JP7418079B2 - Diffractive optical elements, optical instruments, imaging devices - Google Patents

Diffractive optical elements, optical instruments, imaging devices Download PDF

Info

Publication number
JP7418079B2
JP7418079B2 JP2019180973A JP2019180973A JP7418079B2 JP 7418079 B2 JP7418079 B2 JP 7418079B2 JP 2019180973 A JP2019180973 A JP 2019180973A JP 2019180973 A JP2019180973 A JP 2019180973A JP 7418079 B2 JP7418079 B2 JP 7418079B2
Authority
JP
Japan
Prior art keywords
resin layer
optical element
diffractive optical
base material
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019180973A
Other languages
Japanese (ja)
Other versions
JP2021056426A (en
Inventor
英生 源田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2019180973A priority Critical patent/JP7418079B2/en
Publication of JP2021056426A publication Critical patent/JP2021056426A/en
Application granted granted Critical
Publication of JP7418079B2 publication Critical patent/JP7418079B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Description

本発明は、撮像装置や光学機器に使用される回折光学素子に関する。 The present invention relates to a diffractive optical element used in imaging devices and optical equipment.

レンズなどに用いられる光学素子として、2つの基材の間に光学特性が異なる2種の樹脂を設け、その2種の樹脂の界面に回折格子が形成された回折光学素子が知られている。この回折光学素子は、レンズなどに用いられ、密着2層型の回折光学素子と呼ばれている。密着2層型の回折光学素子を高温環境下で長期に使用した場合、基材と樹脂との界面で剥がれが発生することが知られている。特許文献1には、回折光学素子の樹脂の外周部分の厚みと幅を所定の範囲にすることにより、基材と樹脂との界面における剥がれを抑制することが開示されている。 BACKGROUND ART As an optical element used for lenses and the like, there is known a diffractive optical element in which two types of resins having different optical properties are provided between two base materials, and a diffraction grating is formed at the interface between the two types of resins. This diffractive optical element is used for lenses and the like, and is called a close-contact two-layer type diffractive optical element. It is known that when a close-contact two-layer diffractive optical element is used in a high-temperature environment for a long period of time, peeling occurs at the interface between the base material and the resin. Patent Document 1 discloses that peeling at the interface between the base material and the resin can be suppressed by setting the thickness and width of the outer peripheral portion of the resin of the diffractive optical element within a predetermined range.

特開2016-067196号公報Japanese Patent Application Publication No. 2016-067196

しかしながら、特許文献1に開示された手段では、樹脂の形状によっては、基材と樹脂との界面で剥がれが生じることがあった。 However, with the means disclosed in Patent Document 1, depending on the shape of the resin, peeling may occur at the interface between the base material and the resin.

上記課題を解決するための回折光学素子は、第1基材と第2基材との間に、第1樹脂層と第2樹脂層とが密着して積層された回折光学素子であって、前記第1樹脂層は回折格子形状を有する格子部と、前記格子部の外周に隣接し回折格子形状を有しない外周部と、を有し、前記外周部は前記第1基材または前記第2基材と接する下面と、前記下面の反対側に上面を有し、前記上面と前記下面の距離である前記外周部の厚みteは、折格子の高さをd、前記格子部の前記回折格子の高さを除いた厚さをt1としたときに下記式(1) t1+0.3d≦te≦t1+0.9d (1) を満たし、前記上面の径方向の長さである前記外周部の径方向の長さweは、下記式(2) 30d≦we (2) を満たすことを特徴とする。 A diffractive optical element for solving the above problems is a diffractive optical element in which a first resin layer and a second resin layer are laminated in close contact between a first base material and a second base material, The first resin layer has a grating portion having a diffraction grating shape, and an outer peripheral portion adjacent to the outer periphery of the grating portion and having no diffraction grating shape , and the outer peripheral portion is formed of the first base material or the second resin layer. The thickness te of the outer circumferential portion , which has a lower surface in contact with the base material and an upper surface on the opposite side of the lower surface, is the distance between the upper surface and the lower surface, d is the height of the diffraction grating, and is the diffraction ratio of the grating portion. When the thickness excluding the height of the grating is t1, the following formula (1) t1+0.3d≦te≦t1+0.9d (1) is satisfied, and the diameter of the outer peripheral portion is the radial length of the upper surface. The length we in the direction is characterized by satisfying the following formula (2): 30d≦we (2).

本発明によれば、基材と樹脂との界面で剥がれが発生しにくい回折光学素子を提供することができる。 According to the present invention, it is possible to provide a diffractive optical element that is unlikely to peel off at the interface between the base material and the resin.

第1実施形態に係る回折光学素子を示した模式的断面図である。FIG. 1 is a schematic cross-sectional view showing a diffractive optical element according to a first embodiment. 第2実施形態に係る回折光学素子を示した模式的断面図である。FIG. 7 is a schematic cross-sectional view showing a diffractive optical element according to a second embodiment. 実施形態に係る回折光学素子の製造方法を示す工程図である。FIG. 3 is a process diagram showing a method for manufacturing a diffractive optical element according to an embodiment. 実施形態に係る撮像装置を示した概略図である。1 is a schematic diagram showing an imaging device according to an embodiment. 比較例の回折光学素子を示した模式的断面図である。FIG. 2 is a schematic cross-sectional view showing a diffractive optical element of a comparative example.

[回折光学素子]
(第1実施形態)
以下、本発明を実施するための形態を、図面を参照しながら説明する。図1は、第1実施形態に係る回折光学素子を示した模式的断面図である。図1(a)は全体図であり、図1(b)は図1(a)の破線で囲んだ領域の拡大図である。図1(b)において、回折光学素子10の中心は図の左側に位置し、回折光学素子10の端部は図の右側に位置している。図1(a)と(b)に示すように、回折光学素子10は、第1基材2と第2基材7との間に、第1樹脂層3と第2樹脂層8とが密着して積層されている。
[Diffractive optical element]
(First embodiment)
Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. FIG. 1 is a schematic cross-sectional view showing a diffractive optical element according to a first embodiment. FIG. 1(a) is an overall view, and FIG. 1(b) is an enlarged view of the area surrounded by the broken line in FIG. 1(a). In FIG. 1(b), the center of the diffractive optical element 10 is located on the left side of the figure, and the end of the diffractive optical element 10 is located on the right side of the figure. As shown in FIGS. 1A and 1B, in the diffractive optical element 10, the first resin layer 3 and the second resin layer 8 are in close contact between the first base material 2 and the second base material 7. It is laminated.

(基材)
第1基材2および第2基材7は、透明な樹脂や、透明なガラスを用いることができる。第1基材2および第2基材7は、ガラスを用いることが好ましく、例えば、珪酸ガラスや硼珪酸ガラス、リン酸ガラスに代表される一般的な光学ガラスや、石英ガラス、ガラスセラミックスを用いることができる。
(Base material)
The first base material 2 and the second base material 7 can be made of transparent resin or transparent glass. The first base material 2 and the second base material 7 are preferably made of glass, and for example, common optical glasses such as silicate glass, borosilicate glass, and phosphate glass, quartz glass, and glass ceramics are used. be able to.

第1基材2および第2基材7の形状は特に限定されず、樹脂と接する面の形状は、凹球面、凸球面、軸対称非球面、平面などから選択できる。ただし、第1基材2の第1樹脂層3と接する面の形状と第2基材7の第2樹脂層8と接する面の形状は、略同じ形状であることが好ましい。また、基材の外形は円形が好ましい。 The shapes of the first base material 2 and the second base material 7 are not particularly limited, and the shape of the surface in contact with the resin can be selected from a concave spherical surface, a convex spherical surface, an axisymmetric aspheric surface, a flat surface, and the like. However, it is preferable that the shape of the surface of the first base material 2 in contact with the first resin layer 3 and the shape of the surface of the second base material 7 in contact with the second resin layer 8 are approximately the same shape. Further, the outer shape of the base material is preferably circular.

