JP7445399B2 - New whey protein material - Google Patents

New whey protein material Download PDF

Info

Publication number
JP7445399B2
JP7445399B2 JP2019157533A JP2019157533A JP7445399B2 JP 7445399 B2 JP7445399 B2 JP 7445399B2 JP 2019157533 A JP2019157533 A JP 2019157533A JP 2019157533 A JP2019157533 A JP 2019157533A JP 7445399 B2 JP7445399 B2 JP 7445399B2
Authority
JP
Japan
Prior art keywords
whey
weight
whey protein
lactose
protein material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019157533A
Other languages
Japanese (ja)
Other versions
JP2021035332A (en
Inventor
篤寛 武本
耕平 浅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Megmilk Snow Brand Co Ltd
Original Assignee
Megmilk Snow Brand Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Megmilk Snow Brand Co Ltd filed Critical Megmilk Snow Brand Co Ltd
Priority to JP2019157533A priority Critical patent/JP7445399B2/en
Publication of JP2021035332A publication Critical patent/JP2021035332A/en
Priority to JP2024025379A priority patent/JP2024045721A/en
Application granted granted Critical
Publication of JP7445399B2 publication Critical patent/JP7445399B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Dairy Products (AREA)

Description

本発明は、新規なホエイタンパク質素材に関する。 The present invention relates to a novel whey protein material.

牛乳等の獣乳からチーズやカゼインを製造した際の副産物であるホエイは、その成分として乳糖、ミネラルやホエイタンパク質を含んでいる。このうち、ホエイタンパク質は良質なタンパク質源として認知されており、ホエイをUF膜で濃縮することでホエイタンパク質濃度を高め、乳糖やミネラル濃度を低減させたWPC(Whey Protein Concentrate)やWPI(Whey Protein Isolate)などのホエイタンパク質素材が製造販売されている。近年では、ホエイタンパク質を加熱することによって変性・凝集する性質を利用したMP(Microparticulated;微粒子化)ホエイの素材やその製造装置等が販売されている。MPホエイは一般的に、ホエイタンパク質の凝集物で、体積基準のメジアン径が0.5~10μm、5000g~15000gの遠心分離によって沈殿する画分である。 Whey, which is a byproduct of producing cheese and casein from animal milk such as cow's milk, contains lactose, minerals, and whey protein as its components. Among these, whey protein is recognized as a high-quality protein source, and WPC (Whey Protein Concentrate) and WPI (Whey Protein Concentrate), which increase whey protein concentration and reduce lactose and mineral concentration by concentrating whey with a UF membrane, Whey protein materials such as Isolate are manufactured and sold. In recent years, MP (Microparticulated) whey materials, which utilize the property of denaturing and aggregating whey proteins by heating them, and equipment for producing the same have been on sale. MP whey is generally an aggregate of whey proteins, which has a volume-based median diameter of 0.5 to 10 μm, and is a fraction precipitated by centrifugation at 5000 g to 15000 g.

特許文献1はホエイタンパク質を加熱せん断処理することで脂肪の代替として使用でき
るMPホエイの製造方法について開示している。
非特許文献1では、MPホエイを調製する際の乳糖や加熱温度がMPホエイの粒子径、構造および保水性に与える影響について報告している。乳糖濃度が高い状態で調製することでMPホエイの構造が変わり保水性が高くなるとしているが、乳糖濃度が13.5重量%のホエイ溶液について検討しているにすぎない。
Patent Document 1 discloses a method for producing MP whey that can be used as a fat substitute by subjecting whey protein to heat-shearing treatment.
Non-Patent Document 1 reports on the influence of lactose and heating temperature during preparation of MP whey on the particle size, structure, and water retention property of MP whey. It is said that preparing MP whey at a high lactose concentration changes the structure of MP whey and increases water retention, but they are only considering a whey solution with a lactose concentration of 13.5% by weight.

