JP2015063866A - Base structure for counteracting liquefaction and construction method for counteracting liquefaction - Google Patents

Base structure for counteracting liquefaction and construction method for counteracting liquefaction Download PDF

Info

Publication number
JP2015063866A
JP2015063866A JP2013199375A JP2013199375A JP2015063866A JP 2015063866 A JP2015063866 A JP 2015063866A JP 2013199375 A JP2013199375 A JP 2013199375A JP 2013199375 A JP2013199375 A JP 2013199375A JP 2015063866 A JP2015063866 A JP 2015063866A
Authority
JP
Japan
Prior art keywords
improvement body
ground improvement
piles
pile
lower ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013199375A
Other languages
Japanese (ja)
Other versions
JP5494880B1 (en
Inventor
春行 山本
Haruyuki Yamamoto
春行 山本
謹治 竹内
Kinji Takeuchi
謹治 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TAKEUCHI CONSTRUCTION Inc
Original Assignee
TAKEUCHI CONSTRUCTION Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TAKEUCHI CONSTRUCTION Inc filed Critical TAKEUCHI CONSTRUCTION Inc
Priority to JP2013199375A priority Critical patent/JP5494880B1/en
Application granted granted Critical
Publication of JP5494880B1 publication Critical patent/JP5494880B1/en
Publication of JP2015063866A publication Critical patent/JP2015063866A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Piles And Underground Anchors (AREA)
  • Foundations (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a simple base structure for counteracting liquefaction requiring small construction cost while effectively counteracting liquefaction, and a construction method for counteracting liquefaction.SOLUTION: A base structure A for counteracting liquefaction in a building in an earthquake comprises: a lower ground improver 1 whose upper surface 1A is arranged below the ground GL; a plurality of friction piles (P, P,...) extending downward from the lower surface 1B of the lower ground improver 1 and comprising a plurality of concrete piles (4, 4,...) as preservative piles whose lower edges are arranged below the ground water level WL and whose upper parts are engaged in a plurality of pile supporting holes (h, h,...) vertically penetrating the lower ground improver 1, and wood piles (5, 5,...) connected to and fixed on lower end parts of the concrete piles (4, 4,...); an upper ground improver 2 formed on the lower ground improver 1; and base 3 of the building established on the upper ground improver 2.

Description

本発明は、地震時の液状化対策に有効な、簡便で施工コストの小さい基礎構造体及び工法に関するものである。   The present invention relates to a simple foundation structure and a construction method that are effective for countermeasures against liquefaction during an earthquake and have low construction costs.

平成23年3月11日14時46分に発生した東北地方太平洋沖地震は、太平洋プレートと東北日本が載っている北米プレートのプレート境界部の滑り破壊によるもので、破壊領域は南北約400km、東西約200kmであると推定されており、モーメントマグニチュード(Mw)9.0に達する、日本観測史上最大の超巨大地震であった。さらに、プレート滑り破壊領域が巨大であったため、これまでの地震に比べて破壊開始から終了までの時間が非常に長時間であった(5分程度)。このように長時間に亘り地盤が揺すられたことにより、地表面の加速度レベルはそれほど大きくなかった、震源からかなり遠く離れた場所(千葉県の浦安市等)で非常に大規模な液状化が発生し、建築物の側方への移動や沈下による大被害が生じ、その復旧は経済的にも困難を極めている。
このような事態に鑑み、今後、より厳しい液状化判定とその判定結果による対策工法の実施が求められることとなる。
一方、地震時液状化対策工法には様々なものが既に存在し、実施されているが、非常に大がかりで特殊な大型重機等による大規模なものがほとんどであり(例えば、特許文献1及び2参照。)、低層・小規模な個別建築物へは相対的に高価となるため適用性が悪い。
このような観点から、建設現場にある通常の重機類による施工が可能であり、簡便で施工コストの小さい液状化対策工法の開発が望まれており、建物下部の液状化対策対象地盤に複数の木杭を打設し、前記木杭の頭部を鉄筋等の連結材で連結し、前記複数の杭の上に軽量セメント固化土で基礎盤を構築するものがある(特許文献3参照。)。
The Tohoku-Pacific Ocean Earthquake that occurred at 14:46 on March 11, 2011 was due to the sliding failure of the plate boundary between the Pacific plate and the North American plate on which Tohoku Japan is located. It was estimated to be about 200 km from east to west, and it was the largest super-earthquake in Japan's observation history, reaching a moment magnitude (Mw) of 9.0. Furthermore, because the plate slip failure region was huge, the time from the start to the end of the failure was very long compared to previous earthquakes (about 5 minutes). Because the ground was shaken for a long time in this way, the acceleration level on the ground surface was not so high, and very large liquefaction occurred at a place far away from the epicenter (such as Urayasu City in Chiba Prefecture). Occurring and causing great damage due to the sideways movement and settlement of the building, its restoration is extremely difficult economically.
In view of such a situation, in the future, more rigorous liquefaction determination and implementation of a countermeasure method based on the determination result will be required.
On the other hand, various liquefaction countermeasure methods at the time of earthquake already exist and are being implemented, but most of them are very large and large-scaled by special heavy machinery (for example, Patent Documents 1 and 2). (Refer to the above)) Applicability is low for low-rise and small-scale individual buildings because it is relatively expensive.
From this point of view, construction with ordinary heavy machinery at the construction site is possible, and development of a liquefaction countermeasure construction method that is simple and low in construction cost is desired. There is one in which a wooden pile is placed, the heads of the wooden pile are connected with a connecting material such as a reinforcing bar, and a foundation board is constructed on the plurality of piles with a light cement solidified soil (see Patent Document 3). .

特公平04−54004号公報Japanese Patent Publication No. 04-54004 特開平10−46619号公報Japanese Patent Laid-Open No. 10-46619 特開2013−124511号公報JP2013-124511A 特許第3608568号公報Japanese Patent No. 3608568

特許文献3の液状化対策工法では、地盤(2)を堀り下げ、木杭(14,14,…)を打設し、木杭(14,14,…)の頭部を連結材(16)で連結した後、木杭(14,14,…)の頭部及び連結材(16)が埋設されるように軽量セメント固化土を打設して平板状の基礎盤(12)を構築する手順により、建物の基礎構造(10)が構築される。ここで、軽量セメント固化土である基礎盤(12)は、地下水位(W.L)よりも低位に構築される。
このような液状化対策工法では、木杭(14,14,…)の頭部を連結材(16)で連結する構成であるので、連結強度を高めるために前後左右の木杭の頭部同士を連結した場合には、地盤全体を掘り下げる必要があるため、特許文献4のような、地盤改良体の重量を軽減しながら、不同沈下の抑制及び下部の未改良土の側方流動の抑制を図るために非常に有効な形状の浅層地盤改良体、すなわち、水平板状の上部改良体、この上部改良体の下面から垂下して外枠を形成する外周部改良体、及び、前記上部改良体の下面から垂下して、前記外枠間を連結して前記外周部改良体の内側の領域を複数の領域に仕切る少なくとも1個の内部改良体からなる形状の浅層地盤改良体等と組み合わせて使用することができない。
In the liquefaction countermeasure method of Patent Document 3, the ground (2) is dug down, a wooden pile (14, 14,...) Is placed, and the head of the wooden pile (14, 14,. ), And then a lightweight cement solidified soil is placed so that the heads of the wooden piles (14, 14,...) And the connecting material (16) are buried, thereby constructing a flat foundation (12). According to the procedure, the foundation structure (10) of the building is constructed. Here, the foundation board (12), which is a light cement solidified soil, is constructed at a level lower than the groundwater level (W.L).
In such a liquefaction countermeasure construction method, the heads of the wooden piles (14, 14,...) Are connected by the connecting material (16). When the two are connected, it is necessary to dig up the entire ground, so as to reduce the weight of the ground improvement body as in Patent Document 4, while suppressing the uneven settlement and the lateral flow of the unmodified soil below. A shallow ground improvement body having a shape that is very effective for the purpose, that is, a horizontal plate-like upper improvement body, an outer peripheral improvement body that forms an outer frame depending on the lower surface of the upper improvement body, and the upper improvement Combined with a shallow ground improvement body having a shape composed of at least one internal improvement body that hangs down from the lower surface of the body and connects the outer frames to partition the inner area of the outer peripheral improvement body into a plurality of areas Cannot be used.

その上、地盤(2)を堀り下げて木杭(14,14,…)を打設した後に、木杭(14,14,…)の頭部を鉄筋等の連結材(16)により連結する作業を行うので、この作業後には、木杭(14,14,…)の頭部は鉄筋等の連結材(16)により連結された状態となっている。
したがって、現地土を掘り下げずにそのまま利用して固化材と水を注入しながら混合攪拌して地盤改良を行うことができないので、工数が掛かるため施工コストが上昇する。
その上さらに、木杭(14,14,…)の頭部は、鉄筋等の連結材(16)により連結されるので、連結材(16)により、木杭(14,14,…)の各杭頭の移動(変位)の一体性は増すものと考えられるが、地下水位よりも低位に構築される基礎盤(12)の高さを高くすると施工コストが増大すること等とも相俟って、地震の際に、木杭(14,14,…)間の土要素のせん断変形を抑制するように木杭(14,14,…)の傾斜を十分に拘束することができないため、十分な液状化抑制効果を得ることができない。
その上、木杭(14,14,…)を腐朽させないようにするために、基礎盤(12)を地下水位(W.L)よりも低位に構築しているので、地下水位(W.L)が地表面に近い場合(例えば、地下水位(W.L)が地表面から0.5m以内である場合)には問題は生じないが、地下水位(W.L)が深くなった場合には、地盤(2)の堀下げ深さ(基礎盤(12)を構築する高さ位置)が深くなってしまうため、施工コストが増大する。
Furthermore, after digging the ground (2) and placing the wooden piles (14, 14,...), The heads of the wooden piles (14, 14,...) Are connected by a connecting material (16) such as a reinforcing bar. Therefore, after this work, the heads of the wooden piles (14, 14,...) Are connected by a connecting material (16) such as a reinforcing bar.
Therefore, since the ground cannot be improved by mixing and stirring while injecting the solidified material and water using the local soil without being dug down, it takes man-hours and the construction cost increases.
Furthermore, since the heads of the wooden piles (14, 14,...) Are connected by a connecting material (16) such as a reinforcing bar, each of the wooden piles (14, 14,...) Is connected by the connecting material (16). The integrity of the movement (displacement) of the pile head is considered to increase, but in combination with the fact that the construction cost increases if the height of the foundation (12) constructed lower than the groundwater level is increased. In the event of an earthquake, the inclination of the wooden piles (14, 14,...) Cannot be sufficiently restrained so as to suppress the shear deformation of the soil elements between the wooden piles (14, 14,...). The liquefaction suppression effect cannot be obtained.
Moreover, in order not to decay the wooden piles (14, 14,...), The foundation board (12) is constructed lower than the groundwater level (W.L), so the ground water level (W.L.). ) Is close to the ground surface (for example, when the groundwater level (W.L) is within 0.5 m from the ground surface), there is no problem, but when the groundwater level (W.L) becomes deeper. Since the depth of digging down the ground (2) (the height position for constructing the foundation (12)) becomes deep, the construction cost increases.

