JP7452249B2 - Vacuum consolidation management system and quality control method for ground improvement work - Google Patents

Vacuum consolidation management system and quality control method for ground improvement work Download PDF

Info

Publication number
JP7452249B2
JP7452249B2 JP2020090264A JP2020090264A JP7452249B2 JP 7452249 B2 JP7452249 B2 JP 7452249B2 JP 2020090264 A JP2020090264 A JP 2020090264A JP 2020090264 A JP2020090264 A JP 2020090264A JP 7452249 B2 JP7452249 B2 JP 7452249B2
Authority
JP
Japan
Prior art keywords
amount
subsidence
consolidation
target
settlement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020090264A
Other languages
Japanese (ja)
Other versions
JP2021185290A (en
Inventor
由貴 梅原
祐樹 山田
真一 高橋
茂彦 杉江
彰 山本
徹 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2020090264A priority Critical patent/JP7452249B2/en
Publication of JP2021185290A publication Critical patent/JP2021185290A/en
Application granted granted Critical
Publication of JP7452249B2 publication Critical patent/JP7452249B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、真空圧密工法に用いる真空圧密管理システム、及び真空圧密管理システムを用いた地盤改良工事の品質管理方法に関する。 The present invention relates to a vacuum consolidation management system used in a vacuum consolidation method, and a quality control method for ground improvement work using the vacuum consolidation management system.

従来より、軟弱地盤の圧密沈下促進、強度増加を図る工法として、真空圧密工法が採用されている。真空圧密工法は、真空圧(負圧)を利用して軟弱地盤内の間隙水や空気を排出し、短期間に地盤の沈下を促進させ、せん断強度の増加を図る工法であり、例えば特許文献1には、ドレーン材を用いて軟弱地盤内に負圧を作用させる方法が開示されている。 Vacuum consolidation methods have traditionally been used to promote consolidation settlement and increase strength of soft ground. The vacuum consolidation method is a construction method that uses vacuum pressure (negative pressure) to discharge pore water and air in soft ground, promotes subsidence of the ground in a short period of time, and increases shear strength. No. 1 discloses a method of applying negative pressure to soft ground using a drain material.

具体的には、鉛直ドレーン材を軟弱地盤中に間隔を設けて複数埋設するとともに、埋設したドレーン材の上端部どうしを集水管で連結する。この集水管には真空ポンプが接続されており、真空ポンプを作動させることによって集水管及び鉛直ドレーン材を介して軟弱地盤内を減圧し、圧密を促進させている。 Specifically, a plurality of vertical drain materials are buried at intervals in soft ground, and the upper ends of the buried drain materials are connected to each other with a water collection pipe. A vacuum pump is connected to this water collection pipe, and by operating the vacuum pump, the pressure inside the soft ground is reduced through the water collection pipe and the vertical drain material, thereby promoting consolidation.

特開2001-226951号公報Japanese Patent Application Publication No. 2001-226951

上記の真空圧密工法を実施する際には一般に、施工対象領域全域に一定の真空圧を継続して作用させることを前提とし、施工対象領域の沈下量や周辺地盤に影響を与えるような変形を生じる可能性等を事前に予測する。 When implementing the above-mentioned vacuum consolidation method, it is generally assumed that a constant vacuum pressure will be continuously applied to the entire area to be constructed, and that there will be no deformation that will affect the amount of subsidence in the area to be constructed or the surrounding ground. Predict the possibility of occurrence, etc.

そのうえで、目標とする沈下量が得られない可能性がある場合、載荷盛土の施工を併用したり、周辺地盤に影響を与える可能性がある場合、補助工法等を実施する等している。しかし、このような対策工を合わせて実施する作業は煩雑であり、工期が長期化しやすく工費も膨大となりやすい。 In addition, if there is a possibility that the target amount of settlement may not be achieved, loading embankment construction is also used, or if there is a possibility that the surrounding ground may be affected, supplementary construction methods are implemented. However, the work of implementing such countermeasures is complicated, and the construction period tends to be long and the construction cost tends to be enormous.

また、改良後は、高層建築物等の重量構造物が構築される、もしくは、道路等の軽量構造物が構築される等、その敷地用途は様々であり、施工対象領域が広域にわたる場合には、改良後の敷地内で用途の異なる領域が混在することが想定される。このような場合には、改良直後の敷地内に不同沈下が見られなくても、用途に応じた構造物を構築したのちに構造物の重量に応じた残留沈下が生じ、将来的に構造物間で不同沈下を生じることも考えられる。 In addition, after the improvement, the site will be used for various purposes, such as heavy structures such as high-rise buildings, or lightweight structures such as roads, etc., and if the construction target area covers a wide area, It is assumed that areas with different uses will coexist within the improved premises. In such cases, even if there is no uneven settlement on the site immediately after the improvement, residual settlement will occur in proportion to the weight of the structure after a structure has been constructed according to its purpose, and the structure will not be constructed in the future. It is also possible that uneven settlement may occur between the two.

ところが、真空圧密工法を実施するにあたり、このような改良後の敷地用途による残留沈下に起因して発生する可能性のある将来的な不同沈下を予測して、施工対象領域に作用させる真空圧を設定し、沈下量を制御する方法は検討されていない。 However, when implementing the vacuum consolidation method, it is necessary to predict future uneven settlement that may occur due to residual settlement due to the use of the site after improvement, and to adjust the vacuum pressure to be applied to the construction target area. The method of setting and controlling the amount of subsidence has not been studied.

本発明は、かかる課題に鑑みなされたものであって、その主な目的は、真空圧密工法により、経済的かつ効率よく軟弱地盤の強度増加を図りつつ、高品質な改良地盤を得ることの可能な、真空圧密管理システム、及び真空圧密管理システムを用いた地盤改良工事の品質管理方法を提供することである。 The present invention was made in view of the above problems, and its main purpose is to economically and efficiently increase the strength of soft ground while obtaining high-quality improved ground using the vacuum consolidation method. Another object of the present invention is to provide a vacuum consolidation management system and a quality control method for ground improvement work using the vacuum consolidation management system.

かかる目的を達成するため、本発明の真空圧密管理システムは、真空圧密工法により軟弱地盤の強度増加を図る地盤改良工事の品質管理を行うための真空圧密管理システムにおいて、前記地盤改良工事の品質管理に用いる計測項目の計測を行う計測装置と、前記計測項目の計測結果に基づいて、前記軟弱地盤の沈下量を制御する真空圧密制御装置と、を備え、前記計測項目は、少なくとも前記軟弱地盤の沈下量を含み、前記真空圧密制御装置は、目標曲線作成部と、圧密荷重調整部とを有し、前記目標曲線作成部は、前記軟弱地盤の沈下量を経時変化させて目標最終沈下量に到達させるための指標となる、目標沈下曲線を作成し、前記圧密荷重調整部は、前記目標沈下曲線と、沈下量の計測結果とに基づいて、調整後の軟弱地盤の沈下量が目標沈下曲線に沿って経時変化するよう、圧密荷重を適時調整することを特徴とする。
In order to achieve this object, the vacuum consolidation management system of the present invention is a vacuum consolidation management system for quality control of ground improvement work that aims to increase the strength of soft ground by vacuum consolidation method. and a vacuum consolidation control device that controls the amount of subsidence of the soft ground based on the measurement results of the measurement item, and the measurement item is at least the amount of subsidence of the soft ground. The vacuum consolidation control device includes a target curve creation section and a consolidation load adjustment section, and the target curve creation section changes the amount of settlement of the soft ground over time to reach the target final settlement amount. A target settlement curve is created as an index for achieving the target settlement curve, and the consolidation load adjustment unit calculates the amount of settlement of the soft ground after adjustment based on the target settlement curve and the measurement result of the amount of settlement. It is characterized by adjusting the consolidation load in a timely manner so that it changes over time .

本発明の真空圧密管理システムは、前記軟弱地盤が複数の区画に区分けされるとともに、前記真空圧密制御装置がさらに区画間調整部を備え、前記区画間調整部は、前記区画ごとで、前記目標沈下曲線及び沈下量の計測値と、隣接する区画における沈下量の計測値とに基づいて、前記区画ごとの前記圧密荷重を適時調整することを特徴とする。 In the vacuum consolidation management system of the present invention, the soft ground is divided into a plurality of divisions, and the vacuum consolidation control device further includes an inter-division adjustment section, and the inter-division adjustment section is configured to divide the soft ground into a plurality of divisions. The method is characterized in that the consolidation load for each section is adjusted in a timely manner based on the settlement curve, the measured value of the amount of settlement, and the measured value of the amount of settlement in adjacent sections.

本発明の真空圧密管理システムは、前記計測項目に、前記軟弱地盤における間隙水の揚水量と真空圧とを含み、前記圧密荷重調整部では、揚水量もしくは真空圧を増減し圧密荷重を調整することを特徴とする。 In the vacuum consolidation management system of the present invention, the measurement items include the amount of pore water pumped in the soft ground and the vacuum pressure, and the consolidation load adjustment section adjusts the consolidation load by increasing or decreasing the amount of pumped water or the vacuum pressure. It is characterized by

また、本発明の地盤改良工事の品質管理方法は、本発明の真空圧密管理システムを用いて、真空圧密工法により軟弱地盤の強度増加を図る地盤改良工事の品質管理を行う、真空圧密工法による地盤改良工事の品質管理方法において、前記軟弱地盤の沈下量を経時変化させて目標最終沈下量に到達させるための指標となる、目標沈下曲線を作成する工程と、前記軟弱地盤に圧密荷重を作用させ、管理時刻に前記計測項目の計測を行う工程と、前記計測項目のうちの沈下量の計測値と前記目標沈下曲線とに基づいて圧密荷重を調整し、調整後の前記軟弱地盤の沈下量が前記目標沈下曲線に沿って経時変化するよう制御する工程と、を備えることを特徴とする。 In addition, the quality control method for ground improvement work of the present invention uses the vacuum consolidation management system of the present invention to control the quality of ground improvement work that aims to increase the strength of soft ground by the vacuum consolidation method. A quality control method for improvement work includes a step of creating a target settlement curve that serves as an index for changing the amount of subsidence of the soft ground over time to reach the target final settlement amount, and applying a consolidation load to the soft ground. , a step of measuring the measurement items at the management time, adjusting the consolidation load based on the measured value of the amount of settlement among the measurement items and the target settlement curve, and adjusting the amount of settlement of the soft ground after adjustment. The method is characterized by comprising a step of controlling the temperature to change over time along the target subsidence curve.

