JP7444107B2 - electric compressor - Google Patents

electric compressor Download PDF

Info

Publication number
JP7444107B2
JP7444107B2 JP2021031197A JP2021031197A JP7444107B2 JP 7444107 B2 JP7444107 B2 JP 7444107B2 JP 2021031197 A JP2021031197 A JP 2021031197A JP 2021031197 A JP2021031197 A JP 2021031197A JP 7444107 B2 JP7444107 B2 JP 7444107B2
Authority
JP
Japan
Prior art keywords
lead wire
motor
electric compressor
insulating member
cylinder member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021031197A
Other languages
Japanese (ja)
Other versions
JP2022131941A (en
Inventor
知明 宮田
拓 安谷屋
泰三 平野
裕基 高山
啓介 磯部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2021031197A priority Critical patent/JP7444107B2/en
Priority to DE102022104019.4A priority patent/DE102022104019A1/en
Priority to CN202210171924.2A priority patent/CN114977621A/en
Publication of JP2022131941A publication Critical patent/JP2022131941A/en
Application granted granted Critical
Publication of JP7444107B2 publication Critical patent/JP7444107B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/04Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/22Auxiliary parts of casings not covered by groups H02K5/06-H02K5/20, e.g. shaped to form connection boxes or terminal boxes
    • H02K5/225Terminal boxes or connection arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/12Casings; Cylinders; Cylinder heads; Fluid connections
    • F04B39/121Casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/02Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0042Driving elements, brakes, couplings, transmissions specially adapted for pumps
    • F04C29/0085Prime movers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/40Securing contact members in or to a base or case; Insulating of contact members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/44Means for preventing access to live contacts
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/50Fastening of winding heads, equalising connectors, or connections thereto
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/40Electric motor
    • F04C2240/403Electric motor with inverter for speed control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/80Other components
    • F04C2240/803Electric connectors or cables; Fittings therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/80Other components
    • F04C2240/808Electronic circuits (e.g. inverters) installed inside the machine
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/46Bases; Cases
    • H01R13/52Dustproof, splashproof, drip-proof, waterproof, or flameproof cases
    • H01R13/5216Dustproof, splashproof, drip-proof, waterproof, or flameproof cases characterised by the sealing material, e.g. gels or resins
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • H02K11/33Drive circuits, e.g. power electronics

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Compressor (AREA)

Description

本発明は電動圧縮機に関する。 The present invention relates to an electric compressor.

電動圧縮機は、一般に、冷媒を圧縮する圧縮機構と、圧縮機構を駆動するモータ機構と、モータ機構を収容するモータ収容室を内部に有する金属製のハウジングと、モータ機構を駆動するインバータ回路とを備えている。モータ機構は、ハウジングに固定された筒状のステータコアと、ステータコアの端面から突出するコイルエンドと、コイルエンドから引き出されたリード線と、リード線とインバータ回路とを電気的に接続するコネクタとを有している。コイルエンドは、ステータコアに絶縁被覆を有する導線を巻回して形成される。コネクタは、リード線の先端に電気的に接続された端子と、絶縁材料からなるコネクタハウジングとを有している。コネクタハウジングには、端子を収容する端子収容室と、リード線が挿入される挿入口とが形成されている。 An electric compressor generally includes a compression mechanism that compresses refrigerant, a motor mechanism that drives the compression mechanism, a metal housing that includes a motor housing chamber that houses the motor mechanism, and an inverter circuit that drives the motor mechanism. It is equipped with The motor mechanism includes a cylindrical stator core fixed to a housing, a coil end protruding from an end surface of the stator core, a lead wire drawn out from the coil end, and a connector that electrically connects the lead wire and the inverter circuit. have. The coil end is formed by winding a conductive wire having an insulating coating around the stator core. The connector has a terminal electrically connected to the tip of a lead wire, and a connector housing made of an insulating material. The connector housing is formed with a terminal accommodating chamber for accommodating a terminal and an insertion opening into which a lead wire is inserted.

このような電動圧縮機では、運転を停止した際に、ハウジング内に残留した冷媒ガスが冷却されて液化し、その液冷媒がハウジングのモータ収容室内に留まる場合がある。この場合、挿入口からコネクタハウジング内に液冷媒が浸入すると、コネクタハウジング内のリード線や端子等の導電部とモータ収容室とが液冷媒を介して電気的に導通してしまい、コネクタハウジング内の導電部とモータ収容室との間を絶縁できなくなってしまう。この状態で電動圧縮機の運転を開始すると、コネクタハウジング内の導電部に供給された電流が液冷媒を介してモータ収容室に漏れてしまうおそれがある。 In such an electric compressor, when the operation is stopped, the refrigerant gas remaining in the housing may be cooled and liquefied, and the liquid refrigerant may remain in the motor housing chamber of the housing. In this case, if the liquid refrigerant enters the connector housing from the insertion port, electrical conduction will occur between the conductive parts such as lead wires and terminals inside the connector housing and the motor housing chamber through the liquid refrigerant, and the inside of the connector housing will become electrically conductive. It becomes impossible to insulate between the conductive part and the motor housing chamber. If the electric compressor starts operating in this state, there is a risk that the current supplied to the conductive portion within the connector housing may leak into the motor housing chamber via the liquid refrigerant.

ここで、コネクタハウジング内の導電部への液冷媒の接触を避けるためには、挿入口をゴムや樹脂で封止してコネクタハウジングを密封することが有効である。しかし、この場合、コネクタハウジング内の温度上昇によりコネクタハウジング内の空気が熱膨張すると、コネクタハウジング内の圧力が過度に上昇して、コネクタハウジングが高圧に耐えられなくなるおそれがある。 Here, in order to avoid contact of the liquid refrigerant with the conductive part in the connector housing, it is effective to seal the insertion port with rubber or resin to seal the connector housing. However, in this case, if the air within the connector housing thermally expands due to the temperature rise within the connector housing, the pressure within the connector housing may increase excessively, and the connector housing may not be able to withstand the high pressure.

そこで、特許文献1には、コネクタハウジングを密封することなく、モータ収容室とコネクタハウジング内の導電部との間の絶縁抵抗を高めた電動圧縮機が開示されている。この電動圧縮機では、端子に電気的に接続されたリード線が絶縁性チューブよりなる筒部材で覆われている。この筒部材は、一端がステータコア側に筒状に延びて、リード線との間に隙間を形成しつつリード線を覆っているとともに、他端がコネクタハウジングの挿入口に隙間なく接合されている。こうして、筒部材内の隙間を介してコネクタハウジングの内外を連通させることによって、筒部材内の隙間以外からコネクタハウジング内に液冷媒が浸入することを防止している。これにより、コネクタハウジング内の導電部とモータ収容室との漏電経路を筒部材の長さ分だけ長くすることができ、コネクタハウジング内の導電部とモータ収容室との間の絶縁抵抗を高めることが可能になる。 Therefore, Patent Document 1 discloses an electric compressor in which the insulation resistance between a motor housing chamber and a conductive part within the connector housing is increased without sealing the connector housing. In this electric compressor, a lead wire electrically connected to a terminal is covered with a cylindrical member made of an insulating tube. This cylindrical member has one end extending in a cylindrical shape toward the stator core and covering the lead wire while forming a gap between the two ends, and the other end is joined to the insertion opening of the connector housing without a gap. . In this way, by communicating the inside and outside of the connector housing through the gap in the cylindrical member, the liquid refrigerant is prevented from entering the connector housing from other than the gap in the cylindrical member. As a result, the leakage path between the conductive part in the connector housing and the motor housing chamber can be lengthened by the length of the cylindrical member, and the insulation resistance between the conductive part in the connector housing and the motor housing chamber can be increased. becomes possible.

特開2011-58388号公報JP2011-58388A

ところで、リード線は、導電性芯材を絶縁被膜で覆った導線よりなる。このようなリード線に微小微があると、筒部材内に入り込んだ液冷媒が微小傷の部位の導電性芯材に接触してしまう。そうすると、微小傷がある部位の導電性芯材とモータ収容室とが液冷媒を介して電気的に導通することになるため、微小傷がない場合と比較して、微小傷の部位とコネクタハウジング内の導電部との距離分だけ漏電経路が短縮してしまい、筒部材によって漏電経路を長くしたことによる絶縁効果が不充分となるおそれがある。 Incidentally, the lead wire is made of a conducting wire having a conductive core material covered with an insulating coating. If such a lead wire has minute scratches, the liquid refrigerant that has entered the cylindrical member will come into contact with the conductive core material at the site of the minute scratches. In this case, the electrical conductivity between the conductive core material in the area where there is a minute scratch and the motor housing chamber will be electrically connected via the liquid refrigerant, so compared to the case where there is no minute scratch, the area with the minute scratch and the connector housing will be electrically connected to each other through the liquid refrigerant. The leakage path will be shortened by the distance to the conductive portion inside, and there is a risk that the insulation effect due to the lengthening of the leakage path by the cylindrical member will be insufficient.

特に、電気を通しやすい冷凍機油を採用した電動圧縮機においては、リード線の微小傷を介する漏電に対してもその対策が要求される。 In particular, in electric compressors that use refrigerating machine oil that easily conducts electricity, measures are required to prevent electrical leakage through minute scratches in the lead wires.

