JP7450353B2 - Magnetite thin film and magnetic tunnel junction device - Google Patents

Magnetite thin film and magnetic tunnel junction device Download PDF

Info

Publication number
JP7450353B2
JP7450353B2 JP2019158124A JP2019158124A JP7450353B2 JP 7450353 B2 JP7450353 B2 JP 7450353B2 JP 2019158124 A JP2019158124 A JP 2019158124A JP 2019158124 A JP2019158124 A JP 2019158124A JP 7450353 B2 JP7450353 B2 JP 7450353B2
Authority
JP
Japan
Prior art keywords
magnetite
thin film
layer
magnetite thin
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019158124A
Other languages
Japanese (ja)
Other versions
JP2021036570A (en
Inventor
雅人 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Institute for Electromagnetic Materials
Original Assignee
Research Institute for Electromagnetic Materials
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Institute for Electromagnetic Materials filed Critical Research Institute for Electromagnetic Materials
Priority to JP2019158124A priority Critical patent/JP7450353B2/en
Publication of JP2021036570A publication Critical patent/JP2021036570A/en
Application granted granted Critical
Publication of JP7450353B2 publication Critical patent/JP7450353B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Hall/Mr Elements (AREA)

Description

本発明は、垂直磁化膜を構成するマグネタイト薄膜およびこれを用いた磁気トンネル接合素子に関する。 The present invention relates to a magnetite thin film constituting a perpendicularly magnetized film and a magnetic tunnel junction element using the same.

本出願人により、絶縁体バリア層の両側を、室温以上のキュリー点を有するハーフメタル強磁性酸化物層が挟みこむ構造および面内磁化反転を特徴とする強磁性トンネル接合素子が提案されている(特許文献1参照)。 The present applicant has proposed a ferromagnetic tunnel junction element characterized by a structure in which an insulating barrier layer is sandwiched on both sides by half-metal ferromagnetic oxide layers having a Curie point above room temperature, and in-plane magnetization reversal. (See Patent Document 1).

特開平11-097766号公報Japanese Patent Application Publication No. 11-097766

上記強磁性トンネル接合素子は、外部磁場での磁化反転によるスイッチングを原理とした面内型の第一世代MRAMに対応したものであり、STT-MRAMなど現状の電流による磁化反転(スピン注入)を原理とした高記憶容量の第三世代垂直磁化型MRAMに対応させるためには、ハーフメタル強磁性酸化物層に反磁界エネルギー以上の強い垂直磁気異方性を付与させ垂直磁化層とする必要がある。 The above-mentioned ferromagnetic tunnel junction device is compatible with the first generation in-plane MRAM, which uses the principle of switching by magnetization reversal using an external magnetic field, and is compatible with the current STT-MRAM, which uses magnetization reversal (spin injection) by current. In order to be compatible with the third generation perpendicular magnetization type MRAM with high storage capacity based on the principle, it is necessary to give the half-metal ferromagnetic oxide layer a perpendicular magnetic anisotropy stronger than the demagnetizing field energy to form a perpendicular magnetization layer. be.

しかし、マグネタイトは高キュリー点(850K)を有し、高温相がハーフメタル特性など興味深い電子物性を示すが、立方晶のため反磁界エネルギー以上の強い一軸磁気異方性は得られない。もし整合歪みなどで異方性を制御し垂直磁化膜が得られれば、垂直磁化型MRAMなど各種デバイス応用への展開も期待できる。 However, although magnetite has a high Curie point (850 K) and its high-temperature phase exhibits interesting electronic properties such as half-metal properties, it cannot obtain strong uniaxial magnetic anisotropy exceeding demagnetizing field energy because of its cubic crystal structure. If a perpendicularly magnetized film can be obtained by controlling the anisotropy using alignment strain, etc., it can be expected to be applied to various devices such as perpendicularly magnetized MRAM.