また、本発明の地盤改良工事の品質管理方法は、本発明の真空圧密管理システムを用いて、真空圧密工法により軟弱地盤の強度増加を図る地盤改良工事の品質管理を行う、真空圧密工法による地盤改良工事の品質管理方法において、軟弱地盤を目標最終沈下量ごとの区画に区分けする工程と、前記区画ごとで、前記軟弱地盤の沈下量を経時変化させて目標最終沈下量に到達させるための指標となる、目標沈下曲線を作成する工程と、前記区画ごとに圧密荷重を作用させ、管理時刻に前記計測項目の計測を行う工程と、前記区画ごとで、前記目標沈下曲線及び沈下量の計測値と、隣接する区画における沈下量の計測値とに基づいて圧密荷重を調整し、調整後の前記軟弱地盤の沈下量が前記目標沈下曲線に沿って経時変化するよう制御する工程と、を備えることを特徴とする。 In addition, the quality control method for ground improvement work of the present invention uses the vacuum consolidation management system of the present invention to control the quality of ground improvement work that aims to increase the strength of soft ground by the vacuum consolidation method. In a quality control method for improvement work, there is a process of dividing the soft ground into sections according to the target final settlement amount, and an index for changing the settlement amount of the soft ground over time in each section to reach the target final settlement amount. A step of creating a target settlement curve, a step of applying a consolidation load to each section and measuring the measurement items at a management time, and a step of creating a target settlement curve and a measured value of the amount of settlement for each section. and a step of adjusting the consolidation load based on the measured value of the amount of settlement in the adjacent section, and controlling the amount of settlement of the soft ground after adjustment so that it changes over time along the target settlement curve. It is characterized by

本発明の真空圧密管理システム及び地盤改良工事の品質管理方法によれば、地盤改良工事中に計測される計測項目を真空圧密管理システムで集約管理できるとともに、この計測項目に基づいて、調整した圧密荷重を軟弱地盤に作用させて沈下量を制御することができる。これにより、効率よく軟弱地盤の強度増加を図りつつ、高品質な改良地盤を構築することが可能となる。 According to the vacuum consolidation management system and quality control method for soil improvement work of the present invention, measurement items measured during soil improvement work can be centrally managed by the vacuum consolidation management system, and consolidation can be adjusted based on the measurement items. The amount of settlement can be controlled by applying a load to the soft ground. This makes it possible to efficiently increase the strength of soft ground and construct high-quality improved ground.

また、目標最終沈下量を、改良後の敷地用途に要求される地盤強度に基づいて設定すれば、改良後に敷地用途に応じて構造物を構築したことに起因して、改良後の地盤に生じる残留沈下を最小限に抑制することが可能となる。また、改良対象領域を過剰に圧密促進させることもないため、真空ポンプや揚水ポンプ等を含む諸設備の運転費等を低減できるなど工費削減に寄与できる。また、無駄な覆土工を削除できるなど、地盤改良工事の合理化を図ることが可能となる。 In addition, if the target final settlement amount is set based on the ground strength required for the site use after the improvement, it is possible to It becomes possible to suppress residual settlement to a minimum. In addition, since the area to be improved is not excessively promoted to consolidate, it is possible to contribute to a reduction in construction costs, such as reducing the operating costs of various equipment including vacuum pumps, water pumps, etc. In addition, it is possible to streamline ground improvement work by eliminating unnecessary earth covering work.

また、施工対象領域が広域にわたり、改良後の敷地内で用途の異なる領域が混在する場合には、施工対象領域を将来の敷地用途で区分けし、区画ごとでの目標最終沈下量を、改良後の敷地用途に要求される地盤強度に基づいて設定できる。これにより、敷地用途に応じた構造物を構築したこよる残留沈下に起因して、将来的に構造物間で不同沈下が発生する現象を抑制することが可能となる。 In addition, if the construction target area covers a wide area and areas with different uses coexist on the site after the improvement, the construction target area is divided into sections according to the future site use, and the target final settlement amount for each division is calculated after the improvement. It can be set based on the ground strength required for the site use. This makes it possible to suppress the phenomenon of uneven settlement occurring between structures in the future due to residual settlement caused by constructing structures according to the site use.

本発明によれば、品質管理に用いる計測項目の計測値に基づいて調整した圧密荷重を軟弱地盤に作用させて沈下量を制御するため、経済的かつ効率よく軟弱地盤の強度増加を図りつつ、高品質な改良地盤を得ることが可能となる。 According to the present invention, since the amount of settlement is controlled by applying a consolidation load adjusted based on the measured values of measurement items used for quality control to the soft ground, the strength of the soft ground can be increased economically and efficiently. It becomes possible to obtain high quality improved ground.

本発明の実施の形態における真空圧密管理システムの概略を示す図である。1 is a diagram schematically showing a vacuum consolidation management system in an embodiment of the present invention. 本発明の実施の形態における施工対象領域を区割りして真空圧密工法を実施する様子を示す図である。FIG. 2 is a diagram showing how a construction target area is divided into sections and a vacuum consolidation method is implemented in an embodiment of the present invention. 本発明の実施の形態における真空圧密工法による地盤改良工事の品質管理方法のフローを示す図である。It is a figure showing the flow of the quality control method of the ground improvement work by the vacuum consolidation method in an embodiment of the present invention. 本発明の実施の形態における真空圧密工法による地盤改良工事の品質管理方法の事前準備のフローを示す図である。It is a figure showing the flow of advance preparation of the quality control method of ground improvement work by the vacuum consolidation method in an embodiment of the present invention. 本発明の実施の形態における圧密荷重の調整方法の概念を示す図である。It is a figure showing the concept of the adjustment method of consolidation load in an embodiment of the present invention. 本発明の実施の形態における真空圧密工法により施工対象領域が沈下した様子を示す図である。FIG. 3 is a diagram showing how the construction target area has subsided due to the vacuum consolidation method according to the embodiment of the present invention. 本発明の実施の形態における施工対象領域を区割りして真空圧密工法を実施する際のフローを示す図である。It is a figure which shows the flow at the time of dividing the construction target area and implementing a vacuum consolidation method in embodiment of this invention. 本発明の実施の形態における施工対象領域を区割りして真空圧密工法を実施した際の、各区画が沈下する様子を示す図である。FIG. 2 is a diagram showing how each section sinks when a construction target area is divided into sections and a vacuum consolidation method is implemented in an embodiment of the present invention. 本発明の実施の形態における施工対象領域を区割りして真空圧密工法を実施した際の、圧密荷重の調整方法の概念を示す図である。It is a figure which shows the concept of the adjustment method of the consolidation load at the time of carrying out the vacuum consolidation method by dividing the construction target area|region in embodiment of this invention. 本発明の実施の形態における施工対象領域を区割りして真空圧密工法を実施する際の補助工法を示す図である。It is a figure which shows the auxiliary construction method when carrying out the vacuum consolidation construction method by dividing the construction target area in embodiment of this invention. 本発明の実施の形態における鉛直ドレーンを用いた真空圧密工法を事例を示す図である。It is a figure showing an example of a vacuum consolidation method using a vertical drain in an embodiment of the present invention. 本発明の実施の形態における土壌排水装置が複数の集水層を有する場合の事例を示す図である。It is a figure which shows the case where the soil drainage apparatus in embodiment of this invention has several water collection layers.

本発明は、真空圧密工法による地盤改良工事の品質管理を行うためのシステム及び方法であって、軟弱地盤に設定した施工対象領域に所望の地盤強度を発現させるべくあらかじめ目標最終沈下量を設定し、この目標最終沈下量を満足するよう圧密荷重を制御するものである。 The present invention is a system and method for quality control of ground improvement work using the vacuum consolidation method, in which a target final settlement amount is set in advance in order to develop a desired ground strength in a construction target area set on soft ground. , the consolidation load is controlled to satisfy this target final settlement amount.

本実施の形態では、後述する土壌排水装置を用いた真空圧密工法を事例に挙げ、真空圧密管理システム及び真空圧密工法による地盤改良工事の品質管理方法の詳細を、以下に図1~図12を参照しつつ説明する。 In this embodiment, the vacuum consolidation method using a soil drainage device, which will be described later, will be taken as an example, and the details of the vacuum consolidation management system and the quality control method of ground improvement work using the vacuum consolidation method will be explained below with reference to Figures 1 to 12. I will explain while referring to it.

図1で示すように、軟弱地盤Gに設定された施工対象領域10には、土壌排水装置1と、施工中の品質管理を行う際に必要となる計測項目を計測するための計測装置200が、適宜の位置に配置されている。また、計測装置200は、真空圧密制御装置100とともに真空圧密管理システム300を構成している。 As shown in FIG. 1, a construction target area 10 set on soft ground G includes a soil drainage device 1 and a measuring device 200 for measuring measurement items required for quality control during construction. , are placed at appropriate positions. Further, the measuring device 200 constitutes a vacuum consolidation management system 300 together with the vacuum consolidation control device 100.

<土壌排水装置>
土壌排水装置1は、軟弱地盤G中に圧密荷重Pを作用させて間隙水及び空気を排出する装置であり、間隙水を集水する集水層2と、集水層2を介して軟弱地盤Gに負圧を作用させる負圧作用設備3と、を備えている。
<Soil drainage device>
The soil drainage device 1 is a device that discharges pore water and air by applying a consolidation load P to the soft ground G, and includes a water collection layer 2 that collects the pore water, and a water collection layer 2 that drains the soft ground through the water collection layer 2. Negative pressure applying equipment 3 for applying negative pressure to G is provided.

集水層2は、良質な砂材もしくは礫を含む砂材を用いた透水性の高い敷砂であるサンドマットを採用しているが、高い透水性能を有し地盤上で面状に敷設できるものであればいずれを用いてもよい。例えば、水平ドレーン材、立体網状体、グラベルマット、サンドマットと透水シートを組み合わせたもの等であってもよい。 Water catchment layer 2 uses sand mat, which is a highly permeable sand bed made of high-quality sand or sand containing gravel, which has high permeability and can be laid flat on the ground. Any one may be used as long as it is suitable. For example, it may be a horizontal drain material, a three-dimensional net, a gravel mat, a combination of a sand mat and a water-permeable sheet, etc.

負圧作用設備3は、軟弱地盤G中に立設される貯水槽31と、貯水槽31の側壁に設けられる連通部32と、貯水槽31内を減圧する減圧装置33と、貯水槽31内に貯留した間隙水を排出する排水装置34とを備えている。 The negative pressure equipment 3 includes a water tank 31 erected in the soft ground G, a communication section 32 provided on the side wall of the water tank 31, a pressure reducing device 33 that reduces the pressure inside the water tank 31, and a pressure reducing device 33 that reduces the pressure inside the water tank 31. A drainage device 34 is provided for discharging the interstitial water accumulated in the pores.

