JP7441584B6 - 無細胞DNA(cfDNA)の定量的遺伝子解析のための方法 - Google Patents

無細胞DNA(cfDNA)の定量的遺伝子解析のための方法 Download PDF

Info

Publication number
JP7441584B6
JP7441584B6 JP2020090411A JP2020090411A JP7441584B6 JP 7441584 B6 JP7441584 B6 JP 7441584B6 JP 2020090411 A JP2020090411 A JP 2020090411A JP 2020090411 A JP2020090411 A JP 2020090411A JP 7441584 B6 JP7441584 B6 JP 7441584B6
Authority
JP
Japan
Prior art keywords
cfdna
capture probe
genetic
sequence
library
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020090411A
Other languages
English (en)
Other versions
JP7441584B2 (ja
JP2020188767A5 (ja
JP2020188767A (ja
Inventor
ケー. レイモンド クリストファー
ピー. リム リー
ディー. アーマー クリストファー
Original Assignee
レゾリューション バイオサイエンス, インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017510397A external-priority patent/JP6709778B2/ja
Application filed by レゾリューション バイオサイエンス, インコーポレイテッド filed Critical レゾリューション バイオサイエンス, インコーポレイテッド
Priority to JP2020090411A priority Critical patent/JP7441584B6/ja
Publication of JP2020188767A publication Critical patent/JP2020188767A/ja
Publication of JP2020188767A5 publication Critical patent/JP2020188767A5/ja
Priority to JP2021139325A priority patent/JP2021182940A/ja
Priority to JP2023142908A priority patent/JP2023159462A/ja
Publication of JP7441584B2 publication Critical patent/JP7441584B2/ja
Application granted granted Critical
Publication of JP7441584B6 publication Critical patent/JP7441584B6/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Description

配列表に関する記述
本出願に関連する配列表は、紙コピーの代わりにテキスト形式で提供し、ここでは参照により本明細書に組み入れる。配列表を含むテキストファイルの名称は、CLFK_002_00US_ST25.txtである。このテキストファイルは117KBであり、2014年8月22日に作成したものであり、EFS-Web経由で電子的に提出される。
背景
技術分野
本発明は、一般に、無細胞DNA(cfDNA)の定量的遺伝子解析のための組成物および方法に関する。詳細には、本発明は、cfDNAの遺伝子特徴付けおよび解析のための改善された標的化配列捕捉組成物および方法に関する。
関連技術の記載
最もよく見られるヒトがんのすべてではないにせよ大部分はヒトゲノムの疾患であることが次第に明らかになってきている。個体の生涯の間に体細胞変異が蓄積し、それらの一部は、それらを有する細胞が腫瘍に進展しうる確率を増すという事実が明るみになりつつある(Vogelsteinら、Science 339巻(6127号):1546~1558頁(20
13年))。蓄積された変異事象のまさに悪い組合せを有する前がん状態のものは、無制限増殖を抑制する制約を失い、その結果として生ずる細胞塊ががん化する。がんを引き起こすのに必要かつ十分な様々な変異は、まとめて「ドライバー変異」と呼ばれることが多い。最近の徹底した分子解析から浮上した論題の1つは、かつては単一の組織特異的疾患と考えられていたがんが、実際には、各々が特有の分子病態を有する関連疾患の群であるということである。ヒトゲノム計画は、がんのゲノムワイド解析の基礎を作った。
例えば、次世代シークエンシング技術の導入(2004年現在)は、NSCLCの診断の根拠となる原因ゲノム因子の発見の速度を加速させ、その結果、NSCLCは、実際には、各々が異なる標的療法に応答しうる関連疾患のファミリーであることが明らかになった。
当技術分野には、遺伝疾患の解析のための信頼性のある頑強な分子解析方法がない。旧来、分子診断は、抗体ベースの試験(免疫組織化学)、DNAプローブを用いるインサイツハイブリダイゼーション(蛍光インサイツハイブリダイゼーション)、および特異的ヌクレオチド配列を照会するハイブリダイゼーションまたはPCRベースの試験からなっている。最近まで、分子診断ツールとしてのDNAシークエンシングは、一般に、1つまたは2つの遺伝子のコーディングエクソンに限られていた。DNAシークエンシングは、固形がんの診断および処置に使用されているが、これらの方法の最も重大な欠点の1つは、それらが腫瘍組織への直接到達を要することである。そのような材料は、疾患の診断に使用される初期生検から得ることが困難であることが多く、時間をかけて何度も繰り返して得ることは、事実上、不可能である。同様に、生検は、到達し難い腫瘍を有する患者では可能でなく、転移性疾患に罹患している個体には現実的でない。
したがって、遺伝疾患、胎児試験、親子鑑定、薬物処置に対する応答の予測、病状の診断またはモニタリング、メンデル型遺伝病、遺伝子モザイク、病原体スクリーニング、マイクロバイオームプロファイリングおよび臓器移植モニタリングのための分子診断の巨大な可能性は、まだ実現されていない。今までの、既存の分子診断アプローチには、個々のDNA分子のクローニングおよび増幅に対する効率的な解決策がなく、試料処理中に生ずる偽陽性シグナルと真の陽性試験結果を区別するのに十分な感度での、シークエンシングの特定のゲノム座位への効率的な標的化に対する解決策もない。
Vogelsteinら、Science 339巻(6127号):1546~1558頁(2013年)
本発明は、一般に、cfDNAの遺伝子解析のための改善された組成物および方法のための組成物および方法に関する。
様々な実施形態では、無細胞DNA(cfDNA)の遺伝子解析のための方法であって、cfDNAを1つまたは複数の末端修復酵素で処置して末端修復cfDNAを生成するステップ、末端修復cfDNAの各末端に1つまたは複数のアダプターをライゲーションしてcfDNAライブラリーを生成するステップ、cfDNAライブラリーを増幅させてcfDNAライブラリークローンを生成するステップ、cfDNAクローンライブラリー中のゲノム当量の数を決定するステップ、およびcfDNAライブラリークローン中の1つまたは複数の標的遺伝子座位の定量的遺伝子解析を行うステップを含む方法が提供される。
