JP7450219B2 - Construction methods, manufacturing methods, information processing equipment - Google Patents

Construction methods, manufacturing methods, information processing equipment Download PDF

Info

Publication number
JP7450219B2
JP7450219B2 JP2020106989A JP2020106989A JP7450219B2 JP 7450219 B2 JP7450219 B2 JP 7450219B2 JP 2020106989 A JP2020106989 A JP 2020106989A JP 2020106989 A JP2020106989 A JP 2020106989A JP 7450219 B2 JP7450219 B2 JP 7450219B2
Authority
JP
Japan
Prior art keywords
additional member
manufacturing
concrete structure
bolt
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020106989A
Other languages
Japanese (ja)
Other versions
JP2022001718A (en
Inventor
心一 宮里
聖 小林
吾郎 坂井
昇 坂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Kanazawa Institute of Technology (KIT)
Original Assignee
Kajima Corp
Kanazawa Institute of Technology (KIT)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp, Kanazawa Institute of Technology (KIT) filed Critical Kajima Corp
Priority to JP2020106989A priority Critical patent/JP7450219B2/en
Publication of JP2022001718A publication Critical patent/JP2022001718A/en
Application granted granted Critical
Publication of JP7450219B2 publication Critical patent/JP7450219B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、施工方法、製作方法、情報処理装置等に関する。 The present invention relates to a construction method, a manufacturing method, an information processing device, and the like.

近年、経年劣化等の理由から、コンクリート構造物の補修(補強)工事を行うことが多くなっている。通常、コンクリート構造物の補修工事では、補修箇所に型枠を設置してモルタルやコンクリートを打設したり、モルタルを吹き付けたりすることが多い。 In recent years, repair (reinforcement) work on concrete structures has been increasingly performed due to aging deterioration and other reasons. Normally, in repair work for concrete structures, formwork is installed in the repaired area and mortar or concrete is poured into it, or mortar is sprayed onto it.

例えば特許文献1には、既設コンクリート床版のコンクリートを除去した後、この除去部分に短繊維補強モルタルまたはコンクリートを吹き付けて増厚する補強工法が開示されている。 For example, Patent Document 1 discloses a reinforcing method in which concrete is removed from an existing concrete slab and then short fiber reinforced mortar or concrete is sprayed onto the removed portion to increase the thickness.

特開2002-167977号公報Japanese Patent Application Publication No. 2002-167977

しかしながら、これらの補修工事は、補修のための材料や機械の準備が手間となり、効率性や経済性の面で課題がある。特に小規模な箇所であれば、補修工事はより非効率かつ不経済な作業となる。 However, these repair works require time and effort to prepare materials and machines for repair, and there are problems in terms of efficiency and economy. Especially if the area is small, repair work becomes more inefficient and uneconomical.

さらに、既設構造物との取り合い部分のように複雑な箇所では施工が困難になる。補修箇所の耐久性を確保するためには高い技術力をもつ作業員による丁寧な施工が必要となり、少子高齢化により作業員が減少傾向にあるなか、作業員の確保も困難である。 Furthermore, construction is difficult in complex areas such as areas that interface with existing structures. In order to ensure the durability of the repaired areas, careful construction work by highly skilled workers is required, and as the number of workers is decreasing due to the declining birthrate and aging population, it is difficult to secure workers.

本発明は上記の問題に鑑みてなされたものであり、作業が簡単にできる施工方法等を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a construction method etc. that allows easy work.

前述した課題を解決するための第1の発明は、コンクリート構造物の表面の形状を計測する工程と、計測された前記表面の形状に基づき、3Dプリンタにより付加部材を製作する工程と、前記付加部材を前記表面に設置する工程と、を有し、前記付加部材は、前記表面側の面にスペーサを有し、前記表面との間に隙間ができるように設置され、前記隙間に充填材が充填されることを特徴とする施工方法である。
第2の発明は、コンクリート構造物の表面の形状を計測する工程と、計測された前記表面の形状に基づき、3Dプリンタにより型枠を製作する工程と、前記型枠を用いて付加部材を製作する工程と、前記付加部材を前記表面に設置する工程と、を有し、前記付加部材は、前記表面側の面にスペーサを有し、前記表面との間に隙間ができるように設置され、前記隙間に充填材が充填されることを特徴とする施工方法である。
第3の発明は、コンクリート構造物の表面の形状を計測する工程と、計測された前記表面の形状に基づき、3Dプリンタにより付加部材を製作する工程と、前記付加部材を前記表面に設置する工程と、を有し、前記表面にボルトが設けられ、前記付加部材は、前記表面側の面から前面まで貫通する貫通孔を有し、前記ボルトを前記貫通孔に通して前記表面に設置され、前記ボルトの先端にナットが締め込まれることを特徴とする施工方法である。
第4の発明は、コンクリート構造物の表面の形状を計測する工程と、計測された前記表面の形状に基づき、3Dプリンタにより型枠を製作する工程と、前記型枠を用いて付加部材を製作する工程と、前記付加部材を前記表面に設置する工程と、を有し、前記表面にボルトが設けられ、前記付加部材は、前記表面側の面から前面まで貫通する貫通孔を有し、前記ボルトを前記貫通孔に通して前記表面に設置され、前記ボルトの先端にナットが締め込まれることを特徴とする施工方法である。
A first invention for solving the above-mentioned problems includes a step of measuring the shape of the surface of a concrete structure, a step of manufacturing an additional member using a 3D printer based on the measured shape of the surface, and a step of manufacturing the additional member using a 3D printer. installing a member on the surface , the additional member having a spacer on the surface side, the additional member being installed so that a gap is formed between the additional member and the surface, and a filler material being provided in the gap. This is a construction method characterized by filling .
A second invention includes a step of measuring the shape of a surface of a concrete structure, a step of manufacturing a formwork using a 3D printer based on the measured shape of the surface, and a step of manufacturing an additional member using the formwork. and installing the additional member on the surface , the additional member having a spacer on the surface side, and installed so that a gap is formed between the additional member and the surface, This construction method is characterized in that the gap is filled with a filler .
A third invention is a step of measuring the shape of the surface of a concrete structure, a step of manufacturing an additional member using a 3D printer based on the measured shape of the surface, and a step of installing the additional member on the surface. and a bolt is provided on the surface, the additional member has a through hole penetrating from the surface side to the front surface, and the bolt is installed on the surface by passing the bolt through the through hole, This construction method is characterized in that a nut is tightened onto the tip of the bolt.
A fourth invention includes a step of measuring the shape of the surface of a concrete structure, a step of manufacturing a formwork using a 3D printer based on the measured shape of the surface, and a step of manufacturing an additional member using the formwork. and installing the additional member on the surface, wherein a bolt is provided on the surface, the additional member has a through hole that penetrates from the surface side to the front surface, and the additional member has a through hole penetrating from the surface side to the front surface, This construction method is characterized in that a bolt is passed through the through hole and installed on the surface, and a nut is tightened to the tip of the bolt.

本発明では、コンクリート構造物の表面の形状を元に、3Dプリンタを用いて付加部材または付加部材を製作するための型枠を製作し、これにより得られた付加部材をコンクリート構造物の表面に取り付けることで、コンクリート構造物に対し補修等の施工を行う。 In the present invention, a 3D printer is used to manufacture an additional member or a formwork for manufacturing the additional member based on the shape of the surface of the concrete structure, and the additional member obtained thereby is attached to the surface of the concrete structure. By installing it, repairs etc. can be carried out on concrete structures.

