JP7451165B2 - 走行位置検証システム、走行位置計測システム及び走行位置補正システム - Google Patents

走行位置検証システム、走行位置計測システム及び走行位置補正システム Download PDF

Info

Publication number
JP7451165B2
JP7451165B2 JP2019226349A JP2019226349A JP7451165B2 JP 7451165 B2 JP7451165 B2 JP 7451165B2 JP 2019226349 A JP2019226349 A JP 2019226349A JP 2019226349 A JP2019226349 A JP 2019226349A JP 7451165 B2 JP7451165 B2 JP 7451165B2
Authority
JP
Japan
Prior art keywords
unit
verification
moving body
traveling position
marker
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019226349A
Other languages
English (en)
Other versions
JP2021096566A (ja
Inventor
朝靖 北川
栄嗣 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Signal Co Ltd
Original Assignee
Nippon Signal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Signal Co Ltd filed Critical Nippon Signal Co Ltd
Priority to JP2019226349A priority Critical patent/JP7451165B2/ja
Publication of JP2021096566A publication Critical patent/JP2021096566A/ja
Application granted granted Critical
Publication of JP7451165B2 publication Critical patent/JP7451165B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Description

本発明は、移動体の走行位置について検証等を行う走行位置検証システム、走行位置計測システム及び走行位置補正システムに関する。
移動体の走行位置に関する検知等を行う技術として、自律走行体として、自己位置を推定するものが知られている(特許文献1参照)。
しかしながら、上記特許文献1に例示するような自律走行体による自己位置の推定に関して、推定した位置と実際に走行している位置とが、どの程度正確かを客観的に計測することについて、これまであまり考慮されていなかった。
特開2019-121189号公報
本発明は上記した点に鑑みてなされたものであり、移動体の走行位置について位置精度を検証したり、客観的に走行位置を計測したり、位置精度を向上すべく走行位置についての補正を行ったりする走行位置検証システム、走行位置計測システム及び走行位置補正システムを提供することを目的とする。
上記目的を達成するための走行位置検証システムは、移動体を検知する範囲を示す2次元的な検知領域を定める複数のポール部材と、検知領域を撮像する撮像部と、移動体に取り付けられて検知領域を移動するマーカーと、撮像部により取得された2次元画像データ上におけるマーカーの位置から移動体の走行位置を計測する計測部と、計測部での計測結果に基づき移動体の走行位置を検証する検証部とを備える。
上記走行位置検証システムでは、複数のポール部材により定められた2次元的な検知領域において、移動体に取り付けられたマーカーが移動し、これを撮像部で撮像して取得される2次元画像データ上におけるマーカーの位置から移動体の走行位置を計測することで、2次元的で簡易な画像処理によって移動体の走行位置を確実に計測できる。この上で、計測結果に基づいて移動体の走行位置を利用して検証をすることで、例えば自己位置を推定する機能を有する移動体について、その位置推定の精度を客観的基準から判断できる。
本発明の具体的な側面では、検知領域は、複数のポール部材の検出部により形成される水平の仮想平面領域であり、検出部の高さと移動体の回転軸中心に取り付けられたマーカーの高さが同一である。この場合、各ポール部材の検出部により形成される水平の仮想平面領域上においてマーカーが移動する態様とすることができ、また、この際、各ポール部材の検出部を撮像部の撮像範囲内に取り込むことで、当該検出部に基づいて簡易かつ確実に2次元的な検知領域を定めることができる。
本発明の別の側面では、移動体は、移動しつつ自己位置を推定し、検証部は、移動体における自己位置推定の精度を、計測部の計測結果との比較に基づいて検証する。この場合、移動体による自己位置の推定に関して、その推定精度を、計測部の計測結果に基づいて検証できる。
本発明のさらに別の側面では、計測部は、2次元画像データ上の仮想平面から実空間上での位置を示す座標平面への変換処理により、2次元画像データ上におけるマーカーに相当する画素位置を、検知領域としての2次元平面上の1か所と対応付けて移動体の走行位置を決定する。この場合、2次元画像データの変換処理から実際の移動体の走行位置を特定できる。
本発明のさらに別の側面では、移動体は、移動方法として回転移動を含み、マーカーは、移動体の回転中心の位置と回転中心外の位置との少なくとも2か所に設けられており、計測部は、マーカーの位置から移動体の回転角度を計測する。この場合、少なくとも2か所に設けたマーカーによって、移動体の回転移動を的確に捉えることができる。
上記目的を達成するための走行位置計測システムは、移動体を検知する範囲を示す2次元的な検知領域を撮像する撮像部と、移動体に取り付けられて検知領域を移動するマーカーと、撮像部により取得された2次元画像データ上におけるマーカーの位置から移動体の走行位置を計測する計測部とを備える。
上記走行位置計測システムでは、移動体を検知する範囲を示す2次元的な検知領域において、移動体に取り付けられたマーカーが移動し、これを撮像部で撮像して取得される2次元画像データ上におけるマーカーの位置から移動体の走行位置を計測することで、2次元的で簡易な画像処理で移動体の走行位置を確実に計測できる。
本発明の具体的な側面では、上記走行位置計測システムが、計測部での計測結果を移動体に出力する通信部を備える。この場合、通信部を介して計測部での計測結果を移動体側で利用できる。