特定の実施形態では、方法は、対象の生体試料からcfDNAを単離するステップをさらに含む。
追加の実施形態では、cfDNAは、羊水、血液、血漿、血清、精液、リンパ液、脳脊髄液、眼液、尿、唾液、糞便、粘液(mucous)および汗からなる群から選択される生体試料から単離される。
ある特定の実施形態では、1つまたは複数のアダプターは、複数のアダプター種を含む。
特定の実施形態では、1つまたは複数のアダプター各々は、cfDNAライブラリーの増幅のためのプライマー結合部位を含む。
さらなる実施形態では、1つまたは複数のアダプター各々は、1つまたは複数のユニークリードコードを含む。
追加の実施形態では、1つまたは複数のアダプター各々は、試料多重化のための1つまたは複数の試料コードを含む。
別の実施形態では、1つまたは複数のアダプター各々は、DNAシークエンシングのための1つまたは複数の配列を含む。
特定の実施形態では、qPCRをcfDNAクローンライブラリーに対して行い、qPCR測定値を既知ゲノム当量の標準と比較してcfDNAクローンライブラリーのゲノム当量を決定する。
別の特定の実施形態では、Alu配列と結合するプライマーおよびアダプター中の配列と結合するプライマーを用いてqPCRを行う。
ある特定の実施形態では、定量的遺伝子解析を、cfDNAライブラリークローン中の複数の遺伝子座位に対して行う。
さらなる実施形態では、定量的遺伝子解析を、複数のcfDNAクローンライブラリー中の複数の遺伝子座位に対して行う。
追加の実施形態では、定量的遺伝子解析は、1つまたは複数の捕捉プローブを標的遺伝子座位にハイブリダイズさせて、捕捉プローブ-cfDNAクローン複合体を形成することを含む。
特定の実施形態では、定量的遺伝子解析は、捕捉プローブ-cfDNAクローン複合体を単離することを含む。
ある特定の実施形態では、定量的遺伝子解析は、単離されたハイブリダイズした捕捉プローブ-cfDNAクローン複合体中のcfDNAクローン配列の増幅を含む。
さらなる実施形態では、定量的遺伝子解析は、複数のシークエンシングリードを生成するためのDNAシークエンシングを含む。
別の実施形態では、定量的遺伝子解析は、複数のシークエンシングリードのバイオインフォマティック解析を含む。
特定の実施形態では、バイオインフォマティクス解析は、cfDNAクローンライブラリー中の解析されるゲノム当量の数を定量するため、標的遺伝子座位における遺伝子バリアントを検出するため、標的遺伝子座位内の変異を検出するため、標的遺伝子座位内の遺伝子融合を検出するため、および標的遺伝子座位内のコピー数増減を測定するために使用される。
追加の実施形態では、対象は、遺伝疾患を有さない。
ある特定の実施形態では、対象は、遺伝疾患と診断されていない。
別のある特定の実施形態では、対象は、遺伝疾患と診断されている。
別の実施形態では、定量的遺伝子解析は、遺伝疾患を引き起こすまたは遺伝疾患に関連する1つまたは複数の遺伝子病変を同定または検出するために使用される。
ある特定の実施形態では、遺伝子病変は、ヌクレオチドトランジションもしくはトランスバージョン、ヌクレオチド挿入もしくは欠失、ゲノム再編成、コピー数の変化、または遺伝子融合を含む。
特定の実施形態では、遺伝子病変は、ALK遺伝子の3’コード領域を別の遺伝子に融合させるゲノム再編成を含む。
特定の実施形態では、ALK遺伝子の3’コード領域がEML4遺伝子に融合している。
別の実施形態では、遺伝疾患はがんである。
さらなる実施形態では、対象は妊娠している。
追加の実施形態では、定量的遺伝子解析は、胎児cfDNA中の1つまたは複数の標的遺伝子座位の1つまたは複数の遺伝子バリアントまたは遺伝子病変を同定または検出するために使用される。
特定の実施形態では、対象は移植レシピエントである。
追加の実施形態では、定量的遺伝子解析は、対象におけるドナーcfDNAを同定または検出するために使用される。
様々な実施形態では、対象における遺伝疾患を予測、診断またはモニターする方法であって、対象の生体試料からcfDNAを単離するまたは得るステップ、cfDNAを1つまたは複数の末端修復酵素で処置して末端修復cfDNAを生成するステップ、末端修復cfDNAの各末端に1つまたは複数のアダプターをライゲーションしてcfDNAライブラリーを生成するステップ、cfDNAライブラリーを増幅させてcfDNAクローンライブラリーを生成するステップ、cfDNAクローンライブラリー中のゲノム当量の数を決定するステップ、およびcfDNAクローンライブラリー中の遺伝疾患に関連する1つまたは複数の標的遺伝子座位の定量的遺伝子解析を行うステップを含み、1つまたは複数の標的遺伝子座位における1つまたは複数の遺伝子病変の同定または検出が、遺伝疾患の予後を予測し、それを診断し、またはその進行をモニターする、方法が提供される。
追加の実施形態では、cfDNAは、羊水、血液、血漿、血清、精液、リンパ液、脳脊髄液、眼液、尿、唾液、糞便、粘液および汗からなる群から選択される生体試料から単離される。
ある特定の実施形態では、遺伝子病変は、ヌクレオチドトランジションもしくはトランスバージョン、ヌクレオチド挿入もしくは欠失、ゲノム再編成、コピー数の変化、または遺伝子融合を含む。
特定の実施形態では、遺伝子病変は、ALK遺伝子の3’コード領域を別の遺伝子に融合させるゲノム再編成を含む。
さらなる実施形態では、ALK遺伝子の3’コード領域がEML4遺伝子に融合している。
特定の実施形態では、遺伝疾患はがんである。
様々な実施形態では、遺伝疾患のコンパニオン診断であって、対象の生体試料からcfDNAを単離するまたは得るステップ、cfDNAを1つまたは複数の末端修復酵素で処置して末端修復cfDNAを生成するステップ、末端修復cfDNAの各末端に1つまたは複数のアダプターをライゲーションしてcfDNAライブラリーを生成するステップ、cfDNAライブラリーを増幅させてcfDNAクローンライブラリーを生成するステップ、cfDNAクローンライブラリー中のゲノム当量の数を決定するステップ、およびcfDNAクローンライブラリー中の遺伝疾患に関連する1つまたは複数のバイオマーカーの定量的遺伝子解析を行うステップを含み、1つまたは複数のバイオマーカーの少なくとも1つの検出、または検出できないことが、対象を遺伝疾患について処置すべきかどうかを示す、コンパニオン診断が提供される。
特定の実施形態では、cfDNAは、羊水、血液、血漿、血清、精液、リンパ液、脳脊髄液、眼液、尿、唾液、糞便、粘液および汗からなる群から選択される生体試料から単離される。
追加の実施形態では、バイオマーカーは遺伝子病変である。
特定の実施形態では、遺伝子病変は、ヌクレオチドトランジションもしくはトランスバージョン、ヌクレオチド挿入もしくは欠失、ゲノム再編成、コピー数の変化、または遺伝子融合を含む。
追加の実施形態では、遺伝子病変は、ALK遺伝子の3’コード領域を別の遺伝子に融合させるゲノム再編成を含む。
さらなる実施形態では、ALK遺伝子の3’コード領域がEML4遺伝子に融合している。
ある特定の実施形態では、遺伝疾患はがんである。
図1は、ユニークリードのフィルタリング不在下での混合希釈度の関数としての期待対観測バリアント頻度を示す図である。ユニークリードのフィルタリング不在下で、これら4つの選択位置でのランダムな塩基変化が、測定可能な非ゼロ頻度で発生した。このことから特定の一塩基バリアント(SNV)を検出するための感度を欠いていることが立証される。