(樹脂層)
第1樹脂層3は、回折格子形状を有する格子部31と、格子部31の外周に外周部32と、を有する。回折格子形状とは、複数の回折格子が連続して形成されている形状である。格子形状は、素子の中心から外周に向かって径方向に緩やかに傾斜する傾斜面31Aと、所定の距離を進んだところで急激に傾斜の逆方向に変化する壁面31Bの繰り返しパターンである。繰り返しパターンの間隔は中心から外周に向かって連続的に小さくなり、段差はほぼ等しい。格子部31と外周部32は隣接していればよく、必ずしも連続的に形成されている必要はない。格子部31と外周部32の距離はd(回折格子の高さ)の50倍以下であることが好ましい。図1において、外周部32は回折格子形状を有していないが、後述する式(1)および(2)を満たせば、回折格子形状を有していても構わない。
(resin layer)
The first resin layer 3 has a grating section 31 having a diffraction grating shape, and an outer peripheral section 32 around the outer periphery of the grating section 31 . The diffraction grating shape is a shape in which a plurality of diffraction gratings are continuously formed. The lattice shape is a repeating pattern of an inclined surface 31A that slopes gently in the radial direction from the center of the element toward the outer periphery, and a wall surface 31B that suddenly changes in the opposite direction of the slope after a predetermined distance. The interval between the repeating patterns decreases continuously from the center toward the outer periphery, and the steps are approximately equal. The lattice portion 31 and the outer peripheral portion 32 only need to be adjacent to each other, and do not necessarily need to be formed continuously. The distance between the grating portion 31 and the outer peripheral portion 32 is preferably 50 times or less d (the height of the diffraction grating). In FIG. 1, the outer peripheral portion 32 does not have a diffraction grating shape, but it may have a diffraction grating shape as long as it satisfies equations (1) and (2) described later.

格子部31において回折格子の高さはdである。また、格子部31の回折格子の高さを除いた厚さ(第1基材2の第1樹脂層3が形成される面の法線方向の長さ)はt1である。 The height of the diffraction grating in the grating section 31 is d. Further, the thickness of the grating portion 31 excluding the height of the diffraction grating (the length in the normal direction of the surface of the first base material 2 on which the first resin layer 3 is formed) is t1.

外周部32の厚み(第1基材2の第1樹脂層3が形成される面の法線方向の長さ)はteであり、teは下記式(1)を満たす。
t1+0.3d≦te≦t1+0.9d (1)
The thickness of the outer peripheral portion 32 (the length in the normal direction of the surface of the first base material 2 on which the first resin layer 3 is formed) is te, and te satisfies the following formula (1).
t1+0.3d≦te≦t1+0.9d (1)

ここで、d、t1およびteは少なくとも5か所以上の平均値である。また、外周部32の径方向(素子の中心から外周に向かう方向)の長さ(第1基材2の第1樹脂層3が形成される面と平行な方向の長さ)はweであり、weは下記式(2)を満たす。
30d≦we (2)
Here, d, t1, and te are average values of at least five locations. Further, the length of the outer circumferential portion 32 in the radial direction (direction from the center of the element toward the outer circumference) (the length in the direction parallel to the surface of the first base material 2 on which the first resin layer 3 is formed) is we. , we satisfy the following formula (2).
30d≦we (2)

本発明の回折光学素子は、式(1)および式(2)を満たすことにより、第1基材7と第1樹脂層3との界面で剥がれが生じにくくなる。以下に、比較例の回折光学素子の形態を説明しながら、そのメカニズムについて説明する。 By satisfying formulas (1) and (2), the diffractive optical element of the present invention is less likely to peel off at the interface between the first base material 7 and the first resin layer 3. The mechanism will be explained below while explaining the form of a diffractive optical element of a comparative example.

図5は比較例の回折光学素子10Xを示した模式的断面図である。図5(a)は全体図であり、図5(b)は図5(a)の破線で囲んだ領域の拡大図である。回折光学素子10Xは、第1基材2Xと第2基材7Xとの間に、第1樹脂層3Xと第2樹脂層8Xとが密着して積層されている。 FIG. 5 is a schematic cross-sectional view showing a diffractive optical element 10X of a comparative example. FIG. 5(a) is an overall view, and FIG. 5(b) is an enlarged view of the area surrounded by the broken line in FIG. 5(a). In the diffractive optical element 10X, a first resin layer 3X and a second resin layer 8X are laminated in close contact between a first base material 2X and a second base material 7X.

第1樹脂層3Xは、回折格子形状を有する格子部31Xと、格子部31Xの外周に隣接して設けられた回折格子形状を有しない外周部32Xと、を有する。また、外周部32Xの厚みteはt1+d以上であり、第1樹脂層3Xの厚み以上である。このような形状を、第1樹脂層3X、第2樹脂層8Xの順に未硬化の樹脂を硬化させて形成すると、格子部31Xの最も厚みが薄い部分には、第1基材2Xから第1樹脂層3Xが離れようとする方向に引っ張り応力が残留する。この引っ張り応力は、格子高さに依存する引っ張り応力と、外周部の厚みに依存する引っ張り応力と、が足し合わされたものである。格子高さに依存する応力は、格子部31Xの最も厚みが薄い部分と、格子部31Xの最も厚みが厚い部分とで、それらの上に形成される第2樹脂層の樹脂の硬化収縮量が異なるために発生する。外周部の厚みに依存する応力は、格子部31Xの厚みが薄い部分と、外周部32Xの最も厚みが厚い部分とで、それらの上に形成される第2樹脂層の樹脂の硬化収縮量が異なるために発生する。回折光学素子10Xを長期間使用すると、空気中からの水分の侵入により第1樹脂層3Xと第1基材2の密着力は徐々に低下していく。そのため、この格子部31に残留した引っ張り応力が、第1樹脂層3Xと第1基材2の密着力を上回ると剥がれが発生する。 The first resin layer 3X has a grating portion 31X having a diffraction grating shape, and an outer peripheral portion 32X having no diffraction grating shape and provided adjacent to the outer periphery of the grating portion 31X. Further, the thickness te of the outer peripheral portion 32X is greater than or equal to t1+d, and greater than or equal to the thickness of the first resin layer 3X. When such a shape is formed by curing uncured resin in the order of the first resin layer 3 Tensile stress remains in the direction in which the resin layer 3X tends to separate. This tensile stress is the sum of a tensile stress that depends on the grid height and a tensile stress that depends on the thickness of the outer circumference. The stress that depends on the lattice height is caused by the amount of curing shrinkage of the resin of the second resin layer formed on the thinnest part of the lattice part 31X and the thickest part of the lattice part 31X. Occurs due to differences. The stress that depends on the thickness of the outer peripheral part is caused by the amount of curing shrinkage of the resin of the second resin layer formed on the thinnest part of the lattice part 31X and the thickest part of the outer peripheral part 32X. Occurs due to differences. When the diffractive optical element 10X is used for a long period of time, the adhesion between the first resin layer 3X and the first base material 2 gradually decreases due to moisture entering from the air. Therefore, if the tensile stress remaining in the lattice portion 31 exceeds the adhesion force between the first resin layer 3X and the first base material 2, peeling will occur.

そこで本発明の回折光学素子は、外周部32の厚みが下記式(1)を満たす構成とした。
t1+0.3d≦te≦t1+0.9d (1)
Therefore, the diffractive optical element of the present invention is configured such that the thickness of the outer peripheral portion 32 satisfies the following formula (1).
t1+0.3d≦te≦t1+0.9d (1)

外周部32の厚みをt1+0.9d(t1とdの0.9倍の和)以下とすることで、外周部32の厚みは第1樹脂層3の厚みより薄くなるため、格子部31に残留する引っ張り応力は、格子高さに依存する応力のみとなる。そのため、比較例の回折光学素子より格子部31に残留する引っ張り応力が小さいため、第1基材2と第1樹脂層3の界面で剥がれが発生しにくくなる。一方、外周部32の厚みを薄くしすぎると、製造時にヒケが発生して、回折格子の形状が歪み、回折効率が低下する。そのため、外周部32の厚みはt1+0.3d(t1とdの0.3倍の和)以上である。なお、図1(b)において、外周部32の厚みは中心から外周に向かって一定の厚みであるが、外周部32の厚みは一定である必要はない。また、回折格子の高さの最大値をdmaxとしたときに、前記teはt1+dmax(t1とdmaxの和)未満である。 By setting the thickness of the outer peripheral part 32 to t1 + 0.9d (the sum of 0.9 times t1 and d) or less, the thickness of the outer peripheral part 32 becomes thinner than the thickness of the first resin layer 3, so that no resin remains in the lattice part 31. The tensile stress caused by this is only the stress that depends on the grid height. Therefore, since the tensile stress remaining in the grating portion 31 is smaller than that of the diffractive optical element of the comparative example, peeling at the interface between the first base material 2 and the first resin layer 3 is less likely to occur. On the other hand, if the thickness of the outer peripheral portion 32 is made too thin, sink marks will occur during manufacturing, the shape of the diffraction grating will be distorted, and the diffraction efficiency will decrease. Therefore, the thickness of the outer peripheral portion 32 is t1+0.3d (the sum of 0.3 times t1 and d) or more. In addition, in FIG. 1(b), the thickness of the outer peripheral part 32 is constant from the center to the outer periphery, but the thickness of the outer peripheral part 32 does not need to be constant. Moreover, when the maximum value of the height of the diffraction grating is dmax, the above-mentioned te is less than t1+dmax (the sum of t1 and dmax).