本発明の別の側面では、移動体は、通信部から受け取った計測部での計測結果から自己位置を検知する。この場合、移動体において、計測部での計測結果を利用した自己位置検知が可能になる。
本発明のさらに別の側面では、移動体は、移動しつつ自己位置を推定し、通信部から受け取った計測部での計測結果に基づいて自己位置推定を修正する。この場合、自己位置の推定を行う移動体において、計測部での計測結果を利用した自己位置推定の修正により、位置推定の精度向上が可能になる。
上記目的を達成するための走行位置補正システムは、移動体を検知する範囲を示す2次元的な検知領域を定める複数のポール部材と、検知領域を撮像する撮像部と、移動体に取り付けられて検知領域を移動するマーカーと、撮像部により取得された2次元画像データ上におけるマーカーの位置から移動体の走行位置を計測する計測部と、計測部での計測結果に基づき移動体の走行位置を検証する検証部と、検証部における検証結果に応じて、移動体における自己位置推定についての補正を行う校正部とを備える。
上記走行位置補正システムでは、複数のポール部材により定められた2次元的な検知領域において、移動体に取り付けられたマーカーが移動し、これを撮像部で撮像して取得される2次元画像データ上におけるマーカーの位置から移動体の走行位置を計測することで、2次元的で簡易な画像処理で移動体の走行位置を確実に計測できる。この上で、計測結果に基づいて移動体の走行位置を利用して検証をすることで、例えば自己位置を推定する機能を有する移動体について、その位置推定の精度を客観的基準から判断できる。さらに、検証結果から、例えば位置推定の精度に問題がある等であれば、必要に応じて、移動体における自己位置推定についての補正を行う、すなわち位置推定の校正が可能になる。
第1実施形態に係る走行位置検証システムの一構成例について示す概念的な斜視図である。 走行位置検証システム及び移動体の内部構造について一構成例を説明するためのブロック図である。 (A)~(D)は、走行位置検証システムによる検証を行うための準備段階の様子について一例を示す概念図である。 (A)~(C)は、走行位置検証システムにおける撮像態様及び画像処理について一例を説明するための概念図である。 (A)及び(B)は、検証を行うための準備作業時の様子と準備完了後の検証動作時の様子とについて一例を示す概念的な斜視図である。 検証動作時における走行位置の計測のための各種処理について一例を説明するための概念図である。 (A)は、走行に伴うマーカーの位置変化をとらえた様子について一例を示す概念的な平面図であり、(B)は、(A)の場合における移動体の軌跡を概念的に示す画像図である。 (A)は、一変形例のマーカーについて一例を説明するための概念的な斜視図であり、(B)は、平面図である。 第2実施形態に係る走行位置補正システムの一構成例を説明するためのブロック図である。 第3実施形態に係る走行位置計測システムの一構成例について示す概念的な斜視図である。 走行位置計測システム及び移動体の内部構造について一構成例を説明するためのブロック図である。 一変形例の走行位置計測システム及び移動体の内部構造について一構成例を説明するためのブロック図である。
〔第1実施形態〕
以下、図1等を参照して、第1実施形態に係る走行位置検証システムについて一例を説明する。
本実施形態に係る走行位置検証システム100は、検証あるいは評価の対象となる自律走行型の移動体110について、走行の様子を捉えて、走行した位置について経過を計測し、自律走行の精度に関する検証あるいは評価を行うためのシステムである。特に、ここでの一例では、移動体110が、SLAM(Simultaneously Localization and Mapping)と呼ばれる自己位置推定と地図作成とを同時に行えるシステムを搭載した自律移動ロボットであり、走行位置検証システム100は、予め定めた走行範囲内での走行経過について、移動体110を外側から計測することで、移動体110における自己位置推定の精度を客観的に検証している。
上記検証を行うため、走行位置検証システム100は、複数のポール部材POと、マーカーMKと、撮像部10と、情報処理装置50とを備える。
複数(4つ)のポール部材POは、同一形状であり、棒状の支柱部分の先端(上端)に検出部DTをそれぞれ有している。図示の例では、移動体110が走行する領域として予め定めた範囲を走行領域RA1としている。より具体的には、走行領域RA1は、予め定められた矩形状の水平面領域であり、4つのポール部材POが走行領域RA1の四隅の位置に設置されることで、区画されている。これに応じて、4つの検出部DTの位置を頂点として2次元的な矩形領域は、水平の仮想平面領域となっている。以下、この走行領域RA1に対応する仮想平面領域をVS1とする。なお、各検出部DTは、例えば再帰性反射部材や、自発光型の部材で構成されている。
マーカーMKは、検出部DTと同様に、例えば再帰性反射部材や、自発光型の部材で構成され、移動体110に取り付けられている。マーカーMKは、仮想平面領域VS1内を移動する。本実施形態の走行位置検証システム100では、仮想平面領域VS1内におけるマーカーMKの動きを捉えることで、走行領域RA1内を移動する移動体110の走行経過を検知する。すなわち、平面的な仮想平面領域VS1での移動(動き)をもって、走行領域RA1の平面的な移動(動き)と同一視できるようにしている。これについて見かたを変えると、下方側にある走行領域RA1を、これに対応し、かつ、上方側に位置する仮想平面領域VS1にシフトさせている。こうすることで、例えば移動体110の一部が、位置検知を行う際にかげになってしまうといったことを回避又は抑制できる。
撮像部10は、例えばCCDやCMOS等の個体撮像素子で構成される撮像カメラであり、ポール部材POの検出部DTで規定される上記仮想平面領域VS1を撮像するとともに、仮想平面領域VS1内を移動するマーカーMKを撮像する。言い換えると、複数のポール部材POによって、マーカーMKを介して移動体110を検知する範囲を示す2次元的な検知領域が定められるものとなっており、撮像部10において、当該検知領域中での移動体110の位置を把握するための2次元画像データが取得されるようになっている。以上のような撮像をするため、撮像部10は、仮想平面領域VS1を俯瞰するように、上方側に設置される。
情報処理装置50は、例えばノート型パーソナルコンピューター等で構成されており、撮像部10に接続され、撮像部10で取得される画像データに関する画像処理のほか、各種情報処理を行う。本実施形態では、情報処理装置50は、マーカーMKの位置から移動体110の走行位置を計測する計測部として機能するとともに、計測結果に基づき移動体110の走行位置を検証する検証部としても機能する。情報処理装置50のより具体的な内部の構成については、一例を後述する。なお、情報処理装置50については、例示したノート型パーソナルコンピューターのほか、タブレット型パーソナルコンピューターや、PDA端末、スマホ等の種々の機器で構成可能である。
