JP7450194B1 - A multi-stage circulation filtration culture method for different species that utilizes the low temperature of deep ocean water. - Google Patents
A multi-stage circulation filtration culture method for different species that utilizes the low temperature of deep ocean water. Download PDFInfo
- Publication number
- JP7450194B1 JP7450194B1 JP2022200550A JP2022200550A JP7450194B1 JP 7450194 B1 JP7450194 B1 JP 7450194B1 JP 2022200550 A JP2022200550 A JP 2022200550A JP 2022200550 A JP2022200550 A JP 2022200550A JP 7450194 B1 JP7450194 B1 JP 7450194B1
- Authority
- JP
- Japan
- Prior art keywords
- water
- aquaculture
- tank
- supplied
- breeding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 230
- 238000001914 filtration Methods 0.000 title claims abstract description 43
- 238000012136 culture method Methods 0.000 title claims description 4
- 238000009360 aquaculture Methods 0.000 claims abstract description 104
- 244000144974 aquaculture Species 0.000 claims abstract description 104
- 238000009395 breeding Methods 0.000 claims abstract description 66
- 230000001488 breeding effect Effects 0.000 claims abstract description 66
- 241001474374 Blennius Species 0.000 claims abstract description 16
- 241000251511 Holothuroidea Species 0.000 claims abstract description 15
- 241000972773 Aulopiformes Species 0.000 claims abstract description 13
- 235000019515 salmon Nutrition 0.000 claims abstract description 13
- 241000238424 Crustacea Species 0.000 claims abstract description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 66
- 239000005416 organic matter Substances 0.000 claims description 37
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 claims description 36
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 33
- 239000001569 carbon dioxide Substances 0.000 claims description 33
- 230000000384 rearing effect Effects 0.000 claims description 31
- 238000002347 injection Methods 0.000 claims description 12
- 239000007924 injection Substances 0.000 claims description 12
- 241000894007 species Species 0.000 claims description 10
- 238000012364 cultivation method Methods 0.000 claims description 9
- 235000015097 nutrients Nutrition 0.000 claims description 6
- 235000013305 food Nutrition 0.000 claims description 4
- 238000004062 sedimentation Methods 0.000 claims description 4
- 229910017464 nitrogen compound Inorganic materials 0.000 claims description 3
- 150000002830 nitrogen compounds Chemical class 0.000 claims description 3
- 238000012546 transfer Methods 0.000 claims description 2
- 150000003839 salts Chemical class 0.000 claims 1
- 239000013535 sea water Substances 0.000 abstract description 22
- 238000000034 method Methods 0.000 abstract description 21
- 238000005192 partition Methods 0.000 description 23
- 238000010586 diagram Methods 0.000 description 21
- 241000251468 Actinopterygii Species 0.000 description 14
- 235000021050 feed intake Nutrition 0.000 description 11
- 238000012545 processing Methods 0.000 description 10
- 235000019688 fish Nutrition 0.000 description 9
- 230000000694 effects Effects 0.000 description 8
- 244000005700 microbiome Species 0.000 description 7
- 239000002245 particle Substances 0.000 description 7
- 238000005273 aeration Methods 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 238000009423 ventilation Methods 0.000 description 6
- 230000008901 benefit Effects 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 229910052500 inorganic mineral Inorganic materials 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 230000000813 microbial effect Effects 0.000 description 5
- 239000011707 mineral Substances 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- 241000894006 Bacteria Species 0.000 description 4
- 241000607598 Vibrio Species 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 241000512259 Ascophyllum nodosum Species 0.000 description 3
- 230000003749 cleanliness Effects 0.000 description 3
- 238000007872 degassing Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 3
- 230000029058 respiratory gaseous exchange Effects 0.000 description 3
- 238000011144 upstream manufacturing Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- IOVCWXUNBOPUCH-UHFFFAOYSA-M Nitrite anion Chemical compound [O-]N=O IOVCWXUNBOPUCH-UHFFFAOYSA-M 0.000 description 2
- 241000316146 Salmo trutta trutta Species 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 230000000844 anti-bacterial effect Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000012790 confirmation Methods 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000009313 farming Methods 0.000 description 2
- 208000010824 fish disease Diseases 0.000 description 2
- 238000007667 floating Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 244000045947 parasite Species 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 241000238557 Decapoda Species 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 206010070834 Sensitisation Diseases 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 208000035896 Twin-reversed arterial perfusion sequence Diseases 0.000 description 1
- 241001261506 Undaria pinnatifida Species 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 244000052616 bacterial pathogen Species 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- -1 bromine ions Chemical class 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 239000003651 drinking water Substances 0.000 description 1
- 235000020188 drinking water Nutrition 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 239000013505 freshwater Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 231100001261 hazardous Toxicity 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 244000000010 microbial pathogen Species 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 235000016709 nutrition Nutrition 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 238000009304 pastoral farming Methods 0.000 description 1
- 244000052769 pathogen Species 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 238000006552 photochemical reaction Methods 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 238000005381 potential energy Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 235000014102 seafood Nutrition 0.000 description 1
- 230000001932 seasonal effect Effects 0.000 description 1
- 230000008313 sensitization Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Environmental Sciences (AREA)
- Marine Sciences & Fisheries (AREA)
- Chemical & Material Sciences (AREA)
- Animal Husbandry (AREA)
- Biodiversity & Conservation Biology (AREA)
- Zoology (AREA)
- Farming Of Fish And Shellfish (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
Abstract
【課題】 海洋深層水の低温性を利用した異種生物の多段階循環濾過式養殖方法を提供する。【解決手段】本発明は取水された海洋深層水を第1養殖水槽に供給し、水温3~5℃で寒海性甲殻類を養殖し、前記第1養殖水槽から排水された飼育水は第2養殖水槽に供給され、水温10~12℃で寒海性海藻類を養殖し、前記第2養殖水槽から排水された飼育水は第3養殖水槽に供給して水温14~16℃で鮭類を循環濾過養殖システムで養殖し、前記第3養殖水槽から再循環された飼育水が第4養殖水槽に供給され、水温16~18℃でナマコを養殖できる海洋深層水を利用した多段階養殖方法を提供することにより、寒海性水産資源サーモン類、海藻類及びナマコのような対象生物を深層水を活用した低水温飼育環境での飼育が可能となり、異種生物を年中生産可能となる。【選択図】 図2[Problem] To provide a multi-stage circulating filtration type aquaculture method for different kinds of organisms utilizing the low temperature of deep sea water. [Solution] The present invention provides a multi-stage aquaculture method using deep sea water, in which deep sea water taken in is supplied to a first aquaculture tank, where cold-sea crustaceans are cultured at a water temperature of 3 to 5°C, the breeding water discharged from the first aquaculture tank is supplied to a second aquaculture tank, where cold-sea seaweeds are cultured at a water temperature of 10 to 12°C, the breeding water discharged from the second aquaculture tank is supplied to a third aquaculture tank, where salmon are cultured at a water temperature of 14 to 16°C in a circulating filtration aquaculture system, and the breeding water recirculated from the third aquaculture tank is supplied to a fourth aquaculture tank, where sea cucumbers are cultured at a water temperature of 16 to 18°C. This makes it possible to breed target organisms such as cold-sea aquatic resource salmon, seaweed, and sea cucumbers in a low water temperature breeding environment using deep sea water, and makes it possible to produce different kinds of organisms all year round. [Selected figure] Figure 2
Description
本発明は、海洋深層水の低温性を利用した異種生物の多段階循環濾過式養殖方法に関するものであり、特に、海洋深層水の低温性を活用して飼育生物の適正水温及び水質環境に適合するように各段階別養殖方法をモジュール化し、養殖場運用と省エネが可能な海洋深層水を利用した多段階養殖方法に関する。 The present invention relates to a multi-stage circulation filtration culture method for different species of organisms that utilizes the low-temperature nature of deep ocean water, and in particular, utilizes the low-temperature nature of deep ocean water to adapt to the appropriate water temperature and water quality environment for the cultivated organisms. This paper relates to a multi-stage aquaculture method using deep ocean water that allows for modularization of each stage of aquaculture methods to facilitate farm operation and energy savings.
海洋深層水とは、太陽光が届かない通常水深200m以上の深さにある表層の海水と混ざらない海水であり、およそ1200~2000年の間、地球を循環している深層流のことを指す。海洋深層水は、地球に存在する海水の約95%を占めており、水産分野だけでなく食品や、医療、健康産業、飲料水、化粧品などの分野においても活用されている。 Deep ocean water is seawater that does not mix with surface seawater, which is usually at a depth of 200 meters or more where sunlight does not reach, and refers to deep currents that have circulated around the earth for approximately 1,200 to 2,000 years. . Deep ocean water makes up about 95% of the seawater on Earth, and is used not only in the marine industry, but also in food, medicine, the health industry, drinking water, cosmetics, and other fields.
表層海水の水温は、季節によって大幅に変動するのに対し、海洋深層水は、季節によって水温の変化がなく、低温で安定した低温安定性を持つ。深層において陸上の河川水、大気からの汚染を受けにくく、化学物質、汚染物質と細菌が少ない清浄性を持つ。海洋深層水は、表層海水に比べて植物プランクトンの栄養源となる窒素、リン、ケイ素などを含む無機栄養塩類が、表層海水の約5~10倍豊富に含まれるという富栄養性を持つ。
また、多種多様な元素を含む豊富なミネラルと、表層海水に比べてpHが低く、有機物含量が少なく表層海水から分離され、低温高圧下で長い期間熟成された熟成性を持っている。
While the temperature of surface seawater fluctuates significantly depending on the season, deep ocean water does not change in temperature depending on the season and has stable low temperature stability. In the deep layer, it is less susceptible to pollution from terrestrial river water and the atmosphere, and has cleanliness with less chemicals, pollutants, and bacteria. Deep ocean water is eutrophic, containing about 5 to 10 times more inorganic nutrients, including nitrogen, phosphorus, and silicon, which are nutritional sources for phytoplankton than surface seawater.