また、式(1)を満たすと同時に、外周部32の径方向の長さweが下記式(2)を満たす。
30d≦we (2)
Moreover, at the same time as formula (1) is satisfied, the radial length we of the outer peripheral portion 32 satisfies the following formula (2).
30d≦we (2)

外周部32の径方向の長さがdの30倍以上であることにより、製造時にヒケが発生しにくくすることができる。樹脂を型で成形する際に、樹脂だまりの部分を多くすることができるためである。また、径方向の長さが長いため、第2樹脂層8の形成時に外周部32に対して応力が局所的に集中されることがなく、格子部以外の箇所からの剥がれの発生を抑制することができる。一方、外周部32の径方向の長さがdの30倍未満であると、樹脂だまりの部分が少なく、製造時にヒケが発生し、回折格子の形状が歪み、回折効率が低下する。また、また、径方向の長さが短いため、第2樹脂層8の形成時に外周部32に対して応力が局所的に集中し、格子部以外の箇所からの剥がれの発生することがある。 By making the radial length of the outer circumferential portion 32 30 times or more d, it is possible to prevent sink marks from occurring during manufacturing. This is because when molding the resin with a mold, the resin pool can be increased. In addition, since the length in the radial direction is long, stress is not locally concentrated on the outer circumferential portion 32 when forming the second resin layer 8, and the occurrence of peeling from locations other than the lattice portion is suppressed. be able to. On the other hand, if the length in the radial direction of the outer circumferential portion 32 is less than 30 times d, there will be a small amount of resin pooling, sink marks will occur during manufacturing, the shape of the diffraction grating will be distorted, and the diffraction efficiency will decrease. Furthermore, since the length in the radial direction is short, stress is locally concentrated on the outer circumferential portion 32 when forming the second resin layer 8, and peeling may occur from locations other than the lattice portion.

また、外周部32の径方向の長さweは下記式(3)を満たすことが好ましい。
50d≦we≦100d (3)
Further, it is preferable that the radial length we of the outer peripheral portion 32 satisfies the following formula (3).
50d≦we≦100d (3)

外周部32の径方向の長さがdの50倍以上であることにより、製造時にヒケが発生する可能性をさらに低減することができる。また、外周部32の径方向の長さが100d以下であることにより、非光学有効部が大きくならないため、回折光学素子の光学有効部を広く確保することができる。 By making the radial length of the outer circumferential portion 32 50 times or more d, it is possible to further reduce the possibility of sink marks occurring during manufacturing. Further, since the length of the outer circumferential portion 32 in the radial direction is 100 d or less, the non-optically effective portion does not become large, so that a wide optically effective portion of the diffractive optical element can be secured.

第2樹脂層8の格子部31と対向する部分における回折格子の高さdを除いた厚さ(第2基材7の第2樹脂層8が形成される面の法線方向の長さ)をt2としたときに,t2は下記式(4)を満たすことが好ましい。
1.5d≦t2≦3d (4)
Thickness excluding the height d of the diffraction grating at the portion of the second resin layer 8 facing the grating portion 31 (length in the normal direction of the surface of the second base material 7 on which the second resin layer 8 is formed) When t2 is t2, it is preferable that t2 satisfies the following formula (4).
1.5d≦t2≦3d (4)

t2がこの範囲であると、良好な回折効率を得ることができる。t2がdの1.5倍未満であると、第2樹脂層8の格子部31と対向する部分において、厚みが厚い箇所と薄い箇所で屈折率に差が生じ、回折効率が劣化するおそれがある。t2がdの3倍より大きくなると、第2樹脂層8の体積が増えるため、温度変動による体積変化による屈折率変動が生じやすくなり、回折効率が変動するおそれがある。 When t2 is within this range, good diffraction efficiency can be obtained. If t2 is less than 1.5 times d, there will be a difference in the refractive index between the thicker and thinner parts of the second resin layer 8 facing the grating part 31, and there is a risk that the diffraction efficiency will deteriorate. be. When t2 becomes larger than 3 times d, the volume of the second resin layer 8 increases, so that changes in the refractive index due to changes in volume due to temperature changes are likely to occur, and there is a possibility that the diffraction efficiency will change.

回折格子の高さdは8μm以上25μm以下の範囲であることが好ましい。回折格子の高さがこの範囲であると、良好な回折効率と、格子部31に発生する引っ張り応力の低減と、を両立することができる。8μm未満であると、第1樹脂層3と第2樹脂層8との屈折率差と回折格子の高さdとの積で決定される回折効率が十分に高くならないおそれがある。また、25μmを超えると、格子部31に残留する格子高さに依存する引っ張り応力が大きくなってしまうおそれがある。 The height d of the diffraction grating is preferably in the range of 8 μm or more and 25 μm or less. When the height of the diffraction grating is within this range, it is possible to achieve both good diffraction efficiency and a reduction in tensile stress generated in the grating portion 31. If it is less than 8 μm, the diffraction efficiency determined by the product of the refractive index difference between the first resin layer 3 and the second resin layer 8 and the height d of the diffraction grating may not be sufficiently high. Moreover, if it exceeds 25 μm, there is a risk that the tensile stress that remains in the grating portion 31 and depends on the grating height will become large.

格子部31の回折格子の高さdを除いた厚さt1が、1μm以上50μm以下の範囲であることが好ましい。t1がこの範囲であると、格子部31の形状が安定して得られ、良好な回折効率を得ることができる。t1が1μm未満であると、格子部31の先端に応力が集中し、形状不良が発生しやすくなるおそれがある。t1が50μmを超えると、樹脂の体積が増えるため、温度変動による体積変化による屈折率変動が生じやすくなり、回折効率が変動するおそれがある。 It is preferable that the thickness t1 of the grating portion 31 excluding the height d of the diffraction grating is in the range of 1 μm or more and 50 μm or less. When t1 is within this range, the shape of the grating portion 31 can be stably obtained, and good diffraction efficiency can be obtained. When t1 is less than 1 μm, stress is concentrated at the tips of the lattice portions 31, and there is a possibility that shape defects are likely to occur. When t1 exceeds 50 μm, since the volume of the resin increases, refractive index fluctuations due to volume changes due to temperature fluctuations are likely to occur, and there is a possibility that the diffraction efficiency will fluctuate.

外周部32の外周面32Aは、第2樹脂層8と接していることが好ましい。外周面32Aが第2樹脂層8と接することにより、格子部31に空気中からの水が到達する時間が長くなるため、長期間使用しても第1基材2と第1樹脂層3の界面で剥がれが発生しにくくなる。 It is preferable that the outer circumferential surface 32A of the outer circumferential portion 32 is in contact with the second resin layer 8. Since the outer circumferential surface 32A is in contact with the second resin layer 8, the time for water from the air to reach the lattice portion 31 is increased, so even if used for a long period of time, the first base material 2 and the first resin layer 3 will remain in contact with each other. Peeling is less likely to occur at the interface.