貯水槽31は、水密性及び気密性を有する円筒状の容器であり、その下端部近傍の周壁に連通部32が設けられている。貯水槽31は、密閉可能に構成されていれば、その形状や構造はいずれであってもよい。また、連通部32は、集水層2に埋設される高さ位置に設けられており、貯水槽31の内空部と集水層2とを連通させている。なお、連通部32は、例えばストレーナーを用いるなど、水分及び空気を透過するものの土砂等の流入を抑制できる構造であれば、いずれを採用してもよい。 The water tank 31 is a cylindrical container having watertightness and airtightness, and a communication part 32 is provided on the peripheral wall near the lower end thereof. The water tank 31 may have any shape or structure as long as it is configured to be airtight. Further, the communication portion 32 is provided at a height to be buried in the water collection layer 2, and allows the inner space of the water storage tank 31 and the water collection layer 2 to communicate with each other. Note that the communication portion 32 may employ any structure, such as using a strainer, as long as it allows moisture and air to pass through but can suppress the inflow of earth and sand.

減圧装置33は、貯水槽31に一端が挿入された排気管331と、排気管331の他端が接続された真空ポンプ332とを備えている。これらは、真空ポンプ332を稼働させることにより、排気管331を介して貯水槽31内に一次貯留された空気を排気し減圧する。排水装置34は、一端が貯水槽31内に挿入された揚水管341と、貯水槽31内で揚水管341に接続された揚水ポンプ342とを備えている。これにより、揚水ポンプ342を稼働させることで、貯水槽31中に一次貯留された貯留水を揚水することができる。 The pressure reducing device 33 includes an exhaust pipe 331 whose one end is inserted into the water storage tank 31, and a vacuum pump 332 to which the other end of the exhaust pipe 331 is connected. These operate the vacuum pump 332 to exhaust and reduce the pressure of the air primarily stored in the water tank 31 via the exhaust pipe 331. The drainage device 34 includes a water pump 341 whose one end is inserted into the water storage tank 31 and a water pump 342 which is connected to the water pump 341 within the water storage tank 31. Thereby, by operating the water pump 342, the stored water primarily stored in the water tank 31 can be pumped up.

このような構成の土壌排水装置1によれば、減圧装置33の真空ポンプ332を稼働して貯水槽31内を減圧することで、連通部32からこれらと対向する集水層2を介して、その上方に積層された軟弱地盤Gに負圧を作用させることができる。また、排水装置34の揚水ポンプ342の稼働によっても、同じく軟弱地盤Gに負圧を作用させることができる。 According to the soil drainage device 1 having such a configuration, by operating the vacuum pump 332 of the pressure reducing device 33 to reduce the pressure inside the water storage tank 31, water is drained from the communication portion 32 through the water collection layer 2 facing them. Negative pressure can be applied to the soft ground G layered above it. Further, by operating the water pump 342 of the drainage device 34, it is possible to similarly apply negative pressure to the soft ground G.

つまり、真空ポンプ332の稼働によって軟弱地盤Gに作用した負圧によりに、集水層2を介して貯水槽31に強制的に吸引・排水された軟弱地盤G中の間隙水を、排水装置34の揚水ポンプ342を介して揚水する。すると、連通部32からこれらと対向する集水層2を介して、その上方に積層された軟弱地盤Gに負圧が作用することとなる。 In other words, the pore water in the soft ground G that is forcibly sucked and drained into the water storage tank 31 via the water collection layer 2 by the negative pressure acting on the soft ground G due to the operation of the vacuum pump 332 is transferred to the drainage device 34. The water is pumped up via the water pump 342. Then, negative pressure will act on the soft ground G layered above from the communication portion 32 via the water collection layer 2 facing these.

したがって、土壌排水装置1では、減圧装置33の真空ポンプ332を作動させた際の負圧と、貯水槽31内の貯留水位Wの設定(揚水ポンプ342を作動させた際の揚水量の調整)の両者によって、施工対象領域10に作用させる圧密荷重Pを調整することができる。このため、図示は省略するが、減圧装置33には真空ポンプ332を作動させた際の圧力計が備えられている。また、同じく図示は省略するが、排水装置34には、排出した間隙水の揚水量を計測する流量計が、貯水槽31内の貯留水位Wを計測する水位計がそれぞれ備えられている。 Therefore, in the soil drainage device 1, the negative pressure when the vacuum pump 332 of the pressure reducing device 33 is operated and the stored water level W in the water storage tank 31 are set (adjustment of the pumped water amount when the water pump 342 is operated). The consolidation load P applied to the construction target area 10 can be adjusted by both. For this reason, although not shown, the pressure reducing device 33 is equipped with a pressure gauge that is used when the vacuum pump 332 is operated. Although not shown in the drawings, the drainage device 34 is equipped with a flow meter that measures the amount of pumped pore water and a water level meter that measures the water level W in the water storage tank 31.

なお、真空ポンプ332を作動させた際の負圧と貯水槽31内の貯留水位Wは、上記のとおり運転管理に係る計測項目であり、間隙水の排出量は沈下管理に係る計測項目である。したがって、これらを計測する減圧装置33に設ける圧力計、排水装置34に設ける流量計及び水位計はいずれも、後述する計測装置200に含まれる。 Note that the negative pressure when the vacuum pump 332 is operated and the stored water level W in the water storage tank 31 are measurement items related to operation management as described above, and the amount of pore water discharged is a measurement item related to subsidence management. . Therefore, the pressure gauge provided in the pressure reducing device 33 and the flow meter and water level meter provided in the drainage device 34 for measuring these are all included in the measuring device 200 described later.

≪≪地盤改良工事の品質管理方法≫≫
上記の土壌排水装置1を利用して地盤改良工事が実施される施工対象領域10は、改良後の敷地用途が既に決定されている場合が多く、超高層建物等の重量構造物が構築される、道路等の軽量構造物が構築される、地下構造物が構築される、もしくは不同沈下が許容されるような敷地活用がされる等、その用途は様々である。したがって、改良後に施工対象領域10に要求される地盤強度もその敷地用途により異なる。
≪≪Quality control method for ground improvement work≫≫
In the construction target area 10 where ground improvement work will be carried out using the soil drainage device 1 described above, the use of the site after improvement has often already been determined, and heavy structures such as skyscrapers will be constructed. The applications are various, such as the construction of lightweight structures such as roads, the construction of underground structures, or the use of sites that allow uneven settlement. Therefore, the ground strength required for the construction target area 10 after improvement also differs depending on the use of the site.

そこで、真空圧密工法による地盤改良工事の品質管理方法では、施工対象領域10に対して、改良後の敷地用途に見合った強度を発現させるよう目標最終沈下量Sfを設定する。そして、この目標最終沈下量Sfを満足するよう圧密荷重Pを適時調整することで、施工対象領域10の沈下量を制御することとした。 Therefore, in the quality control method for ground improvement work using the vacuum consolidation method, a target final settlement amount Sf is set for the construction target area 10 so as to develop strength commensurate with the use of the site after improvement. Then, by adjusting the consolidation load P in a timely manner so as to satisfy this target final settlement amount Sf, the amount of settlement in the construction target area 10 is controlled.

こうすると、改良後に敷地用途に応じて構造物等を構築したことに起因して、改良後の地盤に生じる残留沈下を最小限に抑制することが可能となる。また、施工対象領域10を過剰に圧密促進させることもないため、真空ポンプ332や揚水ポンプ342等を含む、減圧装置33や排水装置34の運転費を低減できるなど工費削減に寄与できる。また、無駄な覆土工を削除できるなど、地盤改良工事全体の合理化を図ることが可能となる。 In this way, it is possible to minimize the residual settlement that occurs in the ground after the improvement due to the construction of structures etc. according to the purpose of the site after the improvement. In addition, since the construction target area 10 is not excessively promoted to consolidate, it is possible to reduce the operating costs of the pressure reducing device 33 and the drainage device 34 including the vacuum pump 332, the water pump 342, etc., thereby contributing to a reduction in construction costs. In addition, it is possible to streamline the entire ground improvement work by eliminating unnecessary earth covering work.

また、施工対象領域10が広域にわたることにより、改良後の敷地内で用途の異なる領域が混在する場合には、図2(a)(b)で示すように、施工対象領域10を複数の区画(区画10A~区画10D)に区分けする。そのうえで区画ごとに、目標最終沈下量Sfを改良後の敷地用途に要求される地盤強度に基づいて設定し、地盤改良工事を行うこととした。 In addition, if the construction target area 10 covers a wide area and areas with different uses coexist on the site after improvement, the construction target area 10 can be divided into multiple sections as shown in FIGS. 2(a) and 2(b). (section 10A to section 10D). After that, it was decided that the target final settlement amount Sf would be set for each section based on the ground strength required for the use of the improved site, and ground improvement work would be carried out.

こうすると、敷地用途に応じた構造物を構築したこよる残留沈下に起因して、将来的に構造物間で不同沈下が発生する現象を抑制することが可能となる。なお、区画ごとに異なる目標最終沈下量Sfを設定して地盤改良工事を実施する場合には、隣接する区画における施工状況の影響を各区画が受ける。このため、圧密荷重Pを調整する際には、区画ごとで設定した目標最終沈下量Sfに加えて、隣接する区画の沈下量の計測値を監視しつつ適時に調整する。 In this way, it is possible to suppress the phenomenon in which uneven settlement occurs between structures in the future due to residual settlement caused by constructing structures according to the purpose of the site. In addition, when implementing ground improvement work by setting a different target final settlement amount Sf for each section, each section is affected by the construction situation in the adjacent section. Therefore, when adjusting the consolidation load P, in addition to the target final settlement amount Sf set for each section, the adjustment is made in a timely manner while monitoring the measured value of the settlement amount of the adjacent section.

≪真空圧密管理システム≫
上記のような品質管理方法を実施するにあたっては、以下に説明する真空圧密管理システム300を用いる。真空圧密管理システム300は、図1で示すように、計測装置200と、真空圧密制御装置100とを備えている。
≪Vacuum consolidation management system≫
In carrying out the quality control method as described above, a vacuum consolidation control system 300, which will be described below, is used. The vacuum consolidation management system 300 includes a measuring device 200 and a vacuum consolidation control device 100, as shown in FIG.