In addition, it is rich in minerals containing a wide variety of elements, has a lower pH than surface seawater, has a lower organic matter content, and has the ability to mature by being separated from surface seawater and aged for a long period of time under low temperature and high pressure.
世界的に、水産物は養殖されており、国内養殖量も増加している。
海洋深層水の低温性、富栄養性、高ミネラル性を活用すれば、これまで養殖しにくかった寒海性高付加価値魚種を畜養したり、養殖できる新しい事業領域を開拓することができ、新たな将来潜在産業を育成することができる。海洋深層水を利用した水産分野の研究は海外ではすでに70年代から行われ、米国、台湾、ノルウェーではすでに産業化が進んでいる。
Seafood products are being farmed all over the world, and the amount of domestic aquaculture is increasing.
By taking advantage of the low temperature, eutrophic, and high mineral content of deep ocean water, we can cultivate new business fields in which we can cultivate high value-added cold-sea fish species that have been difficult to cultivate in the past. New potential industries can be developed. Research in the field of fisheries using deep ocean water has already been conducted overseas since the 1970s, and industrialization is already underway in the United States, Taiwan, and Norway.
大韓民国特許登録番号第10-0861134号には海洋深層水を利用した海藻養殖方法が、大韓民国特許登録番号第10-1578927号には海藻養殖方法について開示されているが、前記先行文献は単一魚種の養殖方法のみに限られている。
また、現在の水産分野の産業的活用としては、蟹などの寒海性魚種をしばらく保管する畜養程度の活用である。
そこで、本発明は低温性、富栄養性、高ミネラル性などの特性を持つ海洋深層水を利用して高付加価値のある様々な魚種を段階的に養殖できるシステムを提供する。
Republic of Korea Patent Registration No. 10-0861134 discloses a seaweed cultivation method using deep ocean water, and Republic of Korea Patent Registration No. 10-1578927 discloses a seaweed cultivation method; It is limited to seed cultivation methods only.
In addition, current industrial use in the fisheries field is for livestock farming, where cold-sea fish species such as crabs are stored for a while.
Therefore, the present invention provides a system in which various high-value-added fish species can be cultivated step by step using deep ocean water that has characteristics such as low temperature, eutrophicity, and high mineral content.
本発明は、海洋深層水の低温性を活用して飼育生物の適正水温及び水質環境に適合するように各段階別養殖方法をモジュール化し、水温別多様な養殖魚種の飼育が可能であり、取水された海洋深層水を多様な魚種の飼育のため養殖場の運用と省エネが可能な多段階養殖方法を提供する。 The present invention utilizes the low-temperature nature of deep ocean water to modularize aquaculture methods for each stage to suit the appropriate water temperature and water quality environment of the cultured organisms, making it possible to raise a variety of aquaculture fish species at different water temperatures. To provide a multi-stage aquaculture method that enables the operation of a farm and energy saving for breeding various fish species using deep ocean water taken from the ocean.
本発明の海洋深層水の低温性を利用した異種生物の多段階循環濾過式養殖方法は、取水された海洋深層水を第1養殖水槽に供給し、水温3~5℃で寒海性甲殻類を養殖する。
第1養殖水槽で排水された飼育水は、第2養殖水槽に供給され、水温10~12℃で寒海性海藻類を養殖する。
第2養殖水槽で排水された飼育水は、第3養殖水槽に供給され、水温14~16℃で鮭類を養殖する。
前記第3養殖水槽で排水された飼育水は、第4養殖水槽に供給され、水温16~18℃でナマコを養殖する。
取水された海洋深層水は前記第1~第4養殖水槽を順次的に移動して供給され、前記養殖水槽は水位差で海洋深層水が移動可能に設けられ、単一の位置エネルギーで養殖水槽に海洋深層水を供給及び移動できる。
The multi-stage circulation filtration culture method for cultivating different species of organisms using the low-temperature properties of deep ocean water according to the present invention involves supplying the taken deep ocean water to a first aquaculture tank, and raising the water temperature to 3 to 5 degrees Celsius to cultivate cold-sea crustaceans. to cultivate.
The culture water drained from the first culture tank is supplied to the second culture tank, and cold-water seaweed is cultured at a water temperature of 10 to 12°C.
The breeding water drained from the second aquaculture tank is supplied to the third aquaculture tank, where salmon are cultured at a water temperature of 14 to 16°C.
The breeding water drained from the third culture tank is supplied to the fourth culture tank, and sea cucumbers are cultured at a water temperature of 16 to 18°C.
The taken deep ocean water is sequentially moved and supplied to the first to fourth aquaculture tanks, and the aquaculture tanks are provided so that the deep ocean water can be moved depending on the water level difference, and a single potential energy is used to move the deep ocean water to the aquaculture tanks. can supply and transport deep ocean water to
前記第3養殖水槽の循環濾過システムは、第2養殖水槽で排水された飼育水が供給され、鮭類が養殖される飼育水槽が1つ以上設けられ、前記飼育水槽で排水された飼育水は沈殿槽に貯蔵された後、有機物除去装置、脱気装置、濾過装置、オゾン注入装置を順次経由して再供給水として一部は飼育水槽に再供給され、残りは第4養殖水槽に飼育水として供給できるのが望ましい。 The circulation filtration system of the third aquaculture tank is provided with one or more breeding aquariums in which the breeding water drained from the second aquaculture tank is supplied and salmon are cultured, and the breeding water drained from the second aquaculture tank is supplied with the breeding water drained from the second culture tank. After being stored in a settling tank, some of the water is re-supplied to the rearing tank through an organic matter removal device, a deaeration device, a filtration device, and an ozone injection device in order, and the rest is fed to the fourth aquaculture tank as rearing water. It is desirable to be able to supply it as
前記有機物除去装置から分離された有機物は、外部に排出されるか、第4養殖水槽のナマコ餌として供給され、脱気装置により飼育水と分離された二酸化炭素、及び濾過装置で飼育水と分離された窒素化合物は、第2養殖水槽の海藻に栄養塩として供給される。 The organic matter separated from the organic matter removal device is either discharged to the outside or supplied as sea cucumber feed in the fourth aquaculture tank, and carbon dioxide is separated from the rearing water by a degassing device and separated from the rearing water by a filtration device. The nitrogen compounds produced are supplied as nutrients to the seaweed in the second culture tank.
前記オゾン注入装置はオゾンを発生して飼育水に溶解させるオゾン発生装置と、総残留酸化物(total residual oxidants,TRO)ベースモニタリングを行うオゾン制御装置からなり、前記飼育水にオゾンはTRO濃度0.040(mg/L)の量で維持するのが望ましい。 The ozone injection device is composed of an ozone generator that generates ozone and dissolves it in the rearing water, and an ozone control device that performs base monitoring of total residual oxides (TRO), and ozone is added to the rearing water until the TRO concentration is 0. It is desirable to maintain the amount at .040 (mg/L).
本発明による海洋深層水の低温性を活用した養殖方法は、養殖対象異種生物の前、後養殖段階で要求される水温差が小さく、加温に要するエネルギーが少なく、水温維持のミスで水産物の斃死を防ぐことができる。
また、本発明により海洋深層水を活用した低水温飼育環境の維持が可能となり、養殖される寒海性水産資源サケ類、海藻類及びナマコのような対象生物を年中生産可能となる。
The aquaculture method according to the present invention that utilizes the low temperature nature of deep ocean water requires a small difference in water temperature between the pre- and post-aquaculture stages of the different species to be cultured, requires less energy for heating, and prevents the production of marine products due to mistakes in maintaining water temperature. Death can be prevented.
Furthermore, the present invention makes it possible to maintain a low-temperature rearing environment using deep ocean water, making it possible to produce target organisms such as cold-sea aquatic resource salmon, seaweed, and sea cucumbers throughout the year.
本発明の海洋深層水を用いた異種生物の多段階養殖方法に関して、図面を参照して説明する。
図1は、本発明の海洋深層水を用いた異種生物の多段階養殖方法の模式図を示し、図2は本発明の海洋深層水を用いた異種生物の多段階養殖方法の模式図を示す。
本発明の海洋深層水を用いた異種生物の多段階養殖方法は、海洋深層水が位置する水層の海水を取水する海洋深層水取水段階(A)、取水された海洋深層水を第1養殖水槽に供給し、水温3~5℃で寒海性甲殻類を養殖する第1養殖水槽供給段階(B)、前記(B)段階で飼育水として使用され、排水された飼育水を第2養殖水槽に供給して水温10~12℃で寒海性海藻養殖する第2養殖水槽供給段階(C)、前記(C)段階で排水された飼育水を第3養殖水槽に供給し、水温14~16℃でサケ類を養殖する第3養殖水槽供給段階(D)、前記(D)段階で排水された飼育水を第4養殖水槽に供給して水温16~18℃でナマコを養殖する第4養殖水槽供給段階(E)からなる。
The multi-step culturing method of different species using deep ocean water according to the present invention will be explained with reference to the drawings.
FIG. 1 shows a schematic diagram of a multi-step cultivation method of different species using deep ocean water according to the present invention, and FIG. 2 shows a schematic diagram of a multi-stage cultivation method of different species using deep ocean water of the present invention. .
The multi-stage cultivation method of different species using deep ocean water of the present invention includes a deep ocean water intake stage (A) of taking seawater from an aqueous layer in which deep ocean water is located, and a first cultivation stage in which the taken deep ocean water is used for aquaculture. The first aquaculture tank supply step (B) in which cold-sea crustaceans are cultured at a water temperature of 3 to 5 degrees Celsius, and the drained aquaculture water that was used as culture water in the step (B) is used in the second aquaculture. A second aquaculture tank supply step (C) in which cold-water seaweed is cultivated at a water temperature of 10 to 12°C, and the breeding water drained in the step (C) is supplied to a third aquaculture tank, and the water temperature is 14 to 12°C. A third aquaculture tank supply step (D) for cultivating salmon at 16°C; a fourth step for cultivating sea cucumbers at a water temperature of 16 to 18°C by supplying the breeding water drained in the step (D) to a fourth aquaculture tank; It consists of the aquaculture tank supply stage (E).
