JP7445511B2 - vehicle charging system - Google Patents

vehicle charging system Download PDF

Info

Publication number
JP7445511B2
JP7445511B2 JP2020082041A JP2020082041A JP7445511B2 JP 7445511 B2 JP7445511 B2 JP 7445511B2 JP 2020082041 A JP2020082041 A JP 2020082041A JP 2020082041 A JP2020082041 A JP 2020082041A JP 7445511 B2 JP7445511 B2 JP 7445511B2
Authority
JP
Japan
Prior art keywords
charging
vehicle
power
current
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020082041A
Other languages
Japanese (ja)
Other versions
JP2021177674A (en
Inventor
弘友希 馬渡
智成 河合
Original Assignee
河村電器産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 河村電器産業株式会社 filed Critical 河村電器産業株式会社
Priority to JP2020082041A priority Critical patent/JP7445511B2/en
Publication of JP2021177674A publication Critical patent/JP2021177674A/en
Application granted granted Critical
Publication of JP7445511B2 publication Critical patent/JP7445511B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Description

本発明は、同時に複数の車両の充電が可能な車両充電システムに関する。 The present invention relates to a vehicle charging system that can charge multiple vehicles at the same time.

EV(Electric Vehicle)やPHV(Plug-in Hybrid Vehicle )等の蓄電池を搭載した複数の車両の充電を行うことができる車両充電システムがある。
例えば、特許文献1では、電力供給事業者との契約電力を超えないように電力を管理する一方で、利用者の利便性を図るために、充電量の大きな車両に対しては比較的大きな電流での充電を実施して、充電時間が極端に長くなるような事が無いよう制御した。
There are vehicle charging systems that can charge a plurality of vehicles equipped with storage batteries, such as EVs (Electric Vehicles) and PHVs (Plug-in Hybrid Vehicles).
For example, in Patent Document 1, while managing power so as not to exceed the contracted power with the power supply company, in order to improve convenience for users, a relatively large current is applied to vehicles that require a large amount of charging. The charging time was controlled to avoid excessively long charging times.

特開2013-162555号公報Japanese Patent Application Publication No. 2013-162555

上記従来の充電システムは、車両の電池容量に合わせて優先順位が設定されるため、多くの充電電力を必要とする車両ほど優先順位を高く設定して大きな電流で充電でき、複数の車両の充電を同時に行う場合に有効であり、効率の良い充電を実施できた。 In the conventional charging system described above, priority is set according to the battery capacity of the vehicle, so the vehicle that requires more charging power is given a higher priority and can be charged with a larger current, allowing the charging of multiple vehicles. This is effective when charging is performed at the same time, and efficient charging was achieved.

しかしながら、後から充電を開始する車両に対しても、先に充電が開始されている車両と同一条件で充電が行われたため、満充電に至るまでの充電時間が長くなる場合があった。この充電量を検討すると、例えば蓄電池容量の20%程度の充電が成されていれば、自宅に帰る等の一定の距離の走行ができるため、走行に支障をきたすとは考え難い。そのため、満充電に至るまでの時間が長くなっても所定の距離の走行を可能とする充電量までの充電時間を短くできれば、利用者にとって利便性が良い。 However, since the vehicle that started charging later was also charged under the same conditions as the vehicle that started charging earlier, the charging time to reach full charge may be longer. Considering the amount of charge, if the battery is charged to about 20% of the storage battery capacity, for example, it is possible to drive a certain distance, such as returning home, so it is hard to imagine that it will hinder the drive. Therefore, even if it takes a long time to reach full charge, it would be more convenient for the user if the charging time to reach the amount of charge that allows the vehicle to travel a predetermined distance could be shortened.

一方で、太陽光発電設備を備えた充電スタンドの事業者は、これまで売電していた太陽光発電電力の余剰分を車両充電に回したいとの要望がある。
しかしながら、複数の電動車両の蓄電池を同時に充電する車両充電システムに太陽光発電電力の余剰分を供給する場合、無駄の無い供給は難しかった。その原因は、複数の蓄電池(車両)へ充電電力を割り振る制御は、車両との相互通信を実施して行う必要があり、制御に時間が掛かる点にあった。制御に時間が掛かることで、変動し易い太陽光発電電力を良好に車両に供給することが難しかった。
On the other hand, there is a desire from operators of charging stations equipped with solar power generation equipment to use the surplus solar power they have been selling to charge vehicles.
However, when supplying surplus solar power to a vehicle charging system that simultaneously charges storage batteries of multiple electric vehicles, it has been difficult to supply the surplus power without waste. The reason for this is that control for allocating charging power to a plurality of storage batteries (vehicles) requires mutual communication with the vehicle, which takes time. Because control takes time, it has been difficult to properly supply solar power, which tends to fluctuate, to vehicles.

そこで、本発明はこのような問題点に鑑み、商用電力に加えて太陽光発電電力の余剰分も車両充電に振り分けでき、且つその際、余剰分の安定した振り分けを実施できる車両充電システムを提供することを目的としている。 Therefore, in view of these problems, the present invention provides a vehicle charging system that can allocate surplus solar power in addition to commercial power to vehicle charging, and can perform stable distribution of the surplus at that time. It is intended to.

