JP7446068B2 - Exposure apparatus and article manufacturing method - Google Patents

Exposure apparatus and article manufacturing method Download PDF

Info

Publication number
JP7446068B2
JP7446068B2 JP2019160663A JP2019160663A JP7446068B2 JP 7446068 B2 JP7446068 B2 JP 7446068B2 JP 2019160663 A JP2019160663 A JP 2019160663A JP 2019160663 A JP2019160663 A JP 2019160663A JP 7446068 B2 JP7446068 B2 JP 7446068B2
Authority
JP
Japan
Prior art keywords
light shielding
light source
exposure apparatus
optical element
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019160663A
Other languages
Japanese (ja)
Other versions
JP2021039243A (en
JP2021039243A5 (en
Inventor
諒 中山
大輔 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2019160663A priority Critical patent/JP7446068B2/en
Priority to KR1020217041618A priority patent/KR20220010750A/en
Priority to PCT/JP2020/030057 priority patent/WO2021044797A1/en
Priority to CN202080060758.8A priority patent/CN114286966B/en
Priority to TW109129065A priority patent/TWI798581B/en
Publication of JP2021039243A publication Critical patent/JP2021039243A/en
Publication of JP2021039243A5 publication Critical patent/JP2021039243A5/ja
Application granted granted Critical
Publication of JP7446068B2 publication Critical patent/JP7446068B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/7015Details of optical elements
    • G03F7/70158Diffractive optical elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70191Optical correction elements, filters or phase plates for controlling intensity, wavelength, polarisation, phase or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Control Of Vending Devices And Auxiliary Devices For Vending Devices (AREA)
  • Developing Agents For Electrophotography (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

本発明は、露光装置、および、物品の製造方法に関する。 The present invention relates to an exposure apparatus and a method of manufacturing an article.

半導体デバイスの微細化に伴い、半導体デバイスの製造工程であるリソグラフィ工程で使用される露光装置にはさらなる高解像度化が求められている。高解像度を達成するためには、露光光の短波長化、投影光学系の開口数(NA)の増加(高NA化)、さらには、変形照明(輪帯照明、二重極照明、四重極照明など)の使用が有効である。 With the miniaturization of semiconductor devices, exposure apparatuses used in lithography processes, which are semiconductor device manufacturing processes, are required to have even higher resolution. In order to achieve high resolution, it is necessary to shorten the wavelength of exposure light, increase the numerical aperture (NA) of the projection optical system (higher NA), and furthermore, use modified illumination (annular illumination, dipole illumination, quadruple illumination, etc.). (e.g. polar illumination) is effective.

一方、近年のデバイス構造の多層化に伴い、露光装置は高い重ね合わせ精度も求められている。特許文献1には、被照明面の共役面であるマスキングユニット104の前後に遮光部103および遮光部105を配置した、ダブルスリット構成が開示されている(図1)。このダブルスリット構成は、重ね合わせ精度を向上させるために有効である。 On the other hand, as device structures have become multilayered in recent years, exposure apparatuses are required to have high overlay accuracy. Patent Document 1 discloses a double slit configuration in which a light shielding section 103 and a light shielding section 105 are arranged before and after a masking unit 104, which is a conjugate surface of the illuminated surface (FIG. 1). This double slit configuration is effective for improving overlay accuracy.

また、特許文献1には、ダブルスリット構成によって生じる積算有効光源分布の非対称性を緩和するための遮光部401またはフィルタ402を配置することも開示されている(図12、図14)。 Further, Patent Document 1 also discloses disposing a light shielding section 401 or a filter 402 to alleviate the asymmetry of the cumulative effective light source distribution caused by the double slit configuration (FIGS. 12 and 14).

特開2010-73835号公報Japanese Patent Application Publication No. 2010-73835

しかし、ダブルスリット構成によって生じる積算有効光源分布の非対称性を緩和するための遮光部またはフィルタを配置する場合には、像面照度が低下してしまう。像面照度が低下することは、スループットが低下することにつながるため、好ましくない。 However, when a light shielding section or a filter is disposed to alleviate the asymmetry of the integrated effective light source distribution caused by the double slit configuration, the image plane illuminance decreases. A decrease in image plane illuminance is undesirable because it leads to a decrease in throughput.

本発明は、例えば、照明光学系の像面の照度分布の補正性能と像面照度の低下抑制の両立に有利な露光装置を提供する。 The present invention provides, for example, an exposure apparatus that is advantageous in achieving both correction performance for the illuminance distribution on the image plane of an illumination optical system and suppression of a decrease in image plane illuminance.

本発明の一側面によれば、基板の走査露光を行う露光装置であって、光源からの光で原版の被照明面を照明する照明光学系を有し、前記照明光学系は、前記光源から前記被照明面に至る光路上に配置された回折光学素子と、前記被照明面の共役面から前記光源側にデフォーカスした位置に配置される第1遮光部と、前記被照明面の前記共役面から前記被照明面側にデフォーカスした位置に配置される第2遮光部と、を有し、前記回折光学素子は、前記回折光学素子と光学的にフーリエ変換の関係にあるフーリエ変換面に、前記第1遮光部と前記第2遮光部とに起因する積算有効光源分布の非対称性を低減する光強度分布を形成する、ことを特徴とする露光装置が提供される。 According to one aspect of the present invention, there is provided an exposure apparatus that scans and exposes a substrate, and includes an illumination optical system that illuminates an illuminated surface of an original with light from a light source, and the illumination optical system includes light from a light source. a diffractive optical element disposed on the optical path leading to the illuminated surface; a first light shielding portion disposed at a position defocused from the conjugate plane of the illuminated surface toward the light source; and the conjugate of the illuminated surface. a second light-shielding portion disposed at a defocused position from the surface toward the illuminated surface , and the diffractive optical element is arranged on a Fourier transform surface that is optically in a Fourier transform relationship with the diffractive optical element. There is provided an exposure apparatus, characterized in that the exposure apparatus forms a light intensity distribution that reduces asymmetry in the cumulative effective light source distribution caused by the first light shielding part and the second light shielding part .