第1樹脂層3および第2樹脂層8は、無色透明な樹脂から構成され、回折光学素子が所望の光学特性となるように屈折率やアッベ数を設計することができる。広い波長帯域で高い回折効率を得るために、第1樹脂層3と第2樹脂層8は低屈折率高分散樹脂と高屈折率低分散樹脂で形成することが好ましい。ここで、低屈折率および高屈折率とは第1樹脂層3および第2樹脂層8の屈折率(d線の屈折率nd)の相対的な関係を意味する。同様に、高分散および低分散とは第1樹脂層3および第2樹脂層8の分散特性(アッベ数νd)の相対的な関係を意味する。つまり、第1樹脂層3が低屈折率高分散、第2樹脂層8が高屈折率低分散であるとは、第1樹脂層3の屈折率をnd1、アッベ数をν1、第2樹脂層8の屈折率をnd2、アッベ数をν2としたときに、nd1<nd2及びν1<ν2を満たすことを意味する。なお、所望の光学特性によっては、第1樹脂層3を高屈折率低分散に、第2樹脂層8は低屈折率高分散としても構わない。 The first resin layer 3 and the second resin layer 8 are made of colorless and transparent resin, and the refractive index and Abbe number can be designed so that the diffractive optical element has desired optical characteristics. In order to obtain high diffraction efficiency over a wide wavelength band, the first resin layer 3 and the second resin layer 8 are preferably formed of a low refractive index, high dispersion resin and a high refractive index, low dispersion resin. Here, the low refractive index and the high refractive index refer to the relative relationship between the refractive indexes (d-line refractive index nd) of the first resin layer 3 and the second resin layer 8. Similarly, high dispersion and low dispersion mean the relative relationship between the dispersion characteristics (Abbe number νd) of the first resin layer 3 and the second resin layer 8. In other words, the first resin layer 3 has a low refractive index and high dispersion, and the second resin layer 8 has a high refractive index and low dispersion. This means that nd1<nd2 and ν1<ν2 are satisfied, where nd2 is the refractive index of 8, and ν2 is the Abbe number. Note that, depending on desired optical properties, the first resin layer 3 may have a high refractive index and low dispersion, and the second resin layer 8 may have a low refractive index and high dispersion.

第1樹脂層3および第2樹脂層8を形成する樹脂は、エネルギー硬化型樹脂を用いることが好ましい。なかでも、紫外線硬化型樹脂を用いることが好ましく、紫外線硬化型樹脂としては、アクリル樹脂やエポキシ樹脂等を用いることができる。また、第1樹脂層3および第2樹脂層8を形成する樹脂は、光学物性や機械物性を調整するために、エネルギー硬化型樹脂以外の他の有機物や無機物を含有していても良い。 As the resin forming the first resin layer 3 and the second resin layer 8, it is preferable to use an energy curable resin. Among these, it is preferable to use an ultraviolet curable resin, and as the ultraviolet curable resin, acrylic resin, epoxy resin, etc. can be used. Furthermore, the resin forming the first resin layer 3 and the second resin layer 8 may contain organic or inorganic substances other than the energy-curable resin in order to adjust optical properties and mechanical properties.

(第2実施形態)
図2は、第2実施形態に係る回折光学素子を示した模式的断面図である。図2(a)は全体図であり、図2(b)は図2(a)の破線で囲んだ領域の拡大図である。図2(a)と(b)に示すように、回折光学素子100は、第1実施形態と同様に第1基材20と第2基材70との間に、第1樹脂層30と第2樹脂層80とが密着して積層されている。第1樹脂層30は、回折格子形状を有する格子部310と、格子部310の外周に隣接する外周部320と、を有する。
(Second embodiment)
FIG. 2 is a schematic cross-sectional view showing a diffractive optical element according to a second embodiment. FIG. 2(a) is an overall view, and FIG. 2(b) is an enlarged view of the area surrounded by the broken line in FIG. 2(a). As shown in FIGS. 2A and 2B, the diffractive optical element 100 has a first resin layer 30 and a first resin layer 30 between a first base material 20 and a second base material 70, as in the first embodiment. The two resin layers 80 are laminated in close contact with each other. The first resin layer 30 has a grating section 310 having a diffraction grating shape, and an outer peripheral section 320 adjacent to the outer circumference of the grating section 310 .

第2実施形態については、第1実施形態と異なる箇所についてのみ説明する。 Regarding the second embodiment, only the points different from the first embodiment will be described.

第2実施形態は、第1基材20と第2基材70の形状が第1実施形態の基材の形状と異なる。第1基材20と第2基材70は平面ガラスを用いている。 In the second embodiment, the shapes of the first base material 20 and the second base material 70 are different from those of the first embodiment. The first base material 20 and the second base material 70 are made of flat glass.

また、第2実施形態は、第1樹脂層の格子部310の形状が第1実施形態の格子部の形状と異なる。第1実施形態の格子部31の形状が、凸型形状であったが、第2実施形態の格子部310の形状は凹型形状である。 Further, in the second embodiment, the shape of the lattice portion 310 of the first resin layer is different from the shape of the lattice portion in the first embodiment. Although the shape of the lattice section 31 in the first embodiment was a convex shape, the shape of the lattice section 310 in the second embodiment is a concave shape.

そのほかの箇所については第1実施形態と同様の構成であり、第2実施形態も第1基材20と第1樹脂層30との界面で剥がれが発生しにくい回折光学素子を提供することができる。 The other parts have the same configuration as the first embodiment, and the second embodiment can also provide a diffractive optical element in which peeling does not easily occur at the interface between the first base material 20 and the first resin layer 30. .

[回折光学素子の製造方法]
本発明における回折光学素子の製造方法は、特に限定されないが、以下に2枚のガラス基材の間に紫外線硬化性樹脂を用いて2つの樹脂層を形成する回折光学素子の製造工程の一例を説明する。回折光学素子の形状は第1実施形態と同じであるため、以下、第1実施形態に用いた符号を用いて説明する。
[Method for manufacturing diffractive optical element]
Although the method for manufacturing a diffractive optical element in the present invention is not particularly limited, an example of a process for manufacturing a diffractive optical element in which two resin layers are formed using an ultraviolet curable resin between two glass substrates is described below. explain. Since the shape of the diffractive optical element is the same as that in the first embodiment, the reference numerals used in the first embodiment will be used in the following description.

ガラス基材は、樹脂層との密着性を向上させるため、樹脂層と密着する面に前処理をしておくことが好ましい。ガラス表面の前処理は、樹脂層との親和性が良いシランカップリング剤を用いてカップリング処理をすることが好ましい。具体的なカップリング剤としては、ヘキサメチルジシラザン、メチルトリメトキシシラン、トリメチルクロロシラン、トリエチルクロロシラン等が挙げられる。 In order to improve the adhesion with the resin layer, it is preferable that the surface of the glass substrate that comes into close contact with the resin layer is pretreated. Preferably, the glass surface is pretreated by coupling treatment using a silane coupling agent that has good affinity with the resin layer. Specific coupling agents include hexamethyldisilazane, methyltrimethoxysilane, trimethylchlorosilane, triethylchlorosilane, and the like.

初めに、第1樹脂層3を形成する。まず、図3(a)に示すように金型1の上に第1樹脂層の前駆体である未硬化の紫外線硬化性樹脂3aを滴下する。また、第1基材2をイジェクタ4に乗せて金型1に対向するよう配置する。ここで用いる金型1は、表面に所望の回折格子形状の反転形状を有し、例えば、ステンレス材や鋼材などの金属母材上にNiPメッキや無酸素銅メッキしたものを精密加工機で切削することで作製できる。 First, the first resin layer 3 is formed. First, as shown in FIG. 3(a), uncured ultraviolet curable resin 3a, which is a precursor of the first resin layer, is dropped onto the mold 1. Further, the first base material 2 is placed on the ejector 4 and placed so as to face the mold 1. The mold 1 used here has an inverted shape of a desired diffraction grating shape on its surface, and is machined using a precision processing machine using, for example, NiP plating or oxygen-free copper plating on a metal base material such as stainless steel or steel. It can be made by doing this.

次に、図3(b)に示すように、イジェクタ4を降下させて金型1と第1基材2の間に未硬化の紫外線硬化樹脂3aを充填させたのちに、紫外線光源5を用いて第1基材2側から紫外線を照射し、紫外線硬化樹脂3aを硬化させる。 Next, as shown in FIG. 3(b), the ejector 4 is lowered to fill the space between the mold 1 and the first base material 2 with uncured ultraviolet curable resin 3a, and then the ultraviolet light source 5 is used to fill the space between the mold 1 and the first base material 2. Then, ultraviolet rays are irradiated from the first base material 2 side to cure the ultraviolet curing resin 3a.

その後、図3(c)に示すように、硬化した紫外線硬化樹脂3を金型1から離型することにより、第1基材2上に回折格子形状を有する第1樹脂層3を形成する。なお第1樹脂層3を形成した後に、大気中もしくは無酸素雰囲気で紫外線の追加照射や熱処理を行っても構わない。 Thereafter, as shown in FIG. 3C, the cured ultraviolet curable resin 3 is released from the mold 1 to form the first resin layer 3 having a diffraction grating shape on the first base material 2. Note that after forming the first resin layer 3, additional irradiation with ultraviolet rays or heat treatment may be performed in the air or an oxygen-free atmosphere.