上記課題を解決する為に、請求項1の発明は、車両を充電するための複数の充電器と、充電器の充電電流を制御する充電制御部とを有し、商用電力及び太陽光発電電力により車両充電を実施する車両充電システムであって、太陽光発電電力は、充電器とは異なる負荷に供給されており、その発電電力に余剰電力が発生したら充電器を介した車両の充電に提供され、充電制御部は、商用電力及び太陽光発電電力の余剰分を管理する充電制御親機と、充電器毎に設置されて、接続先の充電器が車両へ供給する電流を制御する複数の充電制御子機とを有し、充電制御親機は、太陽光発電電力の余剰電力を監視する余剰電力監視部と、余剰電力が発生したら、各充電制御子機に余剰電力情報を一斉通知する通知部とを備える一方、充電制御子機は、充電制御親機から余剰電力情報の通知を受けたら、現在までの充電量、充電開始時に設定された必要充電量である閾値、及び余剰電力情報を基に、所定の演算により充電電流の増加分を算出し、電流増加制御を実施する子機電流制御部を有することを特徴とする。
この構成によれば、太陽光発電電力の余剰分を利用して車両充電を行うため、太陽光発電電力を有効活用できる。また、余剰分の個々の車両への分配は、閾値情報を加味して決定されるため、充電開始時に設定された必要充電量に達するまでの時間を短くでき、利用者にとって利便性が良い。
そして、余剰電力の振り分けは、車両毎に個々の充電制御子機が決定するため、充電制御親機の演算量を削減でき、太陽光発電の変動に対して無駄の無い安定した振り分けを実施できる。
In order to solve the above problem, the invention of claim 1 includes a plurality of chargers for charging a vehicle and a charging control section that controls the charging current of the charger, and the invention includes commercial power and solar power generation power. In this vehicle charging system, solar power is supplied to a load different from the charger, and when surplus power is generated, it is provided to charge the vehicle via the charger. The charging control unit consists of a charging control master unit that manages surplus commercial power and solar power generation power, and a plurality of charging control units that are installed in each charger and that control the current supplied to the vehicle by the connected charger. The charging control master unit has a surplus power monitoring unit that monitors surplus power of solar power generation, and when surplus power occurs, it notifies each charging control slave unit of surplus power information all at once. On the other hand, upon receiving notification of surplus power information from the charging control master unit, the charging control slave unit displays the current charging amount, the threshold value which is the required charging amount set at the start of charging, and the surplus power information. The present invention is characterized by having a handset current control section that calculates an increase in charging current by a predetermined calculation based on and performs current increase control.
According to this configuration, since the vehicle is charged using surplus solar power, the solar power can be effectively utilized. Further, since the distribution of the surplus to each vehicle is determined by taking threshold information into consideration, the time required to reach the required charging amount set at the start of charging can be shortened, which is convenient for users.
In addition, since the distribution of surplus power is determined by the individual charging control slave unit for each vehicle, the amount of calculation by the charging control master unit can be reduced, and stable distribution without waste can be implemented in response to fluctuations in solar power generation. .

請求項2の発明は、請求項1に記載の構成において、充電制御親機は、充電する車両の蓄電池残量情報及び電費情報を、充電制御子機、充電器を介して入手する充電車両情報入手部と、受電電力のデマンド値が設定された基準値を超えないよう制御する親機電流制御部と、を有し、親機電流制御部は、充電車両情報入手部が入手した情報を基に、個々の車両に対して所定の距離の走行を可能とする電力量を算出すると共に、算出した電力量に達するまで必要な充電量を閾値に設定し、閾値に達していない車両の充電を、閾値に達した車両の充電より優先する電流制御を実施することを特徴とする。
この構成によれば、商用電力による車両充電は、車種や車両の蓄電池残量に依らず、所定の距離を走行可能とする電力量を基準に充電量の閾値を設定し、この閾値に達していない車両の充電が閾値に達した車両の充電より優先されるため、閾値に達するまでの時間を短くでき、利用者にとって利便性が良い。また、充電量が閾値に達した車両の走行距離は車種に依らずほぼ等しくできるため、利用者に対して平等に対応できる。そして、デマンド制御を併せて実施するため、電気料金の上昇を防止できる。
尚、電費とは電力消費率であり、電力1kWh当たりの走行キロ数で表される。
The invention according to claim 2 is the configuration according to claim 1, in which the charging control master device obtains the storage battery remaining amount information and electricity consumption information of the vehicle to be charged through the charging control slave device and the charger. and a master unit current control unit that controls the received power demand value so that it does not exceed a set reference value. In addition, the system calculates the amount of electricity that will enable each vehicle to travel a predetermined distance, sets a threshold value for the amount of charge required until the calculated amount of electricity is reached, and charges vehicles that have not reached the threshold. , the current control is performed to give priority to charging of a vehicle that has reached a threshold value.
According to this configuration, when charging a vehicle using commercial power, a threshold value for the amount of charging is set based on the amount of power that enables the vehicle to travel a predetermined distance, regardless of the type of vehicle or the remaining amount of storage battery in the vehicle, and when this threshold value is reached. Since charging of vehicles that are not available is given priority over charging of vehicles that have reached the threshold value, the time required to reach the threshold value can be shortened, which is convenient for users. Furthermore, since the mileage of vehicles whose charging amount has reached the threshold value can be approximately equal regardless of the type of vehicle, it is possible to provide equal support to users. Since demand control is also implemented, increases in electricity rates can be prevented.
Note that the electricity cost is the electricity consumption rate, and is expressed as the number of kilometers traveled per 1 kWh of electricity.

請求項3の発明は、請求項2に記載の構成において、子機電流制御部は、充電制御親機から閾値情報を入手することを特徴とする。
この構成によれば、商用電力に加えて、太陽光発電電力の余剰分の振り分けも所定の距離を走行可能とする閾値情報を基に決定されるため、車両の状態に関わらず閾値に達するまでの時間を確実に短くできる。
The invention according to claim 3 is characterized in that, in the configuration according to claim 2, the child device current control section obtains the threshold value information from the charging control parent device.
According to this configuration, in addition to commercial power, the distribution of surplus solar power generation power is also determined based on threshold information that allows the vehicle to travel a predetermined distance. You can definitely shorten the time.

本発明によれば、太陽光発電電力の余剰分を利用して車両充電を行うため、太陽光発電電力を有効活用できる。また、余剰分の個々の車両への分配は、閾値情報を加味して決定されるため、充電開始時に設定された必要充電量に達するまでの時間を短くでき、利用者にとって利便性が良い。
そして、余剰電力の振り分けは、車両毎に個々の充電制御子機が決定するため、充電制御親機の演算量を削減でき、太陽光発電の変動に対して無駄の無い安定した振り分けを実施できる。
According to the present invention, since the vehicle is charged using surplus solar power, the solar power can be effectively utilized. Further, since the distribution of the surplus to each vehicle is determined by taking threshold information into consideration, the time required to reach the required charging amount set at the start of charging can be shortened, which is convenient for users.
In addition, since the distribution of surplus power is determined by the individual charging control slave unit for each vehicle, the amount of calculation by the charging control master unit can be reduced, and stable distribution without waste can be implemented in response to fluctuations in solar power generation. .