以下、図2のブロック図を参照して、走行位置検証システム100のうち特に情報処理装置50の内部構造や、移動体110の内部構造について、一構成例を説明する。
まず、情報処理装置50の一構成例について詳細に説明する。図示のように、また既述のように、走行位置検証システム100において、情報処理装置50は、撮像部10に接続されて撮像部10で取得された画像データについての各種処理を行って、移動体110の走行位置を検知可能にしている。このため、情報処理装置50は、主制御部51と、画像処理部52と、記憶部53とを備える。
主制御部51は、例えばCPU等で構成され、記憶部53に格納された各種プログラムやデータ等を読み込んで演算処理を行うとともに、情報処理装置50を構成する各部を動作すべく各種指令信号を出力する。
画像処理部52は、例えばGPU等で構成され、情報処理装置50における各種処理のうち、特に、画像に関する処理に特化した装置である。画像処理部52は、主制御部51からの指令に従って、撮像部10で取得された画像データに関する各種画像処理を行う。
記憶部53は、ストレージデバイス等で構成され、各種プログラムやデータを格納する。特に、本実施形態では、既述のような走行位置検知のための各種画像処理を可能とすべく、例えば画像中におけるポール部材POの検出部DTを検出したり、検出した検出部DTの位置から仮想平面領域VS1を抽出したり、仮想平面領域VS1内のマーカーMKの位置を検出したり、抽出した各点を実際の空間上の位置と対応付けしたりするための各種プログラムや、閾値等の数値データが格納されている。
以上において、主制御部51は、記憶部53に格納される各種プログラム及びデータや、画像処理部52での画像処理を利用して、計測部51aや、検証部51bとして機能する。例えば、計測部51aとしての主制御部51は、画像処理部52に画像処理を行わせることで、撮像部10により取得された2次元画像データ上におけるマーカーMKの位置から移動体110の走行位置を計測する。また、検証部51bとしての主制御部51は、計測部51aでの計測結果や、記憶部53に格納された各種データとの比較等に基づき、移動体110の走行位置に関する検証あるいは評価を行う。
なお、上記のほか、情報処理装置50は、入力装置54や、表示装置(出力装置)55を備える。入力装置54は、ユーザーによる操作を受け付ける。すなわち、ユーザーは、走行位置検証システム100による検証あるいは評価を行うべく、入力装置54を介して各種操作指令を出力することができる。表示装置55は、検証あるいは評価の結果等についてユーザーが視認できるように各種表示動作を行う。なお、入力装置54については、キーボードやマウス、タッチパネルセンサー等の各種装置で構成できる。また、出力装置である表示装置55についても、液晶パネルや有機ELパネル等、種々のものを採用できる。
次に、検査対象である移動体110の一構成例について詳細に説明する。図示のように、移動体110は、移動しつつ自己位置を推定することを可能とすべく、主制御部MPと、記憶部MEと、センサーSEと、駆動装置DDと、駆動輪WDとを備える。
主制御部MPは、例えばCPU等で構成され、移動体110を構成する各部に接続し、各種情報の授受を行い、移動体110の動作に関する統括制御をする。
記憶部MEは、ストレージデバイス等で構成され、各種プログラムやデータを格納する。特に、本実施形態では、各種センサーで構成されるセンサーSEでのセンシングの結果に基づいて自己位置推定と地図作成とを同時に行うためのプログラムやデータが格納されている。
センサーSEは、例えば、ライダー等のレーザーレンジスキャナーによって測距を行う測距センサー等の自己位置推定のために周囲環境を把握可能にする各種センサーで構成されている。
以上のように、特に、本実施形態では、移動体110において、主制御部MPは、各種センサーで構成されるセンサーSEで取得した情報から自己位置の推定を行う自己位置推定部PEとして機能する。
このほか、移動体110のうち、駆動装置DDは、駆動回路等で構成され、主制御部MPからの指示に従って、駆動輪WDを回転させ、移動体110の種々の方向への移動(走行)を可能にする。
以下、図3等を参照して、走行位置検証システム100による移動体110に関する検証あるいは移動体110における性能評価(位置推定の精度評価)を行うための準備工程等について説明する。
まず、前提として、本実施形態における検査対象たる移動体110は、例えば図3(A)に示すように、円筒形状の外観を有しており、ここでは、駆動輪WDを動作させることで、移動の態様として、双方向の矢印A1で示す直進及び後退と、双方向の矢印A2で示す回転軸AXの周りで自転する回転とが可能になっており、矩形状の平面領域である走行領域RA1上を自在に走行する。なお、図示の例では、回転軸AXは、円筒形状における回転中心軸に一致しているものとする。
以上において、本実施形態では、まず、図3(B)に示すように、円筒形状の移動体110のうち、円盤状の頂上部TOにおいて、移動体110の回転軸AXの軸上にマーカーMKが上方から取り付けられる。なお、この場合、移動体110が矢印A2に示す方向に回転する間、マーカーMKの位置変位は生じないことになる。
次に、図3(C)に示すように、マーカーMKと同じ高さH1のところに、複数のポール部材POの検出部DTがくるように、高さ調整を行う。すなわち、検出部DTの高さと、移動体110の回転軸中心に取り付けられたマーカーMKの高さが同一である状態にする。
上記高さ調整の後、図3(D)に示すように、4つのポール部材POが、走行領域RA1の四隅の位置に設置される。以上により、撮像されるべき範囲が規定される。
次に、図4を参照して、撮像部10及び情報処理装置50における準備処理について説明する。図4(A)~図4(C)は、走行位置検証システム100における撮像態様及び画像処理について一例を説明するための概念図である。
まず、図4(A)に示すように、図3(C)で説明した状態で設置された4つのポール部材POの検出部DTの全てが、上方側から撮像範囲内に収まるように、撮像部10がこれを俯瞰する位置で設置される。すなわち、仮想平面領域VS1が画像中で切れてしまうことなく全体が撮像されるように、撮像部10の設置場所が設定される。なお、ここでは、図示のように、実在の空間について、矩形の平面領域である走行領域RA1(あるいは、これに対応する仮想平面領域VS1)における短手方向をU、長手方向をVとしてUV座標を規定している。また、走行領域RA1あるいは仮想平面領域VS1の四隅を示す位置(各検出部DTに対応する位置)を示すUV座標を、それぞれ、(u1,v1)、(u2,v2)、(u3,v3)、(u4,v4)とする。また、これらの位置(点)を、点PR1~PR4とも表示する。
