JP7442409B2 - Motor copper coil recovery device - Google Patents

Motor copper coil recovery device Download PDF

Info

Publication number
JP7442409B2
JP7442409B2 JP2020133676A JP2020133676A JP7442409B2 JP 7442409 B2 JP7442409 B2 JP 7442409B2 JP 2020133676 A JP2020133676 A JP 2020133676A JP 2020133676 A JP2020133676 A JP 2020133676A JP 7442409 B2 JP7442409 B2 JP 7442409B2
Authority
JP
Japan
Prior art keywords
punching
pushing
iron core
blades
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020133676A
Other languages
Japanese (ja)
Other versions
JP2022030003A (en
Inventor
隆一 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sangyo Shinko Co Ltd
Original Assignee
Sangyo Shinko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sangyo Shinko Co Ltd filed Critical Sangyo Shinko Co Ltd
Priority to JP2020133676A priority Critical patent/JP7442409B2/en
Publication of JP2022030003A publication Critical patent/JP2022030003A/en
Application granted granted Critical
Publication of JP7442409B2 publication Critical patent/JP7442409B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Manufacture Of Motors, Generators (AREA)

Description

本発明は、モーター銅コイル回収装置に関するものであり、特に電動モーターの固定子を構成する鉄心から銅材料を回収する回収装置に関するものである。 The present invention relates to a motor copper coil recovery device, and more particularly to a recovery device for recovering copper material from an iron core that constitutes a stator of an electric motor.

電動モーターは、固定子、回転子、回転子のシャフト(軸)、軸受、モーター外郭としてのエンドブラケット及びフレームなどから構成される。固定子は、鉄心と巻き線を有し、鉄心はその内側形状が回転子の回転軸と同心円の円筒状で、銅線が所定の電気仕様で鉄心の回りで巻かれて形成された巻き線を有する。小型の電動モーターにおいては、銅の伸線にエナメル皮膜を被覆したエナメル銅線が巻き線として使用される。新幹線の走行モーターなどの大型の電動モーターでは、固定子の軸線方向中央部分については、固定子の鉄心の内側(モーターの軸心と同心円の円筒状形状)の表面に軸線方向に平行な溝を設け、この溝内に細長い銅板を嵌合し、巻き線として機能させている。新幹線の電動モーターの固定子においては、固定子の鉄心の内側(軸心側)表面に36個の溝が等角度(10度)間隔で設けられ、それぞれの溝に巻き線の一部として機能する銅板が嵌合されている。固定子の溝と銅板との間は、ワニスによって固着されている。 An electric motor is composed of a stator, a rotor, a shaft of the rotor, a bearing, an end bracket and a frame as the outer shell of the motor, and the like. The stator has an iron core and a winding. The iron core has a cylindrical inner shape that is concentric with the rotor's rotation axis, and the winding is formed by winding copper wire around the iron core according to predetermined electrical specifications. has. In small electric motors, enamelled copper wire, which is a drawn copper wire coated with an enamel film, is used as the winding wire. In large electric motors such as Shinkansen travel motors, the central part of the stator in the axial direction has grooves parallel to the axial direction on the inner surface of the stator iron core (cylindrical shape concentric with the motor axis). A long and thin copper plate is fitted into this groove to function as a winding wire. In the stator of Shinkansen electric motors, 36 grooves are provided at equal angular (10 degree) intervals on the inner surface (axis side) of the stator iron core, and each groove functions as a part of the winding. A copper plate is fitted. The grooves of the stator and the copper plate are fixed with varnish.

廃棄された電動モーターをリサイクル使用するに際しては、構成する部品の部材ごとに分別回収すれば、回収品の使用価値を高めることができる。固定子や回転子については、鉄で構成される鉄心と、銅で構成される巻線とを分別回収できれば、利用価値を高めることができる。特に巻線は高純度の電気銅が用いられており、利用価値が高い。 When recycling a discarded electric motor, the value of the recovered product can be increased by separating and collecting each component. As for stators and rotors, if the iron core made of iron and the winding made of copper can be collected separately, the utility value can be increased. In particular, the windings are made of high-purity electrolytic copper and have high utility value.

巻線としてエナメル銅線が用いられている小型の電動モーターについては、特許文献1に、樹脂モールドした回転子をアルカリ分解液に浸漬し、樹脂モールドをアルカリ分解して崩壊させ、少なくとも巻線や鉄芯等の電磁部材の金属要素を分離する方法が考えられている。特許文献2には、エナメル銅線から成る巻線から純度の高い銅を効率的に回収する方法が開示されている。 Regarding a small electric motor that uses enamelled copper wire as a winding, Patent Document 1 discloses that a resin-molded rotor is immersed in an alkaline decomposition solution, and the resin mold is decomposed and disintegrated with an alkali, thereby removing at least the windings and the windings. Methods of separating metal elements of electromagnetic members such as iron cores have been considered. Patent Document 2 discloses a method for efficiently recovering high-purity copper from a winding made of enamelled copper wire.

特開平8-340661号公報Japanese Patent Application Publication No. 8-340661 特開平10-25523号公報Japanese Patent Application Publication No. 10-25523

巻線としてエナメル銅線が用いられている小型の電動モーターについては、上述のように銅を効率的に回収する方法が開示されている。一方、新幹線の走行モーターの固定子のように、鉄心の内側表面に等角度で設けた溝に銅板を嵌合したような場合については、鉄心と銅板とを効率的に分離する手法が開示されておらず、海外に搬出され、海外の解体業者において、基本は手解体、一部機械を用いて解体し、素材ごとの分別を行っている。 For small electric motors in which enamelled copper wire is used as the winding, a method for efficiently recovering copper has been disclosed as described above. On the other hand, in cases where a copper plate is fitted into grooves formed at equal angles on the inner surface of an iron core, such as the stator of a Shinkansen running motor, a method for efficiently separating the iron core and copper plate has been disclosed. Instead, they are transported overseas and disassembled by overseas dismantling companies, usually by hand and some using machines, and sorted by material.

本発明は、電動モーターの固定子などにおいて、鉄心の軸線方向に平行かつ、鉄心の軸心を中心に同心円状かつ等角度間隔に銅板が配置され嵌合されてなるモーターの鉄心を対象とし、モーターの鉄心から銅板を回収することのできる、モーター銅コイル回収装置を提供することを目的とする。 The present invention is directed to an iron core of an electric motor, such as a stator of an electric motor, in which copper plates are arranged and fitted at equal angular intervals parallel to the axial direction of the iron core, concentrically around the axial center of the iron core, An object of the present invention is to provide a motor copper coil recovery device capable of recovering copper plates from the iron core of a motor.

即ち、本発明の要旨とするところは以下のとおりである。
[1]モーターの鉄心から、当該鉄心の軸線方向に平行かつ、鉄心の軸心を中心に同心円状かつ等角度間隔に配置され嵌合されてなる銅板を回収するモーター銅コイル回収装置であって、前記鉄心が有する前記銅板の総数を「銅板総数」と呼び、
前記鉄心を載置する載置台と、前記銅板を鉄心から押し抜く押し抜き機とを有し、
前記銅板を鉄心から押し抜く押し抜き時において、前記押し抜き機は前記載置台に載置された鉄心の軸線方向に平行な方向(以下「押し抜き方向」という。)に移動可能であり、前記押し抜き方向に見て鉄心の軸心を回転中心として回転可能であり、
前記押し抜き機は2以上かつ前記銅板総数の半数以下の押し刃を有し、前記押し刃は前記押し抜き機の回転中心に同心円状に配置され、前記押し抜き機の回転位置を調整することにより、前記押し抜き方向に見て、前記押し刃が前記押し抜かれるいずれかの銅板配置位置に対応する位置とすることができ、
前記押し刃の押し抜き方向先端を「押し刃先端」、押し抜き機における前記押し刃先端の押し抜き方向位置を「押し刃先端位置」と呼び、それぞれの押し刃の押し刃先端位置相互間の位置差について、予め「最小位置差」を定め、
それぞれの押し刃から見て、他の押し刃との押し刃先端位置の位置差が、前記最小位置差よりも小さい当該他の押し刃の数が2以下であり、少なくともひとつの押し刃の押し刃先端位置は、他のいずれかの押し刃の押し刃先端位置との位置差が前記最小位置差以上であり、
前記鉄心を前記載置台に載置した上で、前記押し抜き機を押し抜き方向に移動することにより、前記押し刃の配置位置に対応する前記銅板を押し抜き、押し抜き後に前記押し抜き機を押し抜き方向の反対方向に移動し、前記押し抜き機を回転して押し刃の位置を次に押し抜く銅板配置位置に対応させることができる、モーター銅コイル回収装置。
[2]前記鉄心に嵌合された銅板の配置数が36、銅板の角度間隔が10度であり、
前記押し刃の配置数が2、3、4、6、9、12、18のいずれかであることを特徴とする[1]に記載のモーター銅コイル回収装置。
[3]前記押し刃の配置数が2、3、4、6のいずれかであり、
それぞれの押し刃から見て、他の押し刃との押し刃先端位置の位置差が、前記最小位置差よりも小さい当該他の押し刃の数が0であることを特徴とする[2]に記載のモーター銅コイル回収装置。
[4]前記押し刃が、押し抜き機の回転中心に回転対称に配置されていることを特徴とする[2]又は[3]に記載のモーター銅コイル回収装置。
[5]前記最小位置差を5mm~15mmの範囲で定めることを特徴とする[1]から[4]までのいずれか1つに記載のモーター銅コイル回収装置。
[6]前記最小位置差を5mmとすることを特徴とする[1]から[4]までのいずれか1つに記載のモーター銅コイル回収装置。
[7]前記鉄心が、電動モーターの固定子であることを特徴とする[1]から[6]までのいずれか1つに記載のモーター銅コイル回収装置。
That is, the gist of the present invention is as follows.
[1] A motor copper coil recovery device for recovering copper plates parallel to the axial direction of the iron core and arranged concentrically and at equal angular intervals around the axial center of the iron core and fitted together. , the total number of the copper plates that the iron core has is called the "total number of copper plates",
comprising a mounting table on which the iron core is placed, and a punching machine for punching out the copper plate from the iron core,
At the time of punching out the copper plate from the iron core, the punching machine is movable in a direction parallel to the axial direction of the iron core placed on the mounting table (hereinafter referred to as the "pushing direction"), and It is rotatable around the axis of the iron core when viewed in the punching direction,
The punching machine has two or more pushing blades and less than half of the total number of copper plates, and the pressing blades are arranged concentrically around the rotation center of the punching machine, and the rotational position of the punching machine is adjusted. Accordingly, when viewed in the punching direction, the pushing blade can be located at a position corresponding to a placement position of one of the copper plates to be punched out,
The tip of the pushing blade in the punching direction is called the "pushing blade tip", and the position of the pushing blade tip in the punching direction in the punching machine is called the "pushing blade tip position". Regarding the positional difference, a "minimum positional difference" is determined in advance,
When viewed from each pushing blade, the positional difference in the pushing blade tip position with respect to other pushing blades is smaller than the minimum positional difference, and the number of such other pushing blades is 2 or less, and at least one pushing blade is pressed. The blade tip position has a positional difference with the pushing blade tip position of any other pushing blade that is greater than or equal to the minimum positional difference,
After placing the iron core on the mounting table, the punching machine is moved in the punching direction to punch out the copper plate corresponding to the placement position of the pushing blade, and after punching, the punching machine is moved. A motorized copper coil recovery device capable of moving in the opposite direction to the punching direction and rotating the punching machine so that the position of the pushing blade corresponds to the placement position of the copper plate to be punched next.
[2] The number of arranged copper plates fitted to the iron core is 36, and the angular interval of the copper plates is 10 degrees,
The motor copper coil recovery device according to [1], wherein the number of push blades arranged is any one of 2, 3, 4, 6, 9, 12, and 18.
[3] The number of the push blades arranged is 2, 3, 4, or 6,
[2] characterized in that, when viewed from each pushing blade, the number of other pushing blades whose positional difference in the tip position of the pushing blade with respect to other pushing blades is smaller than the minimum positional difference is 0. Motor copper coil recovery device as described.
[4] The motor copper coil recovery device according to [2] or [3], wherein the pushing blade is arranged rotationally symmetrically about the rotation center of the punching machine.
[5] The motor copper coil recovery device according to any one of [1] to [4], wherein the minimum positional difference is set in a range of 5 mm to 15 mm.
[6] The motor copper coil recovery device according to any one of [1] to [4], wherein the minimum positional difference is 5 mm.
[7] The motor copper coil recovery device according to any one of [1] to [6], wherein the iron core is a stator of an electric motor.