図2は、図1で生成したデータに対して行ったユニークリードのフィルタリングを示す図である。左手のパネルは、ユニークリードのフィルタリングなしでのBRAF I326T SNVに関する図1からのデータを示す。右手のパネルは、同じデータのユニークリードフィルタリングの使用が、アッセイ感度を増加させ、真のシグナルと間違いの元となるノイズの区別を可能にしたことを示す。
図3は、捕捉プローブ性能を長さおよび洗浄温度の関数として示す図である。y軸は、各捕捉プローブに関連するリードの総数を示す。棒グラフの棒は、2つのカテゴリーに分けられており、白棒は、意図した捕捉プローブ標的にアラインするオンターゲットリードに対応し、黒棒は、捕捉プローブに関連するがゲノムの意図せぬ領域にマッピングされるオフターゲットリードを示す。全体的に見て、40merおよび60mer捕捉プローブは、44℃および47℃の洗浄では実質的に同じように機能する。50℃の洗浄に関しては、40mer捕捉プローブは不規則に機能する。これらのデータは、約44℃~約47℃の範囲の洗浄温度での40mer捕捉プローブの使用の正当性を立証する。
図4は、ALK遺伝子の第19イントロンの標的化し配向させたシークエンシングの概略図を示す図である。A)「野生型」参照配列では、アンチセンス配向のALK捕捉プローブは、第19イントロンからの配列を同定する。B)病原性融合遺伝子の場合、一部のALK捕捉プローブは、遺伝子融合事象に関連するジャンクション配列を同定することになる。
図5は、標的領域の完全シークエンシングのための高密度捕捉プローブ配置の概略図を示す図である。各捕捉プローブは、各塩基位置での累積カバレッジをもたらす一群の配列を捕捉する。ここでは、カバレッジを線によって表し、その線の振幅が、特定の捕捉プローブに由来するカバレッジの深度を示す。隣接する捕捉プローブからの重複するカバレッジによって、可能性のある両方の方向の標的領域の完全シークエンシングが提供される。加えて、相対する鎖の捕捉プローブのヘッドトゥーヘッド配置によって、すべての捕捉プローブ結合部位が確実にシークエンシングされる。
図6は、ライブラリー構築に使用した断片化DNAのサイズ分布の代表例を示す図である。
図7は、代表実験における高密度40mer捕捉プローブの性能を示す図である。y軸は、リードの総数を示し、それがオンターゲットリード、オフターゲットリードおよびマッピング不能リードとして分割されている。x軸は、配列捕捉のためにこの実験で使用した105の捕捉プローブの各々を列挙するものである。
図8は、高密度40mer捕捉プローブを使用する標的領域の累積カバレッジの代表例を示す図である。ここに示されているのは、TP53コーディングエクソンの累積カバレッジである。
図9Aは、無細胞DNA(cfDNA)ライブラリーのサイズ分布の代表例を示す図である。主要バンドは、90bpのアダプターにライゲーションした一群の170±10bp断片と一致する。 図9Bは、cfDNAの公開されているゲル画像と、本明細書において開示および/または企図される方法を使用して生成した代表cfDNAライブラリーとを示す図である。定性的「ラダー」の外観は、ライブラリーに保存されるが、ライブラリーは、90bpのアダプター配列の付加によってより高い質量にシフトされる。 図9Cは、卵巣がん患者(OvC)および「健常ドナー」(HD)からのゲノム、血漿由来cfDNAライブラリーの代表例を示す図である。
図10は、4つの血漿試料から得た8つのcfDNAライブラリーにわたるユニークリード数を示す図である。この試料23407を用いたライブラリー構築前の断片化(frag)はライブラリー収量を2倍より大きく増加させた。
図11は、TP53遺伝子の領域全域のcfDNAの代表リードカバレッジを示す図である。「TP53_NM_000546_chr17:7579351:region_3:280nt:41:80:r」捕捉プローブ(配列番号201)によって捕捉された24個の131bpリードをランダムに選択し、UCSCゲノムブラウザ内のBLATアルゴリズムを使用してアラインした。21個のリードが標的領域にマッピングされ、カバレッジが重複するパターンでそのようにされる。これらのリードを捕捉するために使用したプローブに矢印を付けてある。
図12は、cfDNAゲノムライブラリーからのTP53遺伝子のコード領域の標的化DNAシークエンシングの大要を示す図である。カバレッジ(横軸)は、10個すべてのコード領域にわたって伸び、mRNAスプライシングに関与するイントロン領域を含む。シークエンシングの深度(縦軸)は、最大4851に達し、全コーディングエクソンにわたって均一である。
図13は、ACA2ベースのアッセイにおけるqPCR推定ゲノム当量に対するユニークリード数のプロットを示す図である。Y軸のリード数に対してX軸にqPCR測定値を示す。これらの測定値間の完全な一致を対角線として示す。測定値間の相関は、特により低いゲノムインプットでは、あったとしても非常に不良であった。これらのデータは、ACA2ベースのqPCRアッセイが、ライブラリー複雑度を慢性的に過小推定し、ゲノム当量の測定に不適切であることを示す。
図14は、ゲノム反復配列特異的プライマー(例えばAlu)と長いアダプター特異的プライマーを対にするqPCRゲノム当量測定アッセイのコアエレメントの概略図を示す図である。(A)ACA2という名の単一の25ntプライマー(プライマー1)を使用する標準ライブラリー増幅。(B)より長い、58ntバージョンACA2プライマー(プライマー2)は、ステム-ループ抑制のためゲノムライブラリーを増幅させない。(C)コンセンサスヒトAlu反復配列エレメントに指向されたフォワードおよびリバースプライマー(プライマー3および4)は、何千もの座位を認識し、ゲノムDNAを容易に増幅させる。(D)ロングACA2プライマー(プライマー2)と対にした、フォワードまたはリバースどちらか一方の単独の単一Aluプライマー(プライマー3またはプライマー4)は、ゲノムDNAを増幅させない。(E)(D)の場合と同じプライマー対は、Alu配列を含有するゲノムcfDNAライブラリークローンを容易に増幅させる。
図15は、ゲノム当量のAluプラスアダプターベースのqPCRアッセイについての概念実証データを示す図である。(A)様々なPCRプライマーでの10pgの標準ゲノムライブラリーの増幅。x軸は、増幅に使用したPCRプライマーを特定し、Y軸(logスケール)は、測定したPCRシグナルを単位fg/μLで示す。標準ACA2プライマーは、予想通り、強いシグナルを生成した。ACA2ロングプライマーは、PCR抑制のためシグナルを生成できなかった。2つのAluプライマー対は両方とも、ACA2量の1%でシグナルを生成した。これは、クローンの1%が増幅可能なAlu配列を有することを示唆する。ロングACA2プライマーと任意のAluプライマーとの組合せも、クローンの約1%においてシグナルを生成した。(B)10pgのゲノムDNA(左側4試料)または10pgのライブラリーDNA(右側4クローン)に対する検証。Aluプライマー対は、ゲノムDNAまたはゲノムライブラリーから同等のシグナルを増幅させる。対照的に、AluプライマーおよびロングACA2プライマーからなるプライマー対は、ゲノムDNAをあまり増幅させない(L+A1F)か、全く増幅させない(L+A1R)。これらの同じ対は、Aluプライマー対からのシグナルをわずかに上回るライブラリー増幅を示す。
