JP7451299B2 - Diffractive optical elements, optical instruments and imaging devices - Google Patents

Diffractive optical elements, optical instruments and imaging devices Download PDF

Info

Publication number
JP7451299B2
JP7451299B2 JP2020089581A JP2020089581A JP7451299B2 JP 7451299 B2 JP7451299 B2 JP 7451299B2 JP 2020089581 A JP2020089581 A JP 2020089581A JP 2020089581 A JP2020089581 A JP 2020089581A JP 7451299 B2 JP7451299 B2 JP 7451299B2
Authority
JP
Japan
Prior art keywords
region
grating
resin layer
optical element
diffractive optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020089581A
Other languages
Japanese (ja)
Other versions
JP2021184049A5 (en
JP2021184049A (en
Inventor
英生 源田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2020089581A priority Critical patent/JP7451299B2/en
Publication of JP2021184049A publication Critical patent/JP2021184049A/en
Publication of JP2021184049A5 publication Critical patent/JP2021184049A5/ja
Application granted granted Critical
Publication of JP7451299B2 publication Critical patent/JP7451299B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Description

カメラやビデオ等にレンズとして使用される回折光学素子に関する。また、その回折光学素子を用いた光学機器および撮像装置に関する。 This invention relates to diffractive optical elements used as lenses in cameras, videos, etc. The present invention also relates to an optical device and an imaging device using the diffractive optical element.

従来から、レンズなどに用いられる回折光学素子として、光学特性が異なる2種類の樹脂を密着して積層させた回折光学素子が知られている。このような回折光学素子は、特許文献1に開示されたような製造方法で製造される。具体的には、まず、格子形状を有する型を用いて、基材上に格子形状を有する第1樹脂層を形成する。次いで、第1樹脂層上に、平坦な型を用いて第1樹脂層とは光学特性が異なる第2樹脂層を形成する。 BACKGROUND ART A diffractive optical element in which two types of resins having different optical properties are laminated in close contact with each other has been known as a diffractive optical element used in lenses and the like. Such a diffractive optical element is manufactured by a manufacturing method as disclosed in Patent Document 1. Specifically, first, a first resin layer having a lattice shape is formed on a base material using a mold having a lattice shape. Next, a second resin layer having optical properties different from those of the first resin layer is formed on the first resin layer using a flat mold.

特開2003-320540号公報Japanese Patent Application Publication No. 2003-320540

しかしながら、特許文献1に開示された製造方法で製造される回折光学素子は、格子の高さ、樹脂層の厚みによっては、素子の周縁部の回折効率が素子の中心の回折効率より大きく低下してしまうという課題があった。 However, in the diffractive optical element manufactured by the manufacturing method disclosed in Patent Document 1, the diffraction efficiency at the periphery of the element is significantly lower than that at the center of the element, depending on the height of the grating and the thickness of the resin layer. There was a problem that it ended up happening.

上記課題を解決するための回折光学素子は、第1樹脂層と、第2樹脂層とが順に積層され、平面視した際に、前記第1樹脂層と前記第2樹脂層の界面の少なくとも一部に同心円状の回折格子が形成された回折光学素子であって、前記回折格子は、平面視した際に、前記回折格子の中心を含む第1領域と、前記第1領域を囲み前記第1領域より低い高さの格子を有する第2領域と、を有し、前記第2領域の回折格子の格子高さは、前記回折格子の外縁に向かって低くなっており、前記第2領域において、前記回折格子の中心から外縁に向かってm番目(mは2より大きい整数)の格子の高さをdmとすると、0.50≦d /d m-1 ≦0.98の関係を満たすことを特徴とする。 A diffractive optical element for solving the above problems has a first resin layer and a second resin layer laminated in order, and when viewed from above, at least one of the interfaces between the first resin layer and the second resin layer is laminated. A diffractive optical element in which a concentric diffraction grating is formed in a portion thereof, and the diffraction grating includes a first region including a center of the diffraction grating and a first region surrounding the first region when viewed in plan. a second region having a grating with a height lower than that of the second region, the grating height of the diffraction grating in the second region decreases toward an outer edge of the diffraction grating , and in the second region, When the height of the m-th grating (m is an integer greater than 2) from the center to the outer edge of the diffraction grating is dm, the relationship 0.50≦d m /d m−1 ≦0.98 is satisfied. It is characterized by

本発明によれば、素子端部と中心の回折効率の差が小さい回折光学素子を提供することができる。 According to the present invention, it is possible to provide a diffractive optical element with a small difference in diffraction efficiency between the ends and the center of the element.

本発明の回折光学素子の一実施態様を示す概略図である。1 is a schematic diagram showing one embodiment of a diffractive optical element of the present invention. 図1の回折光学素子の拡大図である。FIG. 2 is an enlarged view of the diffractive optical element of FIG. 1; 従来の回折光学素子の屈折率の経時変化を示す概略図である。FIG. 2 is a schematic diagram showing a change over time in the refractive index of a conventional diffractive optical element. 本発明の回折光学素子の一実施態様を示す概略図である。1 is a schematic diagram showing one embodiment of a diffractive optical element of the present invention. 本発明の回折光学素子の製造方法の一実施態様を示す概略図である。1 is a schematic diagram showing one embodiment of a method for manufacturing a diffractive optical element of the present invention. 本発明の撮像装置の一実施態様を示す概略図である。1 is a schematic diagram showing an embodiment of an imaging device of the present invention.

以下、本発明を実施するための形態を、図面を参照しながら説明する。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.

[回折光学素子]
図1は、第1実施形態に係る回折光学素子を示した模式的平面図および模式的断面図である。図2は、図1の点線部分を拡大した回折光学素子の端部の拡大図である。図1および図2に示すように、回折光学素子20は、第1基材1上に、第1樹脂層2と第2樹脂層3とが順に積層されている。
[Diffractive optical element]
FIG. 1 is a schematic plan view and a schematic cross-sectional view showing a diffractive optical element according to a first embodiment. FIG. 2 is an enlarged view of the end portion of the diffractive optical element, which is an enlarged view of the dotted line portion in FIG. As shown in FIGS. 1 and 2, the diffractive optical element 20 has a first resin layer 2 and a second resin layer 3 laminated in this order on a first base material 1.

(第1基材)
第1基材1は、透明な樹脂や、透明なガラスを用いることができる。第1基材1は、ガラスを用いることが好ましく、例えば、珪酸ガラス、硼珪酸ガラスおよびリン酸ガラスに代表される一般的な光学ガラスや、石英ガラス、ガラスセラミックスを用いることができる。
(First base material)
The first base material 1 can be made of transparent resin or transparent glass. It is preferable to use glass for the first base material 1, and for example, common optical glasses such as silicate glass, borosilicate glass, and phosphate glass, quartz glass, and glass ceramics can be used.

第1基材1の形状は特に限定されず、第1樹脂層2と接する面の形状は、凹球面、凸球面、軸対称非球面、平面などから選択できる。また、第1基材1の外形は平面視した際に円形であることが好ましい。 The shape of the first base material 1 is not particularly limited, and the shape of the surface in contact with the first resin layer 2 can be selected from a concave spherical surface, a convex spherical surface, an axially symmetric aspherical surface, a flat surface, and the like. Moreover, it is preferable that the outer shape of the first base material 1 is circular when viewed from above.

(第1樹脂層・第2樹脂層)
第1樹脂層2および第2樹脂層3は異なる光学特性を有する透明な樹脂であり、回折光学素子20が所望の光学特性となるように屈折率やアッベ数を設計する。広い波長帯域で高い回折効率を得るために、第1樹脂層2と第2樹脂層3の一方が低屈折率高分散であり、他方が高屈折率低分散であることが好ましい。ここで、低屈折率および高屈折率とは第1樹脂層2および第2樹脂層3の屈折率(d線の屈折率)の相対的な関係を意味する。同様に、高分散および低分散とは第1樹脂層2および第2樹脂層3の分散特性(アッベ数νd)の相対的な関係を意味する。つまり、第1樹脂層2が第2樹脂層3に対して高屈折率低分散であるとは、第1樹脂層2の屈折率Nd1、アッベ数ν1、第2樹脂層3の屈折率Nd2及びアッベ数ν2が、Nd1>Nd2及びν1>ν2を満たすことを意味する。
(First resin layer/second resin layer)
The first resin layer 2 and the second resin layer 3 are transparent resins having different optical properties, and the refractive index and Abbe number are designed so that the diffractive optical element 20 has desired optical properties. In order to obtain high diffraction efficiency in a wide wavelength band, it is preferable that one of the first resin layer 2 and the second resin layer 3 has a low refractive index and high dispersion, and the other has a high refractive index and low dispersion. Here, the low refractive index and the high refractive index refer to the relative relationship between the refractive indexes (d-line refractive index) of the first resin layer 2 and the second resin layer 3. Similarly, high dispersion and low dispersion refer to the relative relationship between the dispersion characteristics (Abbe number νd) of the first resin layer 2 and the second resin layer 3. In other words, the fact that the first resin layer 2 has a high refractive index and low dispersion with respect to the second resin layer 3 means that the refractive index Nd1 of the first resin layer 2, the Abbe number ν1, the refractive index Nd2 of the second resin layer 3, and This means that the Abbe number ν2 satisfies Nd1>Nd2 and ν1>ν2.

第1樹脂層2および第2樹脂層3は樹脂組成物の硬化物である。第1樹脂層2の原料となる樹脂組成物は第1樹脂組成物2aであり、第2樹脂層3の原料となる樹脂組成物は第2樹脂組成物3である。第1樹脂組成物2aおよび第2樹脂組成物3aは、エネルギー硬化性樹脂を含有することが好ましい。エネルギー硬化性樹脂のなかでも、紫外線硬化性樹脂であることがより好ましい。紫外線硬化性樹脂としては、例えば、アクリル樹脂、エポキシ樹脂を用いることができる。また、第1樹脂組成物2aおよび第2樹脂組成物3aは、光学物性や機械物性を調整するため、樹脂以外の他の有機物や無機物を含有してもよい。 The first resin layer 2 and the second resin layer 3 are cured products of resin compositions. The resin composition that is the raw material for the first resin layer 2 is the first resin composition 2a, and the resin composition that is the raw material for the second resin layer 3 is the second resin composition 3. It is preferable that the first resin composition 2a and the second resin composition 3a contain an energy-curable resin. Among energy-curable resins, ultraviolet-curable resins are more preferred. As the ultraviolet curable resin, for example, acrylic resin or epoxy resin can be used. Furthermore, the first resin composition 2a and the second resin composition 3a may contain organic or inorganic substances other than resin in order to adjust optical properties and mechanical properties.