本発明によれば、例えば、照明光学系の像面の照度分布の補正性能と像面照度の低下抑制の両立に有利な露光装置を提供することができる。 According to the present invention, for example, it is possible to provide an exposure apparatus that is advantageous in achieving both correction performance of the illuminance distribution on the image plane of the illumination optical system and suppression of a decrease in the image plane illuminance.

実施形態における露光装置の構成を示す概略断面図。FIG. 1 is a schematic cross-sectional view showing the configuration of an exposure apparatus in an embodiment. 積算有効光源を説明する図。FIG. 3 is a diagram illustrating an integrated effective light source. 積算有効光源を説明する図。FIG. 3 is a diagram illustrating an integrated effective light source. 遮光部の構成を示す図。The figure which shows the structure of a light shielding part. 実施形態における回折光学素子の設計について説明する図。FIG. 3 is a diagram illustrating the design of a diffractive optical element in an embodiment. σ値ごとの積算有効光源の非対称性を示すグラフ。A graph showing the asymmetry of the integrated effective light source for each σ value. σ値ごとの、縦方向のパターンと横方向のパターンの線幅差を示すグラフ。A graph showing the difference in line width between vertical and horizontal patterns for each σ value.

以下、添付図面を参照して実施形態を詳しく説明する。なお、以下の実施形態は特許請求の範囲に係る発明を限定するものではない。実施形態には複数の特徴が記載されているが、これらの複数の特徴の全てが発明に必須のものとは限らず、また、複数の特徴は任意に組み合わせられてもよい。さらに、添付図面においては、同一若しくは同様の構成に同一の参照番号を付し、重複した説明は省略する。 Hereinafter, embodiments will be described in detail with reference to the accompanying drawings. Note that the following embodiments do not limit the claimed invention. Although a plurality of features are described in the embodiments, not all of these features are essential to the invention, and the plurality of features may be arbitrarily combined. Furthermore, in the accompanying drawings, the same or similar components are designated by the same reference numerals, and redundant description will be omitted.

<第1実施形態>
図1は、実施形態における露光装置の構成を示す概略断面図である。この露光装置は、ステップ・アンド・スキャン方式で原版(マスク)のパターンを基板に露光する走査型露光装置である。ステップ・アンド・スキャン方式では、原版と基板と相対的に駆動(スキャン)させながら1ショットの露光が行われ、1ショットの露光終了後、基板のステップ移動により次のショット領域への移動が行われる。
<First embodiment>
FIG. 1 is a schematic cross-sectional view showing the configuration of an exposure apparatus in an embodiment. This exposure apparatus is a scanning type exposure apparatus that exposes a pattern of an original (mask) onto a substrate using a step-and-scan method. In the step-and-scan method, one shot of exposure is performed while the original and the substrate are driven (scanned) relative to each other, and after one shot of exposure is completed, the substrate is moved in steps to move to the next shot area. be exposed.

露光装置は、光源1からの光束を利用して原版であるレチクル24を照明する照明光学系と、レチクル24のパターンを基板27に投影する投影光学系26とを有する。 The exposure apparatus includes an illumination optical system that illuminates a reticle 24, which is an original, using the light beam from the light source 1, and a projection optical system 26 that projects the pattern of the reticle 24 onto a substrate 27.

光源1には、波長約365nmの水銀ランプ、波長約248nmのKrFエキシマレーザー、波長約193nmのArFエキシマレーザー等が使用されうる。 As the light source 1, a mercury lamp with a wavelength of about 365 nm, a KrF excimer laser with a wavelength of about 248 nm, an ArF excimer laser with a wavelength of about 193 nm, etc. can be used.

照明光学系は、引き回し光学系2、射出角度保存光学素子5、回折光学素子6、コンデンサレンズ7、プリズムユニット10を有する。また、照明光学系は、ズームレンズユニット11、オプティカルインテグレータ12、絞り13、コンデンサレンズ14、第1遮光部18および第2遮光部20、マスキングユニット19、コンデンサレンズ21、及び、コリメータレンズ23を更に有する。 The illumination optical system includes a routing optical system 2, an exit angle preserving optical element 5, a diffractive optical element 6, a condenser lens 7, and a prism unit 10. The illumination optical system further includes a zoom lens unit 11, an optical integrator 12, an aperture 13, a condenser lens 14, a first light shielding section 18, a second light shielding section 20, a masking unit 19, a condenser lens 21, and a collimator lens 23. have

引き回し光学系2は、光源1と射出角度保存光学素子5との間に設けられ、光源1からの光束を射出角度保存光学素子5に導く。射出角度保存光学素子5は、回折光学素子6の光源側に設けられ、光源1からの光束をその発散角度を一定に保ちながら回折光学素子6へ導く。射出角度保存光学素子5は、マイクロレンズアレイ、または、ファイバー束などのオプティカルインテグレータによって構成されうる。射出角度保存光学素子5によって、光源1の出力変動が回折光学素子6によって形成されるパターン分布に及ぼす影響を軽減することができる。 The routing optical system 2 is provided between the light source 1 and the exit angle preserving optical element 5 and guides the luminous flux from the light source 1 to the exit angle preserving optical element 5. The exit angle preserving optical element 5 is provided on the light source side of the diffractive optical element 6, and guides the light beam from the light source 1 to the diffractive optical element 6 while keeping its divergence angle constant. The exit angle preserving optical element 5 may be constituted by an optical integrator such as a microlens array or a fiber bundle. The exit angle preserving optical element 5 can reduce the influence of output fluctuations of the light source 1 on the pattern distribution formed by the diffractive optical element 6.