図16は、ACA2プライマーqPCRアッセイとAlu-ACA2ロング-プライマーqPCRアッセイの直接比較を示す図である。Alu ACA2ロング-プライマーqPCRアッセイは、シークエンシングデータから導出されるユニークリード数とより一致する、検出可能なゲノム当量の8倍増加を示す。
図17は、解析されるゲノム当量を正確に決定する高感度、定量的遺伝子アッセイのアダプター構造および機能の代表例を示す図である。(A)アダプターライゲーション鎖の詳細な構造。番号を付けた各エレメントに関する詳細は実施例4で提供する。(B)45ntライゲーション鎖および12ntパートナーオリゴ鎖とで形成された二本鎖は、末端修復cfDNA断片(黒棒)と適合性の平滑末端ライゲーション基質を生成する。(C)ライゲーション後、ライゲーション鎖の相補体がDNAポリメラーゼ媒介フィルイン反応によって生成される。
図18は、cfDNAを模倣するように処理した2つのDNA試料(NA06994およびNCI-H2228)のサイズ分布の代表例を示す図である。
図19は、正常ゲノムDNA(N)と混合した腫瘍試料DNA(H2228)におけるTP53点変異Q331の検出感度の代表例を示す図である。最高感度の検出は、遺伝子の正常なコピー1000個中、TP53の変異体コピー約1個に相当する。
図20は、本明細書において企図される組成物および方法を使用する、細胞株NCI-H2228内にあるEML4-ALK融合遺伝子についてのジャンクション配列の正確な決定を示す図である。
図21は、正常ゲノムDNA(N)と混合したEML4-ALK融合遺伝子腫瘍試料DNA(H2228)の検出を示す図である。この融合体は、NCI-H2228細胞株中にヘテロ接合体として存在するので、最高感度の検出は、ALK遺伝子の正常染色体コピー約100個(50ゲノム当量)中、遺伝子融合体1個に相当する。
図22は、正常ヒトDNA(N)へと希釈される細胞株NCI-H69(H69)の混合物におけるMYCN遺伝子増幅の検出を示す図である。2つの正常二倍体コピーの閾値を赤い破線として示す。
図23は、3名の異なるがん患者のTP53遺伝子において検出されたDNA変異を示す図である。規範的遺伝子モデルを図の上部に示す。ピークは、DNA配列カバレッジ(X軸)および深度(Y軸)を表す。シークエンシングの深度は、解析したすべての試料について、>4000ゲノム当量であった。その遺伝子モデルの下の第7エクソンの拡大図は、検出されたすべての変異が局在定位された位置を示す。cfDNA(血漿)、腫瘍組織および正常隣接組織における変異体検出頻度を入手可能な場合は示す(NA-入手不能)。OVA1およびOVA2は、卵巣がん患者であり、CRC406およびCRC407は、結腸直腸がん患者である。OVA1試料のいずれにおいてもTP53の変異は見いだされなかった。
図24は、より大きい13遺伝子パネル(四角で囲われているもの)のDNAシークエンシングを示す図である。このシークエンシングによって、卵巣がん患者OVA1からのcfDNAおよび腫瘍においてKRAS変異が同定された。
図25は、より大きい12遺伝子パネルのDNAシークエンシングを示す図である。このシークエンシングによって、結腸直腸がん患者CRC407の血漿においてERBB2遺伝子増幅が同定された。
A.大要
本発明は、一部には、無細胞DNA(cfDNA)を使用する個体の遺伝子状態の定量的遺伝子解析のための組成物および方法を企図している。本明細書で使用する場合、用語「遺伝子状態」は、遺伝性状態または遺伝疾患についての原因とならない正常配列に関係するまたは原因となる配列に関係するゲノムにおける1つまたは複数の標的ゲノム配列の配列を指す。一実施形態では、遺伝子状態の解析は、標的遺伝子座位における遺伝子バリアントの同定、定量またはモニタリングを指し、バリアントは参照配列(例えば、正常または変異配列)に対して異なる。本発明者らは、真の陽性を偽陽性と区別する感度の欠如、個々のDNA分子の非効率的なクローニングおよび増幅、ならびにシークエンシングの特異的ゲノム座位への非効率的な標的化に関連する、遺伝性状態または遺伝疾患の分子診断上の問題の解決策を提供した。本明細書において企図される解決策は、試料処理中に生ずる偽陽性シグナルと真の陽性試験結果を区別するのに十分な感度を有する信頼性のある頑強な定量的遺伝子解析のための組成物および方法を含む。
次世代シークエンシング技術は、がん、胎児診断、親子鑑定、病原体スクリーニングおよび臓器移植モニタリングを含む様々なシナリオでの分子診断に広範なゲノム調査を加える機会を与えている。遺伝疾患との関連で、次世代シークエンシング情報は、遺伝子機能を変化させる可能性が高い遺伝子内の変異を同定するために、細胞内の遺伝物質の増加または減少を同定するため、および正常な健常細胞では見いだされないゲノム再編成を同定するために臨床の場で使用されている。これらの広範な診断調査の結果は、患者の処置を導出するために使用されることが多い。
しかし、個体の遺伝子状態または遺伝性状態もしくは遺伝疾患の診断および処置におけるDNAシークエンシングの潜在的利点より、試料を得るために罹患組織に直接到達する必要性のほうが上回る。そのような材料は、疾患の診断に使用される初期生検から得ることが困難であることが多く、時間をかけて何度も繰り返して得ることは、事実上、不可能である。同様に、がん患者の場合、生検は、到達し難い腫瘍を有する患者では可能でなく、転移性疾患に罹患している個体には現実的でない。対照的に、本発明者らのアプローチは、すべての組織が生存するために脈管構造への到達を必要とし、結果としてこれらの塊が体液中にDNAを堆積させるという事実に由来する。罹病細胞のDNAを見つけられる体液の1つの主要な貯蔵所はヒト血液の血漿である。
浅いゲノムワイド配列カバレッジに依存する試験方法とは対照的に、個体の遺伝子状態、遺伝疾患、メンデル型遺伝病、遺伝子モザイク、胎児試験、親子鑑定、薬物処置に対する応答の予測、病状の診断またはモニタリング、病原体スクリーニング、マイクロバイオームプロファイリング、および臓器移植モニタリングのための本明細書において企図される分子診断は、cfDNAの入手可能性を活用して、選択された標的遺伝子の深い配列カバレッジをもたらす。加えて、本明細書において企図されるcfDNAベースのがん診断には、タンパク質機能を変化させる体細胞配列変動、キメラ遺伝子融合を生じさせる大規模染色体再編、および遺伝子コピーの減少または増加を含むコピー数変動を含む、様々な遺伝子変化を検出する能力がある。企図される組成物および方法を使用すると、健常組織内で起こる正常な代謝回転プロセスが一因となるcfDNA内の正常配列の有意な希釈またはそのような正常配列の混合にもかかわらず、これらの変化を検出でき、定量できる。本明細書において企図される組成物および方法は、疾患の原因となる低頻度遺伝子変化の検出に関連する大きな課題、すなわち、cfDNAが高度に断片化されること、cfDNAレベルが、異なる個体間で実質的に異なること、および正常配列に対する罹病配列の混合度が、患者間で、同じ分子病および病期に罹患している個体の中でさえ、高度に可変的であることにもうまく対処する。
様々な実施形態では、遺伝子解析のための組成物および方法は、生体液試料および糞便試料中のDNA画分を調べることを含む。本明細書において企図される方法は、様々な生物源から入手できるcfDNAを使用する分子遺伝子解析に対処するための新規包括的フレームワークを提供する。精製cfDNAのクローニングは、下流の解析のための情報を与え、結果として生ずるクローンライブラリーの増幅を可能にするタグ付きcfDNA配列を導入する。標的特異的オリゴヌクレオチドを用いるハイブリッド捕捉が、その後の解析のための特異的配列を検索するために使用される。ライブラリー中に存在するゲノムの数の独立した測定が各試料に適用され、これらのアッセイが、そのアッセイの感度を推定するための手段を提供する。本明細書において企図されるアッセイは、遺伝子状態、遺伝性状態または遺伝疾患を解析、検出、診断またはモニターするための信頼性のある、再現性のある、頑強な方法を提供する。