ここで、リード線の微小傷を介する漏電に対してはリード線を構成する導線の絶縁被膜を厚くすることが有効である。しかし、絶縁被膜の厚膜化によりリード線が太くなりすぎると、筒部材内へのリード線の挿入が困難となり、生産性の低下を招く。また、リード線にカシメ等により接合される端子やその端子を収容するコネクタハウジングのサイズ的な規制や、絶縁被膜のコーティングの困難性により、絶縁被膜の厚膜化にも限界がある。このため、絶縁被膜の厚膜化によって、リード線の微小傷に対する漏電対策を施すことについては、実効性が乏しい。 Here, it is effective to increase the thickness of the insulating coating of the conducting wire constituting the lead wire in order to prevent electric leakage through minute scratches on the lead wire. However, if the lead wire becomes too thick due to the thickening of the insulating coating, it becomes difficult to insert the lead wire into the cylindrical member, resulting in a decrease in productivity. Furthermore, there are limits to the thickness of the insulating coating due to size restrictions on the terminals that are joined to the lead wires by caulking or the like and the connector housings that accommodate the terminals, as well as the difficulty of coating the insulating coatings. For this reason, it is not very effective to take measures against electrical leakage against minute scratches in the lead wire by increasing the thickness of the insulating coating.

本発明は、上記従来の実情に鑑みてなされたものであって、電動圧縮機において、リード線を筒部材で覆うことでコネクタハウジング内の過度の圧力上昇を防ぎつつ、筒部材内にあるリード線の微小傷に対しても有効な漏電対策を施すことを解決すべき課題としている。 The present invention has been made in view of the above-mentioned conventional circumstances, and provides an electric compressor that covers the lead wires with a cylindrical member to prevent an excessive pressure rise in the connector housing, while preventing the lead wires inside the cylindrical member from increasing. The issue to be solved is to implement effective leakage countermeasures against even the smallest scratches in wires.

本発明の電動圧縮機は、
冷媒を圧縮する圧縮機構と、
前記圧縮機構を駆動するモータ機構と、
前記モータ機構を収容するモータ収容室を内部に有する金属製のハウジングと、
前記モータ機構を駆動するインバータ回路と、を備え、
前記モータ機構は、
前記ハウジングに固定された筒状のステータコアと、
前記ステータコアに絶縁被覆を有する導線を巻回して形成されるとともに前記ステータコアの端面から突出するコイルエンドと、
前記コイルエンドから引き出された前記導線よりなるリード線と、
前記リード線と前記インバータ回路とを電気的に接続するコネクタと、を備え、
前記コネクタは、
前記リード線の先端に電気的に接続された端子と、
前記端子を収容する端子収容室と前記リード線が挿入される挿入口が形成された絶縁材料からなるコネクタハウジングと、を有する電動圧縮機であって、
前記モータ機構は、それぞれ筒状であって内部に前記リード線が挿通される第1絶縁部材と内部に前記第1絶縁部材が隙間を有しつつ挿入される第2絶縁部材を有し、
前記第1絶縁部材は、一端において前記リード線との間を絶縁性の樹脂によって封止されており、
前記第2絶縁部材は、前記挿入口に挿入されるとともに前記第1絶縁部材の他端を覆っており、
前記第2絶縁部材と前記挿入口との間は封止されており、
前記樹脂は、前記第1絶縁部材から延在する前記リード線と前記コイルエンドを覆っており、
前記端子収容室と前記モータ収容室は、前記隙間を介して連通していることを特徴とする電動圧縮機。
The electric compressor of the present invention includes:
a compression mechanism that compresses refrigerant;
a motor mechanism that drives the compression mechanism;
a metal housing having a motor accommodation chamber therein for accommodating the motor mechanism;
an inverter circuit that drives the motor mechanism;
The motor mechanism is
a cylindrical stator core fixed to the housing;
a coil end formed by winding a conductive wire having an insulating coating around the stator core and protruding from an end surface of the stator core;
a lead wire made of the conductive wire pulled out from the coil end;
a connector that electrically connects the lead wire and the inverter circuit,
The connector is
a terminal electrically connected to the tip of the lead wire;
An electric compressor comprising a terminal accommodating chamber for accommodating the terminal and a connector housing made of an insulating material and having an insertion opening into which the lead wire is inserted,
The motor mechanism includes a first insulating member that is cylindrical and into which the lead wire is inserted, and a second insulating member into which the first insulating member is inserted with a gap,
The first insulating member is sealed at one end with the lead wire with an insulating resin,
The second insulating member is inserted into the insertion port and covers the other end of the first insulating member,
A space between the second insulating member and the insertion port is sealed,
The resin covers the lead wire and the coil end extending from the first insulating member,
The electric compressor is characterized in that the terminal housing chamber and the motor housing chamber communicate with each other via the gap.

上記発明に係る電動圧縮機では、リード線を覆う筒部材がさらに別の筒部材で覆われている。筒部材が内外の二重構造をなすこのような構成によれば、第1絶縁部材内にあるリード線に微小傷が付いている場合、この微小傷から第2絶縁部材の一端の開口までの液冷媒を介する漏電経路の長さは、微小傷から第1絶縁部材の他端の開口までの距離と、第1絶縁部材の他端の開口から第2絶縁部材の一端の開口までの距離の合計長さとなる。このため、第1絶縁部材内にあるリード線に微小傷が付いている場合であっても、その微小傷から第2絶縁部材の一端の開口までの漏電経路の長さを有効に確保することができる。よって、第1絶縁部材内にあるリード線の微小傷に対しても有効な漏電対策を施すことが可能になる。 In the electric compressor according to the above invention, the cylindrical member that covers the lead wire is further covered with another cylindrical member. According to such a structure in which the cylindrical member has a double structure inside and outside, if the lead wire in the first insulating member has a minute scratch, the wire from the minute scratch to the opening at one end of the second insulating member The length of the leakage path through the liquid refrigerant is determined by the distance from the micro scratch to the opening at the other end of the first insulating member, and the distance from the opening at the other end of the first insulating member to the opening at one end of the second insulating member. Total length. Therefore, even if there is a minute scratch on the lead wire inside the first insulating member, the length of the leakage path from the minute scratch to the opening at one end of the second insulating member can be effectively ensured. I can do it. Therefore, it is possible to take effective measures against electric leakage even against minute scratches on the lead wires within the first insulating member.

他方、この電動圧縮機では、コネクタハウジング内は第1絶縁部材と第2絶縁部材との隙間を介してモータ収容室に通じているため、コネクタハウジング内の空気を第1絶縁部材と第2絶縁部材との隙間を介してモータ収容室に逃がすことができる。このため、コネクタハウジング内が高温になったとしても、コネクタハウジング内の圧力が過度に上昇することがない。 On the other hand, in this electric compressor, since the inside of the connector housing communicates with the motor housing chamber through the gap between the first insulating member and the second insulating member, the air inside the connector housing is transferred between the first insulating member and the second insulating member. It can escape into the motor housing chamber through the gap with the member. Therefore, even if the inside of the connector housing becomes high temperature, the pressure inside the connector housing does not rise excessively.

したがって、この電動圧縮機によれば、リード線を筒部材で覆うことでコネクタハウジング内の過度の圧力上昇を防ぎつつ、筒部材内にあるリード線の微小傷に対しても有効な漏電対策を施すことが可能になる。 Therefore, according to this electric compressor, by covering the lead wire with the cylindrical member, an excessive pressure rise inside the connector housing is prevented, and at the same time, an effective leakage countermeasure against minute scratches on the lead wire inside the cylindrical member is provided. It becomes possible to apply.

上記電動圧縮機では、前記第2絶縁部材と前記コネクタハウジングは一体形成されていてもよい。この電動圧縮機では、第2絶縁部材がコネクタハウジングと一体になっているので、部品点数及び組立工数が削減する。 In the electric compressor, the second insulating member and the connector housing may be integrally formed. In this electric compressor, since the second insulating member is integrated with the connector housing, the number of parts and the number of assembly steps are reduced.

上記電動圧縮機において、前記第1絶縁部材と前記第2絶縁部材との隙間は、前記リード線と前記第1絶縁部材との隙間よりも小さいことが好ましい。第1絶縁部材と第2絶縁部材との隙間がリード線と第1絶縁部材との隙間よりも小さい場合には、前者における漏電経路が、後者における漏電経路よりも細くなる。漏電対策においては漏電経路が細いほうが有利となる。ここに、第1絶縁部材内にあるリード線に付いた微小傷から第2絶縁部材の一端の開口までの漏電経路の長さLは、微小傷から第1絶縁部材の他端の開口までの隙間の長さL1と、第1絶縁部材の他端の開口から第2絶縁部材の一端の開口までの隙間の長さL2との合計となる。長さL1は、リード線に付いた微小傷の位置によって短くも長くもなる。一方、長さL2は、第1絶縁部材と第2絶縁部材との重複長さに等しい。このため、この重複長さを所定以上とすることで、漏電対策に有効な漏電経路が細い第1絶縁部材と第2絶縁部材との隙間の長さL2を所定以上とすることができ、第1絶縁部材内にあるリード線に付いた微小傷の位置に関係なく、所定以上の上記漏電対策の効果を発揮させることができる。 In the electric compressor described above, it is preferable that a gap between the first insulating member and the second insulating member is smaller than a gap between the lead wire and the first insulating member. When the gap between the first insulating member and the second insulating member is smaller than the gap between the lead wire and the first insulating member, the leakage path in the former is narrower than the leakage path in the latter. When it comes to earth leakage countermeasures, it is advantageous to have a narrower earth leakage path. Here, the length L of the leakage path from the minute scratch on the lead wire in the first insulating member to the opening at one end of the second insulating member is the length L from the minute scratch to the opening at the other end of the first insulating member. This is the sum of the length L1 of the gap and the length L2 of the gap from the opening at the other end of the first insulating member to the opening at one end of the second insulating member. The length L1 can be short or long depending on the position of the minute scratches on the lead wire. On the other hand, the length L2 is equal to the overlapping length of the first insulating member and the second insulating member. Therefore, by setting this overlapping length to a predetermined value or more, the length L2 of the gap between the first insulating member and the second insulating member, which has a narrow earth leakage path that is effective as a measure against electric leakage, can be made to be a predetermined value or more. 1. Regardless of the position of minute scratches on the lead wire in the insulating member, the above-mentioned earth leakage prevention effect can be exerted to a greater extent than a predetermined value.

