JP7442030B2 - Slope surface collapse prevention pile construction method - Google Patents

Slope surface collapse prevention pile construction method Download PDF

Info

Publication number
JP7442030B2
JP7442030B2 JP2019203912A JP2019203912A JP7442030B2 JP 7442030 B2 JP7442030 B2 JP 7442030B2 JP 2019203912 A JP2019203912 A JP 2019203912A JP 2019203912 A JP2019203912 A JP 2019203912A JP 7442030 B2 JP7442030 B2 JP 7442030B2
Authority
JP
Japan
Prior art keywords
pile
slope
blade member
pile body
driven
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019203912A
Other languages
Japanese (ja)
Other versions
JP2021075917A (en
Inventor
和時 阿部
潤 越井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon University
Original Assignee
Nihon University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon University filed Critical Nihon University
Priority to JP2019203912A priority Critical patent/JP7442030B2/en
Publication of JP2021075917A publication Critical patent/JP2021075917A/en
Application granted granted Critical
Publication of JP7442030B2 publication Critical patent/JP7442030B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Pit Excavations, Shoring, Fill Or Stabilisation Of Slopes (AREA)

Description

本発明は、少なくとも地表側の層が基盤層よりも柔らかい表土層で構成され且つ地表面が水平面に対して傾斜している斜面に適用されて、当該斜面の崩壊を抑制するための工法に関する。 The present invention relates to a construction method for suppressing collapse of a slope, which is applied to a slope where at least the ground surface layer is composed of a topsoil layer that is softer than the base layer and the ground surface is inclined with respect to a horizontal plane.

山林斜面の多くは、岩を主体とする硬い基盤層と、基盤層の上に存在して岩が粉砕・風化によって細粒化することで形成された粘土、砂、礫からなる比較的やわらかい表土層とで構成されている。山林斜面の崩壊には、表土層に加えて基盤層までが崩壊する深層崩壊と、表土層が崩壊する表層崩壊とがある。一部の山林においては、降雨量が所定量を超えることで表層崩壊が生じるおそれがあり、これを抑制することが望まれている。山林斜面の表層崩壊を抑制するための工法としては、一般的には、特許文献1に開示されているように、杭の先端が基盤層にまで到達するように地表面から杭を打ち込む工法が採用されている。この工法では、基盤層が杭を支えてその倒伏を抑制するので、杭によって表土層の滑動・流動を抑制できる。 Most mountain forest slopes have a hard base layer consisting mainly of rocks, and a relatively soft topsoil consisting of clay, sand, and gravel that is formed by the rock being crushed and weathered to make it finer. It is composed of layers. Mountain forest slope failures include deep failures, in which the topsoil layer and even the base layer collapse, and surface failures, in which the topsoil layer collapses. In some mountain forests, there is a risk that surface layer collapse will occur if the amount of rainfall exceeds a predetermined amount, and it is desired to suppress this. As a construction method for suppressing surface collapse on mountain forest slopes, generally, as disclosed in Patent Document 1, a method is used in which piles are driven from the ground surface so that the tips of the piles reach the foundation layer. It has been adopted. In this construction method, the foundation layer supports the piles and prevents them from falling down, so the piles can prevent the topsoil layer from sliding and flowing.

特開2012-2012号公報Japanese Patent Application Publication No. 2012-2012

山林斜面の表層崩壊には、表土層と基盤層との境界面に沿って表土層全体が崩壊するものと、表土層のうち有機物を多量に含む地表面側の部分が崩壊するものとがある。後者の表層崩壊は、1個の崩壊地から崩壊する土砂の量は比較的少ないものの、森林伐採跡地や若齢林等において1回の豪雨によって多数の崩壊が同時に生じやすく、多くの地域で比較的容易に生じるおそれがある。 There are two types of surface collapse on mountain forest slopes: the entire topsoil layer collapses along the interface between the topsoil layer and the bedrock layer, and the surface layer collapses at the surface side of the topsoil layer, which contains a large amount of organic matter. . In the latter type of surface collapse, although the amount of soil that collapses from one collapse site is relatively small, a single heavy rain tends to cause multiple collapses at the same time in areas such as deforestation sites and young forests, and it is difficult to compare in many areas. This could easily occur.

しかし、杭を基盤層まで打ち込む特許文献1のような従来の工法では、多大な作業時間およびコストがかかってしまうため、多数の地域での施工には限界がある。具体的には、基盤層は非常に硬い層であるため、これに杭を打ち込むためには、まず基盤層に到達するような孔を斜面に開け、次にその孔内に杭を設置し、さらにその後に杭の周囲にセメント等を流し込んで固める必要があり、多大な作業時間とコストがかかる。 However, conventional construction methods such as those disclosed in Patent Document 1, in which piles are driven up to the foundation layer, require a great deal of work time and cost, so there is a limit to their construction in many areas. Specifically, the foundation layer is a very hard layer, so in order to drive a pile into it, first a hole is drilled in the slope that reaches the foundation layer, then the pile is installed inside the hole. Furthermore, it is necessary to pour cement or the like around the piles to harden them, which takes a lot of time and costs.

本発明は、前記のような事情に鑑みてなされたものであり、短い作業時間で且つ低コストで施工でき、表土層のうちの特に地表面側の部分が崩壊するのを抑制できる斜面表層崩壊対策杭工法を提供することを目的とする。 The present invention has been made in view of the above-mentioned circumstances, and is a slope surface collapse that can be constructed in a short working time and at low cost, and that can suppress collapse of the topsoil layer, especially the part on the ground surface side. The purpose is to provide a countermeasure pile construction method.

前記課題を解決するためのものとして、本発明は、少なくとも地表側の層が基盤層よりも柔らかい表土層で構成され且つ地表面が水平面に対して傾斜している斜面に適用されて、当該斜面の崩壊を抑制ための方法であって、所定の方向に延びる杭本体を、その長手方向と前記斜面の前記地表面とが交差する姿勢で当該杭本体の長手方向の先端側から前記斜面に打ち込むとともに、所定の方向に延びる羽根部材を、前記杭本体の長手方向の基端側の部分に連結された状態で前記斜面に配置する杭設置工程を含み、前記羽根部材は、前記斜面と対向する側面である対向面を有し、前記杭設置工程では、前記杭本体の先端が前記表土層内にとどまるように当該杭本体を打ち込、前記羽根部材が前記斜面の前記地表面に沿って延びるように当該羽根部材を前記斜面に配置するとともに、複数の前記杭本体および前記羽根部材を前記斜面の互いに離間した位置に前記杭本体どうしおよび前記羽根部材どうしが互いに独立する状態で設置し、前記羽根部材を前記斜面に配置する際に、前記羽根部材の前記対向面を前記地表面に圧接させる、ことを特徴とするものである。 In order to solve the above-mentioned problems, the present invention is applied to a slope where at least the layer on the ground side is composed of a topsoil layer that is softer than the base layer and where the ground surface is inclined with respect to the horizontal plane. A method for suppressing the collapse of a pile body, wherein a pile body extending in a predetermined direction is driven into the slope from the longitudinal end side of the pile body in a posture such that its longitudinal direction intersects the ground surface of the slope. and a pile installation step of arranging a blade member extending in a predetermined direction on the slope in a state connected to a proximal portion in the longitudinal direction of the pile body, the blade member facing the slope. In the pile installation step, the pile body is driven so that the tip of the pile body remains within the topsoil layer, and the blade member is driven along the ground surface of the slope. The blade member is arranged on the slope so as to extend, and a plurality of the pile bodies and the blade members are installed at positions spaced apart from each other on the slope so that the pile bodies and the blade members are independent from each other, When the blade member is arranged on the slope, the facing surface of the blade member is brought into pressure contact with the ground surface .

この方法では、表土層の移動開始時において、杭本体の内部に生じる引張り応力を羽根部材に伝達して羽根部材が地表面を押圧する力を増強することができるので、表土層の地表面側の部分のさらなる移動つまりこの部分の崩壊を抑制することができる。具体的には、杭本体が基盤層まで到達していないことで表土層が斜面下方に動き出すと杭本体も傾き、杭本体にはこれを表土層から引き抜く方向の力が作用する。しかし、杭本体の周面と土との間には摩擦力が作用するため杭本体は容易には引き抜かれず、杭本体の内部には下向き(地中向き)の引張り応力が発生する。ここで、前記のように杭本体と羽根部材とは連結されている。そのため、前記の引張り応力は羽根部材に伝達されて、この引張り応力のうち地表面と垂直な方向の分力が羽根部材から地表面に加えられることになる。これより、羽根部材が地表面を押圧する力が増強される。また、杭本体に生じた前記下向きの引張応力の地表面に沿う方向の分力によっても、斜面下方への土の移動が抑制される。 With this method, when the topsoil layer starts to move, the tensile stress generated inside the pile body can be transmitted to the blade member and the force with which the blade member presses against the ground surface can be increased. The further movement of this part, that is, the collapse of this part can be suppressed. Specifically, when the topsoil layer begins to move down the slope because the pile body has not reached the base layer, the pile body also tilts, and a force acts on the pile body in the direction of pulling it out from the topsoil layer. However, since a frictional force acts between the circumferential surface of the pile body and the soil, the pile body cannot be easily pulled out, and a downward (underground) tensile stress is generated inside the pile body. Here, the pile main body and the blade member are connected as described above. Therefore, the above-mentioned tensile stress is transmitted to the blade member, and a component of this tensile stress in a direction perpendicular to the ground surface is applied from the blade member to the ground surface. This increases the force with which the blade member presses against the ground surface. Furthermore, the movement of the soil down the slope is also suppressed by the component of the downward tensile stress generated in the pile body in the direction along the ground surface.

このように、杭本体を基盤層まで打ち込まなくても羽根部材と杭本体とによって表土層の地表面付近の土の崩壊を抑制できることから、本方法では、杭本体をその先端が表土層内にとどまるように斜面に打ち込む。そのため、基盤層まで杭を打ち込む場合に比べて杭本体の打設距離を短くしてこの打設に係る作業時間を短くできるとともにコストを低く抑えることができる。また、杭本体の長さが短いことからこれの打ち込み作業に必要なスペースも小さくて済み、種々の場所での施工が可能になる。 In this way, the blade member and the pile body can suppress soil collapse near the surface of the topsoil layer without driving the pile body all the way to the base layer. Drive it into the slope so that it stays there. Therefore, compared to the case where the pile is driven up to the base layer, the driving distance of the pile main body can be shortened, the working time related to this driving can be shortened, and the cost can be kept low. In addition, since the length of the pile body is short, the space required for driving the pile is small, making it possible to construct the pile in a variety of locations.

前記構成において、好ましくは、前記杭設置工程の前に実施されて、前記羽根部材と、前記表土層の厚さ寸法よりも短い前記杭本体を準備する準備工程を含み、前記準備工程の実施後且つ前記杭設置工程の実施前に、前記杭本体と前記羽根部材とを連結する。 In the above configuration, preferably, the step includes a preparation step performed before the pile installation step to prepare the blade member and the pile body shorter than the thickness dimension of the topsoil layer, and after the preparation step is performed. In addition, before implementing the pile installation step, the pile main body and the blade member are connected.

この構成によれば、杭設置工程において、杭本体の打ち込みと羽根部材の配設とを同時に行うことができ、作業性が向上する。また、杭本体の打ち込みを確実に表土層内にとどめつつ羽根部材を地表面に沿うように配設できる。 According to this configuration, in the pile installation process, the driving of the pile body and the arrangement of the blade members can be performed simultaneously, improving work efficiency. Further, the blade member can be arranged along the ground surface while ensuring that the pile main body is driven within the topsoil layer.

前記構成において、好ましくは、前記羽根部材は、前記杭本体の長手方向と直交する方向に延びる回動中心線回りに回動可能に前記杭本体に連結されているとともに、前記回動中心線と交差する方向に延びる形状を有する。 In the above configuration, preferably, the blade member is connected to the pile body so as to be rotatable about a rotation center line extending in a direction perpendicular to the longitudinal direction of the pile body, and the blade member is connected to the pile body so as to be rotatable about a rotation center line extending in a direction perpendicular to the longitudinal direction of the pile body. It has a shape extending in intersecting directions.