そこで、本発明は、垂直磁気異方性の向上を図りうるマグネタイト薄膜およびこれを用いた垂直磁化型磁気トンネル接合素子を提供することを目的とする。 SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a magnetite thin film capable of improving perpendicular magnetic anisotropy and a perpendicular magnetization type magnetic tunnel junction element using the same.

本発明のマグネタイト薄膜は、(111)単結晶基板の上に(111)配向を有するエピタキシャル層として形成され、厚さ2~500nmであり、かつ、組成式Fe3-δ12.7×10 -3 ≦δ1≦0.01)で表わされることを特徴とする。
The magnetite thin film of the present invention is formed as an epitaxial layer having a (111) orientation on a (111) single crystal substrate, has a thickness of 2 to 500 nm, and has a composition formula of Fe 3-δ1 O 4 ( 2.7 ×10 −3 ≦δ1≦0.01).

本発明の磁気トンネル接合素子は、(111)単結晶基板の上に(111)配向を有し、組成式Fe3-δ14(2.7×10-3≦δ1≦0.01)で表わされる厚さ2~500nmのエピタキシャル層として形成された第1のマグネタイト層と、前記第1のマグネタイト層の上に形成された厚さ0.5~2nmのエピタキシャル絶縁体バリア層と、前記エピタキシャル絶縁体バリア層の上に(111)配向を有し、組成式Fe3-δ24(2.7×10-3≦δ2≦0.01)で表わされる厚さ2~500nmのエピタキシャル層として形成された第2のマグネタイト層とを備えていることを特徴とする。 The magnetic tunnel junction device of the present invention has a (111) orientation on a (111) single crystal substrate, and has a compositional formula of Fe 3-δ1 O 4 (2.7×10 −3 ≦δ1≦0.01). a first magnetite layer formed as an epitaxial layer with a thickness of 2 to 500 nm; an epitaxial insulator barrier layer with a thickness of 0.5 to 2 nm formed on the first magnetite layer; As an epitaxial layer having a (111) orientation on an insulating barrier layer and having a thickness of 2 to 500 nm and having a composition formula of Fe 3-δ2 O 4 (2.7×10 −3 ≦δ2≦0.01). A second magnetite layer is formed.

本発明のマグネタイト薄膜は、垂直磁気異方性の増大が図られているために垂直磁化膜として機能しうる。本発明の磁気トンネル接合素子は、一対のマグネタイト層が垂直磁化膜として機能するため、電流によって磁化反転を行う高記憶容量の第三世代垂直磁化型MRAMに対応することが可能である。またマグネタイトはスピン分極率100%のハーフメタルであるため理論的には無限大のMR比(磁気抵抗変化)が期待できるため、高記憶容量MRAMに要求される高いMR比にも対応可能である。 The magnetite thin film of the present invention has increased perpendicular magnetic anisotropy and can function as a perpendicularly magnetized film. Since the pair of magnetite layers functions as a perpendicular magnetization film, the magnetic tunnel junction element of the present invention can be used in a third generation perpendicular magnetization type MRAM with a high storage capacity that performs magnetization reversal using an electric current. Furthermore, since magnetite is a half metal with a spin polarization rate of 100%, it can theoretically be expected to have an infinite MR ratio (magnetoresistance change), so it can also support the high MR ratio required for high storage capacity MRAM. .

一般的に酸化物の電子状態は酸素組成に敏感であることが知られており、特にマグネタイトはその固有のVerwey転移がストイキオメトリーからのわずかなずれで転移点が低温側にシフトし消失してしまうため、ハーフメタルなど電子物性の応用には、ストイキオメトリーからの組成ずれである空孔パラメータδ(Fe3-δ4)を十分小さく保つことが重要である。 It is generally known that the electronic state of oxides is sensitive to oxygen composition, and in magnetite in particular, the inherent Verwey transition shifts to the lower temperature side and disappears with a slight deviation from stoichiometry. Therefore, for applications in electronic properties such as half metals, it is important to keep the vacancy parameter δ (Fe 3 - δ O 4 ), which is the compositional deviation from stoichiometry, sufficiently small.