本発明の特定の実施形態の実施は、特に相反する指示がない限り、当技術分野の技術の範囲内である化学、生化学、有機化学、分子生物学、微生物学、組換えDNA技術、遺伝学、免疫学および細胞生物学の従来の方法を利用することになり、これらの方法の多くを説明のために下に記載する。そのような技術は、文献で十分に説明されている。例えば、Sambrookら、Molecular Cloning: A Laboratory Manual(第3版、2001年);Sambrookら、Molecular Cloning: A Laboratory Manual(第2版、1989年);Maniatisら、Molecular Cloning: A Laboratory Manual(1982年);Ausubelら、Current Protocols in Molecular Biology(John Wiley and Sons、2008年7月
改定);Short Protocols in Molecular Biology: A Compendium of Methods from Current Protocols in Molecular Biology、Greene Pub.Associates and Wiley-Interscience;Glover、DNA Cloning: A Practical Approach、IおよびII巻
(IRL Press、Oxford、1985年);Anand、Techniques for the Analysis of Complex Genomes(Academic Press、New York、1992年);Transcription and Translation(B. HamesおよびS. Higgins編、1984年);Perbal、A Practical Guide to Molecular Cloning(1984年);ならびにHarlowおよびLane、Antibodies
(Cold Spring Harbor Laboratory Press、Cold Spring Harbor、N.Y.、1998
年)を参照されたい。
B.定義
別段の定義がない限り、本明細書において使用するすべての専門および科学用語は、本発明が属する技術分野の当業者によって一般に理解されているのと同じ意味を有する。本明細書に記載のものと同様または等価の任意の方法および材料を本発明の実施または試験に使用してもよいが、組成物、方法および材料の好ましい実施形態を本明細書に記載する。本発明のために、以下の用語を下で定義する。
冠詞「a」、「an」および「the」は、その冠詞の文法上の目的語の1つまたは1つより多く(すなわち少なくとも1つ)を指すために本明細書では使用する。例として、「要素(an element)」は、1つの要素または1つより多くの要素を意味する。
選択肢(例えば「または」)の使用は、選択肢のどちらか一方、両方、またはそれらの任意の組合せを意味すると理解するべきである。
用語「および/または」は、選択肢のどちらか一方、または両方を意味すると理解するべきである。
本明細書で使用する場合、用語「約」または「おおよそ」は、参照数量、レベル、値、数、頻度、百分率、寸法、サイズ、量、重量または長さに対して15%、10%、9%、8%、7%、6%、5%、4%、3%、2%または1%ほど変る数量、レベル、値、数、頻度、百分率、寸法、サイズ、量、重量または長さを指す。一実施形態では、用語「約」または「おおよそ」は、参照数量、レベル、値、数、頻度、百分率、寸法、サイズ、量、重量または長さについての±15%、±10%、±9%、±8%、±7%、±6%、±5%、±4%、±3%、±2%または±1%の数量、レベル、値、数、頻度、百分率、寸法、サイズ、量、重量または長さの範囲を指す。
本明細書を通して、文脈上他の意味に解すべき場合を除き、語「~を含む(comprise)」、「~を含む(comprises)」および「~を含むこと(comprising)」は、述べられているステップもしくは要素またはステップもしくは要素の群の包含を含意するが、他のいかなるステップもしくは要素またはステップもしくは要素の群の除外も含意しないと理解されるであろう。特定の実施形態では、用語「~を含む(include)」、「~を有する(has)」、「~を含有する(contains)」および「~を含む(comprise)」を同義で使用する。
「~からなる」は、その句「~からなる」の後に続くものを何であれ含み、それに限定されることを意図する。したがって、句「~からなる」は、挙げられている要素が必要とされ、または必須であること、および他の要素が存在し得ないことを示す。
「~から本質的になる」は、この句の後に挙げられており、その挙げられている要素についての開示の中で指定されている活性または作用に干渉も寄与もしない他の要素に限定されるあらゆる要素を含むことを意図する。したがって、句「~から本質的になる」は、挙げられている要素が必要とされるまたは必須であるが、他の要素は、任意選択ではなく、挙げられている要素の活性または作用にそれらが影響を与えるか否かに応じて存在してもしなくてもよいことを示す。
本明細書を通して「一実施形態」、「ある実施形態」、「特定の実施形態」、「関連実施形態」、「ある特定の実施形態」、「追加の実施形態」もしくは「さらなる実施形態」またはこれらの組合せへの言及は、その実施形態に関連して記載する特定の特徴、構造または特性が本発明の少なくとも一実施形態に含まれることを意味する。したがって、本明細書を通して様々な箇所での上述の句の出現は、必ずしもすべてが同じ実施形態に言及していない。さらに、特定の特徴、構造または特性を1つまたは複数の実施形態においていずれの好適な様式で組み合わせてもよい。
本明細書で使用する場合、用語「単離された」は、そのネイティブ状態で通常はそれに付随する成分が実質的にまたは本質的にない物質を意味する。特定の実施形態では、用語「得られた」または「由来する」を単離されたと同義で使用している。
本明細書で使用する場合、用語「DNA」は、デオキシリボ核酸を指す。様々な実施形態では、用語DNAは、ゲノムDNA、組換えDNA、合成DNAまたはcDNAを指す。一実施形態では、DNAは、ゲノムDNAまたはcDNAを指す。特定の実施形態では、DNAは、「標的領域」を含む。本明細書において企図されるDNAライブラリーは、ゲノムDNAライブラリーおよびRNA(例えば、RNA発現ライブラリー)から構築されたcDNAライブラリーを含む。様々な実施形態では、DNAライブラリーは、1つまたは複数の追加のDNA配列および/またはタグを含む。
「標的遺伝子座位」または「DNA標的領域」は、DNA配列内の目的の領域を指す。様々な実施形態では、標的化遺伝子解析は、標的遺伝子座位に対して行われる。特定の実施形態では、DNA標的領域は、特定の遺伝子状態、遺伝性状態、遺伝疾患、胎児試験、遺伝子モザイク、親子鑑定、薬物処置に対する応答の予測、病状の診断もしくはモニタリング、マイクロバイオームプロファイリング、病原体スクリーニング、または臓器移植モニタリングに関連する遺伝子の領域である。