第1基材1上に積層される2つの樹脂層である第1樹脂層2および第2樹脂層3は、平面視した際に、その界面の少なくとも一部に同心円状の回折格子が形成されている。具体的には、第1樹脂層のベース部11と、第2樹脂層のベース部12との間に格子部10が存在し、2つの樹脂層の積層方向に回折格子が形成されている。回折格子は、前記積層方向の界面の一部に形成されていても、全面に形成されていても構わない。回折格子の形状は、素子の中心O(第1樹脂層2および第2樹脂層3の中心)から外周(周縁)へ向かう径方向に緩やかに傾斜する傾斜面15Aと、所定の距離を進んだところで急激に傾斜の逆方向に変化する壁面15Bの繰り返しパターンである。繰り返しパターンの間隔(ピッチ間隔)は中心から外周に向かって連続的に小さくなる。また、傾斜面は滑らかでなくてもよく、可視光の波長以下の微細な階段状の傾斜であってもよい。 The first resin layer 2 and the second resin layer 3, which are two resin layers laminated on the first base material 1, have a concentric diffraction grating formed on at least a part of their interface when viewed from above. ing. Specifically, the grating portion 10 exists between the base portion 11 of the first resin layer and the base portion 12 of the second resin layer, and a diffraction grating is formed in the lamination direction of the two resin layers. The diffraction grating may be formed on a part of the interface in the stacking direction, or may be formed on the entire surface. The shape of the diffraction grating includes an inclined surface 15A that is gently inclined in the radial direction from the center O of the element (the center of the first resin layer 2 and the second resin layer 3) toward the outer periphery (periphery), and a slope that extends a predetermined distance. Incidentally, this is a repeating pattern of the wall surface 15B that suddenly changes in the opposite direction of the slope. The interval between the repeating patterns (pitch interval) decreases continuously from the center toward the outer periphery. Further, the inclined surface does not need to be smooth, and may have a fine step-like inclination of less than the wavelength of visible light.

(格子形状)
図3は従来技術の回折光学素子の端部を示す概略図である。回折光学素子20Xは、第1基材1X上に、第1樹脂層2Xと第2樹脂層3Xとが順に積層されている。また、第1樹脂層2Xおよび第2樹脂層3Xは、平面視した際に、その界面の少なくとも一部に同心円状の回折格子が形成されている。具体的には、第1樹脂層のベース部11Xと、第2樹脂層のベース部12Xとの間に格子部10Xが存在し、2つの樹脂層の積層方向に回折格子が形成されている。回折格子の形状は、第1樹脂層2Xおよび第2樹脂層3Xの中心から外周へ向かう径方向に緩やかに傾斜する傾斜面15XAと、所定の距離を進んだところで急激に傾斜の逆方向に変化する壁面15XBの繰り返しパターンである。ただし、回折光学素子20Xは、回折格子の高さ(格子部10Xの高さ)がほぼ一様な高さである点が回折光学素子20と異なる。この回折光学素子20Xの構成は、特許文献1で開示された回折光学素子の構成と同じである。
(lattice shape)
FIG. 3 is a schematic diagram showing an end portion of a prior art diffractive optical element. In the diffractive optical element 20X, a first resin layer 2X and a second resin layer 3X are sequentially laminated on a first base material 1X. Further, when the first resin layer 2X and the second resin layer 3X are viewed in plan, a concentric diffraction grating is formed at least in part of the interface thereof. Specifically, a grating portion 10X exists between the base portion 11X of the first resin layer and the base portion 12X of the second resin layer, and a diffraction grating is formed in the lamination direction of the two resin layers. The shape of the diffraction grating consists of an inclined surface 15XA that gently slopes in the radial direction from the center of the first resin layer 2X and the second resin layer 3X toward the outer periphery, and after a predetermined distance, the slope suddenly changes in the opposite direction. This is a repeating pattern of wall surface 15XB. However, the diffractive optical element 20X differs from the diffractive optical element 20 in that the height of the diffraction grating (the height of the grating portion 10X) is substantially uniform. The configuration of this diffractive optical element 20X is the same as that of the diffractive optical element disclosed in Patent Document 1.

本願発明者は、回折光学素子20Xが、格子部10Xの高さ、第1樹脂層2Xおよび第2樹脂層3Xの厚みによっては、素子の周縁部の回折効率が中心の回折効率より大きく低下してしまうことを見出した。以下に、格子部の高さが高く、第1樹脂層及び第2樹脂層の厚みが薄いときを例として、そのメカニズムを説明する。 The inventor of the present application has discovered that the diffraction efficiency of the diffractive optical element 20X at the periphery of the element is significantly lower than that at the center depending on the height of the grating section 10X and the thickness of the first resin layer 2X and the second resin layer 3X. I discovered that The mechanism will be described below, taking as an example a case where the height of the grid portion is high and the thickness of the first resin layer and the second resin layer is thin.

まず、第1基材11X上に型を用いて、未硬化の樹脂を硬化させて第1樹脂層1Xを形成する。ここで第1樹脂層の格子部10Xの高さが高すぎると、格子の頂点付近とベース部とでは硬化収縮量が大きく異なる。硬化収縮量が異なると樹脂の密度も変わるため、格子の頂点付近とベース部とで屈折率に差が生じる。このとき、ベース部の厚みが十分に厚ければ、生じる屈折率差を多少は緩和することができるが、格子部の高さに対しベース部の厚みが薄いと、生じる屈折率差が大きくなってしまう。 First, using a mold, uncured resin is cured on the first base material 11X to form the first resin layer 1X. If the height of the lattice portion 10X of the first resin layer is too high, the amount of curing shrinkage will differ greatly between the vicinity of the apex of the lattice and the base portion. If the amount of curing shrinkage differs, the density of the resin also changes, resulting in a difference in refractive index near the apex of the lattice and at the base. At this time, if the base part is thick enough, the difference in refractive index that occurs can be alleviated to some extent, but if the thickness of the base part is thin relative to the height of the grating part, the difference in refractive index that occurs becomes large. It ends up.

また、第1樹脂層を型で成形する場合は、この屈折率差は素子の中心を含む中心部より、中心部を囲む周縁部の方が大きく影響する。これは、格子形状の周縁部に厚みが薄い領域が存在すると、未硬化の樹脂を硬化した際に、周縁部からの未硬化樹脂の供給が少ないことによって周縁部の格子応力が増大するためである。さらに、屈折率差が生じるのみならず、回折格子の形状精度の悪化を引き起こすこともある。 Furthermore, when the first resin layer is molded with a mold, the refractive index difference has a greater influence on the peripheral portion surrounding the center than on the central portion including the center of the element. This is because if there is a thin region at the periphery of the lattice shape, when uncured resin is cured, the lattice stress at the periphery increases due to less supply of uncured resin from the periphery. be. Furthermore, not only a refractive index difference occurs, but also a deterioration in the shape accuracy of the diffraction grating.

これらの現象は、第2樹脂層においても同様である。第2樹脂層3Xのベース部の厚みが薄いと、第2樹脂部3Xの格子頂点付近とベース部において屈折率差が生じてしまう。 These phenomena also apply to the second resin layer. If the base portion of the second resin layer 3X is thin, a difference in refractive index will occur between the vicinity of the lattice apex of the second resin portion 3X and the base portion.

そこで本願発明は、回折格子の形状を、平面視した際に、回折格子の中心を含む第1領域と、その第1領域を囲む、第1領域より低い複数の高さの格子からなる第2領域と、を設けた。さらに、その第2領域の回折格子の格子高さを、回折格子の外縁に向かって低くする構成を採用した。 Therefore, the present invention provides a first region including the center of the diffraction grating, and a second region surrounding the first region and consisting of a plurality of gratings having heights lower than the first region, when the shape of the diffraction grating is viewed in plan. A region was established. Furthermore, a configuration is adopted in which the grating height of the diffraction grating in the second region is lowered toward the outer edge of the diffraction grating.

図2は図1の回折光学素子20の点線で囲んだ端部の領域の拡大図である。図2において回折光学素子20の中心Oは左側であり、右側が周縁を示す。第1領域13は回折格子の中心を含む領域である。その半径方向の長さ(幅)はAである。第2領域14は、第1領域13に隣接する第1領域13を囲む領域である。第2領域14の格子の高さは、第1領域13の格子の高さより小さい。また、第2領域14の格子は複数の高さの値を有し、中心から外縁に向かう方向に向かって、段階的に低くなっている。 FIG. 2 is an enlarged view of the end region of the diffractive optical element 20 in FIG. 1 surrounded by dotted lines. In FIG. 2, the center O of the diffractive optical element 20 is on the left side, and the right side shows the periphery. The first region 13 is a region including the center of the diffraction grating. Its radial length (width) is A. The second region 14 is a region adjacent to the first region 13 and surrounding the first region 13 . The height of the grating in the second region 14 is smaller than the height of the grating in the first region 13 . Furthermore, the lattice in the second region 14 has a plurality of height values, and the height becomes lower in stages from the center toward the outer edge.

回折光学素子20は、回折格子の形状をこのような構成とすることにより、まず、第1樹脂層2を成形する際に第1樹脂層2の周縁部に発生する残留応力を抑制することができる。これは、第2領域14の格子が段階的に低くなることによって、周縁部で生じる応力の影響を内側(中心方向)に緩やかに伝えることができるためである。また、第2領域14に発生する応力が小さいため、回折格子の中心を有する第1領域13に伝わる応力の影響も小さくなる。結果、第1樹脂層2の全体にわたって、残留応力に起因した屈折率分布が発生しにくくなる。 By configuring the shape of the diffraction grating in this way, the diffractive optical element 20 can first suppress the residual stress generated at the peripheral edge of the first resin layer 2 when the first resin layer 2 is molded. can. This is because the height of the lattice in the second region 14 is lowered stepwise, so that the influence of the stress generated at the peripheral edge can be gently transmitted inward (toward the center). Furthermore, since the stress generated in the second region 14 is small, the influence of stress transmitted to the first region 13, which has the center of the diffraction grating, is also reduced. As a result, refractive index distribution due to residual stress is less likely to occur throughout the first resin layer 2.