本発明の電動圧縮機によれば、リード線を筒部材で覆うことでコネクタハウジング内の過度の圧力上昇を防ぎつつ、筒部材内にあるリード線の微小傷に対しても有効な漏電対策を施すことが可能になる。 According to the electric compressor of the present invention, by covering the lead wire with the cylindrical member, an excessive rise in pressure inside the connector housing is prevented, and at the same time, an effective measure against electric leakage is provided against minute scratches on the lead wire inside the cylindrical member. It becomes possible to apply.

図1は、実施例1の電動圧縮機の縦断面図である。FIG. 1 is a longitudinal cross-sectional view of the electric compressor of Example 1. 図2は、実施例1の電動圧縮機に係り、コイルエンド、リード線、筒部材及びコネクタの関係を模式的に示す断面図である。FIG. 2 is a sectional view schematically showing the relationship among a coil end, a lead wire, a cylindrical member, and a connector in the electric compressor of Example 1. 図3は、実施例1の電動圧縮機に係り、内筒部材の長さと外筒部材の長さとの関係を模式的に示す断面図である。FIG. 3 is a sectional view schematically showing the relationship between the length of the inner cylinder member and the length of the outer cylinder member in the electric compressor of Example 1. 図4は、実施例2の電動圧縮機に係り、コイルエンド、リード線、筒部材及びコネクタの関係を模式的に示す断面図である。FIG. 4 is a cross-sectional view schematically showing the relationship among a coil end, a lead wire, a cylindrical member, and a connector in the electric compressor of Example 2. 図5は、実施例3の電動圧縮機に係り、コイルエンド、リード線、筒部材及びコネクタの関係を模式的に示す断面図である。FIG. 5 is a cross-sectional view schematically showing the relationship among a coil end, a lead wire, a cylindrical member, and a connector in the electric compressor of Example 3. 図6は、参考例1の電動圧縮機に係り、コイルエンド、リード線、筒部材及びコネクタの関係を模式的に示す断面図である。FIG. 6 is a sectional view schematically showing the relationship among a coil end, a lead wire, a cylindrical member, and a connector in the electric compressor of Reference Example 1. 図7は、参考例2の電動圧縮機に係り、コイルエンド、リード線、筒部材及びコネクタの関係を模式的に示す断面図である。FIG. 7 is a sectional view schematically showing the relationship among a coil end, a lead wire, a cylindrical member, and a connector in an electric compressor of Reference Example 2. 図8は、参考例3の電動圧縮機に係り、コイルエンド、リード線、筒部材及びコネクタの関係を模式的に示す断面図である。FIG. 8 is a sectional view schematically showing the relationship among a coil end, a lead wire, a cylindrical member, and a connector in an electric compressor of Reference Example 3.

以下、本発明を具体化した実施例1~3を図面を参照しつつ説明する。 Embodiments 1 to 3 embodying the present invention will be described below with reference to the drawings.

(実施例1)
実施例1の電動圧縮機は、図1に示されるように、冷媒を圧縮する圧縮機構10と、圧縮機構10を駆動するモータ機構12と、ハウジング14と、モータ機構12を駆動するインバータ回路16とを備えている。ハウジング14は金属製であり、例えばアルミニウム合金製である。ハウジング14は、フロントハウジング1と、モータハウジング3とを有している。圧縮機構10とモータ機構12とはモータハウジング3内に収容されている。
(Example 1)
As shown in FIG. 1, the electric compressor of Example 1 includes a compression mechanism 10 that compresses refrigerant, a motor mechanism 12 that drives the compression mechanism 10, a housing 14, and an inverter circuit 16 that drives the motor mechanism 12. It is equipped with The housing 14 is made of metal, for example, an aluminum alloy. The housing 14 includes a front housing 1 and a motor housing 3. The compression mechanism 10 and the motor mechanism 12 are housed within the motor housing 3.

以下の説明では、図1に示す矢印Y1方向を前後方向とし、図1の紙面左側に位置するフロントハウジング1側を電動圧縮機の前側と規定し、反対の図1の紙面右側を電動圧縮機の後側と規定する。なお、実施例における前後方向は一例である。電動圧縮機は、搭載される車両等に対応して、その前後方向が適宜変更される。また、本明細書において、径方向及び軸方向とは後述する筒部材の径方向及び軸方向を意味する。 In the following explanation, the arrow Y1 direction shown in FIG. 1 is defined as the front-rear direction, and the front housing 1 side located on the left side of the paper in FIG. 1 is defined as the front side of the electric compressor, and the opposite right side on the paper of FIG. Defined as the rear side. Note that the front-rear direction in the embodiment is an example. The longitudinal direction of the electric compressor is changed as appropriate depending on the vehicle in which it is mounted. Moreover, in this specification, the radial direction and the axial direction mean the radial direction and axial direction of the cylindrical member, which will be described later.

モータハウジング3は、前側に開口を有する有底の円筒状をなし、前後に円筒状に延びるモータ周壁31と、モータ周壁31の後端で円板状をなすモータ底壁33とを有している。モータハウジング3の前端にはフロントハウジング1が固定されており、モータハウジング3の前側の開口はフロントハウジング1で塞がれている。モータハウジング3内には、モータ周壁31に固定された軸支部材5が収容されている。また、モータハウジング3内には、軸支部材5の前方でモータ周壁31に固定された固定スクロール7が収容されている。フロントハウジング1と固定スクロール7との間には、圧縮機構10の吐出室10aが区画されている。フロントハウジング1の前端壁には、前端壁を貫通する吐出口10bが形成されている。モータ周壁31には、モータ周壁31を貫通する吸入口10cが形成されている。吸入口10c及び吐出口10bは、図示しない外部冷媒回路に接続されている。 The motor housing 3 has a bottomed cylindrical shape with an opening on the front side, and has a motor peripheral wall 31 that extends in a cylindrical shape from front to back, and a motor bottom wall 33 that has a disc shape at the rear end of the motor peripheral wall 31. There is. A front housing 1 is fixed to the front end of the motor housing 3, and the front opening of the motor housing 3 is closed by the front housing 1. A shaft support member 5 fixed to a motor peripheral wall 31 is accommodated within the motor housing 3 . Further, a fixed scroll 7 fixed to the motor peripheral wall 31 in front of the shaft support member 5 is housed in the motor housing 3 . A discharge chamber 10a of the compression mechanism 10 is defined between the front housing 1 and the fixed scroll 7. A discharge port 10b is formed in the front end wall of the front housing 1 and extends through the front end wall. The motor peripheral wall 31 is formed with an inlet port 10c that penetrates the motor peripheral wall 31. The suction port 10c and the discharge port 10b are connected to an external refrigerant circuit (not shown).

モータハウジング3内には、固定スクロール7に対して前後方向に対向して配置された可動スクロール9が収容されている。固定スクロール7と可動スクロール9とが噛み合うことで、両者の間に圧縮機構10の圧縮室10dが区画されている。圧縮室10dは、軸支部材5に形成された吸入通路5aを介してモータ収容室3aと連通している。また、圧縮室10dは、固定スクロール7に形成された吐出通路7aを介して吐出室10aと連通している。モータハウジング3内には、軸支部材5とモータ底壁33とにより回転可能に支持された回転軸21が収容されている。可動スクロール9は、回転軸21の前端にブッシュ23等を介して連結されている。 A movable scroll 9 disposed opposite the fixed scroll 7 in the front-rear direction is housed within the motor housing 3 . By meshing the fixed scroll 7 and the movable scroll 9, a compression chamber 10d of the compression mechanism 10 is defined between them. The compression chamber 10d communicates with the motor housing chamber 3a via a suction passage 5a formed in the shaft support member 5. Further, the compression chamber 10d communicates with the discharge chamber 10a via a discharge passage 7a formed in the fixed scroll 7. A rotating shaft 21 rotatably supported by a shaft supporting member 5 and a motor bottom wall 33 is housed within the motor housing 3 . The movable scroll 9 is connected to the front end of the rotating shaft 21 via a bush 23 and the like.

モータハウジング3内には、軸支部材5より後方にモータ収容室3aが区画されている。モータ収容室3aは圧縮機構10の吸入室を兼ねている。モータ機構12はモータ収容室3a内に収容されている。 Inside the motor housing 3, a motor housing chamber 3a is defined behind the shaft support member 5. The motor housing chamber 3a also serves as a suction chamber for the compression mechanism 10. The motor mechanism 12 is housed in the motor housing chamber 3a.