一般的に発酵乳やヨーグルトなどの離水抑制や硬度付与を目的としてWPCやWPIが用いられるが、非特許文献2、3では、5重量%のカゼインを含む酸乳ゲルと、2.5重量%のカゼインと2.5重量%のMPホエイを含む酸乳ゲルでは、後者のほうが硬度や動的粘弾性が低いことを報告している。このことから、MPホエイはWPCやWPIのように離水抑制や硬度付与効果がなく、逆に硬度を下げるものであることが一般に知られているといえる。
特許文献2では、部分加熱変性ホエイタンパク質によって振動に安定で離水の少ない発酵乳および製造方法について開示している。部分加熱変性ホエイタンパク質もMPホエイもどちらも加熱によってホエイタンパク質を凝集させたものである。しかしながら、MPホエイは体積基準のメジアン径が0.5~10μmであり5000g~15000gの遠心分離で沈殿するが、部分加熱変性ホエイタンパク質は可溶性の凝集体であり粒子径が小さく15000gでも沈殿しない。このため、部分加熱変性ホエイタンパク質は、その物理的な構造がMPホエイとは異なるものである。
Generally, WPC and WPI are used for the purpose of suppressing syneresis and imparting hardness to fermented milk, yogurt, etc., but in Non-Patent Documents 2 and 3, sour milk gel containing 5% by weight of casein and 2.5% by weight of casein are used. of casein and 2.5% by weight of MP whey, it has been reported that the latter has lower hardness and dynamic viscoelasticity. From this, it can be said that it is generally known that MP whey does not have the effect of suppressing syneresis or imparting hardness like WPC or WPI, but on the contrary reduces hardness.
Patent Document 2 discloses a fermented milk that is vibrationally stable and has little syneresis using partially heated denatured whey protein, and a manufacturing method. Both partially heat-denatured whey protein and MP whey are whey proteins aggregated by heating. However, MP whey has a volume-based median diameter of 0.5 to 10 μm and is precipitated by centrifugation at 5000 g to 15000 g, whereas partially heat-denatured whey protein is a soluble aggregate and has a small particle size and does not precipitate even at 15000 g. Therefore, the physical structure of partially heat-denatured whey protein is different from MP whey.

特願平3-510449号公報Patent Application No. 3-510449 特開平9-94059号公報Japanese Patent Application Publication No. 9-94059

International Journal of Food Science and Technology, 34 (1999) p523-531International Journal of Food Science and Technology, 34 (1999) p523-531 International Dairy Journal, 59 (2016) p1-9International Dairy Journal, 59 (2016) p1-9 International Dairy Journal, 62 (2016) p43-52International Dairy Journal, 62 (2016) p43-52

MPホエイは、上記したように、一般的にはホエイタンパク質を加熱するなどして変性・凝集させることで製造されるが、その用途は、脂肪代替品としての使用に限られていた。
しかし、従来、無脂肪タイプの発酵乳は離水防止や保形性の付与が必要であるという課題があるが、MPホエイに従来なかった離水抑制や硬度上昇の機能を付与することができれば、この課題を解決する新たな機能性を有するホエイタンパク質素材となると考えられる。
As mentioned above, MP whey is generally produced by heating whey protein to denature and aggregate it, but its use has been limited to use as a fat substitute.
However, conventionally, fat-free fermented milk has had the problem of requiring syneresis prevention and shape retention, but if MP whey could be given the functions of preventing syneresis and increasing hardness, which were not previously available, it would be possible to achieve this goal. It is thought that it will become a whey protein material with new functionality that solves problems.

本発明の課題は、発酵乳などの酸乳ゲルの離水抑制や硬度上昇機能をもったMPホエイを含有する、従来にない特徴を有するホエイタンパク質素材及びその製造方法を提供することである。 An object of the present invention is to provide a whey protein material containing MP whey that has the function of suppressing syneresis and increasing hardness of sour milk gel such as fermented milk, and having unprecedented characteristics, and a method for producing the same.