また、第2樹脂層3を成形する際に第2樹脂層3の周縁部に発生する残留応力を抑制することができる。これは、第2領域14の格子が段階的に低くなることによって、周縁部で生じる応力の影響を内側に緩やかに伝えることができるためである。また、第2領域14に発生する応力が小さいため、回折格子の中心を有する第1領域13に伝わる応力の影響も小さくなる。結果、第2樹脂層3の全体にわたって、残留応力に起因した屈折率分布が発生しにくくなる。 Furthermore, residual stress generated at the peripheral edge of the second resin layer 3 when molding the second resin layer 3 can be suppressed. This is because the lattice in the second region 14 becomes lower in stages, so that the influence of stress generated at the peripheral edge can be transmitted inwardly. Furthermore, since the stress generated in the second region 14 is small, the influence of stress transmitted to the first region 13, which has the center of the diffraction grating, is also reduced. As a result, refractive index distribution due to residual stress is less likely to occur throughout the second resin layer 3.

第1領域13における回折格子の高さは、以下に示す(式1)の関係が成り立つことが好ましい。 The height of the diffraction grating in the first region 13 preferably satisfies the following relationship (Equation 1).

0.99≦d/dn-1≦1.01 (式1)
ここで、をdは回折格子の中心から外縁に向かってn番目(nは2以上の整数)の格子の高さである。すなわち、第1領域では、格子の高さが、中心に近い格子の高さに対し、隣り合う外周側の格子の高さが0.99倍以上1.01倍以下の範囲であり、ほぼ一定であることが好ましい。第1領域13は光学有効領域であり、格子の高さがほぼ一定であると回折光学素子20の光学性能を設計しやすいためである。
0.99≦d n /d n-1 ≦1.01 (Formula 1)
Here, d n is the height of the n-th grating (n is an integer of 2 or more) from the center to the outer edge of the diffraction grating. That is, in the first region, the height of the grid is approximately constant, with the height of the grid near the center being within a range of 0.99 times or more and 1.01 times or less of the height of the neighboring grid on the outer circumference side. It is preferable that The first region 13 is an optically effective region, and if the height of the grating is substantially constant, it is easier to design the optical performance of the diffractive optical element 20.

また、第2領域14における回折格子の高さは、以下に示す(式2)の関係が成り立つことが好ましい。 Furthermore, it is preferable that the height of the diffraction grating in the second region 14 satisfy the following relationship (Equation 2).

0.50≦d/dm-1≦0.98 (式2)
ここで、dは回折格子の中心から外縁に向かってm番目(mはnより大きい整数)の格子の高さである。すなわち、第2領域では、中心に近い格子の高さに対し、隣り合う外周側の格子の高さが0.50倍以上0.98倍以下の範囲であることが好ましい。この値が0.50倍未満であると、格子高さの変化が大きすぎるため、格子の山部付近での硬化収縮量に差が出てしまい、屈折率分布が生じるおそれがある。一方、0.98倍より大きいと、格子高さの変化が小さく応力を緩和する効果が小さくなり、周縁部から中心に向かって屈折率分布が生じるおそれがある。
0.50≦d m /d m-1 ≦0.98 (Formula 2)
Here, d m is the height of the m-th grating (m is an integer greater than n) from the center of the diffraction grating toward the outer edge. That is, in the second region, it is preferable that the height of the adjacent lattice on the outer peripheral side is in a range of 0.50 to 0.98 times the height of the lattice near the center. If this value is less than 0.50 times, the change in the grating height is too large, resulting in a difference in the amount of curing shrinkage near the peaks of the grating, which may cause a refractive index distribution. On the other hand, if it is larger than 0.98 times, the change in grating height will be small and the effect of relaxing stress will be small, and there is a possibility that a refractive index distribution will occur from the periphery toward the center.

また、第1領域13の径方向の長さAと、第2領域14の径方向の長さBは、以下に示す(式3)の関係が成り立つことが好ましい。 Further, it is preferable that the radial length A of the first region 13 and the radial length B of the second region 14 satisfy the following relationship (Equation 3).

0.018≦B/A≦0.10 (式3)
AとBとが(式3)を満たすと、十分な応力緩和効果が得られ、かつ、素子を小型にすることが容易となる。B/Aが0.018未満であると、第2領域14の領域が小さいため、十分な応力緩和効果を得ることできないおそれがある。一方、B/Aが0.10より大きいと、光学非有効領域を有する第2領域14の領域が大きくなるため、素子が大型化してしまうおそれがある。
0.018≦B/A≦0.10 (Formula 3)
When A and B satisfy (Formula 3), a sufficient stress relaxation effect can be obtained and the device can be easily miniaturized. If B/A is less than 0.018, the area of the second region 14 is small, so there is a possibility that a sufficient stress relaxation effect cannot be obtained. On the other hand, if B/A is larger than 0.10, the area of the second region 14 having the optically ineffective area becomes large, so there is a possibility that the device becomes large.

なお、第2領域14を囲む位置には、回折格子を有さない部分があっても構わない。この部分は、平坦な高さで形成される土手のような形状でも良いし、外周に向かって厚みが連続的に減少するテーパ形状(傾斜形状)であってもよい。 Note that there may be a portion without a diffraction grating at a position surrounding the second region 14. This portion may have a bank-like shape with a flat height, or may have a tapered shape (slope shape) where the thickness continuously decreases toward the outer periphery.

回折格子の高さ(格子部10の高さ)は、5μm以上30μm以下の範囲であることが好ましい。回折格子の高さがこの範囲であれば、十分な光学性能を得やすく、かつ、離型の際に格子の変形が生じにくい。また、回折格子のピッチの間隔は、例えば、100μm以上5mm以下である。特に、第1領域の最外周の格子と、第2領域の最内周の格子の間隔は100μm以上500μm以下の範囲であることが好ましい。間隔が100μm未満であると、第2領域の応力の影響を大きく受けてしまい、第1領域の格子内部に屈折率差が生じてしまうおそれがある。間隔が500μmより大きいと、光学非有効領域を有する第2領域14の領域が大きくなるため、素子が大型化してしまうおそれがある。 The height of the diffraction grating (the height of the grating section 10) is preferably in the range of 5 μm or more and 30 μm or less. If the height of the diffraction grating is within this range, it is easy to obtain sufficient optical performance and the grating is less likely to be deformed during demolding. Further, the pitch of the diffraction grating is, for example, 100 μm or more and 5 mm or less. In particular, it is preferable that the interval between the outermost lattice of the first region and the innermost lattice of the second region is in the range of 100 μm or more and 500 μm or less. If the interval is less than 100 μm, the stress in the second region will be greatly affected, and there is a possibility that a difference in refractive index will occur inside the grating in the first region. If the interval is larger than 500 μm, the area of the second region 14 having the optically ineffective area becomes large, so there is a possibility that the device becomes large.

第1樹脂層2の格子形状を除いた部分であるベース部11の平均厚みは、1μm以上50μm以下の範囲であることが好ましい。1μm未満であると、第1樹脂層2を硬化して形成する際、格子の頂点とベース部の間に応力が過度に発生し、格子形状が不安定となった結果、回折効率が低下してしまうおそれがある。一方、50μmより厚いと、回折光学素子として樹脂層全体が厚くなり、温度変動により光学特性が変化しやすくなるおそれがある。 The average thickness of the base portion 11, which is the portion of the first resin layer 2 excluding the lattice shape, is preferably in the range of 1 μm or more and 50 μm or less. If it is less than 1 μm, when the first resin layer 2 is cured and formed, stress will be excessively generated between the apex and the base of the lattice, making the lattice shape unstable, resulting in a decrease in diffraction efficiency. There is a risk that the product may become damaged. On the other hand, if it is thicker than 50 μm, the entire resin layer becomes thick as a diffractive optical element, and the optical characteristics may easily change due to temperature fluctuations.

第2樹脂層3の格子形状を除いた部分のベース部12の平均厚みは、10μm以上400μm以下の範囲であることが好ましい。10μm未満であると、第2樹脂層3を硬化して形成する際、格子の段差部に応力が過度に発生し、形状が不安定となった結果、回折効率が低下してしまうおそれがある。一方、400μmより厚いと、回折光学素子として樹脂層全体が厚くなり、温度変動により光学特性が変化しやすくなるおそれがある。 The average thickness of the base portion 12 of the portion of the second resin layer 3 excluding the lattice shape is preferably in the range of 10 μm or more and 400 μm or less. If it is less than 10 μm, when the second resin layer 3 is cured and formed, excessive stress will be generated in the stepped portion of the grating, resulting in an unstable shape, which may result in a decrease in diffraction efficiency. . On the other hand, if it is thicker than 400 μm, the entire resin layer becomes thick as a diffractive optical element, and the optical characteristics may easily change due to temperature fluctuations.

(変形例)
本発明に適用可能な回折光学素子は図1および図2の形態に限定されない。例えば、第1樹脂層2と第2樹脂層3は、第1基材1上に、第2樹脂層3、第1樹脂層2の順に積層されていても構わない。
(Modified example)
The diffractive optical element applicable to the present invention is not limited to the forms shown in FIGS. 1 and 2. For example, the first resin layer 2 and the second resin layer 3 may be laminated on the first base material 1 in the order of the second resin layer 3 and the first resin layer 2.