この構成によれば、羽根部材を回動させることで、羽根部材の姿勢を、杭本体の長手方向と交差して杭本体が斜面に打ち込まれた際に羽根部材が地表面に沿って延びる状態となる姿勢と、杭本体の長手方向に沿って延びる姿勢との間で容易に変更できる。羽根部材の姿勢を地表面に沿って延びる姿勢とすれば、羽根部材と地表面との接触面積を大きくして、より広範囲にわたって土の崩壊を羽根部材で抑制できる。羽根部材を杭本体の長手方向に沿って延びる姿勢とすれば、杭本体の長手方向と直交する方向の杭全体の寸法を小さくできる。従って、この構成によれば、羽根部材の姿勢を前記の2つの姿勢に容易に変更できることで、広範囲にわたって土の崩壊を抑制しつつ杭の収容スペースを小さくできる。 According to this configuration, by rotating the blade member, the posture of the blade member can be changed to a state in which the blade member extends along the ground surface when the pile body is driven into a slope intersecting the longitudinal direction of the pile body. The position can be easily changed between the position where the pile body is oriented as shown in FIG. If the blade member is set to extend along the ground surface, the area of contact between the blade member and the ground surface is increased, and soil collapse can be suppressed by the blade member over a wider range. By arranging the blade member to extend along the longitudinal direction of the pile main body, the dimensions of the entire pile in the direction orthogonal to the longitudinal direction of the pile main body can be reduced. Therefore, according to this configuration, the posture of the blade member can be easily changed to the above two postures, and the space for accommodating the piles can be reduced while suppressing soil collapse over a wide range.

前記構成において、好ましくは、前記羽根部材は、その長手方向について前記回動中心線よりも一方側の部分に当該羽根部材の重心が位置するように前記杭本体に連結されており、前記杭本体は、前記羽根部材の回動を規制する規制部材を備え、前記規制部材は、前記羽根部材が、前記杭本体の長手方向と交差する方向に沿って延びる姿勢で、前記羽根部材の長手方向の前記一方側の端部が前記杭本体の先端側に近づく方向に当該羽根部材が回動するのを規制する。 In the configuration, preferably, the blade member is connected to the pile main body such that the center of gravity of the blade member is located on one side of the rotation center line in the longitudinal direction, and is provided with a regulating member that regulates the rotation of the blade member, and the regulating member is configured to rotate the blade member in the longitudinal direction in a posture in which the blade member extends in a direction intersecting the longitudinal direction of the pile body. The blade member is prevented from rotating in a direction in which the one end portion approaches the tip side of the pile main body.

この構成によれば、羽根部材の姿勢を杭本体の長手方向と交差する方向に延びる姿勢ひいては地表面に沿って延びる姿勢に維持した状態で杭本体の打ち込みを行うことができるので、作業性が向上する。 According to this configuration, the pile body can be driven while maintaining the posture of the blade member in a direction that extends in a direction intersecting the longitudinal direction of the pile body, and furthermore, in a posture that extends along the ground surface, which improves work efficiency. improves.

前記とは異なる構成として、前記羽根部材と、前記表土層の厚さ寸法よりも短い前記杭本体とを準備する準備工程を含み、前記杭設置工程では、前記杭本体を前記斜面に打ち込んだ後、前記羽根部材を前記斜面の前記地表面に沿って延びる状態で前記杭本体の上端部に連結する、ようにしてもよい。 A different configuration from the above includes a preparation step of preparing the blade member and the pile body shorter than the thickness dimension of the topsoil layer, and in the pile installation step, after driving the pile body into the slope. The blade member may be connected to an upper end portion of the pile main body in a state extending along the ground surface of the slope.

この構成では、杭本体を単体で斜面に打ち込むため、杭本体を斜面により確実に適切な姿勢で打ち込むことができる。 In this configuration, since the pile body is driven into the slope by itself, the pile body can be reliably driven into the slope in an appropriate posture.

前記構成において、好ましくは、前記杭本体および前記羽根部材は、防腐処理がなされた木で形成されている。 In the configuration, preferably, the pile main body and the blade member are made of wood that has been subjected to antiseptic treatment.

この構成によれば、杭本体および羽根部材を鋼管等の金属で形成する場合に比べて、コストを低く抑えることができる。また、土中の水を杭本体および羽根部材に含侵させて膨張させることができ、杭本体および羽根部材の周囲の土の密度を高めることができる。そして、防腐処理がなされていることで、長期間にわたって表土層の崩壊を抑制することができる。 According to this configuration, costs can be kept low compared to the case where the pile main body and the blade member are formed of metal such as a steel pipe. In addition, water in the soil can be impregnated into the pile body and the blade member to cause them to expand, thereby increasing the density of the soil around the pile body and the blade member. The preservative treatment can suppress the collapse of the topsoil layer over a long period of time.

以上説明したように、本発明によれば、短い作業時間および低コストでの施工を実現しつつ表土層のうちの特に地表面側の部分が崩壊するのを抑制できる。 As explained above, according to the present invention, it is possible to realize construction in a short working time and at low cost, while suppressing the collapse of the topsoil layer, especially the part on the ground surface side.

本発明の一実施形態にかかる杭が地面に打ち込まれた状態を示した概略図である。1 is a schematic diagram showing a state in which a pile according to an embodiment of the present invention is driven into the ground. 杭の側面図である。It is a side view of a pile. 杭の上面図である。It is a top view of a pile. 羽根板が回動する様子を示した杭の側面図である。FIG. 3 is a side view of the pile showing how the blades rotate. ふわふわ杭工法の手順を示したフローチャートである。It is a flowchart showing the procedure of the fluffy pile construction method. 複数の杭が地面に打ち込まれた状態を示した概略図である。It is a schematic diagram showing a state where a plurality of piles are driven into the ground. 複数の杭を搬送するときの様子を示した概略上面図である。FIG. 3 is a schematic top view showing how a plurality of piles are transported. ふわふわ杭工法の作用効果を説明するための図である。It is a figure for explaining the effect of the fluffy pile construction method. 羽根板の効果を検証するための実験結果を示したグラフであって、土塊の変形量と荷重との関係を示したグラフである。It is a graph showing the experimental results for verifying the effect of the slats, and is a graph showing the relationship between the amount of deformation of the soil clod and the load. 図9に示した実験結果が得られたときの実験装置を示した図であって、(a)は実験装置の概略上面図、(b)は実験装置の概略断面図である。FIG. 9 is a diagram showing the experimental apparatus when the experimental results shown in FIG. 9 were obtained, in which (a) is a schematic top view of the experimental apparatus, and (b) is a schematic cross-sectional view of the experimental apparatus. 変形例に係る杭を示した概略上面図である。It is a schematic top view which showed the pile based on a modification. 他の変形例に係る杭を示した概略上面図である。It is a schematic top view which showed the pile based on another modification. ふわふわ杭工法の他の手順を説明するための図である。It is a figure for explaining other steps of the fluffy pile construction method.

以下、図面を参照して、本発明の一実施形態に係る斜面表層崩壊対策杭工法について説明する。なお、後述するように本発明の斜面表層崩壊対策杭工法では、山林斜面において、基盤層104(図6参照)よりも地表面側に位置する比較的やわらかい土壌層111(図6参照)にのみ杭1を打ち込むことから、以下では、本発明に係る斜面表層崩壊対策杭工法をふわふわ杭工法といって説明する。 EMBODIMENT OF THE INVENTION Hereinafter, with reference to drawings, the slope surface collapse prevention pile construction method based on one Embodiment of this invention is demonstrated. As will be described later, in the slope surface collapse prevention pile construction method of the present invention, on mountain forest slopes, only the relatively soft soil layer 111 (see FIG. 6) located closer to the ground surface than the base layer 104 (see FIG. 6) Since the pile 1 is driven, the slope surface collapse prevention pile method according to the present invention will be referred to as the fluffy pile method in the following description.

(杭の構造)
図1は、ふわふわ杭工法の施工後の状態であって、ふわふわ杭工法で用いられる杭1が山林の斜面を構成する地面100に打ち込まれた状態を示した概略図である。図2、図3は、それぞれ杭1の側面図、上面図である。
(Pile structure)
FIG. 1 is a schematic diagram showing a state after construction of the fluffy pile method, in which a pile 1 used in the fluffy pile method is driven into the ground 100 forming a slope of a mountain forest. 2 and 3 are a side view and a top view of the pile 1, respectively.

杭1は、所定の方向に延びる杭本体10と、所定の方向に延びる羽根板(羽根部材)20とを有する。羽根板20は、杭本体10と同程度の長さを有している。杭本体10と羽根板20とは、ともに防腐処理がなされた木で形成されている。例えば、これら杭本体10と羽根板20とは、ACQ(Alkaline Copper Quaternary)加圧注入加工がなされた木材によって形成される。なお、ACQ加圧注入加工がなされた木材では、20年程度は腐朽が生じないといわれている。また、本実施形態では、これら羽根板20および杭本体10が間伐材によって形成されており、間伐材が有効に利用されている。 The pile 1 includes a pile main body 10 extending in a predetermined direction, and a feather plate (blade member) 20 extending in a predetermined direction. The blade plate 20 has a length comparable to that of the pile body 10. Both the pile body 10 and the slats 20 are made of wood that has been subjected to antiseptic treatment. For example, the pile body 10 and the slats 20 are made of wood that has been subjected to ACQ (Alkaline Copper Quaternary) pressure injection processing. It is said that wood treated with ACQ pressure injection will not rot for about 20 years. Furthermore, in the present embodiment, the slats 20 and the pile main body 10 are made of thinned wood, and the thinned wood is effectively utilized.

杭本体10は略円柱状を有する。例えば、杭本体10は、木の芯に沿って延びて目切れのない(木の繊維が切断されていない)木材で形成されている。このように目切れのない木材で杭本体10を形成すれば、杭本体10の剛性を高くできる。 The pile main body 10 has a substantially cylindrical shape. For example, the pile main body 10 is made of wood that extends along the core of the wood and has no gaps (the wood fibers are not cut). If the pile body 10 is formed of wood without gaps in this way, the rigidity of the pile body 10 can be increased.

例えば、杭本体10には、直径が160mm程度で長さが1000mm程度のものが用いられる。なお、十分な長さを有する杭本体10を準備し、これを斜面100に打ち込んだ後に地表面から上方に飛び出ている部分を所定の高さ位置で切断するようにしてもよいが、後述するように、本実施形態では、予め調査した土壌層111の深さ(厚さ寸法)に応じて杭本体10の長さを設定し、設定した長さを有する杭本体10を用いる。 For example, the pile body 10 used has a diameter of about 160 mm and a length of about 1000 mm. Incidentally, it is also possible to prepare a pile body 10 having a sufficient length, drive it into the slope 100, and then cut the part protruding upward from the ground surface at a predetermined height position, but this will be described later. In this embodiment, the length of the pile main body 10 is set according to the depth (thickness dimension) of the soil layer 111 investigated in advance, and the pile main body 10 having the set length is used.

杭本体10の先端部12には三面落し処理がなされており、この先端部12は杭本体10の先端を頂点とする略三角錐状を有している。図1に示すように、杭本体10は、この先端部12側から地面100に打ち込まれる。つまり、杭本体10は、先端部12が下を向く姿勢で地面100に打ち込まれる。以下の杭1の説明では、杭本体10の長手方向を上下方向、杭本体10が地面100に打ち込まれた状態での上を上として説明する。 The tip portion 12 of the pile body 10 is subjected to a three-sided cutting process, and this tip portion 12 has a substantially triangular pyramid shape with the tip of the pile body 10 as the apex. As shown in FIG. 1, the pile body 10 is driven into the ground 100 from the tip 12 side. That is, the pile body 10 is driven into the ground 100 with the tip end 12 facing downward. In the following description of the pile 1, the longitudinal direction of the pile main body 10 will be described as the vertical direction, and the top of the pile main body 10 when driven into the ground 100 will be described as the top.

羽根板20は略四角柱状を有し、羽根板20の長手方向に沿って延びる4つの側面21、22、23、24を有している。 The blade plate 20 has a substantially square column shape and has four side surfaces 21, 22, 23, and 24 extending along the longitudinal direction of the blade plate 20.

羽根板20は、その二つ側面が杭本体10の中心軸X1と平行となる姿勢で杭本体10の外周面に連結されている。以下では、羽根板20の4つの側面のうち杭本体10の中心軸X1と平行に延びて杭本体10の外周面と向き合う面を第1側面21といい、これに対向する側面であって杭本体10の中心軸X1と平行に延びる他の側面を第2側面22という。また、これら第1側面21と第2側面22の幅方向の一方縁間にわたって延びて、後述する第2の姿勢A2において(図1に示す状態で)羽根板20の上面を構成する側面を第3側面23といい、図1に示す状態で下面を構成する側面を第4側面24という。 The blade plate 20 is connected to the outer circumferential surface of the pile body 10 in such a manner that its two side surfaces are parallel to the central axis X1 of the pile body 10. Hereinafter, among the four side surfaces of the blade plate 20, the surface that extends parallel to the central axis The other side surface extending parallel to the central axis X1 of the main body 10 is referred to as a second side surface 22. In addition, a side surface that extends between one edge in the width direction of the first side surface 21 and the second side surface 22 and constitutes the upper surface of the blade plate 20 in a second attitude A2 (in the state shown in FIG. 1), which will be described later, is a second side surface. The side surface forming the lower surface in the state shown in FIG. 1 is called the fourth side surface 24.

