JP7443614B1 - Resin particles and their uses - Google Patents

Resin particles and their uses Download PDF

Info

Publication number
JP7443614B1
JP7443614B1 JP2023169290A JP2023169290A JP7443614B1 JP 7443614 B1 JP7443614 B1 JP 7443614B1 JP 2023169290 A JP2023169290 A JP 2023169290A JP 2023169290 A JP2023169290 A JP 2023169290A JP 7443614 B1 JP7443614 B1 JP 7443614B1
Authority
JP
Japan
Prior art keywords
weight
resin
particles
resin particles
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2023169290A
Other languages
Japanese (ja)
Other versions
JP2024054843A (en
Inventor
幸子 徳村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Matsumoto Yushi Seiyaku Co Ltd
Original Assignee
Matsumoto Yushi Seiyaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsumoto Yushi Seiyaku Co Ltd filed Critical Matsumoto Yushi Seiyaku Co Ltd
Application granted granted Critical
Publication of JP7443614B1 publication Critical patent/JP7443614B1/en
Publication of JP2024054843A publication Critical patent/JP2024054843A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Cosmetics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

【課題】 本発明は、環境に優しく、透明性及びすべり性に優れた樹脂粒子を提供することを目的とする。【解決手段】 生分解性樹脂(A)を含み、体積平均粒子径が1~50μmであり、真球度が0.9~1.0であり、比表面積が0.7~3.0m2/gであり、オレイン酸吸油量が30~150mL/100gであり、真比重が0.90~1.5g/cm3である樹脂粒子。前記生分解性樹脂(A)が、ポリビニル系樹脂、ポリエステル系樹脂、ポリエーテル系樹脂、ポリアミド系樹脂、熱可塑性ポリウレタン系樹脂及びセルロース系樹脂から選ばれる少なくとも1種であると好ましい。【選択図】 図1An object of the present invention is to provide resin particles that are environmentally friendly and have excellent transparency and slipperiness. [Solution] Contains a biodegradable resin (A), has a volume average particle diameter of 1 to 50 μm, a sphericity of 0.9 to 1.0, and a specific surface area of 0.7 to 3.0 m2/ g, an oleic acid oil absorption of 30 to 150 mL/100 g, and a true specific gravity of 0.90 to 1.5 g/cm3. The biodegradable resin (A) is preferably at least one selected from polyvinyl resins, polyester resins, polyether resins, polyamide resins, thermoplastic polyurethane resins, and cellulose resins. [Selection diagram] Figure 1

Description

本発明は、樹脂粒子及びその用途に関する。 The present invention relates to resin particles and their uses.

粒子は、化粧品、塗料、光学用途、樹脂、建材などへ多く使用されている。粒子に求められる機能としては、光拡散性、隠蔽性、塗工性、感触付与などがある。粒子の素材としては、有機物、無機物など様々な素材からなる粒子があり、有機物からなる粒子は無機粒子と比較してソフトな感触を有することから、化粧品や塗料などにおいて、感触付与などの点で好ましく用いられている。また、粒子の光学特性を利用して、例えば化粧料では、毛穴やシワを目立たなくさせるソフトフォーカス効果や、明度を向上させることが検討されている。
有機物からなる粒子としては、例えば、アクリル系、スチレン系、ウレタン系、シリコーン系のポリマー粒子などが挙げられる。また、近年、環境への関心が高まる中で、環境への負荷の少ない粒子が求められており、特に生分解性を有する粒子が注目されている。
例えば特許文献1では、環境負荷低減の粒子として、非石油原料由来のポリ乳酸からなるポリ乳酸系樹脂微粒子の製造方法およびポリ乳酸系樹脂微粒子が記載されている。また特許文献2では、生分解性を有するポリエステル系熱可塑性樹脂からなる多孔質樹脂微粒子が、特許文献3では、真球度が0.90~1.00、かつ光散乱指数が0.5~1.0の略球状樹脂微粒子が記載されている。しかし、これらの粒子は、樹脂成分を有機溶剤に溶解して粒子を得るため、粒子内部に空洞が形成されやすく、透明性に劣るものであり、化粧品や塗料などへ配合した場合に、塗膜の透明性を保持することができない。
Particles are widely used in cosmetics, paints, optical applications, resins, building materials, etc. Functions required of the particles include light diffusing properties, concealing properties, coatability, and imparting texture. There are particles made of various materials such as organic and inorganic materials. Particles made of organic materials have a softer feel compared to inorganic particles, so they are used in cosmetics, paints, etc. in terms of giving a tactile feel. Preferably used. In addition, studies are being conducted to utilize the optical properties of particles to create a soft focus effect that makes pores and wrinkles less noticeable, and to improve brightness in cosmetics, for example.
Examples of organic particles include acrylic, styrene, urethane, and silicone polymer particles. In addition, as interest in the environment has increased in recent years, there has been a demand for particles with less environmental impact, and biodegradable particles are attracting particular attention.
For example, Patent Document 1 describes a method for producing polylactic acid resin fine particles made of polylactic acid derived from non-petroleum raw materials and polylactic acid resin fine particles as particles that reduce environmental impact. Further, in Patent Document 2, porous resin fine particles made of a biodegradable polyester thermoplastic resin are used, and in Patent Document 3, the sphericity is 0.90 to 1.00 and the light scattering index is 0.5 to 0.5. 1.0 approximately spherical resin particles are described. However, since these particles are obtained by dissolving the resin component in an organic solvent, cavities are likely to be formed inside the particles and their transparency is poor, so when they are blended into cosmetics or paints, they cannot be used in coatings. transparency cannot be maintained.

WO2012/105140号公報WO2012/105140 publication WO2017/056908号公報WO2017/056908 publication 特開2016-222897号公報JP2016-222897A

本発明は、環境に優しく、透明性及びすべり性に優れた樹脂粒子を提供することを目的とする。 An object of the present invention is to provide resin particles that are environmentally friendly and have excellent transparency and slipperiness.

本願発明者は、前記目的を達成するために鋭意検討を行った結果、生分解性樹脂(A)を含み、特定の形状であり、特定の性質を示す樹脂粒子であると、透明性及びすべり性に優れた樹脂粒子を得られることを見出し、本発明に到達した。
すなわち、本発明は以下の<1>~<6>の態様が含まれる。
<1> 生分解性樹脂(A)を含み、体積平均粒子径が1~50μmであり、真球度が0.9~1.0であり、比表面積が0.7~3.0m/gであり、オレイン酸吸油量が30~150mL/100gであり、真比重が0.90~1.5g/cmである樹脂粒子。
<2> 前記生分解性樹脂(A)が、ポリビニル系樹脂、ポリエステル系樹脂、ポリエーテル系樹脂、ポリアミド系樹脂、熱可塑性ポリウレタン系樹脂及びセルロース系樹脂から選ばれる少なくとも1種である、<1>に記載の樹脂粒子。
<3> 前記ポリエステル系樹脂が、脂肪族ポリエステル系樹脂及び脂肪族-芳香族ポリエステル系樹脂から選ばれる少なくとも1種を含む、<2>に記載の樹脂粒子。
<4> 融解エンタルピーが20~140J/gである、<1>~<3>のいずれかに記載の樹脂粒子。
<5> <1>~<4>のいずれかに記載の樹脂粒子を含む、化粧料。
<6> <1>~<4>のいずれかに記載の樹脂粒子を含む、コーティング組成物。
As a result of intensive studies to achieve the above object, the inventor of the present application found that resin particles containing biodegradable resin (A), having a specific shape, and exhibiting specific properties have good transparency and slippage. The inventors have discovered that resin particles with excellent properties can be obtained, and have arrived at the present invention.
That is, the present invention includes the following aspects <1> to <6>.
<1> Contains a biodegradable resin (A), has a volume average particle diameter of 1 to 50 μm, a sphericity of 0.9 to 1.0, and a specific surface area of 0.7 to 3.0 m 2 / g, an oleic acid oil absorption of 30 to 150 mL/100 g, and a true specific gravity of 0.90 to 1.5 g/cm 3 .
<2> The biodegradable resin (A) is at least one selected from polyvinyl resin, polyester resin, polyether resin, polyamide resin, thermoplastic polyurethane resin, and cellulose resin, <1 >The resin particles described in >.
<3> The resin particles according to <2>, wherein the polyester resin contains at least one selected from aliphatic polyester resins and aliphatic-aromatic polyester resins.
<4> The resin particles according to any one of <1> to <3>, having a melting enthalpy of 20 to 140 J/g.
<5> A cosmetic comprising the resin particles according to any one of <1> to <4>.
<6> A coating composition comprising the resin particles according to any one of <1> to <4>.

本発明の樹脂粒子は、透明性及びすべり性に優れる。また、本発明の樹脂粒子は、生分解性樹脂を含むため、環境に優しい。 The resin particles of the present invention have excellent transparency and slip properties. Furthermore, since the resin particles of the present invention contain biodegradable resin, they are environmentally friendly.

実施例1の粒子1の光学顕微鏡写真である。1 is an optical micrograph of Particle 1 of Example 1. 実施例1の粒子1の電子顕微鏡写真である。1 is an electron micrograph of Particle 1 of Example 1. 実施例1の粒子1の電子顕微鏡写真である。1 is an electron micrograph of Particle 1 of Example 1. 比較例1の粒子6の光学顕微鏡写真である。3 is an optical micrograph of particles 6 of Comparative Example 1. 比較例1の粒子6の電子顕微鏡写真である。3 is an electron micrograph of particles 6 of Comparative Example 1. 比較例1の粒子6の電子顕微鏡写真である。3 is an electron micrograph of particles 6 of Comparative Example 1.

本発明の樹脂粒子は、生分解性樹脂(A)を含み、体積平均粒子径が1~50μmであり、真球度が0.9~1.0であり、比表面積が0.7~3.0であり、オレイン酸吸油量が30~150mL/100gであり、真比重が0.90~1.5である樹脂粒子であって、透明性及びすべり性に優れるものであり、環境にやさしいものである。
以下に本発明の樹脂粒子について説明する。
The resin particles of the present invention contain a biodegradable resin (A), have a volume average particle diameter of 1 to 50 μm, a sphericity of 0.9 to 1.0, and a specific surface area of 0.7 to 3. .0, has an oleic acid oil absorption of 30 to 150 mL/100 g, and has a true specific gravity of 0.90 to 1.5, has excellent transparency and slipperiness, and is environmentally friendly. It is something.
The resin particles of the present invention will be explained below.

[樹脂粒子]
本発明の樹脂粒子の体積平均粒子径は1~50μmである。該平均粒子径が1~50μmであると、すべり性に優れる。該粒子径の下限は、好ましくは1.5μm、より好ましくは2.0μm、さらに好ましくは2.5μm、特に好ましくは3μmであり、該粒子径の上限は、好ましくは40μm、より好ましくは35μm、さらに好ましくは30μm、特に好ましくは20μmである。さらに、例えば1~40μmが好ましく、1.5~30μmがより好ましく、2~20μmが特に好ましい。なお、樹脂粒子の体積平均粒子径は、実施例に記載の方法によるものである。
[Resin particles]
The volume average particle diameter of the resin particles of the present invention is 1 to 50 μm. When the average particle diameter is 1 to 50 μm, the slip property is excellent. The lower limit of the particle size is preferably 1.5 μm, more preferably 2.0 μm, even more preferably 2.5 μm, particularly preferably 3 μm, and the upper limit of the particle size is preferably 40 μm, more preferably 35 μm, More preferably, it is 30 μm, particularly preferably 20 μm. Furthermore, for example, the thickness is preferably 1 to 40 μm, more preferably 1.5 to 30 μm, and particularly preferably 2 to 20 μm. Note that the volume average particle diameter of the resin particles is determined by the method described in Examples.

本発明の樹脂粒子の粒度分布の変動係数CVは、特に限定はないが、2~70%であると、すべり性が優れる点で好ましい。該変動係数CVの上限は、好ましくは65%以下、さらに好ましくは60%以下、より好ましくは55%以下、特に好ましくは50%以下である。該変動係数CVの下限は、好ましくは3%、より好ましくは5%、特に好ましくは7%である。さらに、例えば3~65%がより好ましく、5~60%がさらに好ましい。該変動係数CVは、以下に示す計算式(1)及び(2)で算出される。 The coefficient of variation CV of the particle size distribution of the resin particles of the present invention is not particularly limited, but it is preferably from 2 to 70% in terms of excellent slip properties. The upper limit of the variation coefficient CV is preferably 65% or less, more preferably 60% or less, more preferably 55% or less, particularly preferably 50% or less. The lower limit of the coefficient of variation CV is preferably 3%, more preferably 5%, particularly preferably 7%. Furthermore, for example, 3 to 65% is more preferable, and even more preferably 5 to 60%. The coefficient of variation CV is calculated using formulas (1) and (2) shown below.

Figure 0007443614000002
(式中、sは粒子径の標準偏差、<x>は平均粒子径、xはi番目の粒子径、nは粒子の数である。)
Figure 0007443614000002
(In the formula, s is the standard deviation of the particle diameter, <x> is the average particle diameter, x i is the i-th particle diameter, and n is the number of particles.)