また、図4に示すように、回折光学素子20は、第2樹脂層3の上に第2基材4を設け、2つの樹脂層を第1基材1および第2基材4との間に挟む構成でも構わない。このとき、第2基材4は第1基材1と同様に、透明な樹脂や、透明なガラスを用いることができる。第2基材4は、ガラスを用いることが好ましく、例えば、珪酸ガラスや硼珪酸ガラス、リン酸ガラスに代表される一般的な光学ガラスや、石英ガラス、ガラスセラミックスを用いることができる。第2基材4の形状は第1基材1と同様に、特に限定されず、第2樹脂層3と接する面の形状は、凹球面、凸球面、軸対称非球面、平面などから選択できる。ただし、第2基材4の第2樹脂層3と接する面の形状は、第1基材1の第1樹脂層2と接する面の形状と、略同じ形状であることが好ましい。また、平面視した際の第2基材4の外形は第1基材1と同様に円形が好ましい。なお、本発明の効果は、第2基材4がある回折光学素子の方が顕著に発揮される。これは、第2基材4があると、第2樹脂層3を硬化し形成する際、格子の段差(格子頂点とベース部の段差)に生じる応力が第2基材4に拘束され、緩和、開放し難く、より残留しやすくなるためである。 Further, as shown in FIG. 4, the diffractive optical element 20 has a second base material 4 provided on the second resin layer 3, and the two resin layers are placed between the first base material 1 and the second base material 4. A configuration in which it is sandwiched between the two is also acceptable. At this time, like the first base material 1, the second base material 4 can be made of transparent resin or transparent glass. It is preferable to use glass for the second base material 4, and for example, common optical glasses such as silicate glass, borosilicate glass, and phosphate glass, quartz glass, and glass ceramics can be used. Like the first base material 1, the shape of the second base material 4 is not particularly limited, and the shape of the surface in contact with the second resin layer 3 can be selected from a concave spherical surface, a convex spherical surface, an axisymmetric aspheric surface, a flat surface, etc. . However, it is preferable that the shape of the surface of the second base material 4 in contact with the second resin layer 3 is substantially the same as the shape of the surface of the first base material 1 in contact with the first resin layer 2. Further, the outer shape of the second base material 4 when viewed from above is preferably circular like the first base material 1. Note that the effects of the present invention are more prominently exhibited in the diffractive optical element having the second base material 4. This is because when the second base material 4 is present, when the second resin layer 3 is cured and formed, the stress generated at the steps of the lattice (steps between the apex of the lattice and the base part) is restrained by the second base material 4 and relaxed. This is because it is difficult to release and more likely to remain.

[回折光学素子の製造方法]
続いて、回折光学素子の製造方法について説明する。図5は本発明の回折光学素子の製造方法の一実施態様を示す概略図である。
[Method for manufacturing diffractive optical element]
Next, a method for manufacturing a diffractive optical element will be explained. FIG. 5 is a schematic diagram showing one embodiment of the method for manufacturing a diffractive optical element of the present invention.

まず、第1基材1としてガラス基材を用意する。ガラス基材は、積層する樹脂層との密着性を向上させるため、樹脂層と密着する面に前処理をしておくことが好ましい。ガラス表面の前処理は、樹脂層との親和性が良いシランカップリング剤を用いてカップリング処理をすることが好ましい。具体的なカップリング剤としては、ヘキサメチルジシラザン、メチルトリメトキシシラン、トリメチルクロロシラン、トリエチルクロロシラン等が挙げられる。 First, a glass base material is prepared as the first base material 1. In order to improve the adhesion with the resin layer to be laminated, it is preferable to pre-treat the surface of the glass substrate that will be in close contact with the resin layer. Preferably, the glass surface is subjected to a coupling treatment using a silane coupling agent that has good affinity with the resin layer. Specific coupling agents include hexamethyldisilazane, methyltrimethoxysilane, trimethylchlorosilane, triethylchlorosilane, and the like.

次に、第1基材1上に第1樹脂層2を形成する。図5(a)に示すように格子型5の上に第1樹脂層2の前駆体である第1樹脂組成物2aとしてエネルギー性硬化樹脂を滴下する。次いで、第1基材1をイジェクタ7に載せて格子型5に対向して配置する。ここで用いる格子型5は、表面に所望の回折格子形状の反転形状を有し、例えば、ステンレス材や鋼材などの金属母材上にNiPメッキや無酸素銅メッキしたものを精密加工機で切削することで作製できる。 Next, a first resin layer 2 is formed on the first base material 1. As shown in FIG. 5(a), an energetic hardening resin is dropped onto the grid mold 5 as a first resin composition 2a, which is a precursor of the first resin layer 2. As shown in FIG. Next, the first base material 1 is placed on the ejector 7 and placed facing the grid mold 5. The grating type 5 used here has an inverted shape of the desired diffraction grating shape on its surface, and is cut by a precision processing machine using, for example, NiP plating or oxygen-free copper plating on a metal base material such as stainless steel or steel. It can be made by doing this.

次に、図5(b)に示すように、イジェクタ7を降下させて格子型5と第1基材1の間にエネルギー硬化性樹脂を充填する。その後、シャッター9を退避させてランプ8を用いてエネルギー硬化性樹脂にエネルギー線を照射し、エネルギー硬化性樹脂を硬化し、第1樹脂層2を形成する。 Next, as shown in FIG. 5(b), the ejector 7 is lowered to fill the space between the grid mold 5 and the first base material 1 with energy-curable resin. Thereafter, the shutter 9 is retracted and the energy curable resin is irradiated with energy rays using the lamp 8 to cure the energy curable resin and form the first resin layer 2.

その後、図5(c1)に示すように、イジェクタ7を上昇させて硬化した第1樹脂層2を格子型5から外すことにより離型する。なお、離型の前後において、加熱アニール、エネルギー線の追加照射、無酸素雰囲気での加熱やエネルギー線照射などを行ってもよい。ここで、形成される格子形状は、図5(c1)に示すような凸形状格子形状であっても、図5(c2)に示すような凹形状格子形状であっても良い。 Thereafter, as shown in FIG. 5(c1), the ejector 7 is raised to remove the cured first resin layer 2 from the grid mold 5, thereby releasing the mold. Note that heating annealing, additional irradiation with energy rays, heating in an oxygen-free atmosphere, irradiation with energy rays, etc. may be performed before and after demolding. Here, the lattice shape formed may be a convex lattice shape as shown in FIG. 5(c1) or a concave lattice shape as shown in FIG. 5(c2).

次に、第2樹脂層3を形成する。図5(d)に示すように、平坦型6の上に第2樹脂層3の前駆体である第2樹脂組成物3aとしてエネルギー硬化性樹脂を滴下する。そして、イジェクタ7に第1基材1および第1樹脂層12を載せて平坦型6に対向して配置する。次に、図5(e)に示すようにイジェクタ7を降下させて平坦型6と第1樹脂層2の間にエネルギー線硬化性樹脂を充填する。その後、シャッター9を退避させてランプ8よりエネルギー線硬化性樹脂にエネルギー線を照射し、第2樹脂層3を形成する。以上の工程により、第1基材1上に、第一の樹脂層2と、第2樹脂層3とが密着積層されている回折光学素子20を作製することができる。 Next, the second resin layer 3 is formed. As shown in FIG. 5(d), an energy-curable resin is dropped onto the flat mold 6 as a second resin composition 3a, which is a precursor of the second resin layer 3. As shown in FIG. Then, the first base material 1 and the first resin layer 12 are placed on the ejector 7 and placed facing the flat mold 6. Next, as shown in FIG. 5(e), the ejector 7 is lowered to fill the space between the flat mold 6 and the first resin layer 2 with energy ray-curable resin. Thereafter, the shutter 9 is retracted and the energy ray curable resin is irradiated with energy rays from the lamp 8 to form the second resin layer 3. Through the above steps, the diffractive optical element 20 in which the first resin layer 2 and the second resin layer 3 are laminated in close contact with each other on the first base material 1 can be manufactured.

なお、得られた回折光学素子20は、未反応の樹脂を残存させないように、加熱アニール、エネルギー線の追加照射、無酸素雰囲気での加熱やエネルギー線照射などを行ってもよい。 Note that the obtained diffractive optical element 20 may be subjected to heat annealing, additional irradiation with energy rays, heating in an oxygen-free atmosphere, irradiation with energy rays, etc. so as not to leave unreacted resin.

また、第2樹脂層3の上に第2基材4を設ける場合は、平坦型6の代わりに第2基材4を用いてもよい。 Further, when the second base material 4 is provided on the second resin layer 3, the second base material 4 may be used instead of the flat mold 6.

[撮像装置]
図6は、本発明の撮像装置の好適な実施形態の一例である、一眼レフデジタルカメラの構成を示している。図6において、カメラ本体602と光学機器であるレンズ鏡筒601とが結合されているが、レンズ鏡筒601はカメラ本体602対して着脱可能ないわゆる交換レンズである。
[Imaging device]
FIG. 6 shows the configuration of a single-lens reflex digital camera, which is an example of a preferred embodiment of the imaging device of the present invention. In FIG. 6, a camera body 602 and a lens barrel 601, which is an optical device, are combined, and the lens barrel 601 is a so-called interchangeable lens that can be attached to and detached from the camera body 602.

被写体からの光は、レンズ鏡筒601の筐体620内の撮影光学系の光軸上に配置された複数のレンズ603、605などからなる光学系を通過し、撮像素子610に受光される。本発明の回折光学素子は例えば、レンズ605に用いることができる。 Light from the subject passes through an optical system including a plurality of lenses 603 and 605 arranged on the optical axis of the photographing optical system in the housing 620 of the lens barrel 601, and is received by the image sensor 610. The diffractive optical element of the present invention can be used for the lens 605, for example.

ここで、レンズ605は筐体内の内筒604によって支持されて、フォーカシングやズーミングのためにレンズ鏡筒601の外筒に対して可動支持されている。 Here, the lens 605 is supported by an inner tube 604 inside the housing, and is movably supported relative to the outer tube of the lens barrel 601 for focusing and zooming.

撮影前の観察期間では、被写体からの光は、カメラ本体の筐体621内の主ミラー607により反射され、プリズム611を透過後、ファインダレンズ612を通して撮影者に撮影画像が映し出される。主ミラー607は例えばハーフミラーとなっており、主ミラーを透過した光はサブミラー608によりAF(オートフォーカス)ユニット613の方向に反射され、例えばこの反射光は測距に使用される。また、主ミラー607は主ミラーホルダ640に接着などによって装着、支持されている。不図示の駆動機構を介して、撮影時には主ミラー607とサブミラー608を光路外に移動させ、シャッタ609を開き、撮像素子610にレンズ鏡筒601から入射した撮影光像を結像させる。また、絞り606は、開口面積を変更することにより撮影時の明るさや焦点深度を変更できるよう構成される。 During the observation period before photographing, light from the subject is reflected by the main mirror 607 in the housing 621 of the camera body, passes through the prism 611, and then the photographed image is projected to the photographer through the finder lens 612. The main mirror 607 is, for example, a half mirror, and the light transmitted through the main mirror is reflected by a submirror 608 in the direction of an AF (autofocus) unit 613, and this reflected light is used, for example, for distance measurement. Further, the main mirror 607 is mounted and supported by a main mirror holder 640 by adhesive or the like. During photographing, the main mirror 607 and the sub-mirror 608 are moved out of the optical path through a drive mechanism (not shown), the shutter 609 is opened, and the photographing light image incident from the lens barrel 601 is formed on the image sensor 610. Further, the diaphragm 606 is configured so that brightness and depth of focus during photographing can be changed by changing the aperture area.