例えば、羽根板20には、断面が90mm×90mm程度の正方形状であって長さが900mm程度のものが用いられる。 For example, the blade plate 20 has a square shape with a cross section of about 90 mm x 90 mm and a length of about 900 mm.

羽根板20は、杭本体10の中心軸X1と直交する方向に延びる回動中心線X2回りに回動可能に杭本体10の上端部に連結されている。以下では、この回動中心線X2を回動軸X2という。 The blade plate 20 is connected to the upper end of the pile body 10 so as to be rotatable around a rotation center line X2 extending in a direction orthogonal to the central axis X1 of the pile body 10. Hereinafter, this rotation center line X2 will be referred to as a rotation axis X2.

本実施形態では、羽根板20は、図4の矢印Y1に示すように、羽根板20が杭本体10の中心軸X1と平行な方向に沿って延び(羽根板20が杭本体10の長手方向に沿って延び)且つ、羽根板20の重心Mが回動軸X2よりも上側(杭本体10の長手方向について基端側)となる第1の姿勢A1(図4の点線)と、羽根板20が杭本体10の中心軸X1と直交する方向に沿って延びる(羽根板20が杭本体10の長手方向と交差する方向に延びる)第2の姿勢A2(図4の実線)との間で回動可能となっている。 In the present embodiment, as shown by the arrow Y1 in FIG. ) and the center of gravity M of the slat 20 is above the rotation axis X2 (on the proximal side in the longitudinal direction of the pile main body 10) (dotted line in FIG. 4); 20 extends along a direction perpendicular to the central axis X1 of the pile body 10 (the slats 20 extend in a direction intersecting the longitudinal direction of the pile body 10) and a second posture A2 (solid line in FIG. 4). It is rotatable.

具体的には、杭本体10の上端部には、その中心軸X1と直交する方向に沿って杭本体10を貫通する貫通孔11が形成されている。羽根板20には、第1側面21と第2側面22とに開口し、羽根板20の長手方向と直交する方向に沿って羽根板20を貫通する貫通孔25が形成されている。杭本体10および羽根板20の各貫通孔11、25には共通のボルト32aが挿通されている。ボルト32aの先端は羽根板20の第2側面22から外側に突出している。このボルト32aの先端にナット32bが螺合されている。なお、ナット32bは、羽根板20の第1側面21と杭本体10の外周面とが当接する位置まで締めこまれており、杭本体10の外周面とこれと向き合う第1側面21とは、当接している。 Specifically, a through hole 11 is formed in the upper end of the pile body 10, passing through the pile body 10 along a direction perpendicular to the central axis X1. A through hole 25 is formed in the vane plate 20 and is open to the first side surface 21 and the second side surface 22 and passes through the vane plate 20 along a direction orthogonal to the longitudinal direction of the vane plate 20. A common bolt 32a is inserted through each of the through holes 11 and 25 in the pile body 10 and the blade plate 20. The tip of the bolt 32a projects outward from the second side surface 22 of the vane plate 20. A nut 32b is screwed onto the tip of this bolt 32a. Note that the nut 32b is tightened to a position where the first side surface 21 of the blade plate 20 and the outer circumferential surface of the pile body 10 abut, and the outer circumferential surface of the pile body 10 and the first side surface 21 facing this are as follows. are in contact.

このように、ボルト32aとナット32bとからなる連結部材32によって、ボルト32aの中心軸X2であって杭本体10の中心軸X1と直交する方向に延びる軸X2回りに回動可能なように、羽根板20は杭本体10に連結されている。 In this way, the connecting member 32 consisting of the bolt 32a and the nut 32b allows rotation around the axis X2, which is the central axis X2 of the bolt 32a and extends in a direction perpendicular to the central axis X1 of the pile body 10. The vane plate 20 is connected to the pile body 10.

羽根板20の長手方向について、回動軸X2の位置は羽根板20の重心Mからずれている。つまり、貫通孔25は、羽根板20のうちその長手方向について羽根板20の重心Mよりも一方側寄りの位置(図1において右側寄りの位置)に形成されており、羽根板20は、その重心Mよりも長手方向の一方側寄りの位置で杭本体10に連結されている。 In the longitudinal direction of the blade plate 20, the position of the rotation axis X2 is offset from the center of gravity M of the blade plate 20. That is, the through hole 25 is formed in the vane plate 20 at a position closer to one side (a position closer to the right side in FIG. 1) than the center of gravity M of the vane plate 20 in the longitudinal direction. It is connected to the pile main body 10 at a position closer to one side in the longitudinal direction than the center of gravity M.

ただし、貫通孔25および回動軸X2は、羽根板20の長手方向の一方側の端部ではなく、当該端部よりも中央側に位置している。例えば、図1の例では、羽根板20の重心Mから羽根板20の長手方向の各端部までの長さの比がおよそ1:1であるのに対して、回動軸X2から羽根板20の各端部までの長さの比はおよそ3:2となっている。これより、図4に示すように、羽根板20が第1の姿勢A1にある状態で羽根板20の一部と杭本体10の一部とは重なり合う。また、第2の姿勢A2にある状態で、羽根板20は、杭本体10よりも外側まで延びる。なお、図4に示すように、本実施形態では、第1の姿勢A1にある状態での羽根板20の幅寸法は、杭本体10の外径よりも小さい。 However, the through hole 25 and the rotation axis X2 are located not at one end of the vane plate 20 in the longitudinal direction, but toward the center of the end. For example, in the example of FIG. 1, the ratio of the lengths from the center of gravity M of the blade plate 20 to each end of the blade plate 20 in the longitudinal direction is approximately 1:1, whereas from the rotation axis X2 to the blade plate The ratio of the lengths to each end of 20 is approximately 3:2. From this, as shown in FIG. 4, a part of the vane plate 20 and a part of the pile main body 10 overlap in a state where the vane plate 20 is in the first attitude A1. Further, in the state of being in the second attitude A2, the blade plate 20 extends to the outside of the pile main body 10. In addition, as shown in FIG. 4, in this embodiment, the width dimension of the wing board 20 in the state which exists in 1st attitude|position A1 is smaller than the outer diameter of the pile main body 10.

以下では、適宜、羽根板20の長手方向について、羽根板20のうちの回動軸X2よりも一方側の部分であって羽根板20の重心Mを含む部分を重心側部分20aといい、反対側を反重心側部分20bという。また、図4の左右方向であって、羽根板20が第2の姿勢A2にある状態で、重心側部分20aが位置する側を左、反重心側部分20bが位置する側を右として、説明を行う。 Hereinafter, in the longitudinal direction of the blade plate 20, a portion of the blade plate 20 on one side of the rotation axis X2 and including the center of gravity M of the blade plate 20 will be referred to as a center-of-gravity side portion 20a, and the opposite side will be referred to as the center-of-gravity side portion 20a. The side is called the opposite-to-center-of-gravity side portion 20b. Further, in the left-right direction of FIG. 4, when the blade plate 20 is in the second posture A2, the side where the center of gravity side portion 20a is located is the left, and the side where the opposite center of gravity side portion 20b is located is the right. I do.

杭本体10には、羽根板20の回動範囲を規制するための規制部材が設けられている。本実施形態では、杭本体10に打ち付けられた釘29がこの規制部材として機能する。 The pile body 10 is provided with a regulating member for regulating the rotation range of the blade plate 20. In this embodiment, the nail 29 nailed to the pile main body 10 functions as this regulating member.

図2および図4に示すように、釘29は、羽根板20が第2の姿勢A2にある状態で、羽根板20の重心側部分20aのわずかに下方となる位置で、杭本体10に打ち付けられている。また、釘29は、羽根板20が第2の姿勢A2にある状態で、釘29の一部が上面視で羽根板20の第4側面24と重複するように、杭本体10から図4の紙面手前側に突出する状態で杭本体10に打ち付けられている。 As shown in FIGS. 2 and 4, the nail 29 is nailed to the pile body 10 at a position slightly below the center of gravity side portion 20a of the blade plate 20 with the blade plate 20 in the second posture A2. It is being Further, the nails 29 are inserted from the pile main body 10 in a manner shown in FIG. It is nailed to the pile main body 10 in a state of protruding toward the front side of the page.

これより、釘29は、第2の姿勢A2にある羽根板20の重心側部分20aに下方から当接して、重心側部分20aがさらに下方に向かう向きに羽根板20が回動するのを規制する。 As a result, the nail 29 comes into contact with the center-of-gravity side portion 20a of the wing plate 20 in the second attitude A2 from below, and prevents the center-of-gravity side portion 20a from rotating further downward. do.

また、図4に示すように、釘29は、羽根板20が第1の姿勢A1にある状態で、羽根板20の反重心側部分20bのわずかに左方となる位置で、杭本体10に打ち付けられている。 Further, as shown in FIG. 4, the nail 29 is attached to the pile main body 10 at a position slightly to the left of the portion 20b on the side opposite to the center of gravity of the blade plate 20 when the blade plate 20 is in the first posture A1. It's nailed down.

これより、釘29は、第1の姿勢A1にある羽根板20の反重心側部分20bに左方から当接して、反重心側部分20bが左方に向かう向きに、つまり、重心側部分20aが右方に向かう向きに羽根板20が回動するのを規制する。 From this, the nail 29 abuts from the left against the portion 20b on the side opposite to the center of gravity of the blade plate 20 in the first attitude A1, and the portion 20b on the side opposite to the center of gravity faces leftward, that is, the portion 20a on the side opposite to the center of gravity prevents the blade plate 20 from rotating in the rightward direction.

このようにして、羽根板20は、第1の姿勢A1から左方にのみ回動可能とされ、その回動角度は第2の姿勢A2となるまでの90度に限定される。 In this way, the blade plate 20 can be rotated only to the left from the first attitude A1, and the rotation angle is limited to 90 degrees until it reaches the second attitude A2.

(ふわふわ杭工法の手順)
次に、図5、図6、図7を用いて前記の杭1を用いたふわふわ杭工法の手順を説明する。図5は、ふわふわ杭工法の手順を示したフローチャートである。図6は、複数の杭1が地面に打ち込まれた状態を示した概略図である。
(Steps for fluffy pile construction method)
Next, the procedure of the fluffy pile construction method using the pile 1 described above will be explained using FIGS. 5, 6, and 7. FIG. 5 is a flowchart showing the procedure of the fluffy pile construction method. FIG. 6 is a schematic diagram showing a state in which a plurality of stakes 1 are driven into the ground.

まず、対象となる山林斜面100の土壌層111の深さを測定する。 First, the depth of the soil layer 111 of the target forest slope 100 is measured.

図6に示すように、植物の生息が可能な山林の斜面を構成する地面100は、主として、基盤層104と、これよりも地表側に形成される表土層102とで構成されている。基盤層104は、岩を主体とする層であり、破砕・風化によって亀裂や割れ目が生じた岩からなる層である。表土層102は、岩が粉砕・風化によって細粒化することで形成された粘土、砂、礫からなる層であり、基盤層104よりもやわらかく且つ透水性の高い層である。土壌層111は、表土層102の地表側の部分を構成する層である。表土層102の表面側には樹木や草本植物が生息し、これに伴って小動物や土壌微生物が活動する。その結果、表土層102の表面には、落ち葉等の有機物が堆積する。土壌層111は、このようにして有機物の堆積によって形成された層であって表土層102のうち特にやわらかく透水性の高い層である。なお、山林の急斜面では、表土層102の全体が土壌層111で構成される場合もある。 As shown in FIG. 6, the ground 100 constituting the slope of a mountain forest where plants can live mainly consists of a base layer 104 and a topsoil layer 102 formed on the surface side of the base layer 104. The base layer 104 is a layer mainly made of rock, and is a layer made of rock in which cracks and fissures have occurred due to crushing and weathering. The topsoil layer 102 is a layer made of clay, sand, and gravel formed when rocks are crushed and weathered to become fine particles, and is softer and more permeable than the base layer 104. The soil layer 111 is a layer that constitutes the surface side portion of the topsoil layer 102. Trees and herbaceous plants live on the surface side of the topsoil layer 102, and along with this, small animals and soil microorganisms are active. As a result, organic matter such as fallen leaves accumulates on the surface of the topsoil layer 102. The soil layer 111 is a layer formed by the accumulation of organic matter in this way, and is a particularly soft and highly permeable layer of the topsoil layer 102. Note that, on a steep slope in a mountain forest, the entire topsoil layer 102 may be composed of the soil layer 111.