一方、図4(B)は、設置された撮像部10において撮像された様子の一例を示す画像図である。図示において、2次元的平面の画像図GIについて、XY座標で、各位置を規定する。また、画像図GIにおいて、検出部DTに対応する点(画素)をPG1~PG4とし、各点PG1~PG4のXY座標を、それぞれ、(x1,y1)、(x2,y2)、(x3,y3)、(x4,y4)とする。なお、これらの点PG1~PG4は、図4(A)の(u1,v1)、(u2,v2)、(u3,v3)、(u4,v4)で示す点PR1~PR4にそれぞれ対応する。また、点PG1~PG4を直線で結んで形成される四角形(図示の例では台形状)の画像領域VG1は、仮想平面領域VS1あるいは走行領域RA1に対応する。
上記のような各部の設置環境において、撮像部10で取得される2次元画像データが、情報処理装置50に出力されると、情報処理装置50は、画像上における各位置と実空間上における位置との対応付けを可能とすべく、各種処理を行う。具体的には、図4(C)に一例を示すように、まず、XY座標で見た四角形状(台形状)の画像領域VG1の範囲を、XY座標上の画素単位の点で規定し、実空間上におけるUV座標中の範囲と対応付ける。具体的には、情報処理装置50は、まず、XY座標としての4つの点PG1~PG4を示す座標(x1,y1)、(x2,y2)、(x3,y3)、(x4,y4)を捉え、これらの画素上の位置を記憶する。次に、情報処理装置50は、4つの点PG1~PG4と、実空間上の位置(点)である(u1,v1)、(u2,v2)、(u3,v3)、(u4,v4)で示す点PR1~PR4とを対応付ける。その上で、情報処理装置50は、記憶した4つの点PG1~PG4の位置で定まる四角形状の画像領域VG1と、実空間上の領域である矩形状の走行領域RA1とについて、画像領域VG1内における任意の1点と、走行領域RA1内の一地点とを1対1で対応付ける変換行列Hを算出する。なお、この場合、変換行列Hは、四角形領域から四角形領域への変換であり、対応関係にある(x1,y1)、(x2,y2)、(x3,y3)、(x4,y4)と(u1,v1)、(u2,v2)、(u3,v3)、(u4,v4)とに基づく線型な変換行列で表現できる。
以上により、走行位置検証システム100による移動体110の位置を検知して移動体110に関する検証あるいは移動体110における性能評価(位置推定の精度評価)を行うための準備が完了する。
以下、図5を参照して、準備完了後の検証動作について説明する。なお、図5(A)は、検証を行うための準備作業時の様子を示している。すなわち、図5(A)は、上述した各準備工程を終え、マーカーMKが取り付けられた移動体110を、走行領域RA1内に設置した状態を示している。つまり、走行位置検証システム100において、マーカーMKが検知されることで、移動体110の走行位置検知が開始可能となる。
なお、ここでの一例では、図5(B)に示すように、検証動作の開始前に、4つのポール部材POを予め撤去した上で、マーカーMKの移動すなわち移動体110の走行経過を検知して検証動作を行う態様としているが、既述のように、これよりも前の段階で、情報処理装置50において、画像上におけるポール部材POの検出部DTの位置すなわち画素の位置は、予め記憶されている。つまり、図5(B)において破線で示す位置に相当する画像上の各点PG1~PG4のXY座標が、事前に情報処理装置50において記憶されている。また、以下では、マーカーMKの位置(特に画像上における位置)を点PT(x,y)で示す。
図6は、上記のような態様について、検証動作時における走行位置の計測のための各種処理について一例を示す概念図である。図示のように、画像領域VG1内に存する点PT(x,y)(仮想平面領域VS1内に存するマーカーMKの位置を示す点に相当)を、変換行列Hにより、実空間上の走行領域RA1の一地点である点PS(u,v)と対応付け、この軌跡を追跡することで、マーカーMKの移動経過すなわち移動体110の走行経過を検知できる。
以下、図7を参照して、走行位置検証システム100による移動体110の走行位置の経過に関する検証の具体的一例について、説明する。
ここでは、移動体110が、床面を掃除する掃除ロボットである場合について説明する。昨今の掃除ロボットには、SLAMを搭載して自己位置推定と地図作成すなわち掃除すべき範囲の設定とを同時に行うものが知られている。かかる動作を可能とするためには、例えば、移動体110における自己位置推定が必要に足る正確さ・精度を有していることが前提となる。本実施形態では、走行位置検証システム100によって、掃除ロボットとしての移動体110が、掃除すべき床面の範囲に相当する予め定めた走行領域RA1内を、どの程度正確に移動できるかを検証する。すなわち、掃除ロボットとしての移動体110について、性能評価(位置推定の精度評価)を行う。
ここでは、図7(A)において矢印AA1で示すように、移動体110が、予め定められたプログラムに従って、自己位置推定をしながら、直進と回転を組み合わせてジグザグに走行領域RA1内を移動するものとする。走行位置検証システム100は、既述のように、マーカーMKの軌跡を追うことで、移動体110の走行経過を検知できる。なお、図7(B)においてハッチングで示すように、ここでは、平面視で円盤状となっている移動体110の通過範囲TR1が、掃除範囲であるものとする。以上の場合、例えば掃除範囲たる通過範囲TR1が、走行領域RA1をどの程度占めているか(つまり、ハッチングが走行領域RA1をどの程度塗りつぶしているか)を、移動体110における自己位置推定の精度評価の1つとすることが考えられる。つまり、移動体110が走行領域RA1を隈なく通過していれば、掃除ロボットとして隈なく床面を掃除していることになり、精度評価としては、100%ということになる。なお、例えば、図7等に概念的に示した状況を可視化した画像や走行領域RA1に対する通過範囲TR1の占有率を表示装置55(図2参照)に表示してもよい。
なお、例えば、上記のように移動体110をジグザグ移動させる際において、直進及び後退や回転の向きや角度範囲について、種々のものを組み合わせることで、移動体110の移動方法として使用され得る全てを含んだものに対して位置推定精度を検証できるようにすることも考えられる。
また、以上のような検証あるいは評価(性能評価)を行うタイミングに関しては、例えば、製品出荷時に行うことで、掃除ロボットとしての移動体110が、出荷可能な性能を有するものであるかを判定できるようにすることが考えられる。あるいは、上記検証あるいは評価を、出荷後のメンテナンス時に行うといったことも考えられる。例えば製品出荷時での検証の場合、性能評価に問題が無ければそのまま出荷等されるのに対して、性能評価に問題がある場合すなわち一定の基準(走行領域RA1に占める通過範囲TR1の割合が一定値以上であるか否か等)を満たしていない場合には、移動体110の自己位置推定部PEに関する各種修正処理を行って、再度検証を行うことになる。なお、マーカーMKについては、検証時にのみ移動体110に取り付け、出荷時あるいはメンテナンス終了後においては、取り外してもよい。