上記課題を解決するため、本発明には以下の構成が含まれる。
[1]乳糖を20~40重量%含有するホエイ溶液に対して加熱とせん断を実施することからなるMPホエイを含有するホエイタンパク質素材の製造方法。
[2]前記ホエイ溶液のタンパク質含量が5重量%以上である[1]のホエイタンパク質素材の製造方法。
[3]前記ホエイ溶液が、濃度がホエイタンパク質1重量%に対して0.005重量%以上であるカルシウムをさらに含有する[1]又は[2]のホエイタンパク質素材の製造方法。
[4]前記ホエイ溶液の加熱を70℃以上で行う[1]~[3]のいずれかのホエイタンパク質素材の製造方法。
[5]全固形分あたり66~80重量%の乳糖、及び16~31重量%のMPホエイを含有し、前記MPホエイのメジアン径は5μm以下である液体状のホエイタンパク質素材。
[6]全固形分あたり66~80重量%の乳糖、及び16~31重量%のMPホエイを含有し、前記MPホエイのメジアン径は5μm以下である粉末状のホエイタンパク質素材。
[7][5]又は[6]のホエイタンパク質素材を含有する発酵乳。
In order to solve the above problems, the present invention includes the following configurations.
[1] A method for producing a whey protein material containing MP whey, which comprises heating and shearing a whey solution containing 20 to 40% by weight of lactose.
[2] The method for producing a whey protein material according to [1], wherein the protein content of the whey solution is 5% by weight or more.
[3] The method for producing a whey protein material according to [1] or [2], wherein the whey solution further contains calcium at a concentration of 0.005% by weight or more based on 1% by weight of whey protein.
[4] The method for producing a whey protein material according to any one of [1] to [3], wherein the whey solution is heated at 70° C. or higher.
[5] A liquid whey protein material containing 66 to 80% by weight of lactose and 16 to 31% by weight of MP whey based on the total solid content, and the median diameter of the MP whey is 5 μm or less.
[6] A powdered whey protein material containing 66 to 80% by weight of lactose and 16 to 31% by weight of MP whey based on the total solid content, and the median diameter of the MP whey is 5 μm or less.
[7] Fermented milk containing the whey protein material of [5] or [6].

本発明は、発酵乳やヨーグルトなどの離水抑制や硬度上昇機能をもったMPホエイを含有する、従来にない特徴を有するホエイタンパク質素材及びその製造方法を提供することができる。 The present invention can provide a whey protein material containing MP whey that has functions of suppressing syneresis and increasing hardness of fermented milk, yogurt, etc., and has unprecedented characteristics, and a method for producing the same.

図1は、実施例1~3、比較例1、2で製造した乳酸ゲルの保水性を表す。FIG. 1 shows the water retention properties of the lactic acid gels produced in Examples 1 to 3 and Comparative Examples 1 and 2. 図2は、実施例1~3、比較例1、2で製造した乳酸ゲルの硬度を表す。FIG. 2 shows the hardness of the lactic acid gels produced in Examples 1 to 3 and Comparative Examples 1 and 2.

本発明の実施の形態に係るホエイタンパク質素材について以下に詳細に説明する。
(ホエイタンパク質)
原材料となるホエイタンパク質は、牛乳等の獣乳に含まれている。ホエイタンパク質が含まれるホエイ溶液は、ナチュラルチーズやカゼインを製造する際の副産物として得られる。ホエイ溶液から脂肪やカゼインファインを排除する工程、膜やイオン交換樹脂等を用いることで灰分や乳糖を除去しホエイタンパク質を濃縮する工程を経て濃縮ホエイ溶液が得られる。この後、噴霧乾燥や凍結乾燥することでWPCやWPIが得られる。
The whey protein material according to the embodiment of the present invention will be described in detail below.
(whey protein)
The raw material, whey protein, is found in animal milk such as cow's milk. Whey solutions, which contain whey proteins, are obtained as a by-product during the production of natural cheese and casein. A concentrated whey solution is obtained through the steps of removing fat and casein fines from the whey solution, removing ash and lactose using membranes, ion exchange resins, etc., and concentrating whey proteins. Thereafter, WPC or WPI can be obtained by spray drying or freeze drying.