本発明に係る車両充電システムの一例を示す構成図である。1 is a configuration diagram showing an example of a vehicle charging system according to the present invention. 閾値設定の流れを示すフローチャートである。It is a flowchart which shows the flow of a threshold value setting. 優先順位を割り振る流れを示すフローチャートである。It is a flowchart which shows the flow of allocating priorities. 充電制御の流れを示すフローチャートである。It is a flowchart which shows the flow of charging control. 太陽光発電電力を車両充電に使用する際の充電制御親機の制御の流れを示すフローチャートである。It is a flowchart which shows the flow of control of a charge control main unit when using solar power generation power for vehicle charging. 太陽光発電電力を車両充電に使用する際の充電制御子機の制御の流れを示すフローチャートである。It is a flowchart which shows the flow of control of a charging control slave device when using solar power generation power for vehicle charging.

以下、本発明を具体化した実施の形態を、図面を参照して詳細に説明する。図1は本発明に係る車両充電システムの一例を示すブロック図である。図1において、2は充電制御親機(以下、単に「親機」と称する。)、3は充電制御子機(以下、単に「子機」と称する。)であり、双方で充電制御部1を構成している。
子機3は車両5が接続される充電器4毎に設置され、子機3と充電器4とは信号線L1で接続され、親機2と子機3とは信号線L2を介して接続され、互いに通信が成される。
Hereinafter, embodiments embodying the present invention will be described in detail with reference to the drawings. FIG. 1 is a block diagram showing an example of a vehicle charging system according to the present invention. In FIG. 1, 2 is a charging control master unit (hereinafter simply referred to as "master unit"), and 3 is a charging control slave unit (hereinafter simply referred to as "slave unit"). It consists of
The slave unit 3 is installed for each charger 4 to which the vehicle 5 is connected, the slave unit 3 and the charger 4 are connected via a signal line L1, and the base unit 2 and the slave unit 3 are connected via a signal line L2. and communicate with each other.

一方、負荷9や充電器4に電力を供給する受電設備7には、商用電力Pに加えて太陽光発電設備8が接続され、高電圧で供給される商用電力Pは受電設備7で低電圧に変換されて、負荷9及び充電器4にそれぞれ電力ケーブルL3,L4を介して供給される。
尚、太陽光発電設備8が発電した電力は、主に負荷9に供給され、発電電力に余剰分が発生したら、後述する制御により充電器4に供給される。また、親機2と各子機3とは信号線L2で接続されているが、信号線L2を無くして互いに無線通信させても良い。
On the other hand, in addition to the commercial power P, a solar power generation facility 8 is connected to the power receiving equipment 7 that supplies power to the load 9 and the charger 4, and the commercial power P supplied at high voltage is transferred to the power receiving equipment 7 at a low voltage. and is supplied to the load 9 and charger 4 via power cables L3 and L4, respectively.
Note that the power generated by the solar power generation equipment 8 is mainly supplied to the load 9, and when a surplus of generated power occurs, it is supplied to the charger 4 under control described below. Moreover, although the base unit 2 and each slave unit 3 are connected by the signal line L2, the signal line L2 may be omitted and they may communicate with each other wirelessly.

親機2は、商用電力Pの引き込み線L5に設置されたスマートメータ10から受電電力情報を入手する第1計測部21、太陽光発電電力の余剰分を商用電力系統への逆潮流から検出する第2計測部22、デマンド値、後述する基準値、閾値及び演算式等を記憶する記憶部23、各子機3と通信する通信部25(第1通信部25a、第2通信部25b・・・第n通信部25n)、充電器4の充電電流を決定すると共に親機2の各部を制御する親機CPU26等を備えている。 The main unit 2 includes a first measurement unit 21 that obtains received power information from the smart meter 10 installed on the commercial power P lead-in line L5, and a first measurement unit 21 that detects surplus solar power from reverse power flow to the commercial power system. A second measuring section 22, a storage section 23 that stores demand values, reference values (described later), threshold values, calculation formulas, etc., and a communication section 25 (first communication section 25a, second communication section 25b, etc.) that communicates with each child device 3. - An n-th communication unit 25n), a main unit CPU 26 that determines the charging current of the charger 4 and controls each part of the main unit 2, and the like.

通信部25は、子機3と通信する機能に加えて、子機3を介して充電器4に接続された車両5と通信する機能を有し、親機CPU26の制御により、車両5から車両5に搭載されている蓄電池の残量(kWh)、電費(電力1kWh当たりの走行キロ数)の情報を入手可能としている。
この通信部25の機能により、車両5から取得した蓄電池残量情報、電費情報を基に、親機CPU26は充電制御に必要な閾値を算出する。
In addition to the function of communicating with the slave device 3, the communication unit 25 has a function of communicating with the vehicle 5 connected to the charger 4 via the slave device 3, and under the control of the parent device CPU26, the communication unit 25 has a function of communicating with the vehicle 5 connected to the charger 4 via the slave device 3. Information on the remaining capacity (kWh) of the storage battery installed in the 5 and electricity consumption (number of kilometers traveled per 1 kWh of electricity) is available.
Through the function of the communication unit 25, the main unit CPU 26 calculates a threshold value necessary for charging control based on the storage battery remaining amount information and electricity consumption information acquired from the vehicle 5.

子機3は、親機2と通信する子機第1通信部31、充電器4と通信する子機第2通信部32、充電電流の増加分を演算する演算式等を記憶する子機記憶部33、接続された充電器4を制御すると共に子機3を制御する子機CPU34等を備えている。
子機CPU34は、親機2から通知された太陽光発電電力の余剰電力情報を受けて、充電器4の充電電流を制御する。また、充電器4が車両に供給した充電量(充電電流と充電時間とから把握する)情報を親機2に送信する。
The handset 3 includes a first handset communication unit 31 that communicates with the base unit 2, a second handset communication unit 32 that communicates with the charger 4, and a handset memory that stores an arithmetic expression for calculating an increase in charging current, etc. 33, a slave unit CPU 34 that controls the connected charger 4 and the slave unit 3, and the like.
The child device CPU 34 receives the surplus power information of the solar power generation notified from the parent device 2 and controls the charging current of the charger 4 . Further, information on the amount of charge (ascertained from the charging current and charging time) supplied to the vehicle by the charger 4 is transmitted to the base unit 2 .