前記のように、本実施形態に係るふわふわ杭工法では、土壌層111にのみ杭1を打ち込む。これより、まず、対象となる斜面の土壌層111の深さD1を測定する(ステップS1)。 As described above, in the fluffy pile construction method according to this embodiment, the piles 1 are driven only into the soil layer 111. First, the depth D1 of the soil layer 111 on the target slope is measured (step S1).

本実施形態では、簡易貫入試験(簡易動的コーン貫入試験)方法を用いて土壌層111の深さを測定する。簡易貫入試験方法は、「地盤工学会基準」(JGS1433)に規定された地盤調査方法であって、地盤調査において一般的に用いられている。簡単に説明すると、簡易貫入試験方法は、地面に立てたロッドに5kgの重りを自由落下させて、ロッドの下端に取付けられたコーンが地中に100mm貫入されるのに要する回数をカウントする方法である。この回数であるNd値が大きいほど、地面は硬いことになる。一般的に、Nd値が30以上の層は基盤層であると判定される。本実施形態では、Nd値が20未満の場合に、コーンの貫入地点の層が土壌層であると判定しており、Nd値が20を超えるまで繰り返し簡易貫入試験を行って、コーンを100mmずつ地中に貫入していく。そして、Nd値が20以上になる層にコーンが到達すると、その到達地点の地表面から距離を土壌層111の深さとして求める。 In this embodiment, the depth of the soil layer 111 is measured using a simple penetration test (simple dynamic cone penetration test) method. The simple penetration test method is a ground investigation method specified in the "Japan Geotechnical Society Standards" (JGS1433), and is generally used in ground investigations. Briefly, the simple penetration test method is to drop a 5kg weight freely onto a rod placed on the ground, and count the number of times it takes for a cone attached to the bottom end of the rod to penetrate 100mm into the ground. It is. The larger the Nd value, which is the number of times, the harder the ground is. Generally, a layer with an Nd value of 30 or more is determined to be a base layer. In this embodiment, when the Nd value is less than 20, it is determined that the layer at the point of cone penetration is a soil layer, and the simple penetration test is repeated until the Nd value exceeds 20, and the cone is inserted in 100 mm increments. It penetrates into the ground. Then, when the cone reaches a layer where the Nd value is 20 or more, the distance from the ground surface of the arrival point is determined as the depth of the soil layer 111.

図6に示すように、本実施形態では、対象となる土地の複数の地点に杭1を打ち込む。これより、対象地の複数の地点で土壌層111の深さを測定する。具体的には、予め杭1の打ち込み地点を決定し、これら地点でそれぞれ測定を行う。なお、所定の地点において土壌層111の深さが過度に浅いときは、その周囲で土壌層111の深さが確保できる地点に打ち込み地点を変更する。 As shown in FIG. 6, in this embodiment, stakes 1 are driven into multiple locations on the target land. From this, the depth of the soil layer 111 is measured at multiple points in the target area. Specifically, the driving points of the piles 1 are determined in advance, and measurements are taken at each of these points. In addition, when the depth of the soil layer 111 is excessively shallow at a predetermined point, the driving point is changed to a point around the predetermined point where the depth of the soil layer 111 can be ensured.

次に、ステップS1での測定結果に基づいて、杭本体10の長さと羽根板20の長さとを決定し、決定した各長さを有する杭本体10と羽根板20とを準備する(ステップS2:準備工程)。 Next, based on the measurement results in step S1, the lengths of the pile body 10 and the blade plate 20 are determined, and the pile body 10 and the blade plate 20 having the determined lengths are prepared (step S2 : Preparation process).

具体的には、各地点に打ち込む杭本体10の寸法を、それぞれ測定した土壌層111の深さと同じあるいはこれよりも短い寸法に決定する。そして、複数の杭本体10を、各地点に対応させて準備する。例えば、杭本体10に地点を表す番号等を記しながらこれらを準備する。また、予め設定された所定の長さを有する複数の羽根板20を準備する。前記のように、本実施形態では、これら杭本体10と羽根板20に間伐材を用いており、前記決定した長さ寸法を有する杭本体10と羽根板20とを間伐材によって形成する。 Specifically, the dimensions of the pile body 10 to be driven into each location are determined to be the same as or shorter than the depth of the measured soil layer 111, respectively. Then, a plurality of pile bodies 10 are prepared corresponding to each location. For example, the pile body 10 is prepared with a number representing the location written on it. Also, a plurality of vanes 20 having a predetermined length are prepared. As described above, in this embodiment, thinned wood is used for the pile main body 10 and the slats 20, and the pile main body 10 and the slats 20 having the determined length dimensions are formed from the thinned wood.

本発明者らが各地域の山林等において調査を行った結果、土壌層111の深さは概ね1m~2m程度であり、地表面から深さ1~2m程度までの範囲に土壌層111は形成されている。これより、前記のように、杭本体10の長さLは1m(1000mm)程度とされる。また、前記の所定の長さ(羽根板20の長さL2)は、0.9m(900mm)程度とされる。 As a result of the inventors' investigations in mountain forests, etc. in various regions, the depth of the soil layer 111 is approximately 1 m to 2 m, and the soil layer 111 is formed at a depth of approximately 1 m to 2 m from the ground surface. has been done. Therefore, as described above, the length L of the pile body 10 is approximately 1 m (1000 mm). Further, the predetermined length (length L2 of the blade plate 20) is approximately 0.9 m (900 mm).

次に、ステップS2で準備した杭本体10と羽根板20とを連結して、杭1を形成する(ステップS3)。具体的には、前記のようにこれら杭本体10と羽根板20とをボルト32aとナット32bとを用いて連結するとともに、杭本体10に釘29を打ち付ける。杭本体10と羽根板20の準備およびこれらの連結作業は、例えば、間伐材の加工工場で行う。 Next, the pile body 10 prepared in step S2 and the blade plate 20 are connected to form the pile 1 (step S3). Specifically, as described above, the pile body 10 and the slat 20 are connected using bolts 32a and nuts 32b, and the nails 29 are driven into the pile body 10. Preparation of the pile body 10 and the slats 20 and their connection work are performed, for example, at a processing factory for thinned wood.

次に、杭1を打ち込み地点に搬送する(ステップS4)。本実施形態では、杭1の製造場所から打ち込み対象地の近くの道路まで杭1を車両で運び、その後、杭1を容器に積み替えて、この容器を人力であるいは山林内を走行可能な車に牽引させて打ち込み対象地に搬送する。ここで、図7に示すように、車両の荷台や容器等の収納部90内には、図7に示すように、杭1を第1の姿勢A1とした状態で積み込む。 Next, the pile 1 is transported to the driving point (step S4). In this embodiment, the piles 1 are transported by vehicle from the manufacturing site of the piles 1 to a road near the driving target area, and then the piles 1 are transferred to a container, and the container is transported manually or by a vehicle that can drive in the forest. It is towed and transported to the target area. Here, as shown in FIG. 7, the pile 1 is loaded in the first attitude A1 into the storage section 90 of the vehicle, such as a loading platform or a container.

次に、山林斜面を構成する地面100に各杭1をそれぞれ打ち込み、各杭1の杭本体10を地面100に打ち込むとともに、羽根板20を地表面101に沿って延びるように地面100に配設する(ステップS5:杭設置工程)。 Next, each pile 1 is driven into the ground 100 that constitutes a forest slope, and the pile body 10 of each pile 1 is driven into the ground 100, and the slats 20 are arranged on the ground 100 so as to extend along the ground surface 101. (Step S5: Pile installation process).

本実施形態では、杭本体10の中心軸X1と地表面101とが直交するように杭1を打ち込む。また、第2の姿勢A2になったときに羽根板20の重心側部分20aが回動軸X2から斜面100の下向きに延びるように杭1を打ち込む。ここで、この向きで杭1を地表面101に立てれば、羽根板20の重心側部分20aは、その自重で鉛直方向の下方に回動する。そして、釘29により重心側部分20aのさらなる下方への回動が規制されて、杭1の姿勢は第2の姿勢A2となる。これより、杭1を地表面101に立てることで、杭1の姿勢は自動的に第1の姿勢A1から第2の姿勢A2になり、第2の姿勢A2となった杭1が地面100に打ち込まれることになる。 In this embodiment, the pile 1 is driven so that the central axis X1 of the pile body 10 and the ground surface 101 are perpendicular to each other. Further, the pile 1 is driven so that the center-of-gravity side portion 20a of the blade plate 20 extends downward from the rotation axis X2 on the slope 100 when the second posture A2 is reached. Here, if the pile 1 is erected on the ground surface 101 in this direction, the center-of-gravity side portion 20a of the blade plate 20 will rotate downward in the vertical direction by its own weight. Then, further downward rotation of the center-of-gravity side portion 20a is restricted by the nail 29, and the posture of the stake 1 becomes the second posture A2. From this, by setting the pile 1 on the ground surface 101, the posture of the pile 1 automatically changes from the first posture A1 to the second posture A2, and the pile 1 in the second posture A2 is placed on the ground 100. You will be driven into it.

杭1の打ち込みは、図1に示すように、杭本体10の上面が地表面101からわずかに上方に突き出るまで位置まで行う。これにより、土壌層111内に杭本体10のほぼ全体が打ち込まれる。また、羽根板20は、地表面101付近に沿って延びる姿勢で土壌層111に配設される。本実施形態では、羽根板20と地表面101とが接触した状態でさらに杭1が打ち込まれ、これにより、羽根板20は地表面101に圧接される。 The pile 1 is driven to a position where the upper surface of the pile body 10 slightly protrudes upward from the ground surface 101, as shown in FIG. As a result, almost the entire pile body 10 is driven into the soil layer 111. Further, the blade plate 20 is disposed in the soil layer 111 so as to extend along the vicinity of the ground surface 101. In this embodiment, the pile 1 is further driven in a state where the blade plate 20 and the ground surface 101 are in contact with each other, and thereby the blade plate 20 is pressed into contact with the ground surface 101.

なお、杭1を地表面101に立てる作業や杭1を地面100に打ち込む作業は、作業者が直接行ってもよいが、作業車両を用いて行ってもよい。 Note that the work of setting up the pile 1 on the ground surface 101 and the work of driving the pile 1 into the ground 100 may be performed directly by a worker, or may be performed using a work vehicle.

杭1の打ち込み作業は各打ち込み地点で実施される。本実施形態では、図6に示すように、地表面101に沿ってほぼ等間隔で杭1が打ち込まれる。また、図示は省略したが、図6の紙面と直交する方向に沿ってもほぼ等間隔で複数の杭1が打ち込まれる。例えば、杭1の中心軸X1どうしの距離が2mとなるように複数の杭1が打ち込まれる。 The driving work of pile 1 is carried out at each driving point. In this embodiment, as shown in FIG. 6, piles 1 are driven at approximately equal intervals along the ground surface 101. Although not shown, a plurality of piles 1 are also driven at approximately equal intervals along the direction perpendicular to the plane of the paper in FIG. For example, a plurality of piles 1 are driven so that the distance between the central axes X1 of the piles 1 is 2 m.

(作用効果)
以上のように、本実施形態に係るふわふわ杭工法では、杭本体10が、基盤層104よりもやわらかく、且つ、基盤層104よりも地表側に形成されて地表面101を構成する土壌層111にのみ打ち込まれる。そのため、杭本体10の長さを短くでき、コストを抑えることができる。そして、杭本体10の長さが短く且つ打ち込む層が軟らかいことで、杭1を打ち込むのに必要な作業時間を短くできる。また、杭1を打ち込むために大規模な装置を用いる必要がなくなり、これによってもコストを抑えることができる。例えば、従来のように基盤層104まで杭を打ち込む工法では、杭の打ち込み距離が非常に長いことおよび基盤層104が固いことから、まず、基盤層104まで地面をボーリング削孔し、その後、杭を孔内に挿入し、さらにその後、孔と杭との間の隙間をセメント等で固める必要がある。そのため、従来の工法では作業が大規模になるとともに作業時間が極めて長くなる。これに対して、本実施形態に係るふわふわ杭工法では、ボーリング削孔を省略して直接杭1を斜面に打ち込むことができる。従って、削孔に係る作業および杭の周囲にセメントを流し込んでこれを固める作業を省略でき、この作業に必要な装置が不要になるとともに、作業時間を極めて短くできる。
(effect)
As described above, in the fluffy pile construction method according to the present embodiment, the pile body 10 is softer than the base layer 104 and is formed on the soil layer 111 forming the ground surface 101, which is formed closer to the ground surface than the base layer 104. It is only driven in. Therefore, the length of the pile main body 10 can be shortened, and costs can be reduced. Further, since the length of the pile body 10 is short and the layer to be driven is soft, the working time required to drive the pile 1 can be shortened. Further, there is no need to use a large-scale device to drive the pile 1, and this also makes it possible to reduce costs. For example, in the conventional method of driving piles up to the base layer 104, the driving distance of the piles is very long and the base layer 104 is hard. It is necessary to insert the pile into the hole, and then solidify the gap between the hole and the pile with cement. Therefore, with conventional construction methods, the scale of the work is large and the work time is extremely long. On the other hand, in the fluffy pile construction method according to the present embodiment, the pile 1 can be directly driven into the slope without boring. Therefore, the work related to drilling holes and the work of pouring cement around the pile and hardening it can be omitted, the equipment required for this work is no longer required, and the working time can be extremely shortened.