本発明に関わるホエイタンパク質素材を製造するにあたっては、上述の液状の濃縮ホエイ溶液を用いてもよく、また市販のWPCやWPIを水等の溶媒に還元したものを用いてもよい。
ホエイ溶液中のタンパク質含量は5重量%以上が好ましく、10重量%~20重量%が最も好ましい。
本発明で、酸乳ゲルの離水抑制や硬度上昇機能をもったMPホエイを製造するためのホエイ溶液は、高濃度の乳糖を含有していることに特徴があり、ホエイ溶液中の乳糖濃度は20重量%以上が好ましく、30重量%以上がより好ましく、40重量%程度が最も好ましい。
また、ホエイ溶液中にはカルシウムが含まれていることが好ましく、ホエイ溶液中のカルシウム濃度はホエイタンパク質1重量%に対して0.005重量%以上であればよい。ホエイ溶液中にこの程度のカルシウムが存在することで、ホエイ溶液を加熱した際にホエイタンパク質が速やかに凝集し、これにせん断をかけることでMPホエイの形態とすることができる。
本発明に用いる乳糖は、食品であればどのようなものでも用いることができる。
本発明に用いるカルシウム素材は、食品であればどのようなものでも用いることができ、塩化カルシウム、乳酸カルシウム、リン酸カルシウム等を例示できるが、このうち塩化カルシウムが好ましい。
In producing the whey protein material according to the present invention, the above-mentioned liquid concentrated whey solution may be used, or commercially available WPC or WPI reduced to a solvent such as water may be used.
The protein content in the whey solution is preferably 5% by weight or more, most preferably 10% to 20% by weight.
In the present invention, the whey solution for producing MP whey that has the function of suppressing syneresis and increasing hardness of acid milk gel is characterized by containing a high concentration of lactose, and the lactose concentration in the whey solution is The content is preferably 20% by weight or more, more preferably 30% by weight or more, and most preferably about 40% by weight.
Further, it is preferable that the whey solution contains calcium, and the calcium concentration in the whey solution may be 0.005% by weight or more based on 1% by weight of whey protein. The presence of this amount of calcium in the whey solution causes whey proteins to quickly aggregate when the whey solution is heated, and by applying shear to this, it is possible to form MP whey.
The lactose used in the present invention can be any food product.
As the calcium material used in the present invention, any food material can be used, and examples thereof include calcium chloride, calcium lactate, calcium phosphate, etc. Among these, calcium chloride is preferred.

(ホエイタンパク質の改質処理)
上記のホエイ溶液に対して加熱とせん断を実施する。加熱はホエイタンパク質が変性・凝集する温度であればよく、70℃以上が好ましく80℃以上がより好ましく、90℃以上が最も好ましい。せん断は市販の高圧均質機等で実施可能である。また加熱とせん断を同時に処理できる、例えば、かきとり式殺菌機等でも実施可能である。加熱とせん断を行うことができれば特に上記に限定されない。このような改質処理により、ホエイタンパク質は改質されたMPホエイとなる。
(Whey protein modification treatment)
Heating and shearing the above whey solution. Heating may be carried out at a temperature at which whey proteins are denatured and aggregated, preferably 70°C or higher, more preferably 80°C or higher, and most preferably 90°C or higher. Shearing can be performed using a commercially available high-pressure homogenizer. It is also possible to use a scraping type sterilizer, etc., which can perform heating and shearing at the same time. It is not particularly limited to the above as long as heating and shearing can be performed. Through such modification treatment, whey protein becomes modified MP whey.

(新規なホエイタンパク質素材)
改質処理によって得られたホエイ溶液をそのまま発酵乳やヨーグルトなどに用いてもよく、噴霧乾燥や凍結乾燥によって粉末にしてもよい。また、前記処理により改質したMPホエイは加熱せん断処理したホエイ溶液を遠心分離して得られる沈殿の画分であり、乳糖や灰分などの可溶性の物質を除去してMPホエイの画分のみを使用することも可能である。
すなわち、本発明による新規なホエイタンパク質素材は、酸乳ゲルの離水抑制や硬度上昇機能をもったMPホエイを含有するホエイ溶液であってもよいし、噴霧乾燥や凍結乾燥により粉末にされた前記MPホエイでもよい。また、遠心分離により乳糖や灰分などの可溶性物質を除去した前記MPホエイの画分であってもよい。
(New whey protein material)
The whey solution obtained by the modification treatment may be used as it is in fermented milk, yogurt, etc., or may be made into powder by spray drying or freeze drying. In addition, MP whey modified by the above treatment is a precipitate fraction obtained by centrifuging a heated and sheared whey solution, and only the MP whey fraction is obtained by removing soluble substances such as lactose and ash. It is also possible to use
In other words, the new whey -protein material according to the present invention may be a whey solution containing an MP whey with a control of the water lactation gel and a rising function, or is made into powder by spraying and drying. MP whey may also be used. Alternatively, it may be a fraction of the MP whey from which soluble substances such as lactose and ash have been removed by centrifugation.