回折光学素子6は、被照明面(像面)であるレチクル24と共役な面または照明光学系の瞳面とフーリエ変換の関係のある面に配置される。回折光学素子6は、投影光学系26の瞳面と共役な面である照明光学系の瞳面やそれと共役な面などの所定面上に、光源1からの光束の光強度分布を回折作用により変換して所望の光強度分布を形成する。回折光学素子6には、回折パターン面に所望の回折パターンが得られるように計算機で設計された計算機ホログラム(CGH;Computer Generated Hologram)を使用してもよい。投影光学系26の瞳面に形成される光源形状は、有効光源形状と呼ばれる。なお、本明細書において、「有効光源」とは、被照明面およびその共役面上における光強度分布あるいは光の角度分布をいう。回折光学素子6は、射出角度保存光学素子5とコンデンサレンズ7との間に設けられている。射出角度保存光学素子5からの光束は、回折光学素子6を照射し、回折光学素子6で回折して、コンデンサレンズ7へ導かれる。 The diffractive optical element 6 is arranged on a surface that is conjugate with the reticle 24, which is the illuminated surface (image surface), or on a surface that has a Fourier transform relationship with the pupil plane of the illumination optical system. The diffractive optical element 6 uses a diffraction effect to change the light intensity distribution of the light beam from the light source 1 onto a predetermined plane such as the pupil plane of the illumination optical system, which is a plane conjugate with the pupil plane of the projection optical system 26, or a plane conjugate thereto. to form a desired light intensity distribution. As the diffractive optical element 6, a computer generated hologram (CGH) may be used, which is designed by a computer so that a desired diffraction pattern can be obtained on the diffraction pattern surface. The light source shape formed on the pupil plane of the projection optical system 26 is called an effective light source shape. Note that in this specification, the term "effective light source" refers to the light intensity distribution or the light angular distribution on the illuminated surface and its conjugate surface. The diffractive optical element 6 is provided between the exit angle preserving optical element 5 and the condenser lens 7. The light beam from the exit angle preserving optical element 5 illuminates the diffractive optical element 6, is diffracted by the diffractive optical element 6, and is guided to the condenser lens 7.

一例において、照明光学系には回折光学素子6は複数設けられ、それぞれの回折光学素子6はターレット(不図示)の複数のスロットの対応する1つに取り付けられて搭載されている。複数の回折光学素子はそれぞれ異なる有効光源形状を形成することができる。これらの有効光源形状により、照明モードの名前が、小σ照明、大σ照明、輪帯照明、二重極照明、四重極照明などと呼ばれる。 In one example, a plurality of diffractive optical elements 6 are provided in the illumination optical system, and each diffractive optical element 6 is attached and mounted in a corresponding one of a plurality of slots of a turret (not shown). The plurality of diffractive optical elements can form different effective light source shapes. Depending on these effective light source shapes, illumination modes are called small σ illumination, large σ illumination, annular illumination, dipole illumination, quadrupole illumination, etc.

コンデンサレンズ7は、回折光学素子6とプリズムユニット10との間に設けられ、回折光学素子6で回折した光束を集光し、フーリエ変換面9に回折パターンを形成する。回折パターンの分布は一定である。 The condenser lens 7 is provided between the diffractive optical element 6 and the prism unit 10 and condenses the light beam diffracted by the diffractive optical element 6 to form a diffraction pattern on the Fourier transform surface 9. The distribution of the diffraction pattern is constant.

フーリエ変換面9は、オプティカルインテグレータ12と回折光学素子6との間にあり、回折光学素子6と光学的にフーリエ変換の関係にある面である。光路に位置する回折光学素子6を交換すれば、フーリエ変換面9に形成される回折パターンの形状を変えることができる。 The Fourier transform surface 9 is a surface that is located between the optical integrator 12 and the diffractive optical element 6 and is in an optical Fourier transform relationship with the diffractive optical element 6. By replacing the diffraction optical element 6 located in the optical path, the shape of the diffraction pattern formed on the Fourier transform surface 9 can be changed.

プリズムユニット10とズームレンズユニット11は、オプティカルインテグレータ12に対して光源側に設けられ、フーリエ変換面9に形成された光強度分布を拡大するズーム光学系として機能する。プリズムユニット10は、フーリエ変換面9に形成された回折パターン(光強度分布)を、輪帯率等を調整してズームレンズユニット11へと導くことができる。 The prism unit 10 and the zoom lens unit 11 are provided on the light source side with respect to the optical integrator 12 and function as a zoom optical system that expands the light intensity distribution formed on the Fourier transform surface 9. The prism unit 10 can guide the diffraction pattern (light intensity distribution) formed on the Fourier transform surface 9 to the zoom lens unit 11 by adjusting the annular ratio and the like.

また、ズームレンズユニット11は、プリズムユニット10とオプティカルインテグレータ12との間に設けられる。ズームレンズユニット11は、フーリエ変換面9に形成された回折パターンを、照明光学系のNAと投影光学系のNAとの比を基準としたσ値を調整してオプティカルインテグレータ12へ導くことができる。 Further, the zoom lens unit 11 is provided between the prism unit 10 and the optical integrator 12. The zoom lens unit 11 can guide the diffraction pattern formed on the Fourier transform surface 9 to the optical integrator 12 by adjusting the σ value based on the ratio of the NA of the illumination optical system and the NA of the projection optical system. .