<計測装置>
計測装置200は、前述した、運転管理に係る計測項目である真空ポンプ332による負圧及び貯水槽31内の貯留水位Wを計測するための、減圧装置33に設ける圧力計及び排水装置34に設ける水位計と、沈下管理に係る計測項目である間隙水の排出量を計測するための排水装置34に設ける流量計に加えて、図1で示すような、沈下量計測部201及び水圧計測部202を備えている。
<Measuring device>
The measuring device 200 includes a pressure gauge provided in the pressure reducing device 33 and a pressure gauge provided in the drainage device 34 to measure the negative pressure caused by the vacuum pump 332 and the water level W stored in the water storage tank 31, which are measurement items related to operation management as described above. In addition to a water level meter and a flow meter installed in the drainage device 34 for measuring the discharge amount of pore water, which is a measurement item related to subsidence management, a subsidence amount measuring section 201 and a water pressure measuring section 202 as shown in FIG. It is equipped with

沈下量計測部201は、施工対象領域10における地表面の沈下量を計測するものであり、沈下板(トータルステーションのターゲットとなりうるもの)や水盛式沈下計等が採用できる。また、水圧計測部202は、軟弱地盤G内の圧密荷重Pを確認するべく間隙水圧を計測するものであり、間隙水圧計が採用される。なお、沈下板や間隙水圧計は、真空圧密工法で一般に採用されている計測機器を使用することができる。また、これら沈下量及び間隙水圧はいずれも、沈下管理に係る計測項目に含まれる。 The subsidence measurement unit 201 measures the subsidence amount of the ground surface in the construction target area 10, and can employ a subsidence plate (which can be a target of a total station), a water embankment type subsidence meter, or the like. Further, the water pressure measurement unit 202 measures pore water pressure in order to check the consolidation load P in the soft ground G, and employs a pore water pressure gauge. Note that, as the settling plate and the pore water pressure gauge, measuring instruments generally employed in the vacuum consolidation method can be used. In addition, both the amount of subsidence and pore water pressure are included in the measurement items related to subsidence management.

<真空圧密制御装置>
真空圧密制御装置100は、図1(b)で示すように、入力部110、出力部120、記憶部130、及びCPU、GPU、ROM、RAM及びハードウェアインタフェース等の演算処理部140を備える、コンピュータシステムにより構成されている。
<Vacuum consolidation control device>
As shown in FIG. 1(b), the vacuum consolidation control device 100 includes an input section 110, an output section 120, a storage section 130, and an arithmetic processing section 140 such as a CPU, GPU, ROM, RAM, and a hardware interface. It is composed of a computer system.

入力部110は、上記の計測装置200をはじめ、キーボードやマウス等の入力装置から入力される情報を、真空圧密制御装置100に供給する。また、出力部120は、入力部110から供給された情報や記憶部130に格納された情報等を、ディスプレーやプリンタ等の出力装置や、土壌排水装置1を構成する減圧装置33及び排水装置34に出力する。そして、演算処理部140のCPUが所定のプログラムを実行することにより、目標曲線作成部141、圧密荷重調整部142、区画間調整部143の機能が実現される。 The input unit 110 supplies the vacuum consolidation control device 100 with information input from input devices such as a keyboard and a mouse, as well as the measurement device 200 described above. The output unit 120 also outputs information supplied from the input unit 110 and information stored in the storage unit 130 to an output device such as a display or a printer, or to the decompression device 33 and drainage device 34 that constitute the soil drainage device 1. Output to. The functions of the target curve creation section 141, the consolidation load adjustment section 142, and the inter-compartment adjustment section 143 are realized by the CPU of the arithmetic processing section 140 executing a predetermined program.

≪真空圧密工法による地盤改良工事の品質管理方法≫
上述する真空圧密管理システム300を用いた地盤改良工事の品質管理方法を、真空圧密制御装置100の詳細と併せて、図3及び図4のフローで示す手順に沿って以下に説明する。
≪Quality control method for ground improvement work using vacuum consolidation method≫
A quality control method for ground improvement work using the vacuum consolidation management system 300 described above will be described below along with details of the vacuum consolidation control device 100 along the steps shown in the flows of FIGS. 3 and 4.

≪≪施工対象領域を区割りしない場合の地盤改良工事の品質管理方法≫≫
<事前準備>
図1で示すような、区割りをしない施工対象領域10に対して真空圧密工法を実施するにあたり、事前準備として、施工対象領域10の目標最終沈下量Sfの設定と、目標最終沈下量Sfを達成するための目標沈下曲線TCの作成、及び施工対象領域10に作用させる圧密荷重Pの設定を行う。
≪≪Quality control method for ground improvement work when the construction target area is not divided into sections≫≫
<Advance preparation>
When implementing the vacuum consolidation method on the construction target area 10 that is not divided into sections as shown in Figure 1, as a preliminary preparation, the target final settlement amount Sf of the construction target area 10 is set and the target final settlement amount Sf is achieved. A target settlement curve TC is created for this purpose, and a consolidation load P to be applied to the construction target area 10 is set.

具体的には、真空圧密制御装置100の演算処理部140が目標曲線作成部141の指令を受け、図4のフローで示す手順に従って、上記の目標最終沈下量Sfの設定、目標沈下曲線TCの作成、及び圧密荷重Pの設定を行い、真空圧密制御装置100の記憶部130に格納する。 Specifically, the arithmetic processing unit 140 of the vacuum consolidation control device 100 receives a command from the target curve creation unit 141, and sets the target final settlement amount Sf and sets the target settlement curve TC in accordance with the procedure shown in the flowchart of FIG. Creation and setting of the consolidation load P are performed and stored in the storage unit 130 of the vacuum consolidation control device 100.

その手順は、まず、施工対象領域10の目標最終沈下量Sfを、改良後の敷地用途に要求される地盤強度や地盤条件、その他真空圧密工法を実施する際一般に検討される事項を、適宜反映させ設定する。次に、目標最終沈下量Sfと土壌排水装置1の運転予定期間等に基づいて、施工対象地盤に作用させる圧密荷重Pを設定する。また、土壌排水装置1の運転予定期間の終了時に目標最終沈下量Sfまで沈下させるための沈下曲線(沈下量の経時変化を示す曲線)を推定する。 The procedure is to first determine the target final settlement amount Sf of the construction target area 10 by appropriately reflecting the ground strength and ground conditions required for the site use after improvement, as well as other matters that are generally considered when implementing the vacuum consolidation method. setting. Next, the consolidation load P to be applied to the construction target ground is set based on the target final settlement amount Sf, the scheduled operation period of the soil drainage device 1, and the like. Furthermore, a subsidence curve (a curve showing changes in the subsidence amount over time) for subsidence to the target final subsidence amount Sf at the end of the scheduled operation period of the soil drainage device 1 is estimated.

推定した沈下曲線の妥当性を検証し最適なものを、図5で示すように、施工対象領域10の目標沈下曲線TCとして決定する。さらに、施工対象領域10に圧密荷重Pを作用させるべく、減圧装置33の真空ポンプ332に設定する負圧、及び貯水槽31内の貯留水位Wを算定する。 The validity of the estimated subsidence curve is verified and the optimal one is determined as the target subsidence curve TC for the construction target area 10, as shown in FIG. Furthermore, in order to apply the consolidation load P to the construction target area 10, the negative pressure to be set in the vacuum pump 332 of the pressure reducing device 33 and the stored water level W in the water storage tank 31 are calculated.

上記の作業と並行してもしくは前後して、図1で示すように、施工対象領域10に土壌排水装置1を中心として、所定の位置に計測装置200を設置する。 In parallel with or before or after the above-mentioned work, as shown in FIG. 1, a measuring device 200 is installed at a predetermined position in the construction target area 10, centering on the soil drainage device 1.

なお、土壌排水装置1を用いた真空圧密工法では、前述したように、貯水槽31の連通部32とこれに対向する集水層2を介して、軟弱地盤Gに圧密荷重Pを作用させる。このため、図6(b)で示すように、貯水槽31周りに形成される圧密荷重Pを作用させた際の影響範囲Rのうち、貯水槽31の近傍では沈下量が大きく、また貯水槽31から離間するに伴い沈下量が減少する傾向にある。 In the vacuum consolidation method using the soil drainage device 1, as described above, the consolidation load P is applied to the soft ground G via the communication portion 32 of the water storage tank 31 and the water collection layer 2 facing thereto. Therefore, as shown in FIG. 6(b), when the consolidation load P formed around the water tank 31 is applied, the amount of settlement is large in the vicinity of the water tank 31, and The amount of subsidence tends to decrease as the distance from 31 increases.

したがって、計測装置200を設置するにあたり、沈下量計測部201及び水圧計測部202は、図6(b)で示すように、施工対象領域10の平面全体を網羅するように配置するとよい。 Therefore, when installing the measuring device 200, the settlement amount measuring section 201 and the water pressure measuring section 202 are preferably arranged so as to cover the entire plane of the construction target area 10, as shown in FIG. 6(b).

<圧密荷重の載荷>
これらの事前準備が終了したところで、施工対象領域10に対して圧密荷重Pの載荷を開始する。
<Loading consolidation load>
When these preliminary preparations are completed, the application of the consolidation load P to the construction target area 10 is started.

土壌排水装置1における貯水槽31内を事前準備で算定した貯留水位Wを設定するとともに、減圧装置33の真空ポンプ332に事前準備で算定した負圧を設定する。これらの設定操作は、現場作業員が、減圧装置33及び排水装置34を直接操作して行ってもよいし、土壌排水装置1と無線もしくは有線で接続した真空圧密制御装置100により操作してもよい。 The stored water level W calculated in advance in the water storage tank 31 in the soil drainage device 1 is set, and the negative pressure calculated in advance is set in the vacuum pump 332 of the pressure reducing device 33. These setting operations may be performed by a field worker by directly operating the pressure reducing device 33 and the drainage device 34, or by operating the vacuum consolidation control device 100 connected to the soil drainage device 1 wirelessly or by wire. good.

真空圧密制御装置100により設定する場合には、真空圧密制御装置100の演算処理部140が目標曲線作成部141の指令を受け、減圧装置33の真空ポンプ332に設定する真空圧と、貯水槽31内の貯留水位Wを算定したのち、これらの算定結果を記憶部130に格納する。また、出力部120を介して土壌排水装置1における減圧装置33及び排水装置34に出力すればよい。 When setting by the vacuum consolidation control device 100, the arithmetic processing unit 140 of the vacuum consolidation control device 100 receives a command from the target curve creation unit 141, and sets the vacuum pressure to be set in the vacuum pump 332 of the pressure reducing device 33 and the water storage tank 31. After calculating the storage water level W within the storage area, these calculation results are stored in the storage unit 130. Further, the output may be outputted to the pressure reducing device 33 and the drainage device 34 in the soil drainage device 1 via the output unit 120.