以下、図8を参照して、一変形例のマーカーMKを有する走行位置検証システム100について説明する。
図8は、一変形例のマーカーMKについて一例を説明するための図であり、図8(A)は、一変形例のマーカーMKについての概念的な斜視図であり、図8(B)は、平面図である。本変形例では、複数のマーカーMK1,MK2を設置している点において、上記の例と異なっている。より具体的には、図8の一例では、マーカーMK1,MK2は、移動体110の回転中心の位置と回転中心外の位置との2か所に設けられている。この場合、マーカーMK1とマーカーMK2との相対的な位置変化から、移動体110の回転移動を捉えることができる。具体的には、例えば図8(B)に示すように、移動体110の回転時においては、回転中心の位置にあるマーカーMK1は、回転軸AXの位置から移動しない一方、回転中心外の位置にあるマーカーMK2は、破線と実線で示すように、回転軸AXを中心として移動する。この場合、破線と実線で示すマーカーMK2の位置変化とマーカーMK1の固定位置とから移動体110の回転角度θを算出できる。すなわち、計測部51a(図2参照)は、マーカーMKの位置から移動体の回転角度を計測することができる。なお、マーカーMKについては、2つに限らず3つ以上としてもよい。以上のように、本変形例の場合、少なくとも2か所に設けたマーカーMKによって、移動体の回転移動を的確に捉えることができる。例えば、図7に示したジグザグ移動の際における回転の向きや回転させる角度範囲の変化に対する自己位置推定の精度の確認に際して、本変形例を利用できる。
以上のように、本実施形態に係る走行位置検証システム100は、移動体110を検知する範囲を示す2次元的な検知領域を定める複数のポール部材POと、検知領域である仮想平面領域VS1を撮像する撮像部10と、移動体110に取り付けられて仮想平面領域VS1を移動するマーカーMKと、撮像部10により取得された2次元画像データ上におけるマーカーMKの位置から移動体110の走行位置を計測する計測部51aと、計測部51aでの計測結果に基づき移動体110の走行位置を検証する検証部51bとを備える。上記構成により、走行位置検証システム100では、複数のポール部材POにより定められた2次元的な仮想平面領域VS1において、移動体110に取り付けられたマーカーMKが移動し、これを撮像部10で撮像して取得される2次元画像データ上におけるマーカーMKの位置から移動体110の走行位置を計測することで、2次元的で簡易な画像処理によって移動体の走行位置を確実に計測できる。この上で、計測結果に基づいて移動体110の走行位置を利用して検証をすることで、例えば自己位置を推定する機能を有する移動体110について、その位置推定の精度を客観的基準から判断できる。
〔第2実施形態〕
以下、図9を参照しつつ、第2実施形態に係る走行位置補正システムについて一例を説明する。本実施形態は、第1実施形態において一例を示した走行位置検証システムを利用した走行位置補正システムの一態様を示すものであり、校正部を有して検証の結果から必要に応じて移動体における自己位置推定についての補正を行うことを除いて、第1実施形態の走行位置検証システムと同様であるので、全体の構成について、共通する構成要素については同じ符号を付し、校正部に関する部分以外の他の部分の詳しい説明については省略する。
図9は、本実施形態に係る走行位置補正システム200等の内部構造に関する一構成例についてのブロック図であり、図2に対応する図である。
図示のように、本実施形態の走行位置補正システム200は、情報処理装置50のうち、主制御部51において校正データ作成部51cを有するとともに、情報処理装置50がインターフェース部60を有している点において、図2等に例示した走行位置検証システム100と異なっている。また、走行位置補正システム200の構成に対応して、検証される対象である移動体210も、インターフェース部70を有するとともに、主制御部MPの自己位置推定部PEにおいて校正受付処理部CCを有している。
本実施形態の走行位置補正システム200では、第1実施形態に例示した走行位置検証システム100の場合と同様に、移動体210についての検証を行う。すなわち、自己位置を推定する機能を有する移動体210について、自己位置推定の精度を客観的基準から判断すべく、撮像部10で取得した2次元画像データに対する各種処理が、情報処理装置50において行われる。この上で、移動体210による自己位置推定について精度改善のための補正が必要であると判断された場合には、走行位置補正システム200は、自己位置推定についての補正をするための処理を行う。具体的には、校正データ作成部51cとしての主制御部51は、検証結果に応じた移動体210の自己位置推定部PEに関する各種修正プログラムを作成し、作成した修正プログラムを、インターフェース部60を介して例えば有線接続により移動体210に対して出力する。すなわち、走行位置補正システム200において、校正データ作成部51cとインターフェース部60とが、移動体210における自己位置推定についての補正を行う校正部CSとして機能している。
移動体210は、インターフェース部60と接続されることで、インターフェース部70を介して走行位置補正システム200で作成された当該修正プログラムを受け付け、自己位置推定部PEに設けた校正受付処理部CCにより、当該修正プログラムに基づいて自己位置推定のプログラムを修正する。すなわち、本実施形態では、走行位置補正システム200での検証結果から、例えば位置推定の精度に問題がある等であれば、必要に応じて、移動体210における自己位置推定についての補正を行う、すなわち位置推定の校正が可能になっている。
〔第3実施形態〕
以下、図10等を参照しつつ、第3実施形態に係る走行位置計測システムについて一例を説明する。本実施形態は、第1実施形態において一例を示した走行位置検証システムと同様の構成を有する走行位置計測システムの一態様を示すものであるが、移動体の本動作時(例えば掃除ロボットの掃除動作時)において走行位置の計測を行う態様となっている点において、第1実施形態等の場合とは異なっている。本実施形態では、第1実施形態において図3~図5を参照して例示したマーカーの検出のための諸準備が完了していることを前提として、移動体の本動作時において走行位置の計測を行う。ただし、上記のような本動作時における走行位置計測という使用態様とするための構成を除いて、第1実施形態の走行位置検証システム等で例示したものと同様の構成を有するので、共通する構成要素については同じ符号を付し、全体の構成についての詳しい説明については省略する。