次いで、第2樹脂層8を形成する。まず、図3(d)に示すように、第1樹脂層3の上に第2樹脂層8の前駆体である未硬化の紫外線硬化樹脂8aを滴下する。また、第2基材7をイジェクタ9に乗せて第1基材2に対向するよう配置する。なお、紫外線硬化樹脂8aは、紫外線硬化樹脂3aと光学特性(屈折率およびアッベ数)が異なる別の樹脂である。 Next, a second resin layer 8 is formed. First, as shown in FIG. 3(d), an uncured ultraviolet curable resin 8a, which is a precursor of the second resin layer 8, is dropped onto the first resin layer 3. Further, the second base material 7 is placed on the ejector 9 and placed so as to face the first base material 2. Note that the ultraviolet curing resin 8a is a different resin having different optical properties (refractive index and Abbe number) from the ultraviolet curing resin 3a.

次に、図3(e)に示すように、イジェクタ9を降下させて第1基材2および第1樹脂層3と第2基材7の間に、未硬化の紫外線硬化樹脂8aを充填させる。その後、紫外線光源5を用いて第2基材7側から紫外線を照射し、紫外線硬化樹脂8aを硬化させて第2樹脂層8を形成することにより、回折光学素子10が得られる。なお、第2樹脂層8を形成した後に、大気中もしくは無酸素雰囲気で紫外線の追加照射や熱処理を行っても構わない。 Next, as shown in FIG. 3(e), the ejector 9 is lowered to fill the space between the first base material 2 and the first resin layer 3 and the second base material 7 with uncured ultraviolet curable resin 8a. . Thereafter, the diffractive optical element 10 is obtained by irradiating ultraviolet rays from the second base material 7 side using the ultraviolet light source 5 and curing the ultraviolet curing resin 8a to form the second resin layer 8. Note that after forming the second resin layer 8, additional irradiation with ultraviolet rays or heat treatment may be performed in the air or an oxygen-free atmosphere.

[光学機器]
本発明の回折光学素子の具体的な適用例としては、カメラやビデオカメラ用の光学機器(撮影光学系)を構成するレンズや液晶プロジェクター用の光学機器(投影光学系)を構成するレンズ等が挙げられる。また、DVDレコーダー等のピックアップレンズに用いることもできる。これらの光学系は、筐体と、該筐体内に配置された複数のレンズからなり、それらの複数のレンズの少なくとも1つを本発明の回折光学素子とすることができる。
[Optical equipment]
Specific application examples of the diffractive optical element of the present invention include lenses constituting optical equipment for cameras and video cameras (photographing optical systems), lenses constituting optical equipment for liquid crystal projectors (projection optical systems), etc. Can be mentioned. Moreover, it can also be used for a pickup lens of a DVD recorder or the like. These optical systems consist of a housing and a plurality of lenses arranged within the housing, and at least one of the plurality of lenses can be the diffractive optical element of the present invention.

[撮像装置]
図4は、本発明の回折光学素子を用いた撮像装置の好適な実施形態の一例である、一眼レフデジタルカメラ600の構成を示している。図4において、カメラ本体602と光学機器であるレンズ鏡筒601とが結合されているが、レンズ鏡筒601はカメラ本体602に対して着脱可能ないわゆる交換レンズである。
[Imaging device]
FIG. 4 shows the configuration of a single-lens reflex digital camera 600, which is an example of a preferred embodiment of an imaging device using the diffractive optical element of the present invention. In FIG. 4, a camera body 602 and a lens barrel 601, which is an optical device, are combined, but the lens barrel 601 is a so-called interchangeable lens that can be attached to and detached from the camera body 602.

被写体からの光は、レンズ鏡筒601の筐体620内の撮影光学系の光軸上に配置された複数のレンズ603、605などからなる光学系を介して撮影される。本発明の回折光学素子は例えば、レンズ603、605に用いることができる。ここで、レンズ605は内筒604によって支持されて、フォーカシングやズーミングのためにレンズ鏡筒601の外筒に対して可動支持されている。 Light from the subject is photographed via an optical system including a plurality of lenses 603, 605, etc. arranged on the optical axis of the photographing optical system within the housing 620 of the lens barrel 601. The diffractive optical element of the present invention can be used for lenses 603 and 605, for example. Here, the lens 605 is supported by an inner tube 604 and movably supported relative to the outer tube of the lens barrel 601 for focusing and zooming.

撮影前の観察期間では、被写体からの光は、カメラ本体の筐体621内の主ミラー607により反射され、プリズム611を透過後、ファインダレンズ612を通して撮影者に撮影画像が映し出される。主ミラー607は例えばハーフミラーとなっており、主ミラーを透過した光はサブミラー608によりAF(オートフォーカス)ユニット613の方向に反射され、例えばこの反射光は測距に使用される。また、主ミラー607は主ミラーホルダ640に接着などによって装着、支持されている。不図示の駆動機構を介して、撮影時には主ミラー607とサブミラー608を光路外に移動させ、シャッタ609を開き、撮像素子610がレンズ鏡筒601から入射して撮影光学系を通過した光を受光して撮影光像を結像するようにする。また、絞り606は、開口面積を変更することにより撮影時の明るさや焦点深度を変更できるよう構成される。 During the observation period before photographing, light from the subject is reflected by the main mirror 607 in the housing 621 of the camera body, passes through the prism 611, and then the photographed image is projected to the photographer through the finder lens 612. The main mirror 607 is, for example, a half mirror, and the light transmitted through the main mirror is reflected by a submirror 608 in the direction of an AF (autofocus) unit 613, and this reflected light is used, for example, for distance measurement. Further, the main mirror 607 is mounted and supported by a main mirror holder 640 by adhesive or the like. During photographing, the main mirror 607 and sub-mirror 608 are moved out of the optical path through a drive mechanism (not shown), the shutter 609 is opened, and the image sensor 610 receives the light that has entered from the lens barrel 601 and passed through the photographic optical system. to form a photographic light image. Further, the diaphragm 606 is configured so that brightness and depth of focus during photographing can be changed by changing the aperture area.

なお、ここでは、一眼レフデジタルカメラを用いて本発明の回折光学素子を用いた撮像装置を説明したが、本発明の回折光学素子はスマートフォンやコンパクトデジタルカメラなどにも同様に用いることができる。 Note that although an imaging device using the diffractive optical element of the present invention has been described here using a single-lens reflex digital camera, the diffractive optical element of the present invention can be similarly used for smartphones, compact digital cameras, and the like.

まず、実施例で作成した回折光学素子の評価方法を説明する。 First, a method for evaluating the diffractive optical element produced in the example will be explained.

(格子高さd、樹脂厚みt1,t2,te、樹脂長さweの測定方法)
回折光学素子の積層方向に対し、光軸中心を通る面で切断した。その切断面を、金属顕微鏡(ニコン社製、ECLIPSE ME600P)で倍率1000倍(接眼レンズ:10倍、対物レンズ:100倍)で観察した。XYステージの送り量から、格子高さd、樹脂厚みt1,t2,te、樹脂長さweをそれぞれ測定した。格子高さdは、格子の頂部から、格子の頂部に隣り合う2つの底部を結んだ直線に対して、第1基材の第1樹脂層が形成された面の法線方向の長さを測定した。測定対象は、8の倍数輪帯(第8輪帯、第16輪帯、・・・第40輪帯)とし、その平均値から算出した。
(Measurement method of grid height d, resin thickness t1, t2, te, resin length we)
A cut was made along a plane passing through the center of the optical axis with respect to the stacking direction of the diffractive optical element. The cut surface was observed at a magnification of 1000 times (eyepiece: 10 times, objective lens: 100 times) using a metallurgical microscope (manufactured by Nikon Corporation, ECLIPSE ME600P). The grating height d, resin thicknesses t1, t2, te, and resin length we were measured from the feed amount of the XY stage. The lattice height d is the length from the top of the lattice in the normal direction to the surface on which the first resin layer of the first base material is formed, with respect to the straight line connecting the two bottoms adjacent to the top of the lattice. It was measured. The objects of measurement were ring zones that are multiples of 8 (8th ring zone, 16th ring zone, . . . 40th ring zone), and calculation was made from the average value thereof.