しかも、ふわふわ杭工法では、杭本体10が斜面100に打ち込まれるとともに、杭本体10の上端部に連結された羽根板20が斜面100の地表面101に沿って延びる姿勢でこれに配設される。そのため、土壌層111の崩壊を効果的に抑制できる。 Moreover, in the fluffy pile construction method, the pile body 10 is driven into the slope 100, and the slat 20 connected to the upper end of the pile body 10 is arranged on this in a posture extending along the ground surface 101 of the slope 100. . Therefore, collapse of the soil layer 111 can be effectively suppressed.

図8を用いて具体的に説明する。土壌層111に多量の水が供給されると、土壌層111は地表面101に沿って斜面の下方に向かって流れようとする。これにより、杭本体10には地表面101と平行な方向の力F1が付与される。土壌層111の中でも地表面側の部分は特に柔らかい。そのため、前記の力F1を受けて、杭本体10の上端は斜面の下方に移動し、杭本体10は、鎖線で示す打ち込み時の姿勢に対して実線で示すように斜面の下向きに倒れる姿勢となる。そして、杭本体10の長さは初期の破線で示した状態から実線で示した状態に引き延ばされて、上方に引っ張られることになる。 This will be explained in detail using FIG. 8. When a large amount of water is supplied to the soil layer 111, the soil layer 111 tends to flow down the slope along the ground surface 101. As a result, a force F1 in a direction parallel to the ground surface 101 is applied to the pile body 10. Among the soil layer 111, the part on the ground surface side is particularly soft. Therefore, in response to the force F1, the upper end of the pile main body 10 moves downward on the slope, and the pile main body 10 falls down downward on the slope as shown by the solid line with respect to the driving position shown by the chain line. Become. Then, the length of the pile main body 10 is extended from the initial state shown by the broken line to the state shown by the solid line, and is pulled upward.

これに対して、杭本体10の周面には当該周面と土との間で生じる摩擦力F2が作用する。これより、杭本体10の上方への移動(地中から抜ける方向の移動)は規制され、杭本体10の内部には、前記の摩擦力F2に等しい下向きの引張り応力F3が生じる。この引張り応力F3の地表面101と平行な方向の成分F3_aは、斜面の上向きに働き、土砂が斜面下方に移動するのを規制する。さらに、引張り応力F3の地表面101と直交する方向の成分であって下向き(地中向き)の成分F3_bは、ボルト32aを含む連結部材32を介して羽根板20に伝達されることになる。これより、羽根板20が地表面を押圧する力に前記の引張り応力F3に起因する力F4が加えられて、羽根板20が地表面を押圧する力が増強される。従って、土壌層111の崩壊初期において、羽根板20の下方の土の内部の摩擦力が増大することになり、土のさらなる移動つまり崩壊の進行が抑制される。 On the other hand, a frictional force F2 generated between the circumferential surface and the soil acts on the circumferential surface of the pile main body 10. This restricts the upward movement of the pile body 10 (movement in the direction of coming out of the ground), and a downward tensile stress F3 equal to the frictional force F2 is generated inside the pile body 10. A component F3_a of this tensile stress F3 in a direction parallel to the ground surface 101 acts upward on the slope and restricts the movement of earth and sand down the slope. Furthermore, a component F3_b of the tensile stress F3 in a direction perpendicular to the ground surface 101 and directed downward (into the ground) is transmitted to the vane plate 20 via the connecting member 32 including the bolt 32a. As a result, the force F4 caused by the above-mentioned tensile stress F3 is added to the force with which the blade 20 presses against the ground surface, and the force with which the blade 20 presses against the ground surface is increased. Therefore, at the initial stage of collapse of the soil layer 111, the frictional force inside the soil below the blade plate 20 increases, and further movement of the soil, that is, progress of collapse, is suppressed.

このように、本実施形態に係るふわふわ杭工法によれば、コストおよび作業時間を小さくしつつ、土壌層111つまり表土層102の地表面側の部分が崩壊するのを効果的に抑制できる。 In this way, according to the fluffy pile construction method according to the present embodiment, it is possible to effectively suppress collapse of the soil layer 111, that is, the surface-side portion of the topsoil layer 102, while reducing cost and work time.

図9は、前記の羽根板20の作用効果を調べた実験結果である。図10の(a)、(b)は、それぞれこの実験に用いた実験装置の概略上面図、側面図である。この実験では、土壌層からなる土塊に剪断荷重を加えるという実験を、土塊に杭を打ち込まない場合と、土塊に杭本体のみを打ち込んだ場合と、土塊に羽根板と杭本体とを備える杭を打ち込んだ場合とで実施し、各場合において土塊に付与された荷重と土塊の変位量との関係を調べた。 FIG. 9 shows the results of an experiment investigating the effects of the blade plate 20 described above. FIGS. 10A and 10B are a schematic top view and a side view, respectively, of the experimental apparatus used in this experiment. In this experiment, a shear load was applied to a soil clod consisting of a soil layer, in which no pile was driven into the soil clod, when only the pile body was driven into the soil clod, and when a pile with a slat plate and a pile body was driven into the soil clod. The relationship between the load applied to the soil clod and the amount of displacement of the soil clod was investigated in each case.

具体的には、図10に示すように、山林内において、略長方形状の部分の周囲の土を掘り起こして、長さL_a、幅W_a、深さD_aがそれぞれ1200mm、1000mm、1000mmの土塊301を形成した。以下では、土塊301の長手方向であって図10の左右方向を単に左右方向として説明する。そして、油圧ジャッキ310を用いて、土塊301の左上部から土塊301に対して斜め下方に荷重を加えた。詳細には、土塊301の左側面の上部に上斜め右方に傾斜する傾斜面302を形成した。ここでは、土塊301の上面から深さ400mm(図10(b)のD_bの寸法)までの範囲を傾斜させるとともに、傾斜面302の水平面に対する傾斜角度θを60度とした。そして、この傾斜面302に厚さ12mmの鉄製の板材303を当てて、板材303の中央に対して油圧ジャッキ310から荷重を加えた。なお、油圧ジャッキ310からの荷重が板材303に対してこれと直交する方向に付与されるように、つまり、土塊301に対して左側の上部から下斜め右方に荷重が付与されるように、油圧ジャッキ310をコンクリートで形成された支持部材320によって支持した。 Specifically, as shown in FIG. 10, soil around a substantially rectangular portion is dug up in a mountain forest to form a clod of soil 301 with length L_a, width W_a, and depth D_a of 1200 mm, 1000 mm, and 1000 mm, respectively. Formed. In the following description, the longitudinal direction of the earth clod 301, which is the left-right direction in FIG. 10, will be simply referred to as the left-right direction. Then, using the hydraulic jack 310, a load was applied diagonally downward to the soil mass 301 from the upper left of the soil mass 301. Specifically, an inclined surface 302 that slopes upward and diagonally to the right is formed at the upper part of the left side surface of the soil clod 301. Here, the range from the top surface of the soil clod 301 to a depth of 400 mm (dimension D_b in FIG. 10(b)) is inclined, and the inclination angle θ of the inclined surface 302 with respect to the horizontal plane is set to 60 degrees. Then, an iron plate 303 with a thickness of 12 mm was applied to this inclined surface 302, and a load was applied to the center of the plate 303 from a hydraulic jack 310. Note that the load from the hydraulic jack 310 is applied to the plate material 303 in a direction perpendicular to this, that is, the load is applied to the soil block 301 from the top on the left side diagonally downward and to the right. Hydraulic jack 310 was supported by support member 320 made of concrete.

ここで、前記のように、左右方向について土塊301の一方側の上部に下斜め他方向きに力を付与したのは、表層崩壊の発生時と同様に土を崩壊させるためである。具体的には、表層崩壊では、前記のように、まず、土に対して地表面に沿う方向に力が付与され、これにより土全体が歪むことで土に亀裂が発生する。そして、この亀裂が発達することで土が崩壊する。これに対して、前記のような土塊301に対して地表面に沿うように力を付与すると、この付与位置と反対側の端部を支点とするモーメントが土塊301に発生してしまい、土塊に歪や亀裂が生じることなく回転してこれによって土が崩壊してしまう。そこで、回転することなく土塊に歪や亀裂が生じて、表層崩壊により近い現象が生じるように本実験では前記のように土塊301に力を付与した。 Here, as described above, the reason why the force was applied diagonally downward and to the other side of the upper part of one side of the soil clod 301 in the left-right direction is to cause the soil to collapse in the same way as when surface collapse occurs. Specifically, in surface collapse, as described above, force is first applied to the soil in a direction along the ground surface, which distorts the entire soil and causes cracks in the soil. As these cracks develop, the soil collapses. On the other hand, if a force is applied to the earth clod 301 along the ground surface as described above, a moment will be generated in the earth clod 301 with the end opposite to the applied position as a fulcrum, causing the earth clod to It rotates without distortion or cracking, which causes the soil to collapse. Therefore, in this experiment, force was applied to the soil mass 301 as described above so that distortion and cracks were generated in the soil mass without rotation, resulting in a phenomenon closer to surface collapse.

この実験では、図10に示すような杭401であって、杭本体410と、2枚の羽根板421、422とを備えた木製の杭401を用いた。この杭401では、杭本体410の上部に第1の羽根板421がボルトで連結されるとともに、第2の羽根板422が第1の羽根板421よりも上方においてこれと直交する姿勢で杭本体410にボルトで連結されている。杭本体410の直径は120mm、長さは1000mmである。第1の羽根板421および第2の羽根板422には、直径120mmの丸太を太鼓落とし処理したものを用いており、第1の羽根板421は、およそ80mm×90mm×700mmの柱状を有し、第2の羽根板422は、およそ80mm×90mm×1200mmの柱状を有する。各羽根板421,422は、高さ方向の寸法が90mmとなる状態で羽根板422に連結されている。 In this experiment, a wooden pile 401 as shown in FIG. 10 was used, which included a pile main body 410 and two slats 421 and 422. In this pile 401, a first slat 421 is connected to the upper part of a pile body 410 with bolts, and a second slat 422 is attached to the pile body in a position perpendicular to the first slat 421 above the first slat 421. 410 with bolts. The diameter of the pile body 410 is 120 mm, and the length is 1000 mm. The first slat 421 and the second slat 422 are made of logs with a diameter of 120 mm that have been subjected to a drum dropping process, and the first slat 421 has a columnar shape of approximately 80 mm x 90 mm x 700 mm. , the second blade plate 422 has a columnar shape of approximately 80 mm x 90 mm x 1200 mm. Each of the vanes 421 and 422 is connected to the vane 422 with a height dimension of 90 mm.

図9は、横軸を土塊301の変位量とし、縦軸を土塊301に付与された荷重としたグラフである。また、図10のラインL1は、土塊301に杭を打ち込まなかった場合の結果、ラインL2は、土塊301に杭本体410のみを打ち込んだ場合の結果、ラインL3は、土塊301に杭本体410に羽根板421、422が連結された杭401を打ち込んだ場合の結果である。ここで、横軸の土塊301の変位量は、傾斜面302付近の土の変位量を変位計によって測定したものである。また、荷重は、ロードセルを用いて測定したものである。 FIG. 9 is a graph in which the horizontal axis represents the amount of displacement of the earth clod 301, and the vertical axis represents the load applied to the earth clod 301. In addition, line L1 in FIG. 10 is the result when no pile is driven into the earth clod 301, line L2 is the result when only the pile body 410 is driven into the earth clod 301, and line L3 is the result when the pile body 410 is driven into the earth clod 301. This is the result when a pile 401 with connected blade plates 421 and 422 is driven. Here, the amount of displacement of the soil mass 301 on the horizontal axis is the amount of displacement of the soil near the slope 302 measured by a displacement meter. Moreover, the load was measured using a load cell.