施工対象領域10に作用する圧密荷重Pが設定されたところで、土壌排水装置1の運転を開始し、圧密荷重Pを作用させる。すると、施工対象領域10に作用する圧密荷重Pにより軟弱地盤G中の間隙水及び空気が、土壌排水装置1の集水層2及び貯水槽31を介して外部に排出され、これに伴って施工対象領域10の地表面は、図6(a)で示すように徐々に沈下していく。 Once the consolidation load P acting on the construction target area 10 is set, the operation of the soil drainage device 1 is started and the consolidation load P is applied. Then, due to the consolidation load P acting on the construction target area 10, pore water and air in the soft ground G are discharged to the outside via the water collection layer 2 and water storage tank 31 of the soil drainage device 1, and accordingly, the construction work is completed. The ground surface of the target area 10 gradually sinks as shown in FIG. 6(a).

このように経時的に沈下する施工対象領域10の地表面は、複数の沈下量計測部201各々によって、あらかじめ設定した管理時刻ごと(例えば、1週間ごと等)に計測される。そして、これら複数の沈下量計測部201各々で計測された沈下量Si(i=沈下量計測部201各々に付された個体番号)は、時間情報との関連付けが行われたうえで、真空圧密制御装置100の入力部110を介して記憶部130に格納される。 The ground surface of the construction target area 10, which subsides over time in this manner, is measured by each of the plurality of subsidence measurement units 201 at every preset management time (for example, every week). The amount of settlement Si (i = individual number assigned to each of the amount of settlement measurement portions 201) measured by each of these plurality of amount of settlement measurement units 201 is correlated with time information, and then It is stored in the storage unit 130 via the input unit 110 of the control device 100.

真空圧密制御装置100に、管理時刻における施工対象領域10の沈下量Siが入力されると、真空圧密制御装置100の演算処理部140が圧密荷重調整部142の指令を受け、沈下量Siと施工対象領域10の目標沈下曲線TCとを比較し、圧密荷重Pの調整の必要性を検証する。検証した結果、調整の必要ありと判定した場合には、調整量を算定し、また、調整の必要なしと判定した場合には、調整量を0とし、時間情報とともに記憶部130に格納する。また、出力部120を介して土壌排水装置1の減圧装置33及び排水装置34に出力する。 When the settlement amount Si of the construction target area 10 at the management time is input to the vacuum consolidation control device 100, the arithmetic processing unit 140 of the vacuum consolidation control device 100 receives a command from the consolidation load adjustment unit 142, and calculates the settlement amount Si and the construction amount. The target settlement curve TC of the target area 10 is compared to verify the necessity of adjusting the consolidation load P. As a result of the verification, if it is determined that adjustment is necessary, the adjustment amount is calculated, and if it is determined that adjustment is not necessary, the adjustment amount is set to 0 and stored in the storage unit 130 together with time information. Further, it is output to the pressure reducing device 33 and the drainage device 34 of the soil drainage device 1 via the output unit 120.

ここで、沈下量Siは、施工対象領域10に設置した沈下量計測部201の数量iに相当する計測値が出力されることから、検証にあたって、施工対象領域10の全体の沈下傾向を表す代表値Stを算出するとよい。なお、代表値Stは、複数の沈下量計測部201各々の計測値である沈下量Siの平均値や中央値もしくは最頻値等いずれを採用してもよい。または、代表値Stではなく、他の統計処理により算出した統計値を採用してもよい。 Here, since the amount of settlement Si is a measurement value corresponding to the quantity i of the amount of settlement measuring unit 201 installed in the construction target area 10 is output, in the verification, the amount of settlement Si is a representative value representing the overall settlement tendency of the construction target area 10. It is preferable to calculate the value St. Note that the representative value St may be an average value, a median value, a mode value, or the like of the settlement amounts Si, which are the measured values of each of the plurality of settlement amount measurement units 201. Alternatively, instead of the representative value St, a statistical value calculated by other statistical processing may be used.

圧密荷重Pの調整の必要性を確認するための検証は、目標沈下曲線TCに基づいて行う。その方法はいずれでもよいが、例えば図5で示すような、施工対象領域10の目標沈下曲線TCを表した沈下量と時間との関係を示すグラフに、管理時刻の沈下量の代表値Stをプロットする。 Verification to confirm the necessity of adjusting the consolidation load P is performed based on the target settlement curve TC. Any method may be used, but for example, the representative value St of the amount of settlement at the management time is added to a graph showing the relationship between the amount of settlement and time representing the target settlement curve TC of the construction target area 10, as shown in FIG. Plot.

例えば図5では、管理時刻t1に計測した沈下量の代表値Stがグラフ上にプロットされている。そのうえで、圧密荷重Pの調整を行わない場合の沈下曲線を予測し、予測した沈下曲線と目標沈下曲線TCとの乖離が大きい場合には、圧密荷重Pの調整が必要と判定する。なお、予測した沈下曲線と目標沈下曲線TCとの乖離は、例えば、あらかじめ許容値を設定して記憶部130に格納しておき、予測した沈下曲線がこの許容値に収まるか否かにより、圧密荷重Pの調整について必要性の有無を判定するとよい。 For example, in FIG. 5, the representative value St of the amount of subsidence measured at management time t1 is plotted on the graph. Then, the settlement curve when the consolidation load P is not adjusted is predicted, and if the deviation between the predicted settlement curve and the target settlement curve TC is large, it is determined that the consolidation load P needs to be adjusted. Note that the deviation between the predicted settlement curve and the target settlement curve TC can be determined by setting a tolerance value in advance and storing it in the storage unit 130, and determining whether or not the predicted settlement curve falls within this tolerance value. It is advisable to determine whether or not adjustment of the load P is necessary.

調整の必要ありと判定した場合には、土壌排水装置1における運転予定期間の残り期間で、施工対象領域10における沈下量の代表値Stが目標沈下曲線TCに沿って経時的に変化するよう、圧密荷重Pを調整する。圧密荷重Pの調整は、減圧装置33の真空ポンプ332に設定する真空圧及び貯水槽31内の貯留水位Wのいずれか、もしくは両方を調整することにより行う。なお、沈下量の代表値Stが、目標最終沈下量Sfを超えている場合には、圧密荷重Pが0となるように調整する。 If it is determined that adjustment is necessary, the steps are taken so that the representative value St of the amount of subsidence in the construction target area 10 changes over time along the target subsidence curve TC during the remaining period of the scheduled operation period of the soil drainage device 1. Adjust the consolidation load P. The consolidation load P is adjusted by adjusting either or both of the vacuum pressure set in the vacuum pump 332 of the pressure reducing device 33 and the water level W stored in the water storage tank 31. In addition, when the representative value St of the amount of settlement exceeds the target final amount of settlement Sf, the consolidation load P is adjusted to be zero.

上記の作業を、土壌排水装置1における運転予定期間の終了日が到来するまで、管理時刻が到来するごとに繰り返す。これにより、土壌排水装置1の運転終了後には、図5で示すように、沈下量の代表値Stをプロットした沈下曲線(調整後)が目標沈下曲線TCにほぼ沿った状態となり、施工対象領域10には、敷地用途に要求される地盤強度を有する高品質な改良地盤が構築される。 The above operations are repeated every time the management time arrives until the end date of the scheduled operation period in the soil drainage device 1 arrives. As a result, after the operation of the soil drainage device 1 is completed, as shown in FIG. 5, the settlement curve (after adjustment) plotting the representative value St of the settlement amount will be in a state almost along the target settlement curve TC, and the construction target area In step 10, a high quality improved ground having the ground strength required for the site use is constructed.

なお、本実施の形態では。管理時刻を1週間ごととしたが、適時の間隔で設定すればよく、また、必ずしも一定の間隔ごとでなくてもよい。また、管理時刻には、計測装置200に含まれる他の計測機器による計測も併せて行い、取得した計測値は、記憶部130に格納しておく。こうすると、地盤改良工事中に計測される計測項目を真空圧密制御装置100で集約管理できるため、施工管理を合理的に実施することが可能となるだけでなく、これら集約管理し蓄積した計測値から、改良後の地盤に生じる将来の不同沈下を予測することも可能となる。 Note that in this embodiment. Although the management time is set to be weekly, it may be set at appropriate intervals, and does not necessarily have to be set at regular intervals. Furthermore, at the management time, measurements are also performed using other measuring devices included in the measuring device 200, and the acquired measured values are stored in the storage unit 130. In this way, the measurement items measured during soil improvement work can be centrally managed by the vacuum consolidation control device 100, which not only makes it possible to perform construction management rationally, but also allows the measurement values accumulated through these central management to be From this, it is also possible to predict future uneven settlement that will occur in the improved ground.

≪≪施工対象領域を区割りした場合の地盤改良工事の品質管理方法≫≫
次に、図2(a)(b)で示すように、施工対象領域10を複数の区画に区割りし、区画(区画10A~区画10D)ごとに管理する場合を、図7のフロー図に沿って説明する。
≪≪Quality control method for ground improvement work when the construction target area is divided into sections≫≫
Next, as shown in FIGS. 2(a) and 2(b), the case where the construction target area 10 is divided into a plurality of sections and managed for each section (sections 10A to 10D) will be explained according to the flowchart of FIG. I will explain.

<事前準備>
施工対象領域10を複数の区画に区割りし、各区画で前述した図4のフロー図に従って、施工対象領域10の目標最終沈下量Sf、目標最終沈下量Sfを達成するための目標沈下曲線TC、及び施工対象領域10に作用させる圧密荷重Pを設定し、事前準備を行う。
<Advance preparation>
Divide the construction target area 10 into a plurality of sections, and create a target final settlement amount Sf of the construction target area 10, a target subsidence curve TC for achieving the target final settlement amount Sf, Then, the consolidation load P to be applied to the construction target area 10 is set, and preparations are made in advance.

このとき、例えば、改良後の敷地用途が同一であるが、施工対象領域10が広域であるために施工対象領域10を区分けした場合は、目標最終沈下量Sf、目標最終沈下量Sfを達成するための目標沈下曲線TC、圧密荷重Pは、各区画(区画10A~区画10D)で同一となる。 At this time, for example, if the site use after improvement is the same, but the construction target area 10 is a wide area and the construction target area 10 is divided into sections, the target final settlement amount Sf and the target final settlement amount Sf are achieved. The target settlement curve TC and consolidation load P for each section (section 10A to section 10D) are the same for each section (section 10A to section 10D).

一方、施工対象領域10内で、改良後の敷地用途が異なる領域が存在するため、敷地用途に対応させて複数の区画に区割りした場合には、各区画(区画10A~区画10D)で異なる目標最終沈下量Sf、目標最終沈下量Sfを達成するための目標沈下曲線TC、圧密荷重Pが設定される。 On the other hand, within the construction target area 10, there are areas with different site uses after improvement, so if the site is divided into multiple sections according to the site use, each section (sections 10A to 10D) will have different goals. The final settlement amount Sf, the target settlement curve TC for achieving the target final settlement amount Sf, and the consolidation load P are set.

