JP7450697B2 - Resin composition, resin film, semiconductor laminate, method for manufacturing semiconductor laminate, and method for manufacturing semiconductor device - Google Patents

Resin composition, resin film, semiconductor laminate, method for manufacturing semiconductor laminate, and method for manufacturing semiconductor device Download PDF

Info

Publication number
JP7450697B2
JP7450697B2 JP2022207102A JP2022207102A JP7450697B2 JP 7450697 B2 JP7450697 B2 JP 7450697B2 JP 2022207102 A JP2022207102 A JP 2022207102A JP 2022207102 A JP2022207102 A JP 2022207102A JP 7450697 B2 JP7450697 B2 JP 7450697B2
Authority
JP
Japan
Prior art keywords
semiconductor
group
resin
resin composition
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022207102A
Other languages
Japanese (ja)
Other versions
JP2023040078A (en
Inventor
揚一郎 市岡
保 大和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019008078A external-priority patent/JP7071300B2/en
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2022207102A priority Critical patent/JP7450697B2/en
Publication of JP2023040078A publication Critical patent/JP2023040078A/en
Application granted granted Critical
Publication of JP7450697B2 publication Critical patent/JP7450697B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Silicon Polymers (AREA)

Description

本発明は、樹脂組成物、樹脂フィルム、半導体積層体、半導体装置、半導体積層体の製造方法及び半導体装置の製造方法に関する。 The present invention relates to a resin composition, a resin film, a semiconductor laminate, a semiconductor device, a method for manufacturing a semiconductor laminate, and a method for manufacturing a semiconductor device.

近年、半導体業界ではスマートフォンなどのモバイル機器の小型化・高機能化・低コスト化に対応するため、チップ基板となるシリコンウエハの薄化や、製造効率向上を目的とした大型CCL基板やBT基板等への転換が進められている。しかし、薄基板や大型CCL基板・BT基板では反りが顕著になるため、封止材に大きな負荷がかかり、接着面と剥離が生じやすくなっており、封止材の接着力がまずます重要となってきている。これまでに、封止材の接着力向上のため、種々検討が進められてきたが、更なる高接着の封止材が求められている(特許文献1)。 In recent years, in order to respond to the miniaturization, higher functionality, and lower cost of mobile devices such as smartphones in the semiconductor industry, silicon wafers that serve as chip substrates have become thinner, and large CCL and BT substrates have been developed to improve manufacturing efficiency. etc., is in progress. However, with thin substrates, large CCL substrates, and BT substrates, warping becomes noticeable, which places a large load on the encapsulant and makes it easy for it to separate from the adhesive surface, making the adhesive strength of the encapsulant increasingly important. It has become to. Up to now, various studies have been carried out to improve the adhesive strength of sealing materials, but a sealing material with even higher adhesion is required (Patent Document 1).

また、製造効率を上げるため、CCLやBT基板は角基板を用いることが多いが、これを封止する際、液状封止材では基板の内側と外側でムラが生じやすくなるため、これを容易に均一封止できるフィルムタイプが望まれていた。 In addition, in order to increase manufacturing efficiency, square substrates are often used for CCL and BT substrates, but when sealing these, liquid sealing material tends to cause unevenness between the inside and outside of the substrate, so it is easy to do this. A film type that could be uniformly sealed was desired.

そこで、歪曲時も剥離の生じづらい高接着樹脂組成物、及びこれを用いた良好なウエハ保護性能を有するウエハモールド材の開発、及び、そのフィルム化が望まれていた。 Therefore, it has been desired to develop a highly adhesive resin composition that does not easily peel off even when it is distorted, a wafer mold material using the same that has good wafer protection performance, and to make it into a film.

特開2001-332662号公報Japanese Patent Application Publication No. 2001-332662

本発明は、上記問題点に鑑みてなされたものであって、反りが小さく、接着力に優れる樹脂組成物、該組成物がフィルム化されたものである高接着樹脂組成物フィルム、該フィルムの硬化物を有する半導体積層体及びその製造方法、並びに該半導体積層体が個片化されたものである半導体装置及びその製造方法を提供することを目的とする。 The present invention has been made in view of the above-mentioned problems, and includes a resin composition with low warpage and excellent adhesive strength, a highly adhesive resin composition film obtained by forming the composition into a film, and a film made of the film. It is an object of the present invention to provide a semiconductor laminate having a cured product, a method for manufacturing the same, a semiconductor device in which the semiconductor laminate is cut into pieces, and a method for manufacturing the same.

上記目的を達成するために、本発明では、下記(A)~(D)を含む樹脂組成物を提供する。
(A)エポキシ基を140~5000g/eqの範囲のエポキシ当量で含有する樹脂、
(B)フェノール性硬化剤、
(C)硬化促進剤、
(D)下記式(0-1)~(0-5)で示される中から少なくとも1つ選択される化合物

Figure 0007450697000001
(R’は加水分解性シリル基を含有する炭素数1~20の1価の有機基、R’,R’はそれぞれ水素原子又は炭素数1~20の1価の有機基、X’は酸素原子、もしくは硫黄原子、Arは置換基を2つ持っていてもよい芳香環、もしくは複素環を示す。) In order to achieve the above object, the present invention provides a resin composition containing the following (A) to (D).
(A) a resin containing epoxy groups with an epoxy equivalent in the range of 140 to 5000 g/eq;
(B) phenolic curing agent,
(C) curing accelerator,
(D) At least one compound selected from the following formulas (0-1) to (0-5)
Figure 0007450697000001
(R' 1 is a monovalent organic group having 1 to 20 carbon atoms containing a hydrolyzable silyl group, R' 2 and R' 3 are each a hydrogen atom or a monovalent organic group having 1 to 20 carbon atoms, ' represents an oxygen atom or a sulfur atom, and Ar represents an aromatic ring or a heterocycle that may have two substituents.)

このような組成物であれば、反りが小さく、接着力に優れる。 Such a composition has small warpage and excellent adhesive strength.

前記樹脂組成物は、更に、前記(A)成分以外の(E)エポキシ化合物が、前記(A)成分100質量部に対し、0.1~80質量部含まれるものであることができる。 The resin composition may further contain 0.1 to 80 parts by mass of (E) an epoxy compound other than the component (A) based on 100 parts by mass of the component (A).

このような樹脂組成物は、より反りが小さく、接着力により優れる。 Such a resin composition has less warpage and superior adhesive strength.

前記樹脂組成物は、更に、(F)無機充填剤を含むものであることができる。 The resin composition may further include (F) an inorganic filler.

このような樹脂組成物は、無機充填剤を含むことで、より好ましいウエハ保護性を与え、更に、耐熱性、耐湿性、強度等を向上させ、硬化物の信頼性を上げることができる。 By containing an inorganic filler, such a resin composition can provide more preferable wafer protection, further improve heat resistance, moisture resistance, strength, etc., and increase the reliability of the cured product.

また、前記(F)無機充填剤が、シリカであり、前記樹脂組成物中20~96質量%含まれるものであることができる。 Further, the inorganic filler (F) may be silica, and may be contained in the resin composition in an amount of 20 to 96% by mass.

このような樹脂組成物は、より硬化物の信頼性を上げることができる。 Such a resin composition can further improve the reliability of the cured product.

また、前記一般式(0-1)~式(0-3)であらわされる化合物において、X’が酸素原子であることができる。 Furthermore, in the compounds represented by the general formulas (0-1) to (0-3), X' can be an oxygen atom.

このような化合物は、原料の入手容易性や、組成物の保存安定性の観点からさらに好ましい。 Such compounds are more preferable from the viewpoint of easy availability of raw materials and storage stability of the composition.

また、前記(A)成分がシリコーン変性エポキシ樹脂であることが好ましい。 Moreover, it is preferable that the component (A) is a silicone-modified epoxy resin.

このような樹脂を用いることで、硬化前の樹脂組成物に柔軟性を与え、フィルム化を容易にし、さらに硬化後は十分な弾性率を示すことができる。 By using such a resin, flexibility can be imparted to the resin composition before curing, making it easy to form a film, and furthermore, it can exhibit a sufficient elastic modulus after curing.

また、前記シリコーン変性エポキシ樹脂が、下記式(4)で表される構成単位を含み、重量平均分子量が3,000~500,000であることが好ましい。

Figure 0007450697000002
[式中、R~Rは、それぞれ独立に、炭素数1~20の1価炭化水素基又はアルコキシ基であり、互いに同一でも異なっていてもよい。また、a、b、c、d及びeは、各繰り返し単位の組成比を表し、0<a<1、0≦b<1、0≦c<1、0<d<1、0≦e<1、0.67≦(b+d)/(a+c+e)≦1.67、かつa+b+c+d+e=1を満たす数である。gは、0~300の整数である。Xは、下記式(5)で表される2価の有機基である。Yは、下記式(6)で表される2価のシロキサン骨格含有基である。Zは下記式(7)で表される2価の有機基である。]
Figure 0007450697000003
(式中、Eは、単結合、又は下記式
Figure 0007450697000004
から選ばれる2価の有機基である。R及びRは、炭素数1~20の1価炭化水素基又はアルコキシ基であり、互いに同一でも異なっていてもよい。t及びuは、それぞれ独立に、0~2の整数である。)
Figure 0007450697000005
(式中、vは、0~300の整数である。)
Figure 0007450697000006
(式中、Gは、単結合、又は下記式
Figure 0007450697000007
から選ばれる2価の有機基である。R及びR10は、炭素数1~20の1価炭化水素基又はアルコキシ基であり、互いに同一でも異なっていてもよい。w及びxは、それぞれ独立に、0~2の整数である。) Further, it is preferable that the silicone-modified epoxy resin contains a structural unit represented by the following formula (4) and has a weight average molecular weight of 3,000 to 500,000.
Figure 0007450697000002
[In the formula, R 1 to R 6 are each independently a monovalent hydrocarbon group or an alkoxy group having 1 to 20 carbon atoms, and may be the same or different from each other. In addition, a, b, c, d and e represent the composition ratio of each repeating unit, 0<a<1, 0≦b<1, 0≦c<1, 0<d<1, 0≦e< 1, 0.67≦(b+d)/(a+c+e)≦1.67, and a+b+c+d+e=1. g is an integer from 0 to 300. X is a divalent organic group represented by the following formula (5). Y is a divalent siloxane skeleton-containing group represented by the following formula (6). Z is a divalent organic group represented by the following formula (7). ]
Figure 0007450697000003
(In the formula, E is a single bond or the following formula
Figure 0007450697000004
It is a divalent organic group selected from. R 7 and R 8 are a monovalent hydrocarbon group or an alkoxy group having 1 to 20 carbon atoms, and may be the same or different. t and u are each independently an integer of 0 to 2. )
Figure 0007450697000005
(In the formula, v is an integer from 0 to 300.)
Figure 0007450697000006
(In the formula, G is a single bond or the following formula
Figure 0007450697000007
It is a divalent organic group selected from. R 9 and R 10 are monovalent hydrocarbon groups or alkoxy groups having 1 to 20 carbon atoms, and may be the same or different. w and x are each independently an integer of 0 to 2. )

このような樹脂を用いることで、硬化前の樹脂組成物により柔軟性を与え、フィルム化を容易にし、さらに硬化後はより優れた弾性率を示すことができる。 By using such a resin, the resin composition before curing can be given more flexibility, can be easily formed into a film, and can exhibit a better elastic modulus after curing.

また、本発明は、上記樹脂組成物がフィルム化されたものである樹脂フィルムを提供する。 The present invention also provides a resin film obtained by forming the resin composition into a film.

このような樹脂フィルムであれば、接着力が高いため、これにより半導体ウエハ等が十分に保護される。 Since such a resin film has high adhesive strength, semiconductor wafers and the like can be sufficiently protected.

また、本発明は、半導体ウエハ上に上記樹脂フィルムの硬化物を有する半導体積層体を提供する。 Further, the present invention provides a semiconductor laminate having a cured product of the resin film described above on a semiconductor wafer.