そこで、本発明が前述の状況に鑑み、解決しようとするところは、液状化対策を有効に行うことができながら、簡便で施工コストの小さい液状化対策基礎構造体及び液状化対策工法を提供する点にある。   Therefore, in view of the above-described situation, the present invention provides a liquefaction countermeasure basic structure and a liquefaction countermeasure construction method that are simple and low in construction cost while being able to effectively perform liquefaction countermeasures. In the point.

本発明の発明者らは、東北地方太平洋沖地震により引き起こされた東日本大震災における、広範囲にわたる液状化現象による被害状況に鑑み、液状化対策を有効に行うことができながら、簡便で施工コストを小さくできる基礎構造について鋭意検討を重ねるとともに、シミュレーション等による比較検討を行うことにより本発明を完成するに至った。   Inventors of the present invention are able to effectively implement liquefaction countermeasures in view of the damage situation caused by a wide range of liquefaction phenomenon in the Great East Japan Earthquake caused by the Tohoku Earthquake, but it is simple and reduces the construction cost. The present invention has been completed by conducting intensive studies on possible foundation structures and conducting comparative studies through simulations and the like.

すなわち、本発明に係る液状化対策基礎構造体は、前記課題解決のために、地震時における建築物の液状化対策を行うための基礎構造体であって、地表面よりも下方に上面が位置する下部地盤改良体と、前記下部地盤改良体を上下に貫通する複数の杭支持穴に上部が嵌合した複数の木製杭又は竹製杭により構成される、前記下部地盤改良体の下面から垂下する複数の摩擦杭と、前記下部地盤改良体上に形成された上部地盤改良体と、前記上部地盤改良体上に打設された前記建築物の基礎とからなることを特徴とする(請求項1)。   That is, the liquefaction countermeasure foundation structure according to the present invention is a foundation structure for taking measures against liquefaction of a building during an earthquake in order to solve the above-mentioned problem, and the upper surface is positioned below the ground surface. A lower ground improvement body, and a plurality of wooden piles or bamboo piles whose upper parts are fitted in a plurality of pile support holes penetrating the lower ground improvement body vertically, depending on the lower surface of the lower ground improvement body A plurality of friction piles, an upper ground improvement body formed on the lower ground improvement body, and a foundation of the building placed on the upper ground improvement body. 1).

このような構成によれば、液状化発生が予測される地盤の状況に合わせて適切な間隔及び本数で設置され、下部地盤改良体を上下に貫通する杭支持穴に上部が嵌合した摩擦杭により、緩い液状化層を締め固め、かつ地震時のせん断変形を抑制するので、液状化と側方流動や沈下を抑制できる。
その上、摩擦杭が木製杭又は竹製杭により構成されるので、低コストであるとともに、軽量かつ表面の摩擦抵抗が大きいため沈下抑制効果が大きい。
その上さらに、木製杭を使用した場合には、木材(間伐材)を大量に有効利用して地下に固定するので、林業振興のみならず、炭素貯蔵効果によりCO2削減に貢献でき、竹製杭を使用した場合には、成長が早い竹を大量伐採して有効利用するので、さらにコストを低減できるとともに、森の豊かな生態系を破壊する竹の大量伐採により豊かな森を守ることができる。
According to such a configuration, the friction pile is installed at an appropriate interval and number according to the ground condition where liquefaction is expected to occur, and the upper part is fitted to a pile support hole that vertically penetrates the lower ground improvement body. Thus, the loose liquefaction layer is compacted and the shear deformation at the time of earthquake is suppressed, so that liquefaction and lateral flow and settlement can be suppressed.
In addition, since the friction pile is composed of a wooden pile or a bamboo pile, the cost is low, and the lightness and the frictional resistance of the surface are large.
In addition, when wooden piles are used, a large amount of timber (thinned wood) is used and fixed underground, which not only promotes forestry, but also contributes to CO 2 reduction due to the carbon storage effect. When piles are used, a large amount of fast-growing bamboo is harvested and used effectively, which can further reduce costs and protect the rich forest by mass-cutting bamboo that destroys the rich ecosystem of the forest. it can.

また、本発明に係る液状化対策基礎構造体は、前記課題解決のために、地震時における建築物の液状化対策を行うための基礎構造体であって、地表面よりも下方に上面が位置する下部地盤改良体と、前記下部地盤改良体を上下に貫通する複数の杭支持穴に上部が嵌合され、下端が地下水位よりも下方に位置する複数の不腐朽性杭及び前記不腐朽性杭の下端部に連結固定された木製杭又は竹製杭により構成される、前記下部地盤改良体の下面から垂下する複数の摩擦杭と、前記下部地盤改良体上に形成された上部地盤改良体と、前記上部地盤改良体上に打設された前記建築物の基礎とからなることを特徴とする(請求項2)。   Further, the liquefaction countermeasure basic structure according to the present invention is a foundation structure for performing liquefaction countermeasures for buildings during an earthquake in order to solve the above-mentioned problem, and the upper surface is located below the ground surface. A lower ground improvement body, a plurality of non-septic piles whose upper ends are fitted in a plurality of pile support holes penetrating vertically through the lower ground improvement body, and whose lower ends are positioned below the groundwater level, and the non-septic properties A plurality of friction piles hanging from the lower surface of the lower ground improvement body, which are constituted by wooden piles or bamboo piles connected and fixed to the lower end of the pile, and an upper ground improvement body formed on the lower ground improvement body And the foundation of the building placed on the upper ground improvement body (claim 2).

このような構成によれば、前記請求項1に係る発明の作用効果と同様の作用効果を奏するとともに、木製杭又は竹製杭の上側に不腐朽性杭を連結して摩擦杭としており、地下水位よりも上方には不腐朽性杭しかないので、木製杭又は竹製杭が空気に触れないことから腐朽しないため、長期間にわたって強度が低下しない。   According to such a structure, while exhibiting the effect similar to the effect of the invention which concerns on the said Claim 1, it connects to a non-perishable pile on the upper side of a wooden pile or a bamboo pile, and is used as a friction pile, and groundwater Since there is only a non-rotatable pile above the position, the wooden pile or bamboo pile does not decay because it does not touch the air, so the strength does not decrease over a long period of time.

ここで、前記下部地盤改良体が、内側領域を複数に仕切るように上下に貫通する複数の穴部が形成されたものであると好ましい(請求項3)。
このような構成によれば、下部地盤改良体に上下に貫通する複数の穴部が形成されるので、下部地盤改良体の重量軽減によってさらに沈下が抑制されるとともに、上部地盤改良体の下側に窪みが形成されるため、不同沈下の抑制効果及び下部の未改良土の側方流動の抑制効果が高くなる。
Here, it is preferable that the lower ground improvement body is formed with a plurality of holes penetrating vertically so as to divide the inner region into a plurality (Claim 3).
According to such a configuration, since the lower ground improvement body is formed with a plurality of holes penetrating vertically, the lower ground improvement body further suppresses settlement by reducing the weight of the lower ground improvement body, and the lower side of the upper ground improvement body. Since the dent is formed, the effect of suppressing the uneven settlement and the effect of suppressing the lateral flow of the lower unmodified soil are enhanced.

また、前記下部地盤改良体の杭支持穴と前記摩擦杭の上部との間に圧入した固定部材を備えてなると好ましい(請求項4)。
このような構成によれば、固定部材により摩擦杭の上部が下部地盤改良体に強固に固定されるので、地震の際に、直下の地盤における摩擦杭間の土要素のせん断変形を抑制するように摩擦杭の傾斜を十分に拘束することができるため、十分な液状化抑制効果が得られる。
Further, it is preferable that a fixing member press-fitted between the pile support hole of the lower ground improvement body and the upper portion of the friction pile is provided.
According to such a configuration, since the upper part of the friction pile is firmly fixed to the lower ground improvement body by the fixing member, in the event of an earthquake, the shear deformation of the soil element between the friction piles in the immediately lower ground is suppressed. In addition, since the inclination of the friction pile can be sufficiently restrained, a sufficient liquefaction suppressing effect can be obtained.

本発明に係る液状化対策工法は、前記課題解決のために、地表面よりも下方に上面が位置する下部地盤改良体、前記下部地盤改良体により上部が支持された複数の摩擦杭、前記下部地盤改良体上の上部地盤改良体、及び前記上部地盤改良体上の建築物の基礎からなる液状化対策基礎構造体を構築する、地震時における建築物の液状化対策を行うための工法であって、液状化発生が予測される地盤の表層部を、前記下部地盤改良体の平面形状に合わせて前記下部地盤改良体の上側を掘り下げる掘下げ工程と、前記下部地盤改良体の形状に前記地盤の表層部を掘削し、固化材と水を注入しながら混合攪拌した後に締め固めて前記下部地盤改良体を形成する一次改良工程と、木製杭若しくは竹製杭、又は不腐朽性杭及び前記不腐朽性杭の下端部に連結固定された木製杭若しくは竹製杭により構成される摩擦杭の複数を、前記一次改良工程を経て未固結の状態の前記下部地盤改良体を上下に貫いて前記下部地盤改良体の下面から垂下するように打設する摩擦杭打設工程と、前記掘下げ工程により掘り下げた土を前記下部地盤改良体の上側に埋め戻し、前記上部地盤改良体の形状に前記地盤の表層部を掘削し、固化材と水を注入しながら混合攪拌した後に締め固めて前記上部地盤改良体を形成する二次改良工程と、前記上部地盤改良体上に前記建築物の基礎を打設する基礎打設工程とを含むことを特徴とする(請求項5)。   In order to solve the above problems, the liquefaction countermeasure method according to the present invention includes a lower ground improvement body having an upper surface located below the ground surface, a plurality of friction piles whose upper portions are supported by the lower ground improvement body, It is a construction method for building liquefaction countermeasures in the event of an earthquake, which constructs an upper ground improvement body on the ground improvement body and a liquefaction countermeasure foundation structure consisting of the foundation of the building on the upper ground improvement body. The surface layer of the ground where liquefaction is expected to occur is matched to the planar shape of the lower ground improvement body, and a dug process for digging the upper side of the lower ground improvement body, and the shape of the lower ground improvement body Drilling the surface layer, mixing and stirring while injecting solidified material and water, then compacting to form the lower ground improvement body, wooden pile or bamboo pile, or non-rotating pile and the non-rotating Connected to the lower end of A plurality of friction piles composed of fixed wooden piles or bamboo piles are suspended from the lower surface of the lower ground improvement body through the primary improvement process and vertically through the lower ground improvement body in an unconsolidated state. Friction pile placing process to be placed, and soil dug down by the dug down process is backfilled on the upper side of the lower ground improvement body, the surface layer portion of the ground is excavated into the shape of the upper ground improvement body, solidified A secondary improvement process for forming the upper ground improvement body by mixing and stirring after injecting material and water, and a foundation placing process for placing the foundation of the building on the upper ground improvement body (Claim 5).