本発明の樹脂粒子の真球度は、0.9~1.0である。真球度が0.9~1.0であると、すべり性が優れる。真球度が0.9未満であると、形状がいびつとなり、すべり性に劣る。該真球度は、より好ましくは0.92~1.0、さらに好ましくは0.93~1.0、特に好ましくは0.95~1.0である。なお、樹脂粒子の真球度は、実施例に記載の方法によるものである。 The resin particles of the present invention have a sphericity of 0.9 to 1.0. When the sphericity is 0.9 to 1.0, the slip property is excellent. If the sphericity is less than 0.9, the shape will be distorted and the sliding properties will be poor. The sphericity is more preferably 0.92 to 1.0, still more preferably 0.93 to 1.0, particularly preferably 0.95 to 1.0. Note that the sphericity of the resin particles was determined by the method described in Examples.

本発明の樹脂粒子の比表面積は、0.7~3.0m/gである。該比表面積が0.7~3.0m/gであると、細孔を有さず、表面が緻密構造であるため、光が乱反射せず、また、表面平滑度が高いため、透明性及びすべり性に優れると考えている。該比表面積が3.0m/gより大きいと光乱反射性が強く、透明性に劣り、0.7m/g未満であると光を透過しにくく、透明性に劣る。該比表面積の下限は、(1)0.75m/g、(2)0.80m/g、(3)0.83m/g、(4)0.85m/g、(5)0.88m/g、(6)0.90m/g、の順で好ましい(括弧内の数値が大きくなるにつれ好ましい。)。一方、該比表面積の好ましい上限は(1)2.5m/g(2)2.2m/g、(3)2.0m/g、(4)1.8m/g、(5)1.7m/g、(6)1.6m/gの順で好ましい(括弧内の数値が大きくなるにつれ好ましい。)。さらに、例えば0.80~2.0m/gがより好ましく、0.90~2.0m/gがさらに好ましい。なお、樹脂粒子の比表面積は、実施例に記載の方法によるものである。 The specific surface area of the resin particles of the present invention is 0.7 to 3.0 m 2 /g. When the specific surface area is 0.7 to 3.0 m 2 /g, there are no pores and the surface has a dense structure, so light is not diffusely reflected, and the surface smoothness is high, resulting in transparency. It is considered to have excellent slip properties. When the specific surface area is larger than 3.0 m 2 /g, the light scattering property is strong and the transparency is poor, and when the specific surface area is less than 0.7 m 2 /g, it is difficult to transmit light and the transparency is poor. The lower limits of the specific surface area are (1) 0.75 m 2 /g, (2) 0.80 m 2 /g, (3) 0.83 m 2 /g, (4) 0.85 m 2 /g, (5) The preferable order is 0.88 m 2 /g and (6) 0.90 m 2 /g (the larger the value in parentheses is, the more preferable it is). On the other hand, the preferable upper limits of the specific surface area are (1) 2.5 m 2 /g, (2) 2.2 m 2 /g, (3) 2.0 m 2 /g, (4) 1.8 m 2 /g, (5 ) 1.7 m 2 /g and (6) 1.6 m 2 /g (the larger the value in parentheses is, the more preferable it is). Furthermore, for example, 0.80 to 2.0 m 2 /g is more preferable, and 0.90 to 2.0 m 2 /g is even more preferable. Note that the specific surface area of the resin particles is determined by the method described in Examples.

本発明の樹脂粒子のオレイン酸吸油量は、30~150mL/100gである。該吸油量が30~150mL/100gであると透明性及びすべり性に優れる。150mL/100g超であると光拡散性が強く、透明性に劣り、30mL/100g未満であると、光透過性に劣る。該吸油量の下限は、(1)35mL/100g、(2)40mL/100g、(3)45mL/100g、(4)50mL/100gの順で好ましい(括弧内の数値が大きくなるにつれ好ましい。)。一方、該吸油量の上限は、(1)130mL/100g、(2)120mL/100g、(3)110mL/100g、(4)100mL/100g、(5)95mL/100g、(6)90mL/100g、(7)85mL/100gの順で好ましい(括弧内の数値が大きくなるにつれ好ましい。)。さらに、例えば40~120mL/100gがより好ましく、45~100mL/100gがさらに好ましい。なお、樹脂粒子のオレイン酸吸油量は、実施例に記載の方法によるものである。 The oleic acid oil absorption amount of the resin particles of the present invention is 30 to 150 mL/100 g. When the oil absorption amount is 30 to 150 mL/100 g, transparency and slipperiness are excellent. If it exceeds 150 mL/100 g, the light diffusivity will be strong and the transparency will be poor, and if it is less than 30 mL/100 g, the light transmittance will be poor. The lower limit of the oil absorption amount is preferably (1) 35 mL/100 g, (2) 40 mL/100 g, (3) 45 mL/100 g, and (4) 50 mL/100 g (the larger the value in parentheses is, the more preferable it is). . On the other hand, the upper limit of the oil absorption amount is (1) 130 mL/100 g, (2) 120 mL/100 g, (3) 110 mL/100 g, (4) 100 mL/100 g, (5) 95 mL/100 g, (6) 90 mL/100 g. , (7) 85 mL/100 g (the larger the value in parentheses is, the more preferable it is). Furthermore, for example, 40 to 120 mL/100 g is more preferable, and even more preferably 45 to 100 mL/100 g. The oleic acid absorption amount of the resin particles was determined by the method described in Examples.

本発明の樹脂粒子の吸水量は、特に限定されないが、20~150mL/100gであると、透明性及びすべり性が優れる点で好ましい。該吸水量の下限は、(1)25mL/100g、(2)30mL/100g、(3)35mL/100g、(4)40mL/100gの順で好ましい(括弧内の数値が大きくなるにつれ好ましい。)。一方、該吸水量の上限は(1)140mL/100g、(2)130mL/100g、(3)120mL/100g、(4)110mL/100g、(5)100mL/100g、(6)90mL/100g、(7)85mL/100gの順で好ましい(括弧内の数値が大きくなるにつれ好ましい。)。さらに、例えば30~120mL/100gがより好ましく、40~100mL/100gがさらに好ましい。なお、樹脂粒子の吸水量は、実施例に記載の方法によるものである。 The water absorption amount of the resin particles of the present invention is not particularly limited, but it is preferably 20 to 150 mL/100 g since transparency and slipperiness are excellent. The lower limit of the water absorption amount is preferably in the following order: (1) 25 mL/100 g, (2) 30 mL/100 g, (3) 35 mL/100 g, and (4) 40 mL/100 g (the larger the number in parentheses is, the more preferable it is). . On the other hand, the upper limit of the water absorption amount is (1) 140 mL/100 g, (2) 130 mL/100 g, (3) 120 mL/100 g, (4) 110 mL/100 g, (5) 100 mL/100 g, (6) 90 mL/100 g, (7) Preferably in the order of 85 mL/100 g (the larger the value in parentheses is, the more preferable it is). Furthermore, for example, 30 to 120 mL/100 g is more preferable, and even more preferably 40 to 100 mL/100 g. Note that the water absorption amount of the resin particles is determined by the method described in Examples.

本発明の樹脂粒子の真比重は、真比重が0.90~1.5g/cmである。真比重が0.90~1.5g/cmであると、透明性が優れる。該真比重の下限は、より好ましくは(1)0.95g/cm、(2)0.98g/cm、(3)1.0g/cm、(4)1.03g/cm、(5)1.05g/cm、(6)1.1g/cm、の順で好ましい(括弧内の数値が大きくなるにつれ好ましい。)。一方、該真比重の好ましい上限は(1)1.45g/cm、(2)1.43g/cm、(3)1.40g/cm、(4)1.38g/cm、(5)1.35g/cm、(6)1.33g/cmの順で好ましい(括弧内の数値が大きくなるにつれ好ましい。)。さらに、例えば0.95~1.45g/cmがより好ましく、1.0~1.4g/cmがさらに好ましい。なお、樹脂粒子の真比重は、実施例に記載の方法によるものである。 The true specific gravity of the resin particles of the present invention is 0.90 to 1.5 g/cm 3 . When the true specific gravity is 0.90 to 1.5 g/cm 3 , transparency is excellent. The lower limit of the true specific gravity is more preferably (1) 0.95g/cm 3 , (2) 0.98g/cm 3 , (3) 1.0g/cm 3 , (4) 1.03g/cm 3 , (5) 1.05 g/cm 3 and (6) 1.1 g/cm 3 are preferable in this order (the larger the value in parentheses is, the more preferable it is). On the other hand, the preferable upper limits of the true specific gravity are (1) 1.45g/cm 3 , (2) 1.43g/cm 3 , (3) 1.40g/cm 3 , (4) 1.38g/cm 3 , ( 5) 1.35 g/cm 3 and (6) 1.33 g/cm 3 are preferable in this order (the larger the value in parentheses is, the more preferable it is). Furthermore, for example, 0.95 to 1.45 g/cm 3 is more preferable, and 1.0 to 1.4 g/cm 3 is even more preferable. Note that the true specific gravity of the resin particles is determined by the method described in Examples.

本発明の樹脂粒子は、特に限定はないが、融点もしくは軟化点のいずれかが40~220℃であると、樹脂粒子の透明性が向上する点で好ましい。該融点もしくは軟化点の下限は、より好ましくは50℃、さらに好ましくは60℃、最も好ましくは70℃であり、該融点もしくは軟化点の上限は、より好ましくは200℃、さらに好ましくは190℃、特に好ましくは180℃、最も好ましくは165℃である。さらに、例えば60~200℃がより好ましく、60~180℃がさらに好ましい。なお、樹脂粒子の融点もしくは軟化点は、例えば、示差走査熱量計により測定することができる。 The resin particles of the present invention are not particularly limited, but it is preferable that either the melting point or the softening point is 40 to 220°C, since the transparency of the resin particles will be improved. The lower limit of the melting point or softening point is more preferably 50°C, further preferably 60°C, most preferably 70°C, and the upper limit of the melting point or softening point is more preferably 200°C, even more preferably 190°C, Particularly preferred is 180°C, most preferably 165°C. Further, for example, the temperature is more preferably 60 to 200°C, and even more preferably 60 to 180°C. Note that the melting point or softening point of the resin particles can be measured using, for example, a differential scanning calorimeter.

本発明の樹脂粒子は、特に限定はないが、融解エンタルピーが20~140J/gであると、樹脂粒子の透明性が向上する点で好ましい。該融解エンタルピーの下限は、好ましくは25J/g、より好ましくは30J/g、さらに好ましくは33J/g、特に好ましくは35J/gであり、該融解エンタルピーの上限は、好ましくは130J/g、より好ましくは125J/g、さらに好ましくは120J/g、特に好ましくは115J/gである。さらに、例えば30~130J/gがより好ましく、33~120J/gがさらに好ましく、35~115J/gが特に好ましい。なお、樹脂粒子の融解エンタルピーは、実施例に記載の方法によるものである。 The resin particles of the present invention are not particularly limited, but it is preferable that the enthalpy of fusion is 20 to 140 J/g because the transparency of the resin particles is improved. The lower limit of the enthalpy of melting is preferably 25 J/g, more preferably 30 J/g, even more preferably 33 J/g, particularly preferably 35 J/g, and the upper limit of the enthalpy of melting is preferably 130 J/g, more preferably Preferably it is 125 J/g, more preferably 120 J/g, particularly preferably 115 J/g. Furthermore, for example, 30 to 130 J/g is more preferable, 33 to 120 J/g is even more preferable, and 35 to 115 J/g is particularly preferable. Note that the enthalpy of melting of the resin particles is determined by the method described in Examples.

本発明の樹脂粒子は、特に限定はないが、拡散光の強さ指数が0.1~0.7であると、より樹脂粒子の透明性が向上する点で好ましい。該強さ指数の下限は、より好ましくは0.15、さらに好ましくは0.20、最も好ましくは0.25であり、該強さ指数の上限は、より好ましくは0.65、さらに好ましくは0.60、特に好ましくは0.55、最も好ましくは0.50である。さらに、例えば0.15~0.60がより好ましく、0.20~0.50がさらに好ましい。なお、拡散光の強さ指数は、例えば、三次元変角光度計を用いて入射角-45°で光照射した際の光散乱光強度から、以下に示す計算式(3)で算出することができる。
拡散光の強さ指数=0°の拡散光強度/45°の鏡面反射光強度 (3)
The resin particles of the present invention are not particularly limited, but it is preferable that the intensity index of diffused light is 0.1 to 0.7, since the transparency of the resin particles is further improved. The lower limit of the strength index is more preferably 0.15, even more preferably 0.20, most preferably 0.25, and the upper limit of the strength index is more preferably 0.65, even more preferably 0. .60, particularly preferably 0.55, most preferably 0.50. Furthermore, for example, 0.15 to 0.60 is more preferable, and 0.20 to 0.50 is even more preferable. The intensity index of the diffused light can be calculated using the following formula (3), for example, from the scattered light intensity when light is irradiated at an incident angle of -45° using a three-dimensional variable angle photometer. I can do it.
Diffuse light intensity index = Diffuse light intensity at 0°/Specular reflected light intensity at 45° (3)

[生分解性樹脂(A)]
本発明の樹脂粒子は、生分解性樹脂(A)を含む。
生分解性樹脂(A)としては、特に限定はないが、例えば、ポリビニル系樹脂、ポリエステル系樹脂、ポリエーテル系樹脂、ポリアミド系樹脂、熱可塑性ポリウレタン系樹脂及びセルロース系樹脂から選ばれる少なくとも1種であると好ましい。また、これらの熱可塑性樹脂を含むことで、良好なすべり性を有する樹脂粒子が得られやすくなる。
さらに、生分解性に優れる点で、ポリエステル系樹脂、及びセルロース系樹脂から選ばれる少なくとも1種であると好ましい。
また、生分解性樹脂(A)は、前記樹脂以外の成分として難水溶性多糖類を含んでいても良い。
[Biodegradable resin (A)]
The resin particles of the present invention contain a biodegradable resin (A).
The biodegradable resin (A) is not particularly limited, but for example, at least one selected from polyvinyl resins, polyester resins, polyether resins, polyamide resins, thermoplastic polyurethane resins, and cellulose resins. It is preferable that Moreover, by including these thermoplastic resins, resin particles having good slip properties can be easily obtained.
Furthermore, from the viewpoint of excellent biodegradability, at least one selected from polyester resins and cellulose resins is preferable.
Moreover, the biodegradable resin (A) may contain a poorly water-soluble polysaccharide as a component other than the resin.