このような半導体積層体であれば、樹脂フィルムの接着力が高いため、樹脂フィルムにより半導体ウエハが十分に保護されたものとなる。 In such a semiconductor laminate, since the adhesive strength of the resin film is high, the semiconductor wafer is sufficiently protected by the resin film.

また、本発明は、半導体装置であって、上記半導体積層体が個片化されたものであることを特徴とする半導体装置を提供する。 Further, the present invention provides a semiconductor device, characterized in that the semiconductor stack is separated into individual pieces.

このような半導体装置であれば、高品質なものとなる。 Such a semiconductor device will be of high quality.

また、本発明は、半導体積層体の製造方法であって、上記樹脂フィルムを半導体ウエハに貼り付け、該半導体ウエハをモールドする工程と、前記樹脂フィルムを加熱硬化する工程とを有することを特徴とする半導体積層体の製造方法を提供する。 The present invention also provides a method for manufacturing a semiconductor laminate, which comprises the steps of attaching the resin film to a semiconductor wafer and molding the semiconductor wafer, and heating and curing the resin film. A method for manufacturing a semiconductor stack is provided.

このような半導体積層体の製造方法であれば、樹脂フィルムにより半導体ウエハが十分に保護された半導体積層体を製造することができる。 With such a method for manufacturing a semiconductor laminate, it is possible to manufacture a semiconductor laminate in which the semiconductor wafer is sufficiently protected by the resin film.

また、本発明は、半導体装置の製造方法であって、上記半導体積層体の製造方法によって製造した半導体積層体を個片化する工程を有することを特徴とする半導体装置の製造方法を提供する。 Further, the present invention provides a method for manufacturing a semiconductor device, which includes a step of singulating a semiconductor stack manufactured by the above-described method for manufacturing a semiconductor stack.

このような半導体装置の製造方法であれば、高品質な半導体装置を製造することができる。 With such a semiconductor device manufacturing method, a high quality semiconductor device can be manufactured.

本発明の樹脂組成物は、硬化物の接着力を大幅に上げることができ、低反り性に優れ、ウエハを一括してモールドすることが可能であるフィルムとなるため、ウエハレベルパッケージに好適に用いることができる。これらの発明を用いることで、歩留まりよく高品質な半導体装置を提供することができる。 The resin composition of the present invention can significantly increase the adhesive strength of the cured product, has excellent low warping properties, and forms a film that can be molded onto wafers all at once, making it suitable for wafer-level packaging. Can be used. By using these inventions, it is possible to provide high-quality semiconductor devices with good yield.

上記のように、反りが小さく、接着力に優れる樹脂組成物、該組成物がフィルム化されたものである高強度樹脂フィルム、該樹脂フィルムの硬化物を有するものである半導体積層体及びその製造方法、並びに該半導体積層体が個片化されたものである半導体装置及びその製造方法が求められている。 As mentioned above, a resin composition with small warpage and excellent adhesive strength, a high-strength resin film obtained by forming the composition into a film, a semiconductor laminate having a cured product of the resin film, and the production thereof There is a need for a method, a semiconductor device in which the semiconductor stack is singulated, and a method for manufacturing the same.

本発明者らは、上記目的を達成するために鋭意検討を行った。その結果、(A)エポキシ基を140~5000g/eq範囲のエポキシ当量で含有する樹脂、(B)フェノール性硬化剤、(C)硬化促進剤、(D)特定の構造の化合物を組み合わせることで、接着力も高く、反りも小さい樹脂組成物を得られることを見出した。更に、前記樹脂組成物をフィルム化することでより容易に取り扱えるウエハモールド材となることを見出し、本発明を完成させた。 The present inventors conducted extensive studies in order to achieve the above object. As a result, by combining (A) a resin containing epoxy groups with an epoxy equivalent in the range of 140 to 5000 g/eq, (B) a phenolic curing agent, (C) a curing accelerator, and (D) a compound with a specific structure, It has been found that a resin composition with high adhesive strength and low warpage can be obtained. Furthermore, the inventors discovered that by forming the resin composition into a film, a wafer molding material that can be more easily handled could be obtained, and the present invention was completed.

即ち、本発明は、下記(A)~(D)を含む樹脂組成物である。
(A)エポキシ基を140~5000g/eqの範囲のエポキシ当量で含有する樹脂、
(B)フェノール性硬化剤、
(C)硬化促進剤、
(D)下記式(0-1)~(0-5)で示される中から少なくとも1つ選択される化合物

Figure 0007450697000008
(R’は加水分解性シリル基を含有する炭素数1~20の1価の有機基、R’,R’はそれぞれ水素原子又は炭素数1~20の1価の有機基、X’は酸素原子、もしくは硫黄原子、Arは置換基を2つ持っていてもよい芳香環、もしくは複素環を示す。)
なお、上記式(0-1)~(0-5)で示される中から少なくとも1つ選択される化合物を、以下、「接着助剤」ともいう。 That is, the present invention is a resin composition containing the following (A) to (D).
(A) a resin containing epoxy groups with an epoxy equivalent in the range of 140 to 5000 g/eq;
(B) phenolic curing agent,
(C) curing accelerator,
(D) At least one compound selected from the following formulas (0-1) to (0-5)
Figure 0007450697000008
(R' 1 is a monovalent organic group having 1 to 20 carbon atoms containing a hydrolyzable silyl group, R' 2 and R' 3 are each a hydrogen atom or a monovalent organic group having 1 to 20 carbon atoms, ' represents an oxygen atom or a sulfur atom, and Ar represents an aromatic ring or a heterocycle that may have two substituents.)
Note that at least one compound selected from the above formulas (0-1) to (0-5) is also referred to as an "adhesion aid" hereinafter.

以下、本発明について詳細に説明するが、本発明はこれらに限定されるものではない。 The present invention will be described in detail below, but the present invention is not limited thereto.

[樹脂組成物]
本発明の樹脂組成物は、以下の(A)~(D)成分を含むものである。
(A)エポキシ基を140~5000g/eqの範囲のエポキシ当量で含有する樹脂
(B)フェノール性硬化剤
(C)硬化促進剤
(D)接着助剤
以下、各成分について詳細に説明する。
[Resin composition]
The resin composition of the present invention contains the following components (A) to (D).
(A) Resin containing epoxy groups with an epoxy equivalent in the range of 140 to 5000 g/eq (B) Phenolic curing agent (C) Curing accelerator (D) Adhesion aid Each component will be explained in detail below.

[(A)成分]
(A)成分は、エポキシ基を140~5000g/eqの範囲のエポキシ当量で含有する樹脂(以下、「エポキシ樹脂」ともいう)である。
前記樹脂(エポキシ樹脂)としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、ナフタレン型エポキシ樹脂、脂環式エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、複素環式エポキシ樹脂、ジアリールスルホン型エポキシ樹脂、シリコーン変性エポキシ樹脂等が挙げられるが、これらに限定されない。前記(A)成分は室温下で固体であれば、フィルム化が容易となる。固体の場合、フィルム状への成型が容易である上、カバーフィルムも剥がしやすくなる。また、エポキシ基を140~5000g/eq範囲のエポキシ当量で持つエポキシ樹脂は、十分な架橋を成すことができ、硬化物に耐薬品性や接着力を付与できる。これより少ないと硬化が不十分となり、耐薬品性が劣ったり、接着力が低下したりし、これより多いと反りが大きくなりやすくなる。
なお、エポキシ当量[g/eq]は、樹脂量[g]を樹脂中に含まれるエポキシ基の当量[eq]で割って計算する。エポキシ当量測定は、JIS K 7236による。
[(A) Component]
Component (A) is a resin containing epoxy groups at an epoxy equivalent in the range of 140 to 5000 g/eq (hereinafter also referred to as "epoxy resin").
The resin (epoxy resin) includes bisphenol A epoxy resin, bisphenol F epoxy resin, bisphenol AD epoxy resin, phenol novolac epoxy resin, biphenyl epoxy resin, naphthalene epoxy resin, alicyclic epoxy resin, and glycidyl. Examples include, but are not limited to, ester-type epoxy resins, glycidylamine-type epoxy resins, heterocyclic epoxy resins, diarylsulfone-type epoxy resins, and silicone-modified epoxy resins. If the component (A) is solid at room temperature, it can be easily formed into a film. In the case of a solid, it is easy to mold into a film, and the cover film is also easy to peel off. Further, an epoxy resin having an epoxy group with an epoxy equivalent in the range of 140 to 5000 g/eq can form sufficient crosslinking, and can impart chemical resistance and adhesive strength to the cured product. If the amount is less than this, curing will be insufficient, resulting in poor chemical resistance and adhesive strength, and if it is more than this, warping will become large.
Note that the epoxy equivalent [g/eq] is calculated by dividing the resin amount [g] by the equivalent weight [eq] of the epoxy group contained in the resin. Epoxy equivalent measurement is based on JIS K 7236.

(A)成分はシリコーン変性エポキシ樹脂であるとより好ましい。シリコーン変性エポキシ樹脂を使用することで、組成物の柔軟性が増し、フィルム化が容易になる。 Component (A) is more preferably a silicone-modified epoxy resin. The use of a silicone-modified epoxy resin increases the flexibility of the composition and makes it easier to form into a film.

さらに、前記シリコーン変性エポキシ樹脂が、下記式(4)で表される構成単位を有し、重量平均分子量が3,000~500,000であることが好ましい。

Figure 0007450697000009
[式中、R~Rは、それぞれ独立に、炭素数1~20の1価炭化水素基又はアルコキシ基であり、互いに同一でも異なっていてもよい。また、a、b、c、d及びeは、各繰り返し単位の組成比を表し、0<a<1、0≦b<1、0≦c<1、0<d<1、0≦e<1、0.67≦(b+d)/(a+c+e)≦1.67、かつa+b+c+d+e=1を満たす数である。gは、0~300の整数である。Xは、下記式(5)で表される2価の有機基である。Yは、下記式(6)で表される2価のシロキサン骨格含有基である。Zは下記式(7)で表される2価の有機基である。]
Figure 0007450697000010
(式中、Eは、単結合、又は下記式
Figure 0007450697000011
から選ばれる2価の有機基である。R及びRは、炭素数1~20の1価炭化水素基又はアルコキシ基であり、互いに同一でも異なっていてもよい。t及びuは、それぞれ独立に、0~2の整数である。) Furthermore, it is preferable that the silicone-modified epoxy resin has a structural unit represented by the following formula (4) and has a weight average molecular weight of 3,000 to 500,000.
Figure 0007450697000009
[In the formula, R 1 to R 6 are each independently a monovalent hydrocarbon group or an alkoxy group having 1 to 20 carbon atoms, and may be the same or different from each other. In addition, a, b, c, d and e represent the composition ratio of each repeating unit, 0<a<1, 0≦b<1, 0≦c<1, 0<d<1, 0≦e< 1, 0.67≦(b+d)/(a+c+e)≦1.67, and a+b+c+d+e=1. g is an integer from 0 to 300. X is a divalent organic group represented by the following formula (5). Y is a divalent siloxane skeleton-containing group represented by the following formula (6). Z is a divalent organic group represented by the following formula (7). ]
Figure 0007450697000010
(In the formula, E is a single bond or the following formula
Figure 0007450697000011
It is a divalent organic group selected from. R 7 and R 8 are monovalent hydrocarbon groups or alkoxy groups having 1 to 20 carbon atoms, and may be the same or different. t and u are each independently an integer of 0 to 2. )

Figure 0007450697000012
(式中、vは、0~300の整数である。)
Figure 0007450697000013
(式中、Gは、単結合、又は下記式
Figure 0007450697000014
から選ばれる2価の有機基である。R及びR10は、炭素数1~20の1価炭化水素基又はアルコキシ基であり、互いに同一でも異なっていてもよい。w及びxは、それぞれ独立に、0~2の整数である。)
Figure 0007450697000012
(In the formula, v is an integer from 0 to 300.)
Figure 0007450697000013
(In the formula, G is a single bond or the following formula
Figure 0007450697000014
It is a divalent organic group selected from. R 9 and R 10 are monovalent hydrocarbon groups or alkoxy groups having 1 to 20 carbon atoms, and may be the same or different. w and x are each independently an integer of 0 to 2. )