このような工法によれば、下部地盤改良体を形成する一次改良工程及び上部地盤改良体を形成する二次改良工程が、固化材と水を注入しながら混合攪拌した後に締め固める方法であるので、施工コストを低減できる。
その上、一次改良工程を経て未固結の状態の下部地盤改良体を上下に貫いて下部地盤改良体の下面から垂下するように摩擦杭が打設されるので、施工の連続性が良くなるため、施工コストをさらに低減できる。
その上さらに、このような工法によって構築された液状化対策基礎構造体は、請求項1及び2に係る発明と同様の作用効果を奏する。
According to such a construction method, the primary improvement step for forming the lower ground improvement body and the secondary improvement step for forming the upper ground improvement body are methods of compacting after mixing and stirring while injecting the solidifying material and water. The construction cost can be reduced.
In addition, since the friction piles are driven so as to hang down from the lower surface of the lower ground improvement body through the lower ground improvement body in an unconsolidated state through the primary improvement process, the continuity of construction is improved. Therefore, the construction cost can be further reduced.
Furthermore, the liquefaction countermeasure basic structure constructed by such a construction method has the same effects as the inventions according to claims 1 and 2.

ここで、前記下部地盤改良体が、内側領域を複数に仕切るように上下に貫通する複数の穴部が形成されたものであると好ましい(請求項6)。
このような工法によれば、下部地盤改良体の平面形状に合わせて下部地盤改良体の上側を掘り下げる掘下げ工程により掘り下げる土の量、及び摩擦杭打設工程後に下部地盤改良体の上側に埋め戻す土の量が少なくなるので、施工コストを低減できる。
その上、このような工法によって構築された液状化対策基礎構造体は、請求項3に係る発明と同様の作用効果を奏する。
Here, it is preferable that the lower ground improvement body is formed with a plurality of holes penetrating vertically so as to divide the inner region into a plurality of parts (Claim 6).
According to such a construction method, according to the planar shape of the lower ground improvement body, the amount of soil to be dug by the dug process to dug the upper side of the lower ground improvement body, and backfilled to the upper side of the lower ground improvement body after the friction pile placing process Since the amount of soil is reduced, the construction cost can be reduced.
Moreover, the liquefaction countermeasure basic structure constructed by such a construction method has the same effects as the invention according to claim 3.

また、前記摩擦杭打設工程後に、前記摩擦杭が貫通した前記下部地盤改良体の貫通穴と前記摩擦杭の上部との間に固定部材を圧入する固定部材圧入工程を備えてなると好ましい(請求項7)。
このような工法によって構築された液状化対策基礎構造体は、請求項4に係る発明と同様の作用効果を奏する。
Moreover, it is preferable to provide a fixing member press-fitting step of press-fitting a fixing member between the through hole of the lower ground improvement body through which the friction pile penetrates and the upper portion of the friction pile after the friction pile placing step. Item 7).
The liquefaction countermeasure basic structure constructed by such a construction method has the same effects as the invention according to claim 4.

以上のように、本発明に係る液状化対策基礎構造体によれば、
(ア)下部地盤改良体を上下に貫通する杭支持穴に上部が嵌合した摩擦杭により、緩い液状化層を締め固め、かつ地震時のせん断変形を抑制するので、液状化と側方流動や沈下を抑制できること、
(イ)木製杭又は竹製杭を含む摩擦杭を使用した場合には、低コストであるとともに、軽量かつ表面の摩擦抵抗が大きいため沈下抑制効果が大きいこと、
(ウ)木製杭を含む摩擦杭を使用した場合には、木材(間伐材)を大量に有効利用して地下に固定するので、林業振興のみならず、炭素貯蔵効果によりCO2削減に貢献できること、
(エ)上部を不腐朽性杭とした摩擦杭を使用した場合には、下部の木製杭又は竹製杭が空気に触れないように構成されるため、長期間にわたって強度が低下しないこと、
(オ)下部地盤改良体に上下に貫通する複数の穴部を形成した構成では、重量軽減によってさらに沈下が抑制されるとともに、不同沈下の抑制効果及び下部の未改良土の側方流動の抑制効果が高くなること、
(カ)下部地盤改良体の杭支持穴と摩擦杭の上部との間に圧入した固定部材を備えた構成では、地震の際に、直下の地盤のせん断変形を抑制するように摩擦杭の傾斜を十分に拘束することができるため、十分な液状化抑制効果が得られること、
等の顕著な効果を奏する。
As described above, according to the liquefaction countermeasure basic structure according to the present invention,
(A) The friction pile with the upper part fitted in the pile support hole that penetrates the lower ground improvement body up and down compacts the loose liquefaction layer and suppresses shear deformation during earthquakes, so liquefaction and lateral flow And being able to control settlement
(B) When friction piles including wooden piles or bamboo piles are used, they are low in cost, and are light and have a large surface frictional resistance, so the settlement suppression effect is great.
(C) When friction piles including wooden piles are used, a large amount of timber (thinned wood) is effectively fixed and fixed underground, so that not only forestry promotion but also carbon storage effects can contribute to CO 2 reduction. ,
(D) When using a friction pile with the upper part being a non-permanent pile, the lower wooden pile or bamboo pile is constructed so as not to touch the air, so that the strength does not decrease over a long period of time.
(E) In the structure in which a plurality of holes penetrating vertically are formed in the lower ground improvement body, the settlement is further suppressed by weight reduction, the effect of suppressing the uneven settlement and the lateral flow of the unmodified soil in the lower part are suppressed. Increase effectiveness,
(F) In the configuration with a fixed member press-fitted between the pile support hole of the lower ground improvement body and the upper part of the friction pile, the slope of the friction pile is inclined so as to suppress the shear deformation of the ground directly under the earthquake. Can be sufficiently restrained, so that a sufficient liquefaction suppression effect can be obtained,
There are remarkable effects such as.

また、本発明に係る液状化対策工法によれば、
(キ)下部地盤改良体を形成する一次改良工程及び上部地盤改良体を形成する二次改良工程が、固化材と水を注入しながら混合攪拌した後に締め固める方法であるので、施工コストを低減できること、
(ク)一次改良工程を経て未固結の状態の下部地盤改良体を上下に貫いて下部地盤改良体の下面から垂下するように摩擦杭が打設されるので、施工の連続性が良くなるため、施工コストをさらに低減できること、
(ケ)下部地盤改良体に上下に貫通する複数の穴部を形成した構成では、下部地盤改良体の平面形状に合わせて掘り下げる土の量、及び摩擦杭打設工程後に下部地盤改良体の上側に埋め戻す土の量が少なくなるので、施工コストを低減できること、
等の顕著な効果を奏する。
Further, according to the liquefaction countermeasure method according to the present invention,
(G) The primary improvement process to form the lower ground improvement body and the secondary improvement process to form the upper ground improvement body are methods of compacting after mixing and stirring while injecting solidifying material and water, thus reducing construction costs. What you can do,
(H) Since the friction pile is driven so as to hang down from the lower surface of the lower ground improvement body through the lower ground improvement body in the unconsolidated state through the primary improvement process, the continuity of construction is improved. Therefore, the construction cost can be further reduced,
(K) In a structure in which a plurality of holes penetrating vertically are formed in the lower ground improvement body, the amount of soil to be dug in accordance with the planar shape of the lower ground improvement body, and the upper side of the lower ground improvement body after the friction pile placing process Because the amount of soil to be backfilled is reduced, the construction cost can be reduced,
There are remarkable effects such as.

本発明の実施の形態に係る液状化対策基礎構造体の要部を示す縦断面図である。It is a longitudinal cross-sectional view which shows the principal part of the liquefaction countermeasure foundation structure which concerns on embodiment of this invention. 平面図であり、(a)は一次改良工程を経て下部地盤改良体が形成され、摩擦杭打設工程を経て摩擦杭が打設された状態を、(b)は二次改良工程を経て下部地盤改良体上に上部地盤改良体が形成された状態を示している。It is a plan view, (a) is a state where the lower ground improvement body is formed through the primary improvement process, and the friction pile is driven through the friction pile driving process, (b) is the lower part through the secondary improvement process The state which the upper ground improvement body was formed on the ground improvement body is shown. 図2(b)の矢視X−X断面図である。It is arrow XX sectional drawing of FIG.2 (b). 連結部材の一例を示す縦断面図である。It is a longitudinal cross-sectional view which shows an example of a connection member. 固定部材(固定部材圧入工程)の一例を示す縦断面図である。It is a longitudinal cross-sectional view which shows an example of a fixing member (fixing member press-fit process). (a)は固定部材(固定部材圧入工程)の別例を示す縦断面図、(b)は(a)の矢視Z−Z断面図である。(A) is a longitudinal cross-sectional view which shows another example of a fixing member (fixing member press-fit process), (b) is a ZZ cross-sectional view of (a).

次に本発明の実施の形態を添付図面に基づき詳細に説明するが、本発明は、添付図面に示された形態に限定されず特許請求の範囲に記載の要件を満たす実施形態の全てを含むものである。   Next, embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, the present invention is not limited to the embodiments shown in the accompanying drawings, and includes all the embodiments that satisfy the requirements described in the claims. It is a waste.

図1の縦断面図に示すように、本発明の実施の形態に係る液状化対策基礎構造体Aは、液状化発生が予測される地盤Gに構築され、地表面GLよりも下方に上面1Aが位置する下部地盤改良体1、下部地盤改良体1を上下に貫通する複数の杭支持穴h,h,…に上部が嵌合して下部地盤改良体1の下面1Bから垂下する複数の摩擦杭P,P,…、下部地盤改良体1上に形成された上部地盤改良体2、及び上部地盤改良体2上に打設された建築物の基礎3からなる。
また、図1の縦断面図及び図2の平面図に示すように、下部地盤改良体1には、内側領域を複数に仕切るように上下に貫通する複数の穴部H,H,…が形成される。
As shown in the longitudinal sectional view of FIG. 1, the liquefaction countermeasure basic structure A according to the embodiment of the present invention is constructed on the ground G where the occurrence of liquefaction is predicted, and the upper surface 1A is below the ground surface GL. Are located in the lower ground improvement body 1 and the plurality of pile support holes h, h,... Vertically passing through the lower ground improvement body 1 and a plurality of frictions depending on the lower surface 1B of the lower ground improvement body 1 Pile P, P,..., Upper ground improvement body 2 formed on the lower ground improvement body 1, and building foundation 3 placed on the upper ground improvement body 2.
Further, as shown in the longitudinal sectional view of FIG. 1 and the plan view of FIG. 2, the lower ground improvement body 1 is formed with a plurality of holes H, H,. Is done.

また、摩擦杭Pは、下端が地下水位(地下水面)WLよりも下方に位置する、不腐朽性杭(耐腐朽性杭)であるコンクリート製杭4、コンクリート製杭4の下端部に連結部材Cにより連結固定された上側の木製杭5、及び上側の木製杭5の下端部に連結部材Cにより連結固定された下側の木製杭5により構成され、液状化発生が予測される地盤Gの状況に合わせて適切な間隔及び本数で設置される。
ここで、コンクリート製杭4に代えて鋼製杭等の他の不腐朽性杭を使用してもよく、木製杭5に代えて、適切な加工を施した孟宗竹等の竹製杭を使用してもよい。
なお、摩擦杭Pは、地下水位WLが浅い場合(地表面GLから地下水面までの距離が短い場合)には、コンクリート製杭4等の不腐朽性杭をなくして、木製杭5,5,…のみにより構成してもよい。
In addition, the friction pile P has a concrete pile 4 that is a non-rotatable pile (corrosion-resistant pile), the lower end of which is located below the groundwater level (groundwater surface) WL, and a connecting member at the lower end of the concrete pile 4. The upper wooden pile 5 connected and fixed by C, and the lower wooden pile 5 connected and fixed by the connecting member C to the lower end of the upper wooden pile 5, the ground G in which the occurrence of liquefaction is predicted Installed at appropriate intervals and number according to the situation.
Here, instead of the concrete pile 4, other non-destructive piles such as steel piles may be used, and instead of the wooden pile 5, bamboo piles such as 孟 mong bamboo with appropriate processing are used. May be.
In addition, when the groundwater level WL is shallow (when the distance from the ground surface GL to the groundwater surface is short), the friction pile P is made of wooden piles 5, 5, It may be constituted only by.