具体的には、本発明のホエイタンパク質素材は、全固形分あたり66~80重量%の乳糖、及び16~31重量%のMPホエイを含有し、前記MPホエイのメジアン径は5μm以下である液体状、又は粉末状のホエイタンパク質素材である。
本発明のホエイタンパク質素材に含まれるMPホエイは、体積基準のメジアン径が0.5~5μmとなるものが好ましく、特に0.5~3.0μmが最も好ましい。
Specifically, the whey protein material of the present invention is a liquid containing 66 to 80% by weight of lactose and 16 to 31% by weight of MP whey based on the total solid content, and the median diameter of the MP whey is 5 μm or less. It is a whey protein material in the form of whey protein or powder.
The MP whey contained in the whey protein material of the present invention preferably has a volume-based median diameter of 0.5 to 5 μm, most preferably 0.5 to 3.0 μm.

本発明の製造方法で製造された新規なホエイタンパク質素材は、後述する実施例と比較例の検討から明らかなとおり、含有するMPホエイが、適度な柔軟性と多孔性を有する構造を持つに至った点に特徴がある。この点について、本発明の発明者らは、次のような機序であると推定しているが、本発明は、このような推定に基づいて限定的に解釈されるものではない。
すなわち、本発明は、特定の濃度の乳糖を含むホエイ溶液に対し、加熱とせん断を実施するという改質方法を採用することに特徴がある。
通常は、ホエイ溶液に加熱とせん断を実施すると、加熱やせん断の程度に応じてホエイタンパク質が変性・凝集する。しかし、適切な濃度の乳糖がホエイ溶液中に存在すると、ホエイタンパク質の熱やせん断による変性や凝集に対して乳糖が抑制的に作用し、その結果、改質されたMPホエイは、通常のMPホエイとは異なり、適度の柔軟性と多孔性を有する凝集体となる。
そして、本発明の改質処理を受けたMPホエイが発酵乳等に添加されると、疎水性相互作用により発酵乳中のガゼインカードのネットワークに取り込まれ、そのネットワークを補強すると考えられる。このため、本発明のMPホエイは適度な柔軟性と保水性を有するので、醗酵乳中のガゼインカードの硬度と保水性が向上すると推測している。
The new whey protein material produced by the production method of the present invention has a structure in which the MP whey it contains has appropriate flexibility and porosity, as is clear from the examination of Examples and Comparative Examples described below. It is characterized by the fact that Regarding this point, the inventors of the present invention presume that the mechanism is as follows, but the present invention is not to be interpreted in a limited manner based on such a presumption.
That is, the present invention is characterized by employing a modification method of heating and shearing a whey solution containing lactose at a specific concentration.
Normally, when a whey solution is heated and sheared, whey proteins denature and aggregate depending on the degree of heating and shearing. However, when an appropriate concentration of lactose is present in the whey solution, lactose acts to suppress the denaturation and aggregation of whey proteins due to heat and shearing, and as a result, the modified MP whey becomes a normal MP whey. Unlike whey, it forms an aggregate with moderate flexibility and porosity.
When MP whey that has undergone the modification treatment of the present invention is added to fermented milk or the like, it is considered to be incorporated into the casein card network in the fermented milk due to hydrophobic interactions and to strengthen the network. Therefore, since the MP whey of the present invention has appropriate flexibility and water retention, it is presumed that the hardness and water retention of casein curd in fermented milk are improved.

このようにして製造された新規なホエイタンパク質素材は、全固形分あたり66~80重量%の乳糖、及び16~31重量%のMPホエイを含有し、前記MPホエイのメジアン径は5μm以下である液体状、又は粉末状のホエイタンパク質素材である。 The novel whey protein material thus produced contains 66-80% by weight of lactose and 16-31% by weight of MP whey based on the total solid content, and the median diameter of the MP whey is 5 μm or less. Whey protein material in liquid or powder form.