オプティカルインテグレータ12は、ズームレンズユニット11とコンデンサレンズ14との間に設けられ、輪帯率、開口角及びσ値が調整された回折パターンに応じて多数の2次光源を形成してコンデンサレンズ14へ導くハエの目レンズを含みうる。ただし、オプティカルインテグレータ12のハエの目レンズの部分は、オプティカルパイプ、回折光学素子やマイクロレンズアレイなどから構成されてもよい。オプティカルインテグレータ12とコンデンサレンズ14との間には、絞り13が設けられている。 The optical integrator 12 is provided between the zoom lens unit 11 and the condenser lens 14, and forms a large number of secondary light sources according to the diffraction pattern whose annular ratio, aperture angle, and σ value are adjusted. May include a fly's eye lens that guides. However, the fly's eye lens portion of the optical integrator 12 may be composed of an optical pipe, a diffractive optical element, a microlens array, or the like. A diaphragm 13 is provided between the optical integrator 12 and the condenser lens 14.

コンデンサレンズ14は、オプティカルインテグレータ12とレチクル24との間に設けられている。これにより、オプティカルインテグレータ12から導かれた多数の光束を集光してレチクル24を重畳的に照明することができる。コンデンサレンズ14は、ハーフミラー15を含み、露光光の一部が光量測定光学系16に入射する。光量測定光学系16は、光量を測定するセンサ17を持つ。このセンサ17により測定された光量に基づいて、露光時の露光量が適切に制御されうる。 Condenser lens 14 is provided between optical integrator 12 and reticle 24. Thereby, a large number of light beams guided from the optical integrator 12 can be condensed to illuminate the reticle 24 in a superimposed manner. The condenser lens 14 includes a half mirror 15 , and a portion of the exposure light enters the light amount measuring optical system 16 . The light amount measuring optical system 16 has a sensor 17 that measures the amount of light. Based on the amount of light measured by this sensor 17, the amount of exposure during exposure can be appropriately controlled.

照明面の共役面には、マスキングユニット19が配置される。マスキングユニット19は、レチクル24の照明範囲を画定するために配置され、レチクル24を保持するレチクルステージ25および基板27を保持する基板ステージ28と共に同期して走査される。 A masking unit 19 is arranged on the conjugate plane of the illuminated surface. Masking unit 19 is arranged to define the illumination range of reticle 24 and is scanned synchronously with reticle stage 25 holding reticle 24 and substrate stage 28 holding substrate 27.

マスキングユニット19からデフォーカスした位置に、2つの遮光部が設けられている。具体的には、被照明面から光源側にデフォーカスした位置及び被照明面の共役面から光源側にデフォーカスした位置のうちのいずれかの位置に、第1遮光部18が配置される。また、被照明面の共役面から被照明面側にデフォーカスした位置に、第2遮光部20が配置される。被照明面の照度分布の不均一性を軽減するため、第1遮光部18および第2遮光部20はそれぞれ、可変スリットであってもよい。 Two light shielding parts are provided at positions defocused from the masking unit 19. Specifically, the first light blocking portion 18 is disposed at either a position defocused from the illuminated surface toward the light source or a position defocused from the conjugate plane of the illuminated surface toward the light source. Further, the second light shielding section 20 is arranged at a position defocused from the conjugate plane of the illuminated surface toward the illuminated surface. In order to reduce the non-uniformity of the illuminance distribution on the illuminated surface, each of the first light shielding part 18 and the second light shielding part 20 may be a variable slit.

コンデンサレンズ21からの光束に対して所定の傾きを有するミラー22で反射した光は、コリメータレンズ23を介してレチクル24を照明する。レチクル24のパターンは投影光学系26を介して基板27に投影される。 The light reflected by the mirror 22 having a predetermined inclination with respect to the light flux from the condenser lens 21 illuminates the reticle 24 via the collimator lens 23. The pattern of the reticle 24 is projected onto the substrate 27 via the projection optical system 26.

次に、図2を参照して、積算有効光源について説明する。図2(a)は、被照明面であるレチクル24面の照明領域24aを表す。図2(b)は、レチクル24面と共役関係にあるマスキングユニット19面の照明領域19aを表す。露光において照明領域24aが走査される。このとき、露光面上のある点を照明する入射角度分布は、照明領域24aにおける走査方向(y方向)に平行な直線24b上の各点を照明する入射角度分布を積算したものである。これを積算有効光源と呼ぶ。言い換えると、積算有効光源とは、照明領域のある一点を走査露光によって照明する期間における入射角度分布を積算した積算入射角度分布をいう。 Next, referring to FIG. 2, the integrated effective light source will be described. FIG. 2A shows an illumination area 24a of the reticle 24, which is the illuminated surface. FIG. 2B shows the illumination area 19a of the masking unit 19 surface that is in a conjugate relationship with the reticle 24 surface. During exposure, the illumination area 24a is scanned. At this time, the incident angle distribution for illuminating a certain point on the exposure surface is the summation of the incident angle distribution for illuminating each point on the straight line 24b parallel to the scanning direction (y direction) in the illumination area 24a. This is called an integrated effective light source. In other words, the integrated effective light source refers to an integrated incident angle distribution obtained by integrating the incident angle distribution during a period in which a certain point in the illumination area is illuminated by scanning exposure.

次に、図3を参照して、第1遮光部18および第2遮光部20を用いたときに、スキャン後の積算有効光源がどのようになるかについて説明する。図3(a)は、第1遮光部18および第2遮光部20付近の拡大図である。図3(b)は、マスキングユニット19面上の点A,B,Cを通過する照明光の角度分布である。オプティカルインテグレータ12を経て、コンデンサレンズ14から点Aへ向かう光束は、光軸1bに対して平行に射出され、第1遮光部18および第2遮光部20の一部によってケラれることはない。そのため、レチクル面上の点A’における有効光源24aの形状は、ほぼ円形となる。 Next, with reference to FIG. 3, a description will be given of how the integrated effective light source becomes after scanning when the first light shielding section 18 and the second light shielding section 20 are used. FIG. 3A is an enlarged view of the vicinity of the first light shielding part 18 and the second light shielding part 20. FIG. 3(b) shows the angular distribution of illumination light passing through points A, B, and C on the masking unit 19 surface. The light beam heading from the condenser lens 14 to point A via the optical integrator 12 is emitted parallel to the optical axis 1b, and is not eclipsed by a portion of the first light shielding section 18 and the second light shielding section 20. Therefore, the shape of the effective light source 24a at point A' on the reticle surface is approximately circular.