図9のラインL1に示すように、杭が打ち込まれていない場合は、ポイントC1であって土塊301の変位量が20mmのときに荷重が最大となり、その後は、変位量の増大に対して荷重は減少していく。これより、この場合では、変位量が20mm程度のときに土塊301の崩壊が生じたと考えられ、土塊301の最大抵抗力(土塊301が崩壊する荷重の最小値)はポイントC1の荷重である13kN程度であるといえる。 As shown by line L1 in FIG. 9, if no piles are driven, the load reaches its maximum at point C1 when the displacement of the soil clod 301 is 20 mm, and after that, the load increases as the displacement increases. is decreasing. From this, in this case, it is considered that the collapse of the earth clod 301 occurred when the amount of displacement was about 20 mm, and the maximum resistance force of the earth clod 301 (the minimum value of the load at which the earth clod 301 collapses) is 13 kN, which is the load at point C1. It can be said that it is about a certain extent.

これに対して、図9のラインL3に示すように、杭本体410に羽根板421、422が連結された杭401を打ち込んだ場合は、ポイントC3において荷重が最大となる。つまり、土塊301の変位量が85mm程度で荷重が24kN程度のポイントC3において土塊301が崩壊したと考えられ、土塊301の最大抵抗力は24kN程度であるといえる。 On the other hand, as shown by line L3 in FIG. 9, when the pile 401 in which the vanes 421 and 422 are connected to the pile body 410 is driven, the load becomes maximum at point C3. In other words, it is considered that the earth clod 301 collapsed at point C3 where the displacement of the earth clod 301 was about 85 mm and the load was about 24 kN, and it can be said that the maximum resistance force of the earth clod 301 was about 24 kN.

このように、杭本体410に羽根板421、422が連結された杭401を用いれば、杭401を打ち込まない場合に比べて、土塊301の最大抵抗力は2倍程度に増強され、土塊301の崩壊が抑制される。 In this way, if the pile 401 in which the slats 421 and 422 are connected to the pile body 410 is used, the maximum resistance of the soil clod 301 is doubled compared to the case where the pile 401 is not driven. Collapse is suppressed.

ここで、図9のラインL2に示すように、杭本体410のみを土塊301に打ち込んだ場合も、その最大荷重は20kN程度となり、杭401を打ち込まない場合に比べて土塊301の最大抵抗力は大きくなる。しかし、羽根板421、422を設けた場合に比べるとその値は小さく抑えられる。 Here, as shown by line L2 in FIG. 9, even when only the pile main body 410 is driven into the soil mass 301, the maximum load is approximately 20 kN, and the maximum resistance force of the soil mass 301 is lower than when the pile 401 is not driven. growing. However, compared to the case where the vanes 421 and 422 are provided, the value can be kept small.

また、本実施形態に係るふわふわ杭工法では、まず、土壌層111の深さを測定して、土壌層3の深さ寸法(厚さ寸法)と同じあるいはこれよりも短い杭本体10を準備するとともに、羽根板20を準備する。そして、この杭本体10に羽根板20を連結して杭本体10と羽根板20とが一体となった杭1を形成した後、この杭1を斜面に打ち込んでいく。そのため、杭本体10の打ち込みと羽根板20の地表面への圧接とを同時に行うことができ、作業性が向上する。 In addition, in the fluffy pile construction method according to the present embodiment, first, the depth of the soil layer 111 is measured, and the pile main body 10 that is the same as or shorter than the depth dimension (thickness dimension) of the soil layer 3 is prepared. At the same time, the feather plate 20 is prepared. After connecting the slats 20 to the pile body 10 to form a pile 1 in which the pile body 10 and the slats 20 are integrated, the pile 1 is driven into a slope. Therefore, the driving of the pile main body 10 and the pressure contact of the blade plate 20 to the ground surface can be performed at the same time, improving work efficiency.

また、本実施形態に係る杭1では、羽根板20が所定の方向に延びる形状を有し、杭本体10の長手方向と直交する方向に延びる回動軸X2回りに回動可能に、且つ、回動軸X2と交差する方向に延びるように杭本体10に連結されている。そのため、杭1の姿勢を、杭本体10と羽根板20とが平行に延びる第1の姿勢A1と、羽根板20が杭本体10と交差する方向に延びる第2の姿勢A2との間で容易に変更できる。そのため、前記のように杭1の運搬時等に杭1の姿勢を第1の姿勢A1とすることで、杭本体10の中心軸Xと直交する方向の杭1全体の寸法を短く抑えて、容器の収容スペースを有効に利用できる。そして、杭1を打ち込む際には、杭1を第2の姿勢A2とすることで羽根板20を地表面に沿って延びる状態で地表面に圧接することができ、羽根板20と土との摩擦抵抗を確保できる。 Further, in the pile 1 according to the present embodiment, the blade plate 20 has a shape extending in a predetermined direction, and is rotatable around a rotation axis X2 extending in a direction perpendicular to the longitudinal direction of the pile body 10, and It is connected to the pile main body 10 so as to extend in a direction intersecting the rotation axis X2. Therefore, the posture of the pile 1 can be easily changed between a first posture A1 in which the pile body 10 and the slat 20 extend in parallel, and a second posture A2 in which the slat 20 extends in a direction intersecting the pile body 10. can be changed to Therefore, by setting the posture of the pile 1 to the first posture A1 when transporting the pile 1 as described above, the overall dimension of the pile 1 in the direction perpendicular to the central axis X of the pile body 10 can be kept short, The storage space of the container can be used effectively. When driving the pile 1, by setting the pile 1 in the second posture A2, the blade plate 20 can be pressed against the ground surface while extending along the ground surface, and the blade plate 20 and the soil can be pressed against each other. Frictional resistance can be ensured.

特に、本実施形態に係る杭1では、羽根板20の長手方向について羽根板20の重心Mと回動軸X2とがずれるように構成されるとともに、釘29によって羽根板20が第2の姿勢A2となったときに羽根板20の重心側部分20aが下方(杭本体10の先端側)に回動しないように構成されている。そのため、羽根板20の重心側部分20aの自重によって、杭1の姿勢を、この重心側部分20aが回動軸X2よりも上方に位置する第1の姿勢A1から、第2の姿勢A2へと容易に変更することができる。また、羽根板20を第2の姿勢A2に保持することができる。従って、杭1の打ち込み時に、羽根板20が地表面に沿う姿勢から傾くのを抑制してこれを地表面に適切に圧接することができる。 In particular, the pile 1 according to the present embodiment is configured such that the center of gravity M of the blade plate 20 and the rotation axis X2 are deviated from each other in the longitudinal direction of the blade plate 20, and the nail 29 moves the blade plate 20 into the second posture. It is configured so that the center-of-gravity side portion 20a of the blade plate 20 does not rotate downward (toward the tip end of the pile body 10) when the position becomes A2. Therefore, the weight of the center-of-gravity side portion 20a of the blade plate 20 changes the attitude of the pile 1 from the first attitude A1, in which the center-of-gravity side portion 20a is located above the rotation axis X2, to the second attitude A2. Can be easily changed. Further, the blade plate 20 can be held in the second posture A2. Therefore, when driving the pile 1, it is possible to prevent the blade plate 20 from tilting from its position along the ground surface, and to appropriately press the blade plate 20 against the ground surface.

また、本実施形態に係る杭1では、杭本体10と羽根板20とが防腐処理がなされた木で形成されている。そのため、これらを鋼管等の金属で形成する場合に比べて、コストを低く抑えることができる。また、土中の水を杭本体10および羽根板20に含侵させて、打ち込み時よりもこれらの体積を大きくすることができ、杭1の打ち込みを容易にしつつ杭本体および羽根部材の周囲の土の摩擦力を高めることができる。また、木の方が鋼等の金属よりも表面が荒くなりやすいので、杭本体10および羽根板20を木製とすることでこれらと土との間の摩擦抵抗を大きくできる。そして、防腐処理がなされていることで杭本体10と羽根板20の早期の腐朽を抑制して、長期間にわたって表土層の崩壊を抑制できる。さらに、本実施形態では、これらが間伐材で形成されており、間伐材の有効利用にも役立つ。 Furthermore, in the pile 1 according to the present embodiment, the pile main body 10 and the slats 20 are made of wood that has been subjected to antiseptic treatment. Therefore, costs can be kept lower than when these are made of metal such as steel pipes. In addition, water in the soil can be impregnated into the pile main body 10 and the blade plate 20, making the volume of these larger than when driving. It can increase the frictional force of soil. Furthermore, since the surface of wood is more likely to become rough than that of metal such as steel, by making the pile main body 10 and the slats 20 wooden, it is possible to increase the frictional resistance between them and the soil. Since the pile main body 10 and the blade plate 20 are subjected to the antiseptic treatment, early decay can be suppressed, and collapse of the topsoil layer can be suppressed over a long period of time. Furthermore, in this embodiment, these are made of thinned wood, which is useful for effective use of thinned wood.

(変形例)
前記実施形態では、杭本体10をその中心軸X1と地表面とが直交するように杭1を打ち込んだ場合を説明したが、杭本体10の打ち込み角度はこれに限らない。例えば、急斜面等では、杭本体10の中心軸X1を地表面に直交するラインに一致させて杭1を打ち込むのが難しい。この場合は、杭本体10の中心軸X1と前記ラインとがずれることが考えられる。しかし、これら中心軸X1とラインとが完全に一致していなくても、土壌層111の移動に伴って杭本体10が図8の実線で示す姿勢となることで杭本体10および羽根板20によって土壌層111のさらなる移動を抑制できる。ただし、杭本体10をその中心軸X1と地表面とが直交するように打ち込めば、杭本体10および羽根板20によって土壌層111の移動を効果的に抑制できる。また、地表面に直交するラインに対して杭本体10の上端の方が下端よりも斜面の下側に位置するように杭本体10を傾けて、この傾き角(前記ラインと杭本体10の中心軸X1とのなす角度)を30度程度とすれば、杭本体10による土壌層111の変位に対する抵抗力をより大きくできることが分かっている。これより、このように杭本体10を地表面と直交する方向に対して傾けた状態で地表面に打ち込むようにしてもよい。
(Modified example)
In the embodiment described above, a case has been described in which the pile 1 is driven so that the center axis X1 of the pile body 10 is orthogonal to the ground surface, but the driving angle of the pile body 10 is not limited to this. For example, on a steep slope, it is difficult to drive the pile 1 with the central axis X1 of the pile body 10 aligned with a line perpendicular to the ground surface. In this case, it is possible that the central axis X1 of the pile main body 10 and the above-mentioned line are misaligned. However, even if these central axes Further movement of the soil layer 111 can be suppressed. However, if the pile body 10 is driven so that its central axis X1 and the ground surface are perpendicular to each other, the movement of the soil layer 111 can be effectively suppressed by the pile body 10 and the slats 20. In addition, the pile body 10 is tilted so that the upper end of the pile body 10 is located on the lower side of the slope than the lower end with respect to a line perpendicular to the ground surface. It is known that if the angle formed with the axis X1 is set to about 30 degrees, the resistance to displacement of the soil layer 111 by the pile body 10 can be increased. From this, the pile main body 10 may be driven into the ground surface while being inclined with respect to the direction perpendicular to the ground surface.

また、前記実施形態では、羽根板20の重心側部分20aが杭本体10から斜面の下方に延びるように杭1を斜面に打ち込んだ場合を説明したが、杭1の打ち込み姿勢はこれに限らない。例えば、重心側部分20aが杭本体10から斜面の上方に延びるように杭1を打ち込んでもよい。また、羽根板20が水平方向に延びるように杭1を斜面に打ち込んでもよい。 Furthermore, in the embodiment described above, the pile 1 is driven into a slope so that the center-of-gravity side portion 20a of the blade plate 20 extends downward from the pile body 10, but the driving posture of the pile 1 is not limited to this. . For example, the pile 1 may be driven so that the center-of-gravity side portion 20a extends above the slope from the pile body 10. Alternatively, the piles 1 may be driven into the slope so that the blades 20 extend horizontally.

また、杭本体10および羽根板20の材質は木に限らない。例えば、鋼管等によりこれらを形成してもよい。ただし、前記のように、これらを木製とすればコストの低減効果等を得ることができる。また、杭本体10および羽根板20を木で形成する場合において、その防腐処理の方法は前記に限らない。 Moreover, the material of the pile body 10 and the slats 20 is not limited to wood. For example, these may be formed from steel pipes or the like. However, as mentioned above, if these are made of wood, a cost reduction effect can be obtained. Furthermore, when the pile body 10 and the slats 20 are made of wood, the method of preservative treatment is not limited to the above.