本発明の一実施形態としての磁気トンネル接合素子の構成に関する説明図。FIG. 1 is an explanatory diagram regarding the configuration of a magnetic tunnel junction element as an embodiment of the present invention. 実施例1のマグネタイト薄膜のXRDスペクトル。XRD spectrum of the magnetite thin film of Example 1. 実施例2のマグネタイト薄膜のXRDスペクトル。XRD spectrum of the magnetite thin film of Example 2. 実施例3のマグネタイト薄膜のXRDスペクトル。XRD spectrum of the magnetite thin film of Example 3. 実施例1のマグネタイト薄膜の高分解能断面TEM像。A high-resolution cross-sectional TEM image of the magnetite thin film of Example 1. 比較例1のマグネタイト薄膜のXRDスペクトル。XRD spectrum of the magnetite thin film of Comparative Example 1. 比較例2のマグネタイト薄膜のXRDスペクトル。XRD spectrum of magnetite thin film of Comparative Example 2. 実施例1のマグネタイト薄膜の垂直方向および水平方向の磁化曲線。3 shows vertical and horizontal magnetization curves of the magnetite thin film of Example 1. 実施例2のマグネタイト薄膜の垂直方向および水平方向の磁化曲線。Vertical and horizontal magnetization curves of the magnetite thin film of Example 2. 実施例3のマグネタイト薄膜の垂直方向および水平方向の磁化曲線。Vertical and horizontal magnetization curves of the magnetite thin film of Example 3. 比較例1のマグネタイト薄膜の垂直方向および水平方向の磁化曲線。Vertical and horizontal magnetization curves of the magnetite thin film of Comparative Example 1. 比較例2のマグネタイト薄膜の垂直方向および水平方向の磁化曲線。Vertical and horizontal magnetization curves of the magnetite thin film of Comparative Example 2. 実施例2のマグネタイト薄膜のCEMSスペクトル。CEMS spectrum of the magnetite thin film of Example 2.

図1に示されている本発明の一実施形態としての磁気トンネル接合素子は、基板1の上に形成された第1のマグネタイト層11と、第1のマグネタイト層11の上に形成された絶縁体バリア層20と、絶縁体バリア層20の上に形成された第2のマグネタイト層12と、を備えている。 The magnetic tunnel junction element as an embodiment of the present invention shown in FIG. The structure includes a body barrier layer 20 and a second magnetite layer 12 formed on the insulator barrier layer 20.

基板1は、SrTiO3(111)単結晶基板、MgO(111)単結晶基板、MgAl24(111)単結晶基板またはSi(111)単結晶基板など、表面が(111)配向を有する単結晶基板により構成されている。第1のマグネタイト層11は、本発明の一実施形態としてのマグネタイト薄膜であり、基体1の表面に垂直な方向または厚さ方向に(111)配向を有し、組成式Fe3-δ14(0≦δ1≦0.01)で表わされる厚さ2~500nmのエピタキシャル層として形成されている。エピタキシャル絶縁体バリア層20は、厚さ0.5~2nmのMgO(111)、γ-Fe23(111)、α-Fe23(0001)、SrTiO3(111)、MgAl24(111)、α-Al23(0001)により構成されている。第2のマグネタイト層12は、第1のマグネタイト層11と同様に、厚さ方向に(111)配向を有し、組成式Fe3-δ24(0≦δ2≦0.01)で表わされる厚さ2~500nmのエピタキシャル層として形成されている。 The substrate 1 is a single crystal substrate whose surface has a (111) orientation, such as a SrTiO 3 (111) single crystal substrate, an MgO (111) single crystal substrate, a MgAl 2 O 4 (111) single crystal substrate, or a Si (111) single crystal substrate. It is composed of a crystal substrate. The first magnetite layer 11 is a magnetite thin film as an embodiment of the present invention, has a (111) orientation in the direction perpendicular to the surface of the substrate 1 or in the thickness direction, and has a composition formula of Fe 3-δ1 O 4 It is formed as an epitaxial layer with a thickness of 2 to 500 nm expressed by (0≦δ1≦0.01). The epitaxial insulator barrier layer 20 is made of MgO (111), γ-Fe 2 O 3 (111), α-Fe 2 O 3 (0001), SrTiO 3 (111), MgAl 2 O with a thickness of 0.5 to 2 nm. 4 (111) and α-Al 2 O 3 (0001). Like the first magnetite layer 11, the second magnetite layer 12 has a (111) orientation in the thickness direction, and is represented by the composition formula Fe 3-δ2 O 4 (0≦δ2≦0.01). It is formed as an epitaxial layer with a thickness of 2 to 500 nm.