~Rは、それぞれ独立に、炭素数1~20の1価炭化水素基又はアルコキシ基であり、互いに同一でも異なっていてもよい。また、a、b、c、d及びeは、各繰り返し単位の組成比を表し、0<a<1、0≦b<1、0≦c<1、0<d<1、0≦e<1、0.67≦(b+d)/(a+c+e)≦1.67、かつa+b+c+d+e=1を満たす数である。
前記炭素数1~20の1価炭化水素基としては、例えば、炭素数1~20のアルキル基、シクロアルキル基、アリール基などが挙げられ、例えばメチル基、エチル基、プロピル基、ヘキシル基、シクロヘキシル基、及びフェニル基などが挙げられる。中でもメチル基及びフェニル基が原料の入手の容易さから好ましい。前記アルコキシ基としては、上記1価炭化水素基に酸素原子が結合した基、例えばメトキシ基、エトキシ基、プロポキシル基、及びフェノキシ基などが挙げられる。a~eは上記条件を満たす数であれば特に限定されない。
R 1 to R 6 each independently represent a monovalent hydrocarbon group or an alkoxy group having 1 to 20 carbon atoms, and may be the same or different from each other. In addition, a, b, c, d and e represent the composition ratio of each repeating unit, 0<a<1, 0≦b<1, 0≦c<1, 0<d<1, 0≦e< 1, 0.67≦(b+d)/(a+c+e)≦1.67, and a+b+c+d+e=1.
Examples of the monovalent hydrocarbon group having 1 to 20 carbon atoms include alkyl groups, cycloalkyl groups, and aryl groups having 1 to 20 carbon atoms, such as methyl group, ethyl group, propyl group, hexyl group, Examples include cyclohexyl group and phenyl group. Among them, methyl group and phenyl group are preferred because of easy availability of raw materials. Examples of the alkoxy group include groups in which an oxygen atom is bonded to the monovalent hydrocarbon group, such as a methoxy group, an ethoxy group, a propoxyl group, and a phenoxy group. a to e are not particularly limited as long as they satisfy the above conditions.

式(5)、(7)中、R、R、R及びR10は、炭素数1~20の1価炭化水素基又はアルコキシ基であり、互いに同一でも異なっていてもよい。R~R10としては、好ましくは炭素数1~4、より好ましくは炭素数1~2のアルキル基又はアルコキシ基であり、具体的には、メチル基、エチル基、プロピル基、tert-ブチル基、メトキシ基、エトキシ基等が好ましい。 In formulas (5) and (7), R 7 , R 8 , R 9 and R 10 are monovalent hydrocarbon groups or alkoxy groups having 1 to 20 carbon atoms, and may be the same or different from each other. R 7 to R 10 are preferably an alkyl group or an alkoxy group having 1 to 4 carbon atoms, more preferably 1 to 2 carbon atoms, and specifically include a methyl group, an ethyl group, a propyl group, and a tert-butyl group. group, methoxy group, ethoxy group, etc. are preferred.

式(5)、(7)中、t、u、w及びxは、それぞれ独立に、0~2の整数であるが、0が好ましい。 In formulas (5) and (7), t, u, w and x are each independently an integer of 0 to 2, with 0 being preferred.

式(4)で表されるシリコーン変性エポキシ樹脂の重量平均分子量(Mw)は、3,000~500,000であるが、5,000~200,000が好ましい。式(4)で表されるシリコーン変性エポキシ樹脂は、ランダム共重合体でも、ブロック重合体でもよい。 The weight average molecular weight (Mw) of the silicone-modified epoxy resin represented by formula (4) is 3,000 to 500,000, preferably 5,000 to 200,000. The silicone-modified epoxy resin represented by formula (4) may be a random copolymer or a block polymer.

エポキシ樹脂は、1種単独でも、2種以上を組み合わせて用いてもよい。 The epoxy resins may be used alone or in combination of two or more.

式(4)で表されるシリコーン変性エポキシ樹脂は、下記式(8)で表されるシルフェニレン化合物及び下記式(9)~(12)で表される化合物から選択される化合物を用いて、以下に示す方法により製造することができる。 The silicone-modified epoxy resin represented by the formula (4) is prepared by using a compound selected from the silphenylene compound represented by the following formula (8) and the compounds represented by the following formulas (9) to (12), It can be manufactured by the method shown below.

Figure 0007450697000015
(式中、R~R10、E、G、g、t、u、v、w及びxは、前記と同じ。)
Figure 0007450697000015
(In the formula, R 1 to R 10 , E, G, g, t, u, v, w and x are the same as above.)

式(4)で表されるシリコーン変性エポキシ樹脂は、原料をヒドロシリル化させることで合成できる。その際、反応容器に全部の原料を入れた状態で反応させてもよく、また一部の原料を先に反応させて、その後に残りの原料を反応させてもよく、原料を1種類ずつ反応させてもよく、反応させる順序も任意に選択できる。各化合物の配合比は、上記式(10)及び式(11)及び式(12)で表される化合物が有するアルケニル基のモル数の合計に対する上記式(8)及び式(9)で表される化合物が有するヒドロシリル基のモル数の合計が0.67~1.67、好ましくは0.83~1.25となるように配合するのがよい。 The silicone-modified epoxy resin represented by formula (4) can be synthesized by hydrosilylating raw materials. At that time, the reaction may be carried out with all the raw materials placed in the reaction container, or some of the raw materials may be reacted first and then the remaining raw materials may be reacted, or the raw materials may be reacted one by one. The reaction order can also be arbitrarily selected. The compounding ratio of each compound is expressed by the above formula (8) and formula (9) relative to the total number of moles of alkenyl groups possessed by the compounds represented by the above formula (10), formula (11), and formula (12). The total number of moles of hydrosilyl groups contained in the compound is preferably 0.67 to 1.67, preferably 0.83 to 1.25.

この重合反応は、触媒存在下で行う。触媒は、ヒドロシリル化が進行することが広く知られているものが使用できる。具体的には、パラジウム錯体、ロジウム錯体、白金錯体等が用いられるが、これらに限定されない。触媒は、Si-H結合に対し、0.01~10.0モル%程度加えることが好ましい。0.01モル%以上であれば、反応の進行が遅くならず、反応が十分に進行し、10.0モル%以下であれば、脱水素反応が進行しにくくなり、付加反応の進行を阻害するおそれがない。 This polymerization reaction is carried out in the presence of a catalyst. As the catalyst, catalysts that are widely known to cause hydrosilylation to proceed can be used. Specifically, palladium complexes, rhodium complexes, platinum complexes, etc. are used, but are not limited to these. The catalyst is preferably added in an amount of about 0.01 to 10.0 mol % based on the Si--H bond. If it is 0.01 mol% or more, the reaction will not slow down and the reaction will proceed sufficiently, and if it is 10.0 mol% or less, the dehydrogenation reaction will be difficult to proceed and the addition reaction will be inhibited. There is no risk of it happening.

重合反応に用いる溶媒としては、ヒドロシリル化を阻害しない有機溶媒が広く使用できる。具体的には、オクタン、トルエン、テトラヒドロフラン、ジオキサン等が挙げられるが、これらに限定されない。溶媒は、溶質が10~70質量%になるように使用することが好ましい。10質量%以上であれば、反応系が薄くならず、反応の進行が遅くならない。また、70質量%以下であれば、粘度が高くならず、反応途中で系中を十分に攪拌できなくなるおそれがない。 As the solvent used in the polymerization reaction, a wide range of organic solvents that do not inhibit hydrosilylation can be used. Specific examples include, but are not limited to, octane, toluene, tetrahydrofuran, dioxane, and the like. The solvent is preferably used so that the solute content is 10 to 70% by mass. If it is 10% by mass or more, the reaction system will not become thin and the progress of the reaction will not be slowed down. Further, if it is 70% by mass or less, the viscosity will not increase and there is no risk that the system will not be able to be stirred sufficiently during the reaction.

反応は、通常40~150℃、好ましくは60~120℃、特に好ましくは70~100℃の温度で行われる。反応温度が150℃以下であれば、分解等の副反応が起こりにくくなり、40℃以上であれば、反応の進行は遅くならない。また、反応時間は、通常0.5~60時間、好ましくは3~24時間、特に好ましくは5~12時間である。 The reaction is usually carried out at a temperature of 40 to 150°C, preferably 60 to 120°C, particularly preferably 70 to 100°C. If the reaction temperature is 150°C or lower, side reactions such as decomposition are less likely to occur, and if it is 40°C or higher, the progress of the reaction will not be slowed down. The reaction time is usually 0.5 to 60 hours, preferably 3 to 24 hours, particularly preferably 5 to 12 hours.

このような樹脂を用いることで、硬化前の樹脂組成物に柔軟性を与え、フィルム化を容易にし、さらに硬化後は十分な弾性率を示すことができ、その他、耐薬品性、耐熱性、耐圧性がより優れる硬化物を与えることができる。 By using such a resin, the resin composition before curing can be made flexible and easily formed into a film, and can also exhibit sufficient elastic modulus after curing, as well as chemical resistance, heat resistance, A cured product with better pressure resistance can be provided.

[(B)成分]
(B)成分のフェノール性硬化剤は、公知のものを広く使用可能である。硬化剤の構造としては、OH基を2~10個有する多価アルコールがよく、以下に示すものが例示できるが、これらに限定されない。
[(B) Component]
As the component (B), a wide variety of known phenolic curing agents can be used. The structure of the curing agent is preferably a polyhydric alcohol having 2 to 10 OH groups, and examples thereof include, but are not limited to, those shown below.

Figure 0007450697000016
Figure 0007450697000016

(B)成分の含有量は、組成物中のエポキシ当量に対し、(B)成分中のフェノール性水酸基当量が60mol%~140mol%となるように配合するのが好ましく、90mol%~110mol%がより好ましい。前記範囲であれば、硬化反応が良好に進行し、エポキシ基やフェノール性水酸基が過度にあまることがなく、信頼性は悪化しにくくなる。 The content of component (B) is preferably blended so that the phenolic hydroxyl equivalent in component (B) is 60 mol% to 140 mol%, and 90 mol% to 110 mol%, based on the epoxy equivalent in the composition. More preferred. Within the above range, the curing reaction proceeds favorably, epoxy groups and phenolic hydroxyl groups do not accumulate excessively, and reliability is unlikely to deteriorate.

[(C)成分]
(C)成分の硬化促進剤は、エポキシ基の開環に用いられるものであれば、広く使用可能である。前記硬化促進剤としては、イミダゾール、2-メチルイミダゾール、2-エチルイミダゾール、2-ヘプタデシルイミダゾール、1,2-ジメチルイミダゾール、2-エチル-4-メチルイミダゾール、2-ウンデシルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール等のイミダゾール類、2-エチル-4-メチルイミダゾール2-(ジメチルアミノメチル)フェノール、トリエチレンジアミン、トリエタノールアミン、1,8-ジアザビシクロ[5.4.0]ウンデセン-7、トリス(ジメチルアミノメチル)フェノール等の第3級アミン類、ジフェニルホスフィン、トリフェニルホスフィン、トリブチルホスフィン等の有機ホスフィン類、テトラフェニルホスホニウム・テトラフェニルボレート、テトラフェニルホスホニウム・エチルトリフェニルボレート等のテトラ置換ホスホニウム・テトラ置換ボレート、オクチル酸スズ等の金属化合物等が挙げられる。
[(C) Component]
The curing accelerator of component (C) can be widely used as long as it is used for ring-opening of epoxy groups. Examples of the curing accelerator include imidazole, 2-methylimidazole, 2-ethylimidazole, 2-heptadecylimidazole, 1,2-dimethylimidazole, 2-ethyl-4-methylimidazole, 2-undecylimidazole, and 2-phenyl. Imidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2-methylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2-undecyl imidazole, 1-cyanoethyl-2-phenylimidazole, 2-phenyl-4,5-dihydroxymethylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole, and other imidazoles, 2-ethyl-4-methylimidazole 2 - Tertiary amines such as (dimethylaminomethyl)phenol, triethylenediamine, triethanolamine, 1,8-diazabicyclo[5.4.0]undecene-7, tris(dimethylaminomethyl)phenol, diphenylphosphine, triethanolamine, etc. Examples include organic phosphines such as phenylphosphine and tributylphosphine, tetra-substituted phosphonium and tetra-substituted borates such as tetraphenylphosphonium/tetraphenylborate and tetraphenylphosphonium/ethyltriphenylborate, and metal compounds such as tin octylate.

