有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。乾燥剤をろ過した後、ろ液を濃縮した白色固体を真空乾燥してBTHFDA 5.80gを得た。(収率60.3%、LC純度99.2%)
BTHFDAの同定はH-NMRで行った。データを以下に記す。
H-NMR(400MHz,CD3OD):1.68-1.78(m,1H),1.88-2.03(m,2H),2.08-2.18(m,3H),2.26-2.37(m,2H),4.03-4.15(m,2H),4.43-4.51(m,2H) [Example 5]
Figure 2023117830000010
50 mL of methanol and 10 mL of water were added to 10.8 g (41.8 mmol) of BTHFDM and cooled to 4° C. in an ice bath. After slowly adding 13.4 g of a 50% by mass sodium hydroxide aqueous solution thereto, the mixture was returned to room temperature and reacted for 9 hours. About 11 mL of concentrated hydrochloric acid was added to the mixture to neutralize it to about pH 7. After concentrating the methanol, extraction was performed twice with 50 mL of ethyl acetate, and the organic layer was washed with saturated brine and dried over anhydrous magnesium sulfate. After filtering the desiccant, the white solid obtained by concentrating the filtrate was vacuum-dried to obtain 5.80 g of BTHFDA. (Yield 60.3%, LC purity 99.2%)
BTHFDA was identified by 1 H-NMR. The data are given below.
1 H-NMR (400 MHz, CD3OD): 1.68-1.78 (m, 1H), 1.88-2.03 (m, 2H), 2.08-2.18 (m, 3H), 2 .26-2.37 (m, 2H), 4.03-4.15 (m, 2H), 4.43-4.51 (m, 2H)

[合成例1]

Figure 2023117830000011
[Synthesis Example 1]
Figure 2023117830000011

容量200mLのステンレス製オートクレーブにFDCA(東京化成製)16.35g(0.105mol)、5%Pd/C触媒(エヌ・イーケムキャット製 E-Type)0.97gと水150mLを仕込み、室温で水素ガス1MPaを圧入して昇温した。130℃で水素ガスを5MPaに昇圧した。15分で150℃に到達し、そのまま45分反応した。反応後、室温まで冷却し、水素ガスをパージした。反応液を濾過後、ろ液を濃縮した。得られた黄色固体を真空乾燥機で乾燥し、THFDCA 15.18gを得た。(収率90.5%、LC純度96.0%)
THFDCAの同定はH-NMRで行った。データを以下に記す。
H-NMR(400MHz,CD3OD):1.96(s,2H),2.22(s,2H),4.48(s,2H),12.3(bs,2H)
A stainless steel autoclave with a capacity of 200 mL was charged with 16.35 g (0.105 mol) of FDCA (manufactured by Tokyo Kasei), 0.97 g of 5% Pd/C catalyst (E-Type manufactured by N E Chemcat) and 150 mL of water. A gas of 1 MPa was injected to raise the temperature. Hydrogen gas was pressurized to 5 MPa at 130°C. The temperature reached 150°C in 15 minutes, and the reaction was continued for 45 minutes. After the reaction, it was cooled to room temperature and purged with hydrogen gas. After filtering the reaction solution, the filtrate was concentrated. The resulting yellow solid was dried in a vacuum dryer to obtain 15.18 g of THFDCA. (Yield 90.5%, LC purity 96.0%)
Identification of THFDCA was performed by 1 H-NMR. The data are given below.
1 H-NMR (400 MHz, CD3OD): 1.96 (s, 2H), 2.22 (s, 2H), 4.48 (s, 2H), 12.3 (bs, 2H)

[TG-DTA(熱重量測定―示差熱分析)の測定結果]
サンプル5mgをAl-panに入れ、窒素ガスの200mL/min流通下、30℃から600℃まで10°/minで昇温し、減量開始温度を測定した。
その結果、実施例1~3で得られたBTHFDAの熱分解開始温度は271℃、合成例1で得られたTHFDCAの熱分解開始温度は230℃であり、BTHFDAの耐熱性が高かった。
[Measurement results of TG-DTA (thermogravimetry - differential thermal analysis)]
A 5 mg sample was placed in an Al-pan, and the temperature was raised from 30° C. to 600° C. at a rate of 10°/min under a nitrogen gas flow of 200 mL/min to measure the weight loss start temperature.
As a result, the thermal decomposition initiation temperature of BTHFDA obtained in Examples 1 to 3 was 271° C., and the thermal decomposition initiation temperature of THFDCA obtained in Synthesis Example 1 was 230° C., indicating high heat resistance of BTHFDA.