本発明において海洋深層水は、前記第1~第4養殖水槽を順次的に移動し、養殖飼育水として利用することができ、前記養殖水槽は水位差によって飼育水の流れ調節が可能である。 In the present invention, the deep ocean water can be used as aquaculture water by sequentially moving through the first to fourth aquaculture tanks, and the flow of the aquaculture water in the aquaculture tanks can be adjusted by adjusting the water level difference.
本発明の海洋深層水取水段階(A)は、取水管を用いて海洋深層水を取水する段階である。
本発明の海洋深層水は、水深200m以下に位置する太陽光が到達しない海水で、2℃以下水温の清浄性、低水温性、水質安定性に優れ、溶存酸素量が少なくミネラルと栄養塩類が豊富な海水である。
また、本発明の海洋深層水を取水する方法は、取水管を海底に延長して取水する。前記取水方法は、従来公知された方法を選択することができる。
The deep sea water intake step (A) of the present invention is a step of taking deep sea water using a water intake pipe.
The deep sea water of the present invention is seawater that is located at a depth of 200 m or less and is not exposed to sunlight, and has excellent cleanliness, low water temperature, and water quality stability at a water temperature of 2°C or less, and has a low amount of dissolved oxygen and contains minerals and nutrients. It is rich in seawater.
Further, in the method of taking deep ocean water according to the present invention, water is taken by extending a water intake pipe to the seabed. As the water intake method, a conventionally known method can be selected.
本発明の第1養殖水槽供給段階(B)は、前記(A)段階で取水された海洋深層水を第1養殖水槽に供給して養殖する段階である。
(B)段階で養殖される水産生物は、水温3~5℃で養殖することができる寒海性甲殻類である。本発明の実施形態では、蟹畜養が実施された。
本発明で取水された海洋深層水は、低温性、清浄性、細菌及びウイルスが含まれないという特性があり、別途の加温と水質管理なしに飼育水として供給ができる。
The first aquaculture tank supply step (B) of the present invention is a step in which the deep ocean water taken in the step (A) is supplied to the first aquaculture tank for aquaculture.
The aquatic organisms cultured in stage (B) are cold-sea crustaceans that can be cultured at a water temperature of 3 to 5°C. In an embodiment of the invention, crab farming was carried out.
The deep ocean water taken in the present invention has the characteristics of low temperature, cleanliness, and no bacteria or viruses, and can be supplied as breeding water without separate heating and water quality control.
本発明の第2養殖水槽供給段階(C)は、上記(B)段階で飼育水として使用され、排水された飼育水を第2養殖水槽に供給して養殖する段階である。
前記(C)段階で養殖される水産生物は、水温10~12℃で養殖することができる寒海性海藻類である。海藻類は、昆布、わかめなどを含むことができる。
本発明の実施例では、第2養殖水槽では昆布を養殖した。昆布は12~3月に幼葉が出て7月まで成長し、水温12~13℃を超えると枯れ、初秋10℃以下では活発に生育する寒海性植物として年中海藻養殖が可能である。
The second aquaculture tank supply step (C) of the present invention is a step in which the drained aquaculture water used as the aquaculture water in the step (B) is supplied to the second aquaculture tank for aquaculture.
The aquatic organisms cultivated in step (C) are cold-sea seaweeds that can be cultivated at a water temperature of 10 to 12°C. Seaweeds can include kelp, wakame, and the like.
In the example of the present invention, kelp was cultured in the second culture tank. Young leaves of kelp emerge from December to March and grow until July.It dies when the water temperature exceeds 12 to 13 degrees Celsius, and grows actively in early fall below 10 degrees Celsius, making it possible to cultivate seaweed all year round. .
本発明の第3養殖水槽供給段階(D)は、前記(C)段階で排水された飼育水を第3養殖水槽に供給して養殖する段階である。
(D)段階で養殖される水産生物は、水温14~16℃で養殖されるサケ類が望ましい。
本発明の第3養殖水槽及び第4養殖水槽は、循環濾過養殖システムからなるものがよい。
The third aquaculture tank supply step (D) of the present invention is a step in which the aquaculture water drained in the step (C) is supplied to the third aquaculture tank for aquaculture.
The aquatic organisms cultured in step (D) are preferably salmon that are cultured at a water temperature of 14 to 16°C.
The third aquaculture tank and the fourth aquaculture tank of the present invention preferably consist of a circulating filtration aquaculture system.
図3は、本発明の第3養殖水槽および第4養殖水槽の循環濾過養殖システムの概略図を示す。
本発明の循環濾過養殖システムは、第2養殖水槽または第3養殖水槽から排水された飼育水が供給され、鮭類やナマコを飼育する飼育水槽100が1つ以上設けられる。
前記飼育水槽で排水された飼育水は沈殿槽200に貯蔵された後、有機物除去装置300、脱気装置400、濾過装置500、オゾン注入装置600を順次的に経て再供給水として、一部は第3養殖水槽水槽に再供給され、残りは第4養殖水槽の飼育水として供給することができる。
FIG. 3 shows a schematic diagram of the circulation filtration aquaculture system of the third aquaculture tank and the fourth aquaculture tank of the present invention.
The circulating filtration aquaculture system of the present invention is provided with one or more breeding aquariums 100 for breeding salmon and sea cucumbers, and is supplied with breeding water drained from the second aquaculture tank or the third aquaculture tank.
The breeding water drained from the breeding tank is stored in a settling tank 200, and then sequentially passes through an organic matter removal device 300, a deaeration device 400, a filtration device 500, and an ozone injection device 600, and some of it is resupplied as water. The water is re-supplied to the third aquaculture tank, and the remainder can be supplied as breeding water to the fourth aquaculture tank.
循環濾過養殖システムは、水中ポンプのような動力源を用いて飼育水を移動させ、浄化過程を経る。また、飼育水の移動は、水位差に応じてシステム内を移動することにより、1回の動力を使用することで循環が可能である。
本発明の循環濾過養殖システム(Recirculating aquaculture system; RAS)は、高密度養殖が可能で、生産性増大と養殖に必要な飼育水を再利用することにより、少ない水量だけで運転が可能となり、膨大な揚水用消費電力を低減することができる。
飼育水槽100は、鮭が飼育される場所である。沈殿槽200は、飼育水槽から排水された飼育水の固形物を一次的に除去する。
Circulating filtration aquaculture systems use a power source, such as a submersible pump, to move the aquaculture water through a purification process. Furthermore, by moving the breeding water within the system according to the difference in water level, circulation can be achieved by using power once.
The circulating filtration aquaculture system (RAS) of the present invention is capable of high-density aquaculture, and by increasing productivity and reusing the aquaculture water required for aquaculture, it can be operated with a small amount of water, resulting in huge production capacity. It is possible to reduce power consumption for water pumping.
The breeding tank 100 is a place where salmon are kept. The sedimentation tank 200 temporarily removes solid matter from the breeding water drained from the breeding aquarium.
図4は、本発明の有機物除去装置、脱気装置、濾過装置の概略図を示す。図5は、本発明の有機物除去装置の概念図を示す。
本発明の有機物除去装置300は、上部に開閉可能に装着された蓋を備えた処理槽1と、前記処理槽1の中間には、処理槽を上部処理槽3と下部処理槽4に分けるように傾斜して延びる傾斜仕切り部10が設置される。
FIG. 4 shows a schematic diagram of an organic matter removal device, a deaerator, and a filtration device of the present invention. FIG. 5 shows a conceptual diagram of the organic matter removal device of the present invention.
The organic matter removal device 300 of the present invention includes a treatment tank 1 equipped with a lid that is attached to the upper part so as to be openable and closable, and a structure in the middle of the treatment tank 1 that divides the treatment tank into an upper treatment tank 3 and a lower treatment tank 4. An inclined partition part 10 is installed which extends at an angle.
上部処理槽3には、内部空間を2つの部分に区画するように水平に延びる水平多孔仕切り部20が設けられている。水平多孔仕切り部20と傾斜仕切り部10との間には、バイオボール31が複数積層されたバイオボール層30が形成される。バイオボール31は脱気濾過媒体としての機能を持つ。 The upper processing tank 3 is provided with a horizontal porous partition 20 that extends horizontally so as to divide the internal space into two parts. A bioball layer 30 in which a plurality of bioballs 31 are stacked is formed between the horizontal porous partition 20 and the inclined partition 10. The bio-ball 31 functions as a degassing filtration medium.
用水供給ラインは、沈殿槽200と連結されて飼育水が移動し、第1給水供給ライン及び第2用水供給ラインからなる。水平多孔仕切り部20よりも高い上部処理槽3の壁部には第1下流端が連結され、第1下流端は第1用水供給ライン42に連結される。下部処理槽4は、第2用水供給ラインと接続される。 The water supply line is connected to the sedimentation tank 200 to transfer breeding water, and includes a first water supply line and a second water supply line. A first downstream end is connected to the wall of the upper treatment tank 3 higher than the horizontal porous partition 20 , and the first downstream end is connected to the first water supply line 42 . The lower treatment tank 4 is connected to a second water supply line.
曝気管60には、沈殿槽と接続される下流端が吐出側に接続され、負圧室が大気と流通するベンチュリ管50が設けられている。上流端は下部処理槽4の下端壁に接続され、下部処理槽4と流通する。上流端が傾斜仕切り部10の下部に面する位置まで鉛直方向に延びて下部処理槽4に貯蔵された飼育水の水位に応じて水位差により、下部処理槽4に貯蔵された飼育水を排水ライン70が脱気装置に供給することができる。 The aeration pipe 60 is provided with a venturi pipe 50 whose downstream end connected to the settling tank is connected to the discharge side and whose negative pressure chamber communicates with the atmosphere. The upstream end is connected to the lower end wall of the lower processing tank 4 and communicates with the lower processing tank 4 . The upstream end extends vertically to a position facing the lower part of the inclined partition part 10, and drains the culture water stored in the lower treatment tank 4 according to the water level difference according to the water level of the culture water stored in the lower treatment tank 4. A line 70 can feed the deaerator.