上記の如く構成された車両充電システムは以下のように動作する。図2は閾値設定のフローチャートであり、図2を参照して説明する。
親機CPU26は、充電制御子機3、充電器4を介して車両5から蓄電池残量と電費情報を取得する(S11)と、取得した情報を基に所定距離の走行を可能とする電力量を算出し、蓄電池残量情報を基に必要な充電量を算出(S12)する。
所定距離の走行を可能とするのに必要な充電量は次式により算出される。
必要充電量(kWh)=所定走行距離(km)/電費(km/kWh)-蓄電池残量(kWh) ・・・(式1)
The vehicle charging system configured as described above operates as follows. FIG. 2 is a flowchart of threshold setting, which will be explained with reference to FIG.
When the main unit CPU 26 acquires the storage battery remaining amount and power consumption information from the vehicle 5 via the charging control slave unit 3 and the charger 4 (S11), the main unit CPU 26 determines the amount of electric power that enables traveling a predetermined distance based on the acquired information. is calculated, and the required charging amount is calculated based on the storage battery remaining amount information (S12).
The amount of charge required to enable traveling a predetermined distance is calculated by the following formula.
Required charging amount (kWh) = Predetermined traveling distance (km) / Electricity cost (km/kWh) - Remaining battery capacity (kWh) ... (Formula 1)

こうして算出した必要充電量が閾値に設定される(S13)。
このように、閾値とは車種に関わらず所定の距離を走行するのに必要な充電量である。
尚、所定距離とは、自宅或いは次の充電ステーションまで走行できる距離(例えば50km)で設定される。
The required charging amount thus calculated is set as a threshold value (S13).
In this way, the threshold value is the amount of charge required to travel a predetermined distance, regardless of the type of vehicle.
Note that the predetermined distance is set as a distance (for example, 50 km) that can be traveled to the home or the next charging station.

閾値が設定されると、次に充電の優先順位の割り振りが行われ、その後個々の車両5の充電制御が実施される。優先順位の割り振りは以下のように行われる。
図3は優先順位を割り振る流れを示すフローチャートであり、図3を参照して説明する。親機CPU26は、充電器4に車両5が接続されて(車両5の充電プラグが接続されて)、閾値が設定されると充電が開始される。同時に、既に充電制御を実施している他の車両5と合わせて、優先順位の割り振りが行われる。
Once the threshold value is set, charging priorities are assigned next, and charging control for each vehicle 5 is then performed. Priority allocation is performed as follows.
FIG. 3 is a flowchart showing the flow of assigning priorities, which will be explained with reference to FIG. The main unit CPU 26 starts charging when the vehicle 5 is connected to the charger 4 (the charging plug of the vehicle 5 is connected) and the threshold value is set. At the same time, priorities are assigned together with other vehicles 5 for which charging control is already being performed.

まず、充電量が閾値未満の車両5の数(未達成数:n)を把握(S21)し、次に閾値以上に充電が成されている車両5の数(達成数:m)を把握(S22)する。
尚、親機CPU26は、個々の車両5に対する充電を開始してからの充電量情報を、子機3から入手して把握し、この値と閾値とを比較し判断する。
First, the number of vehicles 5 whose charging amount is less than the threshold value (unachieved number: n) is ascertained (S21), and then the number of vehicles 5 whose charging amount is equal to or higher than the threshold value (achieved number: m) is ascertained (S21). S22).
Note that the main device CPU 26 obtains and understands the charging amount information after starting charging of each vehicle 5 from the child device 3, and compares this value with a threshold value to make a determination.

次に、未達成数nに含まれる車両5を充電量の多い順に並べて、1番目からn番目と順位付けして割り振り(S23)、更に達成数mに含まれる車両5を充電量の多い順に並べて、n+1番目からn+m番目まで順位付けして割り振る(S24)。こうして1番目からn+m番まで順番付けが成される。
このとき、1~n番目の車両5は、1番目の車両5の充電量が最も多く、n番目の車両5が最も少ない順となり、n+1~n+m番目の車両5の中ではn+1番目の車両5の充電量が最も多く、n+m番目の車両5の充電量が最も少ない順となる。このように優先順位を割り振ったら、電流の増減制御に進む。
Next, the vehicles 5 included in the unachieved number n are arranged in descending order of charge amount, ranked from 1st to nth, and allocated (S23), and the vehicles 5 included in the achieved number m are further arranged in order of charge amount. They are arranged, ranked and allocated from n+1st to n+mth (S24). In this way, the order is established from the first to n+m.
At this time, among the 1st to nth vehicles 5, the first vehicle 5 has the highest amount of charge, the nth vehicle 5 has the least amount of charge, and among the n+1 to n+mth vehicles 5, the n+1th vehicle 5 has the highest amount of charge. The amount of charge is the largest, and the amount of charge of the (n+m)th vehicle 5 is the smallest. Once the priorities are assigned in this way, we proceed to control the increase/decrease of the current.

図4は、順番付けされた個々の車両5に対する電流の増減制御の流れを示すフローチャートを示し、このフローを参照して充電制御を説明する。この制御も親機2が実施し、基準値に対して現在の受電電力がどうかで制御は大きく変化する。
尚、基準値とは、最大デマンド値より例えば10%小さい電力値であり、最大デマンド値を削減して契約料金を削減するために需要家が設定する数値を示すものである。
FIG. 4 shows a flowchart showing the flow of current increase/decrease control for each ordered vehicle 5, and charging control will be explained with reference to this flow. This control is also performed by the base unit 2, and the control changes greatly depending on whether the current received power is relative to the reference value.
Note that the reference value is a power value that is, for example, 10% smaller than the maximum demand value, and indicates a numerical value set by the consumer in order to reduce the maximum demand value and reduce the contract fee.