次に、液状化対策基礎構造体Aの施工方法について説明する。
(掘下げ工程)
先ず、図1の縦断面図に示す地表面GLよりも下方に上面1Aが位置する下部地盤改良体1を形成するために、液状化発生が予測される地盤Gの地表面GLから下側の表層部を、例えばバックホウによる鋤取り等により、下部地盤改良体1の平面形状に合わせて下部地盤改良体1の上側を掘り下げる掘下げ工程を行う。
Next, the construction method of the liquefaction countermeasure basic structure A will be described.
(Drilling process)
First, in order to form the lower ground improvement body 1 in which the upper surface 1A is located below the ground surface GL shown in the longitudinal sectional view of FIG. The surface layer portion is subjected to a digging process for digging the upper side of the lower ground improvement body 1 in accordance with the planar shape of the lower ground improvement body 1 by, for example, cutting off with a backhoe.

(一次改良工程)
次に、地盤Gの表層部を下部地盤改良体1の形状に、アタッチメントとしてミキシングフォークを装着したバックホウ等により掘削し、セメント系固化材等の固化材と水を注入しながら混合攪拌し、重機及びローラー等により締め固めて下部地盤改良体1を形成する一次改良工程を行う。
(Primary improvement process)
Next, excavate the surface layer of the ground G into the shape of the lower ground improvement body 1 with a backhoe equipped with a mixing fork as an attachment, and mix and stir while injecting solidification material such as cement-based solidification material and water. And the primary improvement process which compacts with a roller etc. and forms the lower ground improvement body 1 is performed.

(摩擦杭打設工程)
次に、前記一次改良工程を経て未固結の状態の下部地盤改良体1を上下に貫いて下部地盤改良体1の下面2Bから垂下するように、複数の摩擦杭P,P,…を、専用の杭打ち機又は杭打ち用のアタッチメントを装着したバックホウ等により打設する摩擦杭打設工程を行う(摩擦杭打設工程を経て摩擦杭P,P,…が打設された状態を示す図2(a)の平面図参照。)。
(Friction pile placing process)
Next, a plurality of friction piles P, P,... Are penetrating from the lower surface 2B of the lower ground improvement body 1 through the lower ground improvement body 1 that has not been consolidated through the primary improvement process and vertically. Friction pile driving process is performed by placing a dedicated pile driver or a backhoe equipped with a pile driving attachment (showing the state where the friction piles P, P,... Have been driven through the friction pile driving process) (Refer to the plan view of FIG. 2A.)

(二次改良工程)
次に、前記掘下げ工程により掘り下げた土を、バックホウ等により下部地盤改良体1の上側に埋め戻し、アタッチメントとしてミキシングフォークを装着したバックホウ等により、地盤Gの表層部を地表面GLから上部地盤改良体2の形状に掘削し、固化材と水を注入しながら混合攪拌し、重機及びローラー等により締め固めて上部地盤改良体2を形成する二次改良工程を行う(二次改良工程を経て下部地盤改良体1上に上部地盤改良体2が形成された状態を示す図2(b)の平面図、及び図3の縦断面図参照。)。
ここで、図3に示す縦断面図において、下部地盤改良体1の厚さD1は、1〜2m程度、上部地盤改良体2の厚さD2は、0.6〜1.2m程度、摩擦杭Pの長さLは、20m以下、摩擦杭Pの断面形状は円形であり直径dは、0.15〜0.2m程度、複数の摩擦杭P,P,…の設置ピッチ(隣接する摩擦杭P,P間の中心距離)は、0.5〜1.5m程度である。
(Secondary improvement process)
Next, the soil dug down by the dug process is backfilled on the upper side of the lower ground improvement body 1 with a backhoe and the upper ground improvement of the surface layer portion of the ground G from the ground surface GL by a backhoe fitted with a mixing fork as an attachment. Excavated into the shape of the body 2, mixed and stirred while injecting the solidified material and water, and compacted with heavy machinery and rollers, etc., to perform the secondary improvement process to form the upper ground improvement body 2 (the lower part through the secondary improvement process) (See the plan view of FIG. 2 (b) and the longitudinal sectional view of FIG. 3) showing a state in which the upper ground improvement body 2 is formed on the ground improvement body 1.
Here, in the longitudinal cross-sectional view shown in FIG. 3, the thickness D1 of the lower ground improvement body 1 is about 1-2 m, the thickness D2 of the upper ground improvement body 2 is about 0.6-1.2 m, and a friction pile. The length L of P is 20 m or less, the cross-sectional shape of the friction pile P is circular, the diameter d is about 0.15 to 0.2 m, and the installation pitch of the plurality of friction piles P, P,. The center distance between P and P is about 0.5 to 1.5 m.

(基礎打設工程)
次に、図2(b)の平面図、及び図3の縦断面図に示す状態で、バックホウ等により基礎掘削を行い、上部地盤改良体2上に建築物の基礎3の配筋及びコンクリートを打設する基礎打設工程を行い、図1の縦断面図に示すような液状化対策基礎構造体Aを構築する。
(Basic placement process)
Next, in the state shown in the plan view of FIG. 2B and the longitudinal sectional view of FIG. 3, foundation excavation is performed with a backhoe or the like, and the bar arrangement and concrete of the foundation 3 of the building are placed on the upper ground improvement body 2. A foundation placing step for placing is performed, and a liquefaction countermeasure foundation structure A as shown in the longitudinal sectional view of FIG. 1 is constructed.

次に、連結部材Cの構成例について説明する。
図1及び図3の縦断面図に示す摩擦杭Pの構成例では、3本の杭、すなわちコンクリート製杭4及び木製杭5,5を、2個の連結部材C,Cを用いて連結固定して一体化している。なお、連結部材Cを用いて連結固定する杭の数(摩擦杭Pを構成する杭の数)は、2本又は4本以上であってもよい。
Next, a configuration example of the connecting member C will be described.
In the configuration example of the friction pile P shown in the longitudinal sectional views of FIGS. 1 and 3, three piles, that is, a concrete pile 4 and wooden piles 5 and 5 are connected and fixed using two connecting members C and C. And integrated. The number of piles to be connected and fixed using the connecting member C (the number of piles constituting the friction pile P) may be two or four or more.

図4の縦断面図を参照して、上下の木製杭5,5を連結する連結部材Cの構成例について説明する。
上側の木製杭5の下面5Bと下側の木製杭5の上面5Aとを当接させた状態で、連結位置の径方向外方に位置する鋼管6内に円環状の楔7,8,9を位置させ、楔8を楔9へ向かう軸方向へ(図4においては下方へ)、楔9を楔8へ向かう軸方向へ(図4においては上方へ)打ち込むことにより、上下の木製杭5,5は強固に連結固定される。
なお、同様の構成の連結部材Cにより、上側の木製杭5とその上側のコンクリート製杭4との連結固定も行うことができる。
このような連結部材Cを用いることにより、不腐朽性杭と木製杭5とを連結固定した摩擦杭Pを容易に形成できるとともに、長尺材の入手が困難な間伐材において、入手が容易で廉価である、所要太さの短尺の間伐材を連結して所要長さの摩擦杭Pを形成できる。
With reference to the longitudinal cross-sectional view of FIG. 4, the structural example of the connection member C which connects the upper and lower wooden piles 5 and 5 is demonstrated.
In the state where the lower surface 5B of the upper wooden pile 5 and the upper surface 5A of the lower wooden pile 5 are in contact with each other, the annular wedges 7, 8, 9 are inserted into the steel pipe 6 located radially outward of the connecting position. , And the wedge 8 is driven in the axial direction toward the wedge 9 (downward in FIG. 4) and the wedge 9 is driven in the axial direction toward the wedge 8 (upward in FIG. 4). , 5 are firmly connected and fixed.
In addition, the connection fixation of the upper wooden pile 5 and the concrete pile 4 of the upper side can also be performed by the connection member C of the same structure.
By using such a connecting member C, it is possible to easily form the friction pile P in which the non-rotatable pile and the wooden pile 5 are connected and fixed, and in the thinned wood where it is difficult to obtain a long material, it is easy to obtain. A low-priced thinned lumber of the required thickness can be connected to form the friction pile P of the required length.

次に、下部地盤改良体1の杭支持穴hと摩擦杭Pの上部との間に圧入する固定部材Fについて説明する。
前記摩擦杭打設工程で前記一次改良工程を経て未固結の状態の下部地盤改良体1を貫くように摩擦杭P,P,…を打設した状態において、下部地盤改良体1の硬化の程度により、杭支持穴h、すなわち下部地盤改良体1を貫通する貫通穴hと摩擦杭Pの上部との間に緩み(隙間)が生じる場合がある。
なお、以下において説明する図5及び図6においては、説明の都合上(見やすさを考慮して)、前記緩み(隙間)を拡大して(誇張して)示している。
Next, the fixing member F press-fitted between the pile support hole h of the lower ground improvement body 1 and the upper part of the friction pile P will be described.
In the state where the friction piles P, P,... Are placed so as to penetrate the lower ground improvement body 1 that has not been consolidated through the primary improvement process in the friction pile placement process, the lower ground improvement body 1 is cured. Depending on the degree, looseness (gap) may occur between the pile support hole h, that is, the through hole h that penetrates the lower ground improvement body 1 and the upper portion of the friction pile P.
In FIG. 5 and FIG. 6 described below, the looseness (gap) is shown enlarged (exaggerated) for convenience of explanation (for ease of viewing).