ポリエステル系樹脂としては、例えば、生分解性に優れる点で脂肪族ポリエステル系樹脂、脂肪族-芳香族ポリエステル系樹脂から選ばれる少なくとも1種であると好ましく、脂肪族ポリエステル系樹脂が特に好ましい。 The polyester resin is preferably at least one selected from aliphatic polyester resins and aliphatic-aromatic polyester resins because of its excellent biodegradability, and aliphatic polyester resins are particularly preferred.

脂肪族ポリエステル系樹脂としては、ポリエステル系樹脂の構成成分である多価アルコール、多価カルボン酸、及びヒドロキシカルボン酸がそれぞれ脂肪族多価アルコール、脂肪族多価カルボン酸、及び脂肪族ヒドロキシカルボン酸であれば特に限定はないが、本願効果を得られやすい点で、多価アルコールと多価カルボン酸を含む構成成分から得られる脂肪族ポリエステルが好ましい。
脂肪族多価アルコールとしては、例えば、エチレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、ジエチレングリコール、1,5-ペンタンジオール、1,6-ヘキサンジオール、プロピレングリコール、ジプロピレングリコール、トリエチレングリコール、テトラエチレングリコール、1,2-プロパンジオール、1,3-ブタンジオール、2,3-ブタンジオール、ネオペンチルグリコール(2,2-ジメチルプロパン-1,3-ジオール)、1,2-ヘキサンジオール、2,5-ヘキサンジオール、2-メチル-2,4-ペンタンジオール、3-メチル-1,3-ペンタンジオール、2-エチル-1,3-ヘキサンジオール、2,2-ビス(4-ヒドロキシシクロヘキシル)プロパン、1,4-シクロヘキサンジオール、1,4-シクロヘキサンジメタノール、トリメチロールプロパン、グリセリン、ペンタエリスリトール等が挙げられる。これらの脂肪族多価アルコールは1種又は2種以上を併用してもよい。
As the aliphatic polyester resin, the polyhydric alcohol, polycarboxylic acid, and hydroxycarboxylic acid that are the constituent components of the polyester resin are aliphatic polyhydric alcohol, aliphatic polycarboxylic acid, and aliphatic hydroxycarboxylic acid, respectively. If so, there is no particular limitation, but aliphatic polyesters obtained from constituents containing polyhydric alcohols and polyhydric carboxylic acids are preferred in that the effects of the present application can be easily obtained.
Examples of aliphatic polyhydric alcohols include ethylene glycol, 1,3-propanediol, 1,4-butanediol, diethylene glycol, 1,5-pentanediol, 1,6-hexanediol, propylene glycol, dipropylene glycol, Triethylene glycol, tetraethylene glycol, 1,2-propanediol, 1,3-butanediol, 2,3-butanediol, neopentyl glycol (2,2-dimethylpropane-1,3-diol), 1,2 -hexanediol, 2,5-hexanediol, 2-methyl-2,4-pentanediol, 3-methyl-1,3-pentanediol, 2-ethyl-1,3-hexanediol, 2,2-bis( Examples include 4-hydroxycyclohexyl)propane, 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol, trimethylolpropane, glycerin, and pentaerythritol. These aliphatic polyhydric alcohols may be used alone or in combination of two or more.

脂肪族多価カルボン酸としては、例えば、コハク酸、アジピン酸、スベリン酸、セバシン酸、アゼライン酸、オクチルコハク酸、フマル酸、マレイン酸、イタコン酸、デカメチレンジカルボン酸、これらの無水物等が挙げられる。これらの脂肪族多価カルボン酸は、1種又は2種類以上を併用してもよい。
脂肪族ヒドロキシカルボン酸としては、例えば、乳酸、グリコール酸、ヒドロキシ酪酸、ヒドロキシカプロン酸、ヒドロキシジメチル酪酸、ヒドロキシメチル酪酸等が挙げられる。これらの脂肪族ヒドロキシカルボン酸は、1種又は2種以上を併用してもよい。
Examples of aliphatic polycarboxylic acids include succinic acid, adipic acid, suberic acid, sebacic acid, azelaic acid, octylsuccinic acid, fumaric acid, maleic acid, itaconic acid, decamethylene dicarboxylic acid, and anhydrides thereof. Can be mentioned. These aliphatic polycarboxylic acids may be used alone or in combination of two or more.
Examples of aliphatic hydroxycarboxylic acids include lactic acid, glycolic acid, hydroxybutyric acid, hydroxycaproic acid, hydroxydimethylbutyric acid, and hydroxymethylbutyric acid. These aliphatic hydroxycarboxylic acids may be used alone or in combination of two or more.

脂肪族ポリエステル系樹脂としては、例えば、ポリカプロラクトンブチレンサクシネート、ポリブチレンサクシネート、ポリブチレンサクシネートアジペート、ポリブチレンサクシネートカーボネート、ポリブチレンアジペート、ポリブチレンサクシネートラクテート、ポリエチレンサクシネート、ポリエチレンアジペート、ポリテトラメチレンサクシネート、ポリヒドロキシアルカノエート、ポリヒドロキシブチレート、ポリ(3-ヒドロキシブチレート-co-3-ヒドロキシヘキサノエート)、ポリヒドロキシブチレートバリレート、ポリ(3-ヒドロキシブチレート-co-3-ヒドロキシバリレート)、ポリ(3-ヒドロキシブチレート-co-3-ヒドロキシプロピオネート)、ポリ(3-ヒドロキシブチレート-co-4-ヒドロキシブチレート)、ポリ(3-ヒドロキシブチレート-co-3-ヒドロキシアシル)、ポリヒドロキシアシル、ポリ乳酸等が挙げられる。 Examples of aliphatic polyester resins include polycaprolactone butylene succinate, polybutylene succinate, polybutylene succinate adipate, polybutylene succinate carbonate, polybutylene adipate, polybutylene succinate lactate, polyethylene succinate, polyethylene adipate, Polytetramethylene succinate, polyhydroxyalkanoate, polyhydroxybutyrate, poly(3-hydroxybutyrate-co-3-hydroxyhexanoate), polyhydroxybutyrate valerate, poly(3-hydroxybutyrate-co) -3-hydroxyvalyrate), poly(3-hydroxybutyrate-co-3-hydroxypropionate), poly(3-hydroxybutyrate-co-4-hydroxybutyrate), poly(3-hydroxybutyrate) -co-3-hydroxyacyl), polyhydroxyacyl, polylactic acid, and the like.

脂肪族-芳香族ポリエステル系樹脂としては、ポリエステル系樹脂の構成成分である前記多価アルコール、多価カルボン酸、及びヒドロキシカルボン酸がそれぞれ前記脂肪族多価アルコール、脂肪族多価カルボン酸、及び脂肪族ヒドロキシカルボン酸を含み、さらに芳香族多価カルボン酸又はその誘導体を含むものであれば特に限定はない。
芳香族多価カルボン酸としては、例えば、o-フタル酸、テレフタル酸、イソフタル酸、シクロヘキサンジカルボン酸、ナフタレンジカルボン酸、ジフェニルジカルボン酸、トリメリット酸、ピロメリット酸等が挙げられる。脂肪族-芳香族ポリエステル系樹脂の構成成分に占める芳香族多価カルボン酸由来の構成成分の割合は、生分解性の点で、40ユニットmol%以下であると好ましい。これらの芳香族多価カルボン酸は1種又は2種以上を併用してもよい。
In the aliphatic-aromatic polyester resin, the polyhydric alcohol, polycarboxylic acid, and hydroxycarboxylic acid, which are the constituent components of the polyester resin, are the aliphatic polyhydric alcohol, aliphatic polycarboxylic acid, and hydroxycarboxylic acid, respectively. There is no particular limitation as long as it contains an aliphatic hydroxycarboxylic acid and further contains an aromatic polyhydric carboxylic acid or a derivative thereof.
Examples of the aromatic polycarboxylic acid include o-phthalic acid, terephthalic acid, isophthalic acid, cyclohexanedicarboxylic acid, naphthalene dicarboxylic acid, diphenyldicarboxylic acid, trimellitic acid, pyromellitic acid, and the like. From the viewpoint of biodegradability, the proportion of components derived from aromatic polycarboxylic acids in the components of the aliphatic-aromatic polyester resin is preferably 40 units mol % or less. These aromatic polyhydric carboxylic acids may be used alone or in combination of two or more.

脂肪族-芳香族ポリエステル系樹脂としては、例えば、ポリブチレンサクシネートテレフタレート、ポリブチレンアジペートテレフタレート、ポリテトラメチレンアジペートテレフタレート、ポリブチレンサクシネートアジペートテレフタレート等が挙げられる。 Examples of the aliphatic-aromatic polyester resin include polybutylene succinate terephthalate, polybutylene adipate terephthalate, polytetramethylene adipate terephthalate, polybutylene succinate adipate terephthalate, and the like.

生分解性樹脂(A)がポリエステル系樹脂を含む場合、生分解性樹脂に占めるポリエステル系樹脂の重量割合は、特に限定はないが、好ましくは30~100重量%である。該重量割合の下限は(1)35重量%、(2)40重量%、(3)45重量%、(4)50重量%、(5)55重量%、(6)60重量%、(7)65重量%、(8)70重量%、(9)75重量%、(10)80重量%、(11)85重量%、(12)90重量%の順で好ましい(括弧内の数値が大きくなるにつれ好ましい。)。さらに、例えば40~100重量%がより好ましく、50~100重量%がさらに好ましく、80~100重量%が特に好ましく、90~100重量%が最も好ましい。 When the biodegradable resin (A) contains a polyester resin, the weight proportion of the polyester resin in the biodegradable resin is not particularly limited, but is preferably 30 to 100% by weight. The lower limits of the weight proportions are (1) 35% by weight, (2) 40% by weight, (3) 45% by weight, (4) 50% by weight, (5) 55% by weight, (6) 60% by weight, (7) ) 65% by weight, (8) 70% by weight, (9) 75% by weight, (10) 80% by weight, (11) 85% by weight, and (12) 90% by weight (the larger the number in parentheses). The more the better.) Further, for example, it is more preferably 40 to 100% by weight, even more preferably 50 to 100% by weight, particularly preferably 80 to 100% by weight, and most preferably 90 to 100% by weight.

ポリエーテル系樹脂としては、例えば、ポリフェニレンエーテル、ポリスルホン、ポリエーテルスルホン、ポリアセタール、ポリエーテルケトン、ポリエーテルエーテルケトン等が挙げられる。
ポリアミド系樹脂としては、例えば、ナイロン1、ナイロン3、ナイロン4、ポリカプロアミド(ナイロン6)、ポリ-ω-アミノヘプタン酸(ナイロン7)、ポリ-9-アミノノナン酸(ナイロン9)、ポリウンデカンアミド(ナイロン11)、ポリラウリンラクタム(ナイロン12)、ポリエチレンジアミンアジパミド(ナイロン2,6)、ポリテトラメチレンアジパミド(ナイロン4,6)、ポリヘキサメチレンジアジパミド(ナイロン6,6)、ポリヘキサメチレンセバカミド(ナイロン6,10)、ポリヘキサメチレンドデカミド(ナイロン6,12)、ポリオクタメチレンアジパミド(ナイロン8,6)、ポリデカメチレンアジパミド(ナイロン10,6)、ポリデカメチレンセバカミド(ナイロン10,10)、ポリドデカメチレンドデカミド(ナイロン12,12)、メタキシレンジアミン-6ナイロン(MXD6)等が挙げられる。ポリアミド系樹脂は側鎖に水酸基を導入したものであると、生分解性に優れる点で好ましい。
Examples of the polyether resin include polyphenylene ether, polysulfone, polyether sulfone, polyacetal, polyether ketone, and polyether ether ketone.
Examples of polyamide resins include nylon 1, nylon 3, nylon 4, polycaproamide (nylon 6), poly-ω-aminoheptanoic acid (nylon 7), poly-9-aminononanoic acid (nylon 9), and polyundecane. amide (nylon 11), polylaurinlactam (nylon 12), polyethylenediamineadipamide (nylon 2,6), polytetramethyleneadipamide (nylon 4,6), polyhexamethylene diadipamide (nylon 6,6) ), polyhexamethylene sebamide (nylon 6,10), polyhexamethylene dodecamide (nylon 6,12), polyoctamethylene adipamide (nylon 8,6), polydecamethylene adipamide (nylon 10, 6), polydecamethylene sebacamide (nylon 10,10), polydodecamethylene dodecamide (nylon 12,12), meta-xylene diamine-6 nylon (MXD6), and the like. It is preferable that the polyamide resin has a hydroxyl group introduced into the side chain because it has excellent biodegradability.