本明細書で使用する場合、用語「循環DNA」、「循環無細胞DNA」および「無細胞DNA」は、多くの場合、交換可能に使用しており、細胞外DNAであるDNA、細胞から押し出されたDNA、または壊死もしくはアポトーシス細胞から放出されたDNAを指す。
本明細書で使用される「対象」、「個体」または「患者」は、本明細書において企図される組成物で検出または同定することができる状態の症状を示すあらゆる動物を含む。好適な対象は、実験動物(例えばマウス、ラット、ウサギまたはモルモット)、家畜(例えばウマ、ウシ、ヒツジ、ブタ)、および飼育動物またはペット(例えばネコまたはイヌ)を含む。特定の実施形態では、対象は哺乳動物である。ある特定の実施形態では、対象は非ヒト霊長類であり、好ましい実施形態では、対象はヒトである。
C.無細胞DNAの遺伝子解析の方法
様々な実施形態では、cfDNAの遺伝子解析のための方法が提供される。
特定の実施形態では、cfDNAの遺伝子解析のための方法は、cfDNAライブラリーを生成し、増幅させるステップ、cfDNAライブラリー中のゲノム当量の数を決定するステップ、および1つまたは複数のゲノム標的座位の定量的遺伝子解析を行うステップを含む。
cfDNAの遺伝子解析のための方法は、cfDNAを1つまたは複数の末端修復酵素で処置して末端修復cfDNAを生成し、末端修復cfDNAの各末端に1つまたは複数のアダプターをライゲーションしてcfDNAライブラリーを生成するステップ、cfDNAライブラリーを増幅させてcfDNAライブラリークローンを生成するステップ、cfDNAライブラリークローンのゲノム当量の数を決定するステップ、およびcfDNAライブラリークローン中の1つまたは複数の標的遺伝子座位の定量的遺伝子解析を行うステップを含む。
1.cfDNAライブラリーの生成
特定の実施形態では、本明細書において企図される遺伝子解析の方法は、cfDNAを1つまたは複数の末端修復酵素で処置して末端修復cfDNAを生成するステップ、および末端修復cfDNAの各末端に1つまたは複数のアダプターをライゲーションしてcfDNAライブラリーを生成するステップを含む、cfDNAライブラリーを生成するステップを含む。
(a)無細胞DNA(cfDNA)
本明細書において企図される方法および組成物は、無細胞DNA(cfDNA)を分析物として使用して遺伝子状態、遺伝性状態、遺伝疾患、遺伝子モザイク、胎児診断、親子鑑定、マイクロバイオームプロファイリング、病原体スクリーニングおよび臓器移植モニタリングを効率的に解析、検出、診断および/またはモニターするように設計される。cfDNAのサイズ分布は、約150bp~約180bp断片の範囲である。断片化は、エンドヌクレアーゼ切断活性および/またはエキソヌクレアーゼ切断活性の結果でありえ、cfDNAの正確で信頼性のある頑強な解析に厄介な課題を提示する。cfDNAの解析のもう1つの課題は、約15分程度の血流中でのその短い半減期である。いかなる特定の理論にも拘束されることを望むものではないが、本発明は、一部には、cfDNAの解析が、「リキッドバイオプシー」のようなものであって、現状の生物学的過程のリアルタイムスナップショットであることを企図している。
さらに、cfDNAは細胞内では見いだされず、生体液および糞便試料を含むが、これらに限定されないいくつかの好適な源から得ることができるので、解析する組織への直接到達などの次世代シークエンシング解析を悩ませる既存の制限を受けない。
特定の実施形態でのcfDNAを単離するための好適な源である生体液の実例としては、羊水、血液、血漿、血清、精液、リンパ液、脳脊髄液、眼液、尿、唾液、粘液および汗が挙げられるが、これらに限定されない。
特定の実施形態では、生体液は、血液または血漿である。
ある特定の実施形態では、市販のキットおよび当業者に公知の他の方法を使用して、患者の生体液から、あるいは以前に得た、例えば、凍結および/またはEDTA、EGTA、もしくは二価カチオンに特異的な他のキレート剤を含むがこれらに限定されない酵素キレート剤の添加によって必要に応じて安定化された生体試料から、直接cfDNAを単離することができる。
(b)末端修復cfDNAの生成
特定の実施形態では、cfDNAライブラリーの生成は、単離されたcfDNAの末端修復を含む。断片化cfDNAを末端修復酵素によって処理して、平滑末端、5’-オーバーハングまたは3’-オーバーハングを有する、末端修復cfDNAを生成する。一部の実施形態では、末端修復酵素は、例えば産出することができる。一部の実施形態では、末端修復cfDNAは、平滑末端を含有する。一部の実施形態では、末端修復cfDNAは、平滑末端を含有するように処理される。一部の実施形態では、末端修復cfDNAの平滑末端は、単一塩基対オーバーハングを含有するようにさらに修飾される。一部の実施形態では、平滑末端を含有する末端修復cfDNAを、アデニン(A)/チミン(T)オーバーハングを含有するようにさらに処理することができる。一部の実施形態では、平滑末端を含有する末端修復cfDNAを、単一塩基対オーバーハングとしてアデニン(A)/チミン(T)オーバーハングを含有するようにさらに処理することができる。一部の実施形態では、末端修復cfDNAは、鋳型なし3’オーバーハングを有する。一部の実施形態では、末端修復cfDNAは、3’オーバーハングを含有するように処理される。一部の実施形態では、末端修復cfDNAは、3’オーバーハングを含有するようにターミナルトランスフェラーゼ(TdT)で処理される。一部の実施形態では、GテールをTdTによって付加させることができる。一部の実施形態では、末端修復cfDNAは、任意の公知の制限酵素で(例えば、酵素Sau3Aなどで)の部分消化を使用してオーバーハング末端を含有するように処理される。
(c)末端修復cfDNAへのアダプター分子のライゲーション
特定の実施形態では、cfDNAライブラリーの生成は、末端修復cfDNAの各末端への1つまたは複数のアダプターのライゲーションを含む。本発明は、一部には、cfDNAライブラリー中の多数のゲノム当量に対応するように設計されたアダプターモジュールを企図している。アダプターモジュールは、cfDNAライブラリー中に存在するゲノム当量の数、およびその延長で、配列変異を同定するために使用されるシークエンシングアッセイの感度を測定するように構成される。
本明細書で使用する場合、用語「アダプターモジュール」は、少なくとも5つのエレメント:(i)単一プライマーライブラリー増幅のためのPCRプライマー結合部位を含む第1のエレメント、(ii)一意的に同定された各シークエンシングリードに作用する5ヌクレオチドリードコードを含む第2のエレメント、(iii)異なる試料を識別し、シークエンシングラン中に試料多重化を可能にするための3ヌクレオチド試料コードを含む第3のエレメント、(iv)シークエンシングリードの中の適正な塩基コールの校正を可能にし、パートナーオリゴヌクレオチドへのハイブリダイゼーションのためのアンカーとして作用する、12ヌクレオチドアンカー配列を含む第4のエレメント、および(v)エレメント4の2つの3’末端ヌクレオチドを含む第5のエレメント(図17および表12~16)を含むポリヌクレオチドを指す。アダプターモジュールを、エレメント4に相補的であるパートナーオリゴヌクレオチドにハイブリダイズさせて、cfDNA、必要に応じて末端修復され平滑末端化されたcfDNAの末端へのライゲーションに好適なアダプターを形成する。