図10は、本実施形態に係る走行位置計測システム300の一構成例を示す概念的な斜視図であり、図5(B)に対応する図である。また、図11は、走行位置計測システム300等の内部構造に関する一構成例についてのブロック図であり、図2等に対応する図である。
図10及び図11に例示するように、本実施形態の走行位置計測システム300は、情報処理装置50において通信部80を備えている点において、図2等に例示した走行位置検証システム100と異なっている。なお、検証(位置推定の検証)を行うことを前提としないため、主制御部51において、検証部を省略している。また、走行位置計測システム300の構成に対応して、検証される対象である移動体310も、通信部90を有している。つまり、通信部80と通信部90との間で無線通信が可能になっている。また、移動体310は、自己位置推定部を有さずこれに代えて自己位置検知部PDを有している。
本実施形態の走行位置計測システム300では、第1実施形態に例示した走行位置検証システム100の場合と同様に、移動体310についての位置検知を行う。さらに、走行位置計測システム300は、通信部80を介した無線通信により、計測部51aでの計測結果を移動体310に出力する。
一方、移動体310は、自らは自己位置推定の動作を行わず、これに代えて、通信部90を介して、自己位置検知部PDが、走行位置計測システム300からの計測結果を受け付け、受け付けた結果に基づき自己位置を検知する。すなわち、移動体310は、走行位置計測システム300から受け取った計測部51aでの計測結果から自己位置を検知することで、自身の位置の把握(自己位置検知)を可能にしている。
以下、図12を参照して、本実施形態の一変形例の走行位置計測システム300について説明する。なお、図12は、一変形例の走行位置計測システム300等の内部構造に関する一構成例についてのブロック図であり、図11に対応する図である。
図12の一例では、検証される対象である移動体410が、自己位置推定部PEを有し、さらに、自己位置推定部PEにおいて修正部COを有する構成となっている点において、図11の場合と異なっている。より具体的には、移動体410は、自己位置推定部PEに基づき移動しつつ自己位置を推定し、さらに、修正部COにより、通信部80,90間での通信により受け取った計測部51aでの計測結果に基づいて自己位置推定を修正する。すなわち、本変形例では、自己位置の推定を行う移動体410において、計測部51aでの計測結果を利用して、必要に応じて自己位置推定の修正を行うことにより、位置推定の精度向上が可能になっている。
以上のように、本実施形態に係る走行位置計測システム300では、移動体310等を検知する範囲を示す2次元的な検知領域である仮想平面領域VS1において、移動体310等に取り付けられたマーカーMKが移動し、これを撮像部10で撮像して取得される2次元画像データ上におけるマーカーMKの位置から移動体310等の走行位置を計測することで、2次元的で簡易な画像処理で移動体の走行位置を確実に計測できる。特に、本実施形態では、例えば掃除ロボットの掃除動作時といった移動体310等の本動作時において、走行位置の計測を行い、移動体310等は、この計測結果を自己位置の検知に利用することができる。
〔その他〕
この発明は、上記の実施形態に限られるものではなく、その要旨を逸脱しない範囲において種々の態様で実施することが可能である。
まず、上記では、走行位置の計測、さらにはその検証の対象となる移動体110等について、掃除ロボットを例示しているが、移動体110等はこれに限らず、種々のものが想定できる。例えば、工場や空港等において使用される搬送ロボットに関して適用してもよい。また、移動体110等の形状についても、円筒形状に限らず、種々の形状となり得る。さらに、移動体110等の走行位置の計測や検証に際して、走行領域RA1そのものではなく、本願のように俯瞰した位置から走行領域RA1に対応する仮想領域VS1を撮像範囲とし、頂上側にマーカーMKを取り付けて置くことで、例えば移動体110等自身が影になってマーカーMKが捉えにくくなる可能性を抑えられる。なお、以上のことは、例えば1m程度の高さを有する移動体110等に限らず、高さのあまりない薄型のものであっても、効果を得られると考えられる。つまり、移動体110等の高さが種々異なる態様において、各実施形態の適用が可能である。
また、移動体の平面上の走行態様についても、直進及び回転のみに限らず、種々の態様とすることができる。
また、上記において、平面的(2次元的)な走行領域RA1については、種々の態様が考えられる。例えば、第1実施形態の走行位置検証システム100や第2実施形態の走行位置補正システム200において例示したように、自己位置推定の精度検証を行うものである場合、走行領域RA1の大きさや形状は、求めるべき精度に応じて的確な範囲を予め設定可能である。また、移動体の走行態様に応じて走行領域RA1を定めてもよい。
また、撮像部10の設置に関しても、検証等に際して求める精度や、カメラの解像度等に応じて種々対応させることができる。例えば、図4(B)に例示した2次元的平面の画像図GIの場合、実際の距離は等距離あるいはほぼ等距離であるにもかかわらず、撮像位置から遠い点PG1から点PG2までの画素数は、撮像位置に近い点PG3から点PG4までの画素数よりも少なく、検証時の精度が相対的に粗いことになる。また、撮像位置によっては、例えば点PG1から点PG4までの画素数が少なくなり実際の距離と比較して粗くなる可能性もある。したがって、例えば、これらの各種パラメータについて情報処理装置50側でテーブルデータを格納しておき、図4(B)に例示した画像図GIから撮像部10の設置について良否を判断するようにしてもよい。
また、例えば対象となる走行領域RA1が非常に広大になる場合や複数個所に分かれる場合には、複数の撮像部10を設置して、各撮像部10によって異なる領域を対象とするものとしてもよい。
10…撮像部、50…情報処理装置、51…主制御部、51a…計測部、51b…検証部、51c…校正データ作成部、52…画像処理部、53…記憶部、54…入力装置、55…表示装置(出力装置)、60,70…インターフェース部、80,90…通信部、100…走行位置検証システム、110,210,310,410…移動体、200…走行位置補正システム、300…走行位置計測システム、A1,A2,AA1…矢印、AX…回転軸、CC…校正受付処理部、CO…修正部、CS…校正部、DD…駆動装置、DT…検出部、H…変換行列、MK,MK1,MK2…マーカー、MP…主制御部、PD…自己位置検知部、PE…自己位置推定部、PG1~PG4…点、PO…ポール部材、PS…点、PT…点、RA1…走行領域、SE…センサー、TO…頂上部、TR1…通過範囲、VG1…画像領域、VS1…仮想平面領域(検知領域)、WD…駆動輪、θ…回転角度