熱可塑性ポリウレタン系樹脂としては、例えば、ポリエステル系ポリウレタン樹脂、ポリエーテル系ポリウレタン樹脂、ポリカーボネート系ポリウレタン樹脂等が挙げられる。
前記セルロース系樹脂としては、例えば、セルロースアセテート、エチルセルロース、セルロースエーテル誘導体、酢酸プロピオン酸セルロース、酢酸酪酸セルロース等が挙げられる。
前記難水溶性多糖類としては、例えば、セルロース、キチン、キトサン、澱粉等が挙げられる。
Examples of the thermoplastic polyurethane resin include polyester polyurethane resin, polyether polyurethane resin, and polycarbonate polyurethane resin.
Examples of the cellulose resin include cellulose acetate, ethyl cellulose, cellulose ether derivatives, cellulose acetate propionate, cellulose acetate butyrate, and the like.
Examples of the poorly water-soluble polysaccharides include cellulose, chitin, chitosan, and starch.

本発明の樹脂粒子に占める生分解性樹脂(A)の重量割合は、特に限定はないが、好ましくは10~100重量%である。該重量割合が10重量%以上であると、樹脂粒子の透明性が向上する点で好ましい。該重量割合の下限は、(1)30重量%、(2)40重量%、(3)50重量%、(4)60重量%、(5)70重量%、(6)80重量%、(7)85重量%、(8)90重量%の順で好ましい(括弧内の数値が大きくなるにつれ好ましい。)。一方、該含有量の上限は、(1)99.999重量%、(2)99.99重量%、(3)99.9重量%、(4)99重量%、(5)98重量%の順で好ましい(括弧内の数値が大きくなるにつれ好ましい。)。さらに、例えば30~100重量%がより好ましく、50~100重量%がさらに好ましく、80~100重量%が特に好ましく、90~100重量%が最も好ましい。
本発明の樹脂粒子は、特に限定はないが、生分解性が向上する点で、生分解性樹脂(A)を主成分することが好ましく、生分解性樹脂(A)からなるとより好ましい。なお、本発明の樹脂粒子において、生分解性樹脂(A)が主成分である場合、樹脂粒子に占める生分解性樹脂(A)の重量割合が50重量%以上であることをいい、また、生分解性樹脂(A)の重量割合の上限は、上記に記載の数値であるとよい。
The weight proportion of the biodegradable resin (A) in the resin particles of the present invention is not particularly limited, but is preferably 10 to 100% by weight. It is preferable that the weight ratio is 10% by weight or more because the transparency of the resin particles is improved. The lower limits of the weight proportions are (1) 30% by weight, (2) 40% by weight, (3) 50% by weight, (4) 60% by weight, (5) 70% by weight, (6) 80% by weight, ( 7) 85% by weight, and (8) 90% by weight are preferable in this order (the larger the value in parentheses is, the more preferable it is). On the other hand, the upper limits of the content are (1) 99.999% by weight, (2) 99.99% by weight, (3) 99.9% by weight, (4) 99% by weight, and (5) 98% by weight. Preferable in order of preference (the larger the number in parentheses is, the more preferable it is). Further, for example, it is more preferably 30 to 100% by weight, even more preferably 50 to 100% by weight, particularly preferably 80 to 100% by weight, and most preferably 90 to 100% by weight.
The resin particles of the present invention are not particularly limited, but from the viewpoint of improving biodegradability, the resin particles preferably contain biodegradable resin (A) as a main component, and are more preferably composed of biodegradable resin (A). In addition, in the resin particles of the present invention, when the biodegradable resin (A) is the main component, it means that the weight proportion of the biodegradable resin (A) in the resin particles is 50% by weight or more, and The upper limit of the weight proportion of the biodegradable resin (A) is preferably the numerical value described above.

前記生分解性樹脂(A)は、特に限定されないが、重量平均分子量が5×10~1×10であるとすべり性が優れる点で好ましい。該平均分子量の下限は、(1)1×10、(2)2×10、(3)3×10、(4)5×10、(5)1×10、(6)2×10、(7)3×10の順で好ましい。一方、該平均分子量の上限は、(1)5×10(2)3×10、(3)1×10、(4)5×10、(5)3×10、(6)1×10の順で好ましい(括弧内の数値が大きくなるにつれ好ましい。)。さらに、例えば2×10~5×10がより好ましく、3×10~5×10がさらに好ましい。 The biodegradable resin (A) is not particularly limited, but preferably has a weight average molecular weight of 5×10 3 to 1×10 9 because it has excellent slip properties. The lower limit of the average molecular weight is (1) 1×10 4 , (2) 2×10 4 , (3) 3×10 4 , (4) 5×10 4 , (5) 1×10 5 , (6) The preferred order is 2×10 5 and (7) 3×10 5 . On the other hand, the upper limit of the average molecular weight is (1) 5×10 8 , (2) 3×10 8 , (3) 1×10 8 , (4) 5×10 7 , (5) 3×10 7 , (6 ) 1×10 7 (the larger the number in parentheses is, the more preferable it is). Furthermore, for example, 2×10 4 to 5×10 8 is more preferable, and 3×10 4 to 5×10 8 is even more preferable.

本発明の樹脂粒子は、生分解性樹脂(A)以外の熱可塑性樹脂や熱硬化性樹脂(以下、その他の樹脂ということがある。)、有機ポリマー、界面活性剤、有機ポリマー以外の有機物及び無機物等を含んでいてもよい。
その他の樹脂としては、例えば、ポリアクリル系樹脂、ポリスチレン系樹脂、ポリオレフィン系樹脂等の熱可塑性樹脂;シリコーン系樹脂、フェノール系樹脂、不飽和ポリエステル系樹脂、エポキシ樹脂、メラミン樹脂、ゴム等の熱硬化性樹脂等が挙げられ、1種又は2種以上を併用してもよい。
有機ポリマーとしては、例えば、パラフィン類、シリコーンオイル類、ポリアルキレンオキサイド及び水溶性高分子等が挙げられ、流動パラフィン等のパラフィン類;ジメチルシリコーン等のシリコーンオイル類;ポリエチレンオキサイド、ポリプロピレンオキサイド等のポリアルキレンオキサイド;ポリアクリル酸ナトリウム、ポリビニルピロリドン、ポリビニルアルコール、デキストリン、アルギン酸ナトリウム、アルギン酸カリウム、アラビアガム、タマリンドガム、ペクチン、プルラン、カゼイン、キサンタンガム、カラギナン、トラガントガム、ゼラチン、ヒドロキシエチルセルロース、ヒドロキシプロプルセルロース、メチルセルロース、カルボキシメチルセルロース、カルボキシエチルセルロース等の水溶性高分子等が挙げられ、1種又は2種以上を併用してもよい。
The resin particles of the present invention include thermoplastic resins and thermosetting resins other than biodegradable resin (A) (hereinafter sometimes referred to as other resins), organic polymers, surfactants, organic substances other than organic polymers, and It may also contain inorganic substances.
Examples of other resins include thermoplastic resins such as polyacrylic resins, polystyrene resins, and polyolefin resins; thermoplastic resins such as silicone resins, phenolic resins, unsaturated polyester resins, epoxy resins, melamine resins, and rubber. Examples include curable resins, which may be used alone or in combination of two or more.
Examples of organic polymers include paraffins, silicone oils, polyalkylene oxides, and water-soluble polymers; paraffins such as liquid paraffin; silicone oils such as dimethyl silicone; Alkylene oxide; sodium polyacrylate, polyvinylpyrrolidone, polyvinyl alcohol, dextrin, sodium alginate, potassium alginate, gum arabic, tamarind gum, pectin, pullulan, casein, xanthan gum, carrageenan, gum tragacanth, gelatin, hydroxyethylcellulose, hydroxypropylcellulose, Examples include water-soluble polymers such as methylcellulose, carboxymethylcellulose, and carboxyethylcellulose, and one type or two or more types may be used in combination.

界面活性剤としては、例えば、アニオン界面活性剤、カチオン界面活性剤、ノニオン界面活性剤、両性界面活性剤及びシリコーン系活性剤が挙げられ、具体的にはアルキル硫酸エステル塩、アルキルエーテルカルボン酸塩、アルキルエーテル硫酸エステル塩、アルキルリン酸エステル塩、ポリオキシアルキレンアルキルエーテル酢酸塩、アルキルスルホン酸塩、アルキルベンゼンスルホン酸塩、ポリオキシアルキレンアルキルエーテル硫酸塩、ポリオキシアルキレンアルキルエーテルリン酸エステル塩、高級脂肪酸アミドスルホン酸塩、脂肪酸アルカリ金属塩(例えばラウリン酸カリウム、ミスチリン酸ナトリウム、ステアリン酸ナトリウム)、アルキルスルホコハク酸エステル塩、N-アシルアミノ酸塩類等のアニオン界面活性剤;第4級アンモニウム塩、アルキルアミン塩等のカチオン界面活性剤;ポリオキシアルキレンオキサイド付加アルキルエーテル、ポリオキシアルキレンスチレン化フェニルエーテル、多価アルコールと1価脂肪酸とのエステル化合物、ポリオキシアルキレンアルキルフェニルエーテル、ポリオキシアルキレン脂肪酸エステル、ポリオキシアルキレンソルビタン脂肪酸エステル、グリセリン脂肪酸エステル、ポリオキシアルキレンひまし油、ポリオキシアルキレン硬化ひまし油、高級脂肪酸PEGグリセリル類、高級脂肪酸ソルビタン類、ポリオキシアルキレンソルビトール脂肪酸エステル、ポリグリセリン脂肪酸エステル、アルキルグリセリンエーテル、ポリオキシアルキレンコレステリルエーテル、アルキルポリグルコシド、ショ糖脂肪酸エステル、ポリソルベート類等のノニオン界面活性剤;アミノ酸系、ベタイン型、水添レシチン、レシチン等の両性界面活性剤;変性シリコーン等のシリコーン系界面活性剤等が挙げられ、1種又は2種以上を併用してもよい。 Examples of the surfactant include anionic surfactants, cationic surfactants, nonionic surfactants, amphoteric surfactants, and silicone surfactants, specifically alkyl sulfate salts, alkyl ether carboxylate salts, etc. , alkyl ether sulfate, alkyl phosphate, polyoxyalkylene alkyl ether acetate, alkyl sulfonate, alkylbenzene sulfonate, polyoxyalkylene alkyl ether sulfate, polyoxyalkylene alkyl ether phosphate, high grade Anionic surfactants such as fatty acid amide sulfonates, fatty acid alkali metal salts (e.g. potassium laurate, sodium mystilate, sodium stearate), alkyl sulfosuccinate salts, N-acylamino acid salts; quaternary ammonium salts, alkyl Cationic surfactants such as amine salts; polyoxyalkylene oxide addition alkyl ethers, polyoxyalkylene styrenated phenyl ethers, ester compounds of polyhydric alcohols and monovalent fatty acids, polyoxyalkylene alkylphenyl ethers, polyoxyalkylene fatty acid esters, Polyoxyalkylene sorbitan fatty acid ester, glycerin fatty acid ester, polyoxyalkylene castor oil, polyoxyalkylene hydrogenated castor oil, higher fatty acid PEG glyceryl, higher fatty acid sorbitan, polyoxyalkylene sorbitol fatty acid ester, polyglycerin fatty acid ester, alkylglycerin ether, poly Nonionic surfactants such as oxyalkylene cholesteryl ether, alkyl polyglucoside, sucrose fatty acid ester, and polysorbates; Ampholytic surfactants such as amino acid, betaine, hydrogenated lecithin, and lecithin; Silicone surfactants such as modified silicone etc., and one type or two or more types may be used in combination.

有機ポリマー以外の有機物としては、例えば、ワックス、オイル、脂肪酸金属塩及びアミノ酸系化合物等が挙げられ、具体的には、カルナバワックス、キャンデリラワックス、蜜蝋、高級アルコール等のワックス;アーモンド油、オリーブ油、コメヌカ油、スクワラン、ミネラルオイル、アルカン、安息香酸アルキル等のオイル;ラウリン酸、ミスチリン酸、パルミチン酸、ステアリン酸、12-ヒドロキシステアリン酸、ベヘン酸、モンタン酸、セロチン酸等の脂肪酸;ラウリン酸カルシウム、ラウリン酸亜鉛、ミスチリン酸亜鉛、パルミチン酸亜鉛、ステアリン酸マグネシウム、ステアリン酸亜鉛、ステアリン酸カルシウム、ステアリン酸アルミニウム、12-ヒドロキシステアリン酸カルシウム、12-ヒドロキシステアリン酸亜鉛、12-ヒドロキシステアリン酸マグネシウム、12-ヒドロキシステアリン酸アルミニウム、ベヘン酸カルシウム、ベヘン酸亜鉛、ベヘン酸マグネシウム、モンタン酸カルシウム、モンタン酸亜鉛、モンタン酸マグネシウム、モンタン酸アルミニウム等の脂肪酸金属塩;N-ラウロイル-L-アルギニン、N-ラウロイル-L-リジン、N-ヘキサノイル-L-リジン、N-オレイルイル-L-リジン、N-パルミトイル-L-リジン、N-ステアノイル-L-リジン、N-ヘキサノイル-L-リジン、N-ミリストノイル-L-リジン、N-カプリロイル-L-リジン、N-デカノイル-L-リジン等のアミノ酸系化合物等が挙げられ、1種又は2種以上を併用してもよい。 Examples of organic substances other than organic polymers include waxes, oils, fatty acid metal salts, and amino acid compounds.Specifically, waxes such as carnauba wax, candelilla wax, beeswax, and higher alcohols; almond oil, olive oil, etc. Oils such as , rice bran oil, squalane, mineral oil, alkanes, and alkyl benzoates; Fatty acids such as lauric acid, mystiric acid, palmitic acid, stearic acid, 12-hydroxystearic acid, behenic acid, montanic acid, and cerotic acid; Calcium laurate , zinc laurate, zinc mystilate, zinc palmitate, magnesium stearate, zinc stearate, calcium stearate, aluminum stearate, calcium 12-hydroxystearate, zinc 12-hydroxystearate, magnesium 12-hydroxystearate, 12- Fatty acid metal salts such as aluminum hydroxystearate, calcium behenate, zinc behenate, magnesium behenate, calcium montanate, zinc montanate, magnesium montanate, aluminum montanate; N-lauroyl-L-arginine, N-lauroyl- L-lysine, N-hexanoyl-L-lysine, N-oleyl-L-lysine, N-palmitoyl-L-lysine, N-steanoyl-L-lysine, N-hexanoyl-L-lysine, N-myristonoyl-L- Examples include amino acid compounds such as lysine, N-capryloyl-L-lysine, and N-decanoyl-L-lysine, and one type or two or more types may be used in combination.