(実施例) (Example)

(実施例1)
SrTiO3(111)単結晶基板が加熱され、300~900℃(例えば600℃)まで昇温された状態のSrTiO3(111)単結晶基板の上に、FeO焼結ターゲットが用いられ、かつ、ArガスおよびO2ガスの混合ガスが導入される反応性RFマグネトロンスパッタ法により、厚さ433nmの実施例1のマグネタイト薄膜が作製された。この際、混合ガスの酸素量は流量比で1~2%に制御された。
(Example 1)
A FeO sintering target is used on the SrTiO 3 (111) single crystal substrate in a state where the SrTiO 3 (111) single crystal substrate is heated and the temperature is raised to 300 to 900° C. (for example, 600° C.), and The magnetite thin film of Example 1 having a thickness of 433 nm was produced by a reactive RF magnetron sputtering method in which a mixed gas of Ar gas and O 2 gas was introduced. At this time, the amount of oxygen in the mixed gas was controlled at a flow rate ratio of 1 to 2%.

(実施例2)
実施例1と同様の作製条件にしたがって、厚さ87nmの実施例2のマグネタイト薄膜が作製された。
(Example 2)
According to the same manufacturing conditions as in Example 1, a magnetite thin film of Example 2 having a thickness of 87 nm was manufactured.

(実施例3)
実施例1と同様の作製条件にしたがって、厚さ17nmの実施例3のマグネタイト薄膜が作製された。
(Example 3)
According to the same manufacturing conditions as in Example 1, a magnetite thin film of Example 3 having a thickness of 17 nm was manufactured.

(比較例) (Comparative example)

(比較例1)
基板としてMgO(100)単結晶基板が用いられたほか、実施例1と同様の作製条件にしたがって、厚さ106nmの比較例1のマグネタイト薄膜が作製された。
(Comparative example 1)
In addition to using an MgO (100) single crystal substrate as a substrate, a magnetite thin film of Comparative Example 1 having a thickness of 106 nm was manufactured according to the same manufacturing conditions as Example 1.

(比較例2)
基板としてSrTiO3(100)単結晶基板が用いられたほか、実施例1と同様の作製条件にしたがって、厚さ79nmの比較例2のマグネタイト薄膜が作製された。
(Comparative example 2)
In addition to using a SrTiO 3 (100) single crystal substrate as a substrate, a magnetite thin film of Comparative Example 2 having a thickness of 79 nm was fabricated under the same fabrication conditions as in Example 1.