以下に、実施例を用いてより詳細に本発明を説明する。まず、回折光学素子の評価方法について説明する。 The present invention will be explained in more detail below using Examples. First, a method for evaluating a diffractive optical element will be explained.

(格子高さ、樹脂層の厚み、格子ピッチ、第1領域および第2領域の径方向の長さ)
回折光学素子の中心Oを通る面(光軸中心を通る面)を積層方向に切断した。切断した回折光学素子の断面を、金属顕微鏡(ニコン社製、ECLIPSE ME600P)で倍率1000倍(接眼レンズ:10倍、対物レンズ:100倍)で観察した。XYステージの送り量から、格子高さ、樹脂層の厚み、格子ピッチ、第1領域および第2領域の径方向の長さをそれぞれ測定した。
(Grid height, resin layer thickness, lattice pitch, radial length of the first region and second region)
A plane passing through the center O of the diffractive optical element (a plane passing through the center of the optical axis) was cut in the stacking direction. The cross section of the cut diffractive optical element was observed at a magnification of 1000 times (eyepiece: 10 times, objective lens: 100 times) using a metallurgical microscope (ECLIPSE ME600P, manufactured by Nikon Corporation). The grating height, the thickness of the resin layer, the grating pitch, and the radial lengths of the first region and the second region were each measured from the feed amount of the XY stage.

格子高さは、格子の頂点から、格子の頂点に隣り合う2つの底部(ベース部の2箇所)を結んだ直線に対して、第1基材の第1樹脂層と接する面(積層面)の法線方向の長さを測定した。その格子高さから第1領域と第2領域を特定した。 The lattice height is defined as the surface (laminated surface) of the first base material that is in contact with the first resin layer with respect to the straight line connecting the two bottom parts (two places on the base part) adjacent to the vertices of the lattice from the apex of the lattice. The length in the normal direction was measured. The first region and the second region were identified from the grid height.

樹脂層の厚みは、格子の底部を結んだ直線から第1基材の積層面までの、第1基材の積層面の法線方向の長さを測定した。第1樹脂層の厚み、第2樹脂層の厚みは、第1領域と第2領域を合わせた樹脂幅(径方向の長さ)を10等分に分割し、各分割領域の中央の樹脂厚みを測定し、その平均値から算出した。この算出した値と格子高さの差をベース部の厚みとした。 The thickness of the resin layer was determined by measuring the length in the normal direction of the laminated surface of the first base material from the straight line connecting the bottoms of the lattice to the laminated surface of the first base material. The thickness of the first resin layer and the thickness of the second resin layer are determined by dividing the combined resin width (radial length) of the first region and the second region into 10 equal parts, and measuring the resin thickness at the center of each divided region. was measured and calculated from the average value. The difference between this calculated value and the grid height was defined as the thickness of the base portion.

格子ピッチは、格子の頂部に隣り合う2つの底部の、光軸垂直方向の長さを測定した。 The grating pitch was determined by measuring the length of the two bottoms adjacent to the top of the grating in the direction perpendicular to the optical axis.

第1領域および第2領域の径方向の長さは、各領域に含まれる格子の格子ピッチを合計し算出した。 The radial lengths of the first region and the second region were calculated by summing the lattice pitches of the lattices included in each region.

(d線の屈折率測定)
実施例および比較例の回折光学素子から第1基材11および/又は第2基材14を剥がして樹脂を取り出して測定した。得られたサンプルに対し、精密屈折計(KPR-30、(株)島津製作所)を用いて、587.6nmの波長(d線)の屈折率を測定した。
(d-line refractive index measurement)
The first base material 11 and/or the second base material 14 were peeled off from the diffractive optical elements of Examples and Comparative Examples, and the resin was taken out and measured. The refractive index of the obtained sample at a wavelength of 587.6 nm (d-line) was measured using a precision refractometer (KPR-30, Shimadzu Corporation).

(回折光学素子の回折効率)
回折効率は、格子形状の外周部に直径2mmで波長400nm~700nmの測定光を入射し、素子から出射される一次回折光の強度を検出することで平均回折効率を測定した。第1領域中央部の回折効率は、この測定で、回折光学素子の中心から外周に向かって8格子から11格子までの領域で測定した。第1領域外周部の回折効率は、この測定で、第1の領域の外周から中央に向かって1格子から9格子までの領域で測定した。作製した回折光学素子で、第1領域中央部に対する第1領域外周部の回折効率の割合が、0.993未満のものをC、0.993以上0.995未満のものをB、0.995以上のものをAと評価した。AとBを合格とし、Cを不合格とした。
(Diffraction efficiency of diffractive optical element)
The average diffraction efficiency was measured by entering measurement light with a diameter of 2 mm and a wavelength of 400 nm to 700 nm into the outer circumference of the grating shape, and detecting the intensity of the first-order diffracted light emitted from the element. In this measurement, the diffraction efficiency at the center of the first region was measured in a region from 8 gratings to 11 gratings from the center to the outer periphery of the diffractive optical element. In this measurement, the diffraction efficiency at the outer periphery of the first region was measured in a region from 1st grating to 9th grating from the outer periphery to the center of the first region. Among the manufactured diffractive optical elements, those in which the ratio of the diffraction efficiency of the outer peripheral part of the first region to the central part of the first region is less than 0.993 are designated as C, and those that are 0.993 or more and less than 0.995 are designated as B and 0.995. The above items were rated A. A and B were judged as passing, and C was judged as failing.

(実施例1)
第1基材には、材質がS-TIM8(オハラ社製)で直径60mm、一方の面が平面で、他方の面の曲率半径Rが190mmの凹球面形状のガラスレンズを用いた。第2基材4は、材質がS-FSL5(オハラ社製)、直径58mm、一方の面の曲率半径Rが70mmの凸球面形状、他方の面がR190mmの凸球面形状のガラスレンズを用いた。格子型及び平坦型は、金属母材上にメッキしたNiP層を精密加工機で切削加工し、所望の格子形状と平坦形状及びその外周形状の反転形状を形成したものを用いた。
(Example 1)
As the first base material, a concave spherical glass lens made of S-TIM8 (manufactured by Ohara Corporation) with a diameter of 60 mm, one surface being flat, and the other surface having a radius of curvature R of 190 mm was used. The second base material 4 is a glass lens made of S-FSL5 (manufactured by Ohara Corporation), diameter 58 mm, convex spherical shape with radius of curvature R of 70 mm on one surface, and convex spherical shape on the other surface with radius R of 190 mm. . The lattice type and flat type were obtained by cutting a NiP layer plated on a metal base material using a precision processing machine to form a desired lattice shape, a flat shape, and an inverted shape of the outer peripheral shape.

格子型5と第1基材1との間に、紫外線硬化型のアクリル樹脂の第1樹脂組成物2aを充填した。その後、365nmの強度が10mW/cmの紫外線を200秒間全面に照射して第1樹脂組成物2aを硬化し、離型して、第1基材1上に第1樹脂層2を形成した。 A first resin composition 2a of an ultraviolet curable acrylic resin was filled between the grid mold 5 and the first base material 1. Thereafter, the first resin composition 2a was cured by irradiating the entire surface with ultraviolet light having a wavelength of 365 nm and an intensity of 10 mW/ cm2 for 200 seconds, and the mold was released to form a first resin layer 2 on the first base material 1. .

次に、離型して得られた中間体をオーブンに入れ、80℃で24時間加熱した。続いて、中間体と第2基材4との間に、紫外線硬化型のアクリル樹脂の第2樹脂組成物3aを充填し、紫外線を200秒間全面に照射して第2樹脂組成物3aを硬化し、接合体を得た。その後、得られた接合体に対して365nmの強度が30mW/cmの紫外線を1000秒間全面に照射した。最後に、得られた接合体をオーブンに入れ、80℃で72時間加熱し、実施例1の回折光学素子を作製した。 Next, the intermediate obtained by demolding was placed in an oven and heated at 80° C. for 24 hours. Subsequently, a second resin composition 3a of an ultraviolet curable acrylic resin is filled between the intermediate body and the second base material 4, and the entire surface is irradiated with ultraviolet rays for 200 seconds to cure the second resin composition 3a. A zygote was obtained. Thereafter, the entire surface of the obtained bonded body was irradiated with ultraviolet light having a wavelength of 365 nm and an intensity of 30 mW/cm 2 for 1000 seconds. Finally, the obtained bonded body was placed in an oven and heated at 80° C. for 72 hours to produce the diffractive optical element of Example 1.

実施例1の回折光学素子の第1樹脂層のd線の屈折率は1.62、アッベ数νdは40.0、第2樹脂層のd線の屈折率は1.59、アッベ数は29.0であった。 The first resin layer of the diffractive optical element of Example 1 had a d-line refractive index of 1.62 and an Abbe number νd of 40.0, and a second resin layer had a d-line refractive index of 1.59 and an Abbe number of 29. It was .0.