以下、逸脱情報の判断基準が基準値である場合を説明する。優先順位の割り振り(S31)情報を受けて、まず逸脱情報が0に等しい場合(S32で左へ進む)、即ち現在の受電電力が基準値にほぼ等しい場合は、何れの車両5の充電電流も変更せず終了し、最初のステップであるS31に戻り、優先順位の割り振りが行われる。尚、現在の受電電力は、第1計測部21がスマートメータ10から入手する受電電力の値である。
但し、逸脱情報は次式の式2のように定義された値である。
逸脱情報(kW)=現在の受電電力(kW)-基準値(kW) ・・・(式2)
Hereinafter, a case will be described in which the criterion for determining deviation information is a reference value. After receiving the priority allocation (S31) information, first, if the deviation information is equal to 0 (proceed to the left in S32), that is, if the current received power is approximately equal to the reference value, the charging current of any vehicle 5 is The process ends without making any changes, and returns to the first step S31, where priorities are assigned. Note that the current received power is the value of the received power that the first measurement unit 21 obtains from the smart meter 10.
However, the deviation information is a value defined as in Equation 2 of the following equation.
Deviation information (kW) = Current received power (kW) - Standard value (kW) ... (Formula 2)

次に逸脱情報が正の値の場合(S32で下へ進む)、即ち受電電力が基準値を超えている場合は、電流を削減する制御が実施される。尚、正確には、現在の受電電力から30分間の平均電力を計算して予想した場合、基準値を超える可能性があると判断した場合、電流を削減する制御が実施される。
具体的に、オーバーする電流値(逸脱値)を次の式3で算出(S33)し、閾値に達して且つ充電量の最も少ない車両5から順に充電電流の削減制御(S34)が実施される。
逸脱値=逸脱情報(kW)/電圧(V) ・・・ (式3)
Next, if the deviation information is a positive value (proceeds downward in S32), that is, if the received power exceeds the reference value, control is performed to reduce the current. To be more precise, if it is determined that there is a possibility that the average power for 30 minutes will exceed the reference value by calculating and predicting the average power for 30 minutes from the current received power, control is performed to reduce the current.
Specifically, the exceeding current value (deviation value) is calculated using the following formula 3 (S33), and charging current reduction control (S34) is performed in order from vehicle 5 that has reached the threshold value and has the least amount of charge. .
Deviation value = Deviation information (kW) / Voltage (V) ... (Formula 3)

但し、車両1台あたり最大の削減量は、現在の電流値から所定の最小電流値を引いた値か、算出した逸脱値のうちの小さい方とする(S35)。例えば、逸脱値が10アンペアで、現在の電流値から所定の最小電流値を引いた値が5アンペアであれば、5アンペアが選択され、最も充電量の多いn+m番目の車両5の充電電流を5アンペア削減する制御が実施される。こうして、閾値に達した中で最も充電量の少ない車両5は充電電流削減の最優先対象となる。換言すれば、充電の優先度が最下位となる。 However, the maximum reduction amount per vehicle is the smaller of the current current value minus a predetermined minimum current value or the calculated deviation value (S35). For example, if the deviation value is 10 amperes and the value obtained by subtracting the predetermined minimum current value from the current current value is 5 amperes, 5 amperes is selected and the charging current of the n+mth vehicle 5 with the highest charging amount is Control is implemented to reduce the current by 5 amperes. In this way, the vehicle 5 with the least amount of charge among those that have reached the threshold becomes the highest priority target for charging current reduction. In other words, charging has the lowest priority.

そして、逸脱値から削減した電流値を引いた電流値を新たな逸脱値とし(S36)、逸脱値が0に成るまで或いは全ての充電対象の車両5に対してS34からS37のステップを繰り返し、設定された順番の車両順に制御を実施する。こうして、新たに設定された充電電流値が通信部25から子機3を介して個々の充電器3に通知(S43)され、このS31からS43の制御が1秒等の所定の時間間隔で繰り返されて実施される。
この結果、商用電力Pからの受電電力を減らす場合は、閾値に達した車両5から充電電流が削減される。そして、その際、最も充電量の少ない車両5から充電電流が削減される。よって、後から充電を開始した車両5の充電量が先に充電を開始した車両5の充電量を上回る事が無く、充電時間の長い利用者が不満を抱くような事が無い。
Then, the current value obtained by subtracting the reduced current value from the deviation value is set as a new deviation value (S36), and the steps from S34 to S37 are repeated until the deviation value becomes 0 or for all the vehicles 5 to be charged, Control is performed in the set order of vehicles. In this way, the newly set charging current value is notified from the communication unit 25 to each charger 3 via the handset 3 (S43), and the control from S31 to S43 is repeated at predetermined time intervals such as 1 second. It will be implemented according to the following.
As a result, when reducing the received power from the commercial power P, the charging current is reduced from the vehicle 5 that has reached the threshold value. At this time, the charging current is reduced starting from the vehicle 5 that has the least amount of charge. Therefore, the amount of charge of the vehicle 5 that starts charging later does not exceed the amount of charge of the vehicle 5 that starts charging first, and the user who takes a long time to charge does not become dissatisfied.

一方、逸脱情報が負の場合、即ち受電電力が基準値に達していない場合は、充電電流を増やす制御が実施される。
具体的に、増やせる電流値(余裕値)を次式の式4で算出(S38)し、閾値に満たない車両5のうち、充電量の最も多い車両5から少ない車両5の順に充電電流を増加させる(S39)。
余裕値=-逸脱情報(kW)/電圧(V) ・・・(式4)
On the other hand, when the deviation information is negative, that is, when the received power has not reached the reference value, control is performed to increase the charging current.
Specifically, the current value that can be increased (margin value) is calculated using the following equation 4 (S38), and the charging current is increased in order from the vehicle 5 with the highest charging amount to the vehicle 5 with the lowest charging amount among the vehicles 5 that do not meet the threshold value. (S39).
Margin value = - Deviation information (kW) / Voltage (V) ... (Formula 4)

但し、車両1台あたり最大の増加量は、所定の充電最大電流値から現在の電流値を引いた値か算出した余裕値のうちの小さい方とする(S40)。例えば、充電最大電流値から現在の電流値を引いた値が5アンペアで、余裕値が10アンペアであれば、5アンペアが選択されて最も充電量の少ない1番目の車両5の充電電流を5アンペア増やす制御が実施される。こうして、閾値に達していない車両5の中で最も充電量の多い車両5が、充電電流増加の最優先対象となり、電流増が実施される。 However, the maximum amount of increase per vehicle is the smaller of the value obtained by subtracting the current current value from the predetermined charging maximum current value or the calculated margin value (S40). For example, if the value obtained by subtracting the current current value from the maximum charging current value is 5 amperes and the margin value is 10 amperes, 5 amperes is selected and the charging current of the first vehicle 5 with the lowest charging amount is set to 5 amperes. Control to increase amperage is implemented. In this way, the vehicle 5 with the largest amount of charge among the vehicles 5 that have not reached the threshold becomes the highest priority target for increasing the charging current, and the current is increased.