無機物としては、例えば、ワラステナイト、セリサイト、カオリン、マイカ、クレー、タルク、ベントナイト、スメクタイト、アルミナシリケート、パイロフィライト、モンモリロナイト、珪酸カルシウム、炭酸カルシウム、炭酸マグネシウム、ドロマイト、硫酸カルシウム、窒化ホウ素、炭化珪素、ケイ酸マグネシウム、ケイ酸カルシウム、メタケイ酸アルミン酸マグネシウム、ケイ酸アルミン酸マグネシウム、ヒドロキシアパタイト、酸化チタン、シリカ、アルミナ、雲母、二酸化チタン、酸化亜鉛、酸化マグネシウム、酸化亜鉛、ハイドロサルタイト、窒化ホウ素等が挙げられ、1種又は2種以上を併用してもよい。 Examples of inorganic substances include wollastenite, sericite, kaolin, mica, clay, talc, bentonite, smectite, aluminasilicate, pyrophyllite, montmorillonite, calcium silicate, calcium carbonate, magnesium carbonate, dolomite, calcium sulfate, boron nitride, Silicon carbide, magnesium silicate, calcium silicate, magnesium aluminate metasilicate, magnesium aluminate silicate, hydroxyapatite, titanium oxide, silica, alumina, mica, titanium dioxide, zinc oxide, magnesium oxide, zinc oxide, hydrosaltite , boron nitride, etc., and one type or two or more types may be used in combination.

本発明の樹脂粒子は、特に限定はないが、JIS K6950:2000に準拠した測定による10日後の生分解率が1%以上であると好ましい。該生分解率の下限は、(1)3%、(2)5%、(3)10%、(4)15%、(5)20%、(6)25%、(7)30%の順で好ましい(括弧内の数値が大きくなるにつれ好ましい。)。 The resin particles of the present invention are not particularly limited, but preferably have a biodegradation rate of 1% or more after 10 days as measured in accordance with JIS K6950:2000. The lower limit of the biodegradation rate is (1) 3%, (2) 5%, (3) 10%, (4) 15%, (5) 20%, (6) 25%, (7) 30%. Preferable in order of preference (the larger the number in parentheses is, the more preferable it is).

本発明の樹脂粒子は、例えば、上述の生分解性樹脂(A)と、界面活性剤と、水溶性高分子と、水とを混合し、予備混合液を得る工程1と、工程1で得られた予備混合液を加熱攪拌し、加熱分散液を得る工程2と、工程2で得られた加熱分散液を冷却する工程3とを含む方法で製造することができる。 The resin particles of the present invention can be obtained by, for example, Step 1 of mixing the above-mentioned biodegradable resin (A), a surfactant, a water-soluble polymer, and water to obtain a preliminary mixed solution; It can be produced by a method including step 2 of heating and stirring the premixed liquid to obtain a heated dispersion, and step 3 of cooling the heated dispersion obtained in step 2.

また、本発明の樹脂粒子において、その製造時に有機溶剤を使用せずに行うと、本発明の比表面積を有する粒子が得られやすく、透明性に優れる樹脂粒子を好適に作製できるため好ましい。有機溶剤を使用した場合には、樹脂粒子から有機溶剤を除去する際に、樹脂粒子中に気孔が形成され、得られた樹脂粒子の透明性が劣る傾向がある。また、有機溶剤を使用せずに、水を使用して樹脂粒子を作成することで、樹脂粒子形成時に界面活性剤や水溶性高分子が樹脂粒子と水との界面に存在しやすく、樹脂粒子の表面の形状に寄与しやすいと考えている。また、界面活性剤の親油基が樹脂構造に影響を与え、透明性に優れる樹脂粒子が得られると考えている。また、有機溶剤を使用しないことは、環境に優しく好ましい。 In addition, it is preferable to manufacture the resin particles of the present invention without using an organic solvent because particles having the specific surface area of the present invention can be easily obtained and resin particles with excellent transparency can be suitably produced. When an organic solvent is used, pores are formed in the resin particles when the organic solvent is removed from the resin particles, and the resulting resin particles tend to have poor transparency. In addition, by creating resin particles using water without using organic solvents, surfactants and water-soluble polymers are more likely to exist at the interface between the resin particles and water during resin particle formation, and the resin particles We believe that it is easy to contribute to the shape of the surface. It is also believed that the lipophilic group of the surfactant influences the resin structure, resulting in resin particles with excellent transparency. Moreover, not using an organic solvent is environmentally friendly and preferable.

界面活性剤は、特に限定はないが、本発明の効果を奏する範囲となるよう、樹脂粒子を構成する成分に応じて適宜選定することができる。界面活性剤は、上述のものを使用することができる。
前記界面活性剤は、特に限定はないが、アニオン界面活性剤及びノニオン界面活性剤から選ばれる少なくとも1種を使用すると、樹脂粒子の真球度を高めやすく、本発明の比表面積を有する粒子が得られやすい点で好ましく、ノニオン界面活性剤を使用するとより好ましい。
アニオン界面活性剤としては、特に限定はないが、硫酸エステル塩及びスルホン酸塩から選ばれる少なくとも1種であると好ましく、スルホン酸塩がより好ましい。
ノニオン界面活性剤としては、特に限定はないが、多価アルコールと1価脂肪酸とのエステル化合物であると好ましく、グリセリン脂肪酸エステル、高級脂肪酸ソルビタン類から選ばれる少なくとも1種であるとより好ましい。
界面活性剤としては、特に限定はないが、HLB値が1~13のノニオン界面活性剤を使用すると、樹脂粒子の融解エンタルピーが20~140J/gの範囲内となりやすく、より透明性に優れるため好ましい。該HLB値はより好ましくは1~11、さらに好ましくは1~10、特に好ましくは1.5~10である。
また、界面活性剤としてはエステル型やエステル塩型のものを使用すると、本発明の比表面積を有する粒子が得られやすく、粒子の透明性が優れるため、好ましい。
HLB値は、例えば、下記のグリフィン法による計算式(4)から算出することができる。
HLB=20×(親水基の分子量/全体の分子量) (4)
The surfactant is not particularly limited, but can be appropriately selected according to the components constituting the resin particles so that the surfactant can achieve the effects of the present invention. As the surfactant, those mentioned above can be used.
The surfactant is not particularly limited, but when at least one selected from anionic surfactants and nonionic surfactants is used, the sphericity of the resin particles can be easily increased, and the particles having the specific surface area of the present invention can be It is preferred because it is easy to obtain, and it is more preferred to use a nonionic surfactant.
The anionic surfactant is not particularly limited, but it is preferably at least one selected from sulfate ester salts and sulfonate salts, and sulfonate salts are more preferred.
The nonionic surfactant is not particularly limited, but is preferably an ester compound of a polyhydric alcohol and a monovalent fatty acid, and more preferably at least one selected from glycerin fatty acid esters and higher fatty acid sorbitans.
There are no particular limitations on the surfactant, but if a nonionic surfactant with an HLB value of 1 to 13 is used, the enthalpy of melting of the resin particles will likely fall within the range of 20 to 140 J/g, resulting in better transparency. preferable. The HLB value is more preferably 1 to 11, still more preferably 1 to 10, particularly preferably 1.5 to 10.
Further, it is preferable to use an ester type or ester salt type surfactant because particles having the specific surface area of the present invention are easily obtained and the particles have excellent transparency.
The HLB value can be calculated, for example, using the following calculation formula (4) using the Griffin method.
HLB=20×(molecular weight of hydrophilic group/total molecular weight) (4)

界面活性剤は、最終的に粒子中に含有していてもよい。界面活性剤が粒子表面付近に存在することで、より表面構造に影響を与えると考えられ、本発明の比表面積を有する粒子が得られやすくなる。粒子中に占める界面活性剤の重量割合は、特に限定されないが、0.001~10重量%が好ましく、重量割合の上限は7重量%がより好ましく、5重量%がさらに好ましい。一方、該重量割合の下限は、0.005重量%がより好ましく、0.01重量%がさらに好ましい。さらに、例えば、0.001~7重量%がより好ましく、0.001~5重量%がさらに好ましい。 The surfactant may be finally contained in the particles. The presence of the surfactant near the particle surface is thought to have a greater effect on the surface structure, making it easier to obtain particles having the specific surface area of the present invention. The weight percentage of the surfactant in the particles is not particularly limited, but is preferably 0.001 to 10% by weight, and the upper limit of the weight percentage is more preferably 7% by weight, even more preferably 5% by weight. On the other hand, the lower limit of the weight ratio is more preferably 0.005% by weight, and even more preferably 0.01% by weight. Further, for example, 0.001 to 7% by weight is more preferable, and even more preferably 0.001 to 5% by weight.

水溶性高分子は上述のものを使用することができ、本発明の真球度および比表面積を有する粒子を得られやすい点から、4%水溶液の20℃での粘度が2~200000mPa・sである水溶性高分子であると好ましい。
水溶性高分子は、本発明の比表面積を有する粒子を得られやすく、透明性をより向上できる点でポリビニルピロリドン、ポリビニルアルコール、ヒドロキシエチルセルロース、ヒドロキシプロプルセルロース、メチルセルロース、カルボキシメチルセルロース、から選ばれる少なくとも1つであると好ましく、ポリビニルアルコールであるとより好ましい。
水溶性高分子は、最終的に粒子中に含有していてもよい。水溶性高分子が粒子中に存在することで、より透明性が高くなると考えられる。粒子中に占める水溶性高分子の重量割合は、特に限定されないが、0.001~10重量%が好ましく、重量割合の上限は8重量%がより好ましく、5重量%がさらに好ましい。一方、該重量割合の下限は、0.002重量%がより好ましく、0.005重量%がさらに好ましい。さらに、例えば、0.001~8重量%がより好ましく、0.001~5重量%がさらに好ましい。
The water-soluble polymers mentioned above can be used, and from the viewpoint of easily obtaining particles having the sphericity and specific surface area of the present invention, the viscosity of a 4% aqueous solution at 20°C is 2 to 200,000 mPa・s. Preferably, it is a certain water-soluble polymer.
The water-soluble polymer is at least selected from polyvinylpyrrolidone, polyvinyl alcohol, hydroxyethylcellulose, hydroxypropylcellulose, methylcellulose, and carboxymethylcellulose because particles having the specific surface area of the present invention can be easily obtained and transparency can be further improved. It is preferable that it is one, and it is more preferable that it is polyvinyl alcohol.
The water-soluble polymer may be finally contained in the particles. It is thought that the presence of water-soluble polymers in the particles increases transparency. The weight percentage of the water-soluble polymer in the particles is not particularly limited, but is preferably 0.001 to 10% by weight, and the upper limit of the weight percentage is more preferably 8% by weight, even more preferably 5% by weight. On the other hand, the lower limit of the weight ratio is more preferably 0.002% by weight, and even more preferably 0.005% by weight. Furthermore, for example, 0.001 to 8% by weight is more preferable, and even more preferably 0.001 to 5% by weight.

本発明の樹脂粒子は、界面活性剤及び水溶性高分子から選ばれる少なくとも1種を含むと本発明の比表面積を有する粒子を得られやすい点で好ましい。粒子中に占める界面活性剤及び水溶性高分子の合計の重量割合は、特に限定されないが、0.001~10重量%が好ましい。該重量割合の下限は、(1)0.002重量%、(2)0.005重量%、(3)0.01重量%、(4)0.02重量%、(5)0.05重量%、(6)0.1重量%の順で好ましい(括弧内の数値が大きくなるにつれ好ましい。)。一方、該重量割合の上限は、(1)7重量%、(2)6重量%、(3)5重量%、(4)4重量%、(5)3重量%の順で好ましい(括弧内の数値が大きくなるにつれ好ましい。)。さらに、例えば、0.001~7重量%がより好ましく、0.001~5重量%がさらに好ましい。 The resin particles of the present invention preferably contain at least one selected from a surfactant and a water-soluble polymer because particles having the specific surface area of the present invention can easily be obtained. The total weight proportion of the surfactant and water-soluble polymer in the particles is not particularly limited, but is preferably 0.001 to 10% by weight. The lower limits of the weight ratios are (1) 0.002% by weight, (2) 0.005% by weight, (3) 0.01% by weight, (4) 0.02% by weight, and (5) 0.05% by weight. % and (6) 0.1% by weight (the larger the value in parentheses is, the more preferable it is). On the other hand, the upper limit of the weight ratio is preferably (1) 7% by weight, (2) 6% by weight, (3) 5% by weight, (4) 4% by weight, and (5) 3% by weight (in parentheses). The larger the value, the better). Further, for example, 0.001 to 7% by weight is more preferable, and even more preferably 0.001 to 5% by weight.

本発明の樹脂粒子は、製造時に界面活性剤及び水溶性高分子を混合すると、水溶性高分子により製造時の液粘度が向上し、界面活性剤により粒子の均一化効率が向上し、本発明の真球度を有する粒子が得られやすく、また、粒子の表面の粗さが低減し本発明の比表面積を有する粒子が得られやすく好ましい。さらに、透明性とすべり性に優れる点で、界面活性剤及び水溶性高分子それぞれの重量割合が前述の範囲であるとさらに好ましい。 When the resin particles of the present invention are mixed with a surfactant and a water-soluble polymer during production, the water-soluble polymer improves the liquid viscosity during production, and the surfactant improves the homogenization efficiency of the particles. It is preferable because it is easy to obtain particles having a sphericity of 1, and the roughness of the surface of the particles is reduced, so that it is easy to obtain particles having the specific surface area of the present invention. Furthermore, it is more preferable that the weight ratios of the surfactant and the water-soluble polymer are within the above-mentioned ranges from the viewpoint of excellent transparency and slipperiness.

(工程1)
工程1は生分解性樹脂(A)と、界面活性剤と、水溶性高分子と水とを混合し、予備混合液を得る工程である。樹脂粒子が、生分解性樹脂(A)、界面活性剤及び水溶性高分子以外の他の成分を含有する場合には、本工程で他の成分を加えて、混合するとよい。
(Step 1)
Step 1 is a step of mixing the biodegradable resin (A), a surfactant, a water-soluble polymer, and water to obtain a premixed liquid. When the resin particles contain components other than the biodegradable resin (A), surfactant, and water-soluble polymer, the other components may be added and mixed in this step.

工程1において、生分解性樹脂(A)の混合割合は、特に限定はないが、水100重量部に対して、好ましくは1~200重量部である。該割合が上記範囲内であると、より均一な形状の樹脂粒子が得られる傾向があり、本発明の粒子径および真比重を有する粒子が得られやすく好ましい。該混合割合の下限は、より好ましくは3重量部、さらに好ましくは5重量部、最も好ましくは10重量部である。一方、該混合割合の上限は、より好ましくは180重量部、さらに好ましくは160重量部、最も好ましくは150重量部である。さらに、例えば、5~200重量部がより好ましく、10~180重量部がさらに好ましい。 In step 1, the mixing ratio of the biodegradable resin (A) is not particularly limited, but is preferably 1 to 200 parts by weight per 100 parts by weight of water. When the ratio is within the above range, resin particles with a more uniform shape tend to be obtained, and particles having the particle size and true specific gravity of the present invention are easily obtained, which is preferable. The lower limit of the mixing ratio is more preferably 3 parts by weight, still more preferably 5 parts by weight, and most preferably 10 parts by weight. On the other hand, the upper limit of the mixing ratio is more preferably 180 parts by weight, still more preferably 160 parts by weight, and most preferably 150 parts by weight. Further, for example, the amount is more preferably 5 to 200 parts by weight, and even more preferably 10 to 180 parts by weight.

工程1において、界面活性剤の混合割合は、特に限定はないが、本発明の真球度および比表面積を有する粒子が得られやすい点で、生分解性樹脂(A)100重量部に対して、好ましくは0.001~10重量部である。該割合が上記範囲内であると、得られる樹脂粒子の透明性およびすべり性が向上する傾向がある。該混合割合の下限は、好ましくは0.01重量部、さらに好ましくは0.05重量部、特に好ましくは0.1重量部である。該混合割合の上限は、より好ましくは7重量部、さらに好ましくは5重量部、特に好ましくは3重量部である。さらに、例えば、0.001~7重量部がより好ましく、0.01~7重量部がさらに好ましい。 In step 1, the mixing ratio of the surfactant is not particularly limited, but it should be selected based on 100 parts by weight of the biodegradable resin (A), since it is easy to obtain particles having the sphericity and specific surface area of the present invention. , preferably 0.001 to 10 parts by weight. When the ratio is within the above range, the transparency and slipperiness of the resulting resin particles tend to improve. The lower limit of the mixing ratio is preferably 0.01 part by weight, more preferably 0.05 part by weight, particularly preferably 0.1 part by weight. The upper limit of the mixing ratio is more preferably 7 parts by weight, still more preferably 5 parts by weight, and particularly preferably 3 parts by weight. Further, for example, 0.001 to 7 parts by weight is more preferable, and even more preferably 0.01 to 7 parts by weight.

工程1において、水に対する水溶性高分子の混合割合は、特に限定はないが、本発明の真球度および比表面積を有する粒子が得られやすい点で、水100重量部に対して、好ましくは0.1~100重量部である。該割合が上記範囲内であると、得られる樹脂粒子の分散性が向上する傾向がある。該割合の下限は、より好ましくは0.5重量部、さらに好ましくは1重量部、特に好ましくは2重量部である。一方、該割合の上限は、より好ましくは80重量部、さらに好ましくは70重量部、特に好ましくは60重量部である。また、例えば、0.5~100重量部がより好ましく、1~100重量部がさらに好ましい。 In step 1, the mixing ratio of the water-soluble polymer to water is not particularly limited, but is preferably set to 100 parts by weight of water, since it is easy to obtain particles having the sphericity and specific surface area of the present invention. The amount is 0.1 to 100 parts by weight. When the ratio is within the above range, the dispersibility of the resulting resin particles tends to improve. The lower limit of this ratio is more preferably 0.5 parts by weight, still more preferably 1 part by weight, and particularly preferably 2 parts by weight. On the other hand, the upper limit of the proportion is more preferably 80 parts by weight, still more preferably 70 parts by weight, and particularly preferably 60 parts by weight. Further, for example, the amount is more preferably 0.5 to 100 parts by weight, and even more preferably 1 to 100 parts by weight.

(工程2)
工程2は工程1で得られた予備混合液を加熱攪拌し、加熱分散液を得る工程である。
工程2における加熱攪拌中の圧力は、特に限定はないが、好ましくは0.1~10MPaである。該圧力が上記範囲内であると、本発明の真比重およびオレイン酸吸油量を有する樹脂粒子が得られる傾向がある。該圧力は加熱時の温度における水の飽和蒸気圧以上の圧力であると好ましい。
加熱温度は、特に限定はないが、好ましくは80~300℃である。該温度が上記範囲内であると、得られる樹脂粒子の形状がより均一になる傾向があり、本発明の真球度および比表面積を有する粒子が得られやすく好ましい。該温度は生分解性樹脂(A)の軟化点又は融点以上の温度であると好ましく、より好ましくは生分解性樹脂(A)の軟化点又は融点より5℃以上高い温度であり、さらに好ましくは10℃以上、特に好ましくは15℃以上高い温度である。
また、工程2において、生分解性樹脂(A)の軟化点又は融点以上の温度に加熱し、かつ、0.1MPa以上の加圧下で攪拌を行うと、融解エンタルピーが20~140J/gである樹脂粒子が得られやすく好ましい。
(Step 2)
Step 2 is a step of heating and stirring the premixed liquid obtained in Step 1 to obtain a heated dispersion liquid.
The pressure during heating and stirring in step 2 is not particularly limited, but is preferably 0.1 to 10 MPa. When the pressure is within the above range, resin particles having the true specific gravity and oleic acid absorption amount of the present invention tend to be obtained. The pressure is preferably higher than the saturated vapor pressure of water at the temperature during heating.
The heating temperature is not particularly limited, but is preferably 80 to 300°C. When the temperature is within the above range, the shape of the resin particles obtained tends to be more uniform, and particles having the sphericity and specific surface area of the present invention are easily obtained, which is preferable. The temperature is preferably a temperature equal to or higher than the softening point or melting point of the biodegradable resin (A), more preferably a temperature higher than the softening point or melting point of the biodegradable resin (A) by 5°C or more, and even more preferably The temperature is 10°C or higher, particularly preferably 15°C or higher.
In addition, in step 2, when heating to a temperature equal to or higher than the softening point or melting point of the biodegradable resin (A) and stirring under a pressure of 0.1 MPa or higher, the enthalpy of fusion is 20 to 140 J/g. This is preferred because resin particles can be easily obtained.

攪拌方法は、特に限定されないが、混合物が混合する程度に攪拌されていればよい。
加熱時間は、特に限定されないが、好ましくは1~30時間である。該時間が1時間以上であると、より均一に分散され、本発明の粒子径および真比重を有する粒子が得られやすく好ましい。該時間が30時間以下であると、生産効率が向上する傾向がある。該時間の下限は、より好ましくは2時間、さらに好ましくは3時間、最も好ましくは5時間である。加熱時間の上限は、より好ましくは25時間、さらに好ましくは20時間、最も好ましくは15時間である。
The stirring method is not particularly limited, as long as the mixture is stirred to the extent that the mixture is mixed.
The heating time is not particularly limited, but is preferably 1 to 30 hours. It is preferable that the time is 1 hour or more because it is more uniformly dispersed and particles having the particle size and true specific gravity of the present invention are easily obtained. When the time is 30 hours or less, production efficiency tends to improve. The lower limit of the time is more preferably 2 hours, still more preferably 3 hours, and most preferably 5 hours. The upper limit of the heating time is more preferably 25 hours, even more preferably 20 hours, and most preferably 15 hours.

(工程3)
工程3は工程2で得られた加熱分散液を冷却する工程である。工程2の加熱分散液を冷却することで、樹脂粒子の分散液を得ることができる。
冷却方法は、特に限定されないが、工程2で得られた加熱分散液を5~50℃に冷却すると好ましい。冷却速度は特に限定はないが、急冷してもよく、空気冷却等により自然冷却してもよい。
工程3においては、工程2の攪拌速度で攪拌してもよく、攪拌を停止してもよい。
冷却後の分散液は、樹脂粒子を含む水分散液である。
(Step 3)
Step 3 is a step of cooling the heated dispersion obtained in Step 2. By cooling the heated dispersion in step 2, a dispersion of resin particles can be obtained.
The cooling method is not particularly limited, but it is preferable to cool the heated dispersion obtained in step 2 to 5 to 50°C. The cooling rate is not particularly limited, but may be rapidly cooled or may be naturally cooled by air cooling or the like.
In step 3, stirring may be performed at the stirring speed of step 2, or stirring may be stopped.
The dispersion after cooling is an aqueous dispersion containing resin particles.

本発明の樹脂粒子の使用形態は、分散液でもよく、湿粉でもよく、乾燥粉体でもよい。
湿粉は、例えば、遠心分離機、加圧プレス機、真空脱水機等を用いて、工程3の分散液を脱水処理して得ることができる。
工程3の分散液は、液粘度を下げる措置を実施した後に脱水処理を行ってもよい。液粘度を下げる方法としては、特に限定はないが、水を追加して希釈する方法、水溶性成分を塩析する方法、水溶性成分を酸化剤や酵素等により分解する方法等が挙げられる。
乾燥粉体は、上記湿粉を、棚型乾燥機、間接加熱乾燥機、流動乾燥機、真空乾燥機、振動乾燥機、気流乾燥機等により乾燥し、乾燥粉末を得ることができる。また、工程3で得られた分散液を噴霧乾燥機、流動乾燥機等により乾燥し、乾燥粉末を得ることもできる。
乾燥粉末は、気流分級、スクリーン分級などで、分級してもよい。
The resin particles of the present invention may be used in the form of a dispersion, wet powder, or dry powder.
The wet powder can be obtained by dehydrating the dispersion in step 3 using, for example, a centrifuge, a pressure press, a vacuum dehydrator, or the like.
The dispersion liquid in step 3 may be subjected to dehydration treatment after taking measures to lower the liquid viscosity. Methods for lowering the liquid viscosity include, but are not particularly limited to, a method of diluting by adding water, a method of salting out water-soluble components, a method of decomposing water-soluble components with an oxidizing agent, an enzyme, etc.
The dry powder can be obtained by drying the wet powder using a tray dryer, an indirect heating dryer, a fluidized fluid dryer, a vacuum dryer, a vibration dryer, a flash dryer, or the like. Alternatively, the dispersion obtained in step 3 can be dried using a spray dryer, fluidized fluidized dryer, etc. to obtain a dry powder.
The dry powder may be classified by air flow classification, screen classification, or the like.

[樹脂粒子の用途]
本発明の樹脂粒子は、化粧料、塗料、光学用途、樹脂、建材などへ使用することが可能である。なかでも、本発明の樹脂粒子は、透明性に優れ、すべり性に優れることから、化粧料やコーティング組成物へ好適に用いることができる。
[Applications of resin particles]
The resin particles of the present invention can be used in cosmetics, paints, optical applications, resins, building materials, and the like. In particular, the resin particles of the present invention have excellent transparency and slip properties, and therefore can be suitably used in cosmetics and coating compositions.

本発明の樹脂粒子を化粧料に配合した場合は、仕上がりに違和感のない化粧料が得られ、さらには、高いすべり性も有することから、心地よい感触を与えることも可能である。
化粧料に用いる場合、公知の化粧料成分と組み合わせて使用することができる。化粧料成分としては、例えば、油剤、界面活性剤、アルコール類、水、保湿剤、ゲル化剤、増粘剤、本発明の樹脂粒子以外の粉体、紫外線吸収剤、防腐剤、抗菌剤、酸化防止剤、機能性成分等が挙げられる。本発明の樹脂粒子を配合した化粧料の形態としては、粉末状、固形状、クリーム状、ゲル状、液状、ムース状、スプレー状等が挙げられる。
化粧料全体に占める樹脂粒子の重量割合は、特に限定はないが、好ましくは0.1~50重量%、より好ましくは0.5~30重量%、さらに好ましくは1~20重量%である。
When the resin particles of the present invention are blended into a cosmetic, a cosmetic with a natural finish can be obtained, and furthermore, since it has high slipperiness, it is possible to provide a pleasant touch.
When used in cosmetics, it can be used in combination with known cosmetic ingredients. Cosmetic ingredients include, for example, oils, surfactants, alcohols, water, humectants, gelling agents, thickeners, powders other than the resin particles of the present invention, ultraviolet absorbers, preservatives, antibacterial agents, Examples include antioxidants and functional ingredients. Forms of cosmetics containing the resin particles of the present invention include powder, solid, cream, gel, liquid, mousse, spray, and the like.
The weight proportion of the resin particles in the entire cosmetic is not particularly limited, but is preferably 0.1 to 50% by weight, more preferably 0.5 to 30% by weight, and still more preferably 1 to 20% by weight.

本発明の樹脂粒子をコーティング組成物に配合した場合は、透明性を保持することができる。
コーティング組成物に用いる場合、公知のコーティング成分と組み合わせて使用することができる。
コーティング組成物全体に占める樹脂粒子の重量割合は、特に限定はないが、好ましくは0.1~30重量%、より好ましくは0.5~20重量%、さらに好ましくは1~10重量%である。
When the resin particles of the present invention are blended into a coating composition, transparency can be maintained.
When used in a coating composition, it can be used in combination with known coating components.
The weight proportion of the resin particles in the entire coating composition is not particularly limited, but is preferably 0.1 to 30% by weight, more preferably 0.5 to 20% by weight, and even more preferably 1 to 10% by weight. .

以下に、本発明の樹脂粒子の実施例について、具体的に説明する。なお、本発明はこれらの実施例に限定されるものではない。また、実施例及び比較例で挙げた粒子について、次に示す要領で物性を測定し、さらに評価を行った。 Examples of the resin particles of the present invention will be specifically described below. Note that the present invention is not limited to these examples. In addition, the physical properties of the particles mentioned in Examples and Comparative Examples were measured and further evaluated in the following manner.

(体積平均粒子径の測定)
レーザー回折散乱式粒度分布測定装置(マイクロトラック粒度分布計(型式9320-HRA)、日機装株式会社製)を使用し、湿式測定法により超音波を120秒照射し、測定を実施した。体積平均粒子径は体積基準測定による頻度の累積が50%の値(D50)を採用した。
(Measurement of volume average particle diameter)
Using a laser diffraction scattering particle size distribution analyzer (Microtrac particle size distribution meter (model 9320-HRA), manufactured by Nikkiso Co., Ltd.), the measurement was performed by irradiating ultrasonic waves for 120 seconds using a wet measurement method. For the volume average particle diameter, a value (D50) at which the cumulative frequency of volume based measurement is 50% was adopted.

(真球度の測定)
走査型電子顕微鏡にて1000倍で粒子を観察し、任意の30個の粒子について短径と長径を測定した。各粒子について短径/長径を計算し、30個の粒子の平均値を真球度とした。例えば、短径と長径の比が1.0の場合、真球度は1.0となる。
(Measurement of sphericity)
The particles were observed with a scanning electron microscope at a magnification of 1000 times, and the short axis and long axis of 30 arbitrary particles were measured. The short axis/long axis of each particle was calculated, and the average value of 30 particles was taken as the sphericity. For example, when the ratio of the short axis to the long axis is 1.0, the sphericity is 1.0.

(比表面積の測定)
測定装置として、比表面積測定装置(フローソーブII 2300、マイクロメリテックス社製)を使用し、吸着ガスとして窒素を使用してBET1点法により測定した。
(Measurement of specific surface area)
A specific surface area measuring device (Flowsorb II 2300, manufactured by Micromeritex) was used as a measuring device, and nitrogen was used as an adsorption gas, and the measurement was carried out by the BET one-point method.

(吸水量、吸油量の測定)
JIS-K5101吸油量の測定法に基づき、吸水量測定はイオン交換水を、吸油量測定はオレイン酸を用いて測定した。
(Measurement of water absorption and oil absorption)
Based on the JIS-K5101 method for measuring oil absorption, water absorption was measured using ion-exchanged water, and oil absorption was measured using oleic acid.

(真比重の測定)
100mLメスフラスコの重量aを計量し、次に試料を1gメスフラスコに加え重量bを計量した。これにイソプロピルアルコールを100mLの標線まで正確に加え全重量cを計量した。これとは別に、メスフラスコの空重量xを計量し、これにイソプロピルアルコールを標線まで正確に加え全重量yを計量した。これらの計量した値から、以下の数式(5)により真比重を算出した。
真比重=(b-a)×(y-x)/{100×(y-x)-(c-b)} (5)
この測定方法で、樹脂粒子の真比重を測定した。
(Measurement of true specific gravity)
The weight a of a 100 mL volumetric flask was measured, and then a 1 g sample was added to the volumetric flask and the weight b was measured. To this, isopropyl alcohol was added accurately up to the 100 mL mark and the total weight c was measured. Separately, the empty weight x of the volumetric flask was measured, and isopropyl alcohol was added thereto exactly up to the marked line, and the total weight y was measured. From these weighed values, the true specific gravity was calculated using the following formula (5).
True specific gravity = (ba-a) x (y-x)/{100 x (y-x)-(c-b)} (5)
The true specific gravity of the resin particles was measured using this measurement method.

(樹脂粒子の融解エンタルピーの測定)
測定装置として、示差走査熱量計(Jada DSC LAB SYSTEC、ParkinElmer社製)を使用し、窒素雰囲気下、10℃/分で30℃から250℃まで昇温し、融解エンタルピーを算出した。なお、複数の吸熱ピークが存在する場合は、全ての吸熱ピークのエンタルピーを合計したものを、樹脂粒子の融解エンタルピーとした。
(Measurement of enthalpy of fusion of resin particles)
A differential scanning calorimeter (Jada DSC LAB SYSTEC, manufactured by ParkinElmer) was used as a measuring device, and the temperature was raised from 30°C to 250°C at a rate of 10°C/min in a nitrogen atmosphere to calculate the enthalpy of fusion. In addition, when a plurality of endothermic peaks were present, the sum of the enthalpies of all the endothermic peaks was defined as the enthalpy of fusion of the resin particles.

(粒子の透明性の評価)
粒子の水分散液をスライドガラスに広げ、カバーガラスで押さえた試料を、光学顕微鏡(Nikon ECLIPSE)で観察し、任意に選んだ粒子20個の透明性を、以下の基準で評価した。
〇;光を透過し内側に影がみられない粒子の個数が20個中15個以上であり、透明性に優れる。
×;光を透過し内側に影がみられない粒子の個数が20個中15個未満であり、透明性に劣る。
(Evaluation of particle transparency)
An aqueous dispersion of particles was spread on a slide glass and a sample pressed with a cover glass was observed under an optical microscope (Nikon ECLIPSE), and the transparency of 20 arbitrarily selected particles was evaluated based on the following criteria.
Good: The number of particles that transmit light and show no shadow inside is 15 or more out of 20, and has excellent transparency.
×: The number of particles that transmit light and show no shadow inside is less than 15 out of 20, and the transparency is poor.

(すべり性の評価)
10cm×5cmの黒色の人工皮革(商品名サプラーレ イデアテックジャパン社製)の端に粒子を0.05g量り取り、指で一方向に塗り広げたときの、すべり性について、以下の基準で評価した。
〇:滑らかに塗布できる。
×:ざらつきを感じ、すべり性に劣る。
(Evaluation of slipperiness)
Weighed 0.05g of particles onto the edge of a 10cm x 5cm black artificial leather (trade name: Supuraray, manufactured by Ideatec Japan) and spread it in one direction with your fingers.The slipperiness was evaluated using the following criteria. .
○: Can be applied smoothly.
×: Feels rough and has poor slip properties.

〔実施例1〕
水300重量部とポリブチレンサクシネートアジペート100重量部とソルビタンモノラウレート0.5重量部とポリビニルアルコール20重量部とを混合し、1Lの耐圧容器に仕込み密閉した。容器内部温度を140℃まで昇温し、圧力0.5MPaにて、毎分400rpmで3時間攪拌した後、50℃まで冷却し、樹脂粒子の水分散液を得た。
水分散液に酸化剤を添加し、ろ過により脱水し、50℃で乾燥、分級し、粒子1を得た。
得られた粒子1の評価結果を表1に示す。また、粒子1の光学顕微鏡写真を図1に、電子顕微鏡写真を図2及び3に示す。
また、粒子1に含まれる生分解性樹脂(A)は99.7重量%、ソルビタンモノラウレートは0.2重量%、ポリビニルアルコールは0.1重量%であった。
[Example 1]
300 parts by weight of water, 100 parts by weight of polybutylene succinate adipate, 0.5 parts by weight of sorbitan monolaurate, and 20 parts by weight of polyvinyl alcohol were mixed, and the mixture was charged into a 1 L pressure-resistant container and sealed. The internal temperature of the container was raised to 140°C, the mixture was stirred at 400 rpm per minute under a pressure of 0.5 MPa for 3 hours, and then cooled to 50°C to obtain an aqueous dispersion of resin particles.
An oxidizing agent was added to the aqueous dispersion, which was dehydrated by filtration, dried at 50°C, and classified to obtain particles 1.
Table 1 shows the evaluation results of the obtained particles 1. Further, an optical micrograph of Particle 1 is shown in FIG. 1, and electron micrographs are shown in FIGS. 2 and 3.
Furthermore, the biodegradable resin (A) contained in Particle 1 was 99.7% by weight, sorbitan monolaurate was 0.2% by weight, and polyvinyl alcohol was 0.1% by weight.

〔実施例2〕
水300重量部とポリブチレンサクシネート100重量部とソルビタンモノステアレート1重量部とポリビニルアルコール20重量部とを混合し、1Lの耐圧容器に仕込み密閉した。容器内部温度を140℃まで昇温し、圧力0.5MPaにて、毎分400rpmで3時間攪拌した後、50℃まで冷却し、樹脂粒子の水分散液を得た。
水分散液に酸化剤を添加し、ろ過により脱水し、50℃で乾燥、分級し、粒子2を得た。得られた粒子2の評価結果を表1に示す。
また、粒子2に含まれる生分解性樹脂(A)は98.6重量%、ソルビタンモノステアレートは0.8重量%、ポリビニルアルコールは0.6重量%であった。
[Example 2]
300 parts by weight of water, 100 parts by weight of polybutylene succinate, 1 part by weight of sorbitan monostearate, and 20 parts by weight of polyvinyl alcohol were mixed, and the mixture was charged into a 1 L pressure-resistant container and sealed. The internal temperature of the container was raised to 140°C, the mixture was stirred at 400 rpm per minute under a pressure of 0.5 MPa for 3 hours, and then cooled to 50°C to obtain an aqueous dispersion of resin particles.
An oxidizing agent was added to the aqueous dispersion, dehydrated by filtration, dried at 50°C, and classified to obtain particles 2. Table 1 shows the evaluation results of the obtained particles 2.
Furthermore, the biodegradable resin (A) contained in Particle 2 was 98.6% by weight, sorbitan monostearate was 0.8% by weight, and polyvinyl alcohol was 0.6% by weight.

〔実施例3〕
水200重量部とポリブチレンサクシネートアジペート100重量部とソルビタンモノラウレート2重量部とポリビニルアルコール20重量部とを混合し、1Lの耐圧容器に仕込み密閉した。容器内部温度を140℃まで昇温し、圧力0.5MPaにて、毎分400rpmで3時間攪拌した後、50℃まで冷却し、樹脂粒子の水分散液を得た。
水分散液に酸化剤を添加し、ろ過により脱水し、50℃で乾燥、分級し、粒子3を得た。
得られた粒子3の評価結果を表1に示す。
また、粒子3に含まれる生分解性樹脂(A)は98.8重量%、ソルビタンモノラウレートは1.0重量%、ポリビニルアルコールは0.2重量%であった。
[Example 3]
200 parts by weight of water, 100 parts by weight of polybutylene succinate adipate, 2 parts by weight of sorbitan monolaurate, and 20 parts by weight of polyvinyl alcohol were mixed, and the mixture was charged into a 1 L pressure-resistant container and sealed. The internal temperature of the container was raised to 140°C, the mixture was stirred at 400 rpm per minute under a pressure of 0.5 MPa for 3 hours, and then cooled to 50°C to obtain an aqueous dispersion of resin particles.
An oxidizing agent was added to the aqueous dispersion, dehydrated by filtration, dried at 50°C, and classified to obtain particles 3.
Table 1 shows the evaluation results of the obtained particles 3.
Furthermore, the biodegradable resin (A) contained in Particle 3 was 98.8% by weight, sorbitan monolaurate was 1.0% by weight, and polyvinyl alcohol was 0.2% by weight.