(評価)
図2A~図2Cのそれぞれには、実施例1~3のそれぞれのマグネタイト薄膜を対象として、Ge(220)モノクロメータを用いて得られた高分解能XRDスペクトルが示されている。図2A~図2Cから、実施例1~3のそれぞれのマグネタイト薄膜が、SrTiO3(111)単結晶基板の上に、厚さ方向に(111)配向したマグネタイト薄膜(Fe34薄膜)であること、および、膜厚が大きいほどFe34(111)に相当するXRDピークが高いことがわかる。図3には、実施例1のマグネタイト膜とSrTiO3(111)単結晶基板の界面付近の高分解能断面TEM(HAADF-STEM)像が示されている。マグネタイト膜の原子配列が単結晶基板と同程度に明瞭に観察され、良好な結晶性を保ちつつエピタキシャル成長していることが確認される。
(evaluation)
Each of FIGS. 2A to 2C shows high-resolution XRD spectra obtained using a Ge (220) monochromator for each of the magnetite thin films of Examples 1 to 3. From FIGS. 2A to 2C, each of the magnetite thin films of Examples 1 to 3 is a magnetite thin film (Fe 3 O 4 thin film) with (111) orientation in the thickness direction on a SrTiO 3 (111) single crystal substrate. It can be seen that the larger the film thickness, the higher the XRD peak corresponding to Fe 3 O 4 (111). FIG. 3 shows a high-resolution cross-sectional TEM (HAADF-STEM) image of the vicinity of the interface between the magnetite film of Example 1 and the SrTiO 3 (111) single crystal substrate. The atomic arrangement of the magnetite film was observed as clearly as that of a single crystal substrate, confirming that it was grown epitaxially while maintaining good crystallinity.

図4Aおよび図4Bのそれぞれには、比較例1および比較例2のそれぞれのマグネタイト薄膜のXRDスペクトルが示されている。MgO(100)およびSrTiO3(100)基板ピークの脇にマグネタイトFe34(400)ピークが観測され、マグネタイト膜が(100)配向していることが確認できる。 4A and 4B each show the XRD spectra of the magnetite thin films of Comparative Example 1 and Comparative Example 2, respectively. A magnetite Fe 3 O 4 (400) peak is observed beside the MgO (100) and SrTiO 3 (100) substrate peaks, confirming that the magnetite film is (100) oriented.

図5A~図5Cのそれぞれには、実施例1~3のそれぞれのマグネタイト薄膜を対象として、VSM(振動試料型磁力計)を用いて得られた膜面垂直方向に磁界印加した磁化曲線(実線)および膜面内方向に印加した磁化曲線(点線)が示されている。垂直方向のヒステリシスループが閉じる5kOe以上の磁界において、垂直方向の磁化が面内方向よりも大きくなっており、また保磁力も垂直方向の方が大きいため、垂直磁気異方性が誘起され垂直磁化膜となっていることが確認できる。図5A~図5Cから、実施例1のマグネタイト薄膜の垂直方向の飽和磁化が5.9kGであること、実施例2のマグネタイト薄膜の垂直方向の飽和磁化が6.1kGであること、実施例3のマグネタイト薄膜の垂直方向の飽和磁化が5.9kGであること、および、マグネタイト薄膜の膜厚によって垂直方向の飽和磁化がさほど差がないことがわかる。図5A~図5Cから、実施例1のマグネタイト薄膜の垂直方向の保磁力が0.52kOeであること、実施例2のマグネタイト薄膜の垂直方向の飽和磁化が1.06kOeであること、実施例3のマグネタイト薄膜の垂直方向の飽和磁化が0.65kOeであること、および、膜厚が2~500nmの範囲に含まれている87nmである実施例2のマグネタイト薄膜の垂直方向の保磁力が比較的大きいことがわかる。 5A to 5C show magnetization curves (solid lines) obtained by applying a magnetic field in the direction perpendicular to the film surface obtained using a VSM (vibrating sample magnetometer) for each of the magnetite thin films of Examples 1 to 3. ) and the magnetization curve (dotted line) applied in the in-plane direction of the film. In a magnetic field of 5 kOe or more, where the vertical hysteresis loop closes, the magnetization in the vertical direction is larger than that in the in-plane direction, and the coercive force is also larger in the vertical direction, so perpendicular magnetic anisotropy is induced and perpendicular magnetization occurs. It can be confirmed that it is a film. From FIGS. 5A to 5C, it can be seen that the perpendicular saturation magnetization of the magnetite thin film of Example 1 is 5.9 kG, that the perpendicular saturation magnetization of the magnetite thin film of Example 2 is 6.1 kG, and that Example 3 It can be seen that the perpendicular saturation magnetization of the magnetite thin film is 5.9 kG, and that the perpendicular saturation magnetization does not differ much depending on the thickness of the magnetite thin film. From FIGS. 5A to 5C, it can be seen that the perpendicular coercive force of the magnetite thin film of Example 1 is 0.52 kOe, that the perpendicular saturation magnetization of the magnetite thin film of Example 2 is 1.06 kOe, and that Example 3 The saturation magnetization in the perpendicular direction of the magnetite thin film of Example 2 is 0.65 kOe, and the perpendicular coercive force of the magnetite thin film of Example 2 whose film thickness is 87 nm, which is included in the range of 2 to 500 nm, is relatively You can see that it's big.