エア供給ライン80は、エア供給源81に接続され、水平多孔仕切り部20の下部に位置するバイオボール層30の上部に面している上部処理槽3の壁部に接続されている。
傾斜仕切り部10の下部には、上部処理槽3と下部処理槽4に飼育水の流通が可能な流通管11が設けられている。傾斜仕切り部10の下部には、エア供給ライン80を経由して上部処理槽3に流入した空気が下部処理槽4を経由して処理槽外に排水されるように抜ける通気管12が形成される。
The air supply line 80 is connected to an air supply source 81 and to the wall of the upper treatment tank 3 facing the top of the bioball layer 30 located at the bottom of the horizontal porous partition 20 .
A flow pipe 11 is provided at the lower part of the inclined partition part 10 to allow breeding water to flow between the upper treatment tank 3 and the lower treatment tank 4. A vent pipe 12 is formed in the lower part of the inclined partition part 10, through which air that has flowed into the upper processing tank 3 via the air supply line 80 is drained out of the processing tank via the lower processing tank 4. Ru.
前記通気管12の上流端入口は、上部処理槽3内の傾斜仕切り部10の上部上面に隣接して配置され、傾斜仕切り部10の長さ方向から下方に向かって開口される。
通気管12の下流端の出口は下部処理槽4内に配置され、下部処理槽4内の傾斜仕切り部10の上下面に隣接して浮遊した有機物層の上面と前記有機物吐出口90に向かって開口される。前記吐出口90から排出された有機物は、後述する第4養殖水槽で飼育されるナマコの餌として活用が可能である。
The upstream end inlet of the ventilation pipe 12 is disposed adjacent to the upper surface of the sloped partition 10 in the upper processing tank 3, and is opened downward from the length direction of the sloped partition 10.
The outlet at the downstream end of the ventilation pipe 12 is disposed in the lower treatment tank 4, and is directed toward the upper surface of the organic matter layer floating adjacent to the upper and lower surfaces of the inclined partition portion 10 in the lower treatment tank 4 and the organic matter discharge port 90. It is opened. The organic matter discharged from the discharge port 90 can be used as food for sea cucumbers reared in a fourth aquaculture tank, which will be described later.
エア供給ライン80を経由して空気を供給する状態でポンプ41を稼動する。沈殿槽200から重量を持つ有機物が濾過された飼育水を、水供給ラインの第1用水供給ライン42、第2用水供給ライン43及び曝気管60を経由して上部処理槽3と下部処理槽4へ供給する。 The pump 41 is operated while supplying air via the air supply line 80. The breeding water from which heavy organic matter has been filtered from the settling tank 200 is passed through the first water supply line 42, the second water supply line 43, and the aeration pipe 60 to the upper treatment tank 3 and the lower treatment tank 4. supply to
曝気管60を経由して移送された飼育水は、曝気管60の途中に介在したベンチュリ管を通じて大気の空気が流入され、下部処理槽4の空気とともに供給されるようにする。
前記通気管を経由して搬送される飼育水に発生した微細空気粒子及び微細空気粒子の界面活性反応により、空気粒子表面に付着した有機物残渣が泡の形態で有機物吐出口90に徴集される。
The culture water transferred through the aeration pipe 60 is supplied with air from the lower treatment tank 4 by having atmospheric air flowed in through a Venturi pipe interposed in the middle of the aeration pipe 60 .
Due to the fine air particles generated in the breeding water conveyed through the ventilation pipe and the surface active reaction of the fine air particles, organic residues attached to the surface of the air particles are collected in the form of bubbles at the organic matter outlet 90.
有機物は、一定体積を超えると外部に排出され廃棄されるか、または上述のように第4養殖水槽で飼育されるナマコの餌に供給することができる。このとき、有機物吐出口90を介して上部処理槽3に強制排出されて通気される空気(二酸化炭素除去後に排出された空気)は、下部処理槽4の水面に徴集された泡(微細孔粒子形態の有機物残渣)を押し出す作用をすることができる。 When the organic matter exceeds a certain volume, it can be discharged to the outside and discarded, or it can be supplied to the food of the sea cucumbers reared in the fourth aquaculture tank as described above. At this time, the air that is forcibly discharged and vented to the upper treatment tank 3 through the organic matter discharge port 90 (the air discharged after carbon dioxide removal) is absorbed by the bubbles (microporous particles) collected on the water surface of the lower treatment tank 4. It can act to push out organic matter residues (in the form of organic matter).
下部処理槽4に供給された飼育水は、傾斜仕切り部10の中間部位まで達する。傾斜仕切り部10の中間水位を越えると水位差により排水ラインを経由して越流して脱気装置に移動することになる。
下部処理槽4に貯蔵された飼育水に含まれる浮遊物質である有機物は、水面上に浮かび上がり、有機物吐出口90付近に収集される。
上部処理槽3に供給された飼育水は、水平多孔仕切り部20の上に落下する。落下した飼育水は水平多孔仕切り部20の上に浅い層として積層され、水平多孔仕切り部20に形成された複数の貫通孔を通過してバイオボール層上に落ちる。
The breeding water supplied to the lower treatment tank 4 reaches the middle part of the inclined partition part 10. When the water exceeds the intermediate water level of the inclined partition section 10, the water will overflow through the drainage line and move to the deaerator due to the water level difference.
Organic matter, which is a floating substance contained in the rearing water stored in the lower treatment tank 4, floats on the water surface and is collected near the organic matter discharge port 90.
The breeding water supplied to the upper treatment tank 3 falls onto the horizontal porous partition 20. The fallen breeding water is laminated as a shallow layer on the horizontal porous partition 20, passes through the plurality of through holes formed in the horizontal porous partition 20, and falls onto the bioball layer.
エア供給ラインを経由した空気は、水平多孔仕切り部20の上に浅い層で積層された飼育水により、水平多孔仕切り部20の複数個の貫通孔を通じて水平多孔仕切り部20を通過できず、バイオボール層30を貫通して下に流動してから通気口及び有機物吐出口90を経由して処理槽外に放出される。 The air that has passed through the air supply line cannot pass through the horizontal porous partition 20 through the plurality of through holes in the horizontal porous partition 20 due to the culture water layered in a shallow layer on the horizontal porous partition 20, and the bio After penetrating the ball layer 30 and flowing downward, it is discharged to the outside of the processing tank via the ventilation port and the organic matter discharge port 90.
バイオボール層30上に落ちた飼育水は、バイオボール層30を浸透しながらバイオボール層30を浸透している空気との接触面積及び接触時間が増大し、空気との反応効率が極大化する。飼育水に高度に溶存した二酸化炭素は、浸透した空気によって強力に水面が撹拌されるため、水面上の空気中に吹き飛ばされて除去される。 The breeding water that has fallen onto the bio-ball layer 30 permeates through the bio-ball layer 30, increasing the contact area and contact time with the air that is permeating through the bio-ball layer 30, maximizing the reaction efficiency with the air. . Carbon dioxide, which is highly dissolved in the rearing water, is removed by being blown into the air above the water surface as the water surface is strongly agitated by the infiltrating air.
溶存二酸化炭素が除去された飼育水は、重力で通気口を介して下部処理槽4に流入することができず、流通管11を介して下部処理槽4に流入される。流通管、第2用水供給ライン及び曝気管を通じて下部処理槽4に供給された飼育水の有機物は、浮上して下部処理槽4内の傾斜仕切り部10の上部下面に隣接して収集される。
収集された有機物は、通気管12を通って放出される空気によって有機物吐出口90に向かって押し出され、処理槽から排出される。
The breeding water from which dissolved carbon dioxide has been removed cannot flow into the lower treatment tank 4 through the vent due to gravity, but instead flows into the lower treatment tank 4 through the flow pipe 11. Organic matter in the breeding water supplied to the lower treatment tank 4 through the flow pipe, the second water supply line, and the aeration pipe floats to the surface and is collected adjacent to the upper and lower surfaces of the inclined partitions 10 in the lower treatment tank 4.
The collected organic matter is forced toward the organic matter outlet 90 by air released through the vent pipe 12 and discharged from the treatment tank.
本発明に係る有機物除去装置は、溶存二酸化炭素と有機物を除去するため、単一の処理槽に単一の動力源が使われるので、飼育水処理の製造コスト及び運用コストを従来よりも低減することができ、分離された有機物質は後述する第4養殖水槽の養殖生物(ナマコ)に餌として供給することができる。 The organic matter removal device according to the present invention uses a single power source for a single treatment tank in order to remove dissolved carbon dioxide and organic matter, thereby reducing manufacturing and operating costs for culture water treatment compared to conventional methods. The separated organic substances can be supplied as feed to cultured organisms (sea cucumbers) in a fourth culture tank, which will be described later.
図6は、本発明の脱気装置の概略図を示す。
本発明の脱気装置は一定サイズで内部が空である形態の充填塔410が設けられる。
前記充填塔410の内部には濾過媒体440が積層設置される。本発明による脱気装置の送風量は、25m3/分~50m3/分の送風量で運転することができる。
FIG. 6 shows a schematic diagram of the degassing device of the invention.
The deaerator of the present invention is provided with a packed column 410 having a certain size and an empty interior.
Filtration media 440 are stacked inside the packed column 410 . The deaerator according to the present invention can be operated at an air flow rate of 25 m 3 /min to 50 m 3 /min.
充填塔410の上部には、有機物除去装置と連結され、有機物が除去された飼育水を内部に流入させる飼育水流入管420が設けられる。飼育水流入管420には、飼育水の流入量を調節可能な流入量調整弁430が設けられている。流入量調節弁430は、有機物除去装置から流入する飼育水の流量を調節する。濾過媒体440に流入する飼育水の容量を調節することにより、適正流量供給による脱気効果を最大化する。 A rearing water inflow pipe 420 is provided at the upper part of the packed tower 410, which is connected to an organic matter removal device and allows the rearing water from which organic matter has been removed to flow into the inside. The breeding water inflow pipe 420 is provided with an inflow amount adjustment valve 430 that can adjust the amount of inflow of the breeding water. The inflow rate regulating valve 430 regulates the flow rate of breeding water flowing in from the organic matter removal device. By adjusting the volume of breeding water flowing into the filtration medium 440, the deaeration effect can be maximized by supplying an appropriate flow rate.