(C)成分の含有量は、(A)成分100質量部に対し、0.01~20.0質量部が好ましく、0.1~5.0質量部がより好ましい。前記範囲であれば、硬化反応が過不足なく進行し、硬化物が脆くならず、信頼性が向上する。 The content of component (C) is preferably 0.01 to 20.0 parts by mass, more preferably 0.1 to 5.0 parts by mass, per 100 parts by mass of component (A). Within the above range, the curing reaction proceeds in just the right amount, the cured product does not become brittle, and reliability is improved.

[(D)成分]
(D)成分は、本発明の必須成分であって、接着力を向上させるのに、有効な成分(接着助剤)である。(D)成分は、下記式(0-1)~(0-5)で示される中から少なくとも1つ選択される化合物である。

Figure 0007450697000017
(R’は加水分解性シリル基を含有する炭素数1~20の1価の有機基、R’,R’はそれぞれ水素原子又は炭素数1~20の1価の有機基、X’は酸素原子、もしくは硫黄原子、Arは置換基を2つ持っていてもよい芳香環、もしくは複素環を示す。) [(D) Component]
Component (D) is an essential component of the present invention and is an effective component (adhesive aid) for improving adhesive strength. Component (D) is a compound selected from at least one compound represented by the following formulas (0-1) to (0-5).
Figure 0007450697000017
(R' 1 is a monovalent organic group having 1 to 20 carbon atoms containing a hydrolyzable silyl group, R' 2 and R' 3 are each a hydrogen atom or a monovalent organic group having 1 to 20 carbon atoms, ' represents an oxygen atom or a sulfur atom, and Ar represents an aromatic ring or a heterocycle that may have two substituents.)

R’は加水分解性シリル基を含有する炭素数1~20の1価の有機基である。該有機基は、加水分解性シリル基を有する炭化水素基であってよい。前記加水分解性シリル基としては、アルコキシシリル基、アシルオキシシリル基、アルケニルオキシシリル基、アリーロキシシリル基、ハロゲン化シリル基や、アミド基、アミノ基、アミノオキシ基、ケトキシメート基を有するシリル基などが挙げられ、前記炭化水素基としては、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンタメチレン基、ヘキサメチレン基、ヘプタメチレン基、オクタメチレン基、ノナメチレン基、デカメチレン基などのアルキレン基、フェニレン基、ナフチレン基などのアリーレン基、フェネチレン基、キシリレン基などのアラルキレン基などを挙げることができる。前記アルコキシシリル基中のアルコキシ基としては、例えばメトキシ基、エトキシ基、プロポキシル基、及びフェノキシ基などが挙げられる。 R' 1 is a monovalent organic group having 1 to 20 carbon atoms and containing a hydrolyzable silyl group. The organic group may be a hydrocarbon group having a hydrolyzable silyl group. Examples of the hydrolyzable silyl group include an alkoxysilyl group, an acyloxysilyl group, an alkenyloxysilyl group, an aryloxysilyl group, a halogenated silyl group, and a silyl group having an amide group, an amino group, an aminooxy group, and a ketoximate group. Examples of the hydrocarbon group include alkylene groups such as methylene group, ethylene group, propylene group, butylene group, pentamethylene group, hexamethylene group, heptamethylene group, octamethylene group, nonamethylene group, decamethylene group, and phenylene group. Examples include arylene groups such as naphthylene groups, phenethylene groups, and aralkylene groups such as xylylene groups. Examples of the alkoxy group in the alkoxysilyl group include methoxy group, ethoxy group, propoxyl group, and phenoxy group.

R’,R’はそれぞれ水素原子又は炭素数1~20の1価の有機基である。炭素数1~20の1価の有機基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基等のアルキル基、フェニル基、ナフチル基等のアリール基、フェネチル基等のアラルキル基等が挙げられる。 R' 2 and R' 3 are each a hydrogen atom or a monovalent organic group having 1 to 20 carbon atoms. Examples of monovalent organic groups having 1 to 20 carbon atoms include alkyl groups such as methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, and cyclohexyl group, and aryl groups such as phenyl group and naphthyl group. , aralkyl groups such as phenethyl groups, and the like.

Arは置換基を2つ持っていてもよい芳香環、もしくは複素環である。例えば、フェニル基、トリル基、キシリル基、ナフチル基、ピリジル基、キノリル基、ピロリル基、イミダゾリル基、ピリミジル基等が挙げられる。 Ar is an aromatic ring or a heterocycle which may have two substituents. Examples include phenyl group, tolyl group, xylyl group, naphthyl group, pyridyl group, quinolyl group, pyrrolyl group, imidazolyl group, and pyrimidyl group.

X’は酸素原子、もしくは硫黄原子である。前記一般式(0-1)~式(0-3)で表される化合物においては、X’が酸素原子であるとき、原料の入手容易性や、組成物の保存安定性の観点から好ましい。 X' is an oxygen atom or a sulfur atom. In the compounds represented by the general formulas (0-1) to (0-3), it is preferable when X' is an oxygen atom from the viewpoint of easy availability of raw materials and storage stability of the composition.

(D)成分(接着助剤)としては、例えば、以下の化合物が挙げられる。

Figure 0007450697000018
Examples of component (D) (adhesive aid) include the following compounds.
Figure 0007450697000018

Figure 0007450697000019
Figure 0007450697000019

(D)成分は(A)成分100質量部に対し、0.1~40質量部が好ましく、1.0~15質量部がより好ましい。前記範囲内であれば、硬化反応を阻害することなく、接着力が向上する。(D)成分は1種類単独でも、2種類以上を併用してもよい。 Component (D) is preferably 0.1 to 40 parts by weight, more preferably 1.0 to 15 parts by weight, per 100 parts by weight of component (A). Within the above range, the adhesive strength is improved without inhibiting the curing reaction. Component (D) may be used alone or in combination of two or more.

[(E)成分]
また、この樹脂組成物に(A)成分以外のエポキシ化合物(E)を加えることができる。加える際は(A)成分のエポキシ基含有樹脂100質量部に対し、0.1~80質量部、好ましくは0.5~50質量部、より好ましくは1~30質量部の範囲で加えることができる。この範囲であれば、エポキシ化合物の効果が表れ、反り量が増加することはない。
[(E) component]
Moreover, an epoxy compound (E) other than the component (A) can be added to this resin composition. When adding, it can be added in an amount of 0.1 to 80 parts by weight, preferably 0.5 to 50 parts by weight, more preferably 1 to 30 parts by weight, per 100 parts by weight of the epoxy group-containing resin of component (A). can. Within this range, the effect of the epoxy compound appears and the amount of warpage does not increase.

エポキシ化合物(E)は、化合物中にエポキシ基を2~10個、好ましくは2~5個有すものがよく、以下のものが例示できるが、これらに限定されない。1種類単独で用いても、2種類以上を併用してもよい。 The epoxy compound (E) preferably has 2 to 10 epoxy groups, preferably 2 to 5 epoxy groups, and examples thereof include, but are not limited to, the following. One type may be used alone, or two or more types may be used in combination.

Figure 0007450697000020
Figure 0007450697000020

Figure 0007450697000021
Figure 0007450697000021

Figure 0007450697000022
Figure 0007450697000022

Figure 0007450697000023
Figure 0007450697000023

[(F)成分]
本発明の樹脂組成物は、ウエハ保護性を与え、更に、耐熱性、耐湿性、強度等を向上させ、硬化物の信頼性を上げるために、(F)成分として無機充填剤を含んでもよい。無機充填剤としては、例えば、酸化チタン、アルミナ、溶融シリカ(溶融球状シリカ、溶融破砕シリカ)、結晶シリカ粉末等の酸化物、タルク、ガラス、焼成クレー等のケイ酸塩、窒化アルミニウム、窒化ホウ素、窒化ケイ素等の窒化物、炭酸カルシウム、炭酸マグネシウム等の炭酸塩、水酸化アルミニウム、水酸化マグネシウム、水酸化カルシウム等の水酸化物、硫酸バリウム、硫酸カルシウム、亜硫酸カルシウム等の硫酸塩又は亜硫酸塩等が挙げられる。これらの無機充填剤は、単独で用いても、2種以上を組み合わせて用いてもよい。
[(F) component]
The resin composition of the present invention may contain an inorganic filler as component (F) in order to provide wafer protection, further improve heat resistance, moisture resistance, strength, etc., and increase reliability of the cured product. . Examples of inorganic fillers include titanium oxide, alumina, fused silica (fused spherical silica, fused crushed silica), oxides such as crystalline silica powder, silicates such as talc, glass, and fired clay, aluminum nitride, and boron nitride. , nitrides such as silicon nitride, carbonates such as calcium carbonate and magnesium carbonate, hydroxides such as aluminum hydroxide, magnesium hydroxide and calcium hydroxide, sulfates or sulfites such as barium sulfate, calcium sulfate and calcium sulfite. etc. These inorganic fillers may be used alone or in combination of two or more.

無機充填剤の平均粒径は、特に限定されないが、0.01~30μmが好ましく、0.03~14μmがより好ましい。無機充填剤の平均粒子径が0.01μm以上であれば、フィラーを充填しやすくなり、さらに硬化物の強度が高くなりやすくなり、30μm以下であれば、チップ間への充填性が良好になる。 The average particle size of the inorganic filler is not particularly limited, but is preferably 0.01 to 30 μm, more preferably 0.03 to 14 μm. If the average particle size of the inorganic filler is 0.01 μm or more, it will be easier to fill the filler and the strength of the cured product will be more likely to increase, and if it is 30 μm or less, the filling properties between the chips will be good. .

これらの中でも、溶融シリカ、結晶シリカ等のシリカ粉末が好ましい。(F)成分の含有量は、樹脂組成物の固形分中、14~96質量%が好ましく、20~96質量%がより好ましく、50~95質量%がより一層好ましく、60~93質量%が特に好ましい。無機充填材の含有量が96質量%以下であれば、無機充填剤の充填性や組成物の加工性がより良好となり、14質量%以上、好ましくは20質量%以上であれば、無機充填剤の効果が十分に奏する。なお、固形分とは、有機溶剤以外の成分のことをいう。 Among these, silica powders such as fused silica and crystalline silica are preferred. The content of component (F) is preferably 14 to 96% by mass, more preferably 20 to 96% by mass, even more preferably 50 to 95% by mass, and even more preferably 60 to 93% by mass based on the solid content of the resin composition. Particularly preferred. If the content of the inorganic filler is 96% by mass or less, the filling properties of the inorganic filler and the processability of the composition will be better, and if the content is 14% by mass or more, preferably 20% by mass or more, the inorganic filler The effect is fully realized. Note that the solid content refers to components other than the organic solvent.

[その他成分]
また、本発明の樹脂組成物は、更に、前述したもの以外の成分を含んでもよい。例えば、有機溶剤、難燃剤、酸化防止剤、顔料、染料等が挙げられる。
[Other ingredients]
Moreover, the resin composition of the present invention may further contain components other than those described above. Examples include organic solvents, flame retardants, antioxidants, pigments, dyes, and the like.