<圧密荷重の載荷>
これらの事前準備が終了したところで、施工対象領域10内の区画(区画10A~区画10D)各々に対して、設定した圧密荷重Pの載荷を開始する。なお、各区画で実施する載荷手順は、設定した圧密荷重Pが、区画ごとで同一の場合及び異なる場合のいずれも、前述した区割りしない場合と同様である。
<Loading consolidation load>
When these preliminary preparations are completed, loading of the set consolidation load P is started on each of the sections (sections 10A to 10D) in the construction target area 10. Note that the loading procedure performed in each compartment is the same as in the case where no division is performed as described above, whether the set consolidation load P is the same or different for each compartment.

つまり、土壌排水装置1の運転を開始したのち、例えば図8で示すように、区画10A及び10Bの地表面は徐々に沈下する。したがって、複数の沈下量計測部201各々によって、あらかじめ設定した管理時刻ごとに沈下量Si(i=沈下量計測部201各々に付された個体番号)計測し、時間情報との関連付けが行われたうえで、真空圧密制御装置100の入力部110を介して記憶部130に格納する。 That is, after starting the operation of the soil drainage device 1, the ground surface of the sections 10A and 10B gradually sinks, as shown in FIG. 8, for example. Therefore, each of the plurality of subsidence measurement units 201 measures the subsidence amount Si (i = individual number assigned to each subsidence measurement unit 201) at each preset management time, and correlates it with time information. Then, it is stored in the storage unit 130 via the input unit 110 of the vacuum consolidation control device 100.

<隣り合う区画の負圧の影響を考慮した区画間調整>
図2(a)(b)で示すように、区画(区画10A~区画10D)ごとに設置された土壌排水装置1は、圧密荷重Pを作用させた際の影響範囲Rが重複するように配置されている。このため、各区画は、隣接する区画に作用する圧密荷重Pの影響を受けやすい。
<Adjustment between compartments considering the influence of negative pressure in adjacent compartments>
As shown in FIGS. 2(a) and 2(b), the soil drainage devices 1 installed in each section (sections 10A to 10D) are arranged so that the influence ranges R when the consolidation load P is applied overlap. has been done. Therefore, each section is susceptible to the consolidation load P acting on adjacent sections.

そこで、例えば区画10Aを例にとると、区画10Aの沈下量Siが記憶部130に格納される。すると、真空圧密制御装置100の演算処理部140が区画間調整部143の指令を受け、区画10Aの計測値である沈下量Siと目標沈下曲線TCに加えて、区画10B~10Dの沈下量Siに基づいて、区画10Aが、隣接する区画10B~10Dの影響を受けているか否かを検証する。 Therefore, taking the section 10A as an example, the amount of settlement Si of the section 10A is stored in the storage unit 130. Then, the arithmetic processing unit 140 of the vacuum consolidation control device 100 receives a command from the inter-compartment adjustment unit 143, and in addition to the settlement amount Si, which is the measured value of the section 10A, and the target settlement curve TC, the calculation processing section 140 of the vacuum consolidation control device 100 calculates the settlement amount Si of the sections 10B to 10D. Based on this, it is verified whether the section 10A is influenced by the adjacent sections 10B to 10D.

なお、検証の際には前述したように、複数の沈下量計測部201各々で計測された沈下量Si(i=沈下量計測部201各々に付された個体番号)をそのまま用いてもよいが、これらから沈下量の代表値Stを算定し、この沈下量の代表値Stを採用すると良い。 In addition, as mentioned above, during the verification, the amount of settlement Si measured by each of the plurality of settlement amount measurement units 201 (i = individual number assigned to each of the amount of settlement measurement units 201) may be used as is. , it is preferable to calculate the representative value St of the amount of subsidence from these, and employ this representative value St of the amount of subsidence.

そして、区画10Aが、区画10B~10Dの影響を受けていると判定した場合は、これらの影響を考慮して圧密荷重Pを調整し、時間情報とともに記憶部130に格納する。また、出力部120を介して土壌排水装置1の減圧装置33及び排水装置34に出力する。そして、土壌排水装置1の運転を継続する。 If it is determined that the section 10A is influenced by the sections 10B to 10D, the consolidation load P is adjusted taking these influences into consideration, and is stored in the storage unit 130 together with time information. Further, it is output to the pressure reducing device 33 and the drainage device 34 of the soil drainage device 1 via the output unit 120. Then, the operation of the soil drainage device 1 is continued.

隣り合う区画の影響を受けているか否かは、例えば、次の手順により判定することができる。区画10Aを事例として説明すると、図9のグラフには、区画10Aの目標沈下曲線TCAが表され、また、管理時刻t1に計測した沈下量の代表値SAtがプロットされている。また、隣接する区画10B~10Dの目標沈下曲線TCBCDが表され、また、管理時刻t1に計測した沈下量の代表値SBt~SDtがプロットされている。ここで、区画10B~10Dは、ともに目標沈下曲線TCBCDが同一であり、沈下量の代表値SBt~SDtも同一であったと仮定する。 Whether or not the area is influenced by adjacent sections can be determined, for example, by the following procedure. Taking the section 10A as an example, the graph in FIG. 9 shows the target subsidence curve TC A of the section 10A, and also plots the representative value S A t of the amount of subsidence measured at the management time t1. Further, the target subsidence curves TC BCD of the adjacent sections 10B to 10D are shown, and representative values of the subsidence amounts S B t to S D t measured at the management time t1 are plotted. Here, it is assumed that the target subsidence curves TC BCD are the same for the sections 10B to 10D, and the representative values S B t to S D t of the subsidence amounts are also the same.

このような場合において、区画10Aは、沈下量の代表値SAtから予測した沈下曲線と目標沈下曲線TCAとの乖離が大きく、また設計より過剰に沈下している様子がわかる。一方、区画10Aと隣接する区画10B~10Dは、沈下量の代表値SBt~SDtから予測した沈下曲線が、目標沈下曲線TCBCDより上方に位置し、設計より沈下量が少ない様子がわかる。 In such a case, it can be seen that the division 10A has a large deviation between the subsidence curve predicted from the representative value S A t of the subsidence amount and the target subsidence curve TCA , and has subsided excessively compared to the design. On the other hand, for the plots 10B to 10D adjacent to the plot 10A, the settlement curve predicted from the representative values S B t to S D t of the settlement amount is located above the target settlement curve TC BCD , and the amount of settlement appears to be smaller than the design. I understand.

そして、区画10Aの沈下量の代表値SAtから予測した沈下曲線は、区画10B~10Dの沈下量の代表値SBt~SDtから予測した沈下曲線と比較して、その沈下量が大きい。してみると、区画10Aの間隙水及び空気は、区画10A内に設置した土壌排水装置1からの排出のみでなく、区画10B~10Dへ流亡している可能性がある。したがって、各区画(区画10A~区画10D)は互いに影響を受けているものと判定できる。 The subsidence curve predicted from the representative value S A t of the amount of subsidence of the section 10A is compared with the subsidence curve predicted from the representative values S B t to S D t of the amount of subsidence of the sections 10B to 10D. is large. As a result, there is a possibility that the pore water and air in the compartment 10A are not only discharged from the soil drainage device 1 installed in the compartment 10A, but also flow into the compartments 10B to 10D. Therefore, it can be determined that the sections (sections 10A to 10D) are influenced by each other.

なお、例えば、区画10Aにおいて、沈下量の代表値SAtから予測した沈下曲線と目標沈下曲線TCAとの乖離が大きいものの、区画10B~10Dは、沈下量の代表値SBt~SDtから予測した沈下曲線が目標沈下曲線TCBCDに対して、ほぼ沿って推移している。このような場合には、各区画(区画10A~区画10D)は互いに影響を受けていないものと判定できる。したがって、区画10Aは圧密荷重Pについて、区画間調整は不要であり、区画10A内で調整を行えばよい。 For example, in the section 10A, there is a large discrepancy between the subsidence curve predicted from the representative value S A t of the amount of subsidence and the target subsidence curve TC A , but in the sections 10B to 10D, the representative values S B t to S of the amount of subsidence are The subsidence curve predicted from Dt is moving almost along the target subsidence curve TC BCD . In such a case, it can be determined that the sections (sections 10A to 10D) are not influenced by each other. Therefore, in the compartment 10A, the consolidation load P does not need to be adjusted between compartments, and may be adjusted within the compartment 10A.

区画10Aの圧密荷重Pを調整する場合には、まず、土壌排水装置1における運転予定期間の残り期間で、施工対象領域10における沈下量の代表値SAtが目標沈下曲線TCAに沿って経時的に変化するよう、圧密荷重Pを低減する。さらに、間隙水及び空気が、区画10B~10Dに流亡することを考慮し、前記低減させる調整をした圧密荷重Pを、さらに低減させる。 When adjusting the consolidation load P of the section 10A, first, during the remaining period of the scheduled operation period of the soil drainage system 1, the representative value S A t of the amount of settlement in the construction target area 10 is adjusted along the target settlement curve TC A. The consolidation load P is reduced so that it changes over time. Furthermore, taking into consideration that pore water and air flow into the sections 10B to 10D, the consolidation load P adjusted to be reduced is further reduced.

一方で、区画10B~区画10Dは、区画10Aの圧密荷重Pが管理時刻t1以前よりも低減されたことを鑑みると、圧密荷重の調整を行わなかった場合には沈下量が減少し、土壌排水装置1における運転予定期間の残り期間で、目標沈下曲線TCBCDとの間に大きい乖離を生じる可能性がある。そこで、区画10B~10Dでは、区画10Aの調整に対応させて、圧密荷重Pを増大させる調整を図る。 On the other hand, considering that the consolidation load P of the division 10A has been reduced compared to before the management time t1, the amount of settlement in divisions 10B to 10D will decrease if the consolidation load is not adjusted, and the soil drainage will be reduced. During the remaining period of the scheduled operation period of the device 1, there is a possibility that a large deviation from the target subsidence curve TC BCD will occur. Therefore, in the sections 10B to 10D, adjustments are made to increase the consolidation load P in accordance with the adjustment of the section 10A.

こうすると、土壌排水装置1の運転予定期間終了後には、図9で示すように各区画(区画10A~区画10D)の調整後の沈下曲線は、いずれも、目標沈下曲線TCAもしくは目標沈下曲線TCBCDにほぼ沿った状態となり、施工対象領域10には、区画ごとで敷地用途に要求される地盤強度を有する高品質な改良地盤が構築される。 In this way, after the scheduled operation period of the soil drainage system 1 ends, as shown in FIG. 9, the adjusted subsidence curves of each section (sections 10A to 10D) will be the target subsidence curve TC A or the target subsidence curve. The condition is almost in line with the TC BCD , and in the construction target area 10, high quality improved ground having the ground strength required for the site use is constructed for each section.