このような緩み(隙間)があると、摩擦杭Pの上部の支持が十分ではなく、地震の際に、摩擦杭P,P,…間の土要素のせん断変形を抑制するように摩擦杭P,P,…の傾斜を十分に拘束することができないため、図5の縦断面図に示すように、貫通穴hと摩擦杭Pの上部との間に、固定部材Fであるモルタル10をポンプ等により圧入する。
このような固定部材Fであるモルタル10を圧入する固定部材圧入工程は、前記摩擦杭打設工程後に行えばよい。
また、固定部材Fとして、図6(a)の縦断面図、及び図6(b)の横断平面図に示すように、貫通穴hと摩擦杭Pの上部との間に、固定部材Fである厚さ1cm程度の円弧状板材11,11,11を、通常の建設現場にある重機のアーム等を用いて圧入してもよい。
あるいは、木製杭5,5,…のみにより摩擦杭Pを構成した場合では、最上部の木杭5の上面に、周方向等分で3個又は4個の幅1cm程度の径方向の切込みを入れておき、前記切込み内に、固定部材Fであるテーパ状の木材(例えば、先端5mm厚、元端15mm厚のもの)を木槌等で圧入することにより、木製杭5の上部を拡大するようにしてもよい。
If there is such a looseness (clearance), the upper support of the friction pile P is not sufficient, and the friction pile P is controlled so as to suppress the shear deformation of the soil element between the friction piles P, P,. , P,... Cannot be sufficiently restrained, so that the mortar 10 as the fixing member F is pumped between the through hole h and the upper portion of the friction pile P as shown in the longitudinal sectional view of FIG. Press-fit with etc.
The fixing member press-fitting step for press-fitting the mortar 10 as the fixing member F may be performed after the friction pile placing step.
Further, as the fixing member F, as shown in the longitudinal sectional view of FIG. 6A and the cross-sectional plan view of FIG. 6B, the fixing member F is interposed between the through hole h and the upper portion of the friction pile P. Arc-shaped plate members 11, 11, 11 having a thickness of about 1 cm may be press-fitted using an arm of a heavy machine at a normal construction site.
Or when the friction pile P is comprised only with the wooden piles 5, 5, ..., the radial direction cut | offset of the radial direction of about 3 cm or three in the circumferential direction equally on the upper surface of the top wooden pile 5 is carried out. The upper portion of the wooden pile 5 is enlarged by inserting a tapered timber (for example, 5 mm thick at the tip and 15 mm thick at the leading end) into the cut with a mallet or the like. You may do it.

以上のような液状化対策基礎構造体Aによれば、液状化発生が予測される地盤Gの状況に合わせて適切な間隔及び本数で設置され、下部地盤改良体1を上下に貫通する杭支持穴(貫通穴)h,h,…に上部が嵌合した摩擦杭P,P,…により、緩い液状化層を締め固め、かつ地震時のせん断変形を抑制するので、液状化と側方流動や沈下を抑制できる。
また、摩擦杭Pの全体又は一部が木製杭5又は竹製杭により構成されるので、低コストであるとともに、軽量かつ表面の摩擦抵抗が大きいため沈下抑制効果が大きい。
さらに、木製杭5,5,…を使用した場合には、木材(間伐材)を大量に有効利用して地下に固定するので、林業振興のみならず、炭素貯蔵効果によりCO2削減に貢献でき、竹製杭を使用した場合には、成長が早い竹を大量伐採して有効利用するので、さらにコストを低減できるとともに、森の豊かな生態系を破壊する竹の大量伐採により豊かな森を守ることができる。
According to the liquefaction countermeasure basic structure A as described above, pile supports that are installed at an appropriate interval and number according to the situation of the ground G where liquefaction is expected to occur and penetrate the lower ground improvement body 1 up and down. Friction piles P, P, ... fitted with holes (through holes) h, h, ... to compact a loose liquefied layer and suppress shear deformation during an earthquake, so liquefaction and lateral flow And subsidence can be suppressed.
Moreover, since the whole or a part of the friction pile P is comprised by the wooden pile 5 or the bamboo pile, while being low-cost, since it is lightweight and the frictional resistance of a surface is large, the settlement suppression effect is large.
Furthermore, when wooden piles 5, 5, ... are used, a large amount of timber (thinned wood) is effectively secured and fixed underground, which not only promotes forestry but also contributes to CO 2 reduction through carbon storage effects. When bamboo piles are used, a large amount of fast-growing bamboo is harvested and used effectively, further reducing costs and making a rich forest by mass harvesting bamboo that destroys the forest's rich ecosystem. I can protect it.

さらにまた、摩擦杭Pを、下端が地下水位WLよりも下方に位置する不腐朽性杭及び前記不腐朽性杭の下端部に連結固定された木製杭5又は竹製杭により構成することにより、地下水位WLよりも上方には不腐朽性杭しかないので、木製杭5又は竹製杭が空気に触れないことから腐朽しないため、長期間にわたって強度が低下しない。
また、下部地盤改良体1に、内側領域を複数に仕切るように上下に貫通する複数の穴部H,H,…を形成することにより、下部地盤改良体1の重量軽減によってさらに沈下が抑制されるとともに、上部地盤改良体2の下側に窪みが形成されるため、不同沈下の抑制効果及び下部の未改良土の側方流動の抑制効果が高くなる。
さらに、下部地盤改良体1の杭支持穴h,h,…と摩擦杭P,P,…の上部との間に圧入した固定部材F,F,…を備えることにより、固定部材F,F,…により摩擦杭P,P,…の上部が下部地盤改良体1に強固に固定されるので、地震の際に、直下の地盤における摩擦杭P,P,…間の土要素のせん断変形を抑制するように摩擦杭P,P,…の傾斜を十分に拘束することができるため、十分な液状化抑制効果が得られる。
Furthermore, the friction pile P is composed of a non-rotating pile whose lower end is located below the groundwater level WL and a wooden pile 5 or a bamboo pile connected and fixed to the lower end of the non-rotating pile. Since there are only non-decayable piles above the groundwater level WL, the wooden piles 5 or bamboo piles do not touch the air so that they do not decay, so the strength does not decrease over a long period of time.
Further, by forming a plurality of holes H, H,... Vertically passing through the lower ground improvement body 1 so as to divide the inner region into a plurality of parts, the lower ground improvement body 1 further suppresses settlement by reducing the weight. In addition, since a depression is formed on the lower side of the upper ground improvement body 2, the effect of suppressing the uneven settlement and the effect of suppressing the lateral flow of the lower unmodified soil are increased.
Furthermore, by providing the fixing members F, F,... Press-fitted between the pile support holes h, h,... Of the lower ground improvement body 1 and the upper portions of the friction piles P, P,. Because the upper part of the friction piles P, P,... Is firmly fixed to the lower ground improvement body 1, the shear deformation of the soil elements between the friction piles P, P,. Thus, since the inclination of the friction piles P, P,... Can be sufficiently restricted, a sufficient liquefaction suppression effect can be obtained.

以上のような液状化対策工法によれば、下部地盤改良体1を形成する前記一次改良工程及び上部地盤改良体2を形成する前記二次改良工程が、固化材と水を注入しながら混合攪拌した後に締め固める方法であるので、施工コストを低減できる。
また、前記摩擦杭打設工程において、前記一次改良工程を経て未固結の状態の下部地盤改良体1を上下に貫いて下部地盤改良体1の下面1Bから垂下するように摩擦杭P,P,…が打設されるので、施工の連続性が良くなるため、施工コストをさらに低減できる。
さらに、下部地盤改良体1に、内側領域を複数に仕切るように上下に貫通する複数の穴部H,H,…を形成することにより、下部地盤改良体1の平面形状に合わせて下部地盤改良体1の上側を掘り下げる前記掘下げ工程により掘り下げる土の量、及び前記摩擦杭打設工程又は前記固定部材圧入工程後に下部地盤改良体1の上側に埋め戻す土の量が少なくなるので、施工コストを低減できる。
According to the liquefaction countermeasure construction method as described above, the primary improvement process for forming the lower ground improvement body 1 and the secondary improvement process for forming the upper ground improvement body 2 are mixed and stirred while injecting solidified material and water. Since it is the method of compacting after doing, construction cost can be reduced.
Further, in the friction pile placing step, the friction piles P, P so as to pass through the lower ground improvement body 1 that has not been consolidated through the primary improvement step and hang down from the lower surface 1B of the lower ground improvement body 1. ,... Are placed, so that the continuity of construction is improved, and construction costs can be further reduced.
Further, the lower ground improvement body 1 is formed with a plurality of holes H, H,... That vertically penetrate so as to divide the inner region into a plurality of parts, thereby improving the lower ground according to the planar shape of the lower ground improvement body 1. Since the amount of soil to be dug down by the digging process to dig up the upper side of the body 1 and the amount of soil to be backfilled on the upper side of the lower ground improvement body 1 after the friction pile placing process or the fixing member press-fitting process is reduced, the construction cost is reduced. Can be reduced.

A 液状化対策基礎構造体
C 連結部材
D1 下部地盤改良体の厚さ
D2 上部地盤改良体の厚さ
d 摩擦杭の直径
F 固定部材
G 地盤
GL 地表面
H 穴部
h 杭支持穴(貫通穴)
L 摩擦杭の長さ
P 摩擦杭
WL 地下水位(地下水面)
1 下部地盤改良体
1A 上面
1B 下面
2 上部地盤改良体
2A 上面
2B 下面
3 建築物の基礎
4 コンクリート杭(不腐朽性杭)
5 木製杭
5A 上面
5B 下面
6 鋼管
7,8,9 楔
10 モルタル
11 円弧状板材
A Liquefaction countermeasure basic structure C Connecting member D1 Lower ground improvement body thickness D2 Upper ground improvement body thickness d Friction pile diameter F Fixed member G Ground GL Ground surface H Hole h Pile support hole (through hole)
L Length of friction pile P Friction pile WL Groundwater level (groundwater surface)
1 Lower ground improvement body 1A Upper surface 1B Lower surface 2 Upper ground improvement body 2A Upper surface 2B Lower surface 3 Building foundation 4 Concrete pile (non-rotatable pile)
5 Wooden pile 5A Upper surface 5B Lower surface 6 Steel pipe 7, 8, 9 Wedge 10 Mortar 11 Arc-shaped board

すなわち、本発明に係る液状化対策基礎構造体は、前記課題解決のために、地震時における建築物の液状化対策を行うための基礎構造体であって、地表面よりも下方に上面が位置する下部地盤改良体と、前記下部地盤改良体を上下に貫通する複数の杭支持穴に上部が嵌合した複数の木製杭又は竹製杭により構成される、前記下部地盤改良体の下面から垂下する複数の摩擦杭と、前記下部地盤改良体上に形成された上部地盤改良体と、前記上部地盤改良体上に打設された前記建築物の基礎と、前記下部地盤改良体の杭支持穴と前記摩擦杭の上部との間に圧入された円弧状板材とからなることを特徴とする(請求項1)。
That is, the liquefaction countermeasure foundation structure according to the present invention is a foundation structure for taking measures against liquefaction of a building during an earthquake in order to solve the above-mentioned problem, and the upper surface is positioned below the ground surface. A lower ground improvement body, and a plurality of wooden piles or bamboo piles whose upper parts are fitted in a plurality of pile support holes penetrating the lower ground improvement body vertically, depending on the lower surface of the lower ground improvement body A plurality of friction piles, an upper ground improvement body formed on the lower ground improvement body, a foundation of the building placed on the upper ground improvement body, and a pile support hole of the lower ground improvement body And an arcuate plate material press-fitted between the upper part of the friction pile (claim 1).