充填塔410の下部には、濾過媒体440を通過した飼育水が濾過装置に移動できるように排出管450が設けられている。充填塔410のいずれかの側面には、空気を充填塔410内部に供給する空気注入口460と、空気注入口460を介して供給された空気を充填塔外部に排出する空気排出口470とが設けられている。
また、空気注入口460および空気排出口470の空気注入および排出量を調整することができる空気調整弁480を設けてもよい。
A discharge pipe 450 is provided at the bottom of the packed tower 410 so that the breeding water that has passed through the filtration medium 440 can be transferred to the filtration device. An air inlet 460 for supplying air into the inside of the packed tower 410 and an air outlet 470 for discharging the air supplied through the air inlet 460 to the outside of the packed tower are provided on either side of the packed tower 410. It is provided.
Furthermore, an air adjustment valve 480 that can adjust the amount of air injected and discharged from the air inlet 460 and the air outlet 470 may be provided.
飼育水流入管420は、第3養殖水槽で飼育した飼育生物の呼吸で発生した高濃度の溶存二酸化炭素を脱気装置に供給する引入管路である。空気調整弁480は、脱気装置に供給される飼育水の数量を調整するバルブで、装置の容量に合った適正流量を供給し、効果を最大化することができる。 The breeding water inflow pipe 420 is an inlet pipe that supplies high-concentration dissolved carbon dioxide generated by respiration of the cultured organisms raised in the third culture tank to the deaerator. The air adjustment valve 480 is a valve that adjusts the amount of breeding water supplied to the deaerator, and can supply an appropriate flow rate that matches the capacity of the device to maximize the effect.
排出管450は、脱気段階が完了した飼育水の排出口として内部に空気が通じないようにS-TRAP形態で作製することが好ましい。充填塔カバー部分は、空気の通気ができないように密閉処理される。前記密閉された蓋下端に散水形態の多孔板を設置し、飼育水を充填塔内部に貯蔵された濾過媒体440に均等に分散させる。 It is preferable that the discharge pipe 450 is formed in the form of an S-TRAP so that air does not pass therethrough as an outlet for the culture water after the deaeration stage has been completed. The packed tower cover part is sealed to prevent air ventilation. A perforated plate in the form of water sprinkling is installed at the lower end of the sealed lid to evenly distribute breeding water to the filtration medium 440 stored in the packed tower.
空気排出口470に設けられた送風機を用いて吸入及び排出する空気が空気注入口460のみを介して装置内部に供給されるようにする。このとき、空気調節弁480は空気の吸入量を調節し、内部に供給される空気の量を調節することができ、これは内部の負の圧力の強度を調節するためである。 A blower provided at the air outlet 470 is used to ensure that the air to be taken in and exhausted is supplied into the device only through the air inlet 460. At this time, the air regulating valve 480 can regulate the intake amount of air and the amount of air supplied to the interior, in order to regulate the intensity of the negative pressure inside.
空気排出口470は、装置内部に吸入した空気を排出する所で充填塔410の外部に設置することが好ましい。本発明の実施形態によれば、強制吸引および排出のための換気器および送風機などで実施された。
前記空気排出口470及び空気注入口460の数量は関係なく設置が可能であるが、空気排出口470の断面積の合計より空気注入口460の断面積の合計が小さくなければならない。さらに、空気排出口470および空気注入口460は、空気流の効率を高めるために対向するように設置する。
It is preferable that the air outlet 470 is installed outside the packed tower 410 at a place where the air sucked into the device is discharged. According to embodiments of the invention, ventilators and blowers for forced suction and evacuation, etc. were implemented.
Although the air outlet 470 and the air inlet 460 can be installed regardless of the number, the total cross-sectional area of the air inlet 460 must be smaller than the total cross-sectional area of the air outlet 470. Additionally, the air outlet 470 and the air inlet 460 are placed opposite to increase air flow efficiency.
また、充填塔410のいずれかの側面には空気調節弁480を設けることにより、容易かつ精密に空気注入量を調整して充填塔内の圧力強度を調整することができる。これにより、本発明の充填塔内部に微細な負圧が形成され、二酸化炭素(CO2)排出能力を最大化することができる。 Furthermore, by providing an air control valve 480 on either side of the packed tower 410, it is possible to easily and precisely adjust the amount of air injection to adjust the pressure intensity within the packed tower. As a result, a fine negative pressure is formed inside the packed column of the present invention, and the carbon dioxide (CO 2 ) evacuation capacity can be maximized.
前記空気注入口460及び空気排出口470が設けられた充填塔410内部は、媒体の設置及び空気が密閉された構造で媒体に飼育水が注入される。注入された飼育水から二酸化炭素が分離されると、急速に空気排出口470が二酸化炭素を吸入して排出し、既存および通常の脱気装置に比べて脱気効率を向上させる。 The inside of the packed tower 410 where the air inlet 460 and the air outlet 470 are provided has a structure in which a medium is installed and the air is sealed, and breeding water is injected into the medium. Once the carbon dioxide is separated from the injected rearing water, the air outlet 470 will quickly suck in and exhaust the carbon dioxide, improving the deaeration efficiency compared to existing and conventional deaeration devices.
濾過媒体440は充填塔410の内部に貯蔵され、格子状に一定の間隔を維持するプラスチック材料採盤を垂直に積み重ねて設置される。飼育水が垂直に落下し、濾過媒体440にぶつかって粒子状に粉砕される過程で脱気作用が発生する。濾材上部に流入する飼育水が濾過媒体を通過し、飼育水粒子が衝突して最小化される。この時、飼育水粒子から二酸化炭素(CO2)が分離され、飼育水分子は比較的空気分子よりも大きいため、媒体に形成された通孔を通って下部に流れ出す。 The filtration media 440 is stored inside the packed column 410, and is installed by vertically stacking plastic material platens maintaining regular spacing in a grid pattern. Deaeration occurs when the breeding water falls vertically and hits the filter medium 440 to be crushed into particles. The culture water flowing into the upper part of the filter medium passes through the filter medium, and the culture water particles collide and are minimized. At this time, carbon dioxide (CO 2 ) is separated from the culture water particles, and since the culture water molecules are relatively larger than air molecules, they flow downward through the holes formed in the medium.
本発明の脱気装置は、包装されたカラムの形でカラム内に媒体を充填し、通過する水が効果的に空気と接触することを可能にし、より多くの酸素を供給することができる。
充填塔の上部には飼育水流入管420が連結設置される。飼育水流入管420に流入する飼育水は、有機物が除去された飼育生物の呼吸によって発生した高濃度の溶存二酸化炭素が溶解したものを含む。
飼育水排出管420はSトラップ構造で形成され、充填塔内部に空気が注入されず、収集された飼育水のみ外部に排出されるようにする。前記媒体を通過して二酸化炭素が除去され、下部に収集された飼育水を後段の濾過装置に移動させることができる。
The deaerator of the present invention can fill the medium in the column in the form of a packaged column, allowing the passing water to effectively contact the air and supply more oxygen.
A breeding water inflow pipe 420 is connected to the upper part of the packed tower. The breeding water flowing into the breeding water inflow pipe 420 contains highly concentrated dissolved carbon dioxide generated by the respiration of the cultured organisms from which organic matter has been removed.
The culture water discharge pipe 420 has an S-trap structure, so that air is not injected into the packed tower and only the collected culture water is discharged to the outside. Carbon dioxide is removed through the medium, and the culture water collected in the lower part can be transferred to a subsequent filtration device.
本発明の実施形態による濾過装置は、バイボール濾過媒体を用いた流動床濾過装置であることが好ましい。本発明の濾過装置を経て飼育水に残存するアンモニア、亜硝酸など溶存物質の浄化が可能であり、飼育水として再使用することができる。この場合、分離された水中アンモニアおよび亜硝酸は、上記の第2の養殖装置の海藻に栄養塩として提供することができる。 Preferably, the filtration device according to embodiments of the invention is a fluidized bed filtration device using biball filtration media. Dissolved substances such as ammonia and nitrite remaining in the rearing water can be purified through the filtration device of the present invention, and the water can be reused as rearing water. In this case, the separated underwater ammonia and nitrite can be provided as nutrients to the seaweed in the second culture device.
前記濾過装置を経た飼育水はオゾン注入装置に供給される。通常オゾンは、自由酸素原子が酸素分子と結合したガス物質であり、不安定性のため、水中で強い酸化力を示す。オゾンは海水中の溶存Br-と素早く反応してBrO-/OHBrを生成して強い殺菌力を生成することで、飼育水の微生物制御と水中窒素化合物の除去に優れた効果がある。
しかし、オゾンは高い生物危害がある。特に、オゾン由来残留酸化物に養殖生物が鋭敏に反応し、養殖方法に適用するのに多くの困難があるため、種特異性に合った適正水質環境(水温、塩分度)を考慮した安全濃度のオゾン注入が必要である。
The breeding water that has passed through the filtration device is supplied to an ozone injection device. Normally, ozone is a gaseous substance in which free oxygen atoms combine with oxygen molecules, and due to its instability, it exhibits strong oxidizing power in water. Ozone quickly reacts with dissolved Br- in seawater to produce BrO-/OHBr and has a strong bactericidal effect, which is highly effective in controlling microorganisms in breeding water and removing nitrogen compounds in water.
However, ozone is highly biologically hazardous. In particular, aquaculture organisms react sensitively to ozone-derived residual oxides, and there are many difficulties in applying them to aquaculture methods. ozone injection is required.