以下、実施例を挙げて本発明を説明していくが、本発明が実施例に限定解釈されることはない。
[実施例1]
(1)ホエイ溶液の調製
WPIを10重量%濃度に還元し、乳糖を終濃度で10重量%、20重量%、30重量%、40重量%添加した。塩化カルシウムを終濃度で0.05重量%添加した。
(2)加熱せん断処理
ホエイ溶液を90℃で加熱しながらせん断処理した。ホエイ溶液の粒度分布(体積基準のメジアン径)および全タンパク質中のMPホエイ含量を測定した。MPホエイ画分は、加熱処理後のホエイ溶液を15000gで遠心分離した後、上清中のタンパク質濃度を測定することで算出した。
The present invention will be described below with reference to Examples, but the present invention should not be construed as limited to the Examples.
[Example 1]
(1) Preparation of whey solution WPI was reduced to a concentration of 10% by weight, and lactose was added at a final concentration of 10% by weight, 20% by weight, 30% by weight, and 40% by weight. Calcium chloride was added at a final concentration of 0.05% by weight.
(2) Heating and shearing treatment The whey solution was subjected to shearing treatment while being heated at 90°C. The particle size distribution (volume-based median diameter) of the whey solution and the MP whey content in the total protein were measured. The MP whey fraction was calculated by centrifuging the whey solution after the heat treatment at 15,000 g and then measuring the protein concentration in the supernatant.

得られたホエイ溶液中の乳糖濃度、全タンパク質中のMPホエイ含量、及びMPホエイの体積基準のメジアン径は、表1のとおりとなる。

Figure 0007445399000001
The lactose concentration in the obtained whey solution, the MP whey content in the total protein, and the volume-based median diameter of MP whey are as shown in Table 1.
Figure 0007445399000001

表1の結果から明らかなとおり、乳糖濃度の増加に伴い、全タンパク質におけるMPホエイ濃度およびメジアン径が低下した。これは乳糖がホエイタンパク質の加熱による変性あるいは凝集に対して抑制的に働いたためである。この結果形成された改質MPホエイは、低濃度(0を含む)の乳糖存在下で加熱せん断を受けたMPホエイと比較して、適度に多孔性を有する構造になるものと考えられる。 As is clear from the results in Table 1, as the lactose concentration increased, the MP whey concentration and median diameter in total protein decreased. This is because lactose acted to suppress the denaturation or aggregation of whey proteins caused by heating. The modified MP whey formed as a result is considered to have a moderately porous structure compared to MP whey that has been subjected to heat shearing in the presence of a low concentration (including 0) of lactose.

表1のデータから換算した乳糖及びMPホエイの固形分当たりの濃度とMPホエイの体積基準のメジアン径は次の表2のとおりとなる。これらのホエイタンパク質素材を酸乳ゲルに投入して、その効果を確認した。

Figure 0007445399000002
The concentrations per solid content of lactose and MP whey and the volume-based median diameter of MP whey calculated from the data in Table 1 are as shown in Table 2 below. These whey protein materials were added to acid milk gel to confirm their effectiveness.
Figure 0007445399000002

(3)酸乳ゲルの調製
脱脂粉乳を10重量%濃度となるように水に還元させた。表1及び表2に示したMPホエイ溶液から可溶性タンパク質および乳糖を除去するために遠心分離を行い、沈殿を回収し蒸留水に再懸濁した。この操作を5回繰り返した。各水準のMPホエイをタンパク質として1.0重量%ずつ還元脱脂乳に添加した。1.5重量%のグルコノδラクトンを添加し酸乳ゲルを調製した。
(3) Preparation of acid milk gel Skim milk powder was reduced to water to a concentration of 10% by weight. In order to remove soluble proteins and lactose from the MP whey solutions shown in Tables 1 and 2, centrifugation was performed, and the precipitate was collected and resuspended in distilled water. This operation was repeated 5 times. Each level of MP whey was added as protein in an amount of 1.0% by weight to reconstituted skim milk. An acid milk gel was prepared by adding 1.5% by weight of glucono δ-lactone.