実施例1の回折光学素子の格子形状は、R190mmの凹球面に対して緩やかな凸形状の傾斜を有していた。素子の中心に最も近い第1格子の格子ピッチが3.5mmであり、第2格子の格子ピッチが1.5mmであり、以下格子ピッチが連続的に狭くなっていた。格子ピッチは、第10格子が0.54mm、第20格子が0.39mm、第30格子が0.32mm、第40格子が0.28mm、第50格子が0.25mm、第60格子が0.24mmであった。最外周の格子は第65格子で、格子ピッチは0.23mmであった。また、格子部の高さ10は、第1格子が23.8μm、第10格子が23.7μm、第20格子が23.6μm、第30格子が23.5μm、第40格子が23.3μm、第50格子が23.2μm、第60格子が23.0μmであった。また、第61格子が20.7μm、第62格子が18.6μm、第63格子が16.8μm、第64格子が15.1μm、第65格子が13.6μmであった。これより、第1領域が中心から第60格子まで、第2領域が第61格子から最外周までであった。また、第1領域の径方向の長さAは25.8mm、第2領域の径方向の長さBは1.2mmであった。 The grating shape of the diffractive optical element of Example 1 had a gentle convex slope with respect to a concave spherical surface with an radius of 190 mm. The grating pitch of the first grating closest to the center of the element was 3.5 mm, the grating pitch of the second grating was 1.5 mm, and the grating pitches became narrower successively. The grating pitch is 0.54 mm for the 10th grating, 0.39 mm for the 20th grating, 0.32 mm for the 30th grating, 0.28 mm for the 40th grating, 0.25 mm for the 50th grating, and 0.2 mm for the 60th grating. It was 24 mm. The outermost lattice was the 65th lattice, and the lattice pitch was 0.23 mm. Further, the height 10 of the grating portion is 23.8 μm for the first grating, 23.7 μm for the 10th grating, 23.6 μm for the 20th grating, 23.5 μm for the 30th grating, and 23.3 μm for the 40th grating. The 50th grating was 23.2 μm, and the 60th grating was 23.0 μm. Further, the 61st grating was 20.7 μm, the 62nd grating was 18.6 μm, the 63rd grating was 16.8 μm, the 64th grating was 15.1 μm, and the 65th grating was 13.6 μm. From this, the first region was from the center to the 60th lattice, and the second region was from the 61st lattice to the outermost periphery. Further, the radial length A of the first region was 25.8 mm, and the radial length B of the second region was 1.2 mm.

また、格子高さを除く第1樹脂層のベース部の平均厚みは27.0μmであった。また、格子高さを除く第2樹脂層のベース部の平均厚みは50.0μmであった。 Further, the average thickness of the base portion of the first resin layer excluding the grid height was 27.0 μm. Further, the average thickness of the base portion of the second resin layer excluding the grid height was 50.0 μm.

表1に回折光学素子の形状の測定結果、表2に回折光学素子の評価結果をまとめた。 Table 1 summarizes the measurement results of the shape of the diffractive optical element, and Table 2 summarizes the evaluation results of the diffractive optical element.

(実施例2)
実施例2は実施例1と格子型の形状が異なる。それ以外の点は実施例1と同様の方法で、実施例2の回折光学素子を作製した。
(Example 2)
The second embodiment differs from the first embodiment in the shape of the lattice type. A diffractive optical element of Example 2 was produced in the same manner as in Example 1 except for the above.

実施例2の回折光学素子は、次のような格子形状であった。 The diffractive optical element of Example 2 had the following grating shape.

格子高さは、第1格子が23.8μm、第63格子が23.0μm、第64格子が22.5μm、第65格子が22.1μmであった。すなわち、第1領域が中心から第63格子まで、第2領域が第64格子から最外周までであった。第1領域の径方向の長さAは26.5mm、第2領域の径方向の長さBは0.5mmであった。 The grating heights were 23.8 μm for the first grating, 23.0 μm for the 63rd grating, 22.5 μm for the 64th grating, and 22.1 μm for the 65th grating. That is, the first region was from the center to the 63rd lattice, and the second region was from the 64th lattice to the outermost periphery. The radial length A of the first region was 26.5 mm, and the radial length B of the second region was 0.5 mm.

表1に回折光学素子の形状の測定結果、表2に回折光学素子の評価結果をまとめた。 Table 1 summarizes the measurement results of the shape of the diffractive optical element, and Table 2 summarizes the evaluation results of the diffractive optical element.

(実施例3)
実施例3は実施例1と格子型の形状が異なる。それ以外の点は実施例1と同様の方法で、実施例3の回折光学素子を作製した。
(Example 3)
The third embodiment differs from the first embodiment in the shape of the lattice type. The diffractive optical element of Example 3 was produced in the same manner as in Example 1 except for the above.

実施例3の回折光学素子は、次のような格子形状であった。 The diffractive optical element of Example 3 had the following grating shape.

格子高さは、第1格子が23.8μm、第63格子が23.0μm、第64格子が11.5μm、第65格子が5.8μmであった。すなわち、第1領域が中心から第63格子まで、第2領域が第64格子から最外周までであった。第1領域の径方向の長さAは26.5mm、第2領域の径方向の長さBは0.5mmであった。 The grating heights were 23.8 μm for the first grating, 23.0 μm for the 63rd grating, 11.5 μm for the 64th grating, and 5.8 μm for the 65th grating. That is, the first region was from the center to the 63rd lattice, and the second region was from the 64th lattice to the outermost periphery. The radial length A of the first region was 26.5 mm, and the radial length B of the second region was 0.5 mm.

表1に回折光学素子の形状の測定結果、表2に回折光学素子の評価結果をまとめた。 Table 1 summarizes the measurement results of the shape of the diffractive optical element, and Table 2 summarizes the evaluation results of the diffractive optical element.

(実施例4)
実施例4は実施例1と格子型の形状、第1樹脂層および第2樹脂層の組成が異なる。それ以外の点は実施例1と同様の方法で、実施例4の回折光学素子を作製した。
(Example 4)
Example 4 differs from Example 1 in the shape of the lattice type and the compositions of the first resin layer and the second resin layer. A diffractive optical element of Example 4 was produced in the same manner as in Example 1 except for the above.

実施例4の回折光学素子の樹脂層の物性は、第1樹脂層の屈折率が1.63、アッベ数が44.0、第2樹脂層の屈折率が1.57、アッベ数が19.3であった。 As for the physical properties of the resin layer of the diffractive optical element of Example 4, the first resin layer has a refractive index of 1.63 and an Abbe number of 44.0, and the second resin layer has a refractive index of 1.57 and an Abbe number of 19. It was 3.

実施例4の回折光学素子は、次のような格子形状であった。 The diffractive optical element of Example 4 had the following grating shape.

格子ピッチは、第1格子が3.1mm、第2格子が1.2mmであり、以下連続的にピッチが狭くなり、第55格子が0.12mm、第65格子が0.11mmであった。格子高さは、第1格子が8.2μm、第55格子が8.0μm、第56格子が7.7μm、第57格子が7.4μm、第58格子が7.1μm、第59格子が6.8μm、第60格子が6.5μm、第61格子が6.3μm、第62格子が6.0μm、第63格子が5.8μm、第64格子が5.5μm、第65格子が5.3μmであった。すなわち、第1領域が中心から第55格子、第2領域が第56格子から最外周までであった。第1領域の径方向の長さAは25.8mm、第2領域の径方向の長さBは1.2mmであった。 The grating pitch was 3.1 mm for the first grating and 1.2 mm for the second grating, and the pitch became narrower successively, and was 0.12 mm for the 55th grating and 0.11 mm for the 65th grating. The grating height is 8.2 μm for the first grating, 8.0 μm for the 55th grating, 7.7 μm for the 56th grating, 7.4 μm for the 57th grating, 7.1 μm for the 58th grating, and 6 μm for the 59th grating. .8 μm, 60th grating 6.5 μm, 61st grating 6.3 μm, 62nd grating 6.0 μm, 63rd grating 5.8 μm, 64th grating 5.5 μm, 65th grating 5.3 μm Met. That is, the first region was from the center to the 55th lattice, and the second region was from the 56th lattice to the outermost periphery. The radial length A of the first region was 25.8 mm, and the radial length B of the second region was 1.2 mm.

表1に回折光学素子の形状の測定結果、表2に回折光学素子の評価結果をまとめた。 Table 1 summarizes the measurement results of the shape of the diffractive optical element, and Table 2 summarizes the evaluation results of the diffractive optical element.

(実施例5)
実施例5は実施例1と格子型の形状が異なる。それ以外の点は実施例1と同様の方法で、実施例5の回折光学素子を作製した。
(Example 5)
Example 5 differs from Example 1 in the shape of the lattice type. A diffractive optical element of Example 5 was manufactured in the same manner as in Example 1 except for the above.

実施例5の回折光学素子は、次のような格子形状であった。 The diffractive optical element of Example 5 had the following grating shape.

格子高さは、第1格子が23.8μm、第63格子が22.9μm、第64格子が11.5μmで、第65格子が4.6μmあった。すなわち、第1領域が中心から第63格子、第2領域が第64格子から最外周までであった。第1領域の径方向の長さAは26.8mm、第2領域の径方向の長さBは0.2mmであった。 The grating heights were 23.8 μm for the first grating, 22.9 μm for the 63rd grating, 11.5 μm for the 64th grating, and 4.6 μm for the 65th grating. That is, the first region was from the center to the 63rd lattice, and the second region was from the 64th lattice to the outermost periphery. The radial length A of the first region was 26.8 mm, and the radial length B of the second region was 0.2 mm.

表1に回折光学素子の形状の測定結果、表2に回折光学素子の評価結果をまとめた。 Table 1 summarizes the measurement results of the shape of the diffractive optical element, and Table 2 summarizes the evaluation results of the diffractive optical element.

(実施例6)
実施例6は実施例1と格子型の形状が異なる。それ以外の点は実施例1と同様の方法で、実施例6の回折光学素子を作製した。
(Example 6)
Example 6 differs from Example 1 in the shape of the lattice type. A diffractive optical element of Example 6 was produced in the same manner as in Example 1 except for the above.

実施例6の回折光学素子は、次のような格子形状であった。 The diffractive optical element of Example 6 had the following grating shape.

格子高さは、第1格子が23.8μm、第63格子が23.0μm、第64格子が22.8μm、第65格子が22.5μmであった。すなわち、第1領域が中心から第63格子、第2領域が第64格子から最外周までであった。第1領域の径方向の長さAは26.5mm、第2領域の径方向の長さBは0.5mmであった。 The grating heights were 23.8 μm for the first grating, 23.0 μm for the 63rd grating, 22.8 μm for the 64th grating, and 22.5 μm for the 65th grating. That is, the first region was from the center to the 63rd lattice, and the second region was from the 64th lattice to the outermost periphery. The radial length A of the first region was 26.5 mm, and the radial length B of the second region was 0.5 mm.

表1に回折光学素子の形状の測定結果、表2に回折光学素子の評価結果をまとめた。 Table 1 summarizes the measurement results of the shape of the diffractive optical element, and Table 2 summarizes the evaluation results of the diffractive optical element.

(実施例7)
実施例7は実施例1と格子型の形状が異なる。それ以外の点は実施例1と同様の方法で、実施例7の回折光学素子を作製した。
(Example 7)
Example 7 differs from Example 1 in the shape of the lattice type. A diffractive optical element of Example 7 was produced in the same manner as in Example 1 except for the above.