樹脂厚みは、第1基材面の法線方向の長さを測定した。第1樹脂層の格子部の格子高さdを除いた厚みt1は、格子形状の部分の樹脂幅(第1基材の第1樹脂層が形成された面の接線方向)を10等分に分割し、各分割領域の中央を測定対象として、その平均値から算出した。第2樹脂層の第1樹脂層の格子部と対向する部分における格子高さdを除いた平均厚みt2も同様に、格子形状の部分の樹脂幅(第2基材の第2樹脂層が形成された面の接線方向)を10等分に分割し、各分割領域の中央を測定対象として、その平均値から算出した。外周部の厚みteは最大値を測定した。 The resin thickness was determined by measuring the length in the normal direction of the first base material surface. The thickness t1 of the lattice portion of the first resin layer excluding the lattice height d is the resin width of the lattice-shaped portion (tangential direction of the surface of the first base material on which the first resin layer is formed) divided into 10 equal parts. The area was divided, and the center of each divided area was used as the measurement target, and the average value was calculated. Similarly, the average thickness t2 of the second resin layer excluding the grid height d in the part facing the grid part of the first resin layer is the same as the resin width of the grid-shaped part (the second resin layer of the second base material is formed). (the tangential direction of the surface) was divided into 10 equal parts, and the center of each divided area was used as the measurement target, and the average value was calculated. The maximum value of the thickness te of the outer peripheral portion was measured.

樹脂長さweは、第1基材の第1樹脂層が形成された面の接線方向の長さの最大値を測定した。 The resin length we was determined by measuring the maximum length in the tangential direction of the surface of the first base material on which the first resin layer was formed.

(樹脂剥がれの評価)
作製した回折光学素子を高温高湿環境(温度60℃、湿度85RH%)に設定した恒温槽に1000時間放置し、1000時間経過後に恒温槽から取り出し、23℃の温度環境にいて樹脂剥がれの有無を目視および光学顕微鏡で観察した。樹脂剥がれが確認されなかったものをA、樹脂剥がれが確認されたものをCとして、Aを合格、Cを不合格とした。
(Evaluation of resin peeling)
The prepared diffractive optical element was left in a constant temperature bath set in a high temperature and high humidity environment (temperature 60°C, humidity 85RH%) for 1000 hours, and after 1000 hours, it was removed from the constant temperature bath and left in a temperature environment of 23℃ to check whether the resin peeled off or not. was observed visually and with an optical microscope. Those in which no resin peeling was observed were rated A, and those in which resin peeling was confirmed were rated C. A was passed and C was rated fail.

(回折効率の評価)
回折効率は、格子形状の外周部に直径約2mmで波長400nm~700nmの測定光を入射し、回折光学素子から出射される一次回折光の強度を分光光度計で検出することで回折効率を測定した。測定は、温度23±0.5℃、湿度50±10RH%の環境下で実施した。この測定で、45輪帯ある第一の格子形状のおおよそ第35輪帯から第40輪帯の格子形状の形状精度を評価した。回折効率が95%以上をA、93%以上95%未満のものをB、93%未満をCとした。
(Evaluation of diffraction efficiency)
Diffraction efficiency is measured by injecting measurement light with a diameter of approximately 2 mm and a wavelength of 400 nm to 700 nm into the outer periphery of a grating shape, and detecting the intensity of the first-order diffracted light emitted from the diffractive optical element with a spectrophotometer. did. The measurements were carried out in an environment with a temperature of 23±0.5° C. and a humidity of 50±10 RH%. Through this measurement, the shape accuracy of the lattice shape of approximately the 35th to 40th annular zones of the first lattice shape having 45 annular zones was evaluated. Diffraction efficiency of 95% or more was rated A, 93% or more but less than 95% was rated B, and less than 93% was rated C.

(総合評価)
樹脂剥がれの評価および回折効率の評価のうち、両方ともAだったものをAとした。一方がAで他方がBのものはB、一方がAで他方がCのものはCとした。
(comprehensive evaluation)
Among the evaluations of resin peeling and the evaluation of diffraction efficiency, those that were A in both evaluations were rated A. A case where one side is A and the other side is B is called B, and a case where one side is A and the other side is C is called C.

(実施例1)
図3に示した製造方法で実施例1の回折光学素子を製造した。第1基材2は、直径60mmの光学ガラス(オハラ社製、晶種:S-TIM8)を用いた。形状は、一方の面が平面で、他方の面がR190mmの凹球面形状であった。第2基材7は、直径58mmの光学ガラス(オハラ社製、晶種:S-FSL5)を用いた。形状は、一方の面がR70mmの凸球面形状、他方の面がR190mmの凸球面形状であった。金型1は、金属母材上にメッキしたNiP層を精密加工機で切削加工し、第1樹脂層の回折格子形状を反転した形状を形成したものを用いた。
(Example 1)
The diffractive optical element of Example 1 was manufactured using the manufacturing method shown in FIG. As the first base material 2, optical glass (manufactured by Ohara Corporation, crystal type: S-TIM8) with a diameter of 60 mm was used. The shape was a concave spherical shape with one surface being flat and the other surface having an radius of 190 mm. As the second base material 7, optical glass (manufactured by Ohara Corporation, crystal type: S-FSL5) with a diameter of 58 mm was used. One surface had a convex spherical shape with an radius of 70 mm, and the other surface had a convex spherical shape with an radius of 190 mm. The mold 1 used was one in which a NiP layer plated on a metal base material was cut using a precision processing machine to form a shape that was an inversion of the diffraction grating shape of the first resin layer.

金型1と第1基材2の間に、第1樹脂層3の前駆体である未硬化の紫外線硬化型のアクリル樹脂3aを充填した。その後、アクリル樹脂3aを硬化させるために、波長365nmの強度が10mW/cmの紫外線を200秒全面に照射した。金型1を離型した後に、80℃で24時間加熱することにより、第1基材2上に第1樹脂層3を形成した。 A space between the mold 1 and the first base material 2 was filled with an uncured ultraviolet curable acrylic resin 3a, which was a precursor of the first resin layer 3. Thereafter, in order to cure the acrylic resin 3a, the entire surface was irradiated with ultraviolet light having a wavelength of 365 nm and an intensity of 10 mW/cm 2 for 200 seconds. After releasing the mold 1, the first resin layer 3 was formed on the first base material 2 by heating at 80° C. for 24 hours.

その後、第1樹脂層3と第2基材7の間に、第2樹脂層8の前駆体である未硬化の紫外線硬化型のアクリル樹脂8aを充填した。その後、アクリル樹脂8aを硬化させるために、波長365nmの強度が30mW/cmの紫外線を全面に1000秒間照射した。最後に、80℃で72時間加熱することにより、回折光学素子10を得た。 Thereafter, an uncured ultraviolet curable acrylic resin 8a, which is a precursor of the second resin layer 8, was filled between the first resin layer 3 and the second base material 7. Thereafter, in order to cure the acrylic resin 8a, the entire surface was irradiated with ultraviolet rays having a wavelength of 365 nm and an intensity of 30 mW/cm 2 for 1000 seconds. Finally, the diffractive optical element 10 was obtained by heating at 80° C. for 72 hours.

実施例1の回折光学素子の第1樹脂層3の屈折率は1.62、アッベ数は40.0、第2樹脂層8の屈折率は1.59、アッベ数は29.0であった。 The first resin layer 3 of the diffractive optical element of Example 1 had a refractive index of 1.62 and an Abbe number of 40.0, and the second resin layer 8 had a refractive index of 1.59 and an Abbe number of 29.0. .

実施例1の回折光学素子の格子形状は、第1基材2のR190mmの凹球面に対して緩やかな凸形状の傾斜を有していた。また、第1輪帯の輪帯幅が3.5mmであり、第2輪帯の輪帯幅が1.5mmであり、以下輪帯幅が連続的に狭くなり、最外周の輪帯である第40輪帯の輪帯幅は0.30mmであった。 The grating shape of the diffractive optical element of Example 1 had a gentle convex slope with respect to the concave spherical surface of the first base material 2 with an radius of 190 mm. Further, the ring width of the first ring zone is 3.5 mm, the ring width of the second ring zone is 1.5 mm, and the ring width becomes continuously narrower, and the ring zone is the outermost ring zone. The width of the 40th ring zone was 0.30 mm.