一方、オプティカルインテグレータ12を経て、コンデンサレンズ14から点Bへ向かう光束については、第1遮光部18の遮光部材18aおよび第2遮光部20の遮光部材20aによって一部の光線がケラれる。このため、レチクル面上の点B’における有効光源24bの角度分布は、走査露光の走査方向(Y方向)に関して非対称となる。有効光源24bの上側が欠けるのは第2遮光部20の遮光部材20aによってケラれるためであり、下側が欠けるのは第1遮光部18の遮光部材18aによってケラれるためである。このように、2つの遮光部があるために、有効光源24bには走査露光の走査方向(Y方向)に関して非対称性が生じることが分かる。レチクル面上の点C’における有効光源24cの形状についても、点Bへ向かう光束と同様の考え方で、Y方向に非対称性が生じる。 On the other hand, a part of the light beam traveling from the condenser lens 14 to point B via the optical integrator 12 is vignetted by the light shielding member 18a of the first light shielding part 18 and the light shielding member 20a of the second light shielding part 20. Therefore, the angular distribution of the effective light source 24b at point B' on the reticle surface becomes asymmetrical with respect to the scanning direction (Y direction) of scanning exposure. The upper part of the effective light source 24b is chipped because it is vignetted by the light shielding member 20a of the second light shielding part 20, and the lower part is chipped because it is vignetted by the light shielding member 18a of the first light shielding part 18. As described above, it can be seen that since there are two light shielding parts, asymmetry occurs in the effective light source 24b with respect to the scanning direction (Y direction) of scanning exposure. Regarding the shape of the effective light source 24c at point C' on the reticle surface, asymmetry occurs in the Y direction in the same way as the light beam heading toward point B.

点A、点B、点Cを含む直線上を通過する全ての光束をY方向に走査した積算有効光源は、図3(c)のようになり、走査方向に積算有効光源の非対称性が生じることが分かる。積算有効光源に非対称性があると、露光時に問題が生じうる。例えば、縦方向、横方向に同一線幅のライン・アンド・スペース・パターンを焼き付ける場合、縦方向のパターンと横方向のパターンとの間で線幅差が生じ、好ましくない。そのため、非対称性を補正することが必要となる。 The integrated effective light source obtained by scanning all the light fluxes passing on a straight line including points A, B, and C in the Y direction is as shown in Fig. 3(c), and asymmetry of the integrated effective light source occurs in the scanning direction. I understand that. Asymmetry in the integrated effective light source can cause problems during exposure. For example, when printing a line-and-space pattern with the same line width in the vertical and horizontal directions, a difference in line width occurs between the vertical pattern and the horizontal pattern, which is undesirable. Therefore, it is necessary to correct the asymmetry.

実施形態において、フーリエ変換面9の光源側に第3遮光部8が配置される。第3遮光部8は、例えば、フーリエ変換面9の位置からややデフォーカスした位置に配置される。積算有効光源(積算入射角度分布)を補正するために、第3遮光部8を用いることが可能である。図4に、第3遮光部8の構成を示す。第3遮光部8は、例えば4枚の遮光板で構成されており、4枚の遮光板のそれぞれは、X方向またはY方向に独立して駆動させることができる。例えば、図3に示された積算有効光源の場合、2枚の遮光板をX方向に閉じる方向に駆動させ、X方向の光を部分的にケラせることによって、積算有効光源の非対称性を調整することができる。遮光部の代わりにフィルタを適用して調整してもよい。 In the embodiment, the third light shielding part 8 is arranged on the light source side of the Fourier transform surface 9. The third light shielding part 8 is arranged, for example, at a position slightly defocused from the position of the Fourier transform surface 9. In order to correct the integrated effective light source (integrated incident angle distribution), it is possible to use the third light shielding part 8. FIG. 4 shows the configuration of the third light shielding part 8. The third light shielding section 8 is composed of, for example, four light shielding plates, and each of the four light shielding plates can be independently driven in the X direction or the Y direction. For example, in the case of the integrated effective light source shown in Figure 3, the asymmetry of the integrated effective light source is adjusted by driving the two light shielding plates in the direction of closing in the X direction and partially vignetting the light in the X direction. can do. Adjustments may be made by applying a filter instead of the light shielding part.

従来、フーリエ変換面9の分布は一様であったが、本実施形態では、図5(a)に示されるように、回折光学素子6が、Y方向に対して一様でない分布になるように設計される。回折光学素子6は、第1遮光部18と第2遮光部20とによって被照明面に生じる積算有効光源に関して、走査露光の走査方向(Y方向)と該走査方向と直交する非走査方向(X方向)との差を低減する回折特性を有する。具体的には、Y方向について、フーリエ変換面の分布と第1遮光部18および第2遮光部20により有効光源が非対称になる分とを相殺することにより、図5(b)に示されるように、積算有効光源のY方向の光強度分布が一定となるようにする。この結果、積算有効光源のX方向とY方向が対称になる。これにより、第3遮光部8を適用して非対称性の調整を行う必要がなくなる。このため、第3遮光部8を適用することによる像面照度の低下がなくなり、露光装置のスループットの観点で有利である。 Conventionally, the distribution of the Fourier transform surface 9 was uniform, but in this embodiment, as shown in FIG. Designed to. The diffractive optical element 6 operates in the scanning direction (Y direction) of scanning exposure and in the non-scanning direction (X It has diffraction properties that reduce the difference between the two directions. Specifically, in the Y direction, by offsetting the distribution of the Fourier transform surface and the asymmetrical effect of the effective light source due to the first light shielding part 18 and the second light shielding part 20, as shown in FIG. 5(b), First, the light intensity distribution in the Y direction of the integrated effective light source is made constant. As a result, the integrated effective light source becomes symmetrical in the X and Y directions. This eliminates the need to apply the third light shielding part 8 to adjust asymmetry. Therefore, there is no reduction in image plane illuminance due to the use of the third light shielding part 8, which is advantageous from the viewpoint of throughput of the exposure apparatus.