モータ機構12は、円筒状のステータコア41と、円筒状のロータ43と、コイルエンド45とを有している。ステータコア41はモータ周壁31に固定されている。ロータ43は、回転軸21に固定されるとともに、ステータコア41の内側に配置されている。コイルエンド45は、ステータコア41に導線を巻回して形成されるとともに、ステータコア41の端面から突出している。導線は、導電性芯材と、導電性芯材を覆う絶縁被膜とから構成されている。 The motor mechanism 12 includes a cylindrical stator core 41, a cylindrical rotor 43, and a coil end 45. Stator core 41 is fixed to motor peripheral wall 31. The rotor 43 is fixed to the rotating shaft 21 and arranged inside the stator core 41. The coil end 45 is formed by winding a conductive wire around the stator core 41 and protrudes from the end surface of the stator core 41. The conductive wire is composed of a conductive core material and an insulating coating covering the conductive core material.

図2に示されるように、モータ機構12は、導線よりなる複数(本実施例では3本)のモータ側リード線47と、コネクタ50とを有している。各モータ側リード線47は、モータ機構12のU相コイル、V相コイル及びW相コイルのコイルエンド45からそれぞれ引き出されている。図2においては、説明の便宜上、コイルエンド45から直状に延びたモータ側リード線47が示されているが、実際には、各モータ側リード線47は、ステータコア41の後端面に沿って周方向に延びている。 As shown in FIG. 2, the motor mechanism 12 includes a plurality of (three in this embodiment) motor-side lead wires 47 made of conducting wires and a connector 50. Each motor-side lead wire 47 is drawn out from the coil ends 45 of the U-phase coil, V-phase coil, and W-phase coil of the motor mechanism 12, respectively. In FIG. 2, for convenience of explanation, the motor-side lead wires 47 are shown extending straight from the coil end 45, but in reality, each motor-side lead wire 47 extends along the rear end surface of the stator core 41. It extends in the circumferential direction.

コネクタ50は、各モータ側リード線47とインバータ回路16とを電気的に接続している。コネクタ50は、絶縁性材料としての樹脂からなるコネクタハウジング51を有している。コネクタハウジング51は、一面が開口する箱状の本体部53と、本体部53の開口を塞ぐ蓋部55とを有している。本体部53と蓋部55とは図示しない樹脂により気密的に接合されており、コネクタハウジング51内には複数の端子収容室51aが形成されている。各端子収容室51aには、端子57が収容されている。蓋部55には、各モータ側リード線47がそれぞれ挿通される複数の挿入口51bが形成されている。各モータ側リード線47の先端は、それぞれ挿入口51bを通って端子57に電気的に接続されている。各端子57には、それぞれ棒状導電部59が電気的に接続されている。各棒状導電部59は、それぞれ本体部53に形成された図示しない挿通口を通ってコネクタハウジング51の外部まで延びている。棒状導電部59が挿通された挿通口は図示しない絶縁体により封止されている。各棒状導電部59は、インバータ側リード線17によりインバータ回路16と電気的に接続されている。 The connector 50 electrically connects each motor side lead wire 47 and the inverter circuit 16. The connector 50 has a connector housing 51 made of resin as an insulating material. The connector housing 51 includes a box-shaped main body 53 with one side open and a lid 55 that closes the opening of the main body 53. The main body portion 53 and the lid portion 55 are hermetically joined with a resin (not shown), and a plurality of terminal accommodating chambers 51a are formed within the connector housing 51. A terminal 57 is housed in each terminal housing chamber 51a. A plurality of insertion openings 51b are formed in the lid portion 55, through which the respective motor-side lead wires 47 are inserted. The tip of each motor-side lead wire 47 is electrically connected to a terminal 57 through an insertion port 51b. A rod-shaped conductive portion 59 is electrically connected to each terminal 57, respectively. Each rod-shaped conductive portion 59 extends to the outside of the connector housing 51 through an insertion opening (not shown) formed in the main body portion 53, respectively. The insertion opening through which the rod-shaped conductive portion 59 is inserted is sealed with an insulator (not shown). Each rod-shaped conductive portion 59 is electrically connected to the inverter circuit 16 by an inverter-side lead wire 17.

図1に示すように、モータ底壁33の後面には、前面が開口した箱状のインバータカバー18が固定されている。インバータカバー18は金属製であり、例えばアルミニウム合金製である。モータ底壁33とインバータカバー18との間にはインバータ収容室18aが区画されている。インバータ回路16は、モータ底壁33の後面に取り付けられて、インバータ収容室18a内に収容されている。インバータ回路16は、図示しない電気部品、例えば回路基板、スイッチング素子やコイルを有している。インバータ回路16は、インバータカバー18に形成された図示しない挿通口を介して外部電源と接続されるようになっている。 As shown in FIG. 1, a box-shaped inverter cover 18 with an open front is fixed to the rear surface of the motor bottom wall 33. As shown in FIG. The inverter cover 18 is made of metal, for example, an aluminum alloy. An inverter housing chamber 18a is defined between the motor bottom wall 33 and the inverter cover 18. The inverter circuit 16 is attached to the rear surface of the motor bottom wall 33 and is housed in the inverter housing chamber 18a. The inverter circuit 16 includes electrical components (not shown), such as a circuit board, switching elements, and coils. The inverter circuit 16 is connected to an external power source through an insertion hole (not shown) formed in the inverter cover 18.

モータ底壁33には、モータ収容室3aとインバータ収容室18aとを連通する連通口33aが形成されている。連通口33aには、連通口33aを挿通する複数の棒状導電部59が絶縁体35を介して保持されている。 A communication port 33a is formed in the motor bottom wall 33 to communicate the motor housing chamber 3a and the inverter housing chamber 18a. A plurality of rod-shaped conductive portions 59 are held in the communication port 33a via an insulator 35, and are inserted through the communication port 33a.

モータ機構12は、図2に示されるように、各モータ側リード線47をそれぞれ覆う複数の筒部材60を有している。各筒部材60は、絶縁材料からなり、絶縁性チューブよりなる内筒部材61と、絶縁性チューブよりなる外筒部材63とをそれぞれ有している。内筒部材61は本発明における第1絶縁部材に相当し、外筒部材63は本発明における第2絶縁部材に相当する。各内筒部材61は、それぞれ、モータ側リード線47との間に第1隙間61cを形成しつつモータ側リード線47を覆っている。各外筒部材63は、それぞれ、内筒部材61との間に第2隙間63cを形成しつつ内筒部材61を覆っている。 As shown in FIG. 2, the motor mechanism 12 includes a plurality of cylindrical members 60 that cover each motor side lead wire 47, respectively. Each cylindrical member 60 is made of an insulating material and has an inner cylindrical member 61 made of an insulating tube and an outer cylindrical member 63 made of an insulating tube. The inner cylindrical member 61 corresponds to the first insulating member in the present invention, and the outer cylindrical member 63 corresponds to the second insulating member in the present invention. Each inner cylindrical member 61 covers the motor-side lead wire 47 while forming a first gap 61c therebetween. Each outer cylinder member 63 covers the inner cylinder member 61 while forming a second gap 63c therebetween.

図2においては、説明の便宜上、直状に延びた内筒部材61及び外筒部材63が示されているが、実際には、内筒部材61及び外筒部材63はモータ側リード線47と同様ステータコア41の後端面に沿って周方向に延びている。また、図3に示されるように、第2隙間63cの大きさG2は第1隙間61cの大きさG1よりも小さくされている。G1の値は、モータ側リード線47の外周面と内筒部材61の内周面との間の径方向長さで規定される。G2の値は、内筒部材61の外周面と外筒部材63の内周面との間の径方向長さで規定される。 In FIG. 2, for convenience of explanation, the inner cylinder member 61 and the outer cylinder member 63 are shown as extending straight, but in reality, the inner cylinder member 61 and the outer cylinder member 63 are connected to the motor side lead wire 47. Similarly, it extends in the circumferential direction along the rear end surface of the stator core 41. Further, as shown in FIG. 3, the size G2 of the second gap 63c is smaller than the size G1 of the first gap 61c. The value of G1 is defined by the radial length between the outer peripheral surface of the motor side lead wire 47 and the inner peripheral surface of the inner cylinder member 61. The value of G2 is defined by the radial length between the outer peripheral surface of the inner cylinder member 61 and the inner peripheral surface of the outer cylinder member 63.

各内筒部材61の一端の開口61aは、それぞれ、絶縁性の樹脂49によって閉塞されている。すなわち、樹脂49は、開口61a内に侵入して開口61aを塞ぐとともに、開口61aから延出したリード線47とコイルエンド45の周囲を一体的に覆っている。これにより、内筒部材61の一端とコイルエンド45とは樹脂49を介して気密的に接合されている。一方、各内筒部材61の他端はそれぞれ挿入口51bの近傍、すなわちコネクタハウジング51の端面51cの近傍まで延びており、他端の開口61bは外筒部材63内で開放されている。これにより、開口61bは内筒部材61の内部と外筒部材63の内部とを連通している。 The opening 61a at one end of each inner cylinder member 61 is closed with an insulating resin 49, respectively. That is, the resin 49 enters into the opening 61a and closes the opening 61a, and also integrally covers the periphery of the lead wire 47 and the coil end 45 extending from the opening 61a. Thereby, one end of the inner cylinder member 61 and the coil end 45 are airtightly joined via the resin 49. On the other hand, the other end of each inner cylindrical member 61 extends to the vicinity of the insertion port 51b, that is, to the vicinity of the end surface 51c of the connector housing 51, and the opening 61b at the other end is open within the outer cylindrical member 63. Thereby, the opening 61b communicates the inside of the inner cylinder member 61 and the inside of the outer cylinder member 63.