また、前記実施形態では、表層土の地表側に土壌層111が形成された斜面に杭1を打ち込む場合について説明したが、杭1は杭本体10が表層土にとどまる範囲で打ち込まれればよく、本実施形態に係るふわふわ工法は、土壌層が形成されていない表層土にも適用可能である。また、杭本体10の先端12が表層土にとどまる範囲において、杭本体10は土壌層111よりも深い位置まで打ち込まれてもよい。例えば、前記の土壌層111の深さD1を測定する工程において、土壌層111の深さD1ではなく表層土の深さを測定し、測定した表層土の深さよりも浅い範囲で杭本体10を打ち込むようにしてもよい。 Furthermore, in the above embodiment, the case where the pile 1 is driven into a slope where the soil layer 111 is formed on the surface side of the surface soil has been described, but the pile 1 may be driven to the extent that the pile main body 10 remains in the surface soil. The fluffy construction method according to this embodiment is also applicable to surface soil in which no soil layer is formed. In addition, the pile body 10 may be driven to a position deeper than the soil layer 111 as long as the tip 12 of the pile body 10 remains in the surface soil. For example, in the step of measuring the depth D1 of the soil layer 111, the depth of the surface soil is measured instead of the depth D1 of the soil layer 111, and the pile body 10 is measured in a range shallower than the measured depth of the surface soil. You may also type it in.

また、前記実施形態では、各地点に打ち込まれる杭本体10の長さを、それぞれ各地点での土壌層111の深さD1の測定結果に応じて個別に設定する場合を説明した。この方法によれば、各地点において、杭本体10を確実に土壌層111にとどまるように打ち込むことができる。 Furthermore, in the embodiment described above, a case has been described in which the length of the pile main body 10 driven into each point is individually set according to the measurement result of the depth D1 of the soil layer 111 at each point. According to this method, the pile body 10 can be driven into the soil layer 111 reliably at each location.

ただし、杭本体10の長さの設定手順はこれに限らず、各地点に打ち込まれる杭本体10の長さをすべて所定の値に統一してもよい。例えば、杭本体10の長さを、各地点で測定した土壌層111の深さD1の平均値や最小値に揃えてもよい。また、異なる長さの杭本体10をそれぞれ複数準備しておき、各地点に打ち込む杭本体10を、準備した杭本体10の中から前記の測定結果に応じて選ぶようにしてもよい。例えば、長さが異なる2種類の杭本体10を準備しておき、土壌層111の深さD1が所定値以上の地点には長さの長い杭本体10を用い、土壌層111の深さD1が所定値未満の地点には長さの短い杭本体10を用いるようにしてもよい。また、前記のように、土壌層111の深さが概ね1m~2m程度であることから、土壌層111の深さD1を測定することなく、あるいは、この測定結果を杭1の打ち込み地点を決定することのみに利用して(杭本体10の長さよりも土壌層111の深さが深い地点を打ち込み地点として選定する等)、前記の測定結果に関わらず1m程度の長さを有する杭本体10を準備するようにしてもよい。このように、杭本体10の長さをある程度揃えれば、杭本体10の準備にかかる時間を短くできるとともにコストを低く抑えることができる。 However, the procedure for setting the length of the pile body 10 is not limited to this, and the lengths of the pile bodies 10 driven into each location may all be unified to a predetermined value. For example, the length of the pile main body 10 may be made equal to the average value or minimum value of the depth D1 of the soil layer 111 measured at each point. Alternatively, a plurality of pile bodies 10 having different lengths may be prepared, and the pile bodies 10 to be driven into each location may be selected from among the pile bodies 10 prepared according to the measurement results. For example, two types of pile bodies 10 with different lengths are prepared, and a longer pile body 10 is used at a point where the depth D1 of the soil layer 111 is a predetermined value or more, and A shorter pile main body 10 may be used at a point where is less than a predetermined value. Further, as mentioned above, since the depth of the soil layer 111 is approximately 1 m to 2 m, the driving point of the pile 1 can be determined without measuring the depth D1 of the soil layer 111 or by using this measurement result. (e.g., selecting a point where the depth of the soil layer 111 is deeper than the length of the pile body 10 as the driving point), the pile body 10 having a length of about 1 m regardless of the above measurement results. may be prepared. In this way, by making the lengths of the pile bodies 10 uniform to a certain extent, the time required to prepare the pile bodies 10 can be shortened and costs can be kept low.

また、前記実施形態では、釘29によって羽根板20の回動を規制する場合を説明したが、この回動を規制するための部材は釘29に限らない。また、羽根板20の回動は規制されなくてもよい。ただし、前記のように、羽根板20の姿勢が第2の姿勢A2にある状態で、羽根板20の重心側部分20aが下向きに回動するのを規制すれば、羽根板20の姿勢を第2の姿勢A2であって杭1の打ち込み後の姿勢に維持することができるので、作業性が向上する。 Furthermore, in the embodiment described above, a case has been described in which the rotation of the wing plate 20 is restricted by the nails 29, but the member for restricting this rotation is not limited to the nails 29. Furthermore, the rotation of the blade plate 20 may not be restricted. However, as described above, if the downward rotation of the center-of-gravity side portion 20a of the vane plate 20 is restricted when the posture of the vane plate 20 is in the second posture A2, the posture of the vane plate 20 can be changed to the second posture A2. Since the posture A2 of No. 2 can be maintained in the posture after driving the pile 1, work efficiency is improved.

また、前記実施形態では、1の羽根板20のみが杭本体10に連結される場合を説明したが、前記の実験時の杭401のように複数の羽根板20を杭本体10に連結してもよい。また、複数の羽根板20を設ける場合においても、実験時のような各羽根板20をそれぞれ杭本体10に直接連結するものに代えて、図11や図12のように、連結部材を介して、間接的に羽根板と杭本体とを連結してもよい。 Furthermore, in the embodiment described above, the case where only one slat 20 is connected to the pile main body 10 has been described, but a plurality of slats 20 may be connected to the pile main body 10 like the pile 401 used in the above experiment. Good too. Furthermore, even when a plurality of slats 20 are provided, instead of connecting each slat 20 directly to the pile body 10 as in the experiment, the slats 20 may be connected via connecting members as shown in FIGS. 11 and 12. , the slats and the pile body may be indirectly connected.

具体的には、図11は、他の例に係る杭501の上面図である。この図11の例では、杭本体510の上端に杭本体510の中心軸X1と直交する方向に延びる連結板502が固定されて、この連結板502の長手方向の両端にそれぞれ1つずつ羽根板521、522が連結されている。この杭501においても、連結板502を介して、杭本体510から各羽根板521、522に杭本体510の周面に生じる摩擦力が伝達されるので、土の崩壊を効果的に抑制することができる。特に、この例では、各羽根板521、522の押圧力を受けて互いに離間する位置で土の摩擦力がそれぞれ高められるため、これら羽根板どうしの間の領域の土の移動も抑制することができ、より広範囲にわたって土の崩壊を抑制できる。 Specifically, FIG. 11 is a top view of a pile 501 according to another example. In the example of FIG. 11, a connecting plate 502 extending in a direction perpendicular to the central axis X1 of the pile body 510 is fixed to the upper end of the pile body 510, and one blade plate is attached to each longitudinal end of the connecting plate 502. 521 and 522 are connected. In this pile 501 as well, the frictional force generated on the circumferential surface of the pile body 510 is transmitted from the pile body 510 to each of the vanes 521 and 522 via the connecting plate 502, so that soil collapse can be effectively suppressed. I can do it. In particular, in this example, since the frictional force of the soil is increased at positions separated from each other by the pressing force of each of the vanes 521 and 522, it is also possible to suppress the movement of soil in the area between these vanes. This can suppress soil collapse over a wider area.

図12は、さらに他の例に係る杭601の上面図である。この図12の例では、杭本体610の中心軸X1と直交し且つ互いに直交する方向に延びる2本の連結板602、603によって、4つの羽根板621、622、623、624が、杭本体10を囲み且つ井形状となるように杭本体610に連結されている。この杭601においても、連結板602、603を介して、杭本体610から各羽根板621~624に杭本体610の周面に生じる摩擦力が伝達されるので、土の崩壊を効果的に抑制することができる。また、この例では、杭本体610の周囲の土の四方において、その摩擦力が高められるので土の移動をより確実に抑制できる。 FIG. 12 is a top view of a pile 601 according to still another example. In the example of FIG. 12, four blade plates 621, 622, 623, 624 are connected to the pile body 10 by two connecting plates 602, 603 extending in directions orthogonal to the central axis X1 of the pile body 610 and mutually orthogonal to each other. It is connected to the pile main body 610 so as to surround the pile and form a well shape. In this pile 601 as well, the frictional force generated on the circumferential surface of the pile body 610 is transmitted from the pile body 610 to each of the vanes 621 to 624 via the connecting plates 602 and 603, thereby effectively suppressing soil collapse. can do. Furthermore, in this example, the frictional force is increased in all directions of the soil around the pile main body 610, so that the movement of the soil can be suppressed more reliably.

また、杭本体10の具体的な形状は前記に限らず、杭本体10は、例えば、角柱状を有していてもよい。また、杭本体10の径や長さ寸法は前記に限らない。ただし、前記のように、一般的に地表面から1~2m程度までの範囲に土壌層111が形成されていることから、また、作業性の面から、杭本体10の長さは、800mm~1500mm程度に設定されるのが好ましい。同様に、羽根板20の具体的な寸法も前記に限らない。 Moreover, the specific shape of the pile main body 10 is not limited to the above, and the pile main body 10 may have a prismatic shape, for example. Further, the diameter and length of the pile main body 10 are not limited to those described above. However, as mentioned above, since the soil layer 111 is generally formed within a range of about 1 to 2 m from the ground surface, and from the viewpoint of workability, the length of the pile body 10 is set to 800 mm to 2 m. It is preferable to set it to about 1500 mm. Similarly, the specific dimensions of the blade plate 20 are not limited to the above.

また、前記実施形態では、杭本体10に羽根板20を連結して杭1を形成した後に、杭1および杭本体10を斜面100に打ち込む場合を説明したが、これに代えて、杭本体を斜面100に打ち込んだ後に、羽根板を地表面101に沿って延びる状態で杭本体に連結してもよい。つまり、杭本体を斜面100に打ち込むとともに羽根板を杭本体に連結された状態で斜面100に配置する杭設置工程において、杭本体を斜面100に打ち込むというステップと、斜面100に打ち込まれた杭本体に羽根板を地表面101に沿って延びる状態で連結するというステップとを実施するようにしてもよい。 Further, in the embodiment described above, a case has been described in which the pile 1 and the pile body 10 are driven into the slope 100 after the pile 1 is formed by connecting the blade plate 20 to the pile body 10. After driving into the slope 100, the blade plate may be connected to the pile body in a state extending along the ground surface 101. That is, in the pile installation process in which the pile body is driven into the slope 100 and the blade plate is placed on the slope 100 while being connected to the pile body, there are a step of driving the pile body into the slope 100, and a step of driving the pile body into the slope 100. The step of connecting the blades so as to extend along the ground surface 101 may also be performed.

例えば、図13に示すように、まず、杭本体710をその上端と地表面101とが略同じ高さ位置となるように斜面100に打ち込み、その後、杭本体710の上端に羽根板720を載置してこれらを釘730等によって連結してもよい。 For example, as shown in FIG. 13, first, the pile body 710 is driven into the slope 100 so that its upper end and the ground surface 101 are at approximately the same height position, and then the blade plate 720 is placed on the upper end of the pile body 710. These may be connected by nails 730 or the like.

この手順によれば、杭本体710の打ち込み作業時に、羽根板720が邪魔にならないため、杭本体710の打ち込み作業を容易に行うことができるとともに、杭本体710をより確実に適切な姿勢で打ち込むことができる。 According to this procedure, the slats 720 do not get in the way when driving the pile main body 710, so the driving work of the pile main body 710 can be easily performed, and the pile main body 710 can be driven in an appropriate posture more reliably. be able to.

また、このように羽根板720を連結させずに杭本体710を単独で斜面100に打ち込む方法では、次のようにして杭本体710を土壌層111(あるいは表土層102)にとどまるように打ち込むことができる。すなわち、まず、十分な長さを有する杭本体710(杭本体710の元となる木材)を、その先端が土壌層111(あるいは表土層102)におさまるように斜面100に打ち込む。例えば、打ち込みにかかる力が所定値を超えると杭本体710の先端が土壌層111(あるいは表土層102)とその下の層との境界面に到達したと判定して、打ち込みを停止させる。次に、杭本体701のうち地表面から飛び出ている部分を所定の高さで切断する。その後、杭本体の上端部に羽根板720を連結させる。この手順によれば、土壌層111(あるいは表土層102)の深さを測定する工程を省略あるいは簡略化することができる。 In addition, in this method of driving the pile body 710 alone into the slope 100 without connecting the blade plate 720, the pile body 710 can be driven so as to stay in the soil layer 111 (or topsoil layer 102) as follows. I can do it. That is, first, a pile main body 710 (wood that is the source of the pile main body 710) having a sufficient length is driven into the slope 100 so that its tip fits into the soil layer 111 (or topsoil layer 102). For example, when the force applied to driving exceeds a predetermined value, it is determined that the tip of the pile body 710 has reached the interface between the soil layer 111 (or topsoil layer 102) and the layer below, and driving is stopped. Next, the portion of the pile body 701 that protrudes from the ground surface is cut at a predetermined height. After that, the blade plate 720 is connected to the upper end of the pile body. According to this procedure, the step of measuring the depth of the soil layer 111 (or topsoil layer 102) can be omitted or simplified.