図6Aおよび図6Bのそれぞれには、比較例1および比較例2のそれぞれのマグネタイト薄膜について、膜面垂直方向(実線)および膜面内方向(点線)のそれぞれに磁界印加した磁化曲線が示されている。各磁界での磁化は、実施例1~3とは異なり面内方向の方が大きくなっており、膜面内方向が磁化容易軸の面内磁化膜であることが確認できる。MgO(100)基板の場合には基板からの拡散が、SrTiO3(100)基板の場合には別配向相の混在が原因となって、(111)配向の実施例1~3よりも磁化値が低下している。また、磁気異方性が(111)配向よりも小さいため、保磁力も低くなっている。 6A and 6B each show the magnetization curves of the magnetite thin films of Comparative Example 1 and Comparative Example 2 when a magnetic field was applied in the direction perpendicular to the film surface (solid line) and in the in-plane direction (dotted line), respectively. ing. Unlike Examples 1 to 3, the magnetization in each magnetic field is larger in the in-plane direction, and it can be confirmed that this is an in-plane magnetized film whose axis of easy magnetization is in the in-plane direction. In the case of the MgO (100) substrate, diffusion from the substrate is the cause, and in the case of the SrTiO 3 (100) substrate, the magnetization value is higher than that of Examples 1 to 3 with the (111) orientation due to the mixture of other orientation phases. is decreasing. Furthermore, since the magnetic anisotropy is smaller than that of the (111) orientation, the coercive force is also lower.

図7には、実施例2のマグネタイト薄膜を対象として、CEMS(内部転換電子メスバウアー分光)にしたがって得られたCEMSスペクトルが、AサイトおよびBサイトの分解成分とともに示されている。3:x:1:1:x:3のピーク強度比xから得られる磁気モーメントの方向は、ガンマ線入射方向の膜面垂直方向を基準とした角度をθとしてxの間にx=4sin2θ/(1+cos2θ)の関係が成立するため、これから求めた角度θは、無磁界中の残留磁化状態の測定であるにも関わらず薄膜の厚さ方向に対して30o以内であり、およそ50°以上の(100)配向の場合と比較し垂直に近く、磁化曲線(図5B参照)に対応した結果となった。反磁界エネルギー2πM2=1.5×106erg/cm3以上の垂直異方性の誘起が予想される。無反跳分率の影響を考慮し、A、Bサイト成分の積分強度比から求まるFe3-d4の空孔パラメータδは2.7×10-3であり、10-3オーダーで十分小さく、ストイキオメトリーに近いFe/O組成であることが確認された。 FIG. 7 shows a CEMS spectrum obtained according to CEMS (internal conversion electron Mössbauer spectroscopy) for the magnetite thin film of Example 2, together with decomposed components at the A site and the B site. The direction of the magnetic moment obtained from the peak intensity ratio x of 3:x:1:1:x:3 is given by x = 4 sin 2 θ between /(1+cos 2 θ) holds, so the angle θ calculated from this is within 30 degrees in the thickness direction of the thin film, and is approximately 50 degrees Compared to the case of a (100) orientation of 0° or more, the result was closer to perpendicular and corresponded to the magnetization curve (see FIG. 5B). Induction of perpendicular anisotropy is expected with demagnetizing field energy of 2πM 2 =1.5×10 6 erg/cm 3 or more. Considering the influence of the no-recoil fraction, the vacancy parameter δ of Fe 3-d O 4 determined from the integrated intensity ratio of A and B site components is 2.7 × 10 -3 , and the order of 10 -3 is sufficient. It was confirmed that the Fe/O composition was small and close to stoichiometry.