総残留酸化物(total residual oxidants,TRO)は、残存する酸化物質である。総残留酸化物は、魚に安全なTRO濃度レベルを維持すれば魚類の斃死は発生しない。
TROの生成および作用に関して海水にオゾンを処理するプロセスは、淡水とは異なり、海水中に豊富に臭素イオン(Br-)が存在するのため、化学反応プロセスははるかに複雑である。
海水中のオゾン反応は、いくつかの化学的海水化合物と非常に迅速に反応しながら複数の反応を形成するため、オゾンの半減期はわずか数秒である。オゾンによって生成される酸化剤はOPOと呼ばれ、主なOPOはハイポアブロミン酸(HOBr)とハイポアブロミン酸イオン(OBr-)である。OPOは濃度値によって魚への毒性が大きいため、循環段階で残留OPOを制御することは養殖魚の保護に最も重要である。
Total residual oxides (TRO) are the remaining oxidized materials. Total residual oxides will not cause fish mortality if TRO concentration levels are maintained that are safe for fish.
The process of treating seawater with ozone regarding the production and action of TRO is different from freshwater, and the chemical reaction process is much more complex due to the abundant presence of bromine ions (Br-) in seawater.
The ozone reaction in seawater forms multiple reactions while reacting with some chemical seawater compounds very quickly, so the half-life of ozone is only a few seconds. The oxidizing agents produced by ozone are called OPOs, and the main OPOs are hypoabromate (HOBr) and hypoabromate ion (OBr-). Since OPO is highly toxic to fish depending on its concentration, controlling residual OPO during the circulation stage is most important for the protection of farmed fish.
魚に要求される適正許容濃度以上の場合、これを中和した後に供給しなければならない。本発明によるオゾン注入装置において飼育水に注入されるオゾンの量は、TRO濃度0.04(mg/L)であることが望ましい。前記TRO濃度の量は、飼育水にオゾン処理が完了した後、第3飼育水槽に再供給されるか、第4飼育水槽に排水されて飼育水に供給される場合、魚類の斃死を防止できる濃度である。 If the concentration exceeds the appropriate permissible concentration required by fish, it must be neutralized before being fed. It is desirable that the amount of ozone injected into the breeding water in the ozone injection device according to the present invention has a TRO concentration of 0.04 (mg/L). The amount of the TRO concentration can prevent the death of fish when the breeding water is re-supplied to the third breeding tank or drained to the fourth breeding tank and supplied to the breeding water after the breeding water is ozonated. It is concentration.
オゾン注入装置は、オゾンを発生して飼育水に溶解させるオゾン発生装置と、総残留酸化物(TRO)基盤モニタリングを行うオゾン制御装置で構成される。
本発明の実施形態によるオゾン発生装置は、無性放電方法、電解法、光化学反応、放射線照射法、高周波電界法のうちの1つ以上を選択してオゾンを発生させるものである。
また、前記オゾン発生装置には、オゾン溶解器及び酸素発生装置を追加的に設置可能である。
The ozone injection device consists of an ozone generator that generates ozone and dissolves it in the rearing water, and an ozone control device that performs total residual oxide (TRO) substrate monitoring.
The ozone generator according to the embodiment of the present invention generates ozone by selecting one or more of an asexual discharge method, an electrolytic method, a photochemical reaction, a radiation irradiation method, and a high frequency electric field method.
Further, an ozone dissolver and an oxygen generator can be additionally installed in the ozone generator.
本発明のオゾン制御装置は、総残留酸化物(TRO)連続測定によりモニタリングが可能であり、実施例では、通常公知のHF scientific社 CLX Online residual chlorine monitor(U.S.A)で具現している。総残留酸化物(TRO)ベースのモニタリング方式の制御装置は、微生物の増感特性と運転安定性がある。 The ozone control device of the present invention can be monitored by continuous measurement of total residual oxide (TRO), and in the embodiment, it is implemented using a commonly known HF scientific CLX Online residual chlorine monitor (U.S.A.). There is. Total residual oxide (TRO) based monitoring system control system has microbial sensitization properties and operational stability.
本発明による循環濾過養殖システムにおいて、飼育水の再循環で特定の病原菌や寄生虫が一度流入された場合、システム全体に急速に拡散する。したがって、本発明によるオゾン注入装置は、殺菌効果に優れたオゾンを供給して病原体および寄生虫を死滅させる必要がある。
本発明の第4養殖水槽供給段階(E)は、上記(D)段階で排水された飼育水を第4養殖水槽に供給して養殖する段階である。
(E)段階で養殖される水産生物は、水温16~18℃で養殖されるナマコが好適である。上記(D)段階で、排水される飼育水には、鮭類養殖から排出される鮭の排泄物と飼料残渣を含む有機物とを一緒に排出することができ、このような養殖有機物はナマコの餌として提供することができる。また、本発明の第4養殖水槽は、上述した第3養殖水槽と同様の方法による循環濾過養殖システムとして運用することができる。
In the circulating filtration culture system according to the present invention, once certain pathogenic bacteria or parasites are introduced through recirculation of the culture water, they rapidly spread throughout the system. Therefore, the ozone injection device according to the present invention needs to supply ozone with excellent bactericidal effects to kill pathogens and parasites.
The fourth aquaculture tank supply step (E) of the present invention is a step in which the aquaculture water drained in the step (D) is supplied to the fourth aquaculture tank for aquaculture.
The aquatic organisms cultured in step (E) are preferably sea cucumbers cultured at a water temperature of 16 to 18°C. In step (D) above, organic matter including salmon excrement and feed residue discharged from salmon farming can be discharged into the drained rearing water together, and such aquaculture organic matter can be used for sea cucumber cultivation. Can be provided as bait. Further, the fourth aquaculture tank of the present invention can be operated as a circulating filtration aquaculture system using the same method as the third aquaculture tank described above.
本発明の(D)または(E)段階で飼育水に分離された二酸化炭素と窒素性化合物は、第2養殖水槽に再供給して海藻栄養塩を供給することができる。
上記(D)~(E)段階に移動する飼育水は、後段階に移動する際に加温処理をせずに貯水槽に一時的に収集し、室温で水温が上がるようにしたり、加温装置で加温して各水槽に設定された水温に供給することができる。
The carbon dioxide and nitrogenous compounds separated into the culture water in step (D) or (E) of the present invention can be re-supplied to the second culture tank to supply seaweed nutrients.
The breeding water that is transferred to the above stages (D) to (E) is temporarily collected in a water tank without being heated before being transferred to the later stages, and the water temperature is raised at room temperature, or the water is heated. The water can be heated by a device and supplied to each aquarium at a set temperature.
通常、陸上養殖場では季節変化により養殖場の温度を一定に維持するため大量の熱エネルギー供給システムが要求され、適切な温度維持のミスで多量の生物が斃死する事故が続いている。また、海洋深層水を活用したミネラル供給は、冬季養殖槽の水温を急激に低下させる原因となり、精巧な温度補正が求められる。
しかしながら、本発明による養殖方法は、前後の養殖段階で要求される水温差が大きくないため、加温に要するエネルギーが少なく、水温維持のミスによる水生物の斃死を防止することができる。
Normally, land-based aquaculture farms require a large amount of thermal energy supply system to maintain a constant temperature due to seasonal changes, and accidents continue to occur in which large numbers of organisms die due to mistakes in maintaining the appropriate temperature. Additionally, supplying minerals using deep ocean water causes the water temperature in the winter aquaculture tank to drop rapidly, requiring sophisticated temperature correction.
However, in the aquaculture method according to the present invention, since the water temperature difference required between the front and rear aquaculture stages is not large, less energy is required for heating, and death of aquatic organisms due to mistakes in maintaining water temperature can be prevented.
また、本発明により養殖される寒海性水産資源サーモン類、海藻類及びナマコのような対象生物は、深層水を活用した低水温飼育環境の維持が可能であれば、年中生産が可能な利点を有するため、養殖生物生産率を高める効果がある。
上記各段階による養殖方法は、分離及び結合が可能であるため、必要に応じて生産しようとする魚種のみ養殖可能な効果がある。
In addition, target organisms such as salmon, seaweed, and sea cucumbers, which are cold-sea aquatic resources cultivated according to the present invention, can be produced year-round if it is possible to maintain a low-water temperature rearing environment using deep water. Because of its advantages, it has the effect of increasing the production rate of aquaculture organisms.
The aquaculture method using each of the above steps allows for separation and combination, so it is effective in cultivating only the fish species to be produced as needed.
以下、下記の実験例は、第3養殖水槽の脱気装置及びオゾン注入装置の運転による効果を確認したものである。
<実験例1> 脱気装置の二酸化炭素濃度の確認
実験例1は、正常稼働している第3養殖水槽の循環濾過システムに脱気装置を設置後、未稼働状態と正常稼働状態を区分して二酸化炭素を測定した。
飼料はそれぞれ5日間正常供給し、飼料供給を停止した後、二酸化炭素が最高点と最低点に到達するのにかかる速度を測定し、脱気装置の稼働有無による飼育水内の二酸化炭素濃度の還元効率を比較した。飼育水中の二酸化炭素濃度は10分間隔で測定し、飼料供給最終日から濃度最低点まで測定した。
The following experimental example confirms the effects of operating the deaerator and ozone injection device in the third aquaculture tank.
<Experiment example 1> Confirmation of carbon dioxide concentration in the deaerator In experiment example 1, after installing the deaerator in the circulation filtration system of the third aquaculture tank that is normally operating, we distinguish between the non-operating state and the normal operating state. Carbon dioxide was measured.
Feed was normally fed for 5 days, and after stopping feed supply, the speed at which carbon dioxide reached the highest and lowest points was measured, and the carbon dioxide concentration in the rearing water was determined depending on whether the deaerator was in operation or not. The reduction efficiency was compared. The carbon dioxide concentration in the rearing water was measured at 10 minute intervals, starting from the last day of feeding until the lowest concentration point.