回折格子形状の格子高さdは、20.0μmであった。また、第1樹脂層の格子部の格子高さdを除いた厚みt1は30.0μmであった。また、第2樹脂層の第1樹脂層の格子部と対向する部分における回折格子高さdを除いた厚みt2は50.0μmであった。すなわち、2枚のガラス基材の間隔は100μmであった。 The grating height d of the diffraction grating shape was 20.0 μm. Further, the thickness t1 of the lattice portion of the first resin layer excluding the lattice height d was 30.0 μm. Further, the thickness t2 of the second resin layer excluding the height d of the diffraction grating at the portion facing the grating portion of the first resin layer was 50.0 μm. That is, the distance between the two glass substrates was 100 μm.

外周部の厚みteは41.5μm、径方向の長さweは1.2mm(1200μm)であった。 The thickness te of the outer peripheral portion was 41.5 μm, and the radial length we was 1.2 mm (1200 μm).

実施例1の回折光学素子の形状を表1にまとめた。 The shape of the diffractive optical element of Example 1 is summarized in Table 1.

次いで、実施例1の回折光学素子の回折効率および樹脂剥がれを評価した。回折効率は95.8%であったため、評価はAとした。また、樹脂剥がれが確認されなかったので、評価はAとした。両方の評価がAであったので、総合評価はAとした。これらの評価結果は表2にまとめた。 Next, the diffraction efficiency and resin peeling of the diffractive optical element of Example 1 were evaluated. Since the diffraction efficiency was 95.8%, the evaluation was given as A. Further, since no resin peeling was observed, the evaluation was given as A. Since both evaluations were A, the overall evaluation was A. These evaluation results are summarized in Table 2.

(実施例2~8および比較例1~3)
実施例2~8および比較例1~3では、実施例1の回折光学素子と樹脂層の形状が異なるように金型5の形状または、第2樹脂層の厚みが異なるようにイジェクタ9の動きを制御した点以外は実施例1と同様の方法で、回折光学素子を作製した。
(Examples 2 to 8 and Comparative Examples 1 to 3)
In Examples 2 to 8 and Comparative Examples 1 to 3, the shape of the mold 5 was different so that the shape of the resin layer was different from that of the diffractive optical element of Example 1, or the movement of the ejector 9 was changed so that the thickness of the second resin layer was different. A diffractive optical element was produced in the same manner as in Example 1, except that .

実施例2~8および比較例1~3の回折光学素子の形状を表1にまとめた。 Table 1 summarizes the shapes of the diffractive optical elements of Examples 2 to 8 and Comparative Examples 1 to 3.

また、実施例2~8および比較例1~3の評価結果を表2にまとめた。 Furthermore, the evaluation results of Examples 2 to 8 and Comparative Examples 1 to 3 are summarized in Table 2.

Figure 0007418079000001
Figure 0007418079000001

Figure 0007418079000002
Figure 0007418079000002

式(1)および式(2)を満たす実施例1~8は、樹脂剥がれが生じなかった。また回折効率は93%以上であったため、いずれも総合評価がAもしくはBであった。なかでも、式(3)および式(4)も満たした実施例1~3および実施例7、8は回折効率が95%以上であったため、総合評価はAであった。なお、実施例1~8のteは、回折格子の高さの最大値dmaxとt1の和未満であった(te<t1+dmax)。 In Examples 1 to 8 that satisfied formula (1) and formula (2), no resin peeling occurred. Moreover, since the diffraction efficiency was 93% or more, the overall evaluation was A or B in both cases. Among them, Examples 1 to 3 and Examples 7 and 8, which also satisfied formulas (3) and (4), had diffraction efficiencies of 95% or more, so the overall evaluation was A. Note that te in Examples 1 to 8 was less than the sum of the maximum height dmax of the diffraction grating and t1 (te<t1+dmax).

一方、比較例1は回折効率が高かったものの、teの厚みがt1とdの和に等しく、(1)式を満たさなかったため、樹脂剥がれが生じてしまった。また、比較例2はteの厚みがt1+0.24dであり、(1)式を満たさなかった。同様に、比較例3はweの長さが25dであり、(2)式を満たさなかった。比較例2および3は、第1樹脂層形成時にヒケが発生したために、回折効率が低くなったと考えられる。 On the other hand, in Comparative Example 1, although the diffraction efficiency was high, the thickness of te was equal to the sum of t1 and d, and the formula (1) was not satisfied, so resin peeling occurred. Further, in Comparative Example 2, the thickness of te was t1+0.24d, and the formula (1) was not satisfied. Similarly, in Comparative Example 3, the length of we was 25 d, and the formula (2) was not satisfied. It is thought that in Comparative Examples 2 and 3, the diffraction efficiency was low because sink marks occurred during the formation of the first resin layer.

以上の結果より、t1+0.3d≦te≦t1+0.9d (1)を満たし、 30d≦we (2)を満たすことにより、基材と樹脂との界面で剥がれが発生しにくい回折光学素子を提供することができるが分かった。 From the above results, by satisfying t1+0.3d≦te≦t1+0.9d (1) and satisfying 30d≦we (2), it is possible to provide a diffractive optical element that is unlikely to peel off at the interface between the base material and the resin. I found out that it can be done.

1 金型
2、2X、20 第1基材
3、3X、30 第1樹脂層
3a 紫外線硬化樹脂
4 イジェクタ
5 紫外線光源
7、7X、70 第2基材
8、8X、80 第2樹脂層
9 イジェクタ
10、100 回折光学素子
31、31X、310 格子部
32、32X、320 外周部
600 一眼レフデジタルカメラ(撮像装置)
601 レンズ鏡筒(交換レンズ、光学機器)
602 カメラ本体
603、605 レンズ
604 内筒
606 絞り
607 主ミラー
608 サブミラー
609 シャッタ
610 撮像素子
611 プリズム
621 筐体
1 Mold 2, 2X, 20 First base material 3, 3X, 30 First resin layer 3a Ultraviolet curing resin 4 Ejector 5 Ultraviolet light source 7, 7X, 70 Second base material 8, 8X, 80 Second resin layer 9 Ejector 10, 100 Diffractive optical element 31, 31X, 310 Grating section 32, 32X, 320 Outer peripheral section 600 Single-lens reflex digital camera (imaging device)
601 Lens barrel (interchangeable lenses, optical equipment)
602 Camera body 603, 605 Lens 604 Inner tube 606 Aperture 607 Main mirror 608 Sub mirror 609 Shutter 610 Image sensor 611 Prism 621 Housing

Claims (9)