(有機溶剤)
本発明の樹脂組成物は、これら成分を均一に混ぜるため、有機溶剤に溶かして使用してもよい。有機溶剤としては、例えば、N,N-ジメチルアセトアミド、メチルエチルケトン、N,N-ジメチルホルムアミド、シクロヘキサノン、シクロペンタノン、N-メチル-2-ピロリドン、メタノール、エタノール、イソプロパノール、アセトン、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、トルエン、キシレン等が挙げられ、特にメチルエチルケトン、シクロペンタノン、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテートが好ましいが、これらに限定されない。これらの有機溶剤は、1種単独でも、2種以上を混合して用いてもよい。有機溶剤の使用量は、樹脂組成物中の固形分濃度が40~90質量%になる量が好ましい。
(Organic solvent)
The resin composition of the present invention may be used after being dissolved in an organic solvent in order to uniformly mix these components. Examples of the organic solvent include N,N-dimethylacetamide, methyl ethyl ketone, N,N-dimethylformamide, cyclohexanone, cyclopentanone, N-methyl-2-pyrrolidone, methanol, ethanol, isopropanol, acetone, propylene glycol monomethyl ether, Examples include propylene glycol monomethyl ether acetate, toluene, xylene, etc., and methyl ethyl ketone, cyclopentanone, propylene glycol monomethyl ether, and propylene glycol monomethyl ether acetate are particularly preferred, but not limited thereto. These organic solvents may be used alone or in combination of two or more. The amount of organic solvent used is preferably such that the solid content concentration in the resin composition is 40 to 90% by mass.

(難燃剤)
本発明の樹脂組成物は、難燃性の向上を目的として、難燃剤を含んでもよい。難燃剤としては、リン系難燃剤が挙げられ、ハロゲン原子を含有せずに難燃性を付与するものであるが、その例としてはホスファゼン化合物、リン酸エステル化合物、リン酸エステルアミド化合物等が挙げられる。ホスファゼン化合物やリン酸エステルアミド化合物は、分子内にリン原子と窒素原子を含有しているため、特に高い難燃性が得られる。難燃剤の含有量は、(A)成分100質量部に対し、3~40質量部が好ましい。
(Flame retardants)
The resin composition of the present invention may contain a flame retardant for the purpose of improving flame retardancy. Examples of flame retardants include phosphorus-based flame retardants, which impart flame retardancy without containing halogen atoms, such as phosphazene compounds, phosphate ester compounds, phosphate ester amide compounds, etc. Can be mentioned. Since phosphazene compounds and phosphoric acid ester amide compounds contain phosphorus atoms and nitrogen atoms in their molecules, particularly high flame retardance can be obtained. The content of the flame retardant is preferably 3 to 40 parts by weight per 100 parts by weight of component (A).

その他、各成分の相溶性向上や樹脂組成物の貯蔵安定性又は作業性等の各種特性を向上させるために、各種添加剤を適宜添加してもよい。例えば、脂肪酸エステル、グリセリン酸エステル、ステアリン酸亜鉛、ステアリン酸カルシウム等の内部離型剤、フェノール系、リン系又は硫黄系酸化防止剤等を添加することができる。また、カーボンブラック等の顔料を用いて、組成物を着色することもできる。 In addition, various additives may be added as appropriate in order to improve the compatibility of each component and to improve various properties such as storage stability and workability of the resin composition. For example, internal mold release agents such as fatty acid ester, glyceric acid ester, zinc stearate, calcium stearate, phenol-based, phosphorus-based or sulfur-based antioxidants, etc. can be added. The composition can also be colored using a pigment such as carbon black.

上記本発明の組成物であれば、ウエハを一括してモールド(ウエハモールド)することができ、特に、大口径、薄膜ウエハに対して良好なモールド性を有し、同時に、基板との剥離が起きづらい高接着性・低反り性を有し、モールド工程を良好に行うことができ、ウエハレベルパッケージに好適に用いることができる。 With the composition of the present invention, wafers can be molded all at once (wafer molding), and it has good moldability, especially for large-diameter and thin-film wafers, and at the same time, it does not peel off from the substrate. It has high adhesion and low warping properties, allows for good molding processes, and can be suitably used for wafer level packages.

[樹脂フィルム]
更に本発明では、上記本発明の樹脂組成物がフィルム化されたものであることを特徴とする樹脂フィルムを提供する。本発明の樹脂フィルムは、前記樹脂組成物を用いて、フィルム状に加工して得られるものである。フィルム状に形成されることで、大口径、薄膜ウエハに対して良好なモールド性能を有するものとなり、ウエハを一括してモールドする際に、樹脂を流し込む必要がないため、ウエハ表面への充填不良等の問題を生じさせることがない。また、前記樹脂組成物を用いて形成された樹脂フィルムであれば、反りが出づらく、接着力が高いため、各種エラーの起きづらいウエハモールド材となる。
[Resin film]
Furthermore, the present invention provides a resin film characterized in that the resin composition of the present invention is formed into a film. The resin film of the present invention is obtained by processing the resin composition into a film shape. By being formed into a film, it has good molding performance for large-diameter, thin-film wafers, and when molding wafers all at once, there is no need to pour resin, which eliminates the possibility of filling defects on the wafer surface. This will not cause any problems such as Furthermore, a resin film formed using the resin composition is less likely to warp and has high adhesive strength, resulting in a wafer molding material that is less prone to various errors.

本発明の樹脂フィルムは、前記樹脂組成物から得られる樹脂フィルムに保護フィルムが積層されたものであってもよい。この場合の本発明の樹脂フィルムの製造方法の一例について説明する。 The resin film of the present invention may be obtained by laminating a protective film on a resin film obtained from the resin composition. An example of the method for manufacturing the resin film of the present invention in this case will be described.

前記(A),(B),(C),(D)成分、並びに必要に応じて(F)成分、(A)成分以外のエポキシ化合物(E)及びその他の成分を混合して樹脂組成物溶液を作製し、該樹脂組成物溶液をリバースロールコータ、コンマコータ等を用いて、所望の厚さになるように保護フィルムに塗布する。前記樹脂組成物溶液が塗布された保護フィルムをインラインドライヤに通し、80~160℃で2~20分間かけて有機溶剤を除去することにより乾燥させ、次いでロールラミネーターを用いて別の保護フィルムと圧着し、積層することにより、樹脂フィルムが形成された積層体フィルムを得ることができる。この積層体フィルムをウエハモールド材として用いた場合、良好なモールド性を与える。 A resin composition is prepared by mixing the above (A), (B), (C), (D) components, and if necessary, the (F) component, an epoxy compound (E) other than the (A) component, and other components. A solution is prepared, and the resin composition solution is applied to a protective film to a desired thickness using a reverse roll coater, a comma coater, or the like. The protective film coated with the resin composition solution is passed through an in-line dryer and dried by removing the organic solvent at 80 to 160°C for 2 to 20 minutes, and then bonded to another protective film using a roll laminator. By laminating them, a laminate film in which a resin film is formed can be obtained. When this laminate film is used as a wafer molding material, it provides good moldability.

本発明の樹脂組成物をフィルム状に形成する場合、厚みに制限はないが、好ましくは2mm以下、より好ましくは50μm以上1,200μm以下、更に好ましくは80~850μmである。このような厚みであれば、半導体封止材として、保護性に優れるため好ましい。 When the resin composition of the present invention is formed into a film, the thickness is not limited, but is preferably 2 mm or less, more preferably 50 μm or more and 1,200 μm or less, and even more preferably 80 to 850 μm. Such a thickness is preferable as a semiconductor encapsulant because it provides excellent protection.

前記保護フィルムは、本発明の樹脂組成物からなる樹脂フィルムの形態を損なうことなく剥離できるものであれば特に限定されないが、ウエハ用の保護フィルム及び剥離フィルムとして機能するものであり、通常、ポリエチレン(PE)フィルム、ポリプロピレン(PP)フィルム、ポリメチルペンテン(TPX)フィルム、離型処理を施したポリエステルフィルム等のプラスチックフィルム等が挙げられる。また、剥離力は、50~300mN/minが好ましい。保護フィルムの厚さは、25~150μmが好ましく、38~125μmがより好ましい。 The protective film is not particularly limited as long as it can be peeled off without damaging the form of the resin film made of the resin composition of the present invention, but it functions as a protective film and a release film for wafers, and is usually made of polyethylene. Examples include plastic films such as (PE) film, polypropylene (PP) film, polymethylpentene (TPX) film, and polyester film subjected to mold release treatment. Further, the peeling force is preferably 50 to 300 mN/min. The thickness of the protective film is preferably 25 to 150 μm, more preferably 38 to 125 μm.

[半導体積層体及びその製造方法]
本発明の半導体積層体は、半導体ウエハ上に上記本発明の樹脂フィルムの硬化物を有するものである。本発明の半導体積層体の製造方法は、前記樹脂フィルムを半導体ウエハに貼り付け、該半導体ウエハをモールドする工程と、前記樹脂フィルムを加熱硬化する工程を有する方法である。
[Semiconductor laminate and method for manufacturing the same]
The semiconductor laminate of the present invention has a cured product of the resin film of the present invention on a semiconductor wafer. The method for manufacturing a semiconductor laminate of the present invention is a method including the steps of attaching the resin film to a semiconductor wafer and molding the semiconductor wafer, and heating and curing the resin film.

前記半導体ウエハとしては、表面に半導体素子(チップ)が積載されたウエハであっても、表面に半導体素子が作製された半導体ウエハであってもよい。本発明の樹脂フィルムは、モールド前にはこのようなウエハ表面に対する充填性が良好であり、また、モールド後には高強度・高接着性を有し、このようなウエハの保護性に優れる。また、本発明の樹脂フィルムは、直径8インチ以上、例えば、直径8インチ(200mm)、12インチ(300mm)又はそれ以上といった大口径のウエハや薄膜ウエハをモールドするのに好適に用いることができる。前記薄型ウエハとしては、厚さ5~400μmに薄型加工されたウエハが好ましい。 The semiconductor wafer may be a wafer on which semiconductor elements (chips) are mounted, or a semiconductor wafer on which semiconductor elements are fabricated. The resin film of the present invention has good filling properties on the wafer surface before molding, and has high strength and high adhesiveness after molding, and is excellent in protecting the wafer. Further, the resin film of the present invention can be suitably used for molding large diameter wafers or thin film wafers with a diameter of 8 inches or more, for example, 8 inches (200 mm), 12 inches (300 mm) or more in diameter. . The thin wafer is preferably a wafer processed to have a thickness of 5 to 400 μm.

なお、本発明の樹脂フィルムを用いて、角型基板上に上記本発明の樹脂フィルムの硬化物を有する半導体積層体とすることもできる。
前記角型基板としては、表面に半導体素子(チップ)が積載されていても、表面に半導体素子が作製されたものであってもよい。本発明の樹脂フィルムは、基板サイズが10cm角や50cm角、さらに大きな基板、長方形や台形など形に依らず、基板の厚さにもよらず、モールド材料として好適に用いることができる。
Note that the resin film of the present invention can also be used to produce a semiconductor laminate having a cured product of the resin film of the present invention on a square substrate.
The square substrate may have a semiconductor element (chip) mounted on its surface, or may have a semiconductor element fabricated on its surface. The resin film of the present invention can be suitably used as a molding material regardless of the substrate size, such as 10 cm square or 50 cm square, larger substrates, rectangular or trapezoidal shapes, and regardless of the thickness of the substrate.

本発明の樹脂フィルムを用いたウエハのモールド方法については、特に限定されないが、例えば、樹脂フィルム上に貼られた一方の保護層を剥がし、(株)タカトリ製の真空ラミネーター(製品名:TEAM-300)を用いて、真空チャンバー内を真空度50~1,000Pa、好ましくは50~500Pa、例えば100Paに設定し、80~200℃、好ましくは80~130℃、例えば100℃で他方の保護層が貼られた樹脂フィルムを前記ウエハに一括して密着させ、常圧に戻した後、前記ウエハを室温まで冷却して前記真空ラミネーターから取り出し、他方の保護層を剥離することで行うことができる。 The method for molding a wafer using the resin film of the present invention is not particularly limited, but for example, one protective layer pasted on the resin film is peeled off, and a vacuum laminator manufactured by Takatori Co., Ltd. (product name: TEAM- 300), the degree of vacuum in the vacuum chamber is set to 50 to 1,000 Pa, preferably 50 to 500 Pa, for example 100 Pa, and the other protective layer is heated to 80 to 200°C, preferably 80 to 130°C, for example 100°C. This can be done by closely adhering the resin film pasted to the wafer all at once, returning the pressure to normal pressure, cooling the wafer to room temperature, taking it out of the vacuum laminator, and peeling off the other protective layer. .