特定の実施形態では、アダプターモジュールは、1つまたは複数のPCRプライマー配列、1つまたは複数のリードコード、1つまたは複数の試料コード、1つまたは複数のアンカー配列、および効率的ライゲーション基質である2つまたはそれ超の3’ヌクレオチドを含む。追加の実施形態では、アダプターモジュールは、1つまたは複数のシークエンシングプライマー結合部位をさらに含む。
特定の実施形態では、アダプターモジュールは、cfDNAライブラリーの単一プライマー増幅のための1つまたは複数のPCRプライマー結合配列を含む第1のエレメントを含む。一実施形態では、PCRプライマー結合配列は、約12~約40ヌクレオチド、約18~約40ヌクレオチド、約20~約35ヌクレオチド、または約20~約30ヌクレオチドである。別の実施形態では、PCRプライマー結合配列は、約12ヌクレオチド、約13ヌクレオチド、約14ヌクレオチド、約15ヌクレオチド、約16ヌクレオチド、約17ヌクレオチド、約18ヌクレオチド、約19ヌクレオチド、約20ヌクレオチド、約21ヌクレオチド、約22ヌクレオチド、約23ヌクレオチド、約24ヌクレオチド、約25ヌクレオチド、約26ヌクレオチド、約27ヌクレオチド、約28ヌクレオチド、約29ヌクレオチド、約30ヌクレオチド、約31ヌクレオチド、約32ヌクレオチド、約33ヌクレオチド、約34ヌクレオチド、約35ヌクレオチド、約36ヌクレオチド、約37ヌクレオチド、約38ヌクレオチド、約39ヌクレオチド、または約40ヌクレオチドまたはそれ超である。
一実施形態では、PCRプライマー結合配列は、約25ヌクレオチドである。
特定の実施形態では、アダプターモジュールは、1つまたは複数のリードコード配列を含む第2のエレメントを含む。本明細書で使用する場合、用語「リードコード」は、ユニークシークエンシングリードを同定するために使用されるポリヌクレオチドを指す。一実施形態では、リードコードは、ヌクレオチドのランダム配列である。一実施形態では、リードコードは、約1ヌクレオチド、約2ヌクレオチド、約3ヌクレオチド、約4ヌクレオチド、約5ヌクレオチド、約6ヌクレオチド、約7ヌクレオチド、約8ヌクレオチド、約9ヌクレオチド、約10ヌクレオチドまたはそれ超である。
非限定的な例として、5ヌクレオチドコードは、可能性のある256のユニーク配列からなり、ここで選択される各コードは、そのセット内の他のすべてのコードと2ヌクレオチド異なる。この特徴によって、ユニークな別個のリードと、コード領域内のシークエンシングエラーのためユニークであるように見えるリードとを区別することが可能になる。特定の実施形態では、特定の配列の組合せのため、アダプター機能に干渉すると実験によって判定されたコードは使用から除外されることがあり、例えば、256のうちの7つのコードにはGヌクレオチドの過剰提示があったので除外した。
他の実施形態では、5、6、7、8、9、10またはそれ超のヌクレオチドの各リードコードは、他のすべてのリードコードと2、3、4または5ヌクレオチド異なることがある。
一実施形態では、リードコードは、約5ヌクレオチドであり、他のすべてのリードコードと2ヌクレオチド異なる。
特定の実施形態では、アダプターモジュールは、1つまたは複数の試料コード配列を含む第3のエレメントを含む。本明細書で使用する場合、用語「試料コード」は、試料を識別するために使用されるポリヌクレオチドを指す。試料コードは、多重シークエンシング反応を確立するのにも有用である。なぜなら、各試料コードは試料に一意であり、したがって、各試料コードを使用して、多重シークエンシング反応物中の特定の試料からリードを識別することができるからである。
一実施形態では、試料コードは、約1、約2ヌクレオチド、約3ヌクレオチド、約4ヌクレオチドもしくは約5ヌクレオチドまたはそれ超である配列を含む。別の実施形態では、2、3、4、5またはそれ超のヌクレオチドの各試料コードは、他のすべての試料コードと2、3、4または5ヌクレオチド異なることがある。
一実施形態では、試料コードは、約3ヌクレオチドであり、他の試料に使用される他のすべての試料コードと2ヌクレオチド異なる。
特定の実施形態では、アダプターモジュールは、1つまたは複数のアンカー配列を含む第4のエレメントを含む。本明細書で使用する場合、「アンカー配列」は、少なくとも8ヌクレオチド、少なくとも10ヌクレオチド、少なくとも12ヌクレオチド、少なくとも14ヌクレオチド、または少なくとも16ヌクレオチドのヌクレオチド配列であって、パートナーオリゴヌクレオチドにハイブリダイズし、以下の3つの特性を含むヌクレオチド配列を指す:(1)各アンカー配列が、伸長内の各部位における可能性のある4つのDNA塩基の各々を集合的に表すアンカー配列4つのファミリーの一部である(この特徴、バランスのとれた塩基提示は、特定の実施形態でのシークエンシングリードにおける適正な塩基コーリングの校正に有用である)、(2)各アンカー配列が、可能性のある4つの塩基のうちの2つだけからなり、これらが、同数のA+Cまたは同数のG+Tのどちらか一方であるように特異的に選択される(2つだけの塩基から形成されるアンカー配列は、適正なアダプター機能を不可能にすることになる二次構造形成にアンカー配列が関与する可能性を低下させる)、および(3)各アンカー配列は同数のA+CまたはG+Tからなるので、各アンカー配列が、4つ1セットの他のすべてのアンカー配列と大体同じ融解温度および二本鎖安定性を共有する。
特定の実施形態では、アダプター分子は、エレメント4の2つの3’末端ヌクレオチドからなる第5のエレメントを含む。各アンカーの3’末端のこれら2つの塩基は、これら2つのヌクレオチドがcfDNAへのライゲーションに効率的な基質であることを示す実験による判定に基づいて選択される。特定の実施形態では、エレメント5は、AA、CC、TTおよびGGからなる群から選択される配列を含む。特定の実施形態では、エレメント5は、ジヌクレオチドの組合せCGまたはTGを含まない。本発明者らは、これらの組合せが効率的なライゲーション基質でないと判断したからである。
特定の実施形態では、ライゲーションステップは、「タグ付き」cfDNAライブラリーを生成するために末端修復cfDNAにアダプターモジュールをライゲーションすることを含む。一部の実施形態では、単一のアダプターモジュールが利用される。一部の実施形態では、2、3、4または5つのアダプターモジュールが利用される。一部の実施形態では、同一配列のアダプターモジュールが、断片化された末端修復DNAの各末端にライゲーションされる。
一実施形態では、複数のアダプター種が末端修復cfDNAライブラリーにライゲーションされる。複数のアダプターの各々は、cfDNAライブラリーの増幅のための1つまたは複数のプライマー結合部位、1つまたは複数のリードコード配列、試料多重化のための1つまたは複数の配列、およびDNAシークエンシングのための1つまたは複数の配列を含むことがある。
本明細書において企図される1つまたは複数のアダプターのライゲーションは、当業者に公知の方法によって行うことができる。特定の実施形態では、本明細書において企図される1つまたは複数のアダプターは、平滑末端を含む末端修復cfDNAにライゲーションされる。ある特定の実施形態では、本明細書において企図される1つまたは複数のアダプターは、用いられるライゲーション方法に適している相補末端を含む末端修復cfDNAにライゲーションされる。ある特定の実施形態では、本明細書において企図される1つまたは複数のアダプターは、3’オーバーハングを含む末端修復cfDNAにライゲーションされる。
2.cfDNAライブラリー増幅