このような構成によれば、液状化発生が予測される地盤の状況に合わせて適切な間隔及び本数で設置され、下部地盤改良体を上下に貫通する杭支持穴に上部が嵌合した摩擦杭により、緩い液状化層を締め固め、かつ地震時のせん断変形を抑制するので、液状化と側方流動や沈下を抑制できる。
その上、摩擦杭が木製杭又は竹製杭により構成されるので、低コストであるとともに、軽量かつ表面の摩擦抵抗が大きいため沈下抑制効果が大きい。
その上さらに、木製杭を使用した場合には、木材(間伐材)を大量に有効利用して地下に固定するので、林業振興のみならず、炭素貯蔵効果によりCO2削減に貢献でき、竹製杭を使用した場合には、成長が早い竹を大量伐採して有効利用するので、さらにコストを低減できるとともに、森の豊かな生態系を破壊する竹の大量伐採により豊かな森を守ることができる。
その上、下部地盤改良体の杭支持穴と摩擦杭の上部との間に圧入された円弧状板材により摩擦杭の上部が下部地盤改良体に強固に固定されるので、地震の際に、直下の地盤における摩擦杭間の土要素のせん断変形を抑制するように摩擦杭の傾斜を十分に拘束することができるため、十分な液状化抑制効果が得られる。
According to such a configuration, the friction pile is installed at an appropriate interval and number according to the ground condition where liquefaction is expected to occur, and the upper part is fitted to a pile support hole that vertically penetrates the lower ground improvement body. Thus, the loose liquefaction layer is compacted and the shear deformation at the time of earthquake is suppressed, so that liquefaction and lateral flow and settlement can be suppressed.
In addition, since the friction pile is composed of a wooden pile or a bamboo pile, the cost is low, and the lightness and the frictional resistance of the surface are large.
In addition, when wooden piles are used, a large amount of timber (thinned wood) is used and fixed underground, which not only promotes forestry, but also contributes to CO 2 reduction due to the carbon storage effect. When piles are used, a large amount of fast-growing bamboo is harvested and used effectively, which can further reduce costs and protect the rich forest by mass-cutting bamboo that destroys the rich ecosystem of the forest. it can.
In addition, the upper part of the friction pile is firmly fixed to the lower ground improvement body by an arc-shaped plate pressed between the pile support hole of the lower ground improvement body and the upper part of the friction pile. Since the inclination of the friction pile can be sufficiently restrained so as to suppress the shear deformation of the soil element between the friction piles in the ground, sufficient liquefaction suppression effect can be obtained.

また、本発明に係る液状化対策基礎構造体は、前記課題解決のために、地震時における建築物の液状化対策を行うための基礎構造体であって、地表面よりも下方に上面が位置する下部地盤改良体と、前記下部地盤改良体を上下に貫通する複数の杭支持穴に上部が嵌合され、下端が地下水位よりも下方に位置する複数の不腐朽性杭及び前記不腐朽性杭の下端部に連結固定された木製杭又は竹製杭により構成される、前記下部地盤改良体の下面から垂下する複数の摩擦杭と、前記下部地盤改良体上に形成された上部地盤改良体と、前記上部地盤改良体上に打設された前記建築物の基礎と、前記下部地盤改良体の杭支持穴と前記摩擦杭の上部との間に圧入された円弧状板材とからなることを特徴とする(請求項2)。
Further, the liquefaction countermeasure basic structure according to the present invention is a foundation structure for performing liquefaction countermeasures for buildings during an earthquake in order to solve the above-mentioned problem, and the upper surface is located below the ground surface. A lower ground improvement body, a plurality of non-septic piles whose upper ends are fitted in a plurality of pile support holes penetrating vertically through the lower ground improvement body, and whose lower ends are positioned below the groundwater level, and the non-septic properties A plurality of friction piles hanging from the lower surface of the lower ground improvement body, which are constituted by wooden piles or bamboo piles connected and fixed to the lower end of the pile, and an upper ground improvement body formed on the lower ground improvement body And the foundation of the building placed on the upper ground improvement body, and an arcuate plate material press-fitted between the pile support hole of the lower ground improvement body and the upper part of the friction pile. It is characterized (claim 2).

本発明に係る液状化対策工法は、前記課題解決のために、地表面よりも下方に上面が位置する下部地盤改良体、前記下部地盤改良体により上部が支持された複数の摩擦杭、前記下部地盤改良体上の上部地盤改良体、及び前記上部地盤改良体上の建築物の基礎からなる液状化対策基礎構造体を構築する、地震時における建築物の液状化対策を行うための工法であって、液状化発生が予測される地盤の表層部を、前記下部地盤改良体の平面形状に合わせて前記下部地盤改良体の上側を掘り下げる掘下げ工程と、前記下部地盤改良体の形状に前記地盤の表層部を掘削し、固化材と水を注入しながら混合攪拌した後に締め固めて前記下部地盤改良体を形成する一次改良工程と、木製杭若しくは竹製杭、又は不腐朽性杭及び前記不腐朽性杭の下端部に連結固定された木製杭若しくは竹製杭により構成される摩擦杭の複数を、前記一次改良工程を経て未固結の状態の前記下部地盤改良体を上下に貫いて前記下部地盤改良体の下面から垂下するように打設する摩擦杭打設工程と、前記摩擦杭打設工程後に、前記摩擦杭が貫通した前記下部地盤改良体の貫通穴と前記摩擦杭の上部との間に円弧状板材を圧入する固定部材圧入工程と、前記掘下げ工程により掘り下げた土を前記下部地盤改良体の上側に埋め戻し、前記上部地盤改良体の形状に前記地盤の表層部を掘削し、固化材と水を注入しながら混合攪拌した後に締め固めて前記上部地盤改良体を形成する二次改良工程と、前記上部地盤改良体上に前記建築物の基礎を打設する基礎打設工程とを含むことを特徴とする(請求項)。
In order to solve the above problems, the liquefaction countermeasure method according to the present invention includes a lower ground improvement body having an upper surface located below the ground surface, a plurality of friction piles whose upper portions are supported by the lower ground improvement body, It is a construction method for building liquefaction countermeasures in the event of an earthquake, which constructs an upper ground improvement body on the ground improvement body and a liquefaction countermeasure foundation structure consisting of the foundation of the building on the upper ground improvement body. The surface layer of the ground where liquefaction is expected to occur is matched to the planar shape of the lower ground improvement body, and a dug process for digging the upper side of the lower ground improvement body, and the shape of the lower ground improvement body Drilling the surface layer, mixing and stirring while injecting solidified material and water, then compacting to form the lower ground improvement body, wooden pile or bamboo pile, or non-rotating pile and the non-rotating Connected to the lower end of A plurality of friction piles composed of fixed wooden piles or bamboo piles are suspended from the lower surface of the lower ground improvement body through the primary improvement process and vertically through the lower ground improvement body in an unconsolidated state. Friction pile placing step for placing and after the friction pile placing step, an arc plate is press-fitted between the through hole of the lower ground improvement body through which the friction pile has penetrated and the upper portion of the friction pile The fixing member press-fitting step and the soil dug down by the dug-down step are backfilled on the upper side of the lower ground improvement body, the surface layer portion of the ground is dug into the shape of the upper ground improvement body, and solidified material and water are injected. A secondary improvement step of forming the upper ground improvement body by compacting after mixing and stirring, and a foundation placement step of placing the foundation of the building on the upper ground improvement body. (Claim 3 ).

以上のように、本発明に係る液状化対策基礎構造体によれば、
(ア)下部地盤改良体を上下に貫通する杭支持穴に上部が嵌合した摩擦杭により、緩い液状化層を締め固め、かつ地震時のせん断変形を抑制するので、液状化と側方流動や沈下を抑制できること、
(イ)木製杭又は竹製杭を含む摩擦杭を使用した場合には、低コストであるとともに、軽量かつ表面の摩擦抵抗が大きいため沈下抑制効果が大きいこと、
(ウ)木製杭を含む摩擦杭を使用した場合には、木材(間伐材)を大量に有効利用して地下に固定するので、林業振興のみならず、炭素貯蔵効果によりCO2削減に貢献できること、
(エ)上部を不腐朽性杭とした摩擦杭を使用した場合には、下部の木製杭又は竹製杭が空気に触れないように構成されるため、長期間にわたって強度が低下しないこと、
)下部地盤改良体の杭支持穴と摩擦杭の上部との間に圧入された円弧状板材を備えているので、地震の際に、直下の地盤のせん断変形を抑制するように摩擦杭の傾斜を十分に拘束することができるため、十分な液状化抑制効果が得られること、
等の顕著な効果を奏する。
As described above, according to the liquefaction countermeasure basic structure according to the present invention,
(A) The friction pile with the upper part fitted in the pile support hole that penetrates the lower ground improvement body up and down compacts the loose liquefaction layer and suppresses shear deformation during earthquakes, so liquefaction and lateral flow And being able to control subsidence,
(B) When friction piles including wooden piles or bamboo piles are used, they are low in cost, and are light and have a large surface frictional resistance, so the settlement suppression effect is great.
(C) When friction piles including wooden piles are used, a large amount of timber (thinned wood) is effectively fixed and fixed underground, so that not only forestry promotion but also carbon storage effects can contribute to CO 2 reduction. ,
(D) When using a friction pile with the upper part being a non-permanent pile, the lower wooden pile or bamboo pile is constructed so as not to touch the air, so that the strength does not decrease over a long period of time.
(E) is provided with the arcuate plate member that is press-fitted between the piles supporting hole of the lower ground improvement body and upper friction piles, during an earthquake, the friction piles so as to suppress the shear deformation of the ground immediately below Can sufficiently restrain the inclination of the liquefaction, so that a sufficient liquefaction suppression effect can be obtained,
There are remarkable effects such as.

また、本発明に係る液状化対策工法によれば、
)下部地盤改良体を形成する一次改良工程及び上部地盤改良体を形成する二次改良工程が、固化材と水を注入しながら混合攪拌した後に締め固める方法であるので、施工コストを低減できること、
)一次改良工程を経て未固結の状態の下部地盤改良体を上下に貫いて下部地盤改良体の下面から垂下するように摩擦杭が打設されるので、施工の連続性が良くなるため、施工コストをさらに低減できること
等の顕著な効果を奏する。
Further, according to the liquefaction countermeasure method according to the present invention,
( F ) The primary improvement process to form the lower ground improvement body and the secondary improvement process to form the upper ground improvement body are methods of compaction after mixing and stirring while injecting solidified material and water, thus reducing construction costs. What you can do,
( G ) Since the friction pile is driven so as to hang down from the lower surface of the lower ground improvement body through the unconsolidated lower ground improvement body up and down through the primary improvement process, the continuity of construction improves. Therefore , the construction cost can be further reduced ,
There are remarkable effects such as.

本発明の実施の形態に係る液状化対策基礎構造体の要部を示す縦断面図である。It is a longitudinal cross-sectional view which shows the principal part of the liquefaction countermeasure foundation structure which concerns on embodiment of this invention. 平面図であり、(a)は一次改良工程を経て下部地盤改良体が形成され、摩擦杭打設工程を経て摩擦杭が打設された状態を、(b)は二次改良工程を経て下部地盤改良体上に上部地盤改良体が形成された状態を示している。It is a plan view, (a) is a state where the lower ground improvement body is formed through the primary improvement process, and the friction pile is driven through the friction pile driving process, (b) is the lower part through the secondary improvement process The state which the upper ground improvement body was formed on the ground improvement body is shown. 図2(b)の矢視X−X断面図である。It is arrow XX sectional drawing of FIG.2 (b). 連結部材の一例を示す縦断面図である。It is a longitudinal cross-sectional view which shows an example of a connection member. (a)は固定部材(固定部材圧入工程)のを示す縦断面図、(b)は(a)の矢視Z−Z断面図である。(A) is a longitudinal cross-sectional view which shows the example of a fixing member (fixing member press-fit process), (b) is a ZZ cross-sectional view of (a).