図7は、本発明の実験例1による二酸化炭素の変化を示す図である。
脱気装置を運転しなかった場合、19.4mg/Lから始まり、最大29.2mg/Lまで上昇した。二酸化炭素が最低点11.4mg/Lに達するのに約29.5hr程度が必要であった。
一方、脱気装置を起動した場合、約16.1mg/Lから始まり、最大24.7mg/Lまで上昇し、最低点11.3mg/Lに達するために24.9hr程度が必要であった。
脱気装置が稼働していない場合、稼働した場合よりも二酸化炭素の濃度は最大濃度基準1.18倍高く、脱気装置によって改善されることが示された。運転中に二酸化炭素の濃度も低く保たれることがわかった。
FIG. 7 is a diagram showing changes in carbon dioxide according to Experimental Example 1 of the present invention.
When the deaerator was not operated, it started at 19.4 mg/L and rose to a maximum of 29.2 mg/L. It took about 29.5 hours for carbon dioxide to reach the lowest point of 11.4 mg/L.
On the other hand, when the deaerator was started, the concentration started at about 16.1 mg/L, rose to a maximum of 24.7 mg/L, and required about 24.9 hr to reach the lowest point of 11.3 mg/L.
When the deaerator was not in operation, the concentration of carbon dioxide was 1.18 times higher than the maximum concentration standard than when it was in operation, indicating that it could be improved by the deaerator. It was found that the concentration of carbon dioxide was also kept low during operation.
<実験例2> 脱気装置稼働効率(送風量)による脱気装置の効率
実験例2は実験例1と同様に実施した。以下の表1は脱気装置に供給される送風量による除去効率条件を示し、図8は脱気装置の稼動による二酸化炭素除去率を示す図である。
脱気装置の送風量が0m3/minで稼動していない場合は、平均31.8±7.3%で不安定な低い除去効率を示したが、送風量が25m3/minの場合は、平均46.2±2.9%、送風量が50m3/minの場合は、平均59.0±3.1%の安定した除去効率が示された。
When the deaerator was not operating at an air flow rate of 0 m 3 /min, it showed an unstable and low removal efficiency of 31.8 ± 7.3% on average, but when the air flow rate was 25 m 3 /min, , an average of 46.2±2.9%, and when the air flow rate was 50 m 3 /min, a stable removal efficiency of an average of 59.0±3.1% was shown.
次に、脱気装置の稼働効率(送風量)による飼育水の二酸化炭素濃度を確認した。
正常稼働している脱気装置の送風量に応じたシステム内の二酸化炭素の溶存濃度維持範囲と除去効率を調べるため、0m3/min(未可動)、25m3/分、50m3/分の送風量の差を置いて比較した。飼料は正常供給(6個水槽×5kg=30kg/日間)しながら飼育水内の溶存二酸化炭素の濃度を10分間隔で5日間連続測定した。
Next, the carbon dioxide concentration of the breeding water was confirmed based on the operating efficiency (airflow amount) of the deaerator.
In order to investigate the maintenance range of dissolved carbon dioxide concentration in the system and the removal efficiency according to the air flow rate of the deaerator in normal operation, the following tests were conducted: 0 m 3 /min (not operating), 25 m 3 /min, and 50 m 3 /min. Comparisons were made taking into account the difference in air flow. The concentration of dissolved carbon dioxide in the rearing water was continuously measured at 10 minute intervals for 5 days while feeding was normally provided (6 water tanks x 5 kg = 30 kg/day).
図9は、実験例2による脱気装置の稼動における飼育水槽内の二酸化炭素濃度の変化を示す図である。
脱気装置の送風機を稼動していない場合は最低25~38mg/Lの範囲に維持したが、送風量が25m3/minの場合は20~30mg/Lであった。
そして、送風量が50m3/minの場合、18~28mg/Lの範囲で分布した。
FIG. 9 is a diagram showing changes in carbon dioxide concentration in the rearing tank during operation of the deaerator according to Experimental Example 2.
When the blower of the deaerator was not operating, the concentration was maintained at a minimum of 25 to 38 mg/L, but when the air flow rate was 25 m 3 /min, it was 20 to 30 mg/L.
When the air flow rate was 50 m 3 /min, the concentration ranged from 18 to 28 mg/L.
すべての実験区で飼料を供給した昼間の場合、飼育魚類の活動と飼料摂取に伴う呼吸増加によって二酸化炭素の濃度が増加したが、活動と飼料摂取が中断される日没後には溶存二酸化炭素の濃度が減少することが現れた。 During the daytime when feed was supplied in all experimental areas, the concentration of carbon dioxide increased due to the activity of reared fish and increased respiration associated with feed intake, but after sunset when activity and feed intake were interrupted, dissolved carbon dioxide concentration increased. It appeared that the concentration decreased.
<実験例3> 適正TRO濃度確認
実験例3では、本発明によるTRO連続測定装置を用いてリアルタイム飼育水槽内のTRO濃度を測定し、飼育生物の行動(飼料摂取量基準)変化と飼育水内の微生物変化を調査した。
本発明の実験例3による実験魚は海マスで、高密度飼育システムにおけるオゾン処理の効果を調べた。飼料摂取量の調査は、1日2回飼料供給時の満腹供給を基準に供給飼料の残りが発生しないように手作業で供給した。
微生物調査項目は、生物学的濾過槽の濾過微生物と関連が深く、濾過効率に影響を及ぼす可能性があるheterotrophic marine bacteriaと魚類疾患に大きく関与する病原性微生物であるgram-negative strainとVibrio sppを対象に調査した。
<Experimental Example 3> Confirmation of appropriate TRO concentration In Experimental Example 3, the TRO concentration in the rearing tank was measured in real time using the TRO continuous measuring device according to the present invention, and changes in the behavior (feed intake standard) of rearing organisms and changes in the rearing water were investigated. The microbial changes were investigated.
The experimental fish according to Experimental Example 3 of the present invention was sea trout, and the effect of ozone treatment in a high-density rearing system was investigated. Feed intake was investigated by manually feeding the animals to ensure that no remaining feed was left on the basis of full feeding when feed was fed twice a day.
Microbial investigation items include heterotrophic marine bacteria, which are closely related to the filtering microorganisms in biological filtration tanks and may affect filtration efficiency, and gram-negative strains and Vibrio spp, which are pathogenic microorganisms that are significantly involved in fish diseases. We conducted a survey targeting the following.
以下の表2は、TRO濃度による飼料摂取量の変化と飼育水内の微生物の変化を示す図である。図10、11は、本発明の実験例3によるTRO濃度による飼育生物飼料摂取量(図10)および微生物変化(図11)を示す。
飼育生物の飼料摂取量は、TRO 0.00実験区(対照区)で2,168g/day、TRO 0.04実験区で2,155g/day、0.08実験区で713g/dayであり、TRO 0.08以上の濃度では飼育生物の飼料摂取に異常の変化が発生すると判断される。
The feed intake of the reared organisms was 2,168 g/day in the TRO 0.00 experimental area (control area), 2,155 g/day in the TRO 0.04 experimental area, and 713 g/day in the 0.08 experimental area. At a concentration of TRO 0.08 or higher, it is judged that abnormal changes occur in the feed intake of the reared organisms.
飼育水微生物のうち、Heterotrophic marine bacteriaはTRO 0.00実験区(対照区)で3.4×103CFU/ml、TRO 0.04実験区で1.0×103CFU/ml、0.08実験区で1.0×103CFU/mlであった。
Gram-negat ive strainは、対照区で1.4×103CFU/ml、0.04実験区で5.6×101CFU/ml、0.08実験区を4.5×101CFU/mlで検出した。
Among the breeding water microorganisms, Heterotrophic marine bacteria was 3.4 x 10 3 CFU/ml in the TRO 0.00 experimental area (control area), and 1.0 x 10 3 CFU/ml in the TRO 0.04 experimental area, 0. It was 1.0×10 3 CFU/ml in the 08 experimental section.
Gram-negative strain is 1.4 x 10 3 CFU/ml in the control area, 5.6 x 10 1 CFU/ml in the 0.04 experimental area, and 4.5 x 10 1 CFU/ml in the 0.08 experimental area. Detected in ml.
Vibrio sppの場合、対照区では9.5×102CFU/ml、TRO 0.04実験区では2.3×101CFU/ml、0.08実験区では0.7×101CFU/mlであった。
TRO 0.04mg/L実験区で魚類病に大きく影響するGram-negat ive strainおよびVibrio spp微生物の個体数がそれぞれ1/26、1/41レベルに減少し、0.08mg/L実験区でGram-negat ive strainは1/32で大きな変動はなかったが、Vibrio sppは1/127レベルで0.04に比べて3倍ほど減少したことが分かった。
In the case of Vibrio spp, the control area was 9.5 x 10 2 CFU/ml, the TRO 0.04 experimental area was 2.3 x 10 1 CFU/ml, and the 0.08 experimental area was 0.7 x 10 1 CFU/ml. Met.
In the TRO 0.04 mg/L experimental area, the population of Gram-negative strain and Vibrio spp microorganisms, which greatly affect fish diseases, decreased to 1/26 and 1/41 levels, respectively, and in the 0.08 mg/L experimental area, Gram - Negat ive strain was 1/32 and there was no major change, but Vibrio spp was found to be at the 1/127 level, which was about 3 times lower than 0.04.
このように飼育水内のTRO濃度が高くなると、病気誘発微生物を低減できるメリットがあるが、飼料摂取量の低下など、魚類の成長に影響を及ぼす濃度以上のオゾン注入は危険なものと考えられ、循環濾過養殖システムで海マスの飼育時、オゾンの滴定注入濃度は飼料摂取に影響がなく、微生物の個体数は著しく減少するTRO基準0.04mg/Lレベルを維持して循環濾過養殖システムを運転することが望ましいことを確認した。 Increasing the TRO concentration in the rearing water has the advantage of reducing disease-causing microorganisms, but it is considered dangerous to inject ozone at a concentration higher than the one that affects fish growth, such as by reducing feed intake. When rearing sea trout in a circulating filtration aquaculture system, the ozone titration concentration has no effect on feed intake and the number of microorganisms is significantly reduced. We confirmed that it is desirable to drive.