Claims (3)

下記式(1)で表される構造を有するビテトラヒドロフランジカルボン酸化合物。
Figure 2023117830000012
(式(1)中、Rはそれぞれ独立に水素原子又はアルキル基を示す。)
A bitetrahydrofurandicarboxylic acid compound having a structure represented by the following formula (1).
Figure 2023117830000012
(In formula (1), each R independently represents a hydrogen atom or an alkyl group.)
下記式(2)で表される構造を有するビフランジカルボン酸化合物を、貴金属をアルミナ担体に担持した触媒を用いて水素化することを特徴とする請求項1に記載のビテトラヒドロフランジカルボン酸化合物の製造方法。
Figure 2023117830000013
(式(2)中、Rは前記式(1)におけると同義である。)
The bitetrahydrofurandicarboxylic acid compound according to claim 1, wherein a bifurandicarboxylic acid compound having a structure represented by the following formula (2) is hydrogenated using a catalyst in which a noble metal is supported on an alumina carrier. Production method.
Figure 2023117830000013
(In formula (2), R has the same definition as in formula (1).)
前記触媒が、Pd、Ru及びRhから選ばれる貴金属をアルミナ担体に担持した触媒である、請求項2に記載のビテトラヒドロフランジカルボン酸化合物の製造方法。
3. The method for producing a bitetrahydrofurandicarboxylic acid compound according to claim 2, wherein the catalyst is a catalyst in which a noble metal selected from Pd, Ru and Rh is carried on an alumina carrier.
JP2022020603A 2022-02-14 2022-02-14 Bi-tetrahydrofuran dicarboxylic acid compound and method for producing the same Pending JP2023117830A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022020603A JP2023117830A (en) 2022-02-14 2022-02-14 Bi-tetrahydrofuran dicarboxylic acid compound and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022020603A JP2023117830A (en) 2022-02-14 2022-02-14 Bi-tetrahydrofuran dicarboxylic acid compound and method for producing the same

Publications (1)

Publication Number Publication Date
JP2023117830A true JP2023117830A (en) 2023-08-24

Family

ID=87654049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022020603A Pending JP2023117830A (en) 2022-02-14 2022-02-14 Bi-tetrahydrofuran dicarboxylic acid compound and method for producing the same

Country Status (1)

Country Link
JP (1) JP2023117830A (en)

Similar Documents

Publication Publication Date Title
US11066377B2 (en) Process for producing aromatic primary diamines
JP2014523912A (en) Method for producing 2,2-difluoroethanol
CN110862310B (en) Synthesis method of cyclopropyl methyl ketone
CN104169288A (en) Method of making isoidide
JP6160626B2 (en) Novel alicyclic diol compound and method for producing the same
JP2008143832A (en) Method for producing alicyclic amine or saturated heterocyclic amine
KR20150063058A (en) Method for synthesising 2,5-di(hydroxymethyl)furan and 2,5-di(hydroxymethyl)tetrahydrofuran by selective hydrogenation of furan-2,5-dialdehyde
JP2016535084A (en) Synthesis of diacids, dialdehydes, or diamines from THF-diol
US10227318B2 (en) Method for producing gamma-valerolactone
JP2023117830A (en) Bi-tetrahydrofuran dicarboxylic acid compound and method for producing the same
JP4979230B2 (en) Tetrahydropyran compound production method and tetrahydropyran compound produced by the production method
CA2568800A1 (en) Process for producing 3-aminomethyltetrahydrofuran derivative
JPH01193246A (en) Production of 2,3-dichloropyridine
TWI785127B (en) The production method of 2,5-bis(aminomethyl)tetrahydrofuran
CN108329202B (en) Method for preparing 3-iodopropionic acid from glyceric acid
EP3696173B1 (en) Method for producing 2,5-bis(aminomethyl) tetrahydrofuran
KR20120081993A (en) Method for producing 2,2-difluoroethylamine by hydrogenating 1,1-difluoro-2-nitroethane
US6429319B1 (en) Continuous process for the production of optically pure (S)-beta-hydroxy-gamma-butyrolactone
CN115925658B (en) Preparation method of 2-aminoethylfuran
CN117682980B (en) Preparation method of 2-acetyl tetrahydropyridine
WO2022242730A1 (en) Method for preparing 2, 5-hexanedione by catalyzing and converting biomass by one-pot synthesis
JP2023143030A (en) Method for producing 1,3-cyclopentanediol
KR100774629B1 (en) A continuous process for the production of pure 2,3-dihydrobenzofuran
JPWO2018139654A1 (en) Method for producing 1,1,2,2-tetrafluoropropane
JPH08109170A (en) Production of hexahydropyridazine