1‥基板、11‥第1のマグネタイト層(マグネタイト薄膜)、12‥第2のマグネタイト層、20‥絶縁体バリア層。
1. Substrate, 11.. First magnetite layer (magnetite thin film), 12.. Second magnetite layer, 20.. Insulator barrier layer.

Claims (2)

(111)単結晶基板の上に(111)配向を有するエピタキシャル層として形成され、厚さ2~500nmであり、かつ、組成式Fe3-δ14(2.7×10-3≦δ1≦0.01)で表わされることを特徴とするマグネタイト薄膜。 It is formed as an epitaxial layer having a (111) orientation on a (111) single crystal substrate, has a thickness of 2 to 500 nm, and has a compositional formula of Fe 3-δ1 O 4 (2.7×10 -3 ≦δ1≦ 0.01). (111)単結晶基板の上に(111)配向を有し、組成式Fe3-δ14(2.7×10-3≦δ1≦0.01)で表わされる厚さ2~500nmのエピタキシャル層として形成された第1のマグネタイト層と、
前記第1のマグネタイト層の上に形成された厚さ0.5~2nmのエピタキシャル絶縁体バリア層と、
前記エピタキシャル絶縁体バリア層の上に(111)配向を有し、組成式Fe3-δ24(2.7×10-3≦δ2≦0.01)で表わされる厚さ2~500nmのエピタキシャル層として形成された第2のマグネタイト層と、を備えていることを特徴とする磁気トンネル接合素子。
An epitaxial layer with a thickness of 2 to 500 nm having a (111) orientation on a (111) single crystal substrate and expressed by the compositional formula Fe 3-δ1 O 4 (2.7×10 -3 ≦δ1≦0.01) a first magnetite layer formed as a layer;
an epitaxial insulator barrier layer with a thickness of 0.5 to 2 nm formed on the first magnetite layer;
On the epitaxial insulator barrier layer, an epitaxial layer having a (111) orientation and having a thickness of 2 to 500 nm and having a composition formula of Fe 3-δ2 O 4 (2.7×10 -3 ≦δ2≦0.01) is formed. a second magnetite layer formed as a layer.
JP2019158124A 2019-08-30 2019-08-30 Magnetite thin film and magnetic tunnel junction device Active JP7450353B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019158124A JP7450353B2 (en) 2019-08-30 2019-08-30 Magnetite thin film and magnetic tunnel junction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019158124A JP7450353B2 (en) 2019-08-30 2019-08-30 Magnetite thin film and magnetic tunnel junction device

Publications (2)

Publication Number Publication Date
JP2021036570A JP2021036570A (en) 2021-03-04
JP7450353B2 true JP7450353B2 (en) 2024-03-15

Family

ID=74716975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019158124A Active JP7450353B2 (en) 2019-08-30 2019-08-30 Magnetite thin film and magnetic tunnel junction device

Country Status (1)

Country Link
JP (1) JP7450353B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002190631A (en) 2000-09-11 2002-07-05 Matsushita Electric Ind Co Ltd Magnetoresistive effect element and its fabricating method and method for forming compound magnetic thin film
JP2005251840A (en) 2004-03-02 2005-09-15 National Institute Of Advanced Industrial & Technology New ferrimagnetic alternative multilayer film complex, its production process and three-dimensional integrated circuit employing it
JP2009238768A (en) 2008-03-03 2009-10-15 National Institute Of Advanced Industrial & Technology Tunnel magnetoresistance element