1 杭
10 杭本体
20 羽根板(羽根部材)
29 釘(規制部材)
32 連結部材
100 地面
102 表土層
104 基盤層
111 土壌層
1 Pile 10 Pile body 20 Feather plate (blade member)
29 Nail (regulating member)
32 Connecting member 100 Ground 102 Topsoil layer 104 Base layer 111 Soil layer

Claims (6)

少なくとも地表側の層が基盤層よりも柔らかい表土層で構成され且つ地表面が水平面に対して傾斜している斜面に適用されて、当該斜面の崩壊を抑制するための方法であって、
所定の方向に延びる杭本体を、その長手方向と前記斜面の前記地表面とが交差する姿勢で当該杭本体の長手方向の先端側から前記斜面に打ち込むとともに、所定の方向に延びる羽根部材を、前記杭本体の長手方向の基端側の部分に連結された状態で前記斜面に配置する杭設置工程を含み、
前記羽根部材は、前記斜面と対向する側面である対向面を有し、
前記杭設置工程では、前記杭本体の先端が前記表土層内にとどまるように当該杭本体を打ち込み、前記羽根部材が前記斜面の前記地表面に沿って延びるように当該羽根部材を前記斜面に配置するとともに、複数の前記杭本体および前記羽根部材を前記斜面の互いに離間した位置に前記杭本体どうしおよび前記羽根部材どうしが互いに独立する状態で設置し、
前記羽根部材を前記斜面に配置する際に、前記羽根部材の前記対向面を前記地表面に圧接させる、ことを特徴とする斜面表層崩壊対策杭工法。
A method for suppressing the collapse of a slope, which is applied to a slope where at least the layer on the ground side is composed of a topsoil layer that is softer than the base layer and the ground surface is inclined with respect to a horizontal plane,
A pile body extending in a predetermined direction is driven into the slope from the tip side in the longitudinal direction in a position where the longitudinal direction of the pile body intersects the ground surface of the slope, and a blade member extending in a predetermined direction is driven into the slope. A pile installation step of arranging the pile on the slope while being connected to the proximal end portion in the longitudinal direction of the pile body,
The blade member has a facing surface that is a side surface facing the slope,
In the pile installation step, the pile body is driven so that the tip of the pile body remains within the topsoil layer, and the blade member is placed on the slope so that the blade member extends along the ground surface of the slope. At the same time, a plurality of the pile bodies and the blade members are installed at positions spaced apart from each other on the slope so that the pile bodies and the blade members are independent from each other,
A slope surface collapse prevention pile construction method, characterized in that when the blade member is placed on the slope, the opposing surface of the blade member is brought into pressure contact with the ground surface.
請求項1に記載の斜面表層崩壊対策杭工法において、
前記杭設置工程の前に実施されて、前記羽根部材と、前記表土層の厚さ寸法よりも短い前記杭本体とを準備する準備工程を含み、
前記準備工程の実施後且つ前記杭設置工程の実施前に、前記杭本体と前記羽根部材とを連結する、ことを特徴とする斜面表層崩壊対策杭工法。
In the slope surface collapse prevention pile construction method according to claim 1,
A preparation step that is carried out before the pile installation step and prepares the blade member and the pile body that is shorter than the thickness dimension of the topsoil layer,
A slope surface collapse prevention pile construction method, characterized in that the pile main body and the blade member are connected after the preparation step and before the pile installation step.
少なくとも地表側の層が基盤層よりも柔らかい表土層で構成され且つ地表面が水平面に対して傾斜している斜面に適用されて、当該斜面の崩壊を抑制するための方法であって、
所定の方向に延びる杭本体を、その長手方向と前記斜面の前記地表面とが交差する姿勢で当該杭本体の長手方向の先端側から前記斜面に打ち込むとともに、所定の方向に延びる羽根部材を、前記杭本体の長手方向の基端側の部分に連結された状態で前記斜面に配置す
る杭設置工程と、
前記杭設置工程の前に実施されて、前記羽根部材と、前記表土層の厚さ寸法よりも短い前記杭本体とを準備する準備工程とを含み、
前記羽根部材は、前記杭本体の長手方向と直交する方向に延びる回動中心線回りに回動可能に前記杭本体に連結されているとともに、前記回動中心線と交差する方向に延びる形状を有し、
前記杭設置工程では、前記杭本体の先端が前記表土層内にとどまるように当該杭本体を打ち込むとともに、前記羽根部材が前記斜面の前記地表面に沿って延びるように当該羽根部材を前記斜面に配置し、
前記準備工程の実施後且つ前記杭設置工程の実施前に、前記杭本体と前記羽根部材とを連結する、ことを特徴とする斜面表層崩壊対策杭工法。
A method for suppressing the collapse of a slope, which is applied to a slope where at least the layer on the ground side is composed of a topsoil layer that is softer than the base layer and the ground surface is inclined with respect to a horizontal plane,
A pile body extending in a predetermined direction is driven into the slope from the tip side in the longitudinal direction in a position where the longitudinal direction of the pile body intersects the ground surface of the slope, and a blade member extending in a predetermined direction is driven into the slope. a pile installation step of arranging the pile on the slope while being connected to the proximal end portion in the longitudinal direction of the pile body;
A preparatory step carried out before the pile installation step to prepare the blade member and the pile body shorter than the thickness dimension of the topsoil layer,
The blade member is connected to the pile body so as to be rotatable about a rotation center line extending in a direction perpendicular to the longitudinal direction of the pile body, and has a shape extending in a direction intersecting the rotation center line. have,
In the pile installation step, the pile body is driven so that the tip of the pile body remains within the topsoil layer, and the blade member is driven into the slope so that the blade member extends along the ground surface of the slope. place,
A slope surface collapse prevention pile construction method, characterized in that the pile main body and the blade member are connected after the preparation step and before the pile installation step.
請求項3に記載の斜面表層崩壊対策杭工法において、
前記羽根部材は、その長手方向について前記回動中心線よりも一方側の部分に当該羽根部材の重心が位置するように前記杭本体に連結されており、
前記杭本体は、前記羽根部材の回動を規制する規制部材を備え、
前記規制部材は、前記羽根部材が、前記杭本体の長手方向と交差する方向に沿って延びる姿勢で、前記羽根部材の長手方向の前記一方側の端部が前記杭本体の先端側に近づく方向に当該羽根部材が回動するのを規制する、ことを特徴とする斜面表層崩壊対策杭工法。
In the slope surface collapse prevention pile construction method according to claim 3,
The blade member is connected to the pile main body such that the center of gravity of the blade member is located on one side of the rotation center line in the longitudinal direction,
The pile body includes a regulating member that regulates rotation of the blade member,
The regulating member is arranged such that the blade member extends in a direction intersecting the longitudinal direction of the pile body, and the one end in the longitudinal direction of the blade member approaches the tip side of the pile body. A slope surface collapse prevention pile construction method, characterized in that the rotation of the blade member is restricted.
請求項1に記載の斜面表層崩壊対策杭工法において、
前記羽根部材と、前記表土層の厚さ寸法よりも短い前記杭本体とを準備する準備工程を含み、
前記杭設置工程では、前記杭本体を前記斜面に打ち込んだ後、前記羽根部材を前記斜面の前記地表面に沿って延びる状態で前記杭本体に連結する、ことを特徴とする斜面表層崩壊対策杭工法。
In the slope surface collapse prevention pile construction method according to claim 1,
A preparation step of preparing the blade member and the pile body shorter than the thickness dimension of the topsoil layer,
In the pile installation step, after driving the pile body into the slope, the blade member is connected to the pile body in a state extending along the ground surface of the slope. Construction method.
請求項1~5のいずれか1項に記載の斜面表層崩壊対策杭工法において、
前記杭本体および前記羽根部材は、防腐処理がなされた木で形成されている、ことを特徴とする斜面表層崩壊対策杭工法。
In the slope surface collapse prevention pile construction method according to any one of claims 1 to 5,
The pile construction method for preventing slope surface collapse, characterized in that the pile main body and the blade member are made of wood that has been subjected to antiseptic treatment.
JP2019203912A 2019-11-11 2019-11-11 Slope surface collapse prevention pile construction method Active JP7442030B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019203912A JP7442030B2 (en) 2019-11-11 2019-11-11 Slope surface collapse prevention pile construction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019203912A JP7442030B2 (en) 2019-11-11 2019-11-11 Slope surface collapse prevention pile construction method

Publications (2)

Publication Number Publication Date
JP2021075917A JP2021075917A (en) 2021-05-20
JP7442030B2 true JP7442030B2 (en) 2024-03-04

Family

ID=75898713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019203912A Active JP7442030B2 (en) 2019-11-11 2019-11-11 Slope surface collapse prevention pile construction method

Country Status (1)

Country Link
JP (1) JP7442030B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114319391B (en) * 2022-01-21 2023-10-20 中建八局第二建设有限公司 Construction device and method for ultra-long miniature pile of soft backfill soil of side slope

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002371561A (en) 2001-06-13 2002-12-26 Free Kogyo Kk Bearing member and construction method for stabilizing and greening slope using the same
WO2013005098A2 (en) 2011-07-05 2013-01-10 Lega Rocciatori S.R.L. System for consolidating the cortical layer of loose terrains
JP2015175118A (en) 2014-03-13 2015-10-05 東興ジオテック株式会社 Tree planting method of slope land
JP2017036592A (en) 2015-08-10 2017-02-16 吉佳エンジニアリング株式会社 Pressure receiving plate

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5347104A (en) * 1976-10-13 1978-04-27 Sanyo Wood Preserving Apparatus for promoting stability of face of slope or inclined surface in plant growing method
JPH0657948B2 (en) * 1988-09-12 1994-08-03 株式会社熊谷組 Revegetation method and anchor pin on inclined surface

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002371561A (en) 2001-06-13 2002-12-26 Free Kogyo Kk Bearing member and construction method for stabilizing and greening slope using the same
WO2013005098A2 (en) 2011-07-05 2013-01-10 Lega Rocciatori S.R.L. System for consolidating the cortical layer of loose terrains
JP2015175118A (en) 2014-03-13 2015-10-05 東興ジオテック株式会社 Tree planting method of slope land
JP2017036592A (en) 2015-08-10 2017-02-16 吉佳エンジニアリング株式会社 Pressure receiving plate

Also Published As

Publication number Publication date
JP2021075917A (en) 2021-05-20

Similar Documents

Publication Publication Date Title
KR100634261B1 (en) Short aggregate pier techniques
US10024020B2 (en) Apparatus for constructing foundation pilings
US20070000187A1 (en) Lateral force resistance device
US7578637B2 (en) Pile with an extended head and working method of its operation
US3903662A (en) Method of securing structural support elements in soil
JP7442030B2 (en) Slope surface collapse prevention pile construction method
DE202005004739U1 (en) Foundation pile, e.g. for offshore wind power system, has pile body that carries essentially radially attached vanes at the level of the higher layers of the ground when the pile body is installed
US5505561A (en) Self-piloting compressible piling
JP2015063866A (en) Base structure for counteracting liquefaction and construction method for counteracting liquefaction
JP2012188830A (en) Soil improvement structure and soil improvement method
Lutenegger Foundation alternatives for ground mount solar panel installations
Mehdizadeh et al. Static load testing of concrete free reticulated micropiles system
KR101416865B1 (en) Construction method of screw file
Abebe et al. Pile Foundation Design: A Student Guide
DE1634589B2 (en) PILE GRATING MADE FROM CONCRETE PILES
JP2018021325A (en) Ground improvement method using lumber and other materials
KR101224440B1 (en) Construction method of screw file
JP2012197583A (en) Ground strengthening method and wood pile for strengthening ground
Lutenegger Uplift tests on shallow cast-in-place enlarged base pedestal foundations in clay
JP7469608B2 (en) Support structure, gravity breakwater and construction method of gravity breakwater
JP3006710B2 (en) Building structures using piles as pillars
Papić et al. Geotechnical measures for stabilization of the Aqueduct in Skopje
Pandey et al. A study on the effect of micropiles on load capacity of pile foundation in a cohesionless soil
KR101858021B1 (en) Earthquake-proof type top-base pile, earthquake-proof type top-base foundation and construction method of the same
JP2024004251A (en) Ground reinforcement structure and design method thereof

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20200212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200212

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240119

R150 Certificate of patent or registration of utility model

Ref document number: 7442030

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150