本発明にかかる海洋深層水を利用した異種生物多段階養殖方法は、海洋深層水の長所と環境にやさしい先端養殖技術の長所を組み合わせて、環境にやさしい海洋深層水先端養殖事業を推進し、未来型輸出産業に進化させ、世界市場の先導が可能で産業上利用可能性がある。 The multi-stage aquaculture method for heterogeneous organisms using deep ocean water according to the present invention combines the advantages of deep ocean water and the advantages of environmentally friendly advanced aquaculture technology, and promotes an environmentally friendly deep ocean water advanced aquaculture business, thereby promoting the future. It is possible to evolve into a type export industry, lead the world market, and have industrial applications.
1: 処理槽
10:傾斜仕切り部
11:流通管
12:通気管
20:水平多孔仕切り部
3:上部処理槽
30:バイオボールレイヤー
31:バイオボール
4:下部処理槽
40:ベンチュリ管
41:ポンプ
42:第1給水供給ライン
43:第2給水供給ライン
60:曝気管
80:エア供給ライン
81:エア供給元
90:吐出口
100:飼育水槽
200:沈殿槽
300:有機物除去装置
400:脱気装置
410:充填塔
420:飼育水流入管
430:流入量調節弁
440:濾過媒体
450:排出管
460:空気注入口
470:エアアウトレット
480:エアコントロールバルブ
500:濾過装置
600:オゾン注入装置
1: Treatment tank 10: Inclined partition section 11: Distribution pipe 12: Ventilation pipe 20: Horizontal porous partition section 3: Upper processing tank 30: Bio ball layer 31: Bio ball 4: Lower processing tank 40: Venturi tube 41: Pump 42 : First water supply line 43: Second water supply line 60: Aeration pipe 80: Air supply line 81: Air supply source 90: Discharge port 100: Breeding tank 200: Sedimentation tank 300: Organic matter removal device 400: Deaerator 410 : Packed tower 420: Breeding water inflow pipe 430: Inflow control valve 440: Filtration medium 450: Discharge pipe 460: Air inlet 470: Air outlet 480: Air control valve 500: Filtration device 600: Ozone injection device
Claims (2)
第2養殖水槽から排水された飼育水は、第3養殖水槽に供給され、水温14~16℃でサケ類を養殖し、前記第3養殖水槽から排水された飼育水を第4養殖水槽に供給し、水温16~18℃でナマコを養殖し、
前記取水された海洋深層水は、水位差移動エネルギーで第1~第4養殖水槽に順次的に供給され、第3及び第4養殖水槽は循環濾過養殖システムで構成され、飼育水を再循環し、
前記飼育水の総残留酸化物(TRO)濃度は0.04~0.08(mg/L)以下に維持することを特徴とする海洋深層水を用いた異種生物多段階養殖方法。 The taken deep ocean water is supplied to the first aquaculture tank, and the cold-sea crustaceans are cultivated at a water temperature of 3 to 5°C. The aquaculture water drained from the first aquaculture tank is supplied to the second aquaculture tank, and the water temperature is Cultivate seaweed at 10-12℃,
The breeding water drained from the second culture tank is supplied to the third culture tank, where salmon are cultured at a water temperature of 14 to 16°C, and the culture water drained from the third culture tank is supplied to the fourth culture tank. Then, sea cucumbers are cultivated at a water temperature of 16 to 18 degrees Celsius.
The taken deep ocean water is sequentially supplied to the first to fourth aquaculture tanks using water level transfer energy, and the third and fourth aquaculture tanks are configured with a circulation filtration aquaculture system to recirculate the aquaculture water. ,
A multi-step culture method for heterogeneous organisms using deep ocean water, characterized in that the total residual oxide (TRO) concentration of the culture water is maintained at 0.04 to 0.08 (mg/L) or less .
前記有機物除去装置から分離された有機物は外部に排出されるか、第4養殖水槽のナマコ餌として供給され、脱気装置で飼育水と分離された二酸化炭素と濾過装置で飼育水と分離された窒素化合物は、第2養殖水槽の海藻類の栄養塩として供給されることを特徴とする請求項1記載の海洋深層水を用いた異種生物多段階養殖方法。
The circulating filtration aquaculture system is provided with one or more breeding tanks, and the breeding water drained from the breeding tank is stored in a sedimentation tank, and then subjected to an organic matter removal device, a deaeration device, a filtration device, and an ozone injection device. They are sequentially re-supplied to the aquarium,
The organic matter separated from the organic matter removal device was either discharged to the outside or supplied as sea cucumber food in the fourth aquaculture tank, and the carbon dioxide was separated from the rearing water using a deaerator and separated from the rearing water using a filtration device. 2. The multi-stage cultivation method for different species using deep ocean water according to claim 1, wherein the nitrogen compound is supplied as a nutrient salt to the seaweed in the second cultivation tank.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2022-0173154 | 2022-12-12 | ||
KR1020220173154A KR102597574B1 (en) | 2022-12-12 | 2022-12-12 | Multi-stage recirculating aquaculture method of various organisms using the low temperature of deep sea water. |
Publications (2)
Publication Number | Publication Date |
---|---|
JP7450194B1 true JP7450194B1 (en) | 2024-03-15 |
JP2024084083A JP2024084083A (en) | 2024-06-24 |
Family
ID=88747452
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022200550A Active JP7450194B1 (en) | 2022-12-12 | 2022-12-15 | A multi-stage circulation filtration culture method for different species that utilizes the low temperature of deep ocean water. |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7450194B1 (en) |
KR (1) | KR102597574B1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101539348B1 (en) | 2015-01-07 | 2015-07-29 | 경상북도 | Ozonation Equipment for Fish Farms using Mass Transfer and Reaction |
KR101660867B1 (en) | 2015-12-28 | 2016-09-28 | 주식회사 그린플러스 | Building type fish forming systerm |
KR102074613B1 (en) | 2019-06-28 | 2020-02-06 | 조희룡 | The recirculating aquaculture system |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100861134B1 (en) | 2006-08-07 | 2008-09-30 | 서희동 | A cultured method of the seaweed which used deep sea water and surface sea water |
KR100789389B1 (en) | 2006-12-21 | 2007-12-28 | 주식회사 씨에버 | Method of Producing Shellfish Using Concentrated Mineral-form Water in the Deep Sea |
KR100869033B1 (en) * | 2007-07-04 | 2008-11-18 | 서희동 | A cultured method of the fish which used deep and surface seawater |
KR101578927B1 (en) | 2009-08-10 | 2015-12-23 | 박귀조 | Method for the culture of sea cucumbers using surface sea water and deep sea water |
KR20160090613A (en) * | 2015-01-22 | 2016-08-01 | (주)영진글로지텍 | A city farming system using a food chain |
KR20170029280A (en) * | 2015-09-07 | 2017-03-15 | 주식회사하남엔지니어링 | the rearing system using the food chain structure |
-
2022
- 2022-12-12 KR KR1020220173154A patent/KR102597574B1/en active IP Right Grant
- 2022-12-15 JP JP2022200550A patent/JP7450194B1/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101539348B1 (en) | 2015-01-07 | 2015-07-29 | 경상북도 | Ozonation Equipment for Fish Farms using Mass Transfer and Reaction |
KR101660867B1 (en) | 2015-12-28 | 2016-09-28 | 주식회사 그린플러스 | Building type fish forming systerm |
KR102074613B1 (en) | 2019-06-28 | 2020-02-06 | 조희룡 | The recirculating aquaculture system |
Also Published As
Publication number | Publication date |
---|---|
KR102597574B1 (en) | 2023-11-02 |
JP2024084083A (en) | 2024-06-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10034461B2 (en) | Systems and methods of intensive recirculating aquaculture | |
US5732654A (en) | Open air mariculture system and method of culturing marine animals | |
JP5611947B2 (en) | Aquaponic facility for vegetable and fish production | |
CN109548720B (en) | Compound prawn farming systems based on heterotopic biological flocculation is cultivated and normal position is nitrified | |
CN104521832B (en) | Cultivation method for fish fries and adult fishes | |
MXPA97004360A (en) | System and method of mariculture to open heaven to raise animals mari | |
JP2017148007A (en) | Cultivation system of fish seedling | |
KR102051259B1 (en) | An eco-friendly denitration device based on salinity tolerant aerobic granular sludge | |
CN106455527A (en) | Circulating fish culture method and circulating fish culture device | |
JP3053793B2 (en) | Crustacean aquaculture systems and methods | |
RU2595670C9 (en) | System for decomposition of organic compounds and operating method thereof | |
CN109851163A (en) | A kind of unhurried current small watershed removes algae algae control method | |
JP5079971B2 (en) | Aquaculture method and apparatus | |
JP7450194B1 (en) | A multi-stage circulation filtration culture method for different species that utilizes the low temperature of deep ocean water. | |
CN210580544U (en) | Three-dimensional circulating water system for industrial aquaculture of red crayfishes | |
RU2721534C1 (en) | Method of water treatment for cultivation of hydrobionts in closed volumes and device implementing thereof | |
CN215102684U (en) | Safe and efficient circulating water purification treatment system | |
CN215123386U (en) | Water treatment device for seawater recirculating aquaculture | |
CN213756281U (en) | Device for high-density industrial freshwater aquaculture by distributed circulating water | |
CN108633802A (en) | A kind of method of biological breeding Penaeus Vannmei parent shrimp | |
CN211813993U (en) | System for harnessing aquaculture tail water by using water dynamics | |
JP2015061513A (en) | Completely closed circulation type land breeding system for abalones and land breeding method for abalones using the same | |
CN100463869C (en) | Bighead carp, grass carp, cladophora and daphnia hyaline multi-biology cooperated algae control method | |
Sananurak et al. | Development of a closed-recirculating, continuous culture system for microalga (Tetraselmis suecica) and rotifer (Brachionus plicatilis) production | |
JPH0576257A (en) | System for circulating, filtering and culturing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20231024 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20231024 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20231116 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240201 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240222 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7450194 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |