JP7442791B2 - catalytic reactor - Google Patents

catalytic reactor Download PDF

Info

Publication number
JP7442791B2
JP7442791B2 JP2020029661A JP2020029661A JP7442791B2 JP 7442791 B2 JP7442791 B2 JP 7442791B2 JP 2020029661 A JP2020029661 A JP 2020029661A JP 2020029661 A JP2020029661 A JP 2020029661A JP 7442791 B2 JP7442791 B2 JP 7442791B2
Authority
JP
Japan
Prior art keywords
flow path
plate
reaction
catalytic reactor
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020029661A
Other languages
Japanese (ja)
Other versions
JP2021090942A (en
Inventor
貴史 福田
哲 宮沢
真一 大川原
アントニー バスニ ハムザ
史郎 吉川
秀行 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Publication of JP2021090942A publication Critical patent/JP2021090942A/en
Application granted granted Critical
Publication of JP7442791B2 publication Critical patent/JP7442791B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

本発明は、触媒反応器に関し、特に、反応流体の流入口及び流出口と連通する流路と、該流路の長手方向に面する壁面に設置された固体触媒とを備えた触媒反応器に関する。 The present invention relates to a catalytic reactor, and more particularly, to a catalytic reactor equipped with a flow channel communicating with an inlet and an outlet of a reaction fluid, and a solid catalyst installed on a wall surface facing the longitudinal direction of the flow channel. .

従来から、管形状をはじめとする、一定の形状をもった流路に粒子状の固体触媒を緩みなく充填した触媒反応器が知られている。一般に固体触媒は粒子サイズが小さいほど量あたりの反応流体の転化率が高まる。
しかしながら、充填層型触媒反応器では、粉末のような細かな固体触媒を流路に充填すると反応流体の通り道が狭まり結果として大きな圧力損失を生じさせてしまう。特に、触媒反応が炭素の析出を伴う反応である場合、例えば、バイオマスから得られるメタン、エタノール等或いは天然ガスやLPガス等の炭素化合物の改質反応である場合には、反応の進行に伴う炭素析出によってさらに通り道が狭まり圧力損失が漸次増大する。これらの圧力増加が大きければ運転の支障になりうる。それだからといって、粒子サイズの大きな固体触媒を充填させた充填層型触媒反応器を用いて大きな圧力損失を回避しようとすると、粒子サイズが大きいので触媒量あたりの反応流体の転化率が低下してしまう。
BACKGROUND ART Catalytic reactors have heretofore been known in which a flow path having a certain shape, such as a tube shape, is filled with particulate solid catalyst without loosening. Generally, the smaller the particle size of a solid catalyst, the higher the conversion rate of reaction fluid per unit amount.
However, in a packed bed type catalytic reactor, when the flow path is filled with fine solid catalyst such as powder, the passage of the reaction fluid is narrowed, resulting in a large pressure loss. In particular, when the catalytic reaction is a reaction accompanied by carbon precipitation, for example, when it is a reforming reaction of methane, ethanol, etc. obtained from biomass, or a carbon compound such as natural gas or LP gas, as the reaction progresses, Carbon deposition further narrows the passageway and gradually increases pressure loss. If these pressure increases are large, they may interfere with operation. However, if you try to avoid a large pressure loss by using a packed bed catalytic reactor filled with a solid catalyst with large particle size, the conversion rate of reaction fluid per amount of catalyst will decrease due to the large particle size. .

上記充填層型触媒反応器の圧力損失を改善するものとして、触媒充填層に反応流体が吹抜けうる流路空間を確保した反応器(特許文献1~4、非特許文献1~2参照)が従来から知られている。
例えば、特許文献1~2では、固体触媒を流路壁面に塗布していた。
また、塗布に代わるものとして、特許文献3~4、非特許文献1~2では、流路プレートの表面に微小溝からなる流路を形成するか又はスリット入りのガスケットを用いて流路を形成するとともに、触媒プレートの表面に凹部を形成して該凹部に粉末状触媒を固定化して埋設し、該触媒プレートと前記流路プレート又はスリット入りのガスケットとを互いに密着させて流路を兼ねた反応空間を構成していた。
In order to improve the pressure loss of the above-mentioned packed bed type catalytic reactor, conventional reactors (see Patent Documents 1 to 4 and Non-Patent Documents 1 to 2) have been developed in which a flow path space through which the reaction fluid can blow through the catalyst packed bed is secured. known from.
For example, in Patent Documents 1 and 2, a solid catalyst is applied to the wall surface of the channel.
In addition, as an alternative to coating, Patent Documents 3 to 4 and Non-Patent Documents 1 to 2 disclose that a flow path is formed by forming micro grooves on the surface of a flow path plate or by using a gasket with slits. At the same time, a recess is formed on the surface of the catalyst plate, a powdered catalyst is immobilized and buried in the recess, and the catalyst plate and the flow path plate or gasket with slits are brought into close contact with each other to serve as a flow path. It constituted a reaction space.

図1は、一例としての特許文献4に記載された、反応器内部に反応流体の流入口及び流出口と連通する流路(以下、「吹抜け流路」ということもある)を有する積層型の触媒反応器1の外観図であり、該図に示すように、複数のプレート2,2と該プレート間に配置されたガスケット3とを備えており、該ガスケット3の開口部と該開口部に位置するプレートの内面とで流路4を形成すると共に、プレート2,2には該流路4に連通する流体入口5及び流体出口6が設けられている。なお、該図には図示されていないが、固体触媒は、流路4に面する(画定する)壁面に設けられた溝部に埋設固定されている(後述する図2、4参照)。 FIG. 1 shows, as an example, a laminated type reactor described in Patent Document 4, which has a flow path (hereinafter sometimes referred to as an "opening flow path") that communicates with an inlet and an outlet of a reaction fluid inside the reactor. It is an external view of the catalytic reactor 1, and as shown in the figure, it is equipped with a plurality of plates 2, 2 and a gasket 3 disposed between the plates, and an opening of the gasket 3 and a gasket at the opening. The plates 2, 2 are provided with a fluid inlet 5 and a fluid outlet 6 that communicate with the flow path 4, forming a flow path 4 with the inner surface of the plate. Although not shown in this figure, the solid catalyst is embedded and fixed in a groove provided in a wall surface facing (defining) the flow path 4 (see FIGS. 2 and 4 described later).

特許第5886329号Patent No. 5886329 特開2003-245562号公報Japanese Patent Application Publication No. 2003-245562 特開2007-160227号公報Japanese Patent Application Publication No. 2007-160227 特開2017-144403号公報JP 2017-144403 Publication

福田ら,「プレート型反応器を用いたメタン改質の検討(3)-水蒸気改質への展開-」,化学工学会第82回年会大会要旨集,G118(2017)Fukuda et al., “Study of methane reforming using a plate reactor (3) – Development to steam reforming –”, Proceedings of the 82nd Annual Meeting of the Society of Chemical Engineers, G118 (2017) Takashi Fukuda et.al.,Influence of channel dimensions and operational parameters on methane dry-reforming reaction in a catalytic wall-plate reactor and its design methodology.,React.Chem.Eng.,2019,4,537-549Takashi Fukuda et.al. , Influence of channel dimensions and operational parameters on methane dry-reforming reaction in a catalytic wall-plate reactor and its design methodology., React. Chem. Eng., 2019, 4, 537-549

従来の吹抜け流路付き触媒反応器において、反応流体と固体触媒との接触は主として反応流体を構成する分子の拡散が支配的である。反応成績を向上させるための方法として、分子拡散距離を狭めるべく、吹抜け流路の高さを短縮することで反応流体と固体触媒との接触が改善されていた(非特許文献2参照)。
しかしながら、従来の吹抜け流路付き触媒反応器において、反応流体と触媒との接触について、改善の余地が残されていた。一般に移流のほうが拡散に比べて、反応流体に含まれる物質の移動が速やかである。したがって、拡散を主とする触媒接触の改善方法だけでは、反応に対して触媒への反応流体の供給が追い付かず、十分な反応成績が得られにくい。言い換えると、反応系もしくは反応を実施する温度に制限がかかる。
In a conventional catalytic reactor with a blow-through channel, the contact between the reaction fluid and the solid catalyst is mainly dominated by diffusion of molecules constituting the reaction fluid. As a method for improving reaction results, contact between the reaction fluid and the solid catalyst has been improved by shortening the height of the blow-through channel in order to narrow the molecular diffusion distance (see Non-Patent Document 2).
However, in the conventional catalytic reactor with a blow-through channel, there remains room for improvement regarding the contact between the reaction fluid and the catalyst. In general, advection moves substances contained in a reaction fluid more quickly than diffusion. Therefore, if only a method for improving catalyst contact based on diffusion is used, the supply of reaction fluid to the catalyst cannot keep up with the reaction, making it difficult to obtain sufficient reaction results. In other words, there are restrictions on the reaction system or the temperature at which the reaction is carried out.

本発明は、吹抜け流路付き反応器において、反応流体と触媒との接触を改善させる改良を施し、より広い反応条件において従来の反応器並みもしくはそれ以上の反応成績を提供することを課題とする。 An object of the present invention is to improve the contact between the reaction fluid and the catalyst in a reactor with a blow-through channel, and to provide reaction results comparable to or better than that of conventional reactors under a wider range of reaction conditions. .

本発明者は、前記課題を解決するために種々の検討を行った結果、吹抜け流路内に、反応流体の移流の向きを固体触媒面に向かうように変更する手段を設けることで、反応流体を触媒部に正面から衝突させることができ、反応効率を改善できることを見出し、本発明を完成するに至った。また、前記固体触媒を流路の壁面に設けられた凹部内に敷設するとともに、該凹部の前記流入口側及び/又は前記流出口側にスペースを設けることで、反応効果をさらに高めることができることも見いだした。 As a result of various studies to solve the above-mentioned problems, the inventors of the present invention have discovered that by providing a means for changing the advection direction of the reaction fluid toward the solid catalyst surface in the blow-through channel, the reaction fluid The present inventors have discovered that the reaction efficiency can be improved by colliding head-on with the catalyst, and have completed the present invention. Further, the reaction effect can be further enhanced by placing the solid catalyst in a recess provided on the wall of the channel and providing a space on the inlet side and/or the outlet side of the recess. I also found

すなわち、上記課題を解決するために、本発明では、以下の手段を採用するものである。
[1]反応器内部に、反応流体の流入口及び流出口と連通する矩形状流路と、該矩形状流路の長手方向に面する少なくとも一つの壁面に設置された固体触媒とを備え、前記流路内には、前記反応流体の移流の向きを前記固体触媒面に向かうように変更する手段が設置されていることを特徴とする触媒反応器。
[2]前記移流の向きの変更手段が、前記反応器を構成する部材と一体である[1]に記載の触媒反応器。
[3]前記移流の向きの変更手段が、前記反応器を構成する部材と別体であって、前記反応器内に挿入できる部品として構成される[1]に記載の触媒反応器。
[4]前記移流の向きの変更手段が、前記流路の前記固体触媒が配置されていない壁面に垂直に設置された複数の邪魔板からなる[1]~[3]のいずれかに記載の触媒反応器。
[5]前記固体触媒が、前記壁面に敷設された粒子状の触媒からなる[1]~[4]のいずれかに記載の触媒反応器。
[6]前記固体触媒が、前記壁面に設けられた凹部内に敷設された[1]~[5]のいずれかに記載の触媒反応器。
[7]前記凹部内には、前記流入口側及び/又は前記流出口側に、前記固体触媒が敷設されてない空間が設けられた[6]に記載の触媒反応器。
[8]前記反応器が複数のプレートを積層することで形成された積層型であって、
前記反応流体の流路が形成されたプレートと、表面に触媒が設置されたプレートとを有し、前記流路が形成された面と前記触媒が設置された面とが互いに密着してなる[1]~[7]のいずれかに記載の触媒反応器。
[9]前記反応器が複数のプレートを積層することで形成された積層型であって、
前記反応流体の流路が、ガスケットを介して、複数のプレートを所定間隔で積層配置することで形成されてなる[1]~[7]のいずれかに記載の触媒反応器。
[10]前記移流の向きの変更手段が、前記ガスケットを構成する部材と一体である[9]に記載の触媒反応器。
[11]熱媒用流路又は冷媒用流路が形成されたプレートを有し、該熱媒用流路又は冷媒用流路と前記反応流体の流路とが交互になるように積層された熱交換型である[9]~[10]のいずれかに記載の触媒反応器。
[12]気相反応用反応器である[1]~[11]のいずれかに記載の触媒反応器。
[13]前記気相反応が、炭素化合物の改質反応である[12]に記載の触媒反応器。
[14]前記炭素化合物が、メタン、エタノール、又はLPガスである[13]に記載の触媒反応器。
[15]メタンのドライ改質反応用反応器である[14]に記載の触媒反応器。
That is, in order to solve the above problems, the present invention employs the following means.
[1] The inside of the reactor is provided with a rectangular channel communicating with an inlet and an outlet of a reaction fluid, and a solid catalyst installed on at least one wall surface facing the longitudinal direction of the rectangular channel, A catalytic reactor characterized in that a means for changing the direction of advection of the reaction fluid toward the solid catalyst surface is installed in the flow path.
[2] The catalytic reactor according to [1], wherein the means for changing the direction of advection is integrated with a member constituting the reactor.
[3] The catalytic reactor according to [1], wherein the means for changing the direction of advection is configured as a component that is separate from a member constituting the reactor and that can be inserted into the reactor.
[4] The method according to any one of [1] to [3], wherein the means for changing the direction of advection comprises a plurality of baffle plates installed perpendicularly to a wall surface of the flow path where the solid catalyst is not arranged. Catalytic reactor.
[5] The catalytic reactor according to any one of [1] to [4], wherein the solid catalyst comprises a particulate catalyst laid on the wall surface.
[6] The catalytic reactor according to any one of [1] to [5], wherein the solid catalyst is placed in a recess provided in the wall surface.
[7] The catalytic reactor according to [6], wherein a space in which the solid catalyst is not placed is provided in the recess on the inlet side and/or the outlet side.
[8] The reactor is a stacked type formed by stacking a plurality of plates,
[ The catalytic reactor according to any one of [1] to [7].
[9] The reactor is a stacked type formed by stacking a plurality of plates,
The catalytic reactor according to any one of [1] to [7], wherein the flow path for the reaction fluid is formed by stacking a plurality of plates at predetermined intervals through gaskets.
[10] The catalytic reactor according to [9], wherein the means for changing the direction of advection is integrated with a member constituting the gasket.
[11] It has a plate in which a heat medium flow path or a coolant flow path is formed, and is laminated so that the heat medium flow path or coolant flow path and the reaction fluid flow path alternate. The catalytic reactor according to any one of [9] to [10], which is a heat exchange type.
[12] The catalytic reactor according to any one of [1] to [11], which is a gas phase application reactor.
[13] The catalytic reactor according to [12], wherein the gas phase reaction is a reforming reaction of a carbon compound.
[14] The catalytic reactor according to [13], wherein the carbon compound is methane, ethanol, or LP gas.
[15] The catalytic reactor according to [14], which is a reactor for dry reforming reaction of methane.

本発明は、従来の吹抜け流路付き触媒反応器において、特段述べられていなかった反応流体の移流の向きに影響を及ぼすものであって、流路内に、反応流体の移流の向きを固体触媒面に向かうように変更する手段をとりつけること、或いはさらに、前記固体触媒を流路の壁面に設けられた凹部内に敷設するとともに、該凹部の前記流入口側及び/又は前記流出口側にスペースを設けることにより、反応効率が改善できることとなる。また、このことは、触媒量の節約、ないしは反応器のコンパクト化につながる。 The present invention affects the direction of advection of a reaction fluid, which has not been specifically mentioned, in a conventional catalytic reactor with a blow-through channel. Further, the solid catalyst may be installed in a recess provided in the wall of the channel, and a space may be provided on the inlet side and/or the outlet side of the recess. By providing this, the reaction efficiency can be improved. This also leads to saving in the amount of catalyst or making the reactor more compact.

特許文献4に記載された触媒反応器の外観図External view of the catalytic reactor described in Patent Document 4 本実施形態における邪魔板の1例の概要を模式的に示す分解斜視図An exploded perspective view schematically showing an example of a baffle plate in this embodiment 触媒反応器内の反応流体の流れを模式的に示す一部横断面図であり、上から順に、従来の触媒反応器の場合、本発明の一実施形態の場合、本発明の他の一実施形態の場合を示す1 is a partial cross-sectional view schematically showing the flow of a reaction fluid in a catalytic reactor, from top to bottom, in the case of a conventional catalytic reactor, in the case of one embodiment of the present invention, and in the case of another embodiment of the present invention. Indicates the case of form 本発明の一実施形態における、流路に面する壁面に固体触媒を敷設する態様を示す分解斜視図An exploded perspective view showing a mode in which a solid catalyst is laid on a wall surface facing a flow path in an embodiment of the present invention 実施例1~3及び比較例1~4においてメタン改質反応に用いた触媒反応器であるTube1、Plate1、Plate2(baffle)、Plate1(スペースなし)、Plate2(スペースなし)を示す図A diagram showing Tube 1, Plate 1, Plate 2 (baffle), Plate 1 (no space), and Plate 2 (no space), which are the catalytic reactors used for the methane reforming reaction in Examples 1 to 3 and Comparative Examples 1 to 4. スリットの両内側の長手方向に沿って複数の邪魔板が設けられたガスケットの寸法図Dimensional drawing of a gasket with multiple baffle plates along the longitudinal direction on both sides of the slit 実施例1~3及び比較例1~4の触媒反応器(Tube1、Plate1、Plate2)を用いたメタン改質反応における、メタン転化率を示す図A diagram showing methane conversion rates in methane reforming reactions using the catalytic reactors (Tube 1, Plate 1, Plate 2) of Examples 1 to 3 and Comparative Examples 1 to 4. 実施例4、5及び比較例5,6においてメタン改質反応に用いた触媒反応器であるTube2 、Plate3(baffle)及びPlate4(baffle)を示す図A diagram showing Tube 2, Plate 3 (baffle), and Plate 4 (baffle), which are catalytic reactors used for methane reforming reactions in Examples 4 and 5 and Comparative Examples 5 and 6. 実施例4,5及び比較例5、6の触媒反応器(Tube2、Plate3、Plate4)を用いたメタン改質反応における、メタン転化率を示す図A diagram showing the methane conversion rate in the methane reforming reaction using the catalytic reactors (Tube 2, Plate 3, Plate 4) of Examples 4 and 5 and Comparative Examples 5 and 6.

本発明の触媒反応器は、反応器内部に、反応流体の流入口及び流出口と連通する矩形状流路と、該矩形状流路の長手方向に面する少なくとも一つの壁面に設置された固体触媒とを備え、前記流路内には、前記反応流体の移流の向きを前記固体触媒面に向かうように変更する手段が設置されていることを特徴とする。
また、本明細書における反応とは、化学反応に限定されず、抽出や蒸留等の、物質が何らかの変化をするもの全般の意味で用いられる。したがって、本発明の触媒反応器は、化学反応のみならず、抽出や蒸留等にも使用することができる。
The catalytic reactor of the present invention includes a rectangular flow channel communicating with an inlet and an outlet of a reaction fluid inside the reactor, and a solid body installed on at least one wall surface facing the longitudinal direction of the rectangular flow channel. A catalyst is provided, and means for changing the direction of advection of the reaction fluid toward the solid catalyst surface is installed in the flow path.
Furthermore, the term "reaction" as used herein is not limited to a chemical reaction, but is used in the general sense of anything in which a substance undergoes some kind of change, such as extraction or distillation. Therefore, the catalytic reactor of the present invention can be used not only for chemical reactions but also for extraction, distillation, etc.

以下、本発明について、実施形態に基づいて説明するが、本発明は該実施形態に限定されるものではない。
本発明の一実施形態(以下、「本実施形態」と記載する)に係る触媒反応器は、前述の図1に示す積層型の触媒反応器において、該流路内に反応流体の移流の向きを固体触媒面に向かうように変更する手段として、邪魔板を設けたものである。
図2は、本実施形態における邪魔板の1例を模式的に示す分解斜視図である。該図に示す例では、ガスケット3の長手方向に沿った内側両面に複数の邪魔板が設けられており、固体触媒7がプレート2に設けられた凹部に設置されている。
The present invention will be described below based on embodiments, but the present invention is not limited to these embodiments.
A catalytic reactor according to an embodiment of the present invention (hereinafter referred to as "this embodiment") is a stacked catalytic reactor shown in FIG. A baffle plate is provided as a means for changing the direction of the solid catalyst toward the solid catalyst surface.
FIG. 2 is an exploded perspective view schematically showing an example of the baffle plate in this embodiment. In the example shown in the figure, a plurality of baffle plates are provided on both inner sides along the longitudinal direction of the gasket 3, and the solid catalyst 7 is installed in a recess provided in the plate 2.

図3は、触媒反応器内の反応流体の流れを模式的に示す一部横断面図であって、反応流体と触媒部との接触が良好な箇所を薄色で表示してある。該図において、上から順に、従来の触媒反応器の場合、図2に示す本実施形態の場合、本発明の他の一実施形態の場合を示している。
図3の上段に示すように、従来の吹抜け流路付き触媒反応器では、壁面の凹部に設置された固体触媒において、反応流体との接触が良好な箇所は限られていた。
これに対し、図3の中段に示すように、本実施形態においては、流路内に邪魔板を設けることにより、反応流体を触媒部に正面から衝突させることができ、反応効率が改善できることとなる。
さらに、本発明の他の実施形態においては、図3の下段に示すように、触媒部の手前(反応流体の流入口側)にスペースを設けることにより、その効果をより高めることができる。
FIG. 3 is a partial cross-sectional view schematically showing the flow of the reaction fluid in the catalytic reactor, and portions where the reaction fluid and the catalyst portion are in good contact are shown in light colors. In this figure, from top to bottom, a conventional catalytic reactor, a case of the present embodiment shown in FIG. 2, and a case of another embodiment of the present invention are shown.
As shown in the upper part of FIG. 3, in the conventional catalytic reactor with a blow-through channel, the solid catalyst installed in the recessed part of the wall surface has only a limited number of locations where it can make good contact with the reaction fluid.
On the other hand, as shown in the middle part of FIG. 3, in this embodiment, by providing a baffle plate in the flow path, the reaction fluid can collide with the catalyst section head-on, and the reaction efficiency can be improved. Become.
Furthermore, in another embodiment of the present invention, as shown in the lower part of FIG. 3, the effect can be further enhanced by providing a space in front of the catalyst section (on the inlet side of the reaction fluid).

本発明の触媒反応器においては、前述の本実施形態に示した積層構造をもった触媒反応器に限られないことはいうまでもなく、反応器及びその内部の構造ないし形状に特段の制限はない。
また、本発明の反応器を構成する部品の材質にも制限はない。
さらに、本発明の触媒反応器は、気相反応にも液相反応にも気液混合反応にも用いることができ、例えば、メタン、バイオ燃料となりうるエタノール、或いはLPガス等の、炭素析出が生じうる炭素化合物の改質反応に好適である。
以下、本発明の触媒反応器を構成する要素・部材について、順に説明する。
It goes without saying that the catalytic reactor of the present invention is not limited to the catalytic reactor having the laminated structure shown in the embodiment described above, and there are no particular restrictions on the structure or shape of the reactor and its interior. do not have.
Further, there is no restriction on the material of the parts constituting the reactor of the present invention.
Furthermore, the catalytic reactor of the present invention can be used for gas-phase reactions, liquid-phase reactions, and gas-liquid mixed reactions, such as methane, ethanol that can be used as biofuel, or LP gas, etc. It is suitable for the reforming reaction of carbon compounds that may occur.
Hereinafter, the elements and members constituting the catalytic reactor of the present invention will be explained in order.

(反応器及び内部の構造)
本発明の触媒反応器においては、その反応器内部に、反応流体の流入口及び流出口と連通する矩形状流路を有するものであれば、一体型のものであっても、或いは複数のプレートを積層することで形成された積層型であってもよい。
積層型の一例としては、反応流体の流路が形成されたプレートと、表面に触媒が設置されたプレートとを有し、前記流路が形成された面と前記触媒が設置された面とが互いに密着してなる積層型触媒反応器が挙げられる(特許文献3参照)。
また、積層型の他の例として、前記の本実施形態のように、反応流体の流路が、ガスケットを介して、複数のプレートを所定間隔で積層配置することで形成されてなる積層型触媒反応器(特許文献4参照)が挙げられる。
(Reactor and internal structure)
The catalytic reactor of the present invention may be of an integrated type or may have a plurality of plates as long as it has a rectangular flow path communicating with the inlet and outlet of the reaction fluid inside the reactor. It may be of a laminated type formed by laminating.
An example of a stacked type plate includes a plate in which a reaction fluid flow path is formed, and a plate in which a catalyst is installed on the surface, and the surface in which the flow path is formed and the surface in which the catalyst is installed are in contact with each other. Examples include stacked catalytic reactors that are in close contact with each other (see Patent Document 3).
Further, as another example of a stacked type catalyst, as in the present embodiment described above, a stacked type catalyst in which a flow path for a reaction fluid is formed by stacking a plurality of plates at predetermined intervals via a gasket. A reactor (see Patent Document 4) is mentioned.

(反応器・プレートの材質)
反応器・プレートの材質は、反応器の使用条件下で原料及び反応生成物と反応せず、かつ変形しないものであれば特に限定されず、例えば、ステンレス系材質(SUS316、SUS316L、SUS303、SUS420J2、SUS304、SUS440C等)、アルミ系材質(A2017、A5052、A5056、A6061、A7075等)、真鍮系材質(C3601、C3604B等)、鉄系材質(S10C~S45C、SCM415、SCM420、SCM435、SCM440、SUJ2、SKD11、SKS3、SUM22D、SUM24L、STKM13A、SCR420等)、ニッケル系材質(インコネル(登録商標)、ハステロイ(登録商標)、モネル(登録商標)、インコロイ(登録商標)等)、チタン及び銅をはじめとする金属材料、アクリル樹脂などの有機化合物材料、並びにアルミナ、石英などのセラミックス材料等が使用できる。また、単一の材料に限定されず、めっきや蒸着等の被覆を施したものであってもよい。
(Reactor/plate material)
The material of the reactor/plate is not particularly limited as long as it does not react with the raw materials and reaction products and does not deform under the conditions in which the reactor is used, such as stainless steel materials (SUS316, SUS316L, SUS303, SUS420J2). , SUS304, SUS440C, etc.), aluminum materials (A2017, A5052, A5056, A6061, A7075, etc.), brass material (C3601, C3604B, etc.), iron material (S10C -S45C, SCM415, SCM415, SCM415, S CM435, SCM440, SUJ2 , SKD11, SKS3, SUM22D, SUM24L, STKM13A, SCR420, etc.), nickel-based materials (Inconel (registered trademark), Hastelloy (registered trademark), Monel (registered trademark), Incoloy (registered trademark), etc.), titanium, copper, etc. Metal materials, organic compound materials such as acrylic resin, and ceramic materials such as alumina and quartz can be used. Furthermore, the material is not limited to a single material, and may be coated with plating, vapor deposition, or the like.

(プレートの形状)
触媒反応器が、本実施形態のような積層型反応器である場合、用いるプレートの形状は、板形状であれば特に限定されず、前述の図1に示すように、触媒を敷設するための凹部を有するものでもよいし、又は、凹部を有しない平板状のものでもよい。
プレートの寸法も特には限定されず、入手のしやすさ、必要な反応生成物の量及び反応の制御のしやすさ等を考慮して、適宜決定すれば良い。一例として、長さ10~1000mm、幅1~1000mm、厚さ0.1~10mmが挙げられる。
(Plate shape)
When the catalytic reactor is a stacked reactor like this embodiment, the shape of the plate used is not particularly limited as long as it is a plate shape, and as shown in FIG. It may have a recess or it may be a flat plate without a recess.
The dimensions of the plate are not particularly limited either, and may be appropriately determined in consideration of availability, amount of required reaction product, ease of reaction control, and the like. As an example, the length is 10 to 1000 mm, the width is 1 to 1000 mm, and the thickness is 0.1 to 10 mm.

(ガスケット)
ガスケットは、プレートと共に流路を確定する機能に加えて、内部の流体がガスケットのシール面を通って外部に流出しない程度のシール性を有する。
前述のシール性を有するガスケットの材質としては、PTFE等のエンジニアリングプラスチックもしくはスーパーエンジニアリングプラスチック、天然ゴム、合成ゴム(ニトリルゴム、クロロプレンゴム、エチレンプロピレンゴム、フッ素ゴム、シリコーンゴム、)、膨張黒鉛、マイカ等が挙げられる。
またガスケット自体が、複数の材料を積層させて構成されてもよい。例えば、芯材をステンレス板等の強度をもった材料にしてその両面に別材質のシートを張り合わせたものや、メタルジャケットガスケットが挙げられる。
ガスケットの厚さは、前述のシール性、並びに形成する流路の高さを考慮して適宜設定すればよく、一例として、0.1mm~10mmが挙げられる。
(gasket)
In addition to the function of defining a flow path together with the plate, the gasket has sealing properties to the extent that the internal fluid does not flow out through the sealing surface of the gasket.
Materials for the gasket with the above-mentioned sealing properties include engineering plastics such as PTFE or super engineering plastics, natural rubber, synthetic rubbers (nitrile rubber, chloroprene rubber, ethylene propylene rubber, fluorine rubber, silicone rubber, etc.), expanded graphite, and mica. etc.
Further, the gasket itself may be constructed by laminating a plurality of materials. For example, the core material is made of a strong material such as a stainless steel plate and sheets of different materials are laminated on both sides of the core material, and metal jacket gaskets are available.
The thickness of the gasket may be appropriately set in consideration of the above-mentioned sealing performance and the height of the flow path to be formed, and an example thereof is 0.1 mm to 10 mm.

(矩形状流路)
矩形状流路は、導入された原料流体を流通させながら反応させ、生成物を得る機能を有する。矩形状流路の大きさ・寸法は、反応条件(温度、圧力等)の制御のしやすさや、反応効率等を考慮して、適宜設定すればよい。一例として、長さ10~1000mm、幅1~1000mm、厚さ0.1~10mmが挙げられる。
(Rectangular flow path)
The rectangular flow path has the function of causing the introduced raw material fluid to react while flowing therethrough, thereby obtaining a product. The size and dimensions of the rectangular channel may be appropriately set in consideration of ease of control of reaction conditions (temperature, pressure, etc.), reaction efficiency, etc. As an example, the length is 10 to 1000 mm, the width is 1 to 1000 mm, and the thickness is 0.1 to 10 mm.

(流体入口・流体出口)
流体入口は、流路内に流体を導入する機能を有し、流体出口は、流路内の流体を外部へと排出する機能を有する。
本実施形態に係る積層型反応器は、図1に示すように、下側に位置するプレート2に流体入口5が設けられており、上側に位置するプレート2に流体出口6が設けられている。すなわち、本実施形態に係る積層型反応器は、下側から導入された流体が、流路を通って上側に排出されるように作動する。
(Fluid inlet/fluid outlet)
The fluid inlet has the function of introducing fluid into the flow path, and the fluid outlet has the function of discharging the fluid within the flow path to the outside.
In the stacked reactor according to this embodiment, as shown in FIG. 1, a fluid inlet 5 is provided in the lower plate 2, and a fluid outlet 6 is provided in the upper plate 2. . That is, the stacked reactor according to the present embodiment operates such that the fluid introduced from the lower side passes through the flow path and is discharged to the upper side.

[固体触媒]
本発明において、固体触媒は、流体の圧力損失を低減するために、流路に面する(画定する)壁面に沿って敷設することが好ましい。
図4は、本実施形態において、流路4に面する壁面に固体触媒7を敷設する態様を示す分解斜視図であって、(a)に示すように、プレート2の流路に面する壁面に設けた凹部内に敷設する態様、或いは、(b)に示すように、ガスケット3の流路に面する壁面に設けた凹部内に敷設する態様、及びこれらの態様の組合せ等が挙げられる。また、前述した各態様において、(c)に示すように、複数種の固体触媒71,72を流路に沿って複数個所に敷設しても良い。
さらに、図4(a)ないし(c)に図示する例では、固体触媒7、71、72を、流路に面する壁面に設けられた凹部内に敷設しているが、凹部の無い壁面表面に敷設しても良い。
[Solid catalyst]
In the present invention, the solid catalyst is preferably laid along the wall surface facing (defining) the flow path in order to reduce pressure loss of the fluid.
FIG. 4 is an exploded perspective view showing a mode in which the solid catalyst 7 is laid on the wall surface facing the flow path 4 in this embodiment, and as shown in (a), the wall surface of the plate 2 facing the flow path. Examples include a mode in which the gasket is laid in a recess provided in the gasket 3, a mode in which the gasket is laid in a concave portion provided in the wall surface facing the flow path of the gasket 3 as shown in (b), and a combination of these modes. Furthermore, in each of the embodiments described above, as shown in (c), a plurality of types of solid catalysts 71 and 72 may be laid at a plurality of locations along the flow path.
Furthermore, in the examples shown in FIGS. 4(a) to 4(c), the solid catalysts 7, 71, and 72 are laid in recesses provided in the wall facing the flow path, but the wall surface without recesses It may be installed in

本発明の触媒反応器は、反応流体の移流の向きを固体触媒面に向かうように変更する手段を設けて、移流による触媒接触の改善を図るものである。したがって、用いる固体触媒の形状としては、粉末状のものより、触媒粒子同士の間隙を反応流体の移流が流れる程度の大きさを有する粒子状のものが好ましく用いられる。用いる触媒粒子の大きさは、触媒反応や用いる触媒等によって異なるが、一例を挙げれば、NiO/Al固体触媒を用いたメタン改質においては、その粒径範囲が0.3~0.5mmにあるものが好ましく用いられる。 The catalytic reactor of the present invention is provided with means for changing the direction of advection of the reaction fluid toward the solid catalyst surface to improve catalyst contact by advection. Therefore, as for the shape of the solid catalyst used, it is preferable to use a particulate catalyst having a size that allows advection of the reaction fluid to flow through the gaps between the catalyst particles, rather than a powder one. The size of the catalyst particles used varies depending on the catalytic reaction and the catalyst used, but to give one example, in methane reforming using a NiO/Al 2 O 3 solid catalyst, the particle size range is 0.3 to 0. .5 mm is preferably used.

[反応流体の移流の向きを変更する手段]
本発明の触媒反応器における、反応流体の移流の向きを固体触媒面に向かうように変更する手段は、反応流体の流れに対する障害物として機能するものであって、反応器を構成する部材と一体であってもよいし、或いは、反応器を構成する部材と別体であって、反応器内に挿入できる部品として構成されていてもよい。
[Means for changing the direction of advection of reaction fluid]
In the catalytic reactor of the present invention, the means for changing the direction of advection of the reaction fluid toward the solid catalyst surface functions as an obstacle to the flow of the reaction fluid, and is integrated with the members constituting the reactor. Alternatively, it may be configured as a component that is separate from the members constituting the reactor and can be inserted into the reactor.

反応流体の移流の向きを固体触媒面に向かうように変更する手段は、反応流体の流れに対する障害物として機能するものであれば、その形状及び材質は特に限定されないが、例えば、矩形状流路の固体触媒が配置されていない壁面に垂直に設置された複数の邪魔板が、好ましい例として挙げられる。 The shape and material of the means for changing the direction of advection of the reaction fluid toward the solid catalyst surface are not particularly limited as long as it functions as an obstacle to the flow of the reaction fluid, but, for example, a rectangular channel may be used. A preferred example is a plurality of baffle plates installed perpendicularly to a wall surface on which no solid catalyst is disposed.

具体的には、前述の本実施形態において、図2に示したように、ガスケットの長手方向に沿った内側両面(矩形状流路の固体触媒が配置されていない壁面に該当)に複数の邪魔板を垂直に設けることが挙げられる。この場合には、ガスケットと邪魔板とを一体成型することで、反応器を構成する部品の数を減らすことができるので、好適である。 Specifically, in the present embodiment described above, as shown in FIG. An example of this is to provide the plates vertically. In this case, it is preferable to integrally mold the gasket and the baffle plate because the number of parts constituting the reactor can be reduced.

この場合、さらに好ましい実施形態として、本実施形態に係る積層型反応器を、二枚のプレートと、邪魔板が一体成型されたガスケットとを重ね合わせて(積層して)位置決めし、積層方向に面圧を印加してガスケットを圧縮変形させながら各要素間の隙間を埋めた後、プレート同士を固定して組み立てる方法が好ましく用いられる。面圧の印加方法及びプレートの固定方法は特に限定されず、例えば、プレート及びガスケットに設けられた複数のボルト挿通孔にボルトを挿通し、これにナットを螺合して締め付ける方法が挙げられる。 In this case, as a further preferred embodiment, the stacked reactor according to this embodiment is positioned by overlapping (stacking) two plates and a gasket in which a baffle plate is integrally molded, and in the stacking direction. A method is preferably used in which the gaps between the respective elements are filled while applying surface pressure to compress and deform the gasket, and then the plates are fixed to each other and assembled. The method of applying surface pressure and the method of fixing the plate are not particularly limited, and examples thereof include a method of inserting bolts into a plurality of bolt insertion holes provided in the plate and the gasket, and tightening the nuts by screwing them into the bolts.

また、他の例として、本実施形態においては、複数の邪魔板をガスケットではなく、上側プレートの内側面に垂直に設けることが挙げられる。
また、図4(b)のように、ガスケットに触媒が設置されている場合には、複数の邪魔板を、上側プレート及び/又は下側プレートの内側面に垂直に設置することが挙げられる。
さらに、ガスケットを用いずに、流路を形成したプレートを用いる場合には、該流路の少なくとも1つの長手方向の内側壁面に複数の邪魔板を垂直に設けることが挙げられる。
As another example, in this embodiment, a plurality of baffle plates may be provided perpendicularly to the inner surface of the upper plate instead of the gasket.
Further, as shown in FIG. 4(b), when a catalyst is installed in the gasket, a plurality of baffle plates may be installed vertically on the inner surface of the upper plate and/or the lower plate.
Furthermore, when using a plate with a flow path formed therein without using a gasket, a plurality of baffle plates may be provided perpendicularly to the inner wall surface of at least one of the flow paths in the longitudinal direction.

以上、本発明の一実施形態を用いて説明したが、該実施形態は種々の変形が可能である。
例えば、本実施形態に係る反応器ではプレートが矩形板として説明されたが、六角形の板をはじめ、三角形、五角形、八角形等の多角形の板等を採用してもよい。
また、本実施形態に係る反応器は、流体入口及び流体出口がそれぞれ異なるプレートに設けられたものとして説明したが、何れか一方のプレートに流体入口及び流体出口の両方が設けられてもよい。
Although the embodiment of the present invention has been described above, this embodiment can be modified in various ways.
For example, although the plates in the reactor according to the present embodiment have been described as rectangular plates, polygonal plates such as hexagonal plates, triangular, pentagonal, and octagonal plates may be used.
Further, although the reactor according to the present embodiment has been described as having the fluid inlet and the fluid outlet provided on different plates, either one of the plates may be provided with both the fluid inlet and the fluid outlet.

さらに、本実施形態に係る触媒反応器は、必要に応じて、流路内の温度や圧力を測定する測温手段や圧力測定手段、或いは流体を供給ないし排出する細管等を、前記プレートのいずれかと前記ガスケットの間に挟持して、その一部が前記流路内に配置されるようにしてもよい。この場合、これらのものを隙間無く挟持するため、ガスケットとして、積層型反応器の積層組立時に圧縮変形が可能な、膨張黒鉛をはじめとする圧縮率の大きな材質のものを用いることが好ましい。 Furthermore, the catalytic reactor according to the present embodiment may include temperature measuring means and pressure measuring means for measuring the temperature and pressure in the flow path, or thin tubes for supplying or discharging fluid, etc., on any of the plates. It may be sandwiched between the gasket and the gasket, and a portion thereof may be disposed within the flow path. In this case, in order to sandwich these items without any gaps, it is preferable to use a gasket made of a material with a high compressibility, such as expanded graphite, which can be compressed and deformed during stacking and assembly of the stacked reactor.

さらにまた、本実施形態に係る触媒反応器において、前記のプレートに加えて、熱媒用流路又は冷媒用流路が形成されたプレートを用い、該熱媒用流路又は冷媒用流路と、前記反応流体の流路とが交互になるように、各プレートを積層させることにより、熱交換型の触媒反応器とすることもできる。
該熱交換型の触媒反応器においては、前述の流路内の温度を測定する測温手段を備えた触媒反応器であることが、特に好ましい。
Furthermore, in the catalytic reactor according to the present embodiment, in addition to the above-described plate, a plate in which a heat medium flow path or a refrigerant flow path is formed is used, and the heat medium flow path or the refrigerant flow path is connected to the plate. A heat exchange type catalytic reactor can also be obtained by stacking each plate so that the flow paths of the reaction fluid alternate.
In the heat exchange type catalytic reactor, it is particularly preferable that the catalytic reactor is equipped with a temperature measuring means for measuring the temperature inside the flow path.

(本発明の触媒反応器用いた触媒反応)
先述のとおり、吹抜け流路付きの触媒反応器(プレート型反応器)は、炭素化合物の改質反応のように炭素の析出を伴う反応において、炭素質の析出、蓄積による流路閉塞を抑制できることが特徴のひとつである。
次項に記載する実施例及び比較例では、試験方法としてメタン改質反応を用いているが、炭素化合物の改質反応においては、炭素数が多くなるほど低温で改質されやすく、例えば、原料を100%反応させるのに必要な温度は、メタンの場合には800℃程度であるが、エタノールの場合には650℃程度に下がることが知られている。また、炭素化合物の改質反応においては、炭素数が多くなるほど炭素析出しやすい。
したがって、反応効率を向上できるという本発明の効果は、メタン以外の、炭素数が2であるエタノールや、炭素数が4であるLPガスなどの炭素化合物の改質反応においても当然に発揮され、効率良く改質反応が進行することで、炭素質の析出、蓄積による流路閉塞をより抑制できることが期待できる。
(Catalytic reaction using the catalytic reactor of the present invention)
As mentioned earlier, a catalytic reactor (plate type reactor) with a blow-through channel can suppress channel blockage due to carbon precipitation and accumulation in reactions that involve carbon precipitation, such as reforming reactions of carbon compounds. is one of its characteristics.
In the Examples and Comparative Examples described in the next section, a methane reforming reaction is used as a test method, but in the reforming reaction of carbon compounds, the larger the number of carbons, the easier it is to be reformed at a lower temperature. It is known that the temperature required for % reaction is about 800°C in the case of methane, but lowers to about 650°C in the case of ethanol. In addition, in the reforming reaction of carbon compounds, the greater the number of carbons, the more likely carbon will be deposited.
Therefore, the effect of the present invention of improving reaction efficiency is naturally exhibited in reforming reactions of carbon compounds other than methane, such as ethanol, which has two carbon atoms, and LP gas, which has four carbon atoms. As the reforming reaction progresses efficiently, it is expected that flow path blockage due to carbonaceous precipitation and accumulation can be further suppressed.

以下、実施例及び比較例に基づいて本発明を具体的に説明するが、実施例は、本発明の好適な例を示すものであり、本発明は、該実施例によって何ら限定されるものではない。 Hereinafter, the present invention will be specifically explained based on Examples and Comparative Examples. However, the Examples indicate preferred examples of the present invention, and the present invention is not limited by the Examples. do not have.

[触媒反応器の作製(その1)]
図5は、以下の実施例及び比較例において、メタン改質反応に用いた触媒反応器であるTube1、Plate1及びPlate2の概要を示す図である。
[Preparation of catalytic reactor (part 1)]
FIG. 5 is a diagram showing an outline of Tube 1, Plate 1, and Plate 2, which are catalytic reactors used in the methane reforming reaction in the following Examples and Comparative Examples.

(実施例1:積層型反応器Plate2-f)
2枚のプレートには、長さ147、幅36mm、厚さ7mmのSUS316板を使用した。ガスケットには、外寸法の長さ147mm、幅36mm、厚さ0.4mmで、中央に長さ113mm、幅4mmのスリット及び邪魔板(baffle)を備えた膨張黒鉛を使用した。図6は、スリットの長手方向に沿った内側両面に複数の邪魔板が設けられたガスケットの寸法図(上から見た部分図)である。
また、上記2枚のプレートにおける流路を画定する面(流路の底面)に、長さ80mm、幅4mm、深さ3mm、角部の曲率半径1mmの凹部を設け、流体流入口側からみて該凹部の段差の始まる位置から、平均粒径0.4mmのNiO/Zeolite固体触媒を0.393g(長さ40mm)充填し、触媒部後方(流出口側)に40mmスペースのあるPlate2-f(図5の三段目参照、前記図3の中段に相当)を作製した。なお、「平均粒径0.4mmの前記固体触媒」とは、粒径がより大きな固体触媒の塊を乳鉢で粉砕し、目開き0.3mm、0.5mmの間で篩い分けることで得られたものであることを意味している。以後も同様である。
(Example 1: Stacked reactor Plate2-f)
For the two plates, SUS316 plates with a length of 147 mm, a width of 36 mm, and a thickness of 7 mm were used. The gasket used was expanded graphite with external dimensions of 147 mm in length, 36 mm in width, and 0.4 mm in thickness, with a slit and baffle of 113 mm in length and 4 mm in width in the center. FIG. 6 is a dimensional drawing (partial view seen from above) of a gasket in which a plurality of baffle plates are provided on both inner surfaces of the slit along the longitudinal direction.
In addition, a recess with a length of 80 mm, a width of 4 mm, a depth of 3 mm, and a radius of curvature of the corner portion of 1 mm is provided on the surface that defines the flow path (bottom surface of the flow path) of the two plates described above, and when viewed from the fluid inlet side. Fill 0.393 g (length 40 mm) of NiO/Zeolite solid catalyst with an average particle size of 0.4 mm from the starting position of the step in the recess, and place Plate 2-f (with a 40 mm space behind the catalyst part (outlet side)). (See the third row in FIG. 5, which corresponds to the middle row in FIG. 3) was prepared. In addition, "the solid catalyst with an average particle size of 0.4 mm" is obtained by crushing a lump of a solid catalyst with a larger particle size in a mortar and sieving it with an opening of 0.3 mm and 0.5 mm. It means that it is something. The same applies thereafter.

(実施例2:積層型反応器Plate2(baffle)-r)
実施例1の積層型反応器Plate2(baffle)-fをそのまま用いて、反応流体の流入の向きを逆転させることにより、凹部の段差の始まり位置から触媒が敷設された位置までの距離を約40mmとして、触媒部前方(流入口側)に40mmスペースのあるPlate2-r(図5の三段目参照、前記図3の下段に相当)を作製した。
(Example 2: Stacked reactor Plate2(baffle)-r)
By using the stacked reactor Plate 2 (baffle)-f of Example 1 as it is and reversing the direction of inflow of the reaction fluid, the distance from the starting position of the step in the recess to the position where the catalyst was laid was approximately 40 mm. As such, Plate 2-r (see the third row in FIG. 5, corresponding to the lower row in FIG. 3) with a 40 mm space in front of the catalyst section (inlet side) was prepared.

(実施例3:積層型反応器Plate2(baffle、スペースなし))
前記触媒部後方(流出口側)のスペースを失くした以外は、実施例1(Plate2(baffle)-f)及び実施例2(Plate2(baffle)-r)と同様にして、Plate2(スペースなし) (図5の五段目参照、前記図3の中段に相当)を作製した。
(Example 3: Stacked reactor Plate 2 (baffle, no space))
Plate 2 (no space) was prepared in the same manner as Example 1 (Plate 2 (baffle)-f) and Example 2 (Plate 2 (baffle)-r) except that the space behind the catalyst section (outlet side) was lost. ) (see the fifth row in FIG. 5, corresponding to the middle row in FIG. 3) was prepared.

(比較例1、2:積層型反応器Plate1-f及びPlate1-r)
前記邪魔板(baffle)のないガスケットを用いた以外は、実施例1(Plate2(baffle)-f)及び実施例2(Plate2(baffle)-r)と同様にして、Plate1-f及びPlate1-r(図5の2段目参照、前記図3の上段に相当)を作製した。
(Comparative Examples 1 and 2: Stacked reactor Plate 1-f and Plate 1-r)
Plate1-f and Plate1-r were prepared in the same manner as in Example 1 (Plate2(baffle)-f) and Example 2 (Plate2(baffle)-r) except that a gasket without the baffle was used. (See the second row in FIG. 5, which corresponds to the upper row in FIG. 3) was produced.

(比較例3:積層型反応器Plate1(スペースなし))
前記触媒部後方(流出口側)のスペースを失くした以外は、実施例3同様にして、Plate1(スペースなし)(図5の四段目参照、前記図3の上段に相当)を作製した。
(Comparative Example 3: Stacked reactor Plate 1 (no space))
Plate 1 (no space) (see the fourth row in FIG. 5, corresponding to the upper row in FIG. 3) was produced in the same manner as in Example 3, except that the space behind the catalyst section (outlet side) was removed. .

(比較例4:管形状の充填層型触媒反応器Tube1の作製)
SUS316製の内直径4.35mmの管の内部に、平均粒径0.4mmのNiO/Zeolite固体触媒を0.393g(長さ33mm)充填してTube1を作製した(図5の一段目参照)。
(Comparative Example 4: Fabrication of tubular packed bed type catalytic reactor Tube1)
Tube 1 was prepared by filling 0.393 g (length 33 mm) of NiO/Zeolite solid catalyst with an average particle size of 0.4 mm into the inside of a tube made of SUS316 and having an inner diameter of 4.35 mm (see the first stage of Fig. 5). .

[メタンのドライ改質反応(その1)]
前記のようにして作製したそれぞれの触媒反応器を電気炉内に設置し、反応器内に設置した熱電対により、積層型反応器(実施例1,2,3及び比較例1,2,3)においては、触媒敷設開始端から20mmにおける反応開始前の温度Ta及びTb(なお、TaとTbに差はなく、±1.5℃の差であり、ほぼ同じであった。)、管形状の充填層型反応器(比較例4)においては、触媒充填開始端から6mmにおける反応開始前の温度Taを、それぞれ測定しながら、流体入口からCH/CO/He=1/2/5を120sccm流通させ、以下の式に示すメタンのドライ改質反応を進行させた。
CH+CO→2H+2CO
反応試験結果である、各反応開始前の温度Tにおけるメタン転化率を図7に示す。図中、実施例1(Plate2-f)を濃い1点破線(-・-)で、実施例2(Plate2-r)を濃い2点破線(-・・-)で、実施例3(Plate2(スペースなし))を濃い点線(・・・・)で、比較例1(Plate1-f)を薄い1点破線(-・-)で、比較例2(Plate1-r)を薄い2点破線(-・・-)で比較例3(Plate1(スペースなし))を薄い点線(・・・・)で、比較例4(Tube1)を破線(--)で、平衡点を細い実線で、それぞれ示してある。平衡点以外は実験点を示すプロットがついている。なお、実施例1と実施例3は、有意な差か分からないくらい小さな差なので重なっているように見えている。
[Dry reforming reaction of methane (Part 1)]
Each of the catalytic reactors prepared as described above was placed in an electric furnace, and a thermocouple installed in the reactor was used to form a stacked reactor (Examples 1, 2, 3 and Comparative Examples 1, 2, 3). ), the temperature Ta and Tb before the start of the reaction at 20 mm from the starting end of the catalyst installation (note that there was no difference between Ta and Tb, the difference was ±1.5°C, and they were almost the same), and the tube shape. In the packed bed reactor (Comparative Example 4), CH 4 /CO 2 /He = 1/2/5 was added from the fluid inlet while measuring the temperature Ta before the reaction started at 6 mm from the catalyst filling start end. was passed through the reactor at a rate of 120 sccm to advance the dry reforming reaction of methane shown in the following formula.
CH 4 +CO 2 →2H 2 +2CO
The reaction test results, methane conversion rates at temperature T before the start of each reaction, are shown in FIG. In the figure, Example 1 (Plate2-f) is indicated by a dark dashed line (-・-), Example 2 (Plate2-r) is indicated by a dark two-dot dashed line (-・・-), and Example 3 (Plate2( (no space)) with a dark dotted line (...), Comparative Example 1 (Plate1-f) with a thin one-dot dashed line (-・-), Comparative Example 2 (Plate1-r) with a thin two-dot dashed line (- ...), comparative example 3 (Plate 1 (no space)) is indicated by a thin dotted line (...), comparative example 4 (Tube 1) is indicated by a broken line (--), and the equilibrium point is indicated by a thin solid line. be. Plots showing experimental points are attached except for the equilibrium point. Note that Example 1 and Example 3 appear to overlap because the difference is so small that it is difficult to tell whether the difference is significant.

反応開始前の温度T=500℃及び550℃における反応成績の序列は次のようになった。
比較例3(Plate1(スペースなし))<比較例1(Plate1-f)≦比較例2(Plate1-r)<比較例4(Tube1)≦実施例3(Plate2(スペースなし))<実施例1(Plate2-f)<実施例2(Plate2-r)
比較例2(Plate1-r)は、比較例1(Plate1-f)に対してほとんど有意な差が見られなかった。
邪魔板のある実施例1、2は、邪魔板のない比較例1、2を上回り、さらに、実施例2の成績効率が、実施例1の反応成績より良いという結果は、触媒部手前(流入口側)のスペースが邪魔板による触媒接触の効果を強めた結果と考えられる。
触媒部の前にスペースのある実施例2が、後にスペースがある実施例1とスペースのない実施例3の反応成績を上回った結果と、触媒部の前にスペースのある比較例2は後にスペースがある比較例1とスペースのない比較例3の反応成績を上回った結果はともに、触媒部に導入されるスペースの存在が移流を乱し触媒接触の効果を強めた結果であると考えられる。触媒部後方のスペースの存在も移流に影響すると思われるが、触媒接触の効果を明確に示していないと言える。
なお、比較例4(Tube1)の反応成績が、実施例1、2、3の反応成績よりも悪くなった理由として、伝熱性能が、円筒状反応器の場合よりも、積層型反応器の場合の方が良好で、メタン改質の吸熱に対する熱供給速度の高い効果が、加味されたためと考えられる。一般にメタン改質は反応温度が高く維持される方が、反応成績が高い。
The order of reaction results at temperatures T=500°C and 550°C before the start of the reaction was as follows.
Comparative example 3 (Plate 1 (no space)) < Comparative example 1 (Plate 1-f) ≦ Comparative example 2 (Plate 1-r) < Comparative example 4 (Tube 1) ≦ Example 3 (Plate 2 (no space)) < Example 1 (Plate2-f)<Example 2 (Plate2-r)
Comparative Example 2 (Plate1-r) showed almost no significant difference from Comparative Example 1 (Plate1-f).
Examples 1 and 2 with the baffle plate exceeded Comparative Examples 1 and 2 without the baffle plate, and furthermore, the result that the performance efficiency of Example 2 was better than the reaction result of Example 1 was due to the fact that This is thought to be because the space on the inlet side) strengthened the effect of catalyst contact by the baffle plate.
Example 2, which had a space in front of the catalyst section, outperformed the reaction results of Example 1, which had a space after it, and Example 3, which had no space, and Comparative Example 2, which had a space in front of the catalyst section, had a space after it. The results that exceeded the reaction results of Comparative Example 1, which had a space, and Comparative Example 3, which did not have a space, are considered to be the result of the presence of a space introduced into the catalyst section, which disturbed advection and strengthened the effect of catalyst contact. Although the existence of a space behind the catalyst part seems to affect advection, it can be said that the effect of catalyst contact is not clearly shown.
The reason why the reaction results of Comparative Example 4 (Tube 1) were worse than those of Examples 1, 2, and 3 is that the heat transfer performance of the stacked reactor was lower than that of the cylindrical reactor. This is considered to be because the effect of the high heat supply rate on the endotherm of methane reforming was taken into account. Generally, in methane reforming, the reaction performance is better when the reaction temperature is maintained high.

前述の非特許文献2には、流路の片面に触媒を設置した反応器において吹抜け流路の高さを短縮することで、メタン転換率が、500℃では8%から19%に向上し、550℃では18%が30%に向上したことが記載されているが、いずれも上記の実施例1、2、3の結果には至っていない。
このことは、本発明が、非特許文献2に記載された方法とは異なる手法で、すなわち、反応流体の移流の向きを固体触媒面に向かうように変更する手段を設けるという手法、或いはさらに、固体触媒を流路の壁面に設けられた凹部内に敷設するとともに、該凹部の前記流入口側及び/又は前記流出口側にスペースを設けるという手法により、反応効果をさらに高めることができたことを示している。また、流路の高さの短縮によらないことから、本発明は流路内の寸法の自由度を広げた発明ともいえる。
The aforementioned non-patent document 2 states that by shortening the height of the blow-through channel in a reactor in which a catalyst is installed on one side of the channel, the methane conversion rate increases from 8% to 19% at 500 ° C. Although it is described that at 550° C., the temperature improved from 18% to 30%, none of them reached the results of Examples 1, 2, and 3 above.
This means that the present invention uses a method different from the method described in Non-Patent Document 2, that is, a method of providing a means for changing the direction of advection of the reaction fluid toward the solid catalyst surface, or further, The reaction effect could be further enhanced by placing the solid catalyst in a recess provided on the wall of the channel and providing a space on the inlet side and/or the outlet side of the recess. It shows. Furthermore, since the height of the flow path is not shortened, the present invention can be said to be an invention that expands the degree of freedom in the dimensions within the flow path.

反応開始前の温度T=650℃における反応成績の序列は次のようになった。
比較例3(Plate1(スペースなし))<比較例1(Plate1-f)≦比較例2(Plate1-r)<実施例3(Plate2(スペースなし))<実施例1(Plate2-f)≦実施例2(Plate2-r)≦比較例4(Tube1)
T=650℃における反応成績は、前記と同様に、比較例2(Plate1-r)は、比較例1(Plate1-f)に対してほとんど有意な差が見られず、邪魔板のある実施例1、2は、邪魔板のない比較例1、2を上回り、さらに触媒部手前(流入口側)のスペースが邪魔板の効果を強める結果として、実施例1<実施例2の結果が得られた。
また、前記と同様、触媒部の前にスペースのある実施例2が、後にスペースがある実施例1とスペースのない実施例3の反応成績を上回った結果と、触媒部の前にスペースのある比較例2は後にスペースがある比較例1とスペースのない比較例3の反応成績を上回った結果はともに、触媒部に導入されるスペースの存在が移流を乱し触媒接触の効果を強めた結果であると考えられる。触媒部後方のスペースの存在も移流に影響すると思われるが、触媒接触の効果を明確に示していないと言える。
なお、比較例4(Tube1)の反応成績が、実施例1、2、3の反応成績よりも良くなった理由として、650℃においては反応速度が非常に高く、本発明による反応流体と触媒接触の改善をもってしても、触媒部に十分な反応流体の供給ができなかったためと考えられる。
The order of reaction results at the temperature T=650°C before the start of the reaction was as follows.
Comparative example 3 (Plate 1 (no space)) < Comparative example 1 (Plate 1-f) ≦ Comparative example 2 (Plate 1-r) < Example 3 (Plate 2 (no space)) < Example 1 (Plate 2-f) ≦ Implementation Example 2 (Plate2-r)≦Comparative example 4 (Tube1)
Regarding the reaction results at T=650°C, as mentioned above, there was almost no significant difference between Comparative Example 2 (Plate 1-r) and Comparative Example 1 (Plate 1-f), and compared with the example with baffle plate. Examples 1 and 2 exceeded Comparative Examples 1 and 2 without a baffle plate, and the space in front of the catalyst section (inlet side) strengthened the effect of the baffle plate, and as a result, the results of Example 1 < Example 2 were obtained. Ta.
In addition, as mentioned above, the reaction results of Example 2, which had a space in front of the catalyst section, exceeded the reaction results of Example 1, which had a space after it, and Example 3, which did not have a space, and Comparative Example 2 outperformed the reaction results of Comparative Example 1 with a space at the end and Comparative Example 3 without a space, both because the presence of the space introduced into the catalyst part disturbed advection and strengthened the effect of catalyst contact. It is thought that. Although the existence of a space behind the catalyst part seems to affect advection, it can be said that the effect of catalyst contact is not clearly shown.
The reason why the reaction results of Comparative Example 4 (Tube 1) were better than those of Examples 1, 2, and 3 is that the reaction rate was very high at 650°C, and the reaction fluid and catalyst contact according to the present invention were This is thought to be due to the fact that even with the improvement, sufficient reaction fluid could not be supplied to the catalyst section.

[触媒反応器の作製(その2)]
図8は、以下の実施例及び比較例において、メタン改質反応に用いた触媒反応器であるTube2、Plate3及びPlate4の概要を示す図である。
[Preparation of catalytic reactor (Part 2)]
FIG. 8 is a diagram showing an outline of Tube 2, Plate 3, and Plate 4, which are catalytic reactors used for the methane reforming reaction in the following Examples and Comparative Examples.

(実施例4:積層型反応器Plate3(顆粒触媒))
図5に図示した実施例1の積層型反応器Plate2(baffle)-fの凹部の深さ、触媒種、触媒量、触媒充填位置を変更して用いた。実施例4は実施例1、2、3の改良を意図した。
すなわち、凹部の底に長さ80mm、幅4mm、高さ1.5mm、角部の曲率半径1mmのスペーサーを設置して、該凹部の深さを1.5mmに変更した。凹部が実施例1、実施例2の半分の深さであるため、反応流体が触媒に接触しやすくなり反応成績がより一層改善される効果が期待できる。
該凹部の中央の位置に、平均粒径0.4mmのNiO/Al固体触媒を0.2g(長さ29mm)充填した。これにより、触媒部前方(流入口側)と後方(流出口側)の両方に25mmのスペースのあるPlate3(baffle,顆粒触媒)(図8の中段参照)を作製した。
(Example 4: Stacked reactor Plate 3 (granular catalyst))
The stacked reactor Plate 2 (baffle)-f of Example 1 illustrated in FIG. 5 was used by changing the depth of the recess, catalyst type, catalyst amount, and catalyst filling position. Example 4 was intended to be an improvement on Examples 1, 2, and 3.
That is, a spacer having a length of 80 mm, a width of 4 mm, a height of 1.5 mm, and a corner radius of curvature of 1 mm was installed at the bottom of the recess, and the depth of the recess was changed to 1.5 mm. Since the depth of the concave portion is half that of Examples 1 and 2, it is expected that the reaction fluid will come into contact with the catalyst more easily and the reaction results will be further improved.
The central position of the recess was filled with 0.2 g (length 29 mm) of NiO/Al 2 O 3 solid catalyst having an average particle size of 0.4 mm. As a result, Plate 3 (baffle, granular catalyst) (see the middle row of FIG. 8) having a space of 25 mm both in front (inlet side) and behind (outlet side) of the catalyst part was produced.

(実施例5:積層型反応器Plate4)
図8に図示した実施例4の積層型反応器Plate3(baffle)の凹部の深さを変更し、さらに触媒の充填位置を片壁面から両壁面に変更して用いた。実施例5は実施例4の改良を意図した。
すなわち、凹部の底に長さ80mm、幅4mm、高さ2mm、角部の曲率半径1mmのスペーサーを設置して、該凹部の深さを1mmに変更した。片壁面から両壁面に変更することで反応流体が触媒への接触に要する距離が半減し、触媒に接触しやすくなる。また、凹部が実施例3の2/3の深さであるため、さらに反応流体が触媒しやすくなる。反応成績が実施例3より一層改善される効果が期待できる。
該凹部の中央の位置の両壁面に沿って、平均粒径0.4mmのNiO/Al固体触媒を片側0.1g(長さ22mm)ずつ充填した。これにより、触媒部前方(流入口側)と後方(流出口側)の両方に29mmのスペースのあるPlate4(baffle, 顆粒触媒)(図8の下段参照)を作製した。
(Example 5: Stacked reactor Plate 4)
The depth of the concave portion of Plate 3 (baffle) of the stacked reactor of Example 4 shown in FIG. 8 was changed, and the filling position of the catalyst was changed from one wall surface to both wall surfaces. Example 5 was intended to be an improvement on Example 4.
That is, a spacer having a length of 80 mm, a width of 4 mm, a height of 2 mm, and a corner radius of curvature of 1 mm was installed at the bottom of the recess, and the depth of the recess was changed to 1 mm. By changing from one wall surface to both wall surfaces, the distance required for the reaction fluid to contact the catalyst is halved, making it easier for the reaction fluid to contact the catalyst. Furthermore, since the depth of the recess is 2/3 of that in Example 3, the reaction fluid is more easily catalyzed. It can be expected that the reaction results will be further improved than in Example 3.
0.1 g (length 22 mm) of NiO/Al 2 O 3 solid catalyst having an average particle size of 0.4 mm was filled on each side along both walls at the center of the recess. As a result, Plate 4 (baffle, granular catalyst) (see the lower part of FIG. 8) with a space of 29 mm in both the front (inlet side) and rear (outlet side) of the catalyst section was produced.

(比較例5:管形状の充填層型触媒反応器Tube2の作製)
SUS316製の内直径4.35mmの管の内部に、平均粒径0.4mmのNiO/Al固体触媒を0.2g(長さ12mm)充填してTube2(図8の上段参照)を作製した。
(Comparative Example 5: Fabrication of tubular packed bed type catalytic reactor Tube2)
0.2 g (length 12 mm) of NiO/Al 2 O 3 solid catalyst with an average particle size of 0.4 mm was filled inside a tube made of SUS316 with an inner diameter of 4.35 mm to form Tube 2 (see the upper row of Figure 8). Created.

(比較例6:積層型反応器Plate3(baffle,粉末触媒))
一般的に、触媒反応器においては、触媒粒子内の物質移動抵抗を減らす観点では、圧力損失の制限が許す限り、小さな粒径の触媒を用いることが好ましい。しかしながら、本発明の触媒反応器のように、移流によって触媒接触の改善を図る場合には、触媒粒子の粒径により触媒充填層内での移流の流れ方に影響すると予想される。
そこで、本比較例では、触媒の粒径を0.3mm以下とすること以外は、実施例5(Plate3(baffle,
顆粒触媒))と同様にして、Plate3(baffle,粉末触媒)を作製した。なお、粒径が0.3mm以下の前記固体触媒は、実施例と同様にして、目開き0.3mmの篩いにかけることで得た。
(Comparative Example 6: Stacked reactor Plate 3 (baffle, powder catalyst))
Generally, in a catalytic reactor, from the viewpoint of reducing mass transfer resistance within catalyst particles, it is preferable to use a catalyst with a small particle size, as long as pressure loss limitation allows. However, when improving catalyst contact by advection as in the catalytic reactor of the present invention, it is expected that the particle size of the catalyst particles will affect the way the advection flows within the catalyst packed bed.
Therefore, in this comparative example, Example 5 (Plate 3 (baffle,
Plate 3 (baffle, powder catalyst) was prepared in the same manner as granule catalyst). The solid catalyst having a particle size of 0.3 mm or less was obtained by passing it through a sieve with an opening of 0.3 mm in the same manner as in the example.

[メタンのドライ改質反応(その2)]
積層型反応器(実施例4、実施例5、比較例6)においては、触媒敷設開始端から15mmにおける反応開始前の温度Ta、管形状の充填層型反応器(比較例5)においては、触媒充填開始端から6mmにおける反応開始前の温度Taを、それぞれ測定しながら、流体入口からCH/CO/He=1/1/0の組成比で120sccm流通させ、メタンのドライ改質反応を進行させた。この流体組成は、廃棄物系バイオマスをメタン発酵させる際に生じるバイオガスのCH/CO比に近く、また天然ガス田で得られるCH/CO比でもあり、より実用に近い流体組成である。反応条件として、反応開始前の温度を約650℃、700℃、800℃の3条件で行った。
結果を表1に示す。
[Dry reforming reaction of methane (Part 2)]
In the stacked reactor (Example 4, Example 5, Comparative Example 6), the temperature Ta before starting the reaction at 15 mm from the starting end of catalyst laying, and in the tubular packed bed reactor (Comparative Example 5), The dry reforming reaction of methane was carried out by flowing 120 sccm of CH 4 /CO 2 /He at a composition ratio of 1/1/0 from the fluid inlet while measuring the temperature Ta before the reaction started at 6 mm from the catalyst filling start end. progressed. This fluid composition is close to the CH 4 /CO 2 ratio of biogas produced when waste biomass is subjected to methane fermentation, and is also the CH 4 /CO 2 ratio obtained in natural gas fields, making it a fluid composition closer to practical use. It is. The reaction was carried out under three conditions: the temperature before starting the reaction was approximately 650°C, 700°C, and 800°C.
The results are shown in Table 1.

表1に示すとおり、いずれの温度条件においても、CH転化率とCO転化率は、
比較例5(Tube2)<実施例4(Plate3)≒実施例5(Plate4)
となった。
前述のメタンのドライ改質反応(その1)の反応条件では、比較例5の管形状の充填層型触媒反応器(Tube1)に対する本発明の有意な改善効果は高温ほどみられにくい結果であったが(図7参照)、より最適化された実施例4および実施例5によって、700℃の高温においても10ポイント以上の転化率の有意な向上が得られた。平衡メタン転化率が95%となる実用温度に近い800℃においても実施例5による6ポイント以上の改善が見られた。
As shown in Table 1, under any temperature conditions, the CH 4 conversion rate and CO 2 conversion rate are
Comparative example 5 (Tube2)<Example 4 (Plate3)≒Example 5 (Plate4)
It became.
Under the reaction conditions of the dry reforming reaction of methane (Part 1) described above, the significant improvement effect of the present invention on the tube-shaped packed bed catalyst reactor (Tube 1) of Comparative Example 5 was less likely to be seen at higher temperatures. However, in the more optimized Examples 4 and 5, a significant improvement in conversion rate of 10 points or more was obtained even at a high temperature of 700° C. (see FIG. 7). Even at 800° C., which is close to the practical temperature at which the equilibrium methane conversion rate is 95%, an improvement of 6 points or more by Example 5 was observed.

概算による熱交換性能は、実施例4で3000~10000J/s/K/mであり、比較例5の400~500J/s/K/mよりも大きい。これは本発明の形状がプレート形状であり、外壁の加熱面から触媒部の距離に相当する伝熱距離を短縮できたためである。その結果として、表1に記載されるように、反応中のTa、即ち反応場の温度を高く維持できた。 The estimated heat exchange performance is 3000 to 10000 J/s/K/m 2 in Example 4, which is greater than 400 to 500 J/s/K/m 2 in Comparative Example 5. This is because the shape of the present invention is a plate shape, and the heat transfer distance corresponding to the distance from the heating surface of the outer wall to the catalyst portion can be shortened. As a result, as shown in Table 1, the temperature of Ta during the reaction, that is, the temperature of the reaction field, could be maintained high.

また、本発明の、反応流体と触媒との接触を改善させる触媒反応器の構造化により、700℃以上という速い反応速度になる温度域においても、反応流体を触媒部に十分な速さで供給することが可能となった。 Furthermore, by structuring the catalytic reactor of the present invention to improve contact between the reaction fluid and the catalyst, the reaction fluid can be supplied to the catalyst section at a sufficient rate even in a temperature range of 700°C or higher, where the reaction rate is high. It became possible to do so.

さらに、補足的な効果として、触媒グラム当たりの毎秒の炭素析出量(グラム)が、比較例5に対して実施例3および実施例5では有意に低減された。平衡論的に高温ほど炭素生成がされにくく、本発明で採用されるプレート形状の特徴である高熱交換性によって高い反応温度を維持された結果と思われる。
言い換えると、メタンドライ改質反応において、本発明は反応成績を向上できる温度条件を高温化し、なおかつメタンドライ改質反応の課題のひとつである炭素析出を抑制させる効果を確認できた。
Furthermore, as a complementary effect, the amount of carbon deposited per second (grams) per gram of catalyst was significantly reduced in Examples 3 and 5 relative to Comparative Example 5. Equilibrium theory shows that the higher the temperature, the less carbon is produced, and this seems to be the result of maintaining a high reaction temperature due to the high heat exchangeability, which is a feature of the plate shape employed in the present invention.
In other words, in the methane dry reforming reaction, it was confirmed that the present invention increases the temperature conditions that can improve the reaction performance, and also suppresses carbon precipitation, which is one of the problems in the methane dry reforming reaction.

各反応開始前の温度Tにおけるメタン転化率についてまとめたものを図9に示す。図中、実施例4(Plate3(顆粒触媒))を太い実線(-)で、実施例5 (Plate4(顆粒触媒))を破線(--)で、比較例4(Tube1)を点線(・・・・)で、比較例6(Plate3(粉末触媒))を1点破線(-・-)で、平衡点を細い実線で、それぞれ示してある。 A summary of methane conversion rates at temperatures T before the start of each reaction is shown in FIG. In the figure, Example 4 (Plate 3 (granular catalyst)) is indicated by a thick solid line (-), Example 5 (Plate 4 (granular catalyst)) is indicated by a broken line (--), and Comparative Example 4 (Tube 1) is indicated by a dotted line (... ), Comparative Example 6 (Plate 3 (powdered catalyst)) is shown by a dotted line (-·-), and the equilibrium point is shown by a thin solid line.

前記表1の説明で述べたように、図9の450~850℃の温度域において、
比較例5(Tube2)<実施例4(Plate3(顆粒触媒))≒ 実施例5(Plate4(顆粒触媒))
であることがわかる。あるメタン転化率を得たい場合、実施例5(Plate4)の反応器を用いることで、小型の管型反応器である比較例5(Tube2)に比べて設定温度を少なくとも50℃低減できることを示している。
反応物質の触媒接触に要する最大距離が実施例4の2mmに対して、実施例5は0.75mmであるため、物質移動に要する時間は(0.75/2)=約1/7倍に短縮されることになる。反応の活性化エネルギーが90kJ/molのとき、650℃から850℃への温度変化で反応速度が約7倍となるが、実施例3から実施例5への改良によって、反応律速の状態を維持できることが保証されていたことになる。
As mentioned in the explanation of Table 1 above, in the temperature range of 450 to 850°C in Figure 9,
Comparative Example 5 (Tube2) <Example 4 (Plate 3 (granular catalyst)) ≒ Example 5 (Plate 4 (granular catalyst))
It can be seen that it is. This shows that when a certain methane conversion rate is desired, by using the reactor of Example 5 (Plate 4), the set temperature can be lowered by at least 50°C compared to Comparative Example 5 (Tube 2), which is a small tubular reactor. ing.
Since the maximum distance required for the reactants to come into contact with the catalyst is 2 mm in Example 4 and 0.75 mm in Example 5, the time required for mass transfer is (0.75/2) 2 = approximately 1/7 times It will be shortened to . When the activation energy of the reaction is 90 kJ/mol, the reaction rate increases by about 7 times when the temperature changes from 650°C to 850°C, but by improving from Example 3 to Example 5, the reaction rate-limiting state is maintained. It was guaranteed that it would be possible.

本発明による移流促進が物質移動速度に及ぼす効果を、前記非特許文献2に記載されたペクレ数(=(空間速度)/(拡散速度)で定義)、ダムケラー数(=(反応速度)/(拡散速度)で定義)の試算によって定量化できる。実施例5の反応器において、邪魔板とスペースの両方の効果がないと仮定した場合、反応物質の触媒接触は分子拡散が支配的になり、ペクレ数とダムケラー数はそれぞれ1と1.75となる。前記非特許文献2によれば反応律速となる条件は両者ともに0.3以下、好ましくは0.1以下とされる。図9によると、実施例5は管型反応器の性能を凌駕していることから反応律速に近い状態と推察され、このことを認めると邪魔板とスペースの効果として、物質移動速度ないしは見かけ上の拡散速度を少なくとも6~10倍促進していたことになる。 The effect of promoting advection according to the present invention on the mass transfer rate can be evaluated by the Peclet number (defined as = (space velocity) / (diffusion rate)) and the Damköhler number (= (reaction rate) / ( It can be quantified by calculating the diffusion rate (defined as diffusion rate). In the reactor of Example 5, assuming that there are no effects of both the baffle plate and the space, the catalytic contact of the reactants is dominated by molecular diffusion, and the Péclet number and Damköhler number are 1 and 1.75, respectively. Become. According to Non-Patent Document 2, the reaction rate-determining conditions are both 0.3 or less, preferably 0.1 or less. According to FIG. 9, the performance of Example 5 exceeds that of the tubular reactor, so it is inferred that the reaction is close to rate-determining. This means that the rate of diffusion of the molecules was accelerated by at least 6 to 10 times.

比較例6は、粉末状の粒径が0.3mm以下の触媒を充填した以外は実施例4と同じ反応器である。
図9から、比較例6(Plate3(粉末触媒))<実施例4(Plate3(顆粒触媒))
となっている。これは比較例6の触媒充填層の隙間が減り、移流による触媒接触がされにくくなったためと考えられる。また、比較例5(Tube2)と比較例6(Plate3(粉末触媒))に着目すると、
600℃以下で、比較例6(Plate3(粉末触媒))<比較例5(Tube2)、
600℃以上で比較例5(Tube2)<比較例6(Plate3(粉末触媒))
と、600℃を境に反応成績が逆転する。すなわち、高温によって反応速度が高まるほど、触媒表面への反応物質の供給が追い付かなかったことを示している。
これらの結果から、本発明のように移流によって触媒接触の改善を図る場合、用いる触媒は、粒径0.3mm以下の粉末状のものより、触媒粒子同士の間隙を反応流体の移流が流れる程度に粒径を大きくした粒子状のものを用いることが好ましく、NiO/Al固体触媒を用いたメタン改質においては、用いる固体触媒の粒径範囲は0.3~0.5mmが好適であると考えられる。
Comparative Example 6 is the same reactor as Example 4 except that it is filled with a powdered catalyst having a particle size of 0.3 mm or less.
From FIG. 9, Comparative Example 6 (Plate 3 (powder catalyst)) < Example 4 (Plate 3 (granular catalyst))
It becomes. This is thought to be because the gap between the catalyst packed beds in Comparative Example 6 was reduced, making it difficult for catalyst contact to occur due to advection. Also, if we focus on Comparative Example 5 (Tube2) and Comparative Example 6 (Plate3 (powder catalyst)),
At 600°C or less, Comparative Example 6 (Plate 3 (powder catalyst)) < Comparative Example 5 (Tube 2),
Comparative Example 5 (Tube 2) < Comparative Example 6 (Plate 3 (powder catalyst)) at 600°C or higher
The reaction results reverse at 600°C. In other words, this indicates that as the reaction rate increased due to high temperature, the supply of the reactant to the catalyst surface was not able to keep up.
From these results, when aiming to improve catalyst contact by advection as in the present invention, the catalyst to be used is one in which the advection of the reaction fluid flows through the gaps between catalyst particles, rather than a powdered catalyst with a particle size of 0.3 mm or less. It is preferable to use a particulate material with a large particle size, and in methane reforming using a NiO/Al 2 O 3 solid catalyst, the particle size range of the solid catalyst used is preferably 0.3 to 0.5 mm. It is thought that.

以上のとおり、本発明により従来の吹抜け流路付き触媒反応器の反応成績を高める効果が示された。また、これにより、より広い反応条件(反応温度)において、従来の反応器並みもしくはそれ以上の反応成績が得られることが示されたといえる。 As described above, the present invention has been shown to have the effect of improving the reaction performance of the conventional catalytic reactor with a blow-through channel. Furthermore, this can be said to show that reaction results comparable to or better than those of conventional reactors can be obtained under a wider range of reaction conditions (reaction temperatures).

本発明の触媒反応器は、気相反応にも液相反応にも気液混合反応に対しても使用することができ、特に、バイオ燃料となりうるメタン、エタノール等や、或いはLPガス、天然ガス等の炭素化合物の改質反応用の触媒反応器として期待できる。 The catalytic reactor of the present invention can be used for gas-phase reactions, liquid-phase reactions, and gas-liquid mixed reactions, and is particularly applicable to methane, ethanol, etc., which can be used as biofuels, or LP gas, natural gas, etc. It can be expected to be used as a catalytic reactor for reforming reactions of carbon compounds such as.

1:触媒反応器
2:プレート
3:ガスケット
4:流路
5:流体入口
6:流体出口
7,71,72:固体触媒
1: Catalytic reactor 2: Plate 3: Gasket 4: Channel 5: Fluid inlet 6: Fluid outlet 7, 71, 72: Solid catalyst

Claims (14)

反応器が複数のプレートを積層することで形成された積層型であって、
前記反応器内部に、
反応流体の流入口及び流出口と連通する矩形状流路と
該矩形状流路の長手方向に面する少なくとも一つの壁面に設けられた凹部内に敷設された固体触媒と
前記流路内に設けられた、前記反応流体の移流の向きを前記固体触媒面に向かうように変更する手段と
を備え、
前記反応流体の移流の向きを変更する手段が、前記流路の前記固体触媒が配置されていない壁面に垂直に設置された複数の邪魔板からなる、
積層型触媒反応器。
The reactor is a stacked type formed by stacking multiple plates,
Inside the reactor ,
a rectangular channel communicating with an inlet and an outlet of a reaction fluid; a solid catalyst disposed in a recess provided in at least one wall surface facing the longitudinal direction of the rectangular channel ;
means provided in the flow path for changing the direction of advection of the reaction fluid toward the solid catalyst surface ;
Equipped with
The means for changing the direction of advection of the reaction fluid comprises a plurality of baffle plates installed perpendicularly to a wall surface of the flow path where the solid catalyst is not disposed.
Stacked catalytic reactor.
前記矩形状流路が、ガスケットを介して前記複数のプレートを所定間隔で積層配置することで形成され、The rectangular flow path is formed by stacking the plurality of plates at predetermined intervals via a gasket,
前記凹部が、前記流路に面する前記プレートの少なくとも一方の壁面に設置され、The recess is installed on at least one wall surface of the plate facing the flow path,
前記邪魔板が、前記ガスケットの長手方向に沿った内側両面に垂直に設置された複数の邪魔板である、The baffle plates are a plurality of baffle plates installed perpendicularly on both inner surfaces along the longitudinal direction of the gasket.
請求項1に記載の積層型触媒反応器。The stacked catalytic reactor according to claim 1.
前記矩形状流路が、ガスケットを介して前記複数のプレートを所定間隔で積層配置することで形成され、The rectangular flow path is formed by stacking the plurality of plates at predetermined intervals via a gasket,
前記凹部が、前記流路に面する一方のプレートの壁面に設けられ、The recess is provided on a wall surface of one plate facing the flow path,
前記邪魔板が、前記流路に面する他方のプレートの壁面に設置された複数の邪魔板である、The baffle plates are a plurality of baffle plates installed on the wall surface of the other plate facing the flow path.
請求項1に記載の積層型触媒反応器。The stacked catalytic reactor according to claim 1.
前記矩形状流路が、ガスケットを介して前記複数のプレートを所定間隔で積層配置することで形成され、The rectangular flow path is formed by stacking the plurality of plates at predetermined intervals via a gasket,
前記凹部が、前記ガスケットの前記流路に面する両壁面に設けられ、The recess is provided on both wall surfaces of the gasket facing the flow path,
前記邪魔板が、前記流路に面する一方のプレート又は両方のプレートの内側面に垂直に設置された複数の邪魔板である、The baffle plate is a plurality of baffle plates installed perpendicularly to the inner surface of one or both plates facing the flow path.
請求項1に積層型触媒反応器。Claim 1: A stacked catalytic reactor.
前記反応流体の流路が形成されたプレートと、表面に前記固体触媒が敷設された凹部を有するプレートとを有し、前記流路が形成された面と前記固体触媒が設置された面とが互いに密着してなり、
前記邪魔板が、前記流路の少なくとも1つの長手方向の内側壁面に垂直に設置された複数の邪魔板である、
請求項1に記載の積層型触媒反応器。
The plate includes a plate in which a flow path for the reaction fluid is formed, and a plate having a recessed portion on the surface of which the solid catalyst is laid, and a surface in which the flow path is formed and a surface in which the solid catalyst is installed are in contact with each other. become close to each other,
The baffle plates are a plurality of baffle plates installed perpendicularly to an inner wall surface of at least one longitudinal direction of the flow path.
The stacked catalytic reactor according to claim 1.
前記邪魔板が、前記反応器を構成する部材と一体である請求項1~のいずれか1項に記載の積層型触媒反応器。 The stacked catalytic reactor according to any one of claims 1 to 5 , wherein the baffle plate is integrated with a member constituting the reactor. 前記邪魔板が、前記反応器を構成する部材と別体であって、前記反応器内に挿入できる部品として構成される請求項1~のいずれか1項に記載の積層型触媒反応器。 The stacked catalytic reactor according to any one of claims 1 to 5 , wherein the baffle plate is configured as a component that is separate from the members constituting the reactor and can be inserted into the reactor. 前記固体触媒が、粒子状の触媒からなる請求項1~のいずれか1項に記載の積層型触媒反応器。 The stacked catalytic reactor according to any one of claims 1 to 7 , wherein the solid catalyst comprises a particulate catalyst. 前記凹部内には、前記流入口側及び/又は前記流出口側に、前記固体触媒が敷設されてない空間が設けられた請求項1~のいずれか1項に記載の積層型触媒反応器。 The stacked catalytic reactor according to any one of claims 1 to 8 , wherein a space in which the solid catalyst is not placed is provided on the inlet side and/or the outlet side in the recess. . 熱媒用流路又は冷媒用流路が形成されたプレートを有し、該熱媒用流路又は冷媒用流路と前記反応流体の流路とが交互になるように積層された熱交換型である請求項1~のいずれか1項に記載の積層型触媒反応器。 A heat exchange type having a plate in which a heat medium flow path or a coolant flow path is formed, and in which the heat medium flow path or refrigerant flow path and the flow path for the reaction fluid are stacked alternately. The stacked catalytic reactor according to any one of claims 1 to 9 . 気相反応用反応器である請求項1~10のいずれか1項に記載の積層型触媒反応器。 The stacked catalytic reactor according to any one of claims 1 to 10 , which is a gas phase applied reactor. 前記気相反応が、炭素化合物の改質反応である請求項11に記載の積層型触媒反応器。 The stacked catalytic reactor according to claim 11 , wherein the gas phase reaction is a reforming reaction of a carbon compound. 前記炭素化合物が、メタン、エタノール、又はLPガスである請求項12に記載の積層型触媒反応器。 The stacked catalytic reactor according to claim 12 , wherein the carbon compound is methane, ethanol, or LP gas. メタンのドライ改質反応用反応器である請求項13に記載の積層型触媒反応器。 The stacked catalytic reactor according to claim 13 , which is a reactor for dry reforming reaction of methane.
JP2020029661A 2019-12-09 2020-02-25 catalytic reactor Active JP7442791B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019222278 2019-12-09
JP2019222278 2019-12-09

Publications (2)

Publication Number Publication Date
JP2021090942A JP2021090942A (en) 2021-06-17
JP7442791B2 true JP7442791B2 (en) 2024-03-05

Family

ID=76311260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020029661A Active JP7442791B2 (en) 2019-12-09 2020-02-25 catalytic reactor

Country Status (1)

Country Link
JP (1) JP7442791B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022183562A (en) 2021-05-31 2022-12-13 株式会社日立製作所 Data management system, data management method, and data management program

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010207753A (en) 2009-03-11 2010-09-24 Nano Cube Japan Co Ltd Reactor and sheet-like member
JP2014097438A (en) 2012-11-13 2014-05-29 Babcock-Hitachi Co Ltd Catalyst structure for purifying exhaust gas
JP2014515693A (en) 2011-02-18 2014-07-03 シュティヒティン・エネルギーオンデルツォイク・セントラム・ネーデルランド Membrane reactor and process for the production of gaseous objects by such a reactor
JP2019181467A (en) 2018-04-11 2019-10-24 国立研究開発法人産業技術総合研究所 Laminate type reactor
JP2019188365A (en) 2018-04-27 2019-10-31 国立研究開発法人産業技術総合研究所 Laminate type reactor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5279121A (en) * 1975-12-26 1977-07-04 Yoshihiko Takeshita Exhaust gas purifying apparatus
JPS52168940U (en) * 1976-06-16 1977-12-21
JPS61268348A (en) * 1985-05-23 1986-11-27 Kobe Steel Ltd Heat transfer pipe covered with catalyst layer
JP2820165B2 (en) * 1991-01-24 1998-11-05 三菱電機株式会社 Reforming reactor
JPH0930801A (en) * 1995-07-19 1997-02-04 Mitsubishi Electric Corp Reformation reactor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010207753A (en) 2009-03-11 2010-09-24 Nano Cube Japan Co Ltd Reactor and sheet-like member
JP2014515693A (en) 2011-02-18 2014-07-03 シュティヒティン・エネルギーオンデルツォイク・セントラム・ネーデルランド Membrane reactor and process for the production of gaseous objects by such a reactor
JP2014097438A (en) 2012-11-13 2014-05-29 Babcock-Hitachi Co Ltd Catalyst structure for purifying exhaust gas
JP2019181467A (en) 2018-04-11 2019-10-24 国立研究開発法人産業技術総合研究所 Laminate type reactor
JP2019188365A (en) 2018-04-27 2019-10-31 国立研究開発法人産業技術総合研究所 Laminate type reactor

Also Published As

Publication number Publication date
JP2021090942A (en) 2021-06-17

Similar Documents

Publication Publication Date Title
RU2373471C2 (en) Process and reactor for performing heat exchange reactions
JP6408754B2 (en) Reactor
WO2018111149A1 (en) Method of activating a catalyst, reactor, and method of obtaining hydrocarbons in the fischer-tropsch process
JP7442791B2 (en) catalytic reactor
CN102917784A (en) Reactor with reactor head and integrated valve
CA2078825C (en) Process and reactor for carrying out non-adiabatic catalytic reactions
JP2011504415A (en) Chemical reactor with plate-type heat exchange unit
CA2691588A1 (en) Reactor panel for catalytic processes
RU2510364C2 (en) Improved method of producing hydrogen cyanide by catalytic dehydration of gaseous formamide with direct heating
AU2008323197A1 (en) Improved method for producing hydrocyanic acid by catalytic dehydration of gaseous formamide
AU2012246877B2 (en) Reactor system for producing hydrocarbons from synthetic gas
WO1985004820A1 (en) Reactor
Badur et al. Mathematical modeling of hydrogen production performance in thermocatalytic reactor based on the intermetallic phase of Ni3Al
JPH05303972A (en) Fuel reformer
JP2017144403A (en) Plate-type reactor
US7718146B2 (en) Enhanced bed separation in a styrene monomer reactor using milled plates
JP7215731B2 (en) stacked reactor
JP7319737B2 (en) stacked reactor
US7989508B2 (en) Process and reactor for implementing exothermic and endothermic reactions
AU2007287792A1 (en) Isothermal reactor
JP2019188365A (en) Laminate type reactor
ITMI20122251A1 (en) MULTI-TEXTURED REACTOR FOR CHEMICAL PROCESSES WITH HIGH HEAT EXCHANGE
WO2023135938A1 (en) Methanation reactor
EA045817B1 (en) SHAPE OF CATALYST PARTICLES
Baratti et al. Optimal catalyst distribution in catalytic plate reactors

Legal Events

Date Code Title Description
AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20200310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200326

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240214

R150 Certificate of patent or registration of utility model

Ref document number: 7442791

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150