<第2実施形態>
第2実施形態は、ズームレンズユニット11を用いて、σ値を変更して使用する際の例である。ズームレンズユニット11を駆動させてズームを変えると、第1遮光部18および第2遮光部20でのケラレの影響が変わり、積算有効光源の非対称性が変化する。そのため、1種類の回折光学素子を用いた場合、全てのズームで積算有効光源の非対称性を十分に小さくすることは困難である。よって、本実施形態では第3遮光部8も併用する。
<Second embodiment>
The second embodiment is an example in which the zoom lens unit 11 is used with the σ value changed. When the zoom lens unit 11 is driven to change the zoom, the influence of vignetting on the first light shielding part 18 and the second light shielding part 20 changes, and the asymmetry of the integrated effective light source changes. Therefore, when one type of diffractive optical element is used, it is difficult to sufficiently reduce the asymmetry of the integrated effective light source in all zooms. Therefore, in this embodiment, the third light shielding section 8 is also used.

図6は、ズームレンズユニット11を駆動させたときの、σ値と積算有効光源の非対称性との関係を示したグラフである。図6に示されているように、従来技術では、どのσ値についても、積算有効光源に非対称性がある。一方、本実施形態では、回折光学素子6は、ズームレンズユニット11により変更可能なσ値の範囲の中心値において、積算有効光源に関して走査方向(Y方向)と非走査方向(X方向)との差が低減するような回折特性を有するように設計される。それにより、σ値の駆動範囲の積算有効光源の非対称性が従来技術に対して小さくなる。 FIG. 6 is a graph showing the relationship between the σ value and the asymmetry of the integrated effective light source when the zoom lens unit 11 is driven. As shown in FIG. 6, in the prior art, there is asymmetry in the integrated effective light source for any σ value. On the other hand, in the present embodiment, the diffractive optical element 6 is configured to have a difference between the scanning direction (Y direction) and the non-scanning direction (X direction) with respect to the integrated effective light source at the center value of the range of σ values that can be changed by the zoom lens unit 11. It is designed to have diffraction characteristics that reduce the difference. As a result, the asymmetry of the integrated effective light source in the driving range of the σ value is reduced compared to the prior art.

図7は、図6に示されるような従来の非対称性を持つ積算有効光源で露光した場合の縦方向のパターンと横方向のパターンの線幅差を光学像シミュレーションによって求めた結果である。このグラフから、従来技術よりも本実施形態の方が、縦方向のパターンと横方向のパターンの線幅差が小さいことが分かる。 FIG. 7 shows the results obtained by optical image simulation of the line width difference between a vertical pattern and a horizontal pattern when exposed with a conventional integrated effective light source having asymmetricity as shown in FIG. This graph shows that the difference in line width between the vertical pattern and the horizontal pattern is smaller in this embodiment than in the prior art.

実際に装置を使用するときには、図6に示されるような積算有効光源の非対称性の大きさをスタートとして、使用するσに応じ、第3遮光部8を用いて非対称性の調整を行う。すなわち、第3遮光部8は、ズームレンズユニットの状態(使用されるσ値)に応じて調整される。従来例と比べて、使用するσ値の範囲で非対称性の小さい本実施形態の方が、非対称性を調整すべき量が少ないため、第3遮光部8適用分の像面照度の低下が少なく、露光装置のスループットの観点で有利である。 When actually using the apparatus, the asymmetry of the integrated effective light source as shown in FIG. 6 is used as a starting point, and the asymmetry is adjusted using the third light shielding part 8 according to the σ used. That is, the third light shielding part 8 is adjusted according to the state of the zoom lens unit (the σ value used). Compared to the conventional example, in this embodiment, where the asymmetry is smaller within the range of the σ value used, the amount by which the asymmetry needs to be adjusted is smaller, so the decrease in image plane illuminance by the amount applied by the third light shielding part 8 is smaller. , which is advantageous in terms of throughput of the exposure apparatus.

<物品製造方法の実施形態>
本発明の実施形態に係る物品製造方法は、例えば、半導体デバイス等のマイクロデバイスや微細構造を有する素子等の物品を製造するのに好適である。本実施形態の物品製造方法は、基板に塗布された感光剤に上記の露光装置を用いて潜像パターンを形成する工程(基板を露光する工程)と、かかる工程で潜像パターンが形成された基板を現像する工程とを含む。更に、かかる製造方法は、他の周知の工程(酸化、成膜、蒸着、ドーピング、平坦化、エッチング、レジスト剥離、ダイシング、ボンディング、パッケージング等)を含む。本実施形態の物品製造方法は、従来の方法に比べて、物品の性能・品質・生産性・生産コストの少なくとも1つにおいて有利である。
<Embodiment of article manufacturing method>
The article manufacturing method according to the embodiment of the present invention is suitable for manufacturing articles such as micro devices such as semiconductor devices and elements having fine structures, for example. The article manufacturing method of the present embodiment includes a step of forming a latent image pattern on a photosensitive agent coated on a substrate using the above exposure device (a step of exposing the substrate), and a step of forming a latent image pattern in this step. and developing the substrate. Additionally, such manufacturing methods include other well-known steps (oxidation, deposition, deposition, doping, planarization, etching, resist stripping, dicing, bonding, packaging, etc.). The article manufacturing method of this embodiment is advantageous in at least one of article performance, quality, productivity, and production cost compared to conventional methods.

発明は上記実施形態に制限されるものではなく、発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、発明の範囲を公にするために請求項を添付する。 The invention is not limited to the embodiments described above, and various changes and modifications can be made without departing from the spirit and scope of the invention. Therefore, the following claims are hereby appended to disclose the scope of the invention.

1:光源、6:回折光学素子、11:ズームレンズユニット、18:第1遮光部、19:マスキングユニット、20:第2遮光部、24:レチクル(原版)、26:投影光学系、27:基板 DESCRIPTION OF SYMBOLS 1: Light source, 6: Diffractive optical element, 11: Zoom lens unit, 18: First light shielding part, 19: Masking unit, 20: Second light shielding part, 24: Reticle (original), 26: Projection optical system, 27: substrate

Claims (9)

基板の走査露光を行う露光装置であって、
光源からの光で原版の被照明面を照明する照明光学系を有し、
前記照明光学系は、
前記光源から前記被照明面に至る光路上に配置された回折光学素子と、
前記被照明面の共役面から前記光源側にデフォーカスした位置に配置される第1遮光部と、
前記被照明面の前記共役面から前記被照明面側にデフォーカスした位置に配置される第2遮光部と、を有し、
前記回折光学素子は、前記回折光学素子と光学的にフーリエ変換の関係にあるフーリエ変換面に、前記第1遮光部と前記第2遮光部とに起因する積算有効光源分布の非対称性を低減する光強度分布を形成する、ことを特徴とする露光装置。
An exposure apparatus that scans and exposes a substrate,
It has an illumination optical system that illuminates the illuminated surface of the original plate with light from a light source,
The illumination optical system includes:
a diffractive optical element disposed on an optical path from the light source to the illuminated surface;
a first light shielding portion disposed at a position defocused from a conjugate plane of the illuminated surface toward the light source;
a second light shielding portion disposed at a position defocused from the conjugate plane of the illuminated surface toward the illuminated surface,
The diffractive optical element reduces asymmetry in the cumulative effective light source distribution caused by the first light shielding part and the second light shielding part on a Fourier transform surface that is optically in a Fourier transform relationship with the diffractive optical element. An exposure apparatus characterized by forming a light intensity distribution .
σ値を変更するズームレンズユニットを有し、
前記回折光学素子は、前記ズームレンズユニットにより変更可能なσ値の範囲の中心値において前記非対称性を低減するような回折特性を有する、ことを特徴とする請求項1に記載の露光装置。
It has a zoom lens unit that changes the σ value,
2. The exposure apparatus according to claim 1, wherein the diffractive optical element has a diffraction characteristic that reduces the asymmetry at a center value of a range of σ values that can be changed by the zoom lens unit.
前記積算有効光源分布を調整可能な第3遮光部を有し、
前記ズームレンズユニットの状態に応じて、前記第3遮光部により前記積算有効光源分布が調整される、ことを特徴とする請求項2に記載の露光装置。
comprising a third light shielding part capable of adjusting the integrated effective light source distribution ,
3. The exposure apparatus according to claim 2, wherein the integrated effective light source distribution is adjusted by the third light shielding section depending on the state of the zoom lens unit.
前記第3遮光部は、前記ーリエ変換面の位置から前記光源側にデフォーカスした位置に配置されることを特徴とする請求項3に記載の露光装置。 4. The exposure apparatus according to claim 3, wherein the third light shielding part is disposed at a position defocused from the position of the Fourier transform surface toward the light source. 前記第1遮光部および前記第2遮光部はそれぞれ、可変スリットを含み、
前記非対称性を低減するように前記可変スリットを調整する、ことを特徴とする請求項1乃至4のいずれか1項に記載の露光装置。
The first light shielding part and the second light shielding part each include a variable slit,
The exposure apparatus according to any one of claims 1 to 4, wherein the variable slit is adjusted so as to reduce the asymmetry .
前記第3遮光部は、可変スリットを含み、
前記ズームレンズユニットの状態に応じて、前記可変スリットを調整する、ことを特徴とする請求項3または4に記載の露光装置。
The third light shielding section includes a variable slit,
5. The exposure apparatus according to claim 3, wherein the variable slit is adjusted depending on the state of the zoom lens unit.
前記回折光学素子は、回折パターン面に所望の回折パターンが得られるように計算機で設計された計算機ホログラムを含むことを特徴とする請求項1乃至6のいずれか1項に記載の露光装置。 7. The exposure apparatus according to claim 1, wherein the diffractive optical element includes a computer -generated hologram designed by a computer so as to obtain a desired diffraction pattern on a diffraction pattern surface . 前記共役面に配置され、前記原版の照明範囲を画定するマスキングユニットを有することを特徴とする請求項1乃至7のいずれか1項に記載の露光装置。 8. The exposure apparatus according to claim 1, further comprising a masking unit disposed on the conjugate plane and defining an illumination range of the original. 請求項1乃至8のいずれか1項に記載の露光装置を用いて基板を露光する工程と、
前記露光された基板を現像する工程と、を有し、前記現像された基板から物品を製造することを特徴とする物品製造方法。
A step of exposing a substrate using the exposure apparatus according to any one of claims 1 to 8;
A method for manufacturing an article, comprising the step of developing the exposed substrate, and manufacturing an article from the developed substrate.
JP2019160663A 2019-09-03 2019-09-03 Exposure apparatus and article manufacturing method Active JP7446068B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019160663A JP7446068B2 (en) 2019-09-03 2019-09-03 Exposure apparatus and article manufacturing method
KR1020217041618A KR20220010750A (en) 2019-09-03 2020-08-05 Exposure apparatus and article manufacturing method
PCT/JP2020/030057 WO2021044797A1 (en) 2019-09-03 2020-08-05 Exposure device, and method for manufacturing article
CN202080060758.8A CN114286966B (en) 2019-09-03 2020-08-05 Exposure apparatus and article manufacturing method
TW109129065A TWI798581B (en) 2019-09-03 2020-08-26 Exposure device and article manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019160663A JP7446068B2 (en) 2019-09-03 2019-09-03 Exposure apparatus and article manufacturing method

Publications (3)

Publication Number Publication Date
JP2021039243A JP2021039243A (en) 2021-03-11
JP2021039243A5 JP2021039243A5 (en) 2022-08-15
JP7446068B2 true JP7446068B2 (en) 2024-03-08

Family

ID=74849218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019160663A Active JP7446068B2 (en) 2019-09-03 2019-09-03 Exposure apparatus and article manufacturing method

Country Status (5)

Country Link
JP (1) JP7446068B2 (en)
KR (1) KR20220010750A (en)
CN (1) CN114286966B (en)
TW (1) TWI798581B (en)
WO (1) WO2021044797A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000164498A (en) 1998-11-26 2000-06-16 Nec Corp Scanning projection aligner
JP2002033272A (en) 2000-05-11 2002-01-31 Nikon Corp Method and device for exposure and device manufacturing method
JP2002110529A (en) 2000-10-03 2002-04-12 Nikon Corp Projection aligner and method of manufacturing micro device by using the same
JP2006019702A (en) 2004-06-04 2006-01-19 Canon Inc Illumination optical system and exposure apparatus
JP2008153401A (en) 2006-12-15 2008-07-03 Canon Inc Exposure device and device manufacturing method
JP2010073835A (en) 2008-09-17 2010-04-02 Canon Inc Exposure apparatus, and method for manufacturing device
WO2011010560A1 (en) 2009-07-24 2011-01-27 株式会社ニコン Lighting optical system, exposure apparatus, and device manufacturing method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999036832A1 (en) * 1998-01-19 1999-07-22 Nikon Corporation Illuminating device and exposure apparatus
RU2012138706A (en) * 2010-02-11 2014-03-20 Телефонактиеболагет Л М Эрикссон (Пабл) METHODS AND APPARATUS FOR POSITIONING A NODE IN A WIRELESS COMMUNICATION SYSTEM USING DIFFERENT RAN / RATS
US10034205B2 (en) * 2010-10-01 2018-07-24 Telefonaktiebolaget Lm Ericsson (Publ) Positioning measurements and carrier switching in multi-carrier wireless communication networks
JP5953656B2 (en) * 2011-05-09 2016-07-20 株式会社ニコン Illumination optical apparatus, exposure apparatus, and device manufacturing method
JP2014239088A (en) * 2013-06-05 2014-12-18 株式会社ニコン Illuminating optical system, illumination method, exposure method, and exposure device
DE102017208340A1 (en) * 2017-05-17 2018-11-22 Carl Zeiss Smt Gmbh Projection exposure method and projection objective with adjustment of the pupil transmission

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000164498A (en) 1998-11-26 2000-06-16 Nec Corp Scanning projection aligner
JP2002033272A (en) 2000-05-11 2002-01-31 Nikon Corp Method and device for exposure and device manufacturing method
JP2002110529A (en) 2000-10-03 2002-04-12 Nikon Corp Projection aligner and method of manufacturing micro device by using the same
JP2006019702A (en) 2004-06-04 2006-01-19 Canon Inc Illumination optical system and exposure apparatus
JP2008153401A (en) 2006-12-15 2008-07-03 Canon Inc Exposure device and device manufacturing method
JP2010073835A (en) 2008-09-17 2010-04-02 Canon Inc Exposure apparatus, and method for manufacturing device
WO2011010560A1 (en) 2009-07-24 2011-01-27 株式会社ニコン Lighting optical system, exposure apparatus, and device manufacturing method

Also Published As

Publication number Publication date
CN114286966B (en) 2023-12-29
JP2021039243A (en) 2021-03-11
WO2021044797A1 (en) 2021-03-11
TW202111445A (en) 2021-03-16
TWI798581B (en) 2023-04-11
KR20220010750A (en) 2022-01-26
CN114286966A (en) 2022-04-05

Similar Documents

Publication Publication Date Title
US6392742B1 (en) Illumination system and projection exposure apparatus
EP1293834B1 (en) Illumination apparatus
JPH0729808A (en) Projection aligner
JP2011135099A (en) Optical integrator, illumination optical device, photolithographic apparatus, photolithographic method, and method for fabricating device
KR100823405B1 (en) Exposure apparatus and device manufacturing method
TW200809919A (en) Exposure apparatus
KR20080049673A (en) Exposure apparatus and device fabrication method
US7489387B2 (en) Exposure apparatus and device fabrication method
JP4684563B2 (en) Exposure apparatus and method
JP7446068B2 (en) Exposure apparatus and article manufacturing method
KR20090060155A (en) Scanning exposure apparatus and method of manufacturing device
JPH0766121A (en) Projection aligner and fabrication of semiconductor element employing it
JP7336922B2 (en) Exposure apparatus and article manufacturing method
US11762298B2 (en) Exposure apparatus and method of manufacturing article
JP2000021761A (en) Exposure method and apparatus
JP4950795B2 (en) Exposure apparatus, device manufacturing method, and correction method
JP7378265B2 (en) Exposure equipment, exposure method, and article manufacturing method
JPH09260260A (en) Projection aligner
JP2004289172A (en) Illumination optical system, aligner using same, and device manufacturing method
JP2008277347A (en) Exposure equipment and process for fabricating device

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20210103

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220803

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240227

R151 Written notification of patent or utility model registration

Ref document number: 7446068

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151