本発明のモーター銅コイル回収装置により、電動モーターの固定子などにおいて、鉄心の軸線方向に平行かつ、鉄心の軸心を中心に同心円状かつ等角度間隔に銅板が配置され嵌合されてなるモーターの鉄心から銅板を回収するに際し、押し刃によって銅板を押し下げて回収し、少ない押し下げ力で銅板を回収することができる。 By using the motor copper coil recovery device of the present invention, in the stator of an electric motor, etc., a motor in which copper plates are arranged and fitted parallel to the axial direction of the iron core, concentrically and at equal angular intervals around the axial center of the iron core. When collecting the copper plate from the iron core, the push blade pushes down the copper plate and collects it, making it possible to collect the copper plate with less pressing force.

本発明のモーター銅コイル回収装置を示す図であり、(A)は正面図、(B)はB-B矢視平面図である。1 is a diagram showing a motor copper coil recovery device of the present invention, in which (A) is a front view and (B) is a plan view taken along the line BB. 本発明のモーター銅コイル回収装置の一部を示す図であり、(A)はA-A矢視図、(B)は部分正面図(押し抜き前)、(C)は部分正面図(押し抜き中)、(D)はD-D矢視平面図である。1 is a diagram showing a part of the motor copper coil recovery device of the present invention, (A) is a view taken along the line AA, (B) is a partial front view (before punching), and (C) is a partial front view (before punching). (D) is a plan view taken along the line DD. 押し抜き中の押し抜き機と鉄心の関係を示す図であり、(A1)は押し抜き初期の押し抜き機の部分図、(B1)は(A1)で押し抜き後の鉄心の部分図、(A2)(B2)は2回目、(A3)(B3)は9回目の押し抜き段階を示す。It is a figure showing the relationship between the punching machine and the core during punching, (A1) is a partial view of the punching machine at the initial stage of punching, (B1) is a partial view of the core after punching in (A1), ( A2) (B2) shows the second punching stage, and (A3) (B3) shows the ninth punching stage. 押し抜きの経過と押し抜き力の関係を示す図であり、(A)は1枚の押し刃で押し抜きを行ったとき、(B)は本発明の4枚の押し刃で押し抜きを行ったときの結果である。It is a figure showing the relationship between the progress of punching and the punching force, (A) when punching was performed with one pressing blade, and (B) when punching was performed with four pressing blades of the present invention. This is the result when 2枚の押し刃を有する本発明の押し刃を示す図であり、(A)は平面図、(B)は回転ヘッド外周を展開して示した図である。It is a figure which shows the pushing blade of this invention which has two pushing blades, (A) is a top view, and (B) is the expanded view which showed the outer periphery of a rotating head. 3枚の押し刃を有する本発明の押し刃を示す図であり、(A)は平面図、(B)は回転ヘッド外周を展開して示した図である。It is a figure which shows the pushing blade of this invention which has three pushing blades, (A) is a top view, and (B) is the expanded view which showed the outer periphery of a rotating head. 4枚の押し刃を有する本発明の押し刃を示す図であり、(A)は平面図、(B)(C)は回転ヘッド外周を展開して示した図である。It is a figure which shows the pushing blade of this invention which has four pushing blades, (A) is a top view, (B) and (C) are the expanded views which showed the outer periphery of a rotating head. 6枚の押し刃を有する本発明の押し刃を示す図であり、(A)は平面図、(B)(C)(D)は回転ヘッド外周を展開して示した図である。It is a figure which shows the pushing blade of this invention which has six pushing blades, (A) is a top view, (B), (C), and (D) are the views which expanded and showed the outer periphery of a rotating head.

本発明は前述のように、電動モーターの固定子などにおいて、鉄心の軸線方向に平行かつ、鉄心の軸心を中心に同心円状かつ等角度間隔に銅板が配置され嵌合されてなるモーターの鉄心を対象とする。以下、固定子、特に新幹線の走行用電動モーターの固定子の場合を例にとって、モーターの鉄心から銅板を回収する本発明のモーター銅コイル回収装置の説明を行う。 As described above, the present invention relates to a stator of an electric motor, etc., in which copper plates are arranged and fitted in parallel to the axial direction of the iron core and concentrically and at equal angular intervals around the axial center of the iron core. The target is DESCRIPTION OF THE PREFERRED EMBODIMENTS The motor copper coil recovery device of the present invention for recovering copper plates from the iron core of a motor will be described below, taking the case of a stator, particularly a stator of an electric motor for running a Shinkansen, as an example.

新幹線の走行用電動モーターの固定子は、固定子の軸線方向の中央部分については、固定子の鉄心の内側表面に36個の溝が等角度(10度)間隔で設けられ、それぞれの溝に巻き線の一部として機能する銅板が嵌合されている。図2(B)(D)には、固定子16の軸線方向17の中央部分について、固定子16の鉄心11をさらに軸線方向17に分断したものが記載されている。固定子16の鉄心11の内側表面14(軸心15側の表面)に36個の溝12が等角度(10度)間隔で設けられ、それぞれの溝12に銅板13が嵌合されている。鉄心11の溝12と銅板13との間は、ワニスによって固着されている。図示しない、固定子の軸線方向の両側については、上記軸線方向の中央部分に配置された直線状の銅板の相互間を電気的に接続してコイルを形成するための配線が設けられ、銅板のそれぞれの端部に当該配線が接続されており、銅板外周接続コイルを形成している。鉄心11が有する銅板13の総数を「銅板総数」と呼ぶ。 The stator of the electric motor for Shinkansen running has 36 grooves provided at equal angular (10 degree) intervals on the inner surface of the stator core in the central part of the stator in the axial direction. A copper plate is fitted that acts as part of the winding. 2(B) and 2(D) show that the iron core 11 of the stator 16 is further divided in the axial direction 17 at the central portion of the stator 16 in the axial direction 17. Thirty-six grooves 12 are provided at equal angular (10 degree) intervals on the inner surface 14 (surface on the axis 15 side) of the iron core 11 of the stator 16, and a copper plate 13 is fitted into each groove 12. The groove 12 of the iron core 11 and the copper plate 13 are fixed with varnish. On both sides of the stator in the axial direction (not shown), wiring is provided to form a coil by electrically connecting the linear copper plates arranged in the center of the axial direction. The wiring is connected to each end, forming a copper plate outer periphery connection coil. The total number of copper plates 13 that the iron core 11 has is called the "total number of copper plates."

モーターの固定子から銅を回収する場合において、まずは固定子の軸線方向17において、固定子の軸線方向17の中央部分と両端部分とを切断する。切断の結果として、銅を回収する対象の鉄心11が得られる。対象の鉄心11は、さらに軸線方向17に垂直な切断面で細かく分断する。鉄心11は、図2(B)(D)に示すように、鉄心11の軸線方向17に平行かつ、軸心15を中心に同心円状かつ等角度間隔に銅板13が配置され嵌合されている。切断で切り離された軸線方向の両側の銅板外周接続コイル部分は、基本的に銅線のみで構成されているので、そのまま銅素材としてリサイクルできる。 When recovering copper from the stator of a motor, first, in the axial direction 17 of the stator, the central portion and both end portions of the stator in the axial direction 17 are cut. As a result of the cutting, an iron core 11 is obtained from which copper is to be recovered. The target core 11 is further cut into pieces along a cutting plane perpendicular to the axial direction 17. As shown in FIGS. 2(B) and 2(D), the iron core 11 has copper plates 13 arranged and fitted in parallel to the axial direction 17 of the iron core 11 and concentrically and at equal angular intervals around the axis 15. . The copper plate outer peripheral connecting coil portions on both sides in the axial direction that are separated by cutting are basically composed of only copper wire, so they can be recycled as copper materials as they are.

本発明のモーター銅コイル回収装置について、図1~図3に基づいて説明する。モーター銅コイル回収装置は、回収対象の鉄心11を載置する載置台6と、銅板13を鉄心11から押し抜く押し抜き機1とを有しする。銅板13を鉄心11から押し抜く押し抜き時において、押し抜き機1は載置台6に載置された鉄心11の軸線方向17に平行な方向(押し抜き方向31)に移動可能であり、回転中心32まわりに回転可能とする。押し抜き方向31に見て、回転中心32は鉄心11の軸心15と同じ位置にある。通常は図1~図2に示すように、銅板13を鉄心11から押し抜く押し抜き時において、載置台6に載置した鉄心11の軸線方向17は鉛直方向とし、押し抜き方向31も鉛直方向とすると好ましい。以下、押し抜き方向31が鉛直方向である場合を例にとって説明する。押し抜き時において押し抜き機1は載置台6の上方に配置される。 The motor copper coil recovery device of the present invention will be explained based on FIGS. 1 to 3. The motor copper coil recovery device includes a mounting table 6 on which the iron core 11 to be recovered is placed, and a punching machine 1 that pushes out the copper plate 13 from the iron core 11. When punching out the copper plate 13 from the iron core 11, the punching machine 1 is movable in a direction parallel to the axial direction 17 of the iron core 11 placed on the mounting table 6 (pushing direction 31), and the It is possible to rotate around 32. When viewed in the punching direction 31, the rotation center 32 is located at the same position as the axis 15 of the iron core 11. Usually, as shown in FIGS. 1 and 2, when punching out the copper plate 13 from the iron core 11, the axial direction 17 of the iron core 11 placed on the mounting table 6 is vertical, and the punching direction 31 is also vertical. It is preferable to do so. Hereinafter, a case where the punching direction 31 is a vertical direction will be explained as an example. During punching, the punching machine 1 is placed above the mounting table 6.

載置台6を水平方向に移動可能とし、載置台6に鉄心11を載置する位置(載置位置)(図示せず)と、鉄心11から銅板13を押し抜く位置(押し抜き位置)(図1)を別の位置とすると好ましい。これにより、載置台を載置位置に移動して鉄心をクレーン等で載置し、その後載置台を押し抜き位置に移動して鉄心から銅板の押し抜きを行い、その後載置台を載置位置に戻して、銅板の押し抜きが完了した鉄心をクレーン等で回収することが容易となる。 The mounting table 6 is made horizontally movable, and there are two positions: a position where the iron core 11 is placed on the mounting table 6 (placing position) (not shown), and a position where the copper plate 13 is pushed out from the iron core 11 (pushing position) (not shown). 1) is preferably placed in a different position. As a result, the mounting table is moved to the mounting position, the iron core is placed using a crane, etc., the mounting table is then moved to the punching position, the copper plate is punched out from the iron core, and then the mounting table is moved to the loading position. It becomes easy to return the core and collect the iron core from which the copper plate has been punched out using a crane or the like.

上記のように、銅板13を鉄心11から押し抜く押し抜き時において、押し抜き機1は載置台6に載置された鉄心11の軸線方向17に平行な方向(押し抜き方向31)に移動可能であり、押し抜き方向31に見て鉄心11の軸心15を回転中心32として回転可能としている。(押し抜き方向31に見て、回転中心32は鉄心11の軸心15と同じ位置にある。)即ち、鉄心11を載置した載置台6が押し抜き位置にあるとき、押し抜き機1は鉄心11の軸心15を回転中心32として回転する。好ましくは、押し抜き機1は押し下げ機構2と回転ヘッド3とを有し、押し下げ機構2は好適には油圧プレス機などで構成され、押し抜き方向31に移動可能とする。押し下げる方向に移動する際に所定の圧下力を保持している。押し下げ機構2に取り付けられた回転ヘッド3が回転中心32まわりに回転する。 As described above, when punching out the copper plate 13 from the iron core 11, the punching machine 1 can move in a direction parallel to the axial direction 17 of the iron core 11 placed on the mounting table 6 (pushing direction 31). The iron core 11 is rotatable about the axis 15 of the iron core 11 as a rotation center 32 when viewed in the punching direction 31. (Seeing in the punching direction 31, the rotation center 32 is at the same position as the axis 15 of the iron core 11.) That is, when the mounting table 6 on which the iron core 11 is placed is in the punching position, the punching machine 1 It rotates about the axis 15 of the iron core 11 as the rotation center 32. Preferably, the punching machine 1 has a push-down mechanism 2 and a rotary head 3, and the push-down mechanism 2 is preferably constituted by a hydraulic press or the like, and is movable in the punching direction 31. A predetermined downward pressure is maintained when moving in the downward direction. A rotary head 3 attached to the push-down mechanism 2 rotates around a rotation center 32.

押し抜き機1は2以上かつ前記銅板総数の半数以下の押し刃4を有し、押し刃4は押し抜き機1の回転中心32に同心円状に配置される。具体的には、図2に示すように、押し刃4は回転ヘッド3に配置される。図2は押し刃4を4枚配置した例である。押し抜き方向31に見たとき、押し抜き機1の回転中心32(鉄心11の軸心15と一致している)から押し刃4までの距離は、鉄心11の軸心15から溝12までの距離と一致し、押し刃4の断面形状は、溝12内を通過可能な形状とする。回転ヘッド3を回転させ、鉄心11の溝12位置と押し刃4の位置を回転方向で一致させたとき(図2(A)(B)(D))、押し抜き機1を下方(押し下げ方向)に押し下げることにより(図2(C))、押し刃4が溝12内を下降し、溝12内に嵌合された銅板13を押し下げ、下方に分離して回収することができる。 The punching machine 1 has two or more pressing blades 4 and less than half of the total number of copper plates, and the pressing blades 4 are arranged concentrically around the rotation center 32 of the punching machine 1. Specifically, as shown in FIG. 2, the push blade 4 is arranged on the rotary head 3. FIG. 2 shows an example in which four push blades 4 are arranged. When viewed in the punching direction 31, the distance from the rotation center 32 of the punching machine 1 (which coincides with the axis 15 of the iron core 11) to the pushing blade 4 is the distance from the axis 15 of the iron core 11 to the groove 12. The cross-sectional shape of the pusher blade 4 is set to match the distance and allow the pusher blade 4 to pass through the groove 12. When the rotary head 3 is rotated and the position of the groove 12 of the iron core 11 and the position of the pusher blade 4 are aligned in the rotation direction (Fig. 2 (A), (B), and (D)), the puncher 1 is moved downward (in the push-down direction). ) (FIG. 2(C)), the pushing blade 4 descends in the groove 12, pushes down the copper plate 13 fitted in the groove 12, and can separate it downward and collect it.

本発明のように、押し抜き機1に設けた押し刃4によって鉄心11の銅板13を押し抜く方法を採用するに際し、押し抜き機1に設置する押し刃4の数に比例して押し抜き力が増大するので、押し刃4の数が鉄心11の銅板13の総数(銅板総数)に等しいと、大きな押し抜き力を有する押し抜き機を用意する必要が生じる。本発明は、上記のように押し刃4の数を銅板総数の半数以下とするので、押し抜き機の押し抜き力を低減できる。押し刃の数が少ないほど、押し抜き力をさらに低減することができる。 When adopting the method of punching out the copper plate 13 of the iron core 11 using the push blades 4 installed in the punching machine 1 as in the present invention, the punching force is proportional to the number of the pressing blades 4 installed in the punching machine 1. If the number of push blades 4 is equal to the total number of copper plates 13 of the iron core 11 (total number of copper plates), it will be necessary to prepare a punching machine with a large punching force. In the present invention, as described above, the number of push blades 4 is less than half of the total number of copper plates, so the punching force of the punching machine can be reduced. The smaller the number of push blades, the further the punching force can be reduced.

例えば、銅板総数が36枚で、等角度(10度)で配置されている場合について考える。押し刃4の数が18枚で等角度(20度)で配置されたものであれば、1回の押し抜きで18個の銅板13を押し抜き、次に回転ヘッドを10度回転させて再度押し抜くことにより、残りの18個の銅板13を押し抜くことができる。押し刃の数が4枚で等角度(90度)で配置されたものであれば(図2、図3参照)、1回の押し抜きで4個の銅板を押し抜き(図3(A1)(B1))、次に回転ヘッドを10度回転させて再度押し抜き(図3(A2)(B2))、これを9回繰り返すことにより、全ての銅板を押し抜くことができる(図3(A3)(B3))。押し刃4の数は最少が2枚であり(図5参照)、2枚の押し刃4を等角度(180度)で配置することにより、押し抜き時の押し下げ機構の圧下力と押し刃にかかる抵抗力との力のバランスがとりやすくなる。 For example, consider a case where the total number of copper plates is 36 and they are arranged at equal angles (10 degrees). If the number of push blades 4 is 18 and they are arranged at equal angles (20 degrees), 18 copper plates 13 are punched out in one punch, then the rotary head is rotated 10 degrees and the punch is pressed again. By punching out, the remaining 18 copper plates 13 can be punched out. If the number of push blades is four and they are arranged at equal angles (90 degrees) (see Figures 2 and 3), then four copper plates can be punched out in one punch (Figure 3 (A1)). (B1)), then rotate the rotary head 10 degrees and punch out again (Fig. 3 (A2) (B2)). By repeating this nine times, all the copper plates can be punched out (Fig. 3 (B1)). A3) (B3)). The minimum number of push blades 4 is two (see Figure 5), and by arranging the two push blades 4 at equal angles (180 degrees), the pressure of the push-down mechanism and the push blade during punching can be reduced. It becomes easier to balance the force with the resistance force.

ここで、鉄心11の溝12内に嵌合された銅板13を押し刃4で押し抜くに際しての、必要な押し抜き力について説明する。新幹線の走行用電動モーターの固定子の場合を例にとる。固定子16の鉄心11の内側表面14は直径0.5mの円筒状であり、36個の溝12が等角度(10度)間隔で同心円状に形成され、それぞれの溝12内に銅板13が嵌合されている(図2(D)参照)。軸線方向17両側の銅板外周接続コイル部分を切り離したときの固定子16の軸線方向17中央部分は、軸線方向17の長さが約240mmである。 Here, the necessary pushing force when pushing out the copper plate 13 fitted into the groove 12 of the iron core 11 with the pushing blade 4 will be explained. Let's take the case of the stator of the electric motor for running the Shinkansen as an example. The inner surface 14 of the iron core 11 of the stator 16 has a cylindrical shape with a diameter of 0.5 m, and 36 grooves 12 are formed concentrically at equal angular (10 degree) intervals, and a copper plate 13 is placed in each groove 12. They are fitted (see FIG. 2(D)). The length in the axial direction 17 of the central portion of the stator 16 in the axial direction 17 when the copper plate outer peripheral connection coil portions on both sides of the axial direction 17 are separated is about 240 mm.

以下、押し抜きに用いる鉄心11の鉄心厚さをL、最小位置差をS、1枚の押し刃による押し抜き初期の押し抜き力の最大をP、押し抜き後半の低下した一定の押し抜き力をP、押し抜き機での合計押し抜き力の最大値を合計押し抜き力最大値PTM、押し抜き機の必要押し抜きストロークをSとする。 Hereinafter, the core thickness of the iron core 11 used for punching is L, the minimum position difference is S M , the maximum punching force at the initial stage of punching by one pushing blade is P L , and the constant push force in the latter half of punching is reduced. Let the punching force be P S , the maximum value of the total punching force in the punching machine be the total punching force maximum value P TM , and the necessary punching stroke of the punching machine be S T .

溝12内の銅板13を、鉄心11の軸線方向17(銅板の長手方向)に押し刃4で押し込むことにより、銅板13を溝12から押し抜く。銅板13は溝12に固着されているので、押し抜き時の鉄心11の軸線方向17の厚さ(鉄心厚さL)が厚いほど、必要な押し抜き力は大きくなる。ここでは、鉄心厚さLが120mmとなるように鉄心11を分断した上で押し抜き対象とし(図2(D)参照)、押し抜き力の調査を行った。 By pushing the copper plate 13 in the groove 12 in the axial direction 17 of the iron core 11 (the longitudinal direction of the copper plate) with the pushing blade 4, the copper plate 13 is pushed out from the groove 12. Since the copper plate 13 is fixed in the groove 12, the greater the thickness of the core 11 in the axial direction 17 (core thickness L) during punching, the greater the required punching force. Here, the core 11 was cut into pieces so that the core thickness L was 120 mm and used as a punching target (see FIG. 2(D)), and the punching force was investigated.

試験押し抜き装置において、押し刃4をひとつとし、一箇所の溝12において押し刃4を一定速度で押し下げ、必要な押し抜き力の時間経過を調査した。その結果を図4(A)に示す。図4(A)から明らかなように、押し下げの経過とともに(押し刃の位置が下降して図4(A)横軸の押し下げ距離が増大するに従い)、押し抜き力が変化し、押し抜きの初期の早い時期(押し抜き距離が5mm程度)に押し抜き力が最大(7T)(P)となり、さらに押し刃を下方に移動し続けて押し抜き距離が増えると押し抜き力が低下し、押し抜き開始から移動距離約15mmの位置で約3Tの一定の押し抜き力(P)となり、それ以降はその一定の押し抜き力(P)で銅板13が溝12内を移動し、押し刃4の押し下げ距離が鉄心厚さL(120mm)まで移動したところで、最終的に溝12から銅板13を離脱させることができた。 In the test punching device, one pushing blade 4 was used, and the pushing blade 4 was pushed down at a constant speed in one groove 12, and the time course of the necessary punching force was investigated. The results are shown in FIG. 4(A). As is clear from Fig. 4(A), as the pushing down progresses (as the position of the pushing blade descends and the pushing distance on the horizontal axis in Fig. 4(A) increases), the punching force changes, and the pushing-out force changes. The punching force reaches its maximum (7T) (P L ) at the early stage (when the punching distance is approximately 5 mm), and as the pushing blade continues to move downward and the punching distance increases, the punching force decreases. A constant punching force ( PS ) of about 3T is achieved at a position of about 15 mm of movement distance from the start of punching, and from then on, the copper plate 13 moves within the groove 12 with the constant punching force ( PS ), and the pressing continues. When the pushing distance of the blade 4 moved to the core thickness L (120 mm), the copper plate 13 could finally be removed from the groove 12.

ここで、押し刃4の押し抜き方向31先端を「押し刃先端21」、押し抜き機における押し刃先端21の押し抜き方向31位置を「押し刃先端位置22」と名付ける。本発明の特徴は、押し刃先端位置22がすべての押し刃4で同一の位置となるのではなく、押し刃4ごとに押し刃先端位置22を異ならせることを最大の特徴とする。以下に詳細に説明するように、押し刃4ごとに押し刃先端位置22を異ならせることにより、押し抜き機1の必要押し抜き力を低減することが可能となる。 Here, the tip of the pushing blade 4 in the punching direction 31 is named "pushing blade tip 21", and the position of the pressing blade tip 21 in the punching machine in the punching direction 31 is named "pushing blade tip position 22". The main feature of the present invention is that the pushing blade tip position 22 is not the same for all the pushing blades 4, but is different for each pushing blade 4. As will be explained in detail below, by varying the push blade tip position 22 for each push blade 4, it is possible to reduce the required punching force of the punch machine 1.

前述のように、鉄心11の溝12に嵌合された銅板13を押し刃4で押し抜く際、押し抜き初期に最大の押し抜き力(P)となり、その後押し抜き力が低下し、以後低下した一定の押し抜き力(P)で押し抜きが進行する。すべての押し刃4の押し刃先端位置22が一致していると、すべての押し刃4で同時に最大の押し抜き力(P)となり、押し抜き機1として高い押し抜き力を保持する必要がある。これに対して、押し刃4ごとの押し刃先端位置22を異ならせ、先行するひとつの押し刃4での押し抜き力が最大(P)を通り越して低下した一定の押し抜き力(P)となったところで、後行する押し刃の押し抜き力が最大(P)となるようにすれば、各時刻における合計の押し抜き力の最大値を低減できるので、押し抜き機として保持する押し抜き力能力を低く抑えることが可能となる。 As mentioned above, when pushing out the copper plate 13 fitted into the groove 12 of the iron core 11 with the pushing blade 4, the pushing force (P S ) reaches its maximum at the initial stage of pushing out, and the boosting pushing force decreases. Punching proceeds with a constant, reduced punching force ( Ps ). If the pushing blade tip positions 22 of all the pushing blades 4 match, all the pushing blades 4 will have the maximum punching force (P S ) at the same time, and the punching machine 1 needs to maintain a high punching force. be. On the other hand, the pushing blade tip position 22 of each pushing blade 4 is made different, and the pushing out force of one preceding pushing blade 4 is lowered by exceeding the maximum (P S ), resulting in a constant pushing out force (P S ) . ), if the pushing force of the following pushing blade becomes the maximum (P S ), the maximum value of the total pushing force at each time can be reduced, so it is maintained as a pushing machine. It becomes possible to suppress the punching force capacity to a low level.

そこで本発明では、それぞれの押し刃4の押し刃先端位置22相互間の位置差Sについて、予め「最小位置差S」を定める。最小位置差Sは、押し刃4での押し抜きを開始してから、押し抜き力が最大(P)を経過するまでの移動距離を勘案して定めると好ましい。2つの押し刃4の押し刃先端位置22相互間の位置差Sを最小位置差S以上とすることにより、2つの押し刃4における最大押し抜き力(P)が同時に発生することがなく、押し抜き機の合計押し抜き力を低く抑えることができる。 Therefore, in the present invention, a "minimum positional difference S M " is determined in advance for the positional difference S between the pushing blade tip positions 22 of the respective pushing blades 4. It is preferable that the minimum positional difference S M is determined by taking into consideration the moving distance from the start of punching with the push blade 4 until the punching force reaches the maximum (P S ). By making the positional difference S between the pushing blade tip positions 22 of the two pushing blades 4 equal to or greater than the minimum positional difference S M , the maximum pushing force (P S ) in the two pushing blades 4 will not occur at the same time. , the total punching force of the punching machine can be kept low.

ここで、図1~図4、図7に基づき、押し刃4の数が4枚(90度間隔で配置)の場合を例にとって具体的に説明する。前記新幹線の走行用電動モーターの固定子16の場合、押し抜き開始から移動距離約5mmの位置で約7Tの最大押し抜き力(P)となり、それから押し抜き力が低下し始め、約15mmの位置で約3Tの一定の押し抜き力(P)となった。 Here, based on FIGS. 1 to 4 and 7, a case in which the number of push blades 4 is four (arranged at 90 degree intervals) will be specifically explained. In the case of the stator 16 of the electric motor for running the Shinkansen, the maximum push-out force (P S ) reaches about 7T at a position of about 5 mm from the start of push-out, and then the push-out force starts to decrease until it reaches about 15 mm. A constant push-out force (P S ) of about 3T was obtained at the position.

図7(A)は4枚の押し刃4を配置した回転ヘッド3の平面図、図7(B)は回転ヘッド3の外周1周を展開した図である。図7(B)において、角度=0度、90度、180度、270度にそれぞれ押し刃(4a、4b、4c、4d)が配置されている。4枚の押し刃4の押し刃先端位置22を、押し刃4aから押し刃4dへ順に深くし、押し刃先端位置22が隣接する押し刃相互間の押し刃先端位置22の位置差Sを上記最小位置差S(5mm)より大きな値とする。図5、6、8についても、配置する押し刃4の数を変更した以外は図7と同様である。 FIG. 7(A) is a plan view of the rotary head 3 in which four push blades 4 are arranged, and FIG. 7(B) is a developed view of the outer circumference of the rotary head 3. In FIG. 7(B), push blades (4a, 4b, 4c, 4d) are arranged at angles of 0 degrees, 90 degrees, 180 degrees, and 270 degrees, respectively. The pushing blade tip positions 22 of the four pushing blades 4 are made deeper in order from the pushing blade 4a to the pushing blade 4d, and the positional difference S of the pushing blade tip positions 22 between adjacent pushing blades is set as above. The value shall be larger than the minimum positional difference S M (5 mm). 5, 6, and 8 are also the same as FIG. 7 except that the number of push blades 4 to be arranged is changed.

このような押し刃4を備えた押し抜き機1(図1、図2参照)によって、新幹線の走行用電動モーターの固定子16の鉄心11から銅板13の押し抜きを行った。押し刃先端位置22相互間の位置差Sを上記最小位置差S(5mm)より大きな値である50mmとした。押し抜きの経過と押し抜き力の推移を観察したところ、図4(B)に示す結果(発明例)が得られた。図4(B)の太い実線が、4枚の押し刃を備えた押し抜き機での押し抜き力の実績である。図4(B)のうち、4種類の細い線は、図4(A)の結果に基づき、4枚の押し刃単独の押し抜き力を推定で記載したものである。発明例では、最大でも押し抜き力を13Tに抑えることができた。4枚のうちで一番最後に最大押し抜き力(P)(7T)がかかった時点において、その他の3枚の押し刃のうち1枚はすでに押し抜きが完了し、残りの2枚の押し刃については、低い一定の押し抜き力(P)(3T)であったため、合計の押し抜き力が13Tに収まったためである。 A punching machine 1 (see FIGS. 1 and 2) equipped with such a pushing blade 4 was used to punch out a copper plate 13 from an iron core 11 of a stator 16 of an electric motor for running a Shinkansen. The positional difference S between the pushing blade tip positions 22 was set to 50 mm, which is a larger value than the above-mentioned minimum positional difference S M (5 mm). When the progress of punching and the transition of punching force were observed, the results shown in FIG. 4(B) (invention example) were obtained. The thick solid line in FIG. 4(B) shows the actual punching force with a punching machine equipped with four pressing blades. In FIG. 4(B), the four types of thin lines indicate the estimated punching force of the four push blades alone based on the results of FIG. 4(A). In the invention example, the punching force could be suppressed to 13T at maximum. When the maximum punching force (P S ) (7T) is applied to the last of the four blades, one of the other three pressing blades has already completed punching, and the remaining two This is because the push blade had a low and constant push-out force (P S ) (3T), so the total push-out force was within 13T.

比較例として、4枚の押し刃4の押し刃先端位置22がすべて同じとした場合の押し抜き力の推移を調査した。比較例では、押し抜きの初期に28Tの高い押し抜き力を要した。4枚の押し刃4が同時に高い押し抜き力(7T)を要したためである。 As a comparative example, the transition of the punching force was investigated when the pushing blade tip positions 22 of the four pushing blades 4 were all the same. In the comparative example, a high punching force of 28T was required at the initial stage of punching. This is because the four pushing blades 4 required a high punching force (7T) at the same time.

新幹線の走行用電動モーターの固定子の場合、最小位置差Sを5mm~15mmの範囲で定めると好ましい。左記範囲の最小値よりも小さい場合、複数の押し刃4において、押し抜き初期の押し抜き力が最大となる時期に重なりが生じ、合計の押し抜き力が過大となる場合がある。左記範囲の最大値よりも大きい場合、押し抜き力低減効果は飽和する一方、必要な押し抜きストロークが過大となる。最小位置差Sを5mmとすると好ましい。最小位置差Sを15mmとするとより好ましい。 In the case of a stator for an electric motor for running a Shinkansen, it is preferable to set the minimum positional difference SM in the range of 5 mm to 15 mm. If the value is smaller than the minimum value in the range described on the left, the times at which the punching force at the initial stage of punching is at a maximum overlap in the plurality of pushing blades 4, and the total punching force may become excessive. If it is larger than the maximum value in the range described on the left, the punching force reduction effect is saturated, but the required punching stroke becomes excessive. It is preferable that the minimum positional difference SM is 5 mm. It is more preferable that the minimum positional difference SM is 15 mm.

以上のように、設置したすべての押し刃4について、押し刃先端位置22がすべて異なり、押し刃先端位置22が近接する押し刃4相互間の押し刃先端位置22の位置差Sが最小位置差S以上であれば、押し抜き機1の押し抜き力能力を最も低下することができるので好ましい。一方、設置したすべての押し刃4について押し刃先端位置22を異ならせなくても、一定の範囲内で押し刃先端位置22を異ならせることにより、本発明の効果を必要な範囲内で享受することができる。以下、説明する。 As described above, the push blade tip positions 22 of all the installed push blades 4 are different, and the position difference S of the push blade tip positions 22 between the push blades 4 whose push blade tip positions 22 are close to each other is the minimum position difference. If it is S M or more, it is preferable because the punching force capacity of the punching machine 1 can be reduced to the maximum. On the other hand, even if the pushing blade tip positions 22 of all the installed pushing blades 4 do not differ, by varying the pushing blade tip positions 22 within a certain range, the effects of the present invention can be enjoyed within the necessary range. be able to. This will be explained below.

設置した押し刃4の中で、押し刃先端位置22が同一又はほぼ同一となる押し刃の数が3枚以下であれば、当該条件の押し刃4の数が4枚以上である場合に比較して、押し抜き機1の押し抜き力能力を抑制して本発明の効果を発揮することができる。より厳密には、それぞれの押し刃4から見て、他の押し刃4との押し刃先端位置22の位置差Sが、最小位置差Sよりも小さい当該他の押し刃4の数が2以下であれば、設置した押し刃4の中で、押し刃先端位置22が同一又はほぼ同一となる押し刃4の数を3枚以下とすることができる。 Among the installed push blades 4, if the number of push blades whose push blade tip positions 22 are the same or almost the same is 3 or less, the comparison is made when the number of push blades 4 under the condition is 4 or more. As a result, the punching force capacity of the punching machine 1 can be suppressed to exhibit the effects of the present invention. More precisely, when viewed from each pushing blade 4, the positional difference S of the pushing blade tip position 22 with other pushing blades 4 is smaller than the minimum positional difference SM , and the number of the other pushing blades 4 is 2. If it is below, the number of push blades 4 whose push blade tip positions 22 are the same or almost the same among the installed push blades 4 can be 3 or less.

ただし上記の条件を採用するにおいて、押し刃4の合計が2枚又は3枚の場合、すべての押し刃4の押し刃先端位置22が同一又はほぼ同一の場合も条件に合致する場合を含むこととなり、本発明の趣旨から外れてしまう。そこで本発明では、少なくともひとつの押し刃4の押し刃先端位置22は、他のいずれかの押し刃4の押し刃先端位置22との位置差が最小位置差S以上となることを条件として付加した。これにより、たとえ押し刃の合計が2枚又は3枚であっても、すべての押し刃4の押し刃先端位置22が同一又はほぼ同一となる場合を本発明範囲から除外することができる。 However, when adopting the above conditions, the conditions may also be met if the total number of push blades 4 is 2 or 3, and if the push blade tip positions 22 of all push blades 4 are the same or almost the same. This deviates from the spirit of the present invention. Therefore, in the present invention, the positional difference between the pushing blade tip position 22 of at least one pushing blade 4 and the pushing blade tip position 22 of any other pushing blade 4 is set to be equal to or greater than the minimum positional difference SM . Added. Thereby, even if the total number of push blades is two or three, the case where the push blade tip positions 22 of all the push blades 4 are the same or almost the same can be excluded from the scope of the present invention.

前述のように、新幹線の走行用電動モーターの固定子16の場合、鉄心11に嵌合された銅板13の配置数が36、銅板13の角度間隔が10度である。この場合、押し刃4の配置数が2、3、4、6、9、12、18のいずれかであると好ましい。左記の枚数は、いずれも銅板13の配置数36の約数である。銅板13の配置数(36)を押し刃4の配置数で除した値が、押し抜きの繰り返し回数となる。例えば、押し刃4の配置数が4枚で、等角度(90度)間隔で配置した場合について、図3に基づいて説明する。図3(A1)は1回目の押し抜きにおける押し刃4の位置を示す。1回目の押し抜きで、図3(B1)に示すように4枚の銅板13を押し抜き、4箇所に押し抜き完了位置33が生じる。次いで図3(A2)に示すように、回転ヘッド3を時計回りに10度回転させて2回目の押し抜きを行う。押し抜きの結果、図3(B2)に示すように押し抜き完了位置33が増える。これを9回繰り返す。図3(A3)は9回目の押し抜きにおける押し刃4の位置を示す。これにより、図3(B3)に示すように、36枚の銅板13すべてを押し抜くことができる。 As described above, in the case of the stator 16 of the electric motor for running the Shinkansen, the number of copper plates 13 fitted to the iron core 11 is 36, and the angular interval between the copper plates 13 is 10 degrees. In this case, it is preferable that the number of push blades 4 arranged is 2, 3, 4, 6, 9, 12, or 18. The numbers shown on the left are all divisors of 36, the number of copper plates 13 arranged. The value obtained by dividing the number of copper plates 13 arranged (36) by the number of push blades 4 arranged becomes the number of repetitions of punching. For example, a case where four push blades 4 are arranged at equal angular (90 degree) intervals will be described based on FIG. 3. FIG. 3 (A1) shows the position of the push blade 4 during the first punching. In the first punching, four copper plates 13 are punched out, as shown in FIG. 3 (B1), and punching completion positions 33 are generated at four locations. Next, as shown in FIG. 3 (A2), the rotary head 3 is rotated clockwise by 10 degrees to perform the second punching. As a result of punching, the number of punching completion positions 33 increases as shown in FIG. 3 (B2). Repeat this 9 times. FIG. 3 (A3) shows the position of the pushing blade 4 during the ninth punching. As a result, all 36 copper plates 13 can be punched out, as shown in FIG. 3 (B3).

上記の好ましい条件に加えてさらに、押し刃4の配置数が2、3、4、6のいずれかであり、それぞれの押し刃4から見て、他の押し刃4との押し刃先端位置22の位置差Sが、最小位置差Sよりも小さい当該他の押し刃4の数が0であるとより好ましい。左記条件は換言すると、どの押し刃4相互間についても、押し刃先端位置22の位置差Sが最小位置差Sよりも大きい、即ち、どの押し刃4相互間についても、押し刃先端位置22が同一又はほぼ同一となることがなく、押し抜き中において押し抜き力が大きくなるタイミングが重ならないので、押し抜き機1の必要押し抜き力能力を低く抑えることができる。ただし、押し刃4の必要押し抜きストロークSは、(押し刃の数-1)に位置差Sを乗じた距離に鉄心厚さLを加えた距離が必要となる。押し刃4の配置数を6以下に限定したのは、6以下であれば、押し刃の必要押し抜きストロークSが過剰となることを回避できるからである。 In addition to the above preferable conditions, the number of push blades 4 arranged is either 2, 3, 4, or 6, and when viewed from each push blade 4, the push blade tip position 22 with respect to other push blades 4 It is more preferable that the number of other pushing blades 4 whose positional difference S is smaller than the minimum positional difference SM is zero. In other words, the condition on the left means that the positional difference S between the pusher blade tip positions 22 between any pusher blades 4 is larger than the minimum positional difference SM . are never the same or almost the same, and the timings at which the punching forces increase during punching do not overlap, so the required punching force capacity of the punching machine 1 can be kept low. However, the required punching stroke ST of the pusher blades 4 requires a distance obtained by multiplying (the number of pusher blades - 1) by the positional difference S plus the core thickness L. The reason why the number of push blades 4 is limited to 6 or less is that if the number is 6 or less, the required punching stroke ST of the push blades can be avoided from becoming excessive.

押し刃4の配置数が2~18の上記好ましい実施の形態において、押し刃4が、押し抜き機の回転中心32に回転対称に配置されていると好ましい。これにより、押し抜き時において、押し下げ機構2にかかる負荷のアンバランスを防止することができる。 In the above preferred embodiments in which the number of push blades 4 is 2 to 18, it is preferable that the push blades 4 are arranged rotationally symmetrically to the rotation center 32 of the punching machine. Thereby, it is possible to prevent an unbalance of the load applied to the push-down mechanism 2 at the time of pushing out.

以上のような本発明の好適条件で鉄心11から銅板13を押し抜く際において、押し刃4の配置数ごとに、好ましい実施の形態について以下説明する。 When pushing out the copper plate 13 from the iron core 11 under the preferred conditions of the present invention as described above, preferred embodiments will be described below for each number of push blades 4 arranged.

下記いずれの場合についても、合計押し抜き力最大値PTMを算出する式の右辺のPにかかる係数は、「L/S」より大きくなることはない。「L/S超」組目の押し刃が押し抜きを開始する時点では、1組目の押し刃が銅板押し抜きを完了しているからである。例えば、L=120mm、S=50mmの場合、L/S=2.4であるから、PTMを算出する式の右辺のPにかかる係数は、最大でも「2」となる(注1)。 In any of the following cases, the coefficient applied to P S on the right side of the equation for calculating the maximum total punch-out force P TM will never be larger than "L/S". This is because at the time when the "L/S super" set of push blades starts punching, the first set of push blades has completed punching out the copper plate. For example, when L = 120 mm and S = 50 mm, L/S = 2.4, so the coefficient on P S on the right side of the formula for calculating P TM is at most "2" (Note 1) .

《押し刃の配置数が2の場合》(押し刃を180度の位置に配置)(図5参照)
2枚の押し刃4の押し刃先端位置22相互間の位置差Sを最小位置差S以上としたとき、合計押し抜き力最大値PTMは、
TM=P+P
となり、必要押し抜きストロークSは、
=L+S
となる。
1回の押し抜きで2枚の銅板を押し抜き、以後回転ヘッド3の角度を10度ずつ変更して合計18回の押し抜きを行う。
<When the number of push blades is 2> (Push blades are placed at 180 degrees) (see Figure 5)
When the positional difference S between the pusher blade tip positions 22 of the two pusher blades 4 is greater than or equal to the minimum positional difference SM , the maximum total push-out force PTM is:
PTM = P L + P S
Therefore, the required punching stroke ST is,
S T =L+S
becomes.
Two copper plates are punched out in one punching operation, and thereafter, the angle of the rotary head 3 is changed by 10 degrees, and punching is performed a total of 18 times.

《押し刃の配置数が3の場合》(押し刃を等角度(120度)の位置に配置)(図6参照)
図6(B)に示すように、3枚の押し刃4の押し刃先端位置22をいずれも異ならせ、近接する相互間の位置差Sを最小位置差S以上とする。このとき、合計押し抜き力最大値PTMは、
TM=P+2P
となり、必要押し抜きストロークSは、
=L+2S
となる。
1回の押し抜きで3枚の銅板13を押し抜き、以後回転ヘッド3の角度を10度ずつ変更して合計12回の押し抜きを行う。
<When the number of push blades is 3> (Push blades are placed at equal angles (120 degrees)) (see Figure 6)
As shown in FIG. 6(B), the pushing blade tip positions 22 of the three pushing blades 4 are all made to differ, and the positional difference S between adjacent ones is set to be greater than or equal to the minimum positional difference SM . At this time, the maximum total punching force PTM is
PTM = P L +2P S
Therefore, the required punching stroke ST is,
S T =L+2S
becomes.
Three copper plates 13 are punched out in one punching operation, and thereafter, the angle of the rotary head 3 is changed by 10 degrees, and punching is performed 12 times in total.

《押し刃の配置数が4の場合》(押し刃を等角度(90度)の位置に配置)(図7参照)
4枚の押し刃4の押し刃先端位置22をいずれも異ならせた場合(条件1)(図7(B))と、押し刃4を2枚1組とし、各組では押し刃先端位置22を同一とした場合(条件2)(図7(C))について検討し、近接する相互間の位置差Sを50mm(最小位置差S以上)とする。このとき、合計押し抜き力最大値PTMは、
TM=P+2P (条件1)(上記注1参照)
TM=2P+2P (条件2)
となり、必要押し抜きストロークSは、
=L+3S (条件1)
=L+S (条件2)
となる。
1回の押し抜きで4枚の銅板13を押し抜き、以後回転ヘッド3の角度を10度ずつ変更して合計9回の押し抜きを行う。
<When the number of push blades is 4> (Push blades are placed at equal angles (90 degrees)) (see Figure 7)
In the case where the pushing blade tip positions 22 of the four pushing blades 4 are all different (condition 1) (FIG. 7(B)), and when two pushing blades 4 are used as a set, each set has the pushing blade tip position 22 different. Let us consider the case (condition 2) (FIG. 7(C)) where they are the same, and the positional difference S between adjacent positions is set to 50 mm (minimum positional difference S M or more). At this time, the maximum total punching force PTM is
P TM = P L +2P S (condition 1) (see note 1 above)
P TM =2P L +2P S (Condition 2)
Therefore, the required punching stroke ST is
S T =L+3S (Condition 1)
S T =L+S (Condition 2)
becomes.
Four copper plates 13 are punched out in one punching operation, and thereafter, the angle of the rotary head 3 is changed by 10 degrees, and punching is performed a total of nine times.

《押し刃の配置数が6の場合》(押し刃を等角度(60度)の位置に配置)(図8参照)
図8(B)は、6枚の押し刃4の押し刃先端位置22をいずれも異ならせた場合(条件1)である。図8(C)は、押し刃4を2枚1組とし、各組では押し刃先端位置22を同一とした場合(条件2)である。押し刃4aと4d、4bと4e、4cと4fが同一組である。図8(D)は、押し刃4を3枚1組とし、各組では押し刃先端位置22を同一とした場合(条件3)である。押し刃(4a、4c、4e)、(4b、4d、4f)が同一組である。これら3条件について検討し、近接する相互間の位置差Sを50mm(最小位置差S以上)とする。このとき、合計押し抜き力最大値PTMは、
TM=P+2P (条件1)(上記注1参照)
TM=2P+4P (条件2)
TM=3P+3P (条件3)
となり、必要押し抜きストロークSは、
=L+5S (条件1)
=L+2S (条件2)
=L+S (条件3)
となる。条件1は合計押し抜き力最大値PTMは最小だが必要押し抜きストロークSは最大、条件3は合計押し抜き力最大値PTMは最大だが必要押し抜きストロークSは最小となり、条件2は両者の中間となる。
1回の押し抜きで6枚の銅板13を押し抜き、以後回転ヘッド3の角度を10度ずつ変更して合計6回の押し抜きを行う。
<When the number of push blades is 6> (Push blades are placed at equal angles (60 degrees)) (see Figure 8)
FIG. 8(B) shows a case (condition 1) in which the pushing blade tip positions 22 of the six pushing blades 4 are all different. FIG. 8(C) shows a case where two pushing blades 4 are used as a set, and each set has the same pushing blade tip position 22 (condition 2). The push blades 4a and 4d, 4b and 4e, and 4c and 4f are the same set. FIG. 8(D) shows a case where three pushing blades 4 are used as a set, and each set has the same pushing blade tip position 22 (condition 3). The push blades (4a, 4c, 4e) and (4b, 4d, 4f) are the same set. These three conditions are considered, and the positional difference S between adjacent positions is set to 50 mm (minimum positional difference SM or more). At this time, the maximum total punching force PTM is
P TM = P L +2P S (condition 1) (see note 1 above)
P TM =2P L +4P S (Condition 2)
P TM =3P L +3P S (Condition 3)
Therefore, the required punching stroke ST is,
S T =L+5S (Condition 1)
S T =L+2S (Condition 2)
S T =L+S (Condition 3)
becomes. Condition 1 is the maximum total punching force P TM is the minimum but the required punching stroke ST is the maximum, Condition 3 is the maximum total punching force P TM is the maximum but the required punching stroke ST is the minimum, and Condition 2 is It is between the two.
Six copper plates 13 are punched out in one punching operation, and thereafter, the angle of the rotary head 3 is changed by 10 degrees, and punching is performed a total of six times.

《押し刃の配置数が9の場合》(押し刃を等角度(40度)の位置に配置)(図示せず)
9枚の押し刃4を3枚1組とし、各組では押し刃先端位置22を同一とした場合について検討し、近接する相互間の位置差Sを50mm(最小位置差S以上)とする。このとき、合計押し抜き力最大値PTMは、
TM=3P+6P(上記注1参照)
となり、必要押し抜きストロークSは、
=L+2S
となる。
1回の押し抜きで9枚の銅板13を押し抜き、以後回転ヘッド3の角度を10度ずつ変更して合計4回の押し抜きを行う。
<When the number of push blades is 9> (Push blades are placed at equal angles (40 degrees)) (not shown)
Consider the case where nine pushing blades 4 are made into a set of three, and the pushing blade tip positions 22 are the same in each set, and the positional difference S between adjacent ones is set to 50 mm (minimum positional difference S M or more). . At this time, the maximum total punching force PTM is
P TM =3P L +6P S (see note 1 above)
Therefore, the required punching stroke ST is
S T =L+2S
becomes.
Nine copper plates 13 are punched out in one punching operation, and thereafter, the angle of the rotary head 3 is changed by 10 degrees, and punching is performed a total of four times.

《押し刃の配置数が12の場合》(押し刃を等角度(30度)の位置に配置)(図示せず)
12枚の押し刃4を3枚1組(合計4組)とし、各組では押し刃先端位置22を同一とした場合について検討し、近接する相互間の位置差Sを50mm(最小位置差S以上)とする。このとき、合計押し抜き力最大値PTMは、
TM=3P+6P(上記注1参照)
となり、必要押し抜きストロークSは、
=L+3S
となる。
1回の押し抜きで12枚の銅板13を押し抜き、以後回転ヘッド3の角度を10度ずつ変更して合計3回の押し抜きを行う。
<When the number of push blades is 12> (Push blades are arranged at equal angles (30 degrees)) (not shown)
We considered a case in which 12 pushing blades 4 were made into a set of 3 (4 sets in total), and the pushing blade tip positions 22 were the same in each set, and the positional difference S between adjacent ones was set at 50 mm (minimum positional difference S M or above). At this time, the maximum total punching force PTM is
P TM =3P L +6P S (see note 1 above)
Therefore, the required punching stroke ST is,
S T =L+3S
becomes.
Twelve copper plates 13 are punched out in one punching operation, and thereafter, the angle of the rotary head 3 is changed by 10 degrees, and punching is performed a total of three times.

《押し刃の配置数が18の場合》(押し刃を等角度(20度)の位置に配置)(図示せず)
18枚の押し刃4を3枚1組(合計6組)とし、各組では押し刃先端位置22を同一とした場合について検討し、近接する相互間の位置差Sを50mm(最小位置差S以上)とする。このとき、合計押し抜き力最大値PTMは、
TM=3P+6P(上記注1参照)
となり、必要押し抜きストロークSは、
=L+5S
となる。
1回の押し抜きで18枚の銅板13を押し抜き、以後回転ヘッド3の角度を10度変更して合計2回の押し抜きを行う。
<When the number of push blades is 18> (Push blades are arranged at equal angles (20 degrees)) (not shown)
We considered a case where 18 push blades 4 were made into a set of 3 (total 6 sets), and the push blade tip positions 22 were the same in each set, and the position difference S between adjacent ones was set to 50 mm (minimum position difference S M or above). At this time, the maximum total punching force PTM is
P TM =3P L +6P S (see note 1 above)
Therefore, the required punching stroke ST is,
S T =L+5S
becomes.
Eighteen copper plates 13 are punched out in one punching operation, and thereafter, the angle of the rotary head 3 is changed by 10 degrees, and punching is performed a total of two times.

《総合的な評価》
以上、押し刃4の数を2枚から18枚まで変化させたときの本発明の実施の形態について説明した。これら結果から明らかなように、配置する押し刃4の数を増やすほど、押し抜きの繰り返し回数が低減して処理所要時間の短縮が図れる一方、合計押し抜き力最大値PTMが増大するので押し下げ機構2の圧下力能力を増大する必要が生じ、併せて必要押し抜きストロークSが増大する。また、押し刃先端位置22を同一とする押し刃の数が増えるほど、必要押し抜きストロークSは低減するものの、合計押し抜き力最大値PTMが増大する。処理所要時間、合計押し抜き力最大値PTM、必要押し抜きストロークSのうち、いずれを重要視するかによって、最適な組み合わせを見いだすことができる。
《Comprehensive evaluation》
The embodiments of the present invention in which the number of push blades 4 is varied from 2 to 18 have been described above. As is clear from these results, as the number of push blades 4 is increased, the number of repetitions of punching is reduced and the processing time is shortened, while the total punching force maximum value P TM increases and therefore It becomes necessary to increase the pressing force capacity of the mechanism 2, and the required punching stroke ST increases at the same time. Further, as the number of push blades having the same push blade tip position 22 increases, the required punch stroke ST decreases, but the total maximum punch force value PTM increases. The optimal combination can be found depending on which of the processing time, the maximum total punching force P TM , and the necessary punching stroke ST is considered important.

また、押し抜きに用いる鉄心11の鉄心厚さLが小さいほど、押し抜き力P、Pがともに小さくなるので合計押し抜き力最大値PTMが小さくなり、また、押し抜き機の必要押し抜きストロークSも小さくなる一方、押し抜き時の鉄心厚さLを小さくするためには、鉄心11の分断個数を増加させる必要が生じ、合計処理所要時間が増大することとなる。これらの点を勘案して、押し抜き時の鉄心厚さLの最適値を定めると好ましい。 In addition, the smaller the core thickness L of the core 11 used for punching, the smaller the punching forces P L and P S become, so the total punching force maximum value P TM becomes smaller, and the required push of the punching machine decreases. While the punching stroke ST also becomes smaller, in order to reduce the core thickness L during punching, it becomes necessary to increase the number of pieces of the core 11 to be divided, which increases the total processing time. It is preferable to take these points into consideration and determine the optimum value for the core thickness L during punching.

回転ヘッド3の回転角度調整について説明する。押し抜き処理スタート前において、押し抜き方向31に見て、載置台6に載置した鉄心11の溝位置(角度)と、回転ヘッド3に設置した押し刃4の位置(角度)が合致している必要がある。載置台6に載置する鉄心11の溝12の位置を所定の角度位置になるように調整する方法と、鉄心11の溝12の位置は特に調整せず、回転ヘッド3の回転角度を調整して溝12の位置に合致させる方法のいずれかを採用することができる。押し抜き処理を開始した後、押し抜きを繰り返して銅板13を回収するに際し、回転ヘッド3を所定の角度(例えば10度)で回転させて、次に押し抜く銅板13の位置に合わせる。回転ヘッド3の角度調整については、押し抜き処理スタート前に鉄心11の溝12の位置と押し刃4の位置を合わせるための角度調整、繰り返し押し抜きを行う際の一定角度の回転のいずれも、サーボ機構を用いて調整することができる。あるいは、回転ヘッド3を所定の角度(例えば10度)で回転させるに際し、回転ヘッド3の回転機構に10度ピッチでノッチを施し、ノッチとプランジャーの組み合わせにより、10度ピッチの回転角度制御を行っても良い。この場合は、押し抜き処理スタート前に鉄心11の溝12の位置と押し刃4の位置を合わせるための角度調整について、別の調整機構(例えば手動の調整機構)を設けることとなる。 The rotation angle adjustment of the rotary head 3 will be explained. Before starting the punching process, the groove position (angle) of the iron core 11 placed on the mounting table 6 and the position (angle) of the push blade 4 installed on the rotary head 3 match when viewed in the punching direction 31. I need to be there. The method of adjusting the position of the groove 12 of the iron core 11 placed on the mounting table 6 to a predetermined angular position, and the method of adjusting the rotation angle of the rotary head 3 without particularly adjusting the position of the groove 12 of the iron core 11. It is possible to adopt any method of matching the position of the groove 12. After starting the punching process, when punching is repeated and the copper plate 13 is recovered, the rotary head 3 is rotated at a predetermined angle (for example, 10 degrees) to match the position of the copper plate 13 to be punched out next. Regarding the angle adjustment of the rotary head 3, both the angle adjustment to align the position of the groove 12 of the iron core 11 and the position of the push blade 4 before the start of the punching process, and the rotation at a constant angle when repeatedly punching are performed. It can be adjusted using a servo mechanism. Alternatively, when rotating the rotary head 3 at a predetermined angle (for example, 10 degrees), the rotation mechanism of the rotary head 3 is provided with notches at a pitch of 10 degrees, and the rotation angle can be controlled at a pitch of 10 degrees by a combination of the notch and the plunger. You can go. In this case, a separate adjustment mechanism (for example, a manual adjustment mechanism) will be provided for angle adjustment to align the position of the groove 12 of the iron core 11 with the position of the pusher blade 4 before starting the punching process.

新幹線の走行用電動モーターの固定子16において、固定子16の溝12と銅板13との間は、ワニスによって固着されている。銅板13の押し抜きに先立って、固定子16の加熱処理を行い、ワニス被覆を加熱炭化処理し、押し抜き力の低減を図ることとしても良い。 In a stator 16 of an electric motor for running a Shinkansen, a groove 12 of the stator 16 and a copper plate 13 are fixed with varnish. Prior to punching out the copper plate 13, the stator 16 may be heated and the varnish coating may be heated and carbonized to reduce the punching force.

新幹線の走行用電動モーターの固定子16の鉄心11から銅板13を回収するに際し、本発明を適用した。この場合、固定子16の鉄心11の内側表面14は直径0.5mの円筒状であり、36個の溝12が等角度(10度)間隔で同心円状に形成され、それぞれの溝12内に銅板13が嵌合されている。軸線方向17両側の銅板外周接続コイル部分を切り離したときの固定子16の軸線方向17中央部分は、軸線方向17の長さが240mmである。鉄心厚さLが120mmとなるように鉄心11を分断した上で押し抜き対象とした(図1、図2)。事前の押し抜き力評価試験の結果を参考にして、最小位置差Sを5mmに定めた。 The present invention was applied when recovering a copper plate 13 from an iron core 11 of a stator 16 of an electric motor for running a Shinkansen. In this case, the inner surface 14 of the iron core 11 of the stator 16 has a cylindrical shape with a diameter of 0.5 m, and 36 grooves 12 are formed concentrically at equal angular (10 degree) intervals. A copper plate 13 is fitted. The length in the axial direction 17 of the central portion of the stator 16 in the axial direction 17 when the copper plate outer peripheral connection coil portions on both sides of the axial direction 17 are separated is 240 mm. The core 11 was cut into pieces so that the core thickness L was 120 mm and was then subjected to punching (FIGS. 1 and 2). The minimum positional difference SM was determined to be 5 mm with reference to the results of a prior punch-out force evaluation test.

図1、図2に示すように、押し抜き機1は押し下げ機構2と回転ヘッド3、載置台6を有する。載置台6には、押し抜き対象の鉄心11を載置し、鉄心11の軸線方向17が鉛直方向となる。押し下げ機構2は最大押し抜き力が30T、押し抜きストロークが300mmである。回転ヘッド3は回転中心32を中心として回転可能であり、回転軸は鉛直方向である。押し抜き実施時において、回転ヘッド3の回転中心32と鉄心11の軸心15は平面視で同一位置とする。回転ヘッド3には、押し刃4を設置する押し刃設置溝(図示せず)が合計36箇所、回転軸回りに等角度(10度)間隔で設けられている。載置台6に鉄心11を載置して載置台6を押し抜き位置に配置したとき、押し刃設置溝に押し刃4を設置して回転ヘッド3を下降すると、設置した押し刃4がちょうど鉄心11の溝12(銅板13が嵌合されている)内に進入する位置となる。 As shown in FIGS. 1 and 2, the punching machine 1 includes a push-down mechanism 2, a rotary head 3, and a mounting table 6. The iron core 11 to be punched out is placed on the mounting table 6, and the axial direction 17 of the iron core 11 is the vertical direction. The push-down mechanism 2 has a maximum pushing force of 30T and a pushing stroke of 300 mm. The rotary head 3 is rotatable about a rotation center 32, and the rotation axis is in the vertical direction. When performing punching, the rotation center 32 of the rotary head 3 and the axis 15 of the iron core 11 are at the same position in plan view. The rotary head 3 is provided with a total of 36 push blade installation grooves (not shown) in which the push blades 4 are installed at equal angular (10 degree) intervals around the rotation axis. When the core 11 is placed on the mounting table 6 and the mounting table 6 is placed at the punching position, when the pusher blade 4 is installed in the pusher blade installation groove and the rotary head 3 is lowered, the installed pusher blade 4 will just touch the core. 11 into the groove 12 (in which the copper plate 13 is fitted).

押し刃設置溝が合計36箇所設けられているので、押し刃設置溝に設置する押し刃4の数を2、3、4、6、9、12、18のいずれかとすることができる。いずれにおいても、押し刃4が、押し抜き機1の回転中心32に回転対称に配置されていると好ましい。本実施例においては、押し刃4の設置数を4とし、回転中心32に回転対称に等角度(90度)で配置した(図2、3、7参照)。また、4枚の押し刃4の押し刃先端位置22については、それぞれ異なる押し刃先端位置22とし、押し刃先端位置22が近接する相互間の位置差Sが50mm(前記定めた最小位置差S(5mm)以上)となるように配置した(図7(B)参照)。 Since a total of 36 push blade installation grooves are provided, the number of push blades 4 installed in the push blade installation grooves can be set to 2, 3, 4, 6, 9, 12, or 18. In either case, it is preferable that the push blade 4 is arranged rotationally symmetrically to the rotation center 32 of the puncher 1. In this embodiment, the number of push blades 4 installed is four, and they are arranged rotationally symmetrically at equal angles (90 degrees) about the rotation center 32 (see FIGS. 2, 3, and 7). Further, the pushing blade tip positions 22 of the four pushing blades 4 are set to different pushing blade tip positions 22, and the positional difference S between the pushing blade tip positions 22 that are close to each other is 50 mm (the minimum positional difference S defined above). M (5 mm) or more) (see FIG. 7(B)).

このような押し刃4を備えた押し抜き機1によって、上記新幹線の走行用電動モーターの固定子16の銅板13の押し抜きを行った。結果は前述のとおりであり、押し抜きの経過と押し抜き力の推移を観察したところ、図4(B)の太線に示す結果(発明例)が得られた。比較例として、4枚の押し刃4の押し刃先端位置22がすべて同じとした場合の押し抜き力の推移を調査した。比較例では、押し抜きの初期に28Tの高い押し抜き力を要した。それに対して発明例では、最大でも押し抜き力を13Tに抑えることができた。 The punching machine 1 equipped with such a pushing blade 4 was used to punch out the copper plate 13 of the stator 16 of the electric motor for running the bullet train. The results were as described above, and when the progress of punching and the transition of the punching force were observed, the results shown by the thick line in FIG. 4(B) (invention example) were obtained. As a comparative example, the transition of the punching force was investigated when the pushing blade tip positions 22 of the four pushing blades 4 were all the same. In the comparative example, a high punching force of 28T was required at the initial stage of punching. On the other hand, in the invention example, the punching force could be suppressed to 13T at maximum.

1 押し抜き機
2 押し下げ機構
3 回転ヘッド
4 押し刃
6 載置台
11 鉄心
12 溝
13 銅板
14 内側表面
15 軸心
16 固定子
17 軸線方向
21 押し刃先端
22 押し刃先端位置
31 押し抜き方向
32 回転中心
33 押し抜き完了位置
L 鉄心厚さ
S 押し刃先端位置の位置差
最小位置差
必要押し抜きストローク
TM 合計押し抜き力最大値
1 Pushing machine 2 Pushing down mechanism 3 Rotating head 4 Pushing blade 6 Mounting table 11 Iron core 12 Groove 13 Copper plate 14 Inner surface 15 Axial center 16 Stator 17 Axial direction 21 Pushing blade tip 22 Pushing blade tip position 31 Punching direction 32 Center of rotation 33 Push-out completion position L Iron core thickness S Position difference between push blade tip positions S M minimum position difference S T Required push-out stroke P TM Maximum total push-out force

Claims (7)

モーターの鉄心から、当該鉄心の軸線方向に平行かつ、鉄心の軸心を中心に同心円状かつ等角度間隔に配置され嵌合されてなる銅板を回収するモーター銅コイル回収装置であって、前記鉄心が有する前記銅板の総数を「銅板総数」と呼び、
前記鉄心を載置する載置台と、前記銅板を鉄心から押し抜く押し抜き機とを有し、
前記銅板を鉄心から押し抜く押し抜き時において、前記押し抜き機は前記載置台に載置された鉄心の軸線方向に平行な方向(以下「押し抜き方向」という。)に移動可能であり、前記押し抜き方向に見て鉄心の軸心を回転中心として回転可能であり、
前記押し抜き機は2以上かつ前記銅板総数の半数以下の押し刃を有し、前記押し刃は前記押し抜き機の回転中心に同心円状に配置され、前記押し抜き機の回転位置を調整することにより、前記押し抜き方向に見て、前記押し刃が前記押し抜かれるいずれかの銅板配置位置に対応する位置とすることができ、
前記押し刃の押し抜き方向先端を「押し刃先端」、押し抜き機における前記押し刃先端の押し抜き方向位置を「押し刃先端位置」と呼び、それぞれの押し刃の押し刃先端位置相互間の位置差について、予め「最小位置差」を定め、
それぞれの押し刃から見て、他の押し刃との押し刃先端位置の位置差が、前記最小位置差よりも小さい当該他の押し刃の数が2以下であり、少なくともひとつの押し刃の押し刃先端位置は、他のいずれかの押し刃の押し刃先端位置との位置差が前記最小位置差以上であり、
前記鉄心を前記載置台に載置した上で、前記押し抜き機を押し抜き方向に移動することにより、前記押し刃の配置位置に対応する前記銅板を押し抜き、押し抜き後に前記押し抜き機を押し抜き方向の反対方向に移動し、前記押し抜き機を回転して押し刃の位置を次に押し抜く銅板配置位置に対応させることができる、モーター銅コイル回収装置。
A motor copper coil recovery device for recovering copper plates that are parallel to the axial direction of the iron core and arranged concentrically and at equal angular intervals around the axis of the iron core and fitted together from the iron core of the motor, the apparatus comprising: The total number of copper plates possessed by is referred to as the "total number of copper plates",
comprising a mounting table on which the iron core is placed, and a punching machine for punching out the copper plate from the iron core,
At the time of punching out the copper plate from the iron core, the punching machine is movable in a direction parallel to the axial direction of the iron core placed on the mounting table (hereinafter referred to as the "pushing direction"), and It is rotatable around the axis of the iron core when viewed in the punching direction,
The punching machine has two or more pushing blades and less than half of the total number of copper plates, and the pressing blades are arranged concentrically around the rotation center of the punching machine, and the rotational position of the punching machine is adjusted. Accordingly, when viewed in the punching direction, the pushing blade can be located at a position corresponding to a placement position of one of the copper plates to be punched out,
The tip of the pushing blade in the punching direction is called the "pushing blade tip", and the position of the pushing blade tip in the punching direction in the punching machine is called the "pushing blade tip position". Regarding the positional difference, a "minimum positional difference" is determined in advance,
When viewed from each pushing blade, the positional difference in the pushing blade tip position with respect to other pushing blades is smaller than the minimum positional difference, and the number of such other pushing blades is 2 or less, and at least one pushing blade is pressed. The blade tip position has a positional difference with the pushing blade tip position of any other pushing blade that is greater than or equal to the minimum positional difference,
After placing the iron core on the mounting table, the punching machine is moved in the punching direction to punch out the copper plate corresponding to the placement position of the pushing blade, and after punching, the punching machine is moved. A motorized copper coil recovery device capable of moving in the opposite direction to the punching direction and rotating the punching machine so that the position of the pushing blade corresponds to the placement position of the copper plate to be punched next.
前記鉄心に嵌合された銅板の配置数が36、銅板の角度間隔が10度であり、
前記押し刃の配置数が2、3、4、6、9、12、18のいずれかであることを特徴とする請求項1に記載のモーター銅コイル回収装置。
The number of arranged copper plates fitted to the iron core is 36, and the angular interval of the copper plates is 10 degrees,
The motor copper coil recovery device according to claim 1, wherein the number of push blades arranged is any one of 2, 3, 4, 6, 9, 12, and 18.
前記押し刃の配置数が2、3、4、6のいずれかであり、
それぞれの押し刃から見て、他の押し刃との押し刃先端位置の位置差が、前記最小位置差よりも小さい当該他の押し刃の数が0であることを特徴とする請求項2に記載のモーター銅コイル回収装置。
The number of the push blades arranged is one of 2, 3, 4, and 6,
According to claim 2, when viewed from each pushing blade, the number of other pushing blades having a positional difference in the tip position of the pushing blade with respect to other pushing blades that is smaller than the minimum positional difference is 0. Motor copper coil recovery device as described.
前記押し刃が、押し抜き機の回転中心に回転対称に配置されていることを特徴とする請求項2又は請求項3に記載のモーター銅コイル回収装置。 The motor copper coil recovery device according to claim 2 or 3, wherein the pushing blade is arranged rotationally symmetrically about the rotation center of the punching machine. 前記最小位置差を5mm~15mmの範囲で定めることを特徴とする請求項1から請求項4までのいずれか1項に記載のモーター銅コイル回収装置。 The motor copper coil recovery device according to any one of claims 1 to 4, wherein the minimum positional difference is set in a range of 5 mm to 15 mm. 前記最小位置差を5mmとすることを特徴とする請求項1から請求項4までのいずれか1項に記載のモーター銅コイル回収装置。 The motor copper coil recovery device according to any one of claims 1 to 4, wherein the minimum positional difference is 5 mm. 前記鉄心が、電動モーターの固定子であることを特徴とする請求項1から請求項6までのいずれか1項に記載のモーター銅コイル回収装置。 The motor copper coil recovery device according to any one of claims 1 to 6, wherein the iron core is a stator of an electric motor.
JP2020133676A 2020-08-06 2020-08-06 Motor copper coil recovery device Active JP7442409B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020133676A JP7442409B2 (en) 2020-08-06 2020-08-06 Motor copper coil recovery device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020133676A JP7442409B2 (en) 2020-08-06 2020-08-06 Motor copper coil recovery device

Publications (2)

Publication Number Publication Date
JP2022030003A JP2022030003A (en) 2022-02-18
JP7442409B2 true JP7442409B2 (en) 2024-03-04

Family

ID=80323817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020133676A Active JP7442409B2 (en) 2020-08-06 2020-08-06 Motor copper coil recovery device

Country Status (1)

Country Link
JP (1) JP7442409B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022109591A1 (en) * 2022-04-20 2023-10-26 Alfing Keßler Sondermaschinen GmbH Processing device for conductor arrangements on a motor laminated core

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002051488A (en) 2000-06-28 2002-02-15 Composite Motors Inc Electrical machine using complex blade structure
JP2019525713A (en) 2016-08-19 2019-09-05 エアリステック リミテッド Electric machine and stator having conductive bar and end face assembly

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002051488A (en) 2000-06-28 2002-02-15 Composite Motors Inc Electrical machine using complex blade structure
JP2019525713A (en) 2016-08-19 2019-09-05 エアリステック リミテッド Electric machine and stator having conductive bar and end face assembly

Also Published As

Publication number Publication date
JP2022030003A (en) 2022-02-18

Similar Documents

Publication Publication Date Title
US4395815A (en) Method of making electric machines
JP5472057B2 (en) Stator winding winding method, stator winding winding device and stator winding manufacturing apparatus
JP7442409B2 (en) Motor copper coil recovery device
EP3503360B1 (en) Laminated core manufacturing apparatus capable of heating inner diameter of laminated core
CN105393437B (en) The stator winding of electric rotating machine, the stator of electric rotating machine, electric rotating machine stator manufacture method and for electric rotating machine stator manufacture fixture
CN1750358A (en) Stator of motor and method of manufacturing the same
JP5348505B2 (en) Stator coil manufacturing method and motor using the stator coil
JP5348506B2 (en) Stator coil manufacturing method, motor using the stator coil, and stator coil manufacturing apparatus
JP2014209833A (en) Method for forming concentrically wound coil and molding apparatus
JP5348507B2 (en) Stator coil manufacturing method, motor using the stator coil, and stator coil manufacturing apparatus
CN104588480B (en) Machining method for motor blanking piece
DE112012004253T5 (en) Electric machine with end ring and supporting tab
WO2019130232A1 (en) Process for making a continuous bar winding for an electric machine
EP0010685A1 (en) Punch and winding machine
US6851175B2 (en) Wound stator core and method of making
CN105449944B (en) For manufacturing the method for cage rotor and using the rotor of this method manufacture
EP0017311B1 (en) Improvements in electric machines
CN104348314B (en) Manufacturing method of coil for motor
JP2012217279A (en) Stator core for rotary electric machine, the rotary electric machine, and manufacturing method of the stator core for the rotary electric machine
JP5451985B2 (en) Cage type rotor, manufacturing method thereof and manufacturing apparatus
CN112388874A (en) Laminated amorphous strip winding integral insulation forming method
JPS5910159A (en) Manufacture of core for die cast rotor
CN208674983U (en) A kind of high efficiency induction machine stator piece
JP6206052B2 (en) Concentric winding coil forming method and forming apparatus
CN102447360A (en) Method for manufacturing iron core lamination

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240220

R150 Certificate of patent or registration of utility model

Ref document number: 7442409

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150