各外筒部材63の一端はそれぞれコイルエンド45の近傍まで延びており、一端の開口63aはモータ収容室3a内で開放されている。これにより、開口63aは、外筒部材63の内部とモータ収容室3aとを連通している。一方、各外筒部材63の他端はそれぞれ端子収容室51a内まで延びており、他端の開口63bは端子収容室51a内で開放されている。これにより、開口63bは、外筒部材63の内部と端子収容室51aとを連通している。外筒部材63の他端付近の外周面は図示しない樹脂を介して挿入口51bに隙間なく接合されている。また、外筒部材63の他端は端子57にかしめ接合されるとともに、他端の外周面が図示しない樹脂を介して端子57に隙間なく接合されている。 One end of each outer cylinder member 63 extends to the vicinity of the coil end 45, and an opening 63a at one end is open within the motor housing chamber 3a. Thereby, the opening 63a communicates the inside of the outer cylinder member 63 with the motor housing chamber 3a. On the other hand, the other end of each outer cylinder member 63 extends into the terminal accommodating chamber 51a, and the opening 63b at the other end is open within the terminal accommodating chamber 51a. Thereby, the opening 63b communicates the inside of the outer cylinder member 63 with the terminal accommodating chamber 51a. The outer peripheral surface near the other end of the outer cylinder member 63 is joined to the insertion port 51b without a gap through a resin (not shown). Further, the other end of the outer cylinder member 63 is caulked to the terminal 57, and the outer circumferential surface of the other end is joined to the terminal 57 without a gap through a resin (not shown).

図3に示されるように、モータハウジング3内において、内筒部材61と外筒部材63とが重複している長さLdは、内筒部材61のみの長さLiより長く、かつ、外筒部材63のみの長さLoより長くされている。重複長さLdは、内筒部材61の他端の開口61bと外筒部材63の一端の開口63aとの間の軸方向長さで規定される。内筒部材61のみの長さLiは、内筒部材の一端の開口61aと外筒部材63の一端の開口63aとの間の軸方向長さで規定される。外筒部材63のみの長さLoは、内筒部材の他端の開口61bとコネクタハウジング51の端面51cとの間の軸方向長さで規定される。 As shown in FIG. 3, within the motor housing 3, the length Ld in which the inner cylinder member 61 and the outer cylinder member 63 overlap is longer than the length Li of only the inner cylinder member 61, and It is longer than the length Lo of the member 63 alone. The overlapping length Ld is defined by the axial length between the opening 61b at the other end of the inner cylinder member 61 and the opening 63a at one end of the outer cylinder member 63. The length Li of only the inner cylinder member 61 is defined by the axial length between the opening 61a at one end of the inner cylinder member and the opening 63a at one end of the outer cylinder member 63. The length Lo of only the outer cylinder member 63 is defined by the axial length between the opening 61b at the other end of the inner cylinder member and the end surface 51c of the connector housing 51.

上記構成の電動圧縮機では、外部電源からステータコア41に電力が供給されると、ロータ43と共に回転軸21が回転する。回転軸21が回転すると、回転軸21に連結された可動スクロール9が公転し、可動スクロール9と固定スクロール7との間の圧縮室10dの容積が減少する。外部冷媒回路の冷媒は、吸入口10cを介してモータハウジング3a内に吸入される。モータハウジング3a内に吸入された冷媒は、吸入通路5aを経由して圧縮室10dへ吸入されるとともに、圧縮室10dで圧縮される。圧縮室10d内で圧縮された冷媒は、吐出通路7aから吐出室10aへ吐出される。吐出室10a内の冷媒は、吐出口10bを介して外部冷媒回路へ流出する。そして、外部冷媒回路へ流出した冷媒は、外部冷媒回路の熱交換器や膨張弁を経て、吸入口10cを介してモータハウジング3a内に還流する。電動圧縮機及び外部冷媒回路は、車両空調装置を構成している。 In the electric compressor configured as described above, when power is supplied to the stator core 41 from an external power source, the rotating shaft 21 rotates together with the rotor 43. When the rotating shaft 21 rotates, the movable scroll 9 connected to the rotating shaft 21 revolves, and the volume of the compression chamber 10d between the movable scroll 9 and the fixed scroll 7 decreases. The refrigerant of the external refrigerant circuit is sucked into the motor housing 3a through the suction port 10c. The refrigerant sucked into the motor housing 3a is sucked into the compression chamber 10d via the suction passage 5a, and is compressed in the compression chamber 10d. The refrigerant compressed within the compression chamber 10d is discharged from the discharge passage 7a to the discharge chamber 10a. The refrigerant in the discharge chamber 10a flows out to the external refrigerant circuit via the discharge port 10b. The refrigerant that has flowed out into the external refrigerant circuit passes through the heat exchanger and expansion valve of the external refrigerant circuit, and then flows back into the motor housing 3a through the suction port 10c. The electric compressor and the external refrigerant circuit constitute a vehicle air conditioner.

この電動圧縮機では、モータ側リード線47が内筒部材61で覆われ、その内筒部材61がさらに外筒部材63で覆われている。内筒部材61の一端の開口61aはコイルエンド45によって閉塞される一方、内筒部材61の他端の開口61bは外筒部材63内で開放されて内筒部材61の内部と外筒部材63の内部とを連通している。また、外筒部材63の一端の開口63aはモータ収容室3a内で開放されて外筒部材63の内部とモータ収容室3aとを連通する一方、外筒部材63の他端の開口63bは端子収容室51a内で開放されて外筒部材63の内部と端子収容室51aとを連通している。 In this electric compressor, the motor side lead wire 47 is covered with an inner cylinder member 61, and the inner cylinder member 61 is further covered with an outer cylinder member 63. The opening 61a at one end of the inner cylinder member 61 is closed by the coil end 45, while the opening 61b at the other end of the inner cylinder member 61 is opened inside the outer cylinder member 63, so that the inside of the inner cylinder member 61 and the outer cylinder member 63 are opened. It communicates with the inside of. Further, an opening 63a at one end of the outer cylinder member 63 is opened in the motor housing chamber 3a to communicate the inside of the outer cylinder member 63 and the motor housing chamber 3a, while an opening 63b at the other end of the outer cylinder member 63 is opened within the motor housing chamber 3a. It is opened in the housing chamber 51a to communicate the inside of the outer cylinder member 63 and the terminal housing chamber 51a.

筒部材60が上記二重構造をなすこのような構成によれば、内筒部材61内にあるモータ側リード線47の微小傷MSに対して有効な漏電対策を施すことができる。すなわち、図3に示されるように、内筒部材61内にあるモータ側リード線47に微小傷MSが付いている場合、この微小傷MSから外筒部材63の一端の開口63aまでの液冷媒を介する漏電経路の長さLは、微小傷MSから内筒部材61の他端の開口61bまでの距離L1と、内筒部材61の他端の開口61bから外筒部材63の一端の開口63aまでの距離L2との合計長さとなる。このため、内筒部材61内にあるモータ側リード線47に微小傷MSが付いている場合であっても、その微小傷MSから外筒部材63の一端の開口63aまでの漏電経路の長さLを有効に確保することができる。よって、内筒部材61内にあるモータ側リード線47の微小傷MSに対しても有効な漏電対策を施すことが可能になる According to such a structure in which the cylindrical member 60 has the above-mentioned double structure, effective leakage countermeasures can be taken against the minute scratches MS of the motor side lead wire 47 inside the inner cylindrical member 61. That is, as shown in FIG. 3, when the motor side lead wire 47 inside the inner cylinder member 61 has a minute scratch MS, the liquid refrigerant from the minute scratch MS to the opening 63a at one end of the outer cylinder member 63 The length L of the leakage path through the micro-scratches MS is the distance L1 from the minute scratch MS to the opening 61b at the other end of the inner cylinder member 61, and the distance L1 from the opening 61b at the other end of the inner cylinder member 61 to the opening 63a at one end of the outer cylinder member 63. This is the total length including the distance L2 up to. Therefore, even if the motor side lead wire 47 inside the inner cylinder member 61 has a minute scratch MS, the length of the leakage path from the minute scratch MS to the opening 63a at one end of the outer tube member 63 is L can be effectively secured. Therefore, it becomes possible to take effective measures against electric leakage even against minute scratches MS in the motor side lead wire 47 inside the inner cylinder member 61.

他方、この電動圧縮機では、コネクタハウジング51の端子収容室51a内は第2隙間63cを介してモータ収容室3aに通じている。このため、コネクタハウジング51内の空気を第2隙間63cを介してモータ収容室3aに逃がすことができる。よって、コネクタハウジング51内が高温になったとしても、コネクタハウジング51内の圧力が過度に上昇することがない。 On the other hand, in this electric compressor, the inside of the terminal accommodating chamber 51a of the connector housing 51 communicates with the motor accommodating chamber 3a via the second gap 63c. Therefore, the air inside the connector housing 51 can be released to the motor housing chamber 3a through the second gap 63c. Therefore, even if the inside of the connector housing 51 becomes high temperature, the pressure inside the connector housing 51 will not increase excessively.