〔実施例4〕
水300重量部とポリブチレンサクシネート99重量部とソルビタンモノラウレート2重量部とアルカンオイル1重量部とポリビニルアルコール20重量部とを混合し、1Lの耐圧容器に仕込み密閉した。容器内部温度を140℃まで昇温し、圧力0.5MPaにて、毎分400rpmで3時間攪拌した後、50℃まで冷却し、樹脂粒子の水分散液を得た。
水分散液を多量の水で希釈し、ろ過により脱水し、50℃で乾燥、分級し、粒子4を得た。得られた粒子4の評価結果を表1に示す。
また、粒子4に含まれる生分解性樹脂(A)は99.0重量%、ソルビタンモノラウレートは0.001重量%、ポリビニルアルコールは0重量%であった。
[Example 4]
300 parts by weight of water, 99 parts by weight of polybutylene succinate, 2 parts by weight of sorbitan monolaurate, 1 part by weight of alkane oil, and 20 parts by weight of polyvinyl alcohol were mixed, and the mixture was charged into a 1 L pressure-resistant container and sealed. The internal temperature of the container was raised to 140°C, the mixture was stirred at 400 rpm per minute under a pressure of 0.5 MPa for 3 hours, and then cooled to 50°C to obtain an aqueous dispersion of resin particles.
The aqueous dispersion was diluted with a large amount of water, dehydrated by filtration, dried at 50°C, and classified to obtain particles 4. Table 1 shows the evaluation results of the obtained particles 4.
Furthermore, the biodegradable resin (A) contained in Particle 4 was 99.0% by weight, sorbitan monolaurate was 0.001% by weight, and polyvinyl alcohol was 0% by weight.

〔実施例5〕
水300重量部と、ポリブチレンアジペートテレフタレート100重量部とソルビタンセスキオレート2重量部とポリビニルアルコール30重量部とを混合し、1Lの耐圧容器に仕込み密閉した。容器内部温度を140℃まで昇温し、圧力1.0MPaにて、毎分400rpmで5時間攪拌した後、50℃まで冷却し、樹脂粒子の水分散液を得た。
水分散液を多量の水で洗浄後、ろ過により脱水し、50℃で乾燥、分級し、粒子5を得た。得られた粒子5の評価結果を表1に示す。
また、粒子4に含まれる生分解性樹脂(A)は100重量%、ソルビタンセスキオレートは0重量%、ポリビニルアルコールは0重量%であった。
[Example 5]
300 parts by weight of water, 100 parts by weight of polybutylene adipate terephthalate, 2 parts by weight of sorbitan sesquiolate, and 30 parts by weight of polyvinyl alcohol were mixed, and the mixture was charged into a 1 L pressure-resistant container and sealed. The internal temperature of the container was raised to 140° C., the mixture was stirred at 400 rpm per minute under a pressure of 1.0 MPa for 5 hours, and then cooled to 50° C. to obtain an aqueous dispersion of resin particles.
After washing the aqueous dispersion with a large amount of water, it was dehydrated by filtration, dried at 50°C, and classified to obtain particles 5. Table 1 shows the evaluation results of the obtained particles 5.
Furthermore, the biodegradable resin (A) contained in Particle 4 was 100% by weight, sorbitan sesquiolate was 0% by weight, and polyvinyl alcohol was 0% by weight.

〔比較例1〕
水240重量部とポリブチレンサクシネート40重量部と3-メトキシ-3-メチル-1-ブタノール120重量部と疎水性フュームドシリカ3重量部とを混合し、1Lの耐圧容器に仕込み密閉した。容器内部温度を120℃まで昇温し、圧力0.5MPaにて、毎分400rpmで1.5時間攪拌した後、25℃まで冷却し、樹脂粒子の分散液を得た。ろ過により脱水し、50℃で乾燥、分級し、粒子6を得た。得られた粒子6の評価結果を表1に示す。また粒子6の光学顕微鏡写真を図4に、電子顕微鏡写真を図5及び6に示す。
[Comparative example 1]
240 parts by weight of water, 40 parts by weight of polybutylene succinate, 120 parts by weight of 3-methoxy-3-methyl-1-butanol, and 3 parts by weight of hydrophobic fumed silica were mixed, and the mixture was charged into a 1 L pressure-resistant container and sealed. The internal temperature of the container was raised to 120°C, the mixture was stirred at 400 rpm per minute under a pressure of 0.5 MPa for 1.5 hours, and then cooled to 25°C to obtain a dispersion of resin particles. It was dehydrated by filtration, dried at 50°C, and classified to obtain particles 6. Table 1 shows the evaluation results of the obtained particles 6. Further, an optical micrograph of the particles 6 is shown in FIG. 4, and electron micrographs are shown in FIGS. 5 and 6.

Figure 0007443614000003
Figure 0007443614000003

実施例1~5の粒子は、生分解性樹脂(A)を含み、体積平均粒子径が1~50μmであり、真球度が0.9~1.0であり、比表面積が0.7~3.0m/gであり、オレイン酸吸油量が30~150mL/100gであり、真比重が0.90~1.5g/cmであるため透明性に優れ、かつ、すべり性に優れる。
一方、比較例1の粒子は、本発明の粒子でないため比表面積が10m/gより大きく、透明性に劣り、すべり性に劣る。
The particles of Examples 1 to 5 contain a biodegradable resin (A), have a volume average particle diameter of 1 to 50 μm, a sphericity of 0.9 to 1.0, and a specific surface area of 0.7. ~3.0 m 2 /g, oleic acid absorption of 30 to 150 mL/100 g, and true specific gravity of 0.90 to 1.5 g/cm 3 , resulting in excellent transparency and slipperiness. .
On the other hand, since the particles of Comparative Example 1 are not particles of the present invention, the specific surface area is larger than 10 m 2 /g, and the particles are inferior in transparency and slipperiness.

本発明の樹脂粒子は、生分解性を有するため、環境に優しい。本発明の樹脂粒子は、透明性及びすべり性に優れることから、化粧料、塗料、コーティング組成物、フィルム、成形体等などの各種製品へ好適に用いることができる。例えば、化粧料に配合した場合には、明度を保持したまま、仕上がりに違和感のない化粧料を得ることができる。また、コーティング組成物に配合した場合には、透明性を保持することができる。

The resin particles of the present invention are biodegradable and therefore environmentally friendly. Since the resin particles of the present invention have excellent transparency and smoothness, they can be suitably used in various products such as cosmetics, paints, coating compositions, films, molded bodies, and the like. For example, when incorporated into cosmetics, it is possible to obtain cosmetics that have a natural finish while maintaining brightness. Moreover, when it is blended into a coating composition, transparency can be maintained.

Claims (4)

生分解性樹脂(A)を含み、体積平均粒子径が1~50μmであり、真球度が0.9~1.0であり、比表面積が0.7~3.0m/gであり、オレイン酸吸油量が30~150mL/100gであり、真比重が0.90~1.5g/cmであり、
前記生分解性樹脂(A)が、ポリビニル系樹脂、ポリエステル系樹脂、ポリエーテル系樹脂、ポリアミド系樹脂、熱可塑性ポリウレタン系樹脂及びセルロース系樹脂から選ばれる少なくとも1種であり、
前記ポリエステル系樹脂が、脂肪族ポリエステル系樹脂及び脂肪族-芳香族ポリエステル系樹脂から選ばれる少なくとも1種を含む樹脂粒子。
Contains a biodegradable resin (A), has a volume average particle diameter of 1 to 50 μm, a sphericity of 0.9 to 1.0, and a specific surface area of 0.7 to 3.0 m 2 /g. , oleic acid oil absorption is 30 to 150 mL/100 g, true specific gravity is 0.90 to 1.5 g/cm 3 ,
The biodegradable resin (A) is at least one selected from polyvinyl resin, polyester resin, polyether resin, polyamide resin, thermoplastic polyurethane resin, and cellulose resin,
Resin particles in which the polyester resin contains at least one selected from aliphatic polyester resins and aliphatic-aromatic polyester resins .
生分解性樹脂(A)を含み、体積平均粒子径が1~50μmであり、真球度が0.9~1.0であり、比表面積が0.7~3.0mContains biodegradable resin (A), has a volume average particle diameter of 1 to 50 μm, sphericity of 0.9 to 1.0, and a specific surface area of 0.7 to 3.0 m 2 /gであり、オレイン酸吸油量が30~150mL/100gであり、真比重が0.90~1.5g/cm/g, oleic acid oil absorption is 30 to 150mL/100g, and true specific gravity is 0.90 to 1.5g/cm. 3 であり、and
融解エンタルピーが20~140J/gである樹脂粒子。Resin particles having a melting enthalpy of 20 to 140 J/g.
請求項1又は2に記載の樹脂粒子を含む、化粧料。 A cosmetic comprising the resin particles according to claim 1 or 2 . 請求項1又は2に記載の樹脂粒子を含む、コーティング組成物。 A coating composition comprising the resin particles according to claim 1 or 2 .
JP2023169290A 2022-10-05 2023-09-29 Resin particles and their uses Active JP7443614B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022160625 2022-10-05
JP2022160625 2022-10-05

Publications (2)

Publication Number Publication Date
JP7443614B1 true JP7443614B1 (en) 2024-03-05
JP2024054843A JP2024054843A (en) 2024-04-17

Family

ID=90096889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023169290A Active JP7443614B1 (en) 2022-10-05 2023-09-29 Resin particles and their uses

Country Status (1)

Country Link
JP (1) JP7443614B1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012105140A1 (en) 2011-01-31 2012-08-09 東レ株式会社 Method for producing microparticles of polylactic acid-based resin, microparticles of polylactic acid-based resin and cosmetic using same
JP2019147967A (en) 2015-06-03 2019-09-05 積水化成品工業株式会社 Substantially spherical resin particle comprising thermoplastic resin, method for producing the same and use therefor
WO2019189692A1 (en) 2018-03-30 2019-10-03 日揮触媒化成株式会社 Organic-inorganic composite particles, manufacturing method therefor, and cosmetic
WO2022014084A1 (en) 2020-07-13 2022-01-20 株式会社ダイセル Cellulose acetate particles, cosmetic composition, and method for producing cellulose acetate particles
JP2022041692A (en) 2020-09-01 2022-03-11 大日精化工業株式会社 Resin bead, resin bead production method, and product using the resin bead
JP2022161001A (en) 2021-04-07 2022-10-20 松本油脂製薬株式会社 Resin particles and method for producing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012105140A1 (en) 2011-01-31 2012-08-09 東レ株式会社 Method for producing microparticles of polylactic acid-based resin, microparticles of polylactic acid-based resin and cosmetic using same
JP2019147967A (en) 2015-06-03 2019-09-05 積水化成品工業株式会社 Substantially spherical resin particle comprising thermoplastic resin, method for producing the same and use therefor
WO2019189692A1 (en) 2018-03-30 2019-10-03 日揮触媒化成株式会社 Organic-inorganic composite particles, manufacturing method therefor, and cosmetic
WO2022014084A1 (en) 2020-07-13 2022-01-20 株式会社ダイセル Cellulose acetate particles, cosmetic composition, and method for producing cellulose acetate particles
JP2022041692A (en) 2020-09-01 2022-03-11 大日精化工業株式会社 Resin bead, resin bead production method, and product using the resin bead
JP2022161001A (en) 2021-04-07 2022-10-20 松本油脂製薬株式会社 Resin particles and method for producing the same

Also Published As

Publication number Publication date
JP2024054843A (en) 2024-04-17

Similar Documents

Publication Publication Date Title
JP6609726B1 (en) Cellulose acetate particles, cosmetic composition and method for producing cellulose acetate particles
JP6872068B1 (en) Resin beads, manufacturing methods for resin beads, and products using resin beads
KR102614353B1 (en) Resin beads, manufacturing method of resin beads, and products using resin beads
CN109195582A (en) Biodegradable microballon
JP2022161001A (en) Resin particles and method for producing the same
CN107427444A (en) The composite granule of inorganic particle, cosmetic composition containing the composite granule and preparation method thereof are impregnated in porous polymer
CN113574096A (en) Hydrophobic alginic acid particles and process for producing the same
CN115386208A (en) Degradable micro-bead and preparation method and application thereof
JP7443614B1 (en) Resin particles and their uses
WO2016152872A1 (en) Cosmetic additive and method for producing same
JP2024028475A (en) Biodegradable spherical particles and production method therefor
JP2016164249A (en) Flat cellulose composite powder, method for producing the same and cosmetics comprising the same
JP7542703B2 (en) Resin particles and their uses
JP7443605B2 (en) Polymer particles and their uses
JP7454108B2 (en) Particles and their uses
JP7377924B1 (en) Polymer particles and their uses
JP2018083759A (en) Cosmetic
JP2006348266A (en) Organic composite powder and product using the same
JP5665332B2 (en) Method for producing composite particles
Byun et al. Physical properties and characterization of biodegradable films using nano-sized TiO2/poly (acrylamide-co-methyl methacrylate) composite
JP2024052570A (en) Polymer particle and use therefor
JP2024053546A (en) Polyester-based resin particles, and application of the same
CN118660926A (en) Particles and uses thereof
JP5543053B2 (en) Powder cosmetics
EP4389802A1 (en) Novel and versatile biodegradable micropowder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231113

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20231113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240221

R150 Certificate of patent or registration of utility model

Ref document number: 7443614

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150