次に、下部地盤改良体1の杭支持穴hと摩擦杭Pの上部との間に圧入する固定部材Fについて説明する。
前記摩擦杭打設工程で前記一次改良工程を経て未固結の状態の下部地盤改良体1を貫くように摩擦杭P,P,…を打設した状態において、下部地盤改良体1の硬化の程度により、杭支持穴h、すなわち下部地盤改良体1を貫通する貫通穴hと摩擦杭Pの上部との間に緩み(隙間)が生じる場合がある。
なお、以下において説明する図6においては、説明の都合上(見やすさを考慮して)、前記緩み(隙間)を拡大して(誇張して)示している。
Next, the fixing member F press-fitted between the pile support hole h of the lower ground improvement body 1 and the upper part of the friction pile P will be described.
In the state where the friction piles P, P,... Are placed so as to penetrate the lower ground improvement body 1 that has not been consolidated through the primary improvement process in the friction pile placement process, the lower ground improvement body 1 is cured. Depending on the degree, looseness (gap) may occur between the pile support hole h, that is, the through hole h that penetrates the lower ground improvement body 1 and the upper portion of the friction pile P.
In FIG. 6 described below, the looseness (gap) is enlarged (exaggerated) for convenience of explanation (in consideration of visibility).

このような緩み(隙間)があると、摩擦杭Pの上部の支持が十分ではなく、地震の際に、摩擦杭P,P,…間の土要素のせん断変形を抑制するように摩擦杭P,P,…の傾斜を十分に拘束することができないため図6(a)の縦断面図、及び図6(b)の横断平面図に示すように、貫通穴hと摩擦杭Pの上部との間に、固定部材Fである厚さ1cm程度の円弧状板材11,11,11を、通常の建設現場にある重機のアーム等を用いて圧入する
あるいは、木製杭5,5,…のみにより摩擦杭Pを構成した場合では、最上部の木杭5の上面に、周方向等分で3個又は4個の幅1cm程度の径方向の切込みを入れておき、前記切込み内に、固定部材Fであるテーパ状の木材(例えば、先端5mm厚、元端15mm厚のもの)を木槌等で圧入することにより、木製杭5の上部を拡大するようにしてもよい。
If there is such a looseness (clearance), the upper support of the friction pile P is not sufficient, and the friction pile P is controlled so as to suppress the shear deformation of the soil element between the friction piles P, P,. , P,... Cannot be sufficiently constrained, and therefore , as shown in the longitudinal sectional view of FIG. 6A and the cross-sectional plan view of FIG. between the arcuate plate 11, 11, 11 having a thickness of about 1cm which is a fixed member F, press-fitted by using an arm or the like of heavy equipment in the usual construction site.
Or when the friction pile P is comprised only with the wooden piles 5, 5, ..., the radial direction cut | offset of the radial direction of about 3 cm or three in the circumferential direction equally on the upper surface of the top wooden pile 5 is carried out. The upper portion of the wooden pile 5 is enlarged by inserting a tapered timber (for example, 5 mm thick at the tip and 15 mm thick at the leading end) into the cut with a mallet or the like. You may do it.

A 液状化対策基礎構造体
C 連結部材
D1 下部地盤改良体の厚さ
D2 上部地盤改良体の厚さ
d 摩擦杭の直径
F 固定部材
G 地盤
GL 地表面
H 穴部
h 杭支持穴(貫通穴)
L 摩擦杭の長さ
P 摩擦杭
WL 地下水位(地下水面)
1 下部地盤改良体
1A 上面
1B 下面
2 上部地盤改良体
2A 上面
2B 下面
3 建築物の基礎
4 コンクリート杭(不腐朽性杭)
5 木製杭
5A 上面
5B 下面
6 鋼管
7,8,9 楔
11 円弧状板材
A Liquefaction countermeasure basic structure C Connecting member D1 Lower ground improvement body thickness D2 Upper ground improvement body thickness d Friction pile diameter F Fixed member G Ground GL Ground surface H Hole h Pile support hole (through hole)
L Length of friction pile P Friction pile WL Groundwater level (groundwater surface)
1 Lower ground improvement body 1A Upper surface 1B Lower surface 2 Upper ground improvement body 2A Upper surface 2B Lower surface 3 Building foundation 4 Concrete pile (non-rotatable pile)
5 Wooden pile 5A Upper surface 5B Lower surface 6 Steel pipe 7, 8, 9 Wedge 11 Arc-shaped board

本発明の実施の形態に係る液状化対策基礎構造体の要部を示す縦断面図である。It is a longitudinal cross-sectional view which shows the principal part of the liquefaction countermeasure foundation structure which concerns on embodiment of this invention. 平面図であり、(a)は一次改良工程を経て下部地盤改良体が形成され、摩擦杭打設工程を経て摩擦杭が打設された状態を、(b)は二次改良工程を経て下部地盤改良体上に上部地盤改良体が形成された状態を示している。It is a plan view, (a) is a state where the lower ground improvement body is formed through the primary improvement process, and the friction pile is driven through the friction pile driving process, (b) is the lower part through the secondary improvement process The state which the upper ground improvement body was formed on the ground improvement body is shown. 図2(b)の矢視X−X断面図である。It is arrow XX sectional drawing of FIG.2 (b). 連結部材の一例を示す縦断面図である。It is a longitudinal cross-sectional view which shows an example of a connection member. (a)は固定部材(固定部材圧入工程)の例を示す縦断面図、(b)は(a)の矢視Z−Z断面図である。(A) is a longitudinal cross-sectional view which shows the example of a fixing member (fixing member press-fit process), (b) is a ZZ cross-sectional view of (a).

次に、下部地盤改良体1の杭支持穴hと摩擦杭Pの上部との間に圧入する固定部材Fについて説明する。
前記摩擦杭打設工程で前記一次改良工程を経て未固結の状態の下部地盤改良体1を貫くように摩擦杭P,P,…を打設した状態において、下部地盤改良体1の硬化の程度により、杭支持穴h、すなわち下部地盤改良体1を貫通する貫通穴hと摩擦杭Pの上部との間に緩み(隙間)が生じる場合がある。
なお、以下において説明する図5においては、説明の都合上(見やすさを考慮して)、前記緩み(隙間)を拡大して(誇張して)示している。
Next, the fixing member F press-fitted between the pile support hole h of the lower ground improvement body 1 and the upper part of the friction pile P will be described.
In the state where the friction piles P, P,... Are placed so as to penetrate the lower ground improvement body 1 that has not been consolidated through the primary improvement process in the friction pile placement process, the lower ground improvement body 1 is cured. Depending on the degree, looseness (gap) may occur between the pile support hole h, that is, the through hole h that penetrates the lower ground improvement body 1 and the upper portion of the friction pile P.
In FIG. 5 described below, the looseness (gap) is shown enlarged (exaggerated) for convenience of explanation (for ease of viewing).

このような緩み(隙間)があると、摩擦杭Pの上部の支持が十分ではなく、地震の際に、摩擦杭P,P,…間の土要素のせん断変形を抑制するように摩擦杭P,P,…の傾斜を十分に拘束することができないため、図5(a)の縦断面図、及び図5(b)の横断平面図に示すように、貫通穴hと摩擦杭Pの上部との間に、固定部材Fである厚さ1cm程度の円弧状板材11,11,11を、通常の建設現場にある重機のアーム等を用いて圧入する。
あるいは、木製杭5,5,…のみにより摩擦杭Pを構成した場合では、最上部の木杭5の上面に、周方向等分で3個又は4個の幅1cm程度の径方向の切込みを入れておき、前記切込み内に、固定部材Fであるテーパ状の木材(例えば、先端5mm厚、元端15mm厚のもの)を木槌等で圧入することにより、木製杭5の上部を拡大するようにしてもよい。
If there is such a looseness (clearance), the upper support of the friction pile P is not sufficient, and the friction pile P is controlled so as to suppress the shear deformation of the soil element between the friction piles P, P,. , P,... Cannot be sufficiently constrained. Therefore, as shown in the longitudinal sectional view of FIG. 5A and the cross-sectional plan view of FIG. In between, arc-shaped board | plate material 11,11,11 about 1 cm thick which is the fixing member F is press-fit using the arm of a heavy machine in a normal construction site, etc.
Or when the friction pile P is comprised only with the wooden piles 5, 5, ..., the radial direction cut | offset of the radial direction of about 3 cm or three in the circumferential direction equally on the upper surface of the top wooden pile 5 is carried out. The upper portion of the wooden pile 5 is enlarged by inserting a tapered timber (for example, 5 mm thick at the tip and 15 mm thick at the leading end) into the cut with a mallet or the like. You may do it.

Claims (7)