Claims (10)

  1. 移動体を検知する範囲を示す2次元的な検知領域を定める複数のポール部材と、
    前記検知領域を撮像する撮像部と、
    前記移動体に取り付けられて前記検知領域を移動するマーカーと、
    前記撮像部により取得された2次元画像データ上における前記マーカーの位置から前記移動体の走行位置を計測する計測部と、
    前記計測部での計測結果に基づき前記移動体における自己位置推定を検証する検証部と
    を備える走行位置検証システム。
  2. 前記検知領域は、複数のポール部材の検出部により形成される水平の仮想平面領域であり、
    前記検出部の高さと前記移動体の回転軸中心に取り付けられた前記マーカーの高さが同一である、請求項1に記載の走行位置検証システム。
  3. 記検証部は、前記移動体における自己位置推定の精度を、前記計測部の計測結果との比較に基づいて検証する、請求項1及び2のいずれか一項に記載の走行位置検証システム。
  4. 前記計測部は、前記2次元画像データ上の仮想平面から実空間上での位置を示す座標平面への変換処理により、前記2次元画像データ上における前記マーカーに相当する画素位置を、前記検知領域としての2次元平面上の1か所と対応付けて前記移動体の走行位置を決定する、請求項1~3のいずれか一項に記載の走行位置検証システム。
  5. 前記移動体は、移動方法として回転移動を含み、
    前記マーカーは、前記移動体の回転中心の位置と回転中心外の位置との少なくとも2か所に設けられており、
    前記計測部は、前記マーカーの位置から前記移動体の回転角度を計測する、請求項1~4のいずれか一項に記載の走行位置検証システム。
  6. 請求項1~5のいずれか一項に記載の走行位置計測システムにより、前記移動体の走行位置の検証が完了した場合において、前記移動体の走行位置を計測する走行位置計測システムであって、
    前記撮像部は、検証完了後の前記移動体の本動作時において、前記検知領域を撮像し、
    前記マーカーは、検証完了後の前記移動体の本動作時において、前記検知領域を移動し、
    前記計測部は、検証完了後の前記移動体の本動作時において、前記撮像部により取得された2次元画像データ上における前記マーカーの位置から前記移動体の走行位置を計測する
    走行位置計測システム。
  7. 前記計測部での計測結果を前記移動体に出力する通信部を備える、請求項6に記載の走行位置計測システム。
  8. 前記移動体は、前記通信部から受け取った前記計測部での計測結果から自己位置を検知する、請求項7に記載の走行位置計測システム。
  9. 前記移動体は、移動しつつ自己位置を推定し、前記通信部から受け取った前記計測部での計測結果に基づいて自己位置推定を修正する、請求項7に記載の走行位置計測システム。
  10. 移動体を検知する範囲を示す2次元的な検知領域を定める複数のポール部材と、
    前記検知領域を撮像する撮像部と、
    前記移動体に取り付けられて前記検知領域を移動するマーカーと、
    前記撮像部により取得された2次元画像データ上における前記マーカーの位置から前記移動体の走行位置を計測する計測部と、
    前記計測部での計測結果に基づき前記移動体における自己位置推定を検証する検証部と、
    前記検証部における検証結果に応じて、前記移動体における自己位置推定についての補正を行う校正部と
    を備える走行位置補正システム。
JP2019226349A 2019-12-16 2019-12-16 走行位置検証システム、走行位置計測システム及び走行位置補正システム Active JP7451165B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019226349A JP7451165B2 (ja) 2019-12-16 2019-12-16 走行位置検証システム、走行位置計測システム及び走行位置補正システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019226349A JP7451165B2 (ja) 2019-12-16 2019-12-16 走行位置検証システム、走行位置計測システム及び走行位置補正システム