(4)酸乳ゲルの評価
酸乳ゲルの硬度および保水性を測定した。硬度は最大荷重で定義した。最大荷重は、テクスチャーアナライザーを用いて、酸乳ゲルを対象とした貫入試験により測定した。最大荷重は、具体的には、10℃に調整したサンプルをテクスチャーアナライザーに供し、測定スピード:1mm/秒、貫入距離:10mm、治具:直径16mm、高さ25mmの樹脂円柱プローブで測定できる。サンプルの大きさは、貫入距離の10mm以上の高さがあり、直径16mm以上であればよい。
保水性は酸乳ゲルを遠沈管に調製した後、2000g、10分間遠心分離した後、酸乳ゲルカード上に出た上清の重量と元の酸乳ゲルカード重量から算出した。具体的には下記の式で算出した。
酸乳ゲルの保水性=(1-(上清の重量)/酸乳ゲルカード重)×100%
(4) Evaluation of acid milk gel The hardness and water retention of the acid milk gel were measured. Hardness was defined as the maximum load. The maximum load was measured by a penetration test on acid milk gel using a texture analyzer. Specifically, the maximum load can be measured by subjecting a sample adjusted to 10° C. to a texture analyzer, measuring speed: 1 mm/sec, penetration distance: 10 mm, and using a resin cylindrical probe with a jig: diameter 16 mm, height 25 mm. The size of the sample may be as long as it has a height equal to or more than the penetration distance of 10 mm and a diameter of 16 mm or more.
Water retention was calculated from the weight of the supernatant that appeared on the acid milk gel card and the weight of the original acid milk gel card after preparing the acid milk gel in a centrifuge tube and centrifuging it at 2,000 g for 10 minutes. Specifically, it was calculated using the following formula.
Water retention of acid milk gel = (1 - (weight of supernatant) / weight of acid milk gel card) x 100%

結果、図1に示したように、実施例1~3ので改質したMPホエイを添加した酸乳ゲルは乳糖を添加していない比較例1と比較して保水性が高くなった。特に実施例3については、比較例2よりも保水性が有意に高くなった。
一方で、図2に示したように、実施例3のみ、比較例1および2と比べて硬度が有意に高くなった。実施例3の改質MPホエイは特に酸乳ゲルの保水性と硬度を上昇させたことからカゼインのネットワーク形成に寄与している可能性が考えられる。
As a result, as shown in FIG. 1, the acid milk gels to which the modified MP whey of Examples 1 to 3 was added had higher water retention than Comparative Example 1 to which lactose was not added. In particular, in Example 3, the water retention was significantly higher than in Comparative Example 2.
On the other hand, as shown in FIG. 2, only Example 3 had significantly higher hardness than Comparative Examples 1 and 2. Since the modified MP whey of Example 3 particularly increased the water retention and hardness of the acid milk gel, it is considered possible that it contributed to the formation of a casein network.

これらの実験結果から、実施例1~3におけるホエイタンパク質素材は、全固形分あたり66~80重量%の乳糖、及び16~31重量%のMPホエイを含有し、前記MPホエイのメジアン径は5μm以下である液体状のホエイタンパク質素材であるが、酸乳ゲルの離水抑制や硬度上昇機能をもつことが明らかとなった。
また、上記液体状のホエイタンパク質素材を粉末化して得られた粉末状のホエイタンパク質素材においても、全固形分当たりで上記液体状のホエイタンパク質素材と同じ割合の乳糖とMPホエイを含有し、MPホエイのメジアン径も同じである。このため、酸乳ゲルに投入した場合にも、同様に酸乳ゲルの離水抑制や硬度上昇機能をもつものである。
From these experimental results, the whey protein materials in Examples 1 to 3 contained 66 to 80% by weight of lactose and 16 to 31% by weight of MP whey based on the total solid content, and the median diameter of the MP whey was 5 μm. The following liquid whey protein material has been shown to have the ability to inhibit syneresis and increase hardness of acid milk gel.
In addition, the powdered whey protein material obtained by powdering the liquid whey protein material described above also contains lactose and MP whey in the same proportions per total solid content as the liquid whey protein material described above, and contains MP whey in the same proportion as the liquid whey protein material. The median diameter of whey is also the same. Therefore, when it is added to sour milk gel, it also has the function of suppressing water syneresis and increasing the hardness of the sour milk gel.