したがって、この電動圧縮機によれば、モータ側リード線47を筒部材60で覆うことでコネクタハウジング51内の過度の圧力上昇を防ぎつつ、筒部材60内にあるモータ側リード線47の微小傷MSに対しても有効な漏電対策を施すことが可能になる。 Therefore, according to this electric compressor, by covering the motor side lead wire 47 with the cylindrical member 60, excessive pressure rise inside the connector housing 51 can be prevented, and minute scratches on the motor side lead wire 47 inside the cylindrical member 60 can be prevented. It becomes possible to take effective earth leakage countermeasures against MS as well.

この電動圧縮機では、モータ収容室3a内において、内筒部材61と外筒部材63とが重複している長さLdは、内筒部材61のみの長さLiより長く、かつ、外筒部材63のみの長さLoより長い。このため、筒部材60を内外の二重構造にしたことによる漏電対策がより有効になる。なお、コネクタハウジング51の端面51c、すなわち挿入口51bとコイルエンド45との距離Lfは、内筒部材61のみの長さLiと、重複長さLdと、外筒部材63のみの長さLoとの合計長さと規定される。 In this electric compressor, the length Ld in which the inner cylinder member 61 and the outer cylinder member 63 overlap in the motor housing chamber 3a is longer than the length Li of only the inner cylinder member 61, and the outer cylinder member It is longer than the length Lo of only 63. For this reason, the electric leakage countermeasure by making the cylinder member 60 have a double structure inside and outside becomes more effective. Note that the distance Lf between the end surface 51c of the connector housing 51, that is, the insertion port 51b, and the coil end 45 is determined by the length Li of only the inner cylinder member 61, the overlapping length Ld, and the length Lo of only the outer cylinder member 63. defined as the total length of

この電動圧縮機では、第2隙間63cの大きさG2は第1隙間61cの大きさG1よりも小さい。内筒部材61内にあるモータ側リード線47に付いた微小傷MSから外筒部材63の一端の開口63aまでの漏電経路の長さLは、微小傷MSから内筒部材61の他端の開口61bまでの第1隙間61cの長さL1と、内筒部材61の他端の開口61bから外筒部材63の一端の開口63aまでの第2隙間63cの長さL2との合計となる。上記第1隙間61cの長さL1は、モータ側リード線47に付いた微小傷MSの位置によって短くも長くもなる。一方、上記第2隙間63cの長さL2は、内筒部材61と外筒部材63との重複長さLdに等しい。このため、内筒部材61と外筒部材63との重複長さLdを所定以上とすることで、漏電対策に有効な漏電経路が細い第2隙間63cの長さL2を所定以上とすることができ、内筒部材61内にあるモータ側リード線47に付いた微小傷MSの位置に関係なく、所定以上の上記漏電対策の効果を発揮させることができる。 In this electric compressor, the size G2 of the second gap 63c is smaller than the size G1 of the first gap 61c. The length L of the leakage path from the minute scratch MS on the motor side lead wire 47 in the inner tube member 61 to the opening 63a at one end of the outer tube member 63 is the length L from the minute scratch MS on the other end of the inner tube member 61. This is the sum of the length L1 of the first gap 61c to the opening 61b and the length L2 of the second gap 63c from the opening 61b at the other end of the inner cylinder member 61 to the opening 63a at one end of the outer cylinder member 63. The length L1 of the first gap 61c can be short or long depending on the position of the minute scratch MS on the motor side lead wire 47. On the other hand, the length L2 of the second gap 63c is equal to the overlapping length Ld between the inner cylinder member 61 and the outer cylinder member 63. Therefore, by setting the overlapping length Ld between the inner cylinder member 61 and the outer cylinder member 63 to a predetermined value or more, it is possible to make the length L2 of the second gap 63c, which has a narrow earth leakage path and is effective as a measure against electric leakage, to a predetermined value or more. Therefore, irrespective of the position of the minute scratch MS on the motor side lead wire 47 inside the inner cylinder member 61, the above-mentioned electric leakage countermeasure effect can be exerted to a greater extent than a predetermined value.

この電動圧縮機では、樹脂49により内筒部材61の一端の開口61aを塞ぐとともに、その樹脂49により内筒部材61の一端をコイルエンド45と接合している。このため、開口61aを容易かつ確実に塞ぐことができる。樹脂モールドによって内筒部材61の一端をコイルエンド45に一体的かつ気密的に接合してもよく、この場合も内筒部材61の開口61aを容易かつ確実に塞ぐことができる。内筒部材61の一端の開口61aを塞ぐ樹脂49と、コイルエンド45を覆う樹脂49は別材料であって、互いが硬化する際に結合されていてもよい。 In this electric compressor, the resin 49 closes the opening 61a at one end of the inner cylinder member 61, and the resin 49 connects one end of the inner cylinder member 61 to the coil end 45. Therefore, the opening 61a can be easily and reliably closed. One end of the inner cylindrical member 61 may be integrally and airtightly joined to the coil end 45 by resin molding, and in this case as well, the opening 61a of the inner cylindrical member 61 can be easily and reliably closed. The resin 49 that closes the opening 61a at one end of the inner cylindrical member 61 and the resin 49 that covers the coil end 45 may be made of different materials and bonded together when they are cured.

(実施例2)
実施例2の電動圧縮機は、実施例1の電動圧縮機における筒部材60及びコネクタ50の構成を変更したこと以外は、実施例1の電動圧縮機と同様の構成を有する。実施例2の電動圧縮機におけるコネクタ50では、図4に示されるように、端子収容室51a及び挿入口51bを有するコネクタハウジング51が、絶縁材料からなる複数の外筒部65を一体に有している。
(Example 2)
The electric compressor of Example 2 has the same configuration as the electric compressor of Example 1, except that the configurations of the cylindrical member 60 and connector 50 in the electric compressor of Example 1 have been changed. In a connector 50 for an electric compressor according to the second embodiment, as shown in FIG. 4, a connector housing 51 having a terminal accommodating chamber 51a and an insertion port 51b integrally includes a plurality of outer cylindrical portions 65 made of an insulating material. ing.

各外筒部65は、それぞれコネクタハウジング50の挿入口51bから連続して筒状に延び、内筒部材61との間に第2隙間65cを形成しつつ内筒部材61を覆っている。外筒部65の一端はコイルエンド45の近傍まで延びており、一端の開口65aはモータ収容室3a内で開放されている。これにより、開口65aは、外筒部65の内部とモータ収容室3aとを連通している。一方、外筒部65の他端の開口65bは挿入口51bに通じている。これにより、開口65bは、外筒部65の内部と端子収容室51aとを挿入口51bを介して連通している。 Each outer cylinder part 65 extends continuously from the insertion opening 51b of the connector housing 50 in a cylindrical shape, and covers the inner cylinder member 61 while forming a second gap 65c between the outer cylinder part 65 and the inner cylinder member 61. One end of the outer cylindrical portion 65 extends to the vicinity of the coil end 45, and an opening 65a at one end is open within the motor housing chamber 3a. Thereby, the opening 65a communicates the inside of the outer cylinder portion 65 and the motor housing chamber 3a. On the other hand, an opening 65b at the other end of the outer cylinder portion 65 communicates with the insertion port 51b. Thereby, the opening 65b communicates the inside of the outer cylinder portion 65 with the terminal accommodating chamber 51a via the insertion port 51b.

モータハウジング3内において、内筒部材61と外筒部65とが重複している長さLdは、内筒部材61のみの長さLiより長く、かつ、外筒部65のみの長さLoより長くされている。また、第2隙間65cの大きさG2は第1隙間61cの大きさG1よりも小さい。 In the motor housing 3, the length Ld in which the inner cylinder member 61 and the outer cylinder part 65 overlap is longer than the length Li of only the inner cylinder member 61 and longer than the length Lo of only the outer cylinder part 65. It has been lengthened. Further, the size G2 of the second gap 65c is smaller than the size G1 of the first gap 61c.

実施例2の電動圧縮機では、外筒部65が実施例1の電動圧縮機の外筒部材63と同様に作用するため、モータ側リード線47を筒部材60で覆うことでコネクタハウジング51内の過度の圧力上昇を防ぎつつ、筒部材60内にあるモータ側リード線47の微小傷MSに対しても有効な漏電対策を施すことが可能になる。 In the electric compressor of the second embodiment, the outer cylindrical portion 65 acts in the same manner as the outer cylindrical member 63 of the electric compressor of the first embodiment, so by covering the motor side lead wire 47 with the cylindrical member 60, the inside of the connector housing 51 is removed. While preventing an excessive pressure rise, it is possible to take effective measures against electric leakage even against minute scratches MS on the motor side lead wire 47 inside the cylinder member 60.

この電動圧縮機では、外筒部65がコネクタハウジング51と一体になっているので、部品点数及び組立工数が削減する。この電動圧縮機における他の作用は、実施例1の電動圧縮機と同様である。 In this electric compressor, since the outer cylinder portion 65 is integrated with the connector housing 51, the number of parts and the number of assembly steps are reduced. Other functions of this electric compressor are similar to those of the electric compressor of the first embodiment.