Publications (2)

Publication Number Publication Date
JP2021096566A JP2021096566A (ja) 2021-06-24
JP7451165B2 true JP7451165B2 (ja) 2024-03-18

Family

ID=76432616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019226349A Active JP7451165B2 (ja) 2019-12-16 2019-12-16 走行位置検証システム、走行位置計測システム及び走行位置補正システム

Country Status (1)

Country Link
JP (1) JP7451165B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7406210B2 (ja) 2020-09-16 2023-12-27 日本電信電話株式会社 位置推定システム、位置推定装置、位置推定方法、及び位置推定プログラム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002148016A (ja) 2000-11-15 2002-05-22 Ftl International:Kk 移動体の位置検出方法および装置
JP2016218043A (ja) 2015-05-15 2016-12-22 株式会社デンソー 移動体位置検出装置、移動体位置検出方法
JP2018014064A (ja) 2016-07-19 2018-01-25 Gft株式会社 室内用自走式ロボットの位置測定システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002148016A (ja) 2000-11-15 2002-05-22 Ftl International:Kk 移動体の位置検出方法および装置
JP2016218043A (ja) 2015-05-15 2016-12-22 株式会社デンソー 移動体位置検出装置、移動体位置検出方法
JP2018014064A (ja) 2016-07-19 2018-01-25 Gft株式会社 室内用自走式ロボットの位置測定システム

Also Published As

Publication number Publication date
JP2021096566A (ja) 2021-06-24

Similar Documents

Publication Publication Date Title
CN110116406B (zh) 具有增强的扫描机制的机器人系统
JP5624394B2 (ja) 位置姿勢計測装置、その計測処理方法及びプログラム
JP4533659B2 (ja) レーザー計測により地図画像を生成する装置及び方法
US9529945B2 (en) Robot simulation system which simulates takeout process of workpieces
TWI816056B (zh) 用以於環境中校正視覺系統的方法和系統
CN107687855B (zh) 机器人定位方法、装置及机器人
KR100877072B1 (ko) 이동 로봇을 위한 맵 생성 및 청소를 동시에 수행하는 방법및 장치
US9894435B2 (en) Method and arrangement for detecting acoustic and optical information as well as a corresponding computer program and a corresponding computer-readable storage medium
US20060215881A1 (en) Distance measurement apparatus, electronic device, distance measurement method, distance measurement control program and computer-readable recording medium
JP2016045150A (ja) 点群位置データ処理装置、点群位置データ処理システム、点群位置データ処理方法およびプログラム
KR20160003776A (ko) 자세 추정 방법 및 로봇
JP2000097637A5 (ja) 姿勢位置検出装置及び移動体姿勢検出装置
JP5276931B2 (ja) 移動体および移動体の位置推定誤り状態からの復帰方法
JP6164679B2 (ja) カメラのキャリブレーション方法及びカメラのキャリブレーション装置
US9613421B2 (en) Optical tracking
WO2021254376A1 (zh) 运送机器人的控制方法、装置、运送机器人和存储介质
JP6855491B2 (ja) ロボットシステム、ロボットシステム制御装置、およびロボットシステム制御方法
Shim et al. A mobile robot localization using external surveillance cameras at indoor
CN110646231A (zh) 一种扫地机器人测试方法和装置
JP7451165B2 (ja) 走行位置検証システム、走行位置計測システム及び走行位置補正システム
US8717579B2 (en) Distance measuring device using a method of spanning separately targeted endpoints
KR20170020629A (ko) 점군 정합 장치
KR101403377B1 (ko) 2차원 레이저 센서를 이용한 대상 물체의 6 자유도 운동 산출 방법
JP5481397B2 (ja) 3次元座標計測装置
JP5516974B2 (ja) 視覚センサのマウント装置と方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240306

R150 Certificate of patent or registration of utility model

Ref document number: 7451165

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150