そして、余裕値から増加させた電流値を引いた電流値を新たな余裕値とし(S41)、余裕値が0になるまで或いは全ての充電対象の車両5に対してS39からS42のステップを繰り返し、設定された順番の車両順に制御を実施する。こうして、新たに設定された充電電流値が個々の充電器4に通知(S43)され、充電が制御される。 Then, the current value obtained by subtracting the increased current value from the margin value is set as a new margin value (S41), and the steps from S39 to S42 are repeated until the margin value becomes 0 or for all the vehicles 5 to be charged. , the vehicle is controlled in the set order. In this way, the newly set charging current value is notified to each charger 4 (S43), and charging is controlled.

このように、商用電力による車両充電は、車種や車両5の蓄電池残量に依らず、所定の距離を走行可能とする電力量を基準に充電量の閾値を設定し、この閾値に達していない車両5の充電が閾値に達した車両5の充電より優先されるため、閾値に達するまでの時間を短くでき、利用者にとって利便性が良い。また、充電量が閾値に達した車両5の走行距離は車種に依らずほぼ等しくできるため、利用者に対して平等に対応できる。そして、デマンド制御を併せて実施するため、電気料金の上昇を防止できる。 In this way, when charging a vehicle using commercial power, a threshold value for the amount of charging is set based on the amount of power that enables the vehicle to travel a predetermined distance, regardless of the type of vehicle or the remaining battery level of the vehicle 5. Since the charging of the vehicle 5 is prioritized over the charging of the vehicle 5 that has reached the threshold value, the time until the threshold value is reached can be shortened, which is convenient for the user. Further, since the mileage of the vehicle 5 whose charging amount has reached the threshold value can be approximately equal regardless of the vehicle type, it is possible to treat users equally. Since demand control is also implemented, increases in electricity rates can be prevented.

尚、商用電力Pからの受電電力を減らす場合は、閾値に達した車両5から充電電流の削減が実施されるし、商用電力Pからの受電電力を増やす場合は、充電量が閾値を下回る車両5から充電電流が増加される。 In addition, when reducing the received power from the commercial power P, the charging current is reduced from the vehicle 5 that has reached the threshold value, and when increasing the received power from the commercial power P, the charging current is reduced from the vehicle 5 whose charging amount is below the threshold value. 5, the charging current is increased.

次に、商用電力による車両充電が成されている状態で、太陽光発電電力に余剰分が発生した場合の車両充電制御を説明する。
図5は、太陽光発電電力を車両充電に使用する際の親機2の制御の流れを示すフローチャート、図6は太陽光発電電力を車両充電に使用する際の子機3の制御の流れを示すフローチャートであり、このフローを参照して説明する。
第2計測部22が商用電力系統への逆潮流、即ち売電を検出(S51)しており、親機CPU26は売電が発生したら(S52でYes)、第2計測部22から売電電流値を取得(S52)し、この売電電流が0になる車両5への充電電流の増加分を算出する(S53)。
この充電電流の増加分は、次式の式5で算出される。
電流上昇値=(売電電流値/システム余裕度)/稼働中の充電器の数 ・・・(式5)
算出された電流上昇値は、稼働中の全ての子機3に一斉通知される(S54)。電流上昇値の通知は、一定の時間間隔で実施され、売電が発生していなければ「0」が通知される(S55)。
Next, a description will be given of vehicle charging control when a surplus of solar power generation occurs while the vehicle is being charged using commercial power.
FIG. 5 is a flowchart showing the flow of control of the base unit 2 when solar power generation power is used for vehicle charging, and FIG. 6 is a flowchart showing the control flow of the slave unit 3 when using solar power generation power for vehicle charging. This flowchart will be described with reference to this flow.
The second measuring unit 22 detects the reverse power flow to the commercial power system, that is, the power selling (S51), and when the power selling occurs (Yes in S52), the main unit CPU 26 detects the power selling from the second measuring unit 22. The value is acquired (S52), and an increase in the charging current to the vehicle 5 at which this electricity selling current becomes 0 is calculated (S53).
This increase in charging current is calculated by the following equation 5.
Current increase value = (power selling current value / system margin) / number of operating chargers ... (Formula 5)
The calculated current increase value is notified all at once to all slave units 3 in operation (S54). Notification of the current increase value is carried out at regular time intervals, and if no power selling has occurred, "0" is notified (S55).

尚、システム余裕度は、システムによって留意すべき点がある場合の調整値であり、理論的には「1」が望ましいが、例えば0.8等システムの設置環境に応じて設定される。また稼働中の充電器4の数の情報は、子機3から取得される。また、受電設備7から充電器4に供給される電力は、200V等の一定電圧の交流電力であり、電流上昇値は同じ割合の電力上昇値でもある。 Note that the system margin is an adjustment value when there are points to be noted depending on the system, and although "1" is theoretically desirable, it is set, for example, to 0.8, depending on the installation environment of the system. Further, information on the number of chargers 4 in operation is acquired from the slave unit 3. Further, the power supplied from the power receiving equipment 7 to the charger 4 is AC power with a constant voltage such as 200V, and the current increase value is also a power increase value of the same ratio.