(実施例3)
実施例3の電動圧縮機は、実施例1の電動圧縮機における内筒部材61を長くしたこと以外は、実施例1の電動圧縮機と同様の構成を有する。実施例3の電動圧縮機では、図5に示されるように、内筒部材61の他端が端子収容室51a内に位置している。すなわち、内筒部材61の他端は端子収容室51a内まで延びており、他端の開口61bは端子収容室51a内まで延びた位置で外筒部材63内で開放されている。これにより、開口61bは、外筒部材63の他端付近で内筒部材61の内部と外筒部材63の内部とを連通している。
(Example 3)
The electric compressor of Example 3 has the same configuration as the electric compressor of Example 1, except that the inner cylinder member 61 in the electric compressor of Example 1 is made longer. In the electric compressor of Example 3, as shown in FIG. 5, the other end of the inner cylindrical member 61 is located within the terminal accommodating chamber 51a. That is, the other end of the inner cylindrical member 61 extends into the terminal accommodating chamber 51a, and the opening 61b at the other end is open within the outer cylindrical member 63 at a position extending into the terminal accommodating chamber 51a. Thereby, the opening 61b communicates the inside of the inner cylinder member 61 and the inside of the outer cylinder member 63 near the other end of the outer cylinder member 63.

この電動圧縮機では、内筒部材61と外筒部材63との重複長さLdが、内筒部材61が長くなった分だけ実施例1の電動圧縮機のものよりも長くなっている。このため、内筒部材61内にあるモータ側リード線47に付いた微小傷MSから外筒部材63の一端の開口63aまでの漏電経路の長さLも、実施例1の電動圧縮機のものよりも長くなり、微小傷MSに対する漏電対策をより有効なものとすることができる。この電動圧縮機における他の作用は、実施例1の電動圧縮機と同様である。 In this electric compressor, the overlapping length Ld between the inner cylinder member 61 and the outer cylinder member 63 is longer than that of the electric compressor of Example 1 by the length of the inner cylinder member 61. Therefore, the length L of the leakage path from the minute scratch MS on the motor side lead wire 47 in the inner cylinder member 61 to the opening 63a at one end of the outer cylinder member 63 is also the same as that of the electric compressor of the first embodiment. This makes it possible to make the current leakage countermeasure against the micro scratches MS more effective. Other functions of this electric compressor are similar to those of the electric compressor of the first embodiment.

(参考例1)
参考例1の電動圧縮機は、実施例1の電動圧縮機における内筒部材61の他端の開口61bを閉塞したこと以外は、実施例1の電動圧縮機と同様の構成を有する。参考例1の電動圧縮機では、図6に示されるように、内筒部材61の他端の開口61bは絶縁性の樹脂67によって閉塞されている。すなわち、樹脂67は、開口61b内に侵入して開口61bを塞いでおり、これにより、内筒部材61の他端の開口61bはモータ側リード線47に対して閉塞されている。
(Reference example 1)
The electric compressor of Reference Example 1 has the same configuration as the electric compressor of Example 1, except that the opening 61b at the other end of the inner cylinder member 61 in the electric compressor of Example 1 is closed. In the electric compressor of Reference Example 1, as shown in FIG. 6, the opening 61b at the other end of the inner cylinder member 61 is closed with an insulating resin 67. That is, the resin 67 enters into the opening 61b and closes the opening 61b, so that the opening 61b at the other end of the inner cylinder member 61 is closed from the motor side lead wire 47.

この電動圧縮機では、内筒部材61の両端の開口61a及び61bがいずれもモータ側リード線47に対して閉塞されている。このため、内筒部材61内にあるモータ側リード線47に微小傷MSが付いていたとしても、その微小傷MSに液冷媒が接触することがない。よって、内筒部材61内にあるモータ側リード線47の微小傷MSに対して確実な漏電対策を施すことが可能になる。 In this electric compressor, openings 61a and 61b at both ends of the inner cylinder member 61 are both closed to the motor side lead wire 47. Therefore, even if the motor-side lead wire 47 inside the inner cylinder member 61 has a minute scratch MS, the liquid refrigerant will not come into contact with the minute scratch MS. Therefore, it is possible to take reliable measures against electric leakage against the minute scratches MS on the motor side lead wire 47 inside the inner cylinder member 61.

他方、実施例1の電動圧縮機と同様、内筒部材61と外筒部材63との間の第2隙間63cを介してコネクタハウジング51内の空気をモータ収容室3aに逃がすことができるため、コネクタハウジング51内が高温になったとしても、コネクタハウジング51内の圧力が過度に上昇することがない。 On the other hand, like the electric compressor of the first embodiment, the air inside the connector housing 51 can be released to the motor housing chamber 3a through the second gap 63c between the inner cylinder member 61 and the outer cylinder member 63. Even if the inside of the connector housing 51 becomes high temperature, the pressure inside the connector housing 51 will not increase excessively.

(参考例2)
参考例2の電動圧縮機は、実施例2の電動圧縮機における内筒部材61の他端の開口61bを閉塞したこと以外は、実施例2の電動圧縮機と同様の構成を有する。参考例2の電動圧縮機では、図7に示されるように、内筒部材61の他端の開口61bは参考例1の電動圧縮機と同様、絶縁性の樹脂67によって閉塞されている。
(Reference example 2)
The electric compressor of Reference Example 2 has the same configuration as the electric compressor of Example 2, except that the opening 61b at the other end of the inner cylinder member 61 in the electric compressor of Example 2 is closed. In the electric compressor of Reference Example 2, as shown in FIG. 7, the opening 61b at the other end of the inner cylinder member 61 is closed with an insulating resin 67, as in the electric compressor of Reference Example 1.

この電動圧縮機では、参考例2の電動圧縮機と同様、内筒部材61の両端の開口61a及び61bがいずれもモータ側リード線47に対して閉塞されているため、内筒部材61内にあるモータ側リード線47の微小傷MSに対して確実な漏電対策を施すことが可能になる。 In this electric compressor, as in the electric compressor of Reference Example 2, the openings 61a and 61b at both ends of the inner cylinder member 61 are both closed to the motor side lead wire 47, so that there is no air inside the inner cylinder member 61. It becomes possible to take reliable measures against electric leakage against minute scratches MS on a certain motor side lead wire 47.

参考例1及び参考例2の電動圧縮機においては、内筒部材61の両端の開口61a及び61bが閉塞されるため、第1隙間61cをあえて設ける必要はない。 In the electric compressors of Reference Examples 1 and 2, the openings 61a and 61b at both ends of the inner cylinder member 61 are closed, so there is no need to intentionally provide the first gap 61c.

(参考例3)
参考例3の電動圧縮機は、実施例1の電動圧縮機における内筒部材61の内部全体を樹脂49にて埋めたこと以外は、実施例1の電動圧縮機と同様の構成を有する。参考例3の電動圧縮機では、図8に示されるように、内筒部材61の内部全体は他端の開口61bまで樹脂49によって埋まっている。すなわち、樹脂49は、開口61bまで侵入して開口61bを塞いでおり、これにより、内筒部材61の他端の開口61bはモータ側リード線47に対して閉塞されている。
(Reference example 3)
The electric compressor of Reference Example 3 has the same configuration as the electric compressor of Example 1, except that the entire interior of the inner cylinder member 61 in the electric compressor of Example 1 is filled with resin 49. In the electric compressor of Reference Example 3, as shown in FIG. 8, the entire interior of the inner cylinder member 61 is filled with resin 49 up to the opening 61b at the other end. That is, the resin 49 penetrates to the opening 61b and closes the opening 61b, so that the opening 61b at the other end of the inner cylinder member 61 is closed from the motor side lead wire 47.

この電動圧縮機では、内筒部材61の内部全体にわたって樹脂49がリード線47を覆っている。このため、内筒部材61内にあるモータ側リード線47に微小傷MSが付いていたとしても、その微小傷MSに液冷媒が接触することがない。よって、内筒部材61内にあるモータ側リード線47の微小傷MSに対して確実な漏電対策を施すことが可能になる。 In this electric compressor, resin 49 covers lead wire 47 throughout the interior of inner cylinder member 61 . Therefore, even if the motor-side lead wire 47 inside the inner cylinder member 61 has a minute scratch MS, the liquid refrigerant will not come into contact with the minute scratch MS. Therefore, it is possible to take reliable measures against electric leakage against the minute scratches MS on the motor side lead wire 47 inside the inner cylinder member 61.

他方、実施例1の電動圧縮機と同様、内筒部材61と外筒部材63との間の第2隙間63cを介してコネクタハウジング51内の空気をモータ収容室3aに逃がすことができるため、コネクタハウジング51内が高温になったとしても、コネクタハウジング51内の圧力が過度に上昇することがない。 On the other hand, like the electric compressor of the first embodiment, the air inside the connector housing 51 can be released to the motor housing chamber 3a through the second gap 63c between the inner cylinder member 61 and the outer cylinder member 63. Even if the inside of the connector housing 51 becomes high temperature, the pressure inside the connector housing 51 will not increase excessively.

以上において、本発明を実施例1~3に即して説明したが、本発明は上記実施例1~3に制限されるものではなく、その趣旨を逸脱しない範囲で適宜変更して適用できることはいうまでもない。 In the above, the present invention has been explained based on Examples 1 to 3, but the present invention is not limited to Examples 1 to 3, and can be applied with appropriate changes without departing from the spirit thereof. Needless to say.