本発明では、自由な形状を短時間で作成できる3Dプリンタによって付加部材またはその型枠が製作されるため、作業ムラが無く、複雑な形状の付加部材であっても、精度の良い安定した品質の付加部材を提供できる。施工作業はこの付加部材を現場で取り付けるのみとなるため、短時間の簡単な作業となり作業員の数を従来よりも減らすことが可能で、材料や機械の準備も最小限とすることができる。
In the present invention, the additional member or its formwork is manufactured using a 3D printer that can create free shapes in a short time, so there is no unevenness in the work, and even for additional members with complex shapes, the quality is stable and accurate. additional members can be provided. Since the construction work involves simply installing the additional components on-site, the work is quick and easy, and the number of workers can be reduced compared to conventional methods, and the preparation of materials and machinery can be kept to a minimum.

前記表面は、例えば前記コンクリート構造物の一部を除去した後の表面である。
これにより、コンクリート構造物の劣化部位を除去した後、付加部材を取り付けることでコンクリート構造物の補修を簡単に行うことができる。
The surface is, for example, the surface after removing a portion of the concrete structure.
Thereby, the concrete structure can be easily repaired by attaching the additional member after removing the degraded portion of the concrete structure.

第1、第2の発明において、前記付加部材は、前記表面との間に隙間ができるように設置され、前記隙間に充填材が充填される。また前記付加部材は、前記表面側の面にスペーサを有する
付加部材とコンクリート構造物の表面の間に隙間を設け、この隙間に充填材を充填することで、コンクリート構造物の表面の形状と付加部材の当該表面側の面の形状とが必ずしも一致する必要がなく、付加部材の製作が容易になる。付加部材にスペーサを設けておくことで、付加部材を上記の隙間ができるようにコンクリート構造物の表面に設置することが容易になる。
In the first and second inventions, the additional member is installed such that a gap is formed between the additional member and the surface, and the gap is filled with a filler . Further , the additional member has a spacer on the surface on the front side .
By creating a gap between the additional member and the surface of the concrete structure and filling this gap with a filler, the shape of the surface of the concrete structure and the shape of the surface side of the additional member must necessarily match. This makes it easier to manufacture additional members. By providing the additional member with a spacer, it becomes easy to install the additional member on the surface of the concrete structure so that the above-mentioned gap is created.

第3、第4の発明において、前記付加部材は、前記表面側の面から前面まで貫通する貫通孔を有するまた、前記表面にボルトが設けられ、前記付加部材は、前記ボルトを前記貫通孔に通して前記表面に設置され、前記ボルトの先端にナットが締め込まれる
付加部材に貫通孔を設けることで、貫通孔にボルトを通して付加部材の取り付けを行ことができ、ボルトを用いて付加部材をコンクリート構造物にしっかりと固定できる。
In the third and fourth inventions, the additional member has a through hole that penetrates from the surface side to the front surface . Further, a bolt is provided on the surface, and the additional member is installed on the surface by passing the bolt through the through hole, and a nut is tightened on the tip of the bolt .
By providing a through hole in the additional member, the additional member can be attached by passing a bolt through the through hole , and the additional member can be firmly fixed to the concrete structure using the bolt.

の発明は、コンクリート構造物の表面の形状を計測する工程と、計測された前記表面の形状に基づき、前記コンクリート構造物の表面との間に充填材を充填するための隙間ができるよう前記表面に設置される付加部材、または、前記付加部材を製作するための型枠を3Dプリンタにより製作する工程と、を有し、前記付加部材は、前記表面側の面にスペーサを有することを特徴とする製作方法である。
第6の発明は、コンクリート構造物の表面の形状を計測する工程と、計測された前記表面の形状に基づき、前記コンクリート構造物の表面に設けられたボルトを用いて前記表面に設置される付加部材、または、前記付加部材を製作するための型枠を3Dプリンタにより製作する工程と、を有し、前記付加部材は、前記ボルトを通すための、前記表面側の面から前面まで貫通する貫通孔を、前記ボルトと対応する位置に有することを特徴とする製作方法である。
5、第6の発明は、第1、第3の発明の付加部材または第2、第4の発明の型枠を製作する製作方法である。
A fifth invention includes a step of measuring the shape of the surface of a concrete structure, and creating a gap for filling a filler between the surface of the concrete structure and the surface of the concrete structure based on the measured shape of the surface. a step of manufacturing an additional member installed on the surface or a mold for manufacturing the additional member using a 3D printer , the additional member having a spacer on a surface on the front side. This manufacturing method is characterized by the following.
A sixth invention provides a step of measuring the shape of the surface of a concrete structure, and an addition installed on the surface using bolts provided on the surface of the concrete structure based on the measured shape of the surface. a step of manufacturing a formwork for manufacturing the member or the additional member using a 3D printer, and the additional member has a through hole that penetrates from the surface side to the front surface for passing the bolt. This manufacturing method is characterized in that a hole is provided at a position corresponding to the bolt.
The fifth and sixth inventions are manufacturing methods for manufacturing the additional member according to the first and third inventions or the formwork according to the second and fourth inventions.

の発明は、コンクリート構造物の表面との間に充填材を充填するための隙間ができるよう前記表面に設置される付加部材を製作するために用いられる情報処理装置であって、前記表面の形状を計測したデータに基づき、前記付加部材、または前記付加部材を製作するための型枠を3Dプリンタにより製作するための3次元形状データを作成し、前記付加部材は、前記表面側の面にスペーサを有することを特徴とする情報処理装置である。
第8の発明は、コンクリート構造物の表面に設けられたボルトを用いて前記表面に設置される付加部材を製作するために用いられる情報処理装置であって、前記表面の形状を計測したデータに基づき、前記付加部材、または前記付加部材を製作するための型枠を3Dプリンタにより製作するための3次元形状データを作成し、前記付加部材は、前記ボルトを通すための、前記表面側の面から前面まで貫通する貫通孔を、前記ボルトと対応する位置に有することを特徴とする情報処理装置である。
7、第8の発明は、第1、第3の発明の付加部材または第2、第4の発明の型枠の製作に用いる情報処理装置である。
A seventh invention is an information processing device used for manufacturing an additional member installed on a surface of a concrete structure so as to create a gap for filling a filler between the surface of the concrete structure and the surface of the concrete structure. 3D shape data for manufacturing the additional member or a formwork for manufacturing the additional member using a 3D printer is created based on data obtained by measuring the shape of the additional member. This is an information processing device characterized by having a spacer at the bottom .
An eighth invention is an information processing device used for manufacturing an additional member installed on the surface of a concrete structure using bolts provided on the surface, the information processing device using data obtained by measuring the shape of the surface. Based on this, three-dimensional shape data for manufacturing the additional member or a formwork for manufacturing the additional member using a 3D printer is created, and the additional member has a surface on the front side through which the bolt is passed. The information processing device is characterized in that it has a through hole penetrating from the front surface to the front surface at a position corresponding to the bolt.
The seventh and eighth inventions are information processing apparatuses used for manufacturing the additional member according to the first and third inventions or the formwork according to the second and fourth inventions.

本発明により、作業が簡単にできる施工方法等を提供することができる。 According to the present invention, it is possible to provide a construction method and the like that allow easy work.