一方、各子機3は、親機2から電流上昇値の通知(S61)を受けて、上昇値が0でなければ、子機3が担当している(子機3に接続されている)充電器4の割り当て量を演算する(S62でYes)。割当量を含む制御後の充電電流は、通知された電流上昇値を基に次式の式6で算出する(S63)。通知された電流上昇値が0であれば、充電電流の上昇はない(S62でNo)。
制御後の充電電流(A)=制御前の充電電流値(A)+充電電流の上昇値×(1+(充電量(Wh)/閾値(Wh)))×係数 ・・・(式6)
尚、「係数」は、充電の優先度に関係なく、充電電流の上昇値を最低限上昇させる電流量を算出するための係数で、例えば0.5であるし、「閾値」は、親機2から取得される。また「充電量」は、上述したように充電器4の充電電流と充電時間とから子機3が算出した現在までの充電電力量であり、「充電量/閾値」は、結果が1より大きくなった場合は、0として優先度を下げる処理をする。
子機3は、こうして算出した電流値で充電するよう充電器4を制御する(S64)。
On the other hand, each slave unit 3 receives notification of the current increase value from the base unit 2 (S61), and if the increase value is not 0, the slave unit 3 is in charge (connected to the slave unit 3). The allocated amount of charger 4 is calculated (Yes in S62). The controlled charging current including the allocated amount is calculated using the following equation 6 based on the notified current increase value (S63). If the notified current increase value is 0, there is no increase in charging current (No in S62).
Charging current after control (A) = Charging current value before control (A) + Increased value of charging current × (1 + (Charging amount (Wh) / Threshold value (Wh))) × Coefficient (Formula 6)
Note that the "coefficient" is a coefficient for calculating the amount of current that increases the charging current to the minimum value regardless of the charging priority, and is, for example, 0.5. 2. In addition, the "charging amount" is the charging power amount calculated by the handset 3 from the charging current and charging time of the charger 4 as described above, and the "charging amount/threshold value" is the amount of charging power that has been calculated by the handset 3 from the charging current and charging time of the charger 4. If it becomes 0, the priority is lowered to 0.
Handset 3 controls charger 4 to charge with the current value calculated in this way (S64).

このように、太陽光発電電力の余剰分を利用して車両充電を行うため、太陽光発電電力を有効活用できる。また、余剰分の個々の車両5への分配は、現在までの充電量、充電開始時に設定された必要充電量である閾値、及び通知された余剰電力情報を基に算出されるため、充電開始時に設定された所定の距離を走行するのに必要な充電量に達するまでの時間を短くでき、利用者にとって利便性が良い。
更に、余剰電力の振り分けは、車両5毎に個々の充電制御子機3が演算して決定するため、充電制御親機2の演算量を削減でき、変動し易い太陽光発電に対して無駄の無い安定した振り分けを実施できる。
In this way, the surplus solar power is used to charge the vehicle, so the solar power can be effectively utilized. In addition, the distribution of surplus power to individual vehicles 5 is calculated based on the amount of charge up to now, the threshold value that is the required amount of charge set at the start of charging, and the notified surplus power information, so charging starts. The time it takes to reach the amount of charge required to travel a predetermined distance can be shortened, which is convenient for the user.
Furthermore, the allocation of surplus power is calculated and determined by each charging control slave unit 3 for each vehicle 5, so the amount of calculation by the charging control master unit 2 can be reduced. It is possible to carry out stable distribution without any problems.

1・・車両充電システム、2・・充電制御親機、3・・充電制御子機、4・・充電器、5・・車両、7・・受電設備、8・・太陽光発電設備、9・・負荷、10・・スマートメータ、10・・スマートメータ(電力量計)、21・・第1計測部、22・・第2計測部(余剰電力監視部)、23・・記憶部、25・・通信部(充電車両情報入手部、通知部)、26・・親機CPU(親機電流制御部)、33・・子機CPU(子機電流制御部)、P・・商用電力。 1. Vehicle charging system, 2. Charging control master device, 3. Charging control slave device, 4. Charger, 5. Vehicle, 7. Power receiving equipment, 8. Solar power generation equipment, 9. - Load, 10... Smart meter, 10... Smart meter (watt hour meter), 21... First measuring section, 22... Second measuring section (surplus power monitoring section), 23... Storage section, 25... - Communication section (charged vehicle information acquisition section, notification section), 26.. Master unit CPU (master unit current control section), 33.. Handset CPU (handset current control section), P.. Commercial power.

Claims (3)

車両を充電するための複数の充電器と、前記充電器の充電電流を制御する充電制御部とを有し、商用電力及び太陽光発電電力により車両充電を実施する車両充電システムであって、
前記太陽光発電電力は、前記充電器とは異なる負荷に供給されており、その発電電力に余剰電力が発生したら前記充電器を介した車両の充電に提供され、
前記充電制御部は、商用電力及び太陽光発電電力の余剰分を管理する充電制御親機と、
前記充電器毎に設置されて、接続先の前記充電器が車両へ供給する電流を制御する複数の充電制御子機とを有し、
前記充電制御親機は、太陽光発電電力の前記余剰電力を監視する余剰電力監視部と、
前記余剰電力が発生したら、各充電制御子機に余剰電力情報を一斉通知する通知部とを備える一方、
前記充電制御子機は、前記充電制御親機から前記余剰電力情報の通知を受けたら、現在までの充電量、充電開始時に設定された必要充電量である閾値、及び前記余剰電力情報を基に、所定の演算により充電電流の増加分を算出し、電流増加制御を実施する子機電流制御部を有することを特徴とする車両充電システム。
A vehicle charging system that includes a plurality of chargers for charging a vehicle and a charging control unit that controls the charging current of the charger, and that charges the vehicle using commercial power and solar power generation power,
The photovoltaic power is supplied to a load different from the charger, and if surplus power occurs in the generated power, it is provided to charge the vehicle via the charger,
The charging control unit includes a charging control master unit that manages surplus commercial power and solar power generation power;
a plurality of charging control slave units installed for each of the chargers to control the current supplied to the vehicle by the charger to which it is connected;
The charging control master unit includes a surplus power monitoring unit that monitors the surplus power of solar power generation power;
and a notification unit that simultaneously notifies each charging control slave device of surplus power information when the surplus power is generated;
Upon receiving the notification of the surplus power information from the charging control master device, the charging control slave device determines the amount of charge to date, the threshold value that is the required amount of charge set at the start of charging, and the surplus power information. A vehicle charging system comprising: a slave current control section that calculates an increase in charging current by a predetermined calculation and performs current increase control.
前記充電制御親機は、充電する車両の蓄電池残量情報及び電費情報を、前記充電制御子機、前記充電器を介して入手する充電車両情報入手部と、
受電電力のデマンド値が設定された基準値を超えないよう制御する親機電流制御部と、を有し、
前記親機電流制御部は、前記充電車両情報入手部が入手した情報を基に、個々の車両に対して所定の距離の走行を可能とする電力量を算出すると共に、
算出した前記電力量に達するまで必要な充電量を前記閾値に設定し、前記閾値に達していない車両の充電を、前記閾値に達した車両の充電より優先する電流制御を実施することを特徴とする請求項1記載の車両充電システム。
The charging control master unit includes a charging vehicle information obtaining unit that obtains storage battery remaining amount information and electricity consumption information of the vehicle to be charged via the charging control slave unit and the charger;
A main unit current control unit that controls the demand value of the received power so that it does not exceed a set reference value,
The main unit current control unit calculates the amount of electric power that enables each vehicle to travel a predetermined distance based on the information obtained by the charging vehicle information acquisition unit, and
A charging amount required until the calculated amount of electric power is reached is set as the threshold value, and current control is performed to prioritize charging of a vehicle that has not reached the threshold value over charging of a vehicle that has reached the threshold value. The vehicle charging system according to claim 1.
前記子機電流制御部は、前記充電制御親機から前記閾値情報を入手することを特徴とする請求項2記載の車両充電システム。 3. The vehicle charging system according to claim 2, wherein the child device current control unit obtains the threshold information from the charging control parent device.
JP2020082041A 2020-05-07 2020-05-07 vehicle charging system Active JP7445511B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020082041A JP7445511B2 (en) 2020-05-07 2020-05-07 vehicle charging system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020082041A JP7445511B2 (en) 2020-05-07 2020-05-07 vehicle charging system