地震時における建築物の液状化対策を行うための基礎構造体であって、
地表面よりも下方に上面が位置する下部地盤改良体と、
前記下部地盤改良体を上下に貫通する複数の杭支持穴に上部が嵌合した複数の木製杭又は竹製杭により構成される、前記下部地盤改良体の下面から垂下する複数の摩擦杭と、
前記下部地盤改良体上に形成された上部地盤改良体と、
前記上部地盤改良体上に打設された前記建築物の基礎と、
からなることを特徴とする液状化対策基礎構造体。
A basic structure for taking measures against liquefaction of buildings during an earthquake,
Lower ground improvement body whose upper surface is located below the ground surface,
A plurality of friction piles hanging from the lower surface of the lower ground improvement body, constituted by a plurality of wooden piles or bamboo piles whose upper portions are fitted in a plurality of pile support holes penetrating the lower ground improvement body up and down;
An upper ground improvement body formed on the lower ground improvement body, and
The foundation of the building placed on the upper ground improvement body,
A liquefaction countermeasure basic structure characterized by comprising:
地震時における建築物の液状化対策を行うための基礎構造体であって、
地表面よりも下方に上面が位置する下部地盤改良体と、
前記下部地盤改良体を上下に貫通する複数の杭支持穴に上部が嵌合され、下端が地下水位よりも下方に位置する複数の不腐朽性杭及び前記不腐朽性杭の下端部に連結固定された木製杭又は竹製杭により構成される、前記下部地盤改良体の下面から垂下する複数の摩擦杭と、
前記下部地盤改良体上に形成された上部地盤改良体と、
前記上部地盤改良体上に打設された前記建築物の基礎と、
からなることを特徴とする液状化対策基礎構造体。
A basic structure for taking measures against liquefaction of buildings during an earthquake,
Lower ground improvement body whose upper surface is located below the ground surface,
The upper part is fitted into a plurality of pile support holes penetrating the lower ground improvement body up and down, and the lower end is connected and fixed to the lower end part of the non-destructive pile and the non-destructive pile located below the groundwater level. A plurality of friction piles hanging from the lower surface of the lower ground improvement body, constituted by wooden piles or bamboo piles,
An upper ground improvement body formed on the lower ground improvement body, and
The foundation of the building placed on the upper ground improvement body,
A liquefaction countermeasure basic structure characterized by comprising:
前記下部地盤改良体が、内側領域を複数に仕切るように上下に貫通する複数の穴部が形成されたものである請求項1又は2記載の液状化対策基礎構造体。   The liquefaction countermeasure foundation structure according to claim 1 or 2, wherein the lower ground improvement body is formed with a plurality of holes penetrating vertically so as to partition the inner region into a plurality of parts. 前記下部地盤改良体の杭支持穴と前記摩擦杭の上部との間に圧入した固定部材を備えてなる請求項1〜3の何れか1項に記載の液状化対策基礎構造体。   The liquefaction countermeasure foundation structure according to any one of claims 1 to 3, further comprising a fixing member press-fitted between a pile support hole of the lower ground improvement body and an upper portion of the friction pile. 地表面よりも下方に上面が位置する下部地盤改良体、前記下部地盤改良体により上部が支持された複数の摩擦杭、前記下部地盤改良体上の上部地盤改良体、及び前記上部地盤改良体上の建築物の基礎からなる液状化対策基礎構造体を構築する、地震時における建築物の液状化対策を行うための工法であって、
液状化発生が予測される地盤の表層部を、前記下部地盤改良体の平面形状に合わせて前記下部地盤改良体の上側を掘り下げる掘下げ工程と、
前記下部地盤改良体の形状に前記地盤の表層部を掘削し、固化材と水を注入しながら混合攪拌した後に締め固めて前記下部地盤改良体を形成する一次改良工程と、
木製杭若しくは竹製杭、又は不腐朽性杭及び前記不腐朽性杭の下端部に連結固定された木製杭若しくは竹製杭により構成される摩擦杭の複数を、前記一次改良工程を経て未固結の状態の前記下部地盤改良体を上下に貫いて前記下部地盤改良体の下面から垂下するように打設する摩擦杭打設工程と、
前記掘下げ工程により掘り下げた土を前記下部地盤改良体の上側に埋め戻し、前記上部地盤改良体の形状に前記地盤の表層部を掘削し、固化材と水を注入しながら混合攪拌した後に締め固めて前記上部地盤改良体を形成する二次改良工程と、
前記上部地盤改良体上に前記建築物の基礎を打設する基礎打設工程と、
を含むことを特徴とする液状化対策工法。
A lower ground improvement body having an upper surface located below the ground surface, a plurality of friction piles supported by the lower ground improvement body, an upper ground improvement body on the lower ground improvement body, and the upper ground improvement body This is a construction method for liquefaction countermeasures for buildings in the event of an earthquake.
A digging process for digging the upper side of the lower ground improvement body in accordance with the planar shape of the lower ground improvement body, the surface layer portion of the ground where liquefaction is expected to occur,
Excavating the surface layer portion of the ground into the shape of the lower ground improvement body, primary improvement step of forming the lower ground improvement body by compacting after mixing and stirring while injecting solidified material and water;
A plurality of friction piles made up of wooden piles or bamboo piles, or non-decayable piles and wooden piles or bamboo piles that are connected and fixed to the lower end of the non-decayable piles are not solidified through the primary improvement process. Friction pile driving step for driving the lower ground improvement body in a bonded state vertically and penetrating from the lower surface of the lower ground improvement body,
The soil dug down by the dug process is backfilled above the lower ground improvement body, the surface layer portion of the ground is dug into the shape of the upper ground improvement body, and mixed and stirred while injecting solidifying material and water, and then compacted. Secondary improvement step for forming the upper ground improvement body,
A foundation placing step of placing the foundation of the building on the upper ground improvement body;
A liquefaction countermeasure method characterized by containing.
前記下部地盤改良体が、内側領域を複数に仕切るように上下に貫通する複数の穴部が形成されたものである請求項5記載の液状化対策工法。   The liquefaction countermeasure method according to claim 5, wherein the lower ground improvement body is formed with a plurality of holes penetrating vertically so as to partition the inner region into a plurality. 前記摩擦杭打設工程後に、前記摩擦杭が貫通した前記下部地盤改良体の貫通穴と前記摩擦杭の上部との間に固定部材を圧入する固定部材圧入工程を備えてなる請求項5又は6記載の液状化対策工法。
7. The fixing member press-fitting step of press-fitting a fixing member between the through hole of the lower ground improvement body through which the friction pile penetrates and the upper portion of the friction pile after the friction pile placing step. The liquefaction countermeasure method described.
JP2013199375A 2013-09-26 2013-09-26 Liquefaction countermeasure basic structure and liquefaction countermeasure construction method Active JP5494880B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013199375A JP5494880B1 (en) 2013-09-26 2013-09-26 Liquefaction countermeasure basic structure and liquefaction countermeasure construction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013199375A JP5494880B1 (en) 2013-09-26 2013-09-26 Liquefaction countermeasure basic structure and liquefaction countermeasure construction method

Publications (2)

Publication Number Publication Date
JP5494880B1 JP5494880B1 (en) 2014-05-21
JP2015063866A true JP2015063866A (en) 2015-04-09

Family

ID=50941610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013199375A Active JP5494880B1 (en) 2013-09-26 2013-09-26 Liquefaction countermeasure basic structure and liquefaction countermeasure construction method

Country Status (1)

Country Link
JP (1) JP5494880B1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104612174B (en) * 2014-12-26 2016-04-20 浙江大学城市学院 A kind of ultra-soft cob brick loose tool assists the construction method of suspended deck structure
JP5947929B1 (en) * 2015-01-29 2016-07-06 株式会社小野田産業 Completely disaster-prevented detached house
JP6354614B2 (en) * 2015-02-17 2018-07-11 株式会社タケウチ建設 Bamboo pile, liquefaction countermeasure basic structure using bamboo pile, and method for manufacturing bamboo pile
JP6436256B1 (en) 2017-07-04 2018-12-12 株式会社タケウチ建設 Building basic structure and construction method
JP6868301B1 (en) 2019-12-02 2021-05-12 株式会社タケウチ建設 Foundation structure of a building and its construction method
CN112064667B (en) * 2020-09-15 2021-10-08 苏州晨光建设集团有限公司 Elevator foundation construction method based on backfill soil

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03158525A (en) * 1989-11-16 1991-07-08 Takenaka Komuten Co Ltd High horizontal load bearing foundation practice using solidification method
JPH08302667A (en) * 1995-05-08 1996-11-19 Kuwabara Iwao Improving method for under-part of foundation
JPH11256563A (en) * 1998-03-10 1999-09-21 Takenaka Komuten Co Ltd Soil improvement foundation construction method in soft foundation
JP2000080663A (en) * 1998-09-04 2000-03-21 Fudo Constr Co Ltd Pile foundation construction method
JP2000291022A (en) * 1999-04-07 2000-10-17 Kumagai Gumi Co Ltd Pile foundation and structure
JP2001317063A (en) * 2000-05-11 2001-11-16 Taisei Corp Foundation structure and foundation constructing method
JP2003041602A (en) * 2001-07-30 2003-02-13 Shimizu Corp Structure of foundation
JP2003321846A (en) * 2002-05-02 2003-11-14 Tenox Corp Foundation pile structure in liquefaction ground
JP3608568B1 (en) * 2003-11-12 2005-01-12 謹治 竹内 The structure of the foundation of the building consisting of the ground improvement body and the solid foundation, and the foundation construction method for the ground improvement
JP2006045793A (en) * 2004-07-30 2006-02-16 Sekkeishitsu Soil:Kk Structure of foundation
JP2010236249A (en) * 2009-03-31 2010-10-21 Sumitomo Forestry Co Ltd Foundation structure of building on soft ground
JP2011140753A (en) * 2010-01-05 2011-07-21 Kanematsu Nnk Corp Structure for connecting wooden pile and steel pipe pile together
JP2012021346A (en) * 2010-07-16 2012-02-02 Nishimatsu Constr Co Ltd Friction pile foundation structure
JP2013124511A (en) * 2011-12-15 2013-06-24 Ohbayashi Corp Building foundation structure, and building foundation construction method

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03158525A (en) * 1989-11-16 1991-07-08 Takenaka Komuten Co Ltd High horizontal load bearing foundation practice using solidification method
JPH08302667A (en) * 1995-05-08 1996-11-19 Kuwabara Iwao Improving method for under-part of foundation
JPH11256563A (en) * 1998-03-10 1999-09-21 Takenaka Komuten Co Ltd Soil improvement foundation construction method in soft foundation
JP2000080663A (en) * 1998-09-04 2000-03-21 Fudo Constr Co Ltd Pile foundation construction method
JP2000291022A (en) * 1999-04-07 2000-10-17 Kumagai Gumi Co Ltd Pile foundation and structure
JP2001317063A (en) * 2000-05-11 2001-11-16 Taisei Corp Foundation structure and foundation constructing method
JP2003041602A (en) * 2001-07-30 2003-02-13 Shimizu Corp Structure of foundation
JP2003321846A (en) * 2002-05-02 2003-11-14 Tenox Corp Foundation pile structure in liquefaction ground
JP3608568B1 (en) * 2003-11-12 2005-01-12 謹治 竹内 The structure of the foundation of the building consisting of the ground improvement body and the solid foundation, and the foundation construction method for the ground improvement
JP2006045793A (en) * 2004-07-30 2006-02-16 Sekkeishitsu Soil:Kk Structure of foundation
JP2010236249A (en) * 2009-03-31 2010-10-21 Sumitomo Forestry Co Ltd Foundation structure of building on soft ground
JP2011140753A (en) * 2010-01-05 2011-07-21 Kanematsu Nnk Corp Structure for connecting wooden pile and steel pipe pile together
JP2012021346A (en) * 2010-07-16 2012-02-02 Nishimatsu Constr Co Ltd Friction pile foundation structure
JP2013124511A (en) * 2011-12-15 2013-06-24 Ohbayashi Corp Building foundation structure, and building foundation construction method

Also Published As

Publication number Publication date
JP5494880B1 (en) 2014-05-21

Similar Documents

Publication Publication Date Title
JP5494880B1 (en) Liquefaction countermeasure basic structure and liquefaction countermeasure construction method
JP2008190116A (en) Liquefaction countermeasure structure of foundation ground of building
JP2010090532A (en) Method for restricting head of earth retaining wall
JP2011006946A (en) Method for soil improvement
JP3765000B2 (en) Ground improvement foundation method for soft ground.
JP2012188830A (en) Soil improvement structure and soil improvement method
JP6632028B2 (en) Concrete assembly retaining wall
KR101914901B1 (en) Reinforcement pile for ground improvement and earthquake-proof and its construction method
JP6158398B1 (en) Composite foundation pile
JP2007247308A (en) Pulling-out bearing strength reinforcing for pile group comprised of inclined piles and structure constructed according to the same
JP5471381B2 (en) Filling reinforcement method
JP5228862B2 (en) Underground structure, construction method of underground structure
KR101462814B1 (en) Gravity type earth retaining wall constructing method
JP5894421B2 (en) Composite pile and composite pile construction method
JP2868651B2 (en) Earth retaining method above existing underground structure
KR101791211B1 (en) Helix steel pipe pile construction method for reinforcement of buckling
JP5684615B2 (en) Composite pile and composite pile construction method
JP6685560B2 (en) Foundation structure for wind power generator
JP2016030901A (en) Wall-shape foundation and construction method therefor
JP2020066875A (en) Foundation pile, foundation structure, structural body, and installation method of foundation pile
KR20160075189A (en) pile supporter
JP6644380B2 (en) Foundation pile
JP3360061B2 (en) Preceding plate-shaped beam of mountain retaining frame
Hon et al. Design and construction of an underpinning and earth-retaining system for Lehigh Valley Hospital building
CN208618395U (en) Engineering method stake

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140217

R150 Certificate of patent or registration of utility model

Ref document number: 5494880

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250