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1197766A (en) * 1997-09-17 1999-04-09 Res Inst Electric Magnetic Alloys Ferromagnetic tunnel junction element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002190631A (en) 2000-09-11 2002-07-05 Matsushita Electric Ind Co Ltd Magnetoresistive effect element and its fabricating method and method for forming compound magnetic thin film
JP2005251840A (en) 2004-03-02 2005-09-15 National Institute Of Advanced Industrial & Technology New ferrimagnetic alternative multilayer film complex, its production process and three-dimensional integrated circuit employing it
JP2009238768A (en) 2008-03-03 2009-10-15 National Institute Of Advanced Industrial & Technology Tunnel magnetoresistance element

Also Published As

Publication number Publication date
JP2021036570A (en) 2021-03-04

Similar Documents

Publication Publication Date Title
Hirohata et al. Roadmap for emerging materials for spintronic device applications
Felser et al. Basics and prospective of magnetic Heusler compounds
Nie et al. Perpendicularly magnetized τ-MnAl (001) thin films epitaxied on GaAs
Yang et al. Uniaxial anisotropy and switching behavior in epitaxial CrO 2 films
Bhowmik et al. Alloying of Fe3O4 and Co3O4 to develop Co3xFe3 (1− x) O4 ferrite with high magnetic squareness, tunable ferromagnetic parameters, and exchange bias
Nagahama et al. Magnetic properties of epitaxial Fe3O4 films with various crystal orientations and tunnel magnetoresistance effect at room temperature
CN111554807A (en) Heusler compounds with non-magnetic spacer layers for forming synthetic antiferromagnets
CN105609630A (en) Ferromagnetic-antiferromagnetic thin film heterojunction structure, fabrication method thereof and magnetic storage device
Wu et al. Self-biased magnetoelectric switching at room temperature in three-phase ferroelectric–antiferromagnetic–ferrimagnetic nanocomposites
Zhang et al. Progress in ferrimagnetic Mn4N films and its heterostructures for spintronics applications
Zhang et al. Rare-earth-free noncollinear metallic ferrimagnets Mn4-xZxN with compensation at room temperature
Chen et al. Room temperature magnetoelectric effect of YFeO3–Y3Fe5O12 ferrite composites
Asvini et al. Effect of film thickness on soft magnetic behavior of Fe2CoSi Heusler alloy for spin transfer torque device applications
Kumar et al. Double perovskite Sr2FeMoO6: a potential candidate for room temperature magnetoresistance device applications
JP7450353B2 (en) Magnetite thin film and magnetic tunnel junction device
Tong et al. Investigations on low energy product of MnAl magnets through recoil curves
Niesen et al. Structural and Magnetic Properties of Sputter-Deposited Mn–Fe–Ga Thin Films
Tang et al. Exchange coupling and improved properties of the multilayer CoFe2O4/La0. 7Sr0. 3MnO3 thin films
Kang et al. Magnetic property tuning of epitaxial spinel ferrite thin films by strain and composition modulation
Negusse et al. Magnetically Induced Enhanced Exchange Spring Effect in CoFe₂O₄/CoFe₂/CoFe₂O₄ Films
Lee et al. Fine tuning of the magnetic properties in Mn3-xCoxGa Heusler films near the critical regime
Zhang et al. Flexible La0. 67Sr0. 33MnO3: ZnO Nanocomposite Thin Films Integrated on Mica
Dunzhu et al. Electric field tuning non-volatile dynamic magnetism in half-metallic alloys Co2FeAl/Pb (Mg1/3Nb2/3) O3-PbTiO3 heterostructure
Yu et al. Interfacial and Magnetic Properties of Pt/Co 2 FeAl 0.5 Si 0.5/MgO Multilayers With Perpendicular Magnetic Anisotropy
Wang et al. Interfacial perpendicular magnetic anisotropy in Co2FeSi alloy films sandwiched by Pt and MgAl2O4

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231017

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240305

R150 Certificate of patent or registration of utility model

Ref document number: 7450353

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150