Publications (2)

Publication Number Publication Date
JP2021177674A JP2021177674A (en) 2021-11-11
JP7445511B2 true JP7445511B2 (en) 2024-03-07

Family

ID=78409649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020082041A Active JP7445511B2 (en) 2020-05-07 2020-05-07 vehicle charging system

Country Status (1)

Country Link
JP (1) JP7445511B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009136109A (en) 2007-11-30 2009-06-18 Toyota Motor Corp Charge control device and method
JP2011125122A (en) 2009-12-09 2011-06-23 Sony Corp Battery control system, battery control device, and method and program for controlling battery
WO2011080813A1 (en) 2009-12-28 2011-07-07 トヨタ自動車株式会社 Household electricity storage system
JP2012255721A (en) 2011-06-09 2012-12-27 Tatsumi Ryoki:Kk Load system
JP2013162555A (en) 2012-02-01 2013-08-19 Toyota Industries Corp Vehicle charging system
JP2013201859A (en) 2012-03-26 2013-10-03 Toyota Industries Corp Vehicle charge system and method
JP2014183654A (en) 2013-03-19 2014-09-29 Honda Motor Co Ltd Power supply system
JP2014233180A (en) 2013-05-30 2014-12-11 株式会社日立アイイ−システム Electric vehicle battery charge system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009136109A (en) 2007-11-30 2009-06-18 Toyota Motor Corp Charge control device and method
JP2011125122A (en) 2009-12-09 2011-06-23 Sony Corp Battery control system, battery control device, and method and program for controlling battery
WO2011080813A1 (en) 2009-12-28 2011-07-07 トヨタ自動車株式会社 Household electricity storage system
JP2012255721A (en) 2011-06-09 2012-12-27 Tatsumi Ryoki:Kk Load system
JP2013162555A (en) 2012-02-01 2013-08-19 Toyota Industries Corp Vehicle charging system
JP2013201859A (en) 2012-03-26 2013-10-03 Toyota Industries Corp Vehicle charge system and method
JP2014183654A (en) 2013-03-19 2014-09-29 Honda Motor Co Ltd Power supply system
JP2014233180A (en) 2013-05-30 2014-12-11 株式会社日立アイイ−システム Electric vehicle battery charge system

Also Published As

Publication number Publication date
JP2021177674A (en) 2021-11-11

Similar Documents

Publication Publication Date Title
JP6768080B2 (en) Server device and control method
JP6011810B2 (en) Charging power control system
JP6752288B2 (en) Power storage device, transportation equipment and control method
CN108146263B (en) Power storage system, conveying apparatus, and control method of power storage system
CN110015123B (en) Charge and discharge management device
EP2985857A1 (en) Storage battery management system and storage battery management method
JP7377854B2 (en) Power reception control method for power storage element and power reception control device
JP7308069B2 (en) vehicle charger
WO2020194010A1 (en) Power reception control method of power reception elements, and power reception control device
US20140320080A1 (en) Charge managing system, charger, and program
JP7418971B2 (en) vehicle charging system
JP7445511B2 (en) vehicle charging system
WO2022172044A1 (en) Charging/discharging control method and charging/discharging control device
US20220126719A1 (en) Method and system of controlling chargeable and dischargeable power amounts of charging and discharging apparatus group in power grid
JP2020022258A (en) Power supply system, power control device, and each house system
JP2023059108A (en) vehicle charging system
WO2022172043A1 (en) Charge/discharge loss reduction method and charge/discharge loss reduction device
CN115071490A (en) Control system and energy management method
CN116056944A (en) Charging system for charging a battery
CN115972953A (en) Vehicle charging system
Hamidi et al. A distributed control system for enhancing smart-grid resiliency using electric vehicles
WO2022172045A1 (en) Charge/discharge control method for charging/discharging element and charge/discharge control device for charging/discharging element
JP6942295B1 (en) Charge / discharge plan creation device, command device, power system management system, terminal device, power storage system, charge / discharge system, storage battery, electric vehicle, charge / discharge plan creation method and charge / discharge plan creation program
JP7387297B2 (en) vehicle charging system
EP4239824A1 (en) Power management system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240226

R150 Certificate of patent or registration of utility model

Ref document number: 7445511

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150