第1基材と第2基材との間に、第1樹脂層と第2樹脂層とが密着して積層された回折光学素子であって、
前記第1樹脂層は回折格子形状を有する格子部と、前記格子部の外周に隣接し回折格子形状を有しない外周部と、を有し、
前記外周部は前記第1基材または前記第2基材と接する下面と、前記下面の反対側に上面を有し、
前記上面と前記下面の距離である前記外周部の厚みteは、折格子の高さをd、前記格子部の前記回折格子の高さを除いた厚さをt1としたときに下記式(1)
t1+0.3d≦te≦t1+0.9d (1)
を満たし、
前記上面の径方向の長さである前記外周部の径方向の長さweは、下記式(2)
30d≦we (2)
を満たすことを特徴とする回折光学素子。
A diffractive optical element in which a first resin layer and a second resin layer are laminated in close contact between a first base material and a second base material,
The first resin layer has a grating portion having a diffraction grating shape, and an outer peripheral portion adjacent to the outer periphery of the grating portion and having no diffraction grating shape ,
The outer peripheral portion has a lower surface in contact with the first base material or the second base material, and an upper surface on the opposite side of the lower surface,
The thickness te of the outer peripheral portion, which is the distance between the upper surface and the lower surface, is calculated by the following formula ( 1)
t1+0.3d≦te≦t1+0.9d (1)
The filling,
The radial length we of the outer peripheral portion, which is the radial length of the upper surface , is expressed by the following formula (2)
30d≦we (2)
A diffractive optical element characterized by satisfying the following.
前記外周部の径方向の長さweが、下記式(3)
50d≦we≦100d (3)
を満たす請求項1に記載の回折光学素子。
The radial length we of the outer circumferential portion is expressed by the following formula (3)
50d≦we≦100d (3)
The diffractive optical element according to claim 1, which satisfies the following.
前記第2樹脂層の前記第1樹脂層の格子部と対向する部分における前記回折格子の高さを除いた厚さをt2としたときに、前記t2が下記式(4)
1.5d≦t2≦3d (4)
を満たす請求項1または2に記載の回折光学素子。
When the thickness of the second resin layer excluding the height of the diffraction grating in the portion facing the grating portion of the first resin layer is t2, the t2 is expressed by the following formula (4).
1.5d≦t2≦3d (4)
The diffractive optical element according to claim 1 or 2, which satisfies the following.
前記回折格子の高さdが、8μm以上25μm以下の範囲である請求項1乃至3のいずれか1項に記載の回折光学素子。 The diffractive optical element according to any one of claims 1 to 3, wherein the height d of the diffraction grating is in a range of 8 μm or more and 25 μm or less. 前記格子部の前記回折格子の高さを除いた厚さt1が、1μm以上50μm以下の範囲である請求項1乃至4のいずれか1項に記載の回折光学素子。 The diffractive optical element according to any one of claims 1 to 4, wherein a thickness t1 of the grating portion excluding the height of the diffraction grating is in a range of 1 μm or more and 50 μm or less. 前記外周部の外周面が、前記第2樹脂層と接している請求項1乃至5のいずれか1項に記載の回折光学素子。 The diffractive optical element according to any one of claims 1 to 5, wherein an outer peripheral surface of the outer peripheral portion is in contact with the second resin layer. 筐体と、該筐体内に配置された複数のレンズを有する光学系と、を有する光学機器であって、前記レンズの少なくとも1つが請求項1乃至6のいずれか1項に記載の回折光学素子であることを特徴とする光学機器。 An optical device comprising a housing and an optical system having a plurality of lenses arranged in the housing, wherein at least one of the lenses is the diffractive optical element according to any one of claims 1 to 6. An optical device characterized by: 筐体と、該筐体内に配置された複数のレンズを有する光学系と、該光学系を通過した光を受光する撮像素子と、を有する撮像装置であって、
前記レンズの少なくとも1つが請求項1乃至6のいずれか1項に記載の回折光学素子であることを特徴とする撮像装置。
An imaging device comprising a housing, an optical system having a plurality of lenses arranged in the housing, and an imaging element that receives light passing through the optical system, the imaging device comprising:
An imaging device characterized in that at least one of the lenses is the diffractive optical element according to any one of claims 1 to 6.
前記撮像装置がカメラであることを特徴とする請求項8に記載の撮像装置。 The imaging device according to claim 8, wherein the imaging device is a camera.
JP2019180973A 2019-09-30 2019-09-30 Diffractive optical elements, optical instruments, imaging devices Active JP7418079B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019180973A JP7418079B2 (en) 2019-09-30 2019-09-30 Diffractive optical elements, optical instruments, imaging devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019180973A JP7418079B2 (en) 2019-09-30 2019-09-30 Diffractive optical elements, optical instruments, imaging devices

Publications (2)

Publication Number Publication Date
JP2021056426A JP2021056426A (en) 2021-04-08
JP7418079B2 true JP7418079B2 (en) 2024-01-19

Family

ID=75270658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019180973A Active JP7418079B2 (en) 2019-09-30 2019-09-30 Diffractive optical elements, optical instruments, imaging devices

Country Status (1)

Country Link
JP (1) JP7418079B2 (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000114143A (en) 1998-10-02 2000-04-21 Canon Inc Optical unit, manufacture thereof, optical system and aligner using the same, and manufacture of device using the aligner
WO2006090614A1 (en) 2005-02-22 2006-08-31 Nikon Corporation Diffractive optical element
JP2008058907A (en) 2006-09-04 2008-03-13 Canon Inc Diffractive optical element and optical system having the same
JP2012018309A (en) 2010-07-08 2012-01-26 Canon Inc Method for forming optical element
JP2012218394A (en) 2011-04-13 2012-11-12 Nikon Corp Method of manufacturing optical element, and optical element
JP2012252307A (en) 2011-06-07 2012-12-20 Canon Inc Composite optical element and imaging optical system
JP2013254200A (en) 2012-05-11 2013-12-19 Canon Inc Composite optical element and production method thereof
JP2015011293A (en) 2013-07-02 2015-01-19 キヤノン株式会社 Method for manufacturing diffraction optical element
JP2016061796A (en) 2014-09-12 2016-04-25 キヤノン株式会社 Stack type diffraction optical element
JP2016206688A (en) 2016-08-31 2016-12-08 キヤノン株式会社 Manufacturing method of diffraction optical element, and diffraction optical element
US20170168301A1 (en) 2015-12-14 2017-06-15 Oculus Vr, Llc Display with multilayer diffractive optical elements
JP2018045238A (en) 2016-09-13 2018-03-22 キヤノン株式会社 Diffraction optical element and method for producing the same

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000114143A (en) 1998-10-02 2000-04-21 Canon Inc Optical unit, manufacture thereof, optical system and aligner using the same, and manufacture of device using the aligner
WO2006090614A1 (en) 2005-02-22 2006-08-31 Nikon Corporation Diffractive optical element
JP2008058907A (en) 2006-09-04 2008-03-13 Canon Inc Diffractive optical element and optical system having the same
JP2012018309A (en) 2010-07-08 2012-01-26 Canon Inc Method for forming optical element
JP2012218394A (en) 2011-04-13 2012-11-12 Nikon Corp Method of manufacturing optical element, and optical element
JP2012252307A (en) 2011-06-07 2012-12-20 Canon Inc Composite optical element and imaging optical system
JP2013254200A (en) 2012-05-11 2013-12-19 Canon Inc Composite optical element and production method thereof
JP2015011293A (en) 2013-07-02 2015-01-19 キヤノン株式会社 Method for manufacturing diffraction optical element
JP2016061796A (en) 2014-09-12 2016-04-25 キヤノン株式会社 Stack type diffraction optical element
US20170168301A1 (en) 2015-12-14 2017-06-15 Oculus Vr, Llc Display with multilayer diffractive optical elements
JP2016206688A (en) 2016-08-31 2016-12-08 キヤノン株式会社 Manufacturing method of diffraction optical element, and diffraction optical element
JP2018045238A (en) 2016-09-13 2018-03-22 キヤノン株式会社 Diffraction optical element and method for producing the same

Also Published As

Publication number Publication date
JP2021056426A (en) 2021-04-08

Similar Documents

Publication Publication Date Title
KR101174180B1 (en) Diffractive optical element
KR101439564B1 (en) Optical system and eyepiece
JP2008242186A (en) Diffraction optical element and optical system using the same
JP2012103543A (en) Diffraction optical element and imaging optical system
JP4411026B2 (en) Optical material, optical element, diffractive optical element, laminated diffractive optical element, optical system
JP7418079B2 (en) Diffractive optical elements, optical instruments, imaging devices
JP7106279B2 (en) Diffractive optical element and optical equipment
JP7346262B2 (en) Diffractive optical elements, methods of manufacturing diffractive optical elements, optical instruments, and imaging devices
JP7451299B2 (en) Diffractive optical elements, optical instruments and imaging devices
JP7353962B2 (en) Optical elements, optical instruments and imaging devices
JP7346278B2 (en) Diffractive optical elements, optical instruments and imaging devices
CN110109225B (en) Optical element, optical device and imaging device
JP7451298B2 (en) Diffractive optical elements, optical instruments and imaging devices
US20240272329A1 (en) Optical element with excellent environmental durability
JP4115165B2 (en) Optical part molding method
US20220239809A1 (en) Polymerizable composition, optical element and method for producing the same, optical device, and image capturing apparatus
JP2023055538A (en) Optical element, optical element production method, resin composition, optical equipment, and imaging device
JP2023014556A (en) Diffraction optical element, optical apparatus, imaging device, and method for manufacturing diffraction optical element
JP2001324674A (en) Optical system and optical equipment
JP7551363B2 (en) Optical element manufacturing method, optical element, optical device, and imaging device
JP2021009199A (en) Diffraction optical element, method for manufacturing diffraction optical element, and imaging apparatus
JP7467095B2 (en) Composite optical element, optical device, imaging device
JP7433765B2 (en) Optical elements, optical instruments and imaging devices
EP3722841A1 (en) Diffractive optical element, optical device, and imaging apparatus
JP2020173429A (en) Diffraction optical element, optical equipment, and imaging apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220921

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231128

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20231213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231227

R151 Written notification of patent or utility model registration

Ref document number: 7418079

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151