実施例7の回折光学素子は、次のような格子形状であった。 The diffractive optical element of Example 7 had the following grating shape.

格子高さは、第1格子が23.8μm、第63格子が23.0μm、第64格子が9.2μm、第65格子が3.7μmであった。すなわち、第1領域が中心から第63格子、第2領域が第64格子から最外周までであった。第1領域の径方向の長さAは26.5mm、第2領域の径方向の長さBは0.5mmであった。 The grating heights were 23.8 μm for the first grating, 23.0 μm for the 63rd grating, 9.2 μm for the 64th grating, and 3.7 μm for the 65th grating. That is, the first region was from the center to the 63rd lattice, and the second region was from the 64th lattice to the outermost periphery. The radial length A of the first region was 26.5 mm, and the radial length B of the second region was 0.5 mm.

表1に回折光学素子の形状の測定結果、表2に回折光学素子の評価結果をまとめた。 Table 1 summarizes the measurement results of the shape of the diffractive optical element, and Table 2 summarizes the evaluation results of the diffractive optical element.

(実施例8)
実施例8は実施例1と格子型の形状が異なる。また、第2基材は用いず、R190mm凸球面の平坦型を用いて第2樹脂層を形成した。それ以外の点は実施例1と同様の方法で、実施例8の回折光学素子を作製した。
(Example 8)
Example 8 differs from Example 1 in the shape of the lattice type. Further, the second resin layer was formed using a flat mold with a convex spherical surface of R190 mm without using the second base material. A diffractive optical element of Example 8 was produced in the same manner as in Example 1 except for the above.

実施例8の回折光学素子は、次のような格子形状であった。 The diffractive optical element of Example 8 had the following grating shape.

格子高さは、第1格子が24.5μm、第60格子が23.7μm、第61格子が21.3μm、第62格子が19.2μm、第63格子が17.3μm、第64格子が15.5μm、第65格子が14.0μmであった。すなわち、第1領域が中心から第60格子、第2領域が第61格子から最外周までであった。第1領域の径方向の長さAは25.8mm、第2領域の径方向の長さBは1.2mmであった。 The grating height is 24.5 μm for the first grating, 23.7 μm for the 60th grating, 21.3 μm for the 61st grating, 19.2 μm for the 62nd grating, 17.3 μm for the 63rd grating, and 15 μm for the 64th grating. .5 μm, and the 65th grid was 14.0 μm. That is, the first region was from the center to the 60th lattice, and the second region was from the 61st lattice to the outermost periphery. The radial length A of the first region was 25.8 mm, and the radial length B of the second region was 1.2 mm.

表1に回折光学素子の形状の測定結果、表2に回折光学素子の評価結果をまとめた。 Table 1 summarizes the measurement results of the shape of the diffractive optical element, and Table 2 summarizes the evaluation results of the diffractive optical element.

(実施例9)
実施例9は実施例1と格子型の形状が異なる。それ以外の点は、実施例8と同様の方法で、実施例9の回折光学素子を作製した。
(Example 9)
Example 9 differs from Example 1 in the shape of the lattice type. The diffractive optical element of Example 9 was produced in the same manner as in Example 8 except for the above.

実施例9の回折光学素子は、次のような格子形状であった。 The diffractive optical element of Example 9 had the following grating shape.

格子高さは、第1格子が24.5μm、第63格子が23.7μm、第64格子が23.2μm、第65格子が22.8μmであった。すなわち、第1領域が中心から第63格子、第2領域が第64格子から最外周までであった。第1領域の径方向の長さAは26.5mm、第2領域の径方向の長さBは0.5mmであった。 The grating heights were 24.5 μm for the first grating, 23.7 μm for the 63rd grating, 23.2 μm for the 64th grating, and 22.8 μm for the 65th grating. That is, the first region was from the center to the 63rd lattice, and the second region was from the 64th lattice to the outermost periphery. The radial length A of the first region was 26.5 mm, and the radial length B of the second region was 0.5 mm.

表1に回折光学素子の形状の測定結果、表2に回折光学素子の評価結果をまとめた。 Table 1 summarizes the measurement results of the shape of the diffractive optical element, and Table 2 summarizes the evaluation results of the diffractive optical element.

(比較例1)
比較例1は実施例1と格子型の形状が異なる。それ以外の点は実施例1と同様の方法で、比較例1の回折光学素子を作製した。
(Comparative example 1)
Comparative Example 1 differs from Example 1 in the shape of the lattice type. A diffractive optical element of Comparative Example 1 was produced in the same manner as in Example 1 except for the above.

比較例1の回折光学素子は、次のような格子形状であった。 The diffractive optical element of Comparative Example 1 had the following grating shape.

格子高さは、第1格子から第65格子までいずれも22.9μmであった。すなわち、比較例1の回折光学素子には第2領域が存在しなかった。第1領域は中心から最外周までで径方向の長さAは27.0mmであった。 The grating heights from the first grating to the 65th grating were all 22.9 μm. That is, the second region did not exist in the diffractive optical element of Comparative Example 1. The first region had a radial length A of 27.0 mm from the center to the outermost periphery.

表1に回折光学素子の形状の測定結果、表2に回折光学素子の評価結果をまとめた。 Table 1 summarizes the measurement results of the shape of the diffractive optical element, and Table 2 summarizes the evaluation results of the diffractive optical element.

(比較例2)
比較例2は実施例8と格子型の形状が異なる。それ以外の点は実施例8と同様の方法で、比較例2の回折光学素子を作製した。
(Comparative example 2)
Comparative Example 2 differs from Example 8 in the shape of the lattice type. A diffractive optical element of Comparative Example 2 was produced in the same manner as in Example 8 except for the above.

比較例2の回折光学素子は、次のような格子形状であった。 The diffractive optical element of Comparative Example 2 had the following grating shape.

格子高さは、第1格子から第65格子までいずれも23.7μmであった。こすなわち、比較例1の回折光学素子には第2領域が存在しなかった。第1領域は中心から最外周までで径方向の長さAは27.0mmであった。 The grating heights from the first grating to the 65th grating were all 23.7 μm. That is, the second region did not exist in the diffractive optical element of Comparative Example 1. The first region had a radial length A of 27.0 mm from the center to the outermost periphery.

表1に回折光学素子の形状の測定結果、表2に回折光学素子の評価結果をまとめた。 Table 1 summarizes the measurement results of the shape of the diffractive optical element, and Table 2 summarizes the evaluation results of the diffractive optical element.

Figure 0007451299000001
Figure 0007451299000001

Figure 0007451299000002
Figure 0007451299000002

(評価)
表1および表2から実施例1~9の回折光学素子は、いずれも第1領域中央部の回折効率に対する第1領域外周部の回折効率の割合が0.993以上であった。また、回折効率の割合が0.995以上と特に良好であった実施例1~3、8および9は、いずれも以下の式を満たしていた。
(evaluation)
From Tables 1 and 2, in all of the diffractive optical elements of Examples 1 to 9, the ratio of the diffraction efficiency at the outer periphery of the first region to the diffraction efficiency at the center of the first region was 0.993 or more. Further, Examples 1 to 3, 8 and 9, which had particularly good diffraction efficiency ratios of 0.995 or more, all satisfied the following formula.

0.99≦d/dn-1≦1.01 (式1)
0.50≦d/dm-1≦0.98 (式2)
0.018≦B/A≦0.10 (式3)
一方、比較例1および2は、いずれも第1領域中央部の回折効率に対する第1領域外周部の回折効率の割合が0.993未満であった。比較例1および2の回折光学素子は、回折格子の外縁に向かって回折格子が低くなる第2領域を有していなかった。そのため回折光学素子の外周方向から内部に向かって発生する屈折率変動が大きく、結果、中心付近の回折効率と周縁部における回折効率の差が大きくなったと考えられる。
0.99≦d n /d n-1 ≦1.01 (Formula 1)
0.50≦d m /d m-1 ≦0.98 (Formula 2)
0.018≦B/A≦0.10 (Formula 3)
On the other hand, in both Comparative Examples 1 and 2, the ratio of the diffraction efficiency at the outer periphery of the first region to the diffraction efficiency at the center of the first region was less than 0.993. The diffractive optical elements of Comparative Examples 1 and 2 did not have a second region where the diffraction grating becomes lower toward the outer edge of the diffraction grating. Therefore, it is thought that the refractive index variation that occurs from the outer circumferential direction to the inside of the diffractive optical element is large, and as a result, the difference between the diffraction efficiency near the center and the diffraction efficiency at the periphery becomes large.

本発明の回折光学素子は、カメラ用のレンズや液晶プロジェクター用レンズ、DVDやCDなどのピックアップレンズ等のレンズに用いることができる。 The diffractive optical element of the present invention can be used for lenses such as camera lenses, liquid crystal projector lenses, and pickup lenses for DVDs, CDs, and the like.