一方、区画10Aが、区画10B及び10Cの影響を受けていないと判定した場合は、沈下量の代表値SAtを圧密荷重調整部142に供給する。そして、施工対象領域10を区割りしない場合と同様の手順で、沈下量SAtと区画Aの目標沈下曲線TCAとを比較し、圧密荷重Pの調整の必要性を検証する。 On the other hand, if it is determined that the section 10A is not affected by the sections 10B and 10C, the representative value S A t of the amount of settlement is supplied to the consolidation load adjustment section 142. Then, in the same procedure as when the construction target area 10 is not divided into sections, the amount of settlement S A t is compared with the target settlement curve TC A of section A, and the necessity of adjusting the consolidation load P is verified.

検証した結果、調整の必要ありと判定した場合には、調整量を算定し、また、調整の必要なしと判定した場合には、調整量を0とし、時間情報とともに記憶部130に格納する。また、出力部120を介して土壌排水装置1の減圧装置33及び排水装置34に出力する。そして、土壌排水装置1の運転を継続すればよい。 As a result of the verification, if it is determined that adjustment is necessary, the adjustment amount is calculated, and if it is determined that adjustment is not necessary, the adjustment amount is set to 0 and stored in the storage unit 130 together with time information. Further, it is output to the pressure reducing device 33 and the drainage device 34 of the soil drainage device 1 via the output unit 120. Then, the operation of the soil drainage device 1 may be continued.

上記の真空圧密管理システム及び地盤改良工事の品質管理方法によれば、効率よく軟弱地盤の強度増加を図りつつ、高品質な改良地盤を構築することが可能となる。 According to the vacuum consolidation management system and quality control method for ground improvement work described above, it is possible to efficiently increase the strength of soft ground and construct high-quality improved ground.

なお、施工対象領域10を区割りした区画について、上述するような区画間調整が困難な場合には、図10で示すように、区画ごとの境界部に遮水壁4を設けるなどの対策工を実施してもよい。こうすると、遮水壁4で各区画(区画10A~区画10D)を分離できるため、互いに圧密荷重Pを作用させた際の影響を抑止できる。 If the construction target area 10 is divided into sections and it is difficult to adjust the sections as described above, countermeasures such as installing water-blocking walls 4 at the boundaries of each section as shown in FIG. 10 may be taken. May be implemented. In this way, the sections (sections 10A to 10D) can be separated by the water-shielding wall 4, so that the effects of the consolidation load P acting on each other can be suppressed.

本発明の真空圧密管理システム300及び地盤改良工事の品質管理方法は、上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の変更が可能である。 The vacuum consolidation management system 300 and the quality control method for ground improvement work of the present invention are not limited to the above embodiments, and various changes can be made without departing from the spirit of the present invention.

例えば、本実施の形態では、真空圧密工法に土壌排水装置1を採用したが、これに限定されるものではなく、例えば、図11(a)(b)で示すような、鉛直ドレーン12を採用した排水装置11を採用してもよい。 For example, in this embodiment, the soil drainage device 1 is used in the vacuum consolidation method, but the invention is not limited to this, and for example, a vertical drain 12 as shown in FIGS. 11(a) and 11(b) is used. A drainage device 11 may be adopted.

この場合には、下端部に閉塞キャップを設けた鉛直ドレーン12を軟弱地盤G中に間隔を設けて複数埋設する。また、埋設した鉛直ドレーン12の上端部どうしを排水パイプ13で連結する。そして、排水パイプ13に真空ポンプ14を接続し、真空ポンプ14を作動させることにより排水パイプ13を介して軟弱地盤G内に圧密荷重Pを作用させ、間隙水及び空気を排出する。圧密荷重Pは、真空ポンプ14に設ける圧力計により計測する負圧で調整することが可能である。 In this case, a plurality of vertical drains 12 each having a closing cap at the lower end are buried in the soft ground G at intervals. Further, the upper ends of the buried vertical drains 12 are connected to each other by a drain pipe 13. Then, a vacuum pump 14 is connected to the drainage pipe 13, and by operating the vacuum pump 14, a consolidation load P is applied to the soft ground G through the drainage pipe 13, and pore water and air are discharged. The consolidation load P can be adjusted by the negative pressure measured by a pressure gauge provided in the vacuum pump 14.

また、本実施の形態では、土壌排水装置1に1層の集水層2を設け、その上面に軟弱地盤Gを堆積させた形状のものを採用したが、必ずしもこれに限定されるものではない。例えば、図12で示すように、集水層2と軟弱地盤Gとを深度方向に交互に積層した構成としてもよい。 Furthermore, in this embodiment, the soil drainage device 1 is provided with one layer of water collection layer 2, and the soft ground G is deposited on the upper surface of the soil drainage device 1. However, the present invention is not necessarily limited to this. . For example, as shown in FIG. 12, a structure may be adopted in which the water catchment layer 2 and the soft ground G are alternately stacked in the depth direction.

図12の土壌排水装置1は、貯水槽31の側面であって集水層2と当接する位置にそれぞれ連通部32が設けられて、貯水槽31の内空部と複数の集水層2各々とが連通されている。そして、複数の集水層2をすべて利用して、軟弱地盤Gの圧密荷重を作用させて間隙水及び空気を排出する。すると、堆積された軟弱地盤Gに対して高さ方向に均一に圧密荷重Pを作用させて、効率よく軟弱地盤の強度増加を図ることが可能となる。 The soil drainage device 1 of FIG. 12 is provided with communication portions 32 at positions that are in contact with the water collection layers 2 on the side surfaces of the water storage tank 31, so that the inner space of the water storage tank 31 and each of the plurality of water collection layers 2 are connected to each other. are in communication. Then, by utilizing all of the plurality of water collection layers 2, the consolidation load of the soft ground G is applied to discharge pore water and air. Then, the consolidation load P is applied uniformly in the height direction to the accumulated soft ground G, and it becomes possible to efficiently increase the strength of the soft ground.

もしくは、連通部32をそれぞれ開閉自在な構成とし、複数の集水層2のうち、1層もしくは複数層を選択的に利用して、軟弱地盤Gの間隙水及び空気を排出できるようにしてもよい。こうすると、施工対象領域10の所望の深さ位置に対して圧密荷重を作用させることができる。また、施工対象領域10を区割りした際には、区画ごとで異なる深さ位置に圧密荷重Pを作用させることもできる。これにより、軟弱地盤Gの性状や要求される地盤強度等に応じて、区画ごとで最適な方法で圧密荷重を作用させることができ、施工性を大幅に向上できるだけでなく、高品質な改良地盤を構築できる。 Alternatively, the communication portions 32 may be configured to be openable and closable, and one or more of the plurality of water collection layers 2 may be selectively used to discharge pore water and air from the soft ground G. good. In this way, the consolidation load can be applied to a desired depth position of the construction target area 10. Further, when the construction target area 10 is divided into sections, the consolidation load P can be applied to different depth positions for each section. This makes it possible to apply the consolidation load in an optimal manner for each section depending on the properties of the soft ground G and the required ground strength, etc., which not only greatly improves workability but also improves the quality of the improved ground. can be constructed.

なお、土壌排水装置1について、軟弱地盤Gの間隙水及び空気を排出させるに際し、複数の集水層2を選択的に利用可能とする構成は、必ずしも開閉自在な連通部32に限定されるものではない。その詳細は、特願2020-047319号に譲る。 Regarding the soil drainage device 1, the configuration that allows selective use of a plurality of water collection layers 2 when discharging pore water and air from the soft ground G is not necessarily limited to the openable/closeable communication section 32. isn't it. The details are given in Japanese Patent Application No. 2020-047319.

また、図12のように、軟弱地盤Gを複数層に分割する際には、分割した層ごとに計測装置200の沈下量計測部201と水圧計測部202を設けると良い。こうすると、軟弱地盤Gにおける各層ごとの上面沈下量と圧密荷重Pを確認することができる。これらは、計測値を取得するごとに沈下管理に係る計測項目として、真空圧密制御装置100の記憶部130に格納し集約管理することもできる。 Further, as shown in FIG. 12, when dividing the soft ground G into multiple layers, it is preferable to provide the subsidence measuring section 201 and the water pressure measuring section 202 of the measuring device 200 for each divided layer. In this way, the amount of upper surface settlement and consolidation load P for each layer in the soft ground G can be confirmed. These can also be stored in the storage unit 130 of the vacuum consolidation control device 100 as measurement items related to subsidence management each time a measurement value is acquired, and can be centrally managed.

さらに、施工対象領域10を区割りした場合には、図2(a)(b)で示すように、各区画(区画10A~区画10D)に設置された土壌排水装置1ごとで圧密荷重Pを作用させる。このため、影響範囲Rが重複する領域に集中して、不同沈下を生じる恐れがある。したがって、隣り合う区画間で圧密荷重Pの調整を図る際には、これら重複する領域近傍に生じる不同沈下の大きさも考慮すると良い。 Furthermore, when the construction target area 10 is divided into sections, the consolidation load P is applied to each soil drainage device 1 installed in each section (section 10A to section 10D), as shown in FIGS. 2(a) and 2(b). let For this reason, there is a possibility that the influence ranges R will be concentrated in overlapping areas, causing uneven settlement. Therefore, when adjusting the consolidation load P between adjacent sections, it is good to consider the magnitude of uneven settlement that occurs near these overlapping areas.