また、半導体チップが積層されたウエハに対しては、コンプレッションモールド装置や真空ダイヤフラムラミネーターと平坦化のための金属板プレスを備えた装置等を好適に使用することができる。例えば、コンプレッションモールド装置としては、アピックヤマダ(株)製の装置(製品名:MZ-824-01)を使用することができ、半導体チップが積層された300mmシリコンウエハをモールドする際は、100~180℃、成型圧力100~300kN、クランプタイム30~90秒、成型時間5~20分で成型が可能である。 Furthermore, for wafers on which semiconductor chips are stacked, a compression molding device, a device equipped with a vacuum diaphragm laminator, a metal plate press for flattening, or the like can be suitably used. For example, as a compression molding device, a device manufactured by Apic Yamada Co., Ltd. (product name: MZ-824-01) can be used, and when molding a 300mm silicon wafer on which semiconductor chips are stacked, ℃, molding pressure of 100 to 300 kN, clamp time of 30 to 90 seconds, and molding time of 5 to 20 minutes.

また、真空ダイヤフラムラミネーターと平坦化のための金属板プレスを備えた装置としては、ニチゴー・モートン(株)製の装置(製品名:CVP-300)を使用することができ、ラミネーション温度100~180℃、真空度50~500Pa、圧力0.1~0.9MPa、ラミネーション時間30~300秒でラミネートした後、上下熱板温度100~180℃、圧力0.1~3.0MPa、加圧時間30~300秒で樹脂成型面を平坦化することが可能である。 In addition, as a device equipped with a vacuum diaphragm laminator and a metal plate press for flattening, a device manufactured by Nichigo Morton Co., Ltd. (product name: CVP-300) can be used, and the lamination temperature is 100 to 180. ℃, degree of vacuum 50-500 Pa, pressure 0.1-0.9 MPa, lamination time 30-300 seconds, then upper and lower hot plate temperature 100-180 ℃, pressure 0.1-3.0 MPa, pressurization time 30 It is possible to flatten the resin molding surface in ~300 seconds.

モールド後、120~220℃、15~360分間の条件で樹脂フィルムを加熱することにより、樹脂フィルムを硬化することができる。これにより、半導体積層体が得られる。 After molding, the resin film can be cured by heating it at 120 to 220°C for 15 to 360 minutes. Thereby, a semiconductor laminate is obtained.

このような半導体積層体であれば、樹脂フィルムの強度と接着力が高いため、樹脂フィルムにより半導体ウエハが十分に保護されたものとなる。 In such a semiconductor laminate, since the resin film has high strength and adhesive strength, the semiconductor wafer is sufficiently protected by the resin film.

また、上記のような半導体積層体の製造方法であれば、樹脂フィルムにより半導体ウエハが十分に保護された半導体積層体を製造することができる。 Moreover, with the method for manufacturing a semiconductor laminate as described above, it is possible to manufacture a semiconductor laminate in which the semiconductor wafer is sufficiently protected by the resin film.

[半導体装置及びその製造方法]
本発明の半導体装置は、上記本発明の半導体積層体が個片化されたものである。本発明の半導体装置の製造方法は、上記本発明の半導体積層体の製造方法によって製造した半導体積層体を個片化する工程を有する方法である。このように、樹脂フィルムでモールドされた半導体ウエハを個片化することで、加熱硬化皮膜を有する半導体装置が得られる。モールドされたウエハは、ダイシングテープ等の半導体加工用保護テープにモールド樹脂面あるいはウエハ面が接するように貼られ、ダイサーの吸着テーブル上に設置され、このモールドされたウエハは、ダイシングブレードを備えるダイシングソー(例えば、(株)DISCO製DFD6361)を使用して切断される。ダイシング時のスピンドル回転数及び切断速度は、適宜選択すればよいが、通常、スピンドル回転数25,000~45,000rpm、切断速度10~50mm/secである。また、個片化されるサイズは半導体パッケージの設計によるが、概ね2mm×2mm~30mm×30mm程度である。
[Semiconductor device and its manufacturing method]
The semiconductor device of the present invention is obtained by dividing the semiconductor laminate of the present invention into individual pieces. The method for manufacturing a semiconductor device of the present invention is a method including the step of singulating the semiconductor stack produced by the method for manufacturing a semiconductor stack of the present invention. In this way, by dividing the semiconductor wafer molded with a resin film into individual pieces, a semiconductor device having a heat-cured film can be obtained. The molded wafer is attached to a protective tape for semiconductor processing such as dicing tape so that the mold resin surface or the wafer surface is in contact with it, and placed on the suction table of a dicer. It is cut using a saw (for example, DFD6361 manufactured by DISCO Co., Ltd.). The spindle rotation speed and cutting speed during dicing may be selected as appropriate, but usually the spindle rotation speed is 25,000 to 45,000 rpm and the cutting speed is 10 to 50 mm/sec. Further, the size of the individual pieces depends on the design of the semiconductor package, but is approximately 2 mm x 2 mm to 30 mm x 30 mm.

このように、前記樹脂フィルムでモールドされた半導体ウエハは、樹脂フィルムの強度と接着力が高いため、半導体ウエハが十分に保護されたものとなるので、これを個片化することで歩留まりよく高品質な半導体装置を製造することができる。 In this way, semiconductor wafers molded with the resin film are sufficiently protected due to the resin film's high strength and adhesive strength. High quality semiconductor devices can be manufactured.

以下、合成例、実施例及び比較例を示して本発明をより具体的に説明するが、本発明は下記の実施例に限定されるものではない。 Hereinafter, the present invention will be explained in more detail by showing synthesis examples, examples, and comparative examples, but the present invention is not limited to the following examples.

使用した化合物S-1~S-6は、以下のとおりである。 The compounds S-1 to S-6 used are as follows.

Figure 0007450697000024
Figure 0007450697000024

Figure 0007450697000025
Figure 0007450697000025

Figure 0007450697000026
Figure 0007450697000026

Figure 0007450697000027
Figure 0007450697000027

Figure 0007450697000028
Figure 0007450697000028

Figure 0007450697000029
Figure 0007450697000029

[エポキシ化合物(S-7)合成例]
撹拌機、温度計、窒素置換装置及び還流冷却器を具備した5Lフラスコ内に、化合物S-1の617g(2.0モル)、メタノール256g(8.0モル)、エピクロロヒドリンの852g(8.0モル)を加え、水酸化ナトリウム768g(19.2モル)を2時間かけて添加し、その後、60℃まで温度を上げて3時間反応させた。反応後、トルエン500mL加え、水層が中性になるまで純水で洗浄した後、有機層中の溶媒を減圧下で除去し、757g(1.8モル)のエポキシ化合物(S-7)を得た。

Figure 0007450697000030
[Epoxy compound (S-7) synthesis example]
In a 5 L flask equipped with a stirrer, thermometer, nitrogen purging device, and reflux condenser, 617 g (2.0 mol) of compound S-1, 256 g (8.0 mol) of methanol, and 852 g of epichlorohydrin ( 8.0 mol) was added thereto, and 768 g (19.2 mol) of sodium hydroxide was added over 2 hours, and then the temperature was raised to 60°C and the reaction was carried out for 3 hours. After the reaction, 500 mL of toluene was added, and after washing with pure water until the aqueous layer became neutral, the solvent in the organic layer was removed under reduced pressure, and 757 g (1.8 mol) of epoxy compound (S-7) was added. Obtained.
Figure 0007450697000030

[1]樹脂の合成
(A)成分の樹脂(エポキシ樹脂)を以下のようにして合成した。
合成例において、重量平均分子量(Mw)は、GPCカラム TSKgel Super HZM-H(東ソー(株)製)を用い、流量0.6mL/分、溶出溶媒テトラヒドロフラン、カラム温度40℃の分析条件で、単分散ポリスチレンを標準とするゲルパーミエーションクロマトグラフィー(GPC)により測定した値である。
[1] Synthesis of resin The resin (epoxy resin) of component (A) was synthesized as follows.
In the synthesis example, the weight average molecular weight (Mw) was determined using a GPC column TSKgel Super HZM-H (manufactured by Tosoh Corporation) under the analysis conditions of a flow rate of 0.6 mL/min, an elution solvent of tetrahydrofuran, and a column temperature of 40°C. This is a value measured by gel permeation chromatography (GPC) using dispersed polystyrene as a standard.

[樹脂合成例1]
撹拌機、温度計、窒素置換装置及び還流冷却器を具備した3Lフラスコ内に、化合物S-7の420.5g(1.000モル)を加えた後、トルエン1,400gを加え、70℃に加温した。その後、塩化白金酸トルエン溶液(白金濃度0.5質量%)1.0gを投入し、S-3の194.4g(1.000モル)を各々1時間かけて滴下した(ヒドロシリル基の合計モル数/アルケニル基の合計モル数=1.000/1.000=1.00)。滴下終了後、100℃まで加温し6時間熟成した後、反応溶液からトルエンを減圧留去し、エポキシ樹脂1の570gを得た。エポキシ樹脂1のMwは、53,200であった。エポキシ当量は307g/eqである。(エポキシ当量測定;JIS K 7236)

Figure 0007450697000031
[Resin synthesis example 1]
After adding 420.5 g (1.000 mol) of compound S-7 into a 3 L flask equipped with a stirrer, thermometer, nitrogen purging device, and reflux condenser, 1,400 g of toluene was added, and the mixture was heated to 70°C. Warmed. Thereafter, 1.0 g of chloroplatinic acid toluene solution (platinum concentration 0.5% by mass) was added, and 194.4 g (1.000 mol) of S-3 was added dropwise over 1 hour to each solution (total mole of hydrosilyl groups). number/total number of moles of alkenyl groups = 1.000/1.000 = 1.00). After the dropwise addition was completed, the mixture was heated to 100° C. and aged for 6 hours, and toluene was distilled off from the reaction solution under reduced pressure to obtain 570 g of Epoxy Resin 1. Mw of epoxy resin 1 was 53,200. Epoxy equivalent weight is 307 g/eq. (Epoxy equivalent measurement; JIS K 7236)
Figure 0007450697000031

[樹脂合成例2]
撹拌機、温度計、窒素置換装置及び還流冷却器を具備した3Lフラスコ内に、化合物S-2の133.5g(0.227モル)を加えた後、トルエン1,500gを加え、70℃に加温した。その後、塩化白金酸トルエン溶液(白金濃度0.5質量%)1.0gを投入し、化合物S-4の525.6g(0.182モル)、及び化合物S-3の8.8g(0.045モル)を各々1時間かけて滴下した(ヒドロシリル基の合計モル数/アルケニル基の合計モル数=0.500/0.500=1)。滴下終了後、100℃まで加温し、6時間熟成した後、反応溶液からトルエンを減圧留去し、下記式で表されるエポキシ樹脂2の605gを得た。エポキシ樹脂2のMwは、51,100であった。エポキシ当量は1471g/eqである。

Figure 0007450697000032
[Resin synthesis example 2]
After adding 133.5 g (0.227 mol) of compound S-2 into a 3 L flask equipped with a stirrer, thermometer, nitrogen purging device, and reflux condenser, 1,500 g of toluene was added, and the mixture was heated to 70°C. Warmed. Thereafter, 1.0 g of chloroplatinic acid toluene solution (platinum concentration 0.5% by mass) was added, and 525.6g (0.182 mol) of compound S-4 and 8.8g (0.182 mol) of compound S-3 were added. 045 mol) were added dropwise over a period of 1 hour (total number of moles of hydrosilyl groups/total number of moles of alkenyl groups = 0.500/0.500 = 1). After completion of the dropwise addition, the mixture was heated to 100° C. and aged for 6 hours, and then toluene was distilled off from the reaction solution under reduced pressure to obtain 605 g of epoxy resin 2 represented by the following formula. Mw of epoxy resin 2 was 51,100. The epoxy equivalent weight is 1471 g/eq.
Figure 0007450697000032