1 第1基材
2 第1樹脂層
2a 第1樹脂組成物
3 第2樹脂層
3a 第2樹脂組成物
4 第2基材
5 格子型
6 平坦型
7 イジェクタ
8 ランプ
9 シャッター
10 格子部
11 第1樹脂層のベース部
12 第2樹脂層のベース部
13 第1領域
14 第2領域
20 回折光学素子
600 撮像装置(デジタルカメラ)
601 光学機器(レンズ鏡筒)
602 カメラ本体
603 レンズ
605 レンズ

1 First base material 2 First resin layer 2a First resin composition 3 Second resin layer 3a Second resin composition 4 Second base material 5 Grid type 6 Flat type 7 Ejector 8 Lamp 9 Shutter 10 Grid part 11 First Base portion of resin layer 12 Base portion of second resin layer 13 First region 14 Second region 20 Diffractive optical element 600 Imaging device (digital camera)
601 Optical equipment (lens barrel)
602 Camera body 603 Lens 605 Lens

Claims (14)

第1樹脂層と、第2樹脂層とが順に積層され、平面視した際に、前記第1樹脂層と前記第2樹脂層の界面の少なくとも一部に同心円状の回折格子が形成された回折光学素子であって、
前記回折格子は、平面視した際に、前記回折格子の中心を含む第1領域と、前記第1領域を囲み前記第1領域より低い高さの格子を有する第2領域と、を有し、
前記第2領域の回折格子の格子高さは、前記回折格子の外縁に向かって低くなっており、
前記第2領域において、前記回折格子の中心から外縁に向かってm番目(mは2より大きい整数)の格子の高さをdmとすると、
0.50≦d /d m-1 ≦0.98
の関係を満たすことを特徴とする回折光学素子。
A diffraction pattern in which a first resin layer and a second resin layer are laminated in order, and a concentric diffraction grating is formed on at least a part of the interface between the first resin layer and the second resin layer when viewed from above. An optical element,
The diffraction grating has a first region including the center of the diffraction grating when viewed in plan, and a second region surrounding the first region and having a grating lower in height than the first region,
The grating height of the diffraction grating in the second region decreases toward the outer edge of the diffraction grating ,
In the second region, if the height of the m-th grating (m is an integer greater than 2) from the center to the outer edge of the diffraction grating is dm,
0.50≦d m /d m-1 ≦0.98
A diffractive optical element characterized by satisfying the following relationship .
前記第1領域において、前記回折格子の中心から外縁に向かってn番目(nは2以上の整数)の格子の高さをdとすると、
0.99≦d/dn-1≦1.01
の関係を満たす請求項1に記載の回折光学素子。
In the first region, if the height of the n-th grating (n is an integer of 2 or more) from the center to the outer edge of the diffraction grating is dn ,
0.99≦d n /d n-1 ≦1.01
The diffractive optical element according to claim 1, which satisfies the following relationship.
平面視した際に、前記第1領域の径方向の長さをA、前記第2領域の径方向の長さをBとしたときに、
0.018≦B/A≦0.10
の関係を満たす請求項1または2に記載の回折光学素子。
When viewed in plan, when the radial length of the first region is A, and the radial length of the second region is B,
0.018≦B/A≦0.10
The diffractive optical element according to claim 1 or 2, which satisfies the following relationship.
前記第1領域の格子の高さが5μm以上30μm以下の範囲である請求項1乃至3のいずれか1項に記載の回折光学素子。 The diffractive optical element according to any one of claims 1 to 3, wherein the height of the grating in the first region is in a range of 5 μm or more and 30 μm or less. 前記第1領域の前記第2領域と接する格子である最外周の格子と、前記最外周の格子との間隔が100μm以上500μm以下の範囲である請求項1乃至4のいずれか1項に記載の回折光学素子。 5. The distance between the outermost lattice, which is a lattice in contact with the second region of the first region, and the outermost lattice is in the range of 100 μm or more and 500 μm or less. Diffractive optical element. 前記第1樹脂層のベース部の厚みが1μm以上50μm以下の範囲である請求項1乃至5のいずれか一項に記載の回折光学素子。 The diffractive optical element according to any one of claims 1 to 5, wherein the thickness of the base portion of the first resin layer is in a range of 1 μm or more and 50 μm or less. 前記第2樹脂層のベース部の厚みが10μm以上400μm以下の範囲である請求項1乃至6のいずれか1項に記載の回折光学素子。 The diffractive optical element according to any one of claims 1 to 6, wherein the thickness of the base portion of the second resin layer is in the range of 10 μm or more and 400 μm or less. 前記回折光学素子は第1基材及び第2基材を有し、
前記第1基材、前記第1樹脂層、前記第2樹脂層及び前記第2基材の順に積層されている請求項1乃至7のいずれか1項に記載の回折光学素子。
The diffractive optical element has a first base material and a second base material,
The diffractive optical element according to any one of claims 1 to 7, wherein the first base material, the first resin layer, the second resin layer, and the second base material are laminated in this order.
前記第2領域の回折格子の格子ピッチの間隔は、前記回折格子の中心から外縁に向かって狭くなっていることを特徴とする請求項1乃至8のいずれか1項に記載の回折格子素子。9. The diffraction grating element according to claim 1, wherein the grating pitch of the diffraction grating in the second region becomes narrower from the center to the outer edge of the diffraction grating. 筐体と、該筐体内に複数のレンズを有する光学系を備える光学機器であって、
前記複数のレンズの少なくとも1つが請求項1乃至9のいずれか1項に記載の回折光学素子であることを特徴とする光学機器。
An optical device comprising a housing and an optical system having a plurality of lenses within the housing,
An optical instrument characterized in that at least one of the plurality of lenses is the diffractive optical element according to any one of claims 1 to 9.
筐体と、該筐体内に複数のレンズを有する光学系と、該光学系を通過した光を受光する撮像素子と、を備える撮像装置であって、
前記複数のレンズの少なくとも1つが請求項1乃至10のいずれか1項に記載の回折光学素子であることを特徴とする撮像装置。
An imaging device comprising a housing, an optical system having a plurality of lenses in the housing, and an imaging element that receives light passing through the optical system,
An imaging device characterized in that at least one of the plurality of lenses is the diffractive optical element according to any one of claims 1 to 10.
前記撮像装置がカメラである請求項11に記載の撮像装置。 The imaging device according to claim 11, wherein the imaging device is a camera. 平面視した際に、積層された第1樹脂層と第2樹脂層の界面の少なくとも一部に同心円状の回折格子が設けられた回折光学素子の製造方法であって、A method for manufacturing a diffractive optical element in which a concentric diffraction grating is provided on at least a part of the interface between a laminated first resin layer and a second resin layer when viewed in plan,
格子形状が設けられた第1樹脂層の前記格子形状上に、樹脂組成物を設ける工程と、providing a resin composition on the lattice shape of the first resin layer provided with the lattice shape;
前記樹脂組成物を硬化させて、第2樹脂層とする工程と、を有し、curing the resin composition to form a second resin layer;
前記第1樹脂層に設けられた前記格子形状は、平面視した際に、前記格子形状の中心を含む第1領域と、前記第1領域を囲み前記第1領域より低い高さの格子を有する第2領域と、を有し、The lattice shape provided in the first resin layer has a first region including the center of the lattice shape and a lattice surrounding the first region and having a height lower than the first region when viewed in plan. a second region;
前記第2領域の回折格子の格子高さは、前記回折格子の外縁に向かって低くなっており、The grating height of the diffraction grating in the second region decreases toward the outer edge of the diffraction grating,
前記第2領域において、前記回折格子の中心から外縁に向かってm番目(mは2より大きい整数)の格子の高さをdmとすると、In the second region, if the height of the m-th grating (m is an integer greater than 2) from the center to the outer edge of the diffraction grating is dm,
0.50≦d0.50≦d m /d/d m-1m-1 ≦0.98≦0.98
の関係を満たすことを特徴とする回折光学素子の製造方法。A method for manufacturing a diffractive optical element characterized by satisfying the following relationship.
第1基材の上に、格子形状を備える前記第1樹脂層を設ける工程をさらに有することを特徴とする請求項12に記載の回折格光学素子の製造方法。13. The method of manufacturing a diffraction grating optical element according to claim 12, further comprising the step of providing the first resin layer having a grating shape on the first base material.
JP2020089581A 2020-05-22 2020-05-22 Diffractive optical elements, optical instruments and imaging devices Active JP7451299B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020089581A JP7451299B2 (en) 2020-05-22 2020-05-22 Diffractive optical elements, optical instruments and imaging devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020089581A JP7451299B2 (en) 2020-05-22 2020-05-22 Diffractive optical elements, optical instruments and imaging devices

Publications (3)

Publication Number Publication Date
JP2021184049A JP2021184049A (en) 2021-12-02
JP2021184049A5 JP2021184049A5 (en) 2023-05-22
JP7451299B2 true JP7451299B2 (en) 2024-03-18

Family

ID=78767338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020089581A Active JP7451299B2 (en) 2020-05-22 2020-05-22 Diffractive optical elements, optical instruments and imaging devices

Country Status (1)

Country Link
JP (1) JP7451299B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007132787A1 (en) 2006-05-15 2007-11-22 Panasonic Corporation Diffractive imaging lens, diffractive imaging lens optical system and imaging device using the diffractive imaging lens optical system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007132787A1 (en) 2006-05-15 2007-11-22 Panasonic Corporation Diffractive imaging lens, diffractive imaging lens optical system and imaging device using the diffractive imaging lens optical system

Also Published As

Publication number Publication date
JP2021184049A (en) 2021-12-02

Similar Documents

Publication Publication Date Title
KR101174180B1 (en) Diffractive optical element
JP4944652B2 (en) Diffractive optical element and optical system using the same
US7554733B2 (en) Diffractive optical element and method for manufacturing same
US7957063B2 (en) Diffractive optical device, optical system using the diffractive optical device and method for manufacturing diffractive optical device
US20110304764A1 (en) Lens element, imaging lens, and imaging module
JP2004145273A (en) Optical material, and optical element, diffractive optical element and laminated diffractive optical element formed with this material
JP2009217139A (en) Diffraction optical element, optical system and optical apparatus
WO2008010560A1 (en) Optical system and eyepiece
JP7451299B2 (en) Diffractive optical elements, optical instruments and imaging devices
JP7106279B2 (en) Diffractive optical element and optical equipment
JP6996089B2 (en) Diffractive optical elements, optical systems and optical equipment
JP7418079B2 (en) Diffractive optical elements, optical instruments, imaging devices
JP7346262B2 (en) Diffractive optical elements, methods of manufacturing diffractive optical elements, optical instruments, and imaging devices
JP7346278B2 (en) Diffractive optical elements, optical instruments and imaging devices
CN110109225B (en) Optical element, optical device and imaging device
JP4590082B2 (en) Diffractive optical element and optical system using the same
JP7451298B2 (en) Diffractive optical elements, optical instruments and imaging devices
JP3467018B2 (en) Optical system and optical equipment
JP2023014556A (en) Diffraction optical element, optical apparatus, imaging device, and method for manufacturing diffraction optical element
JP2005308958A (en) Diffraction optical element and optical system having the same
US20220239809A1 (en) Polymerizable composition, optical element and method for producing the same, optical device, and image capturing apparatus
JP2020173429A (en) Diffraction optical element, optical equipment, and imaging apparatus
JP7418096B2 (en) Optical elements, optical instruments and imaging devices
JP7433765B2 (en) Optical elements, optical instruments and imaging devices
EP3722841A1 (en) Diffractive optical element, optical device, and imaging apparatus

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20200616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230512

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231205

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20231213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240306

R151 Written notification of patent or utility model registration

Ref document number: 7451299

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151