Claims (2)

乳糖を30~40重量%含有し、カルシウムをホエイタンパク質1重量%に対して0.005重量%以上含有するホエイ溶液に対して70℃以上の加熱とせん断を実施することからなるMPホエイを含有するホエイタンパク質素材の製造方法。 Contains MP whey obtained by heating and shearing a whey solution containing 30 to 40% by weight of lactose and 0.005% by weight or more of calcium based on 1% by weight of whey protein at 70°C or higher. A method for producing whey protein material. 前記ホエイ溶液のタンパク質含量が5重量%以上である請求項1のホエイタンパク質素材の製造方法。
The method for producing a whey protein material according to claim 1, wherein the protein content of the whey solution is 5% by weight or more.
JP2019157533A 2019-08-30 2019-08-30 New whey protein material Active JP7445399B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019157533A JP7445399B2 (en) 2019-08-30 2019-08-30 New whey protein material
JP2024025379A JP2024045721A (en) 2019-08-30 2024-02-22 New whey protein material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019157533A JP7445399B2 (en) 2019-08-30 2019-08-30 New whey protein material

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2024025379A Division JP2024045721A (en) 2019-08-30 2024-02-22 New whey protein material

Publications (2)

Publication Number Publication Date
JP2021035332A JP2021035332A (en) 2021-03-04
JP7445399B2 true JP7445399B2 (en) 2024-03-07

Family

ID=74716146

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019157533A Active JP7445399B2 (en) 2019-08-30 2019-08-30 New whey protein material
JP2024025379A Pending JP2024045721A (en) 2019-08-30 2024-02-22 New whey protein material

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2024025379A Pending JP2024045721A (en) 2019-08-30 2024-02-22 New whey protein material

Country Status (1)

Country Link
JP (2) JP7445399B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240156126A1 (en) * 2021-03-30 2024-05-16 Megmilk Snow Brand Co., Ltd. Production method for food composition

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140377447A1 (en) 2012-03-09 2014-12-25 Nandi Proteins Limited Process for modifying proteins

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140377447A1 (en) 2012-03-09 2014-12-25 Nandi Proteins Limited Process for modifying proteins

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Thomas Spiegel,Wheyprotein aggregation under shear conditions - effects oflactose and heating temperature on aggregate size and structure,InternationalJournal of Food Science and Technology,1999年,Vol.34, p.523-531

Also Published As

Publication number Publication date
JP2021035332A (en) 2021-03-04
JP2024045721A (en) 2024-04-02

Similar Documents

Publication Publication Date Title
Huppertz Heat stability of milk
JP2024045721A (en) New whey protein material
JP5666541B2 (en) Method for improving texture of fermented milk
JP2008525019A (en) Whey product and method for producing the same
JP2022095649A (en) Whey protein concentrate, acidified milk products comprising the concentrate, and methods of producing the same
EP2104431A2 (en) A method for producing cheese
US20070059399A1 (en) Production of protein composition from a dairy stream and its use as an ingredient in the manufacture of a cheese
Patel et al. Milk protein concentrates: Manufacturing and applications
JP2018519817A (en) Method for producing demineralized milk protein composition particularly suitable for organic field and demineralized milk protein composition
Augustin et al. Use of blends of skim milk and sweet whey protein concentrates in reconstituted yogurt
Chinprahast et al. Heat-acid coagulation of market-returned UHT milk using various coagulants and calcium chloride.
JP7378943B2 (en) White mold type cheese and its production method
Moiseev et al. Possibility of using reconstituted milk in manufacture of cheese with cheddaring and cheese curd stretching.
JP5228020B2 (en) Cheese, gelled food and method for producing the same
CA2783635C (en) Methods for reducing viscosity and delaying onset of cold gelation of high solids concentrated milk products
JP5205432B2 (en) Adjusted milk and method for producing adjusted milk
US20180255799A1 (en) Alginate gum
Emmons et al. Effect of skimmilk heat treatments on cottage cheese manufacture
RU2673134C2 (en) Method for manufacture of soft cheese
JP7420538B2 (en) new yogurt
Bejarano-Toro et al. Effect of microparticulate from whey protein concentrates on the characteristics of fresh cheese
JP7273589B2 (en) ginger-containing composition
Amila et al. Process optimization for preparation of milk protein co‐precipitate using calcium lactate as coagulant
Mohammed et al. Effect of heating temperatures and pH on interactions between goat milk proteins.
JP6169210B2 (en) White mold cheese and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240226

R150 Certificate of patent or registration of utility model

Ref document number: 7445399

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150