付加部材の製作システム1を示す図。The figure which shows the manufacturing system 1 of an additional member. 情報処理装置3のハードウェア構成を示す図。FIG. 3 is a diagram showing a hardware configuration of an information processing device 3. FIG. コンクリート構造物100の補修箇所101の表面の計測について説明する図。FIG. 3 is a diagram illustrating measurement of the surface of a repaired location 101 of a concrete structure 100. 3次元形状データ200、300と付加部材10を示す図。A diagram showing three-dimensional shape data 200, 300 and an additional member 10. 付加部材10の設置について説明する図。FIG. 4 is a diagram illustrating installation of the additional member 10. 付加部材10a、10b、10c、10dの例。Examples of additional members 10a, 10b, 10c, and 10d. 台車6を用いて付加部材10bの設置を行う例。An example of installing the additional member 10b using the trolley 6. コンクリート構造物100の補修箇所101と付加部材10eについて説明する図。FIG. 3 is a diagram illustrating a repair location 101 of a concrete structure 100 and an additional member 10e. コンクリート構造物100の補修箇所101の表面の計測について説明する図。FIG. 3 is a diagram illustrating measurement of the surface of a repaired location 101 of a concrete structure 100. 3次元形状データ200、400、型枠40、付加部材10fを示す図。A diagram showing three-dimensional shape data 200, 400, a formwork 40, and an additional member 10f.

以下、図面に基づいて本発明の好適な実施形態について詳細に説明する。 Hereinafter, preferred embodiments of the present invention will be described in detail based on the drawings.

[第1の実施形態]
(1.付加部材10の製作システム1)
図1は、本発明の実施形態に係る施工方法を実施するための付加部材10の製作システム1を示す図である。
[First embodiment]
(1. Manufacturing system 1 for additional member 10)
FIG. 1 is a diagram showing a manufacturing system 1 for an additional member 10 for carrying out a construction method according to an embodiment of the present invention.

本発明の実施形態に係る施工方法は、コンクリート構造物100の所定箇所に付加部材10を設置することで、コンクリート構造物100の補修等を行うものである。製作システム1は付加部材10を3Dプリンタ4によって製作するものであり、3Dプリンタ4の他、計測装置2、情報処理装置3等を有する。 The construction method according to the embodiment of the present invention is for repairing the concrete structure 100 by installing the additional member 10 at a predetermined location of the concrete structure 100. The manufacturing system 1 manufactures the additional member 10 using a 3D printer 4, and includes a measuring device 2, an information processing device 3, etc. in addition to the 3D printer 4.

計測装置2は、コンクリート構造物100の所定箇所(付加部材10の設置箇所)の表面の形状を計測するものであり、無線等のネットワークを介して情報処理装置3に接続される。計測装置2には既知の3Dスキャナー、ドローン等を用いることができる。ただし、コンクリート構造物100の表面の形状は実測することも可能である。 The measuring device 2 measures the shape of the surface of a predetermined location of the concrete structure 100 (the location where the additional member 10 is installed), and is connected to the information processing device 3 via a network such as wireless. As the measuring device 2, a known 3D scanner, drone, etc. can be used. However, it is also possible to actually measure the shape of the surface of the concrete structure 100.

情報処理装置3は、3Dプリンタ4によって付加部材10を製作するため、計測されたコンクリート構造物100の表面の形状に基づき、付加部材10の3次元形状データを作成する。 In order to manufacture the additional member 10 using the 3D printer 4, the information processing device 3 creates three-dimensional shape data of the additional member 10 based on the measured surface shape of the concrete structure 100.

図2は情報処理装置3のハードウェア構成を示す図である。図2に示すように、情報処理装置3は、例えば制御部31、記憶部32、入力部33、表示部34、通信部35等をバスにより接続して構成したコンピュータにより実現できる。但しこれに限ることなく、情報処理装置3は適宜様々な構成をとることができる。 FIG. 2 is a diagram showing the hardware configuration of the information processing device 3. As shown in FIG. As shown in FIG. 2, the information processing device 3 can be realized by, for example, a computer configured by connecting a control section 31, a storage section 32, an input section 33, a display section 34, a communication section 35, etc. via a bus. However, the information processing device 3 is not limited to this, and can take various configurations as appropriate.

制御部31はCPU、ROM、RAMなどから構成される。CPUは、記憶部32、ROMなどの記憶媒体に格納された情報処理装置3の処理に係るプログラムをRAM上のワークエリアに呼び出して実行する。ROMは不揮発性メモリであり、ブートプログラムやBIOSなどのプログラム、データなどを恒久的に保持している。RAMは揮発性メモリであり、記憶部32、ROMなどからロードしたプログラムやデータを一時的に保持するとともに、制御部31が各種処理を行うために使用するワークエリアを備える。 The control unit 31 is composed of a CPU, ROM, RAM, etc. The CPU calls a program related to processing of the information processing device 3 stored in a storage medium such as the storage unit 32 or ROM into a work area on the RAM and executes the program. ROM is a nonvolatile memory that permanently stores programs such as the boot program and BIOS, as well as data. The RAM is a volatile memory that temporarily holds programs and data loaded from the storage unit 32, ROM, etc., and also includes a work area used by the control unit 31 to perform various processes.

記憶部32はハードディスクドライブやソリッドステートドライブ、フラッシュメモリ等であり、制御部31が実行するプログラム、プログラム実行に必要なデータ、OSなどが格納される。これらのプログラムやデータは、制御部31により必要に応じて読み出され実行される。 The storage unit 32 is a hard disk drive, solid state drive, flash memory, or the like, and stores programs executed by the control unit 31, data necessary for program execution, an OS, and the like. These programs and data are read and executed by the control unit 31 as necessary.

入力部33は情報処理装置3に各種の設定入力を行うものである。
表示部34は例えば液晶ディスプレイ等である。
通信部35はネットワーク等を介した通信を媒介する通信インタフェースであり、計測装置2や3Dプリンタ4等との間で通信を行う。
The input unit 33 is used to input various settings to the information processing device 3.
The display section 34 is, for example, a liquid crystal display.
The communication unit 35 is a communication interface that mediates communication via a network or the like, and communicates with the measuring device 2, the 3D printer 4, etc.

図1の説明に戻る。3Dプリンタ4は、造形材料(モデル材)を用いて付加部材10を製作するものである。3Dプリンタ4が実行する造形方法は特に限定されず、既知のバインダージェット法やFDM法(熱溶解積層法)を適用することができる。造形材料としてはこれらの造形方法に応じた既知のものを用いればよく、例えばセメント系材料や樹脂材料を用いることができる。 Returning to the explanation of FIG. The 3D printer 4 manufactures the additional member 10 using modeling material (model material). The modeling method executed by the 3D printer 4 is not particularly limited, and a known binder jet method or FDM method (fused deposition modeling) can be applied. As the modeling material, any known material suitable for these modeling methods may be used, and for example, a cement material or a resin material can be used.

本実施形態では造形材料としてセメント系材料を用いるものとする。セメント系材料としては、一般的な配合のモルタルや、超高強度繊維補強モルタル、ECC(高靱性セメント複合材料;Engineered Cementitious
Composites)などを用いることができる。セメント系材料は、要求される耐久性等に応じて適当なものを選定し、例えばコンクリート構造物100のコンクリートより圧縮強度の高いもの、硬化促進剤を含有する早強型のものなどとすることができる。
In this embodiment, a cement material is used as the modeling material. Cement-based materials include mortar with a general composition, ultra-high strength fiber-reinforced mortar, and ECC (Engineered Cementitious Composite Material).
Composites) etc. can be used. An appropriate cement material should be selected depending on the required durability, etc., such as a material with higher compressive strength than the concrete of the concrete structure 100, or a material of early strength type containing a hardening accelerator. I can do it.

(2.施工方法)
本実施形態の施工方法は、図3(a)のコンクリート構造物100の点線部分で示す一部を劣化部位とし、この劣化部位の補修を行う例により説明する。本実施形態ではこの劣化部位をはつるなどして図3(b)に示すように除去し、劣化部位を除去した残りの部分が補修箇所101(付加部材10の設置箇所)となる。コンクリート構造物100は例えば橋脚などであるが、これに限ることはない。
(2. Construction method)
The construction method of this embodiment will be explained using an example in which a part of the concrete structure 100 shown by the dotted line in FIG. 3A is treated as a deteriorated part, and this deteriorated part is repaired. In this embodiment, this deteriorated portion is removed by tearing it off as shown in FIG. 3(b), and the remaining portion after removing the deteriorated portion becomes the repaired portion 101 (the location where the additional member 10 is installed). The concrete structure 100 is, for example, a bridge pier, but is not limited thereto.

本実施形態では、図3(c)に示すように、補修箇所101に付加部材10を取り付けるためのボルト102を埋め込む。ボルト102は複数本平行に設けられる。その後、図3(d)に示すように計測装置2により補修箇所101の表面の3次元形状を計測する。計測結果は3次元形状のデジタルデータ(以下、3次元形状データという)として得られる。 In this embodiment, as shown in FIG. 3(c), a bolt 102 for attaching the additional member 10 is embedded in the repair location 101. A plurality of bolts 102 are provided in parallel. Thereafter, as shown in FIG. 3(d), the three-dimensional shape of the surface of the repair location 101 is measured by the measuring device 2. The measurement results are obtained as three-dimensional digital data (hereinafter referred to as three-dimensional shape data).

図4(a)は補修箇所101の表面の3次元形状データ200の例である。本実施形態では、補修箇所101の表面の3次元形状データ200を情報処理装置3に入力し、この3次元形状データ200を元に、付加部材10の3次元形状データを情報処理装置3によって作成する。 FIG. 4(a) is an example of three-dimensional shape data 200 of the surface of the repair location 101. In this embodiment, three-dimensional shape data 200 of the surface of the repair location 101 is input to the information processing device 3, and based on this three-dimensional shape data 200, three-dimensional shape data of the additional member 10 is created by the information processing device 3. do.

ここで、入力された3次元形状データ200は付加部材10において補修箇所101の表面側の面(以下、背面という)となるため、情報処理装置3は、図4(b)に示すように、上記面の反対側に位置する、付加部材10の前面aの形状を補完する。 Here, the input three-dimensional shape data 200 corresponds to the front surface (hereinafter referred to as the back surface) of the repair location 101 in the additional member 10, so the information processing device 3, as shown in FIG. 4(b), It complements the shape of the front surface a of the additional member 10 located on the opposite side of the above surface.

この形状補完に当たっては、オペレータが前面aの形状を入力し、オペレータの入力に応じて情報処理装置3が前面aの形状補完を行うようにしてもよいし、補修箇所101の近傍を撮影した画像から、前面aの形状が画像認識・画像処理技術により自動的に生成され、形状補完が行われるようにしてもよい。 For this shape complementation, the operator may input the shape of the front surface a, and the information processing device 3 may complement the shape of the front surface a according to the operator's input, or an image taken of the vicinity of the repair point 101 may be used. From this, the shape of the front surface a may be automatically generated using image recognition/image processing technology, and shape complementation may be performed.

さらに本実施形態では、3次元形状データ200のボルト102の部分を前面aまで貫通させ、その前面a側の端部を図4(c)に示すようにボルト径方向に拡径して拡径部bを形成する。これにより付加部材10の3次元形状データ300の作成が完了する。 Furthermore, in this embodiment, the bolt 102 portion of the three-dimensional shape data 200 is penetrated to the front surface a, and the end portion on the front surface a side is expanded in diameter in the bolt radial direction as shown in FIG. 4(c). Form part b. This completes the creation of the three-dimensional shape data 300 of the additional member 10.

情報処理装置3は、作成された3次元形状データ300を上下複数層にスライスし、各層のスライスデータを作成する。これらのスライスデータは3Dプリンタ4に入力され、3Dプリンタ4は、3次元形状データ300に対応する付加部材10を、スライスデータに従って既知の造形方法により製作する。 The information processing device 3 slices the created three-dimensional shape data 300 into multiple upper and lower layers, and creates slice data for each layer. These slice data are input to the 3D printer 4, and the 3D printer 4 manufactures the additional member 10 corresponding to the three-dimensional shape data 300 using a known modeling method according to the slice data.

図4(d)は3Dプリンタ4によって製作された付加部材10を示す図である。前記した3次元形状データ300のボルト102の部分は、付加部材10を背面から前面まで貫通する貫通孔11となり、前記の拡径部bは付加部材10の前面の凹部12となる。 FIG. 4(d) is a diagram showing the additional member 10 manufactured by the 3D printer 4. The portion of the bolt 102 in the three-dimensional shape data 300 described above becomes the through hole 11 that penetrates the additional member 10 from the back to the front, and the enlarged diameter portion b becomes the recess 12 on the front surface of the additional member 10.

付加部材10は製作場所から施工現場に運搬され、施工現場の作業員は、付加部材10を補修箇所101に設置してコンクリート構造物100の補修を行う。 The additional member 10 is transported from the manufacturing site to the construction site, and a worker at the construction site installs the additional member 10 at a repair location 101 to repair the concrete structure 100.

なお、付加部材10を複数の部位に分割して製作することも可能であり、付加部材10の運搬がより容易になる。また3Dプリンタ4を施工現場に設置し、運搬の手間を減らして製作後の付加部材10を即設置することも可能である。 Note that it is also possible to manufacture the additional member 10 by dividing it into a plurality of parts, which makes transportation of the additional member 10 easier. It is also possible to install the 3D printer 4 at the construction site and immediately install the additional member 10 after it has been manufactured, reducing the time and effort of transportation.

図5は付加部材10の設置について説明する図である。本実施形態では、補修箇所101の表面に接着剤(不図示)を塗布した後、図5(a)に示すように、貫通孔11にボルト102を通して付加部材10を補修箇所101に設置し、付加部材10の背面を補修箇所101の表面に接着する。 FIG. 5 is a diagram illustrating installation of the additional member 10. In this embodiment, after applying an adhesive (not shown) to the surface of the repair location 101, as shown in FIG. The back side of the additional member 10 is adhered to the surface of the repaired area 101.

そして、図5(b)に示すように、凹部12に突出するボルト102の先端にナット103を締め込み、図5(c)に示すように凹部12に無収縮モルタル等の充填材30を充填して付加部材10の前面を平滑化する。これによりコンクリート構造物100の補修が行われる。 Then, as shown in FIG. 5(b), a nut 103 is tightened on the tip of the bolt 102 protruding into the recess 12, and as shown in FIG. 5(c), the recess 12 is filled with a filler 30 such as non-shrink mortar. to smooth the front surface of the additional member 10. As a result, the concrete structure 100 is repaired.

以上説明したように、本実施形態では、コンクリート構造物100の補修箇所101の表面の形状を元に、3Dプリンタ4を用いて付加部材10を製作し、これにより得られた付加部材10をコンクリート構造物100の表面に取り付けることで、コンクリート構造物100の補修を行う。 As explained above, in this embodiment, the additional member 10 is manufactured using the 3D printer 4 based on the shape of the surface of the repaired part 101 of the concrete structure 100, and the additional member 10 obtained thereby is attached to the concrete. By attaching it to the surface of the structure 100, the concrete structure 100 is repaired.

本実施形態では、自由な形状を短時間で作成できる3Dプリンタ4によって付加部材10が製作されるため、作業ムラが無く、複雑な形状の付加部材10であっても、精度の良い安定した品質の付加部材10を迅速に提供できる。施工作業はこの付加部材10を現場で取り付けるのみとなるため、短時間の簡単な作業となり作業員の数を従来よりも減らすことも可能で、材料や機械の準備も最小限とすることができる。
In this embodiment, since the additional member 10 is manufactured by the 3D printer 4 that can create a free shape in a short time, there is no unevenness in the work, and even if the additional member 10 has a complicated shape, the quality is stable and accurate. The additional member 10 can be provided quickly. Since the construction work is only to install this additional member 10 on site, the work is short and easy, and the number of workers can be reduced compared to conventional methods, and the preparation of materials and machines can be minimized. .

また本実施形態では、付加部材10に貫通孔11を設けることで、貫通孔11にボルト102を通して付加部材10の取り付けを行うことができ、ボルト102を用いることで付加部材10をコンクリート構造物100にしっかりと固定できる。 Further, in this embodiment, by providing the through hole 11 in the additional member 10, the additional member 10 can be attached by passing the bolt 102 through the through hole 11, and by using the bolt 102, the additional member 10 can be attached to the concrete structure 100. It can be firmly fixed.

しかしながら、本発明が以上の実施形態に限定されることはない。例えば本実施形態ではコンクリート構造物100の劣化部位を除去した後、付加部材10を補修箇所101に設置することで既設のコンクリート構造物100の補修を簡単に行うことができ、オーダーメイドの小部品である付加部材10の製作に3Dプリンタ4を用いることで3Dプリンタ4の特性を最大限に生かした簡易な施工が実現されるが、本発明の施工方法は補修工事以外の場合でも適用可能である。 However, the present invention is not limited to the above embodiments. For example, in this embodiment, the existing concrete structure 100 can be easily repaired by removing the deteriorated part of the concrete structure 100 and then installing the additional member 10 at the repair part 101. By using the 3D printer 4 to manufacture the additional member 10, a simple construction that takes full advantage of the characteristics of the 3D printer 4 is realized, but the construction method of the present invention can also be applied to cases other than repair work. be.

例えばコンクリート構造物100の新築時に、コンクリート構造物100の施工が難しい位置等にある一部を付加部材10とすることも可能である。この場合も、コンクリート構造物100における付加部材10の設置箇所の表面の形状を計測装置2によって計測し、その3次元形状データを元に付加部材10を製作すればよい。 For example, when constructing a new concrete structure 100, it is also possible to use a part of the concrete structure 100 in a position where construction is difficult, etc. as the additional member 10. In this case as well, the shape of the surface of the installation location of the additional member 10 in the concrete structure 100 may be measured by the measuring device 2, and the additional member 10 may be manufactured based on the three-dimensional shape data.

また、本実施形態では補修箇所101に接着剤を塗布し、付加部材10を接着したが、図6(a)に示すように、付加部材10aを、補修箇所101の表面との間に隙間ができるように設置し、その隙間に充填材であるグラウト20を充填することも可能である。 Furthermore, in this embodiment, adhesive is applied to the repaired area 101 and the additional member 10 is bonded, but as shown in FIG. 6(a), there is a gap between the additional member 10a and the surface of the repaired area 101. It is also possible to fill the gap with grout 20 as a filler.

付加部材10aの3次元形状データ300も、計測装置2で計測した補修箇所101の表面の3次元形状データ200に基づき、付加部材10aの背面の位置を上記表面から一定間隔だけ外側に離すなどして作成できる。付加部材10aの背面の形状は、必ずしも補修箇所101の表面の形状と一致する必要はなく、当該形状に応じた凹凸を有する必要もないので、付加部材10aの製作が容易になる。 The three-dimensional shape data 300 of the additional member 10a is also based on the three-dimensional shape data 200 of the surface of the repaired part 101 measured by the measuring device 2, such as by moving the back surface of the additional member 10a outward by a certain distance from the surface. It can be created by The shape of the back surface of the additional member 10a does not necessarily have to match the shape of the surface of the repaired portion 101, and there is no need to have irregularities corresponding to the shape, so the additional member 10a can be manufactured easily.

また、図6(b)に示すように付加部材10bの設置に当たってボルト102を省略することも可能であり、この場合は付加部材10bにおいて前記した貫通孔11や凹部12が省略される。 Further, as shown in FIG. 6(b), it is also possible to omit the bolt 102 when installing the additional member 10b, and in this case, the through hole 11 and the recess 12 described above in the additional member 10b are omitted.

さらに、図6(c)に示すように付加部材10cの背面にスペーサ13を設けることも可能であり、当該スペーサ13が補修箇所101の表面に接するように付加部材10cを設置することで、補修箇所101の表面との間に隙間ができるように付加部材10cを設置することが容易になる。 Furthermore, as shown in FIG. 6(c), it is also possible to provide a spacer 13 on the back side of the additional member 10c, and by installing the additional member 10c so that the spacer 13 is in contact with the surface of the repair area 101, the repair can be performed. It becomes easy to install the additional member 10c so that there is a gap between the additional member 10c and the surface of the location 101.

付加部材10cの製作にあたっては、例えば、計測装置2で計測した補修箇所101の表面の3次元形状データ200を元に、付加部材10cのスペーサ13を除く部分の3次元形状データを作成した後、当該3次元形状データの適当箇所に、スペーサ13の3次元形状データを付与する。これにより、付加部材10cの3次元形状データ300を作成することができる。 In manufacturing the additional member 10c, for example, after creating three-dimensional shape data of the portion of the additional member 10c excluding the spacer 13 based on the three-dimensional shape data 200 of the surface of the repaired part 101 measured by the measuring device 2, The three-dimensional shape data of the spacer 13 is provided at an appropriate location in the three-dimensional shape data. Thereby, three-dimensional shape data 300 of the additional member 10c can be created.

3次元形状データ300の作成時には、補修箇所101の表面の3次元形状データ200から補修箇所101の表面の平らな位置を検出し、スペーサ13の先端が当該検出した位置に接するように3次元形状データ300を作成することも可能である。その他、スペーサ13を有しない付加部材10cを製作し、補修箇所101の表面にスペーサを配置した上で付加部材10cの設置を行うことも可能である。 When creating the three-dimensional shape data 300, the flat position of the surface of the repair place 101 is detected from the three-dimensional shape data 200 of the surface of the repair place 101, and the three-dimensional shape is created so that the tip of the spacer 13 is in contact with the detected position. It is also possible to create data 300. Alternatively, it is also possible to manufacture the additional member 10c without the spacer 13, place the spacer on the surface of the repaired area 101, and then install the additional member 10c.

また図6(d)に示すように、前記の隙間にグラウト20を充填するための貫通孔(グラウト注入孔)14を、付加部材10dの背面から前面まで貫通するように設けてもよい。貫通孔14はグラウト20の充填確認に用いることもでき、貫通孔14からグラウト20が溢れ出したことをもって前記の隙間に十分にグラウト20が充填されたと判断することもできる。 Further, as shown in FIG. 6(d), a through hole (grout injection hole) 14 for filling the gap with grout 20 may be provided so as to penetrate from the back surface to the front surface of the additional member 10d. The through hole 14 can also be used to confirm the filling of the grout 20, and it can also be determined that the gap is sufficiently filled with the grout 20 when the grout 20 overflows from the through hole 14.

この場合も、補修箇所101の表面の3次元形状データ200を元に、付加部材10dの貫通孔14を除く部分の3次元形状データを作成した後、当該3次元形状データの適当箇所に、付加部材10dを貫通する貫通孔14の3次元形状データを付与する。これにより付加部材10dの3次元形状データ300を作成することができる。あるいは、貫通孔14を有しない付加部材10dを先に製作した後、当該付加部材10dを穿孔して貫通孔14を形成することも可能である。 In this case as well, after creating three-dimensional shape data for the portion of the additional member 10d excluding the through-hole 14 based on the three-dimensional shape data 200 of the surface of the repair location 101, add Three-dimensional shape data of the through hole 14 penetrating the member 10d is provided. Thereby, three-dimensional shape data 300 of the additional member 10d can be created. Alternatively, it is also possible to first manufacture the additional member 10d without the through hole 14, and then drill the additional member 10d to form the through hole 14.

また図7に示すように、付加部材(図の例では付加部材10b)の設置に当たって、移動可能なアーム61の先端で付加部材を保持する台車6を用いてもよい。アーム61にはグラウト20を充填するためのグラウト注入装置(不図示)なども設けられ、施工が難しい位置であっても、台車6を用いることで付加部材の設置が容易になる。その他、台車6のアーム61先端あるいはその他の移動装置に計測装置2を取り付けて補修箇所101の表面の形状を計測することなども可能である。 Further, as shown in FIG. 7, when installing the additional member (additional member 10b in the illustrated example), a cart 6 that holds the additional member at the tip of a movable arm 61 may be used. The arm 61 is also provided with a grout injection device (not shown) for filling the grout 20, and the use of the trolley 6 makes it easy to install additional members even in locations where construction is difficult. In addition, it is also possible to measure the shape of the surface of the repair location 101 by attaching the measuring device 2 to the tip of the arm 61 of the trolley 6 or other moving device.

また、コンクリート構造物100の劣化部位を除去した補修箇所101では、図8(a)に示すように鉄筋111などの補強材が露出することもある。この場合も前記と同様に補修箇所101の表面の3次元形状を計測し、図8(b)に示すように付加部材10eの製作、設置を行えばよい。図8(c)は図8(b)の線A-Aによる水平断面を示したものである。 Further, at a repair location 101 where a deteriorated portion of the concrete structure 100 has been removed, reinforcing materials such as reinforcing bars 111 may be exposed as shown in FIG. 8(a). In this case as well, the three-dimensional shape of the surface of the repair area 101 may be measured in the same manner as described above, and the additional member 10e may be manufactured and installed as shown in FIG. 8(b). FIG. 8(c) shows a horizontal cross section taken along line AA in FIG. 8(b).

この例では、鉄筋111の前面が補修箇所101の表面の3次元形状として計測され、鉄筋111の背後にある補修箇所101の表面は計測されないので、図8(b)、(c)に示すように、鉄筋111に対応する位置では、付加部材10eが鉄筋111の前面近傍まで達するように製作、設置される。 In this example, the front surface of the reinforcing bar 111 is measured as the three-dimensional shape of the surface of the repaired spot 101, and the surface of the repaired spot 101 behind the reinforcing bar 111 is not measured, so as shown in FIGS. 8(b) and 8(c). In addition, at a position corresponding to the reinforcing bar 111, the additional member 10e is manufactured and installed so as to reach near the front of the reinforcing bar 111.

なお、補修箇所101に露出した鉄筋111の一部を切断して除去した後、鉄筋111の除去部分に新たな補強筋を配置することも可能であり、この場合は補強筋の配置後に補修箇所101の表面の3次元形状を計測装置2で計測すればよい。 Note that after cutting and removing a part of the reinforcing bars 111 exposed at the repair location 101, it is also possible to place new reinforcing bars in the removed portion of the reinforcing bars 111. In this case, after placing the reinforcing bars, the repair location can be removed. The three-dimensional shape of the surface of 101 may be measured by the measuring device 2.

[第2の実施形態]
第2の実施形態は、3Dプリンタ4により付加部材を製作する代わりに、付加部材を製作するための型枠を3Dプリンタ4により製作する例である。
[Second embodiment]
The second embodiment is an example in which, instead of manufacturing the additional member using the 3D printer 4, a formwork for manufacturing the additional member is manufactured using the 3D printer 4.

すなわち、本実施形態でも図9(a)の点線部分に示すコンクリート構造物100の劣化部位を図9(b)に示すように除去し、その補修箇所101に図9(c)に示すようにボルト102を埋め込み、図9(d)に示すように補修箇所101の表面の形状を計測する。 That is, in this embodiment as well, the deteriorated portion of the concrete structure 100 shown by the dotted line in FIG. 9(a) is removed as shown in FIG. 9(b), and the repaired portion 101 is repaired as shown in FIG. A bolt 102 is embedded, and the shape of the surface of the repaired area 101 is measured as shown in FIG. 9(d).

図10(a)は、補修箇所101の表面の3次元形状データ200の例である。本実施形態では、情報処理装置3により、図9(b)に示すように、3次元形状データ200を固化材の充填面とする型枠の3次元形状データ400を作成する。 FIG. 10A is an example of three-dimensional shape data 200 of the surface of the repair location 101. In this embodiment, the information processing device 3 creates three-dimensional shape data 400 of a formwork in which the three-dimensional shape data 200 is the filling surface of the solidifying material, as shown in FIG. 9(b).

3次元形状データ400は、補修箇所101の表面の3次元形状データ200に、型枠本体部分cの3次元形状データを付与することにより作成できる。なお本実施形態でも、第1の実施形態と同様に、3次元形状データ200のボルト102の部分に拡径部bが形成され、ボルト102の部分が付加部材を背面から前面まで貫通する貫通孔11(図10(e)参照)となり、拡径部bが付加部材の前面の凹部12(図10(e)参照)となる。 The three-dimensional shape data 400 can be created by adding the three-dimensional shape data of the form body portion c to the three-dimensional shape data 200 of the surface of the repair location 101. Note that in this embodiment as well, similarly to the first embodiment, an enlarged diameter portion b is formed in the bolt 102 portion of the three-dimensional shape data 200, and the bolt 102 portion is a through hole that penetrates the additional member from the back side to the front side. 11 (see FIG. 10(e)), and the enlarged diameter portion b becomes the recessed portion 12 (see FIG. 10(e)) on the front surface of the additional member.

情報処理装置3は、作成された3次元形状データ400を上下複数層にスライスし、各層のスライスデータを作成する。スライスデータは3Dプリンタ4に入力され、3Dプリンタ4は、図10(c)に示すように、3次元形状データ400に対応する型枠40をスライスデータに従って製作する。 The information processing device 3 slices the created three-dimensional shape data 400 into multiple upper and lower layers, and creates slice data for each layer. The slice data is input to the 3D printer 4, and the 3D printer 4 manufactures a mold 40 corresponding to the three-dimensional shape data 400 according to the slice data, as shown in FIG. 10(c).

補修箇所101に設置する付加部材は、図10(d)に示すように型枠40にセメント系材料等の固化材を打設し充填することで製作され、製作された付加部材10fを、第1の実施形態と同様に補修箇所101に設置する。 The additional member to be installed in the repair area 101 is manufactured by pouring and filling the formwork 40 with a solidifying material such as a cement material, as shown in FIG. 10(d), and the manufactured additional member 10f is It is installed at the repair location 101 in the same manner as in the first embodiment.

図10(e)は付加部材10fをコンクリート構造物100の補修箇所101に設置した状態を示したものであり、本実施形態でも付加部材10fを用いることでコンクリート構造物100の補修を簡単に行うことができる。付加部材10fの前面は平坦となっており、付加部材10fの製作の容易さ等の観点から、本実施形態の手法はこのような場合に特に適している。 FIG. 10(e) shows a state in which the additional member 10f is installed at a repair location 101 of the concrete structure 100, and in this embodiment as well, the concrete structure 100 can be easily repaired by using the additional member 10f. be able to. The front surface of the additional member 10f is flat, and from the viewpoint of ease of manufacturing the additional member 10f, the method of this embodiment is particularly suitable for such a case.

以上、添付図面を参照して、本発明の好適な実施形態について説明したが、本発明は係る例に限定されない。当業者であれば、本願で開示した技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。 Although preferred embodiments of the present invention have been described above with reference to the accompanying drawings, the present invention is not limited to such examples. It is clear that those skilled in the art can come up with various changes or modifications within the scope of the technical idea disclosed in this application, and these naturally fall within the technical scope of the present invention. Understood.

1:製作システム
2:計測装置
3:情報処理装置
4:3Dプリンタ
10、10a、10b、10c、10d、10e、10f:付加部材
11、14:貫通孔
12:凹部
13:スペーサ
20:グラウト
30:充填材
40:型枠
100:コンクリート構造物
101:補修箇所
102:ボルト
103:ナット
111:鉄筋
200、300、400:3次元形状データ
1: Manufacturing system 2: Measuring device 3: Information processing device 4: 3D printer 10, 10a, 10b, 10c, 10d, 10e, 10f: Additional members 11, 14: Through hole 12: Recess 13: Spacer 20: Grout 30: Filler 40: Formwork 100: Concrete structure 101: Repair area 102: Bolts 103: Nuts 111: Rebars 200, 300, 400: 3D shape data

Claims (9)

コンクリート構造物の表面の形状を計測する工程と、
計測された前記表面の形状に基づき、3Dプリンタにより付加部材を製作する工程と、
前記付加部材を前記表面に設置する工程と、
を有し、
前記付加部材は、前記表面側の面にスペーサを有し、前記表面との間に隙間ができるように設置され、前記隙間に充填材が充填されることを特徴とする施工方法。
A process of measuring the shape of the surface of a concrete structure,
manufacturing an additional member using a 3D printer based on the measured shape of the surface;
installing the additional member on the surface;
has
The construction method is characterized in that the additional member has a spacer on the surface side, is installed so that a gap is formed between it and the surface, and the gap is filled with a filler material .
コンクリート構造物の表面の形状を計測する工程と、
計測された前記表面の形状に基づき、3Dプリンタにより型枠を製作する工程と、
前記型枠を用いて付加部材を製作する工程と、
前記付加部材を前記表面に設置する工程と、
を有し、
前記付加部材は、前記表面側の面にスペーサを有し、前記表面との間に隙間ができるように設置され、前記隙間に充填材が充填されることを特徴とする施工方法。
A process of measuring the shape of the surface of a concrete structure,
a step of manufacturing a formwork using a 3D printer based on the measured shape of the surface;
manufacturing an additional member using the formwork;
installing the additional member on the surface;
has
The construction method is characterized in that the additional member has a spacer on the surface side, is installed so that a gap is formed between it and the surface, and the gap is filled with a filler material .
コンクリート構造物の表面の形状を計測する工程と、
計測された前記表面の形状に基づき、3Dプリンタにより付加部材を製作する工程と、
前記付加部材を前記表面に設置する工程と、
を有し、
前記表面にボルトが設けられ、
前記付加部材は、前記表面側の面から前面まで貫通する貫通孔を有し、前記ボルトを前記貫通孔に通して前記表面に設置され、前記ボルトの先端にナットが締め込まれることを特徴とする施工方法。
A process of measuring the shape of the surface of a concrete structure,
manufacturing an additional member using a 3D printer based on the measured shape of the surface;
installing the additional member on the surface;
has
a bolt is provided on the surface;
The additional member has a through hole penetrating from the surface side to the front surface, and is installed on the surface by passing the bolt through the through hole, and a nut is tightened to the tip of the bolt. construction method.
コンクリート構造物の表面の形状を計測する工程と、
計測された前記表面の形状に基づき、3Dプリンタにより型枠を製作する工程と、
前記型枠を用いて付加部材を製作する工程と、
前記付加部材を前記表面に設置する工程と、
を有し、
前記表面にボルトが設けられ、
前記付加部材は、前記表面側の面から前面まで貫通する貫通孔を有し、前記ボルトを前記貫通孔に通して前記表面に設置され、前記ボルトの先端にナットが締め込まれることを特徴とする施工方法。
A process of measuring the shape of the surface of a concrete structure,
a step of manufacturing a formwork using a 3D printer based on the measured shape of the surface;
manufacturing an additional member using the formwork;
installing the additional member on the surface;
has
a bolt is provided on the surface;
The additional member has a through hole penetrating from the surface side to the front surface, and is installed on the surface by passing the bolt through the through hole, and a nut is tightened to the tip of the bolt. construction method.
前記表面は、前記コンクリート構造物の一部を除去した後の表面であることを特徴とする請求項1から請求項4のいずれかに記載の施工方法。 5. The construction method according to claim 1, wherein the surface is a surface after a portion of the concrete structure has been removed. コンクリート構造物の表面の形状を計測する工程と、
計測された前記表面の形状に基づき、前記コンクリート構造物の表面との間に充填材を充填するための隙間ができるよう前記表面に設置される付加部材、または、前記付加部材を製作するための型枠を3Dプリンタにより製作する工程と、
を有し、
前記付加部材は、前記表面側の面にスペーサを有することを特徴とする製作方法。
A process of measuring the shape of the surface of a concrete structure,
Based on the measured shape of the surface, an additional member to be installed on the surface so as to create a gap for filling a filler with the surface of the concrete structure, or for manufacturing the additional member. The process of manufacturing the formwork using a 3D printer,
has
A manufacturing method characterized in that the additional member has a spacer on the front surface side .
コンクリート構造物の表面の形状を計測する工程と、
計測された前記表面の形状に基づき、前記コンクリート構造物の表面に設けられたボルトを用いて前記表面に設置される付加部材、または、前記付加部材を製作するための型枠を3Dプリンタにより製作する工程と、
を有し、
前記付加部材は、前記ボルトを通すための、前記表面側の面から前面まで貫通する貫通孔を、前記ボルトと対応する位置に有することを特徴とする製作方法。
A process of measuring the shape of the surface of a concrete structure,
Based on the measured shape of the surface, an additional member installed on the surface using bolts provided on the surface of the concrete structure or a formwork for manufacturing the additional member is manufactured using a 3D printer. The process of
has
A manufacturing method characterized in that the additional member has a through hole that penetrates from the front surface to the front surface for passing the bolt at a position corresponding to the bolt .
コンクリート構造物の表面との間に充填材を充填するための隙間ができるよう前記表面に設置される付加部材を製作するために用いられる情報処理装置であって、
前記表面の形状を計測したデータに基づき、前記付加部材、または前記付加部材を製作するための型枠を3Dプリンタにより製作するための3次元形状データを作成し、
前記付加部材は、前記表面側の面にスペーサを有することを特徴とする情報処理装置。
An information processing device used for manufacturing an additional member installed on the surface of a concrete structure so as to create a gap for filling a filler between the surface and the surface of the concrete structure, the information processing device comprising:
Based on the measured data of the surface shape, create three-dimensional shape data for manufacturing the additional member or a formwork for manufacturing the additional member using a 3D printer ,
The information processing device , wherein the additional member has a spacer on the front side surface .
コンクリート構造物の表面に設けられたボルトを用いて前記表面に設置される付加部材を製作するために用いられる情報処理装置であって、
前記表面の形状を計測したデータに基づき、前記付加部材、または前記付加部材を製作するための型枠を3Dプリンタにより製作するための3次元形状データを作成し、
前記付加部材は、前記ボルトを通すための、前記表面側の面から前面まで貫通する貫通孔を、前記ボルトと対応する位置に有することを特徴とする情報処理装置。
An information processing device used for manufacturing an additional member installed on the surface of a concrete structure using bolts provided on the surface, the information processing device comprising:
Based on the measured data of the surface shape, create three-dimensional shape data for manufacturing the additional member or a formwork for manufacturing the additional member using a 3D printer ,
The information processing device is characterized in that the additional member has a through hole that penetrates from the front surface to the front surface, through which the bolt passes, at a position corresponding to the bolt .
JP2020106989A 2020-06-22 2020-06-22 Construction methods, manufacturing methods, information processing equipment Active JP7450219B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020106989A JP7450219B2 (en) 2020-06-22 2020-06-22 Construction methods, manufacturing methods, information processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020106989A JP7450219B2 (en) 2020-06-22 2020-06-22 Construction methods, manufacturing methods, information processing equipment

Publications (2)

Publication Number Publication Date
JP2022001718A JP2022001718A (en) 2022-01-06
JP7450219B2 true JP7450219B2 (en) 2024-03-15

Family

ID=79244144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020106989A Active JP7450219B2 (en) 2020-06-22 2020-06-22 Construction methods, manufacturing methods, information processing equipment

Country Status (1)

Country Link
JP (1) JP7450219B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002167976A (en) 2000-12-04 2002-06-11 Eko Japan Kk Device and method for repairing lower surface of concrete structure
JP2013127415A (en) 2011-12-19 2013-06-27 Kajima Corp Method and apparatus for evaluating quality of concrete structure
JP2016061098A (en) 2014-09-19 2016-04-25 新日鐵住金株式会社 Reinforcing structure for corroded steel member
JP2017052289A (en) 2011-11-01 2017-03-16 ローボロー・ユニヴァーシティー Method and apparatus for delivery of cementitious material
JP2018060361A (en) 2016-10-05 2018-04-12 日本ヒューム株式会社 Mold form design device, mold form, concrete molding, mold form design system, and mold form design method
JP2018158467A (en) 2017-03-22 2018-10-11 富士通株式会社 Information processing system for modeling a member, information processing apparatus, and information processing method
US20190270239A1 (en) 2016-07-27 2019-09-05 Soletanche Freyssinet Method for repairing a civil engineering structure

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002167976A (en) 2000-12-04 2002-06-11 Eko Japan Kk Device and method for repairing lower surface of concrete structure
JP2017052289A (en) 2011-11-01 2017-03-16 ローボロー・ユニヴァーシティー Method and apparatus for delivery of cementitious material
JP2013127415A (en) 2011-12-19 2013-06-27 Kajima Corp Method and apparatus for evaluating quality of concrete structure
JP2016061098A (en) 2014-09-19 2016-04-25 新日鐵住金株式会社 Reinforcing structure for corroded steel member
US20190270239A1 (en) 2016-07-27 2019-09-05 Soletanche Freyssinet Method for repairing a civil engineering structure
JP2018060361A (en) 2016-10-05 2018-04-12 日本ヒューム株式会社 Mold form design device, mold form, concrete molding, mold form design system, and mold form design method
JP2018158467A (en) 2017-03-22 2018-10-11 富士通株式会社 Information processing system for modeling a member, information processing apparatus, and information processing method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Rebuilding a Frank Lloyd Wright Classic With 3-D Printed Blocks,2014年10月18日,https://web.archive.org/web/20141018212213/https://www.smithsonianmag.com/arts-culture/rebuilding-frank-lloyd-wright-classic-3-D-blocks-180953007/

Also Published As

Publication number Publication date
JP2022001718A (en) 2022-01-06

Similar Documents

Publication Publication Date Title
Hadi et al. Retrofitting nonseismically detailed exterior beam–column joints using concrete covers together with CFRP jacket
Täljsten et al. Concrete structures strengthened with near surface mounted reinforcement of CFRP
Almusallam et al. Experimental and numerical investigation for the flexural strengthening of RC beams using near-surface mounted steel or GFRP bars
US9476212B2 (en) System and method for structural rehabilitation and enhancement
Shao et al. Impact of UHPC tensile behavior on steel reinforced UHPC flexural behavior
de Freitas et al. Fatigue behavior of bonded and sandwich systems for strengthening orthotropic bridge decks
Foubert et al. Behavior of prestressed hollow-core slabs strengthened in flexure with near-surface mounted carbon fiber-reinforced polymer reinforcement
Hassan et al. Study behavior of hollow reinforced concrete beams
Deng et al. Efficient prestressed concrete-steel composite girder for medium-span bridges. II: Finite-element analysis and experimental investigation
JP2017507259A (en) Method for manufacturing concrete member, prefabricated structural element for concrete member, and concrete member
JP7450219B2 (en) Construction methods, manufacturing methods, information processing equipment
JP2019002251A (en) Precast concrete floor slab connection structure and connection method
JP2019002250A (en) Precast concrete floor slab connection structure and connection method
Pharand et al. Experimental investigation of the shear resistance mechanism on hybrid NSC-UHPC predamaged and undamaged unidirectional bridge slabs
Mander et al. Modified yield line theory for full-depth precast concrete bridge deck overhang panels
Bischof et al. Experimental exploration of digitally fabricated connections for structural concrete
Nelson et al. Splices of FRP stay-in-place structural forms in concrete bridge decks
JP4694423B2 (en) Fatigue reduction type weld joint structure forming method and reinforced resin block
Vella et al. Numerical modelling of headed bar joints subjected to tension
Williams et al. Fatigue of diagonally cracked RC girders repaired with CFRP
Mercedes et al. Matrix and fabric contribution on the tensile behaviour of fabric reinforced cementitious matrix composites
Mutashar et al. Influence of nonuniform box beam dimensions and bridge transverse slope on environmentally induced stresses in adjacent box beam bridges
Wozniak et al. Quality of the bond between a Strain Hardening Cement Composite stay-in-place formwork and concrete: Comparison of two experimental set-ups
Kalyani et al. Experimental and numerical investigations on RC beams flexurally strengthened utilizing hybrid FRP sheets
Alkhrdaji et al. Surface bonded FRP reinforcement for strengthening/repair of structural reinforced concrete

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240226

R150 Certificate of patent or registration of utility model

Ref document number: 7450219

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150