1 土壌排水装置
2 集水層
3 負圧作用設備
31 貯水槽
32 連通部
33 減圧装置
331 排気管
332 真空ポンプ
34 排水装置
341 揚水管
342 揚水ポンプ
4 遮水壁
10 施工対象領域
11 排水装置
12 鉛直ドレーン
13 排水パイプ
14 真空ポンプ
100 真空圧密制御装置
110 入力部
120 出力部
130 記憶部
140 演算処理部
141 目標曲線作成部
142 圧密荷重調整部
143 区画間調整部
200 計測装置
201 沈下量計測部
202 水圧計測部
300 真空圧密管理システム

G 軟弱地盤
R 影響範囲
W 貯留水位
TC 目標沈下曲線
Sf 目標最終沈下量
Si 沈下量
St 沈下量の代表値
P 圧密荷重
1 Soil drainage device 2 Water collection layer 3 Negative pressure equipment 31 Water storage tank 32 Communication section 33 Pressure reducing device 331 Exhaust pipe 332 Vacuum pump 34 Drainage device 341 Lifting pipe 342 Lifting pump 4 Impermeable wall 10 Construction target area 11 Drainage device 12 Vertical Drain 13 Drain pipe 14 Vacuum pump 100 Vacuum consolidation control device 110 Input section 120 Output section 130 Storage section 140 Arithmetic processing section 141 Target curve creation section 142 Consolidation load adjustment section 143 Inter-compartment adjustment section 200 Measuring device 201 Settlement measurement section 202 Water pressure Measurement section 300 Vacuum consolidation management system

G Soft ground R Influence range W Reservoir water level TC Target settlement curve Sf Target final settlement amount Si Settlement amount St Representative value of settlement amount P Consolidation load

Claims (5)

真空圧密工法により軟弱地盤の強度増加を図る地盤改良工事の品質管理を行うための真空圧密管理システムにおいて、
前記地盤改良工事の品質管理に用いる計測項目の計測を行う計測装置と、
前記計測項目の計測結果に基づいて、前記軟弱地盤の沈下量を制御する真空圧密制御装置と、を備え、
前記計測項目は、少なくとも前記軟弱地盤の沈下量を含み、
前記真空圧密制御装置は、目標曲線作成部と、圧密荷重調整部とを有し、
前記目標曲線作成部は、前記軟弱地盤の沈下量を経時変化させて目標最終沈下量に到達させるための指標となる、目標沈下曲線を作成し、
前記圧密荷重調整部は、前記目標沈下曲線と、沈下量の計測結果とに基づいて、調整後の軟弱地盤の沈下量が目標沈下曲線に沿って経時変化するよう、圧密荷重を適時調整することを特徴とする真空圧密管理システム。
In a vacuum consolidation management system for quality control of ground improvement work that aims to increase the strength of soft ground using the vacuum consolidation method,
a measuring device that measures measurement items used for quality control of the ground improvement work;
a vacuum consolidation control device that controls the amount of subsidence of the soft ground based on the measurement results of the measurement items,
The measurement item includes at least the amount of subsidence of the soft ground,
The vacuum consolidation control device includes a target curve creation section and a consolidation load adjustment section,
The target curve creation unit creates a target subsidence curve that serves as an index for changing the subsidence amount of the soft ground over time to reach a target final subsidence amount,
The consolidation load adjustment section adjusts the consolidation load in a timely manner based on the target settlement curve and the measurement result of the amount of settlement so that the amount of settlement of the soft ground after adjustment changes over time along the target settlement curve. A vacuum consolidation management system featuring:
請求項1に記載の真空圧密管理システムにおいて、
前記軟弱地盤が複数の区画に区分けされるとともに、前記真空圧密制御装置がさらに区画間調整部を備え、
前記区画間調整部は、前記区画ごとで、前記目標沈下曲線及び沈下量の計測値と、隣接する区画における沈下量の計測値とに基づいて、前記区画ごとの前記圧密荷重を適時調整することを特徴とする真空圧密管理システム。
The vacuum consolidation management system according to claim 1,
The soft ground is divided into a plurality of sections, and the vacuum consolidation control device further includes an inter-section adjustment section,
The inter-compartment adjustment unit may adjust the consolidation load for each compartment in a timely manner based on the target settlement curve and the measured value of the amount of subsidence, and the measured value of the amount of subsidence in the adjacent compartment. A vacuum consolidation management system featuring:
請求項1または2に記載の真空圧密管理システムにおいて、
前記計測項目に、前記軟弱地盤における間隙水の揚水量と真空圧とを含み、
前記圧密荷重調整部では、揚水量もしくは真空圧を増減し圧密荷重を調整することを特徴とする真空圧密管理システム。
The vacuum consolidation management system according to claim 1 or 2,
The measurement items include the amount of pore water pumped in the soft ground and the vacuum pressure,
The vacuum consolidation management system is characterized in that the consolidation load adjustment section adjusts the consolidation load by increasing or decreasing the amount of water pumped or the vacuum pressure.
請求項1または3に記載の真空圧密管理システムを用いて、真空圧密工法により軟弱地盤の強度増加を図る地盤改良工事の品質管理を行う、地盤改良工事の品質管理方法において、
前記軟弱地盤の沈下量を経時変化させて目標最終沈下量に到達させるための指標となる、目標沈下曲線を作成する工程と、
前記軟弱地盤に圧密荷重を作用させ、管理時刻に前記計測項目の計測を行う工程と、
前記計測項目のうちの沈下量の計測値と前記目標沈下曲線とに基づいて圧密荷重を調整し、調整後の前記軟弱地盤の沈下量が前記目標沈下曲線に沿って経時変化するよう制御する工程と、を備えることを特徴とする地盤改良工事の品質管理方法。
A quality control method for ground improvement work that uses the vacuum consolidation management system according to claim 1 or 3 to control the quality of ground improvement work that aims to increase the strength of soft ground by a vacuum consolidation method,
creating a target subsidence curve that serves as an index for changing the subsidence amount of the soft ground over time to reach the target final subsidence amount;
A step of applying a consolidation load to the soft ground and measuring the measurement items at a control time;
A step of adjusting the consolidation load based on the measured value of the amount of subsidence among the measurement items and the target subsidence curve, and controlling the adjusted amount of subsidence of the soft ground to change over time along the target subsidence curve. A quality control method for ground improvement work, comprising:
請求項2または3に記載の真空圧密管理システムを用いて、真空圧密工法により軟弱地盤の強度増加を図る地盤改良工事の品質管理を行う、地盤改良工事の品質管理方法において、
軟弱地盤を目標最終沈下量ごとの区画に区分けする工程と、
前記区画ごとで、前記軟弱地盤の沈下量を経時変化させて目標最終沈下量に到達させるための指標となる、目標沈下曲線を作成する工程と、
前記区画ごとに圧密荷重を作用させ、管理時刻に前記計測項目の計測を行う工程と、
前記区画ごとで、前記目標沈下曲線及び沈下量の計測値と、隣接する区画における沈下量の計測値とに基づいて圧密荷重を調整し、調整後の前記軟弱地盤の沈下量が前記目標沈下曲線に沿って経時変化するよう制御する工程と、
を備えることを特徴とする地盤改良工事の品質管理方法。
A quality control method for ground improvement work, which uses the vacuum consolidation management system according to claim 2 or 3 to control the quality of ground improvement work that aims to increase the strength of soft ground by a vacuum consolidation method,
A process of dividing the soft ground into sections according to the target final settlement amount,
creating a target subsidence curve for each section, which is an index for changing the subsidence amount of the soft ground over time to reach a target final subsidence amount;
a step of applying a consolidation load to each section and measuring the measurement items at a control time;
For each section, the consolidation load is adjusted based on the target subsidence curve and the measured value of the subsidence amount, and the measured value of the subsidence amount in the adjacent section, and the adjusted subsidence amount of the soft ground corresponds to the target subsidence curve. a step of controlling the change over time along the
A quality control method for ground improvement work, characterized by comprising:
JP2020090264A 2020-05-25 2020-05-25 Vacuum consolidation management system and quality control method for ground improvement work Active JP7452249B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020090264A JP7452249B2 (en) 2020-05-25 2020-05-25 Vacuum consolidation management system and quality control method for ground improvement work

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020090264A JP7452249B2 (en) 2020-05-25 2020-05-25 Vacuum consolidation management system and quality control method for ground improvement work

Publications (2)

Publication Number Publication Date
JP2021185290A JP2021185290A (en) 2021-12-09
JP7452249B2 true JP7452249B2 (en) 2024-03-19

Family

ID=78815718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020090264A Active JP7452249B2 (en) 2020-05-25 2020-05-25 Vacuum consolidation management system and quality control method for ground improvement work

Country Status (1)

Country Link
JP (1) JP7452249B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114777995B (en) * 2022-04-20 2024-04-26 交通运输部天津水运工程科学研究所 Single-hole multipoint deep soil body vacuum degree monitoring device and method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002242171A (en) 2001-02-16 2002-08-28 Hazama Gumi Ltd Foundation improvement work by vacuum consolidation and working construction therefor
JP2014196614A (en) 2013-03-29 2014-10-16 清水建設株式会社 Ground improvement method
JP2017002556A (en) 2015-06-10 2017-01-05 五洋建設株式会社 Ground improvement method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002242171A (en) 2001-02-16 2002-08-28 Hazama Gumi Ltd Foundation improvement work by vacuum consolidation and working construction therefor
JP2014196614A (en) 2013-03-29 2014-10-16 清水建設株式会社 Ground improvement method
JP2017002556A (en) 2015-06-10 2017-01-05 五洋建設株式会社 Ground improvement method

Also Published As

Publication number Publication date
JP2021185290A (en) 2021-12-09

Similar Documents

Publication Publication Date Title
JP7452249B2 (en) Vacuum consolidation management system and quality control method for ground improvement work
GB2540331A (en) Flood prevention system and method
CN101429759A (en) Inverse drainage processing method in high concrete panel rock-fill dam construction period
CN102430277B (en) Coarse grid sunk well for physically processing waste water and construction method thereof
KR20160085086A (en) Settlement adjusting apparatus and settlement adjusting maintenance method for earthwork connecting portion
CN108301440A (en) With waterproof, the underground pipe gallery construction method of drain function
CN105804118A (en) Underground structure construction method based on cast-in-place foam lightweight materials
CN106835992A (en) A kind of arcuate structure clear-water concrete construction of cast-in-situ box-beam method
CN108018828B (en) Slope protection structure
JP5380627B1 (en) Simple vertical wall structure at final disposal site
JP6055695B2 (en) Lining concrete filling management method
JP4000780B2 (en) Waste landfill method
CN111501548B (en) Anchor block structure and construction method thereof
JP4537343B2 (en) Form for shoulder
CN106758852A (en) Across foundation pit enclosure to support beam trestle construction technology
CN109653240B (en) Urban residual soil heaping body in ecological restoration engineering and construction method thereof
JP6402056B2 (en) Vertical shaft, underground storage tank, vertical shaft construction method and underground storage tank construction method
CN112132706A (en) Construction method for canceling post-cast strip of settlement in skip operation
CN111411648A (en) Construction method of building floor foundation for blocking and removing radon gas
CN110042859A (en) Retaining wall anti-filter body and its construction method
CN211597002U (en) Overburden rainwater outlet inspection well
CN108103937A (en) Utilize the cast-in-place box beam construction method of native loose tool substitution falsework
CN116815837B (en) Pre-lifting construction method for soft soil geological super-high-rise piled raft foundation
JP5385115B2 (en) Ground improvement method
CN219825352U (en) Existing barricade back filling unloading reinforced structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240219

R150 Certificate of patent or registration of utility model

Ref document number: 7452249

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150