[樹脂合成例3]
撹拌機、温度計、窒素置換装置及び還流冷却器を具備した3Lフラスコ内に、化合物S-2の104.9g(0.179モル)、及び化合物S-5の61.5g(0.143モル)、及び化合物S-6の6.6g(0.036モル)を加えた後、トルエン1,600gを加え、70℃に加温した。その後、塩化白金酸トルエン溶液(白金濃度0.5質量%)1.0gを投入し、化合物S-4の516.3g(0.179モル)、及び化合物S-3の34.7g(0.179モル)を各々1時間かけて滴下した(ヒドロシリル基の合計モル数/アルケニル基の合計モル数=0.500/0.500=1.00)。滴下終了後、100℃まで加温し6時間熟成した後、反応溶液からトルエンを減圧留去し、エポキシ樹脂3の680gを得た。エポキシ樹脂3のMwは、46,800であった。エポキシ当量は2022g/eqである。

Figure 0007450697000033
[Resin synthesis example 3]
Into a 3L flask equipped with a stirrer, thermometer, nitrogen purging device, and reflux condenser, 104.9 g (0.179 mol) of compound S-2 and 61.5 g (0.143 mol) of compound S-5 were added. ), and 6.6 g (0.036 mol) of Compound S-6 were added, and then 1,600 g of toluene was added and the mixture was heated to 70°C. Thereafter, 1.0 g of chloroplatinic acid toluene solution (platinum concentration 0.5% by mass) was added, and 516.3g (0.179 mol) of Compound S-4 and 34.7g (0.179 mol) of Compound S-3 were added. 179 mol) were added dropwise over 1 hour (total number of moles of hydrosilyl groups/total number of moles of alkenyl groups = 0.500/0.500 = 1.00). After completion of the dropwise addition, the mixture was heated to 100° C. and aged for 6 hours, and then toluene was distilled off from the reaction solution under reduced pressure to obtain 680 g of epoxy resin 3. Mw of epoxy resin 3 was 46,800. Epoxy equivalent weight is 2022 g/eq.
Figure 0007450697000033

[2]樹脂フィルムの作製
[実施例1~21及び比較例1~7]
下記表1~2に記載した実施例1~21及び比較例1~7の組成で、(A)エポキシ樹脂、(B)フェノール性硬化剤、(C)硬化促進剤、(D)接着助剤、(E)エポキシ化合物、(F)無機充填剤をそれぞれ配合した。更に、固形成分濃度が80質量%となる量のシクロペンタノンを添加し、スターラーを使用して撹拌し、混合及び分散して、樹脂組成物の分散液を調製した。エポキシ基とフェノール当量が合うように、フェノール性硬化剤を加えた。
フィルムコーターとしてダイコーターを用い、基材フィルムとしてE7304(商品名、東洋紡(株)製ポリエステル、厚さ75μm、剥離力200mN/50mm)を用いて、各樹脂組成物を基材フィルム上に塗布した。次いで、100℃に設定されたオーブンに20分間入れることで溶剤を完全に蒸発させ、膜厚100μmの樹脂フィルムを前記基材フィルム上に形成した。
[2] Production of resin film [Examples 1 to 21 and Comparative Examples 1 to 7]
With the compositions of Examples 1 to 21 and Comparative Examples 1 to 7 listed in Tables 1 to 2 below, (A) epoxy resin, (B) phenolic curing agent, (C) curing accelerator, and (D) adhesion aid. , (E) an epoxy compound, and (F) an inorganic filler. Further, cyclopentanone was added in an amount such that the solid component concentration was 80% by mass, and the mixture was stirred using a stirrer to mix and disperse to prepare a dispersion of the resin composition. A phenolic curing agent was added so that the epoxy groups and phenol equivalents matched.
Each resin composition was applied onto the base film using a die coater as a film coater and E7304 (trade name, polyester manufactured by Toyobo Co., Ltd., thickness 75 μm, peeling force 200 mN/50 mm) as the base film. . Next, the solvent was completely evaporated by placing it in an oven set at 100° C. for 20 minutes to form a resin film with a thickness of 100 μm on the base film.

上記以外に樹脂組成物の調製に用いた各成分を下記に示す。
[(A)成分:エポキシ樹脂]
・YL983U(エポキシ当量 172g/eq;三菱ケミカル株式会社製)
In addition to the above, each component used in the preparation of the resin composition is shown below.
[Component (A): Epoxy resin]
・YL983U (epoxy equivalent 172g/eq; manufactured by Mitsubishi Chemical Corporation)

[(B)成分:フェノール性硬化剤]

Figure 0007450697000034
Figure 0007450697000035
[Component (B): Phenolic curing agent]
Figure 0007450697000034
Figure 0007450697000035

[(C)成分:硬化促進剤]
・キュアゾール2P4MHZ(四国化成工業(株)製、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール)
[Component (C): Curing accelerator]
・Curezol 2P4MHZ (manufactured by Shikoku Kasei Kogyo Co., Ltd., 2-phenyl-4-methyl-5-hydroxymethylimidazole)

[(D)成分:接着助剤]

Figure 0007450697000036
[Component (D): Adhesive aid]
Figure 0007450697000036

[(E)成分:エポキシ化合物]

Figure 0007450697000037
Figure 0007450697000038
[Component (E): Epoxy compound]
Figure 0007450697000037
Figure 0007450697000038

[(F)成分:無機充填剤]
・シリカ1(株式会社アドマテックス製、平均粒径5.0μm)
・シリカ2(株式会社アドマテックス製、平均粒径10.0μm)
[Component (F): Inorganic filler]
・Silica 1 (manufactured by Admatex Co., Ltd., average particle size 5.0 μm)
・Silica 2 (manufactured by Admatex Co., Ltd., average particle size 10.0 μm)

[3]樹脂フィルムの評価
得られた樹脂フィルムについて、以下の方法で評価を行った。結果を表1~2に示す。
<接着試験方法>
作製したフィルムを20mm角シリコンウエハに貼り付け、その上から2mm角に切ったシリコンチップを押し当てて、それらを加熱硬化(180℃×4時間)し、その後、接着力測定装置(ノードソン・アドバンスト・テクノロジー社製万能型ボンドテスター シリーズ4000(DS-100))を用いて、チップの横からはじいた際の接着力を測定した(ダイシェアテスト)。
[3] Evaluation of resin film The obtained resin film was evaluated by the following method. The results are shown in Tables 1 and 2.
<Adhesion test method>
The produced film was pasted on a 20 mm square silicon wafer, a silicon chip cut into 2 mm square pieces was pressed onto it, and the film was cured by heating (180°C x 4 hours). - Using a universal bond tester series 4000 (DS-100) manufactured by Technology Co., Ltd., the adhesive strength was measured when the chip was flipped from the side (die shear test).

<反り応力測定試験方法>
作製したフィルムをフィルムラミネータ―(TAKATORI TEAM-100)にて、シリコンウエハ上にラミネートし、加熱硬化(180℃×4時間)し、それらを東朋テクノロジー社製薄膜応力測定装置(FLX-2320-S)で反り応力を測定した。
<Warp stress measurement test method>
The produced film was laminated onto a silicon wafer using a film laminator (TAKATORI TEAM-100), heated and cured (180°C x 4 hours), and then measured using a thin film stress measuring device (FLX-2320-) manufactured by Toho Technology Co., Ltd. S) was used to measure warping stress.

<信頼性試験方法>
シリコンウエハ上にエポキシ系接着材(SINR-DF3770;信越化学工業株式会社製)を用いて10mm角の400um厚シリコンチップをマウントし、接着剤を加熱硬化させた(190℃×2hr)。その後、作製したフィルムをフィルムラミネータ―(TAKATORI TEAM-100)にて、シリコンウエハ上にラミネートし、加熱硬化(180℃×4時間)後、チップを中心として、1辺3cmの正方形にダイシングした。それをエスペック社製 冷熱衝撃試験器に入れ、-55℃~125℃ 1000回の冷熱衝撃試験を実施し、チップとモールドの界面の状態を断面観察により確認した。剥離やクラックがあれば×、問題がなければ〇とした。
<Reliability test method>
A 10 mm square 400 um thick silicon chip was mounted on a silicon wafer using an epoxy adhesive (SINR-DF3770; manufactured by Shin-Etsu Chemical Co., Ltd.), and the adhesive was cured by heating (190° C. x 2 hr). Thereafter, the produced film was laminated onto a silicon wafer using a film laminator (TAKATORI TEAM-100), heated and cured (180° C. for 4 hours), and then diced into squares of 3 cm on each side with the chip as the center. It was placed in a thermal shock tester manufactured by ESPEC, and subjected to 1000 thermal shock tests at -55°C to 125°C, and the state of the interface between the chip and the mold was confirmed by cross-sectional observation. If there is peeling or cracking, it is marked as ×, and if there is no problem, it is marked as ○.

表1に実施例を、表2に比較例を示す。

Figure 0007450697000039
Figure 0007450697000040
Table 1 shows Examples, and Table 2 shows Comparative Examples.
Figure 0007450697000039
Figure 0007450697000040

以上の結果、本発明の樹脂組成物(実施例1~21)から得られた樹脂フィルムは、(D)成分を含まない組成物(比較例1~7)から得られた樹脂フィルムと比べて、接着力が向上し、パッケージの信頼性に大きく寄与していることが示された。この特徴から、本発明の樹脂組成物を半導体封止用フィルムに用いた場合、剥離が起こりづらいといえる。
これにより、例えば、フィルム状モールド用途に本発明の樹脂組成物を使用した場合、チップ搭載ウエハに対して、良好な低反り性、難剥離性を示すことが可能である。
As a result, the resin films obtained from the resin compositions of the present invention (Examples 1 to 21) were superior to those obtained from the compositions not containing component (D) (Comparative Examples 1 to 7). , it was shown that the adhesive strength was improved and significantly contributed to the reliability of the package. From this feature, it can be said that when the resin composition of the present invention is used in a film for semiconductor encapsulation, peeling is difficult to occur.
As a result, when the resin composition of the present invention is used, for example, in a film-like mold application, it is possible to exhibit good low warping properties and difficult peeling properties for chip-mounted wafers.

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。 Note that the present invention is not limited to the above embodiments. The above-mentioned embodiments are illustrative, and any embodiment that has substantially the same configuration as the technical idea stated in the claims of the present invention and has similar effects is the present invention. covered within the technical scope of

Claims (11)