例えば、上記実施例1~3では、圧縮機構10がスクロール式であるが、本発明の電動圧縮機では、斜板式、ベーン式等、他の形式の圧縮機構を採用することも可能である。 For example, in Examples 1 to 3 above, the compression mechanism 10 is a scroll type, but in the electric compressor of the present invention, it is also possible to employ other types of compression mechanisms such as a swash plate type and a vane type.

また、実施例1~3の各構成を適宜組み合わせることによって、電動圧縮機を形成しても良い。 Furthermore, an electric compressor may be formed by appropriately combining the configurations of Examples 1 to 3.

本発明は車両等の空調装置に利用可能である。 INDUSTRIAL APPLICATION This invention can be utilized for air conditioners, such as a vehicle.

10…圧縮機構
12…モータ機構
3a…モータ収容室
14…ハウジング
16…インバータ回路
41…ステータコア
45…コイルエンド
47…リード線
50…コネクタ
61c…第1隙間
61…内筒部材
57…端子
51a…端子収容室
51b…挿入口
51…コネクタハウジング
63c…第2隙間
63…外筒部材
61a…内筒部材の一端の開口
61b…内筒部材の他端の開口
63a…外筒部材の一端の開口
63b…外筒部材の他端の開口
Ld…内筒部材と外筒部材とが重複している長さ
Li…内筒部材のみの長さ
Lo…外筒部材のみの長さ
65…外筒部
65a…外筒部の一端の開口
65b…外筒部の他端の開口
G1…第1隙間の大きさ
G2…第2隙間の大きさ
DESCRIPTION OF SYMBOLS 10... Compression mechanism 12... Motor mechanism 3a... Motor housing chamber 14... Housing 16... Inverter circuit 41... Stator core 45... Coil end 47... Lead wire 50... Connector 61c... First gap 61... Inner cylinder member 57... Terminal 51a... Terminal Accommodation chamber 51b...Insertion port 51...Connector housing 63c...Second gap 63...Outer cylinder member 61a...Opening at one end of the inner cylinder member 61b...Opening at the other end of the inner cylinder member 63a...Opening at one end of the outer cylinder member 63b... Opening at the other end of the outer cylinder member Ld...Length of overlap between the inner cylinder member and the outer cylinder member Li...Length of only the inner cylinder member Lo...Length of only the outer cylinder member 65...Outer cylinder part 65a... Opening at one end of the outer cylinder part 65b... Opening at the other end of the outer cylinder part G1... Size of the first gap G2... Size of the second gap

Claims (3)

冷媒を圧縮する圧縮機構と、
前記圧縮機構を駆動するモータ機構と、
前記モータ機構を収容するモータ収容室を内部に有する金属製のハウジングと、
前記モータ機構を駆動するインバータ回路と、を備え、
前記モータ機構は、
前記ハウジングに固定された筒状のステータコアと、
前記ステータコアに絶縁被覆を有する導線を巻回して形成されるとともに前記ステータコアの端面から突出するコイルエンドと、
前記コイルエンドから引き出された前記導線よりなるリード線と、
前記リード線と前記インバータ回路とを電気的に接続するコネクタと、を備え、
前記コネクタは、
前記リード線の先端に電気的に接続された端子と、
前記端子を収容する端子収容室と前記リード線が挿入される挿入口が形成された絶縁材料からなるコネクタハウジングと、を有する電動圧縮機であって、
前記モータ機構は、それぞれ筒状であって内部に前記リード線が挿通される第1絶縁部材と内部に前記第1絶縁部材が隙間を有しつつ挿入される第2絶縁部材を有し、
前記第1絶縁部材は、一端において前記リード線との間を絶縁性の樹脂によって封止されており、
前記第2絶縁部材は、前記挿入口に挿入されるとともに前記第1絶縁部材の他端を覆っており、
前記第2絶縁部材と前記挿入口との間は封止されており、
前記樹脂は、前記第1絶縁部材から延在する前記リード線と前記コイルエンドを覆っており、
前記端子収容室と前記モータ収容室は、前記隙間を介して連通していることを特徴とする電動圧縮機。
a compression mechanism that compresses refrigerant;
a motor mechanism that drives the compression mechanism;
a metal housing having a motor accommodation chamber therein for accommodating the motor mechanism;
an inverter circuit that drives the motor mechanism;
The motor mechanism is
a cylindrical stator core fixed to the housing;
a coil end formed by winding a conductive wire having an insulating coating around the stator core and protruding from an end surface of the stator core;
a lead wire made of the conductive wire pulled out from the coil end;
a connector that electrically connects the lead wire and the inverter circuit,
The connector is
a terminal electrically connected to the tip of the lead wire;
An electric compressor comprising a terminal accommodating chamber for accommodating the terminal and a connector housing made of an insulating material and having an insertion opening into which the lead wire is inserted,
The motor mechanism includes a first insulating member that is cylindrical and into which the lead wire is inserted, and a second insulating member into which the first insulating member is inserted with a gap,
The first insulating member is sealed at one end with the lead wire with an insulating resin,
The second insulating member is inserted into the insertion port and covers the other end of the first insulating member,
A space between the second insulating member and the insertion port is sealed,
The resin covers the lead wire and the coil end extending from the first insulating member,
The electric compressor is characterized in that the terminal housing chamber and the motor housing chamber communicate with each other via the gap.
前記第2絶縁部材と前記コネクタハウジングは一体形成されていることを特徴とする請求項1記載の電動圧縮機。 The electric compressor according to claim 1, wherein the second insulating member and the connector housing are integrally formed. 前記第1絶縁部材と前記第2絶縁部材との隙間は、前記リード線と前記第1絶縁部材との隙間よりも小さいことを特徴とする請求項1又は2記載の電動圧縮機。 The electric compressor according to claim 1 or 2, wherein a gap between the first insulating member and the second insulating member is smaller than a gap between the lead wire and the first insulating member.
JP2021031197A 2021-02-26 2021-02-26 electric compressor Active JP7444107B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021031197A JP7444107B2 (en) 2021-02-26 2021-02-26 electric compressor
DE102022104019.4A DE102022104019A1 (en) 2021-02-26 2022-02-21 Electric Compressor
CN202210171924.2A CN114977621A (en) 2021-02-26 2022-02-24 Electric compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021031197A JP7444107B2 (en) 2021-02-26 2021-02-26 electric compressor

Publications (2)

Publication Number Publication Date
JP2022131941A JP2022131941A (en) 2022-09-07
JP7444107B2 true JP7444107B2 (en) 2024-03-06

Family

ID=82799262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021031197A Active JP7444107B2 (en) 2021-02-26 2021-02-26 electric compressor

Country Status (3)

Country Link
JP (1) JP7444107B2 (en)
CN (1) CN114977621A (en)
DE (1) DE102022104019A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004146177A (en) 2002-10-24 2004-05-20 Ubukata Industries Co Ltd Airtight terminal unit
JP2009264279A (en) 2008-04-25 2009-11-12 Toyota Industries Corp Motor-driven compressor
JP2011058388A (en) 2009-09-08 2011-03-24 Toyota Industries Corp Motor-driven compressor
JP2017021979A (en) 2015-07-10 2017-01-26 株式会社オートネットワーク技術研究所 Wire with mold part and manufacturing method of wire with mold part
JP2019183824A (en) 2018-03-30 2019-10-24 株式会社豊田自動織機 Electric compressor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004146177A (en) 2002-10-24 2004-05-20 Ubukata Industries Co Ltd Airtight terminal unit
JP2009264279A (en) 2008-04-25 2009-11-12 Toyota Industries Corp Motor-driven compressor
JP2011058388A (en) 2009-09-08 2011-03-24 Toyota Industries Corp Motor-driven compressor
JP2017021979A (en) 2015-07-10 2017-01-26 株式会社オートネットワーク技術研究所 Wire with mold part and manufacturing method of wire with mold part
JP2019183824A (en) 2018-03-30 2019-10-24 株式会社豊田自動織機 Electric compressor

Also Published As

Publication number Publication date
JP2022131941A (en) 2022-09-07
CN114977621A (en) 2022-08-30
DE102022104019A1 (en) 2022-09-01

Similar Documents

Publication Publication Date Title
EP2133571B1 (en) Motor-driven compressor
JP6650524B2 (en) Compressor
US8618703B2 (en) Motor driven compressor
US8323005B2 (en) Motor-driven compressor
US8757989B2 (en) Motor-driven compressor
JP5416388B2 (en) Inverter-integrated electric compressor
JP4991664B2 (en) Electric compressor
US9068563B2 (en) Electric connector for cooling a compressor drive circuit
WO2014068914A1 (en) Electric compressor
JP5007169B2 (en) Electric compressor
JP6601246B2 (en) Electric compressor
JP7444107B2 (en) electric compressor
JP7001040B2 (en) Electric compressor
KR20160059984A (en) Electric compressor
JP7497698B2 (en) Fluid Machinery
KR20180111526A (en) Motor-driven compressor
EP2623786B1 (en) Motor-driven compressor
JP7488988B2 (en) Electric Compressor
JP2002180984A (en) Electric compressor for compressing refrigerant
US11658538B2 (en) Motor operated compressor
JP2015001160A (en) Electric compressor
WO2023013433A1 (en) Electric compressor
CN115076110A (en) Electric compressor
KR20210011804A (en) Motor operated compressor
JP2018168834A (en) Electric compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240205

R151 Written notification of patent or utility model registration

Ref document number: 7444107

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151