下記(A)~(D)を含む半導体封止用樹脂組成物。
(A)エポキシ基を140~5000g/eqの範囲のエポキシ当量で含有するシリコーン変性エポキシ樹脂、
(B)フェノール性硬化剤、
(C)硬化促進剤、
(D)下記式(0-4)~(0-)で示される中から少なくとも1つ選択される接着助剤(但し、3-メタクリロキシプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシランを除く。)
Figure 0007450697000041
(R’は加水分解性シリル基を含有する炭素数1~20の1価の有機基、R’ は水素原子又は炭素数1~20の1価の有機基、Arは置換基を2つ持っていてもよい芳香環、もしくは複素環を示す。)
A resin composition for semiconductor encapsulation comprising the following (A) to (D).
(A) a silicone-modified epoxy resin containing epoxy groups with an epoxy equivalent in the range of 140 to 5000 g/eq;
(B) phenolic curing agent,
(C) curing accelerator,
(D) At least one adhesion aid selected from the following formulas (0-4) to ( 0-7 ) (provided that 3-methacryloxypropyltriethoxysilane, N-phenyl-3-aminopropyl (Excluding trimethoxysilane )
Figure 0007450697000041
( R'1 is a monovalent organic group having 1 to 20 carbon atoms containing a hydrolyzable silyl group, R'2 is a hydrogen atom or a monovalent organic group having 1 to 20 carbon atoms, and Ar is a substituent. Indicates an aromatic ring or a heterocycle that may have two.)
更に、前記(A)成分以外の(E)エポキシ化合物が、前記(A)成分100質量部に対し、0.1~80質量部含まれるものであることを特徴とする請求項1に記載の半導体封止用樹脂組成物。 Furthermore, the epoxy compound (E) other than the component (A) is contained in an amount of 0.1 to 80 parts by mass based on 100 parts by mass of the component (A). Resin composition for semiconductor encapsulation. 更に、(F)無機充填剤を含むものであることを特徴とする請求項1または請求項2に記載の半導体封止用樹脂組成物。 The resin composition for semiconductor encapsulation according to claim 1 or 2, further comprising (F) an inorganic filler. 前記(F)無機充填剤が、シリカであり、前記樹脂組成物中20~96質量%含まれるものであることを特徴とする請求項3に記載の半導体封止用樹脂組成物。 The resin composition for semiconductor encapsulation according to claim 3, wherein the inorganic filler (F) is silica and is contained in the resin composition in an amount of 20 to 96% by mass. 前記式(0-5)中のR’R' in the above formula (0-5) 2 が炭素数1~20の1価の有機基であることを特徴とする請求項1から請求項4のいずれか1項に記載の半導体封止用樹脂組成物。The resin composition for semiconductor encapsulation according to any one of claims 1 to 4, wherein is a monovalent organic group having 1 to 20 carbon atoms. 前記シリコーン変性エポキシ樹脂が、下記式(4)で表される構成単位を含み、重量平均分子量が3,000~500,000であることを特徴とする請求項1から請求項5のいずれか1項に記載の半導体封止用樹脂組成物。
Figure 0007450697000042
[式中、R~Rは、それぞれ独立に、炭素数1~20の1価炭化水素基又はアルコキシ基であり、互いに同一でも異なっていてもよい。また、a、b、c、d及びeは、各繰り返し単位の組成比を表し、0<a<1、0≦b<1、0≦c<1、0<d<1、0≦e<1、0.67≦(b+d)/(a+c+e)≦1.67、かつa+b+c+d+e=1を満たす数である。gは、0~300の整数である。Xは、下記式(5)で表される2価の有機基である。Yは、下記式(6)で表される2価のシロキサン骨格含有基である。Zは下記式(7)で表される2価の有機基である。]
Figure 0007450697000043
(式中、Eは、単結合、又は下記式
Figure 0007450697000044
から選ばれる2価の有機基である。R及びRは、炭素数1~20の1価炭化水素基又はアルコキシ基であり、互いに同一でも異なっていてもよい。t及びuは、それぞれ独立に、0~2の整数である。)
Figure 0007450697000045
(式中、vは、0~300の整数である。)
Figure 0007450697000046
(式中、Gは、単結合、又は下記式
Figure 0007450697000047
から選ばれる2価の有機基である。R及びR10は、炭素数1~20の1価炭化水素基又はアルコキシ基であり、互いに同一でも異なっていてもよい。w及びxは、それぞれ独立に、0~2の整数である。)
Any one of claims 1 to 5, wherein the silicone-modified epoxy resin contains a structural unit represented by the following formula (4) and has a weight average molecular weight of 3,000 to 500,000. The resin composition for semiconductor encapsulation as described in 1 .
Figure 0007450697000042
[In the formula, R 1 to R 6 are each independently a monovalent hydrocarbon group or an alkoxy group having 1 to 20 carbon atoms, and may be the same or different from each other. In addition, a, b, c, d and e represent the composition ratio of each repeating unit, 0<a<1, 0≦b<1, 0≦c<1, 0<d<1, 0≦e< 1, 0.67≦(b+d)/(a+c+e)≦1.67, and a+b+c+d+e=1. g is an integer from 0 to 300. X is a divalent organic group represented by the following formula (5). Y is a divalent siloxane skeleton-containing group represented by the following formula (6). Z is a divalent organic group represented by the following formula (7). ]
Figure 0007450697000043
(In the formula, E is a single bond or the following formula
Figure 0007450697000044
It is a divalent organic group selected from. R 7 and R 8 are a monovalent hydrocarbon group or an alkoxy group having 1 to 20 carbon atoms, and may be the same or different. t and u are each independently an integer of 0 to 2. )
Figure 0007450697000045
(In the formula, v is an integer from 0 to 300.)
Figure 0007450697000046
(In the formula, G is a single bond or the following formula
Figure 0007450697000047
It is a divalent organic group selected from. R 9 and R 10 are monovalent hydrocarbon groups or alkoxy groups having 1 to 20 carbon atoms, and may be the same or different. w and x are each independently an integer of 0 to 2. )
請求項1から請求項6のいずれか1項に記載の半導体封止用樹脂組成物がフィルム化されたものであることを特徴とする樹脂フィルム。 A resin film, characterized in that the resin composition for semiconductor encapsulation according to any one of claims 1 to 6 is formed into a film. 半導体ウエハ上に請求項7に記載の樹脂フィルムの硬化物を有するものであることを特徴とする半導体積層体。 A semiconductor laminate comprising a cured product of the resin film according to claim 7 on a semiconductor wafer. 半導体装置であって、
請求項8に記載の半導体積層体が個片化されたものであることを特徴とする半導体装置。
A semiconductor device,
A semiconductor device, characterized in that the semiconductor laminate according to claim 8 is singulated.
半導体積層体の製造方法であって、
請求項7に記載の樹脂フィルムを半導体ウエハに貼り付け、該半導体ウエハをモールドする工程と、前記樹脂フィルムを加熱硬化する工程とを有することを特徴とする半導体積層体の製造方法。
A method for manufacturing a semiconductor laminate, the method comprising:
A method for manufacturing a semiconductor laminate, comprising the steps of attaching the resin film according to claim 7 to a semiconductor wafer, molding the semiconductor wafer, and heating and curing the resin film.
半導体装置の製造方法であって、
請求項10に記載の半導体積層体の製造方法によって製造した半導体積層体を個片化する工程を有することを特徴とする半導体装置の製造方法。

A method for manufacturing a semiconductor device, the method comprising:
A method for manufacturing a semiconductor device, comprising the step of dividing the semiconductor layered product manufactured by the method for manufacturing a semiconductor layered product according to claim 10 into individual pieces.

JP2022207102A 2019-01-21 2022-12-23 Resin composition, resin film, semiconductor laminate, method for manufacturing semiconductor laminate, and method for manufacturing semiconductor device Active JP7450697B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022207102A JP7450697B2 (en) 2019-01-21 2022-12-23 Resin composition, resin film, semiconductor laminate, method for manufacturing semiconductor laminate, and method for manufacturing semiconductor device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2019008078A JP7071300B2 (en) 2019-01-21 2019-01-21 Resin composition, resin film, semiconductor laminate, method for manufacturing semiconductor laminate, and method for manufacturing semiconductor device
JP2021205663A JP7304399B2 (en) 2019-01-21 2021-12-20 Resin composition, resin film, semiconductor laminate, method for producing semiconductor laminate, and method for producing semiconductor device
JP2022207102A JP7450697B2 (en) 2019-01-21 2022-12-23 Resin composition, resin film, semiconductor laminate, method for manufacturing semiconductor laminate, and method for manufacturing semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2021205663A Division JP7304399B2 (en) 2019-01-21 2021-12-20 Resin composition, resin film, semiconductor laminate, method for producing semiconductor laminate, and method for producing semiconductor device

Publications (2)

Publication Number Publication Date
JP2023040078A JP2023040078A (en) 2023-03-22
JP7450697B2 true JP7450697B2 (en) 2024-03-15

Family

ID=86996497

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2021205663A Active JP7304399B2 (en) 2019-01-21 2021-12-20 Resin composition, resin film, semiconductor laminate, method for producing semiconductor laminate, and method for producing semiconductor device
JP2022207102A Active JP7450697B2 (en) 2019-01-21 2022-12-23 Resin composition, resin film, semiconductor laminate, method for manufacturing semiconductor laminate, and method for manufacturing semiconductor device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2021205663A Active JP7304399B2 (en) 2019-01-21 2021-12-20 Resin composition, resin film, semiconductor laminate, method for producing semiconductor laminate, and method for producing semiconductor device

Country Status (1)

Country Link
JP (2) JP7304399B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008115382A (en) 2006-10-12 2008-05-22 Hitachi Chem Co Ltd Epoxy resin composition for sealing, and electronic parts device
JP2009102631A (en) 2007-10-04 2009-05-14 Hitachi Chem Co Ltd Epoxy resin composition for sealing and electronic part device
JP2013194199A (en) 2012-03-22 2013-09-30 Hitachi Chemical Co Ltd Epoxy resin composition for sealing semiconductor and semiconductor device obtained by using the composition
JP2016141739A (en) 2015-02-02 2016-08-08 ナミックス株式会社 Film adhesive and semiconductor device using the same
JP2016204553A (en) 2015-04-24 2016-12-08 信越化学工業株式会社 Resin composition, resin film, semiconductor device and method for manufacturing the same
JP2017145295A (en) 2016-02-16 2017-08-24 京セラケミカル株式会社 Epoxy resin composition and semiconductor device
JP2018172599A (en) 2017-03-31 2018-11-08 日立化成株式会社 Liquid sealing material, semiconductor device, and semiconductor device production method
JP2018188494A (en) 2017-04-28 2018-11-29 住友ベークライト株式会社 Encapsulation resin composition and method for manufacturing electronic device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6155931B2 (en) * 2013-07-19 2017-07-05 住友ベークライト株式会社 Resin composition, adhesive film, adhesive sheet, dicing tape integrated adhesive sheet, and electronic component

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008115382A (en) 2006-10-12 2008-05-22 Hitachi Chem Co Ltd Epoxy resin composition for sealing, and electronic parts device
JP2009102631A (en) 2007-10-04 2009-05-14 Hitachi Chem Co Ltd Epoxy resin composition for sealing and electronic part device
JP2013194199A (en) 2012-03-22 2013-09-30 Hitachi Chemical Co Ltd Epoxy resin composition for sealing semiconductor and semiconductor device obtained by using the composition
JP2016141739A (en) 2015-02-02 2016-08-08 ナミックス株式会社 Film adhesive and semiconductor device using the same
JP2016204553A (en) 2015-04-24 2016-12-08 信越化学工業株式会社 Resin composition, resin film, semiconductor device and method for manufacturing the same
JP2017145295A (en) 2016-02-16 2017-08-24 京セラケミカル株式会社 Epoxy resin composition and semiconductor device
JP2018172599A (en) 2017-03-31 2018-11-08 日立化成株式会社 Liquid sealing material, semiconductor device, and semiconductor device production method
JP2018188494A (en) 2017-04-28 2018-11-29 住友ベークライト株式会社 Encapsulation resin composition and method for manufacturing electronic device

Also Published As

Publication number Publication date
JP2023040078A (en) 2023-03-22
JP2022046586A (en) 2022-03-23
JP7304399B2 (en) 2023-07-06

Similar Documents

Publication Publication Date Title
US10026650B2 (en) Resin composition, resin film, semiconductor device and method of manufacture thereof
CN109467941B (en) Resin composition, resin film, semiconductor laminate, method for producing semiconductor laminate, and method for producing semiconductor device
KR102295921B1 (en) Resin composition, resin film, and semiconductor device and method for manufacturing same
TWI601763B (en) Polysilicon resin, resin composition, resin film, semiconductor device and method of manufacturing the same
CN109467942B (en) Resin composition, resin film, semiconductor laminate, method for producing semiconductor laminate, and method for producing semiconductor device
JP6466882B2 (en) Resin composition, resin film, method for producing resin film, method for producing semiconductor device, and semiconductor device
EP3686232B1 (en) Resin composition, resin film, semiconductor laminate, method for producing semiconductor laminate and method for producing semiconductor device
TWI728087B (en) Resin composition, resin film, resin film manufacturing method, semiconductor device manufacturing method, and semiconductor device
JP7222955B2 (en) Resin composition and resin film
JP7450697B2 (en) Resin composition, resin film, semiconductor laminate, method for manufacturing semiconductor laminate, and method for manufacturing semiconductor device
JP7415536B2 (en) Resin composition, resin film, semiconductor laminate, method for manufacturing semiconductor laminate, semiconductor device, and method for manufacturing semiconductor device
JP6828306B2 (en) Resin composition, resin film, manufacturing method of semiconductor device and semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240305

R150 Certificate of patent or registration of utility model

Ref document number: 7450697

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150