特定の実施形態では、本明細書において企図される遺伝子解析の方法は、cfDNAクローンライブラリーまたはcfDNAクローンのライブラリーを生成するためのcfDNAライブラリーの増幅を含む。cfDNAライブラリーの各分子は、末端修復cfDNAの各末端にライゲーションされたアダプターを含み、各アダプターは、1つまたは複数のPCRプライマー結合部位を含む。一実施形態では、異なるアダプターが末端修復cfDNAの異なる末端にライゲーションされる。
好ましい実施形態では、同じアダプターがcfDNAの両末端にライゲーションされる。末端修復cfDNAの両末端への同じアダプターのライゲーションは、単一プライマー配列でのPCR増幅を可能にする。特定の実施形態では、アダプターがライゲーションされたcfDNAライブラリーの一部は、標準PCR技術を使用して単一プライマー配列駆動増幅で増幅されることになる。一実施形態では、単一プライマー配列は、約25ヌクレオチドであり、場合によっては標準イオン強度条件下で55℃以上の推定Tmを有する。
特定の実施形態では、初期cfDNAライブラリーの数ピコグラムがcfDNAクローンの数マイクログラムに増幅され、これは、10,000倍増幅を含意する。増幅産物の量は、当技術分野において公知の方法、例えば、Qubit 2.0またはNanodrop装置での定量を使用して、測定することができる。
3.ゲノム当量の数の決定
様々な実施形態では、cfDNAの遺伝子解析のための方法は、cfDNAクローンライブラリー中のゲノム当量の数を決定するステップを含む。本明細書で使用する場合、用語「ゲノム当量」は、各ライブラリー中のゲノムコピーの数を指す。本明細書において企図される組成物および方法によって対処される重要な課題は、遺伝子配列における低頻度の遺伝子変異または差の検出および解析に十分なアッセイ感度を獲得することである。試料ごとにアッセイ感度値を決定するために、シークエンシングライブラリー中に存在するゲノム当量の数を測定することによって、各試料中に存在する異なる別個の配列の数を測定する。感度を確立するために、ゲノム当量の数を各試料ライブラリーについて測定しなければならない。
ゲノム当量の数は、qPCRアッセイによって、またはシークエンシングを行った後にバイオインフォマティクスベースの計数を使用することによって決定することができる。臨床試料のプロセスフローでは、ゲノム当量のqPCR測定が、cfDNAライブラリーのQCステップとして使用される。そのqPCR測定によって、配列解析前にアッセイ感度の期待値が確立され、試料を、その対応するcfDNAクローンライブラリーがゲノム当量の要求深度を欠く場合、解析から除外することができる。最後に、ゲノム当量のバイオインフォマティクスベースの計数も、所与のcfDNAクローンライブラリー各々についてのゲノム当量の同定に使用され、したがってアッセイ感度および偽陰性推定値の同定に使用される。
実験的qPCRアッセイと統計的計数アッセイは、よく相関するはずである。シークエンシングによってcfDNAクローンライブラリーの配列深度を明らかにすることができない場合、cfDNAクローンライブラリーの再処理および/または追加のシークエンシングが必要とされることがある。
一実施形態では、cfDNAクローンライブラリー中のゲノム当量は、定量的PCR(qPCR)アッセイを使用して決定される。特定の実施形態では、既知濃度の標準ライブラリーを使用して標準曲線を構築し、得られた標準曲線にqPCRアッセイからの測定値をフィッティングし、そのフィットからゲノム当量の値を導出する。驚くべきことに、本発明者らは、ゲノム内の共通配列、例えば反復配列に特異的にハイブリダイズする1つのプライマーと、アダプター内のプライマー結合部位と結合するもう1つのプライマーとを含むqPCR「反復配列ベースの」アッセイによって、(cfDNAクローンの両末端に存在する)アダプター特異的プライマーのみを使用する方法と比較して、ゲノム当量の8倍増加が測定されることを発見した。反復配列ベースのアッセイによって測定されるゲノム当量の数は、ライブラリー間でのより一貫した性能、およびゲノム当量のqPCR推定値とシークエンシングランでバイオインフォマティクスによって計数されるタグ当量とのより良好なアラインメントをもたらす。
本明細書において企図される反復配列ベースのゲノム当量アッセイでの使用に好適な反復配列の実例としては、短鎖散在反復配列(SINE)、例えばAlu反復配列;長鎖散在反復配列(LINE)、例えばLINE1、LINE2、LINE3;マイクロサテライト反復配列エレメント、例えば、短鎖タンデム反復配列(STR);単純配列反復(SSR);および哺乳類ワイド散在反復配列(MIR)が挙げられるが、これらに限定されない。
一実施形態では、反復配列は、Alu反復配列である。
4.定量的遺伝子解析
様々な実施形態では、cfDNAの遺伝子解析のための方法は、cfDNAライブラリークローンの1つまたは複数の標的遺伝子座位の定量的遺伝子解析を含む。定量的遺伝子解析は、以下のステップの1つもしくは複数、またはすべてを含む:標的遺伝子座位を含むcfDNAクローンを捕捉するステップ、捕捉された標的化遺伝子座位の増幅ステップ、捕捉され増幅された標的化遺伝子座位をシークエンシングするステップ、および得られた配列リードについてのバイオインフォマティック解析ステップ。
(a)標的遺伝子座位の捕捉
本発明は、一部には、より大きいプローブの効率および信頼性を保持するように、しかしcfDNAクローンライブラリーにおける情報価値のない配列生成を最小にするように設計された捕捉プローブモジュールを企図している。「捕捉プローブモジュール」は、捕捉プローブ配列とテール配列とを含むポリヌクレオチドを指す。特定の実施形態では、捕捉プローブモジュール配列またはその一部分は、1つまたは複数のシークエンシングプライマーのためのプライマー結合部位として役立つ。
特定の実施形態では、捕捉プローブモジュールは、捕捉プローブを含む。本明細書で使用する場合、「捕捉プローブ」は、特異的DNA標的領域にハイブリダイズすることができる領域を指す。cfDNAの平均サイズは約150~約170bpであり、高度に断片化されているので、本明細書において企図される組成物および方法は、目的のDNA標的領域を調べるための、高密度の比較的短い捕捉プローブの使用を含む。
高密度捕捉プローブの使用に伴う1つの特定の懸念は、一般に捕捉プローブが特異的「配列規則」を使用して設計されることである。例えば、冗長配列の領域、または極度の塩基組成の偏りを示す領域は、一般に、捕捉プローブの設計では除外される。しかし、本発明者らは、捕捉プローブ設計規則の柔軟性の欠如がプローブの性能に実質的に影響を及ぼさないことを発見した。対照的に、位置制約によって厳密に選択された捕捉プローブは、オンターゲット配列情報を提供し、オフターゲットのマッピング不能なリード捕捉を殆ど示さず、ほんの少数の例外はあるが均一で有用なオンターゲットリードをもたらす。さらに、接近したプローブ間隔での高い冗長性は、あまりよく機能しないこともある捕捉プローブを補って余りある。
特定の実施形態では、標的領域は複数の捕捉プローブによって標的とされ、ここで、任意の2つまたはそれ超の捕捉プローブは、互いに10ヌクレオチド以内、互いに15ヌクレオチド以内、互いに20ヌクレオチド以内、互いに25ヌクレオチド以内、互いに30ヌクレオチド以内、互いに35ヌクレオチド以内、互いに40ヌクレオチド以内、互いに45ヌクレオチド以内、もしくは互いに50ヌクレオチドまたはそれ超以内、およびすべての介在するヌクレオチド長で、標的領域と結合するように設計されている。
一実施形態では、捕捉プローブは、約25ヌクレオチド、約26ヌクレオチド、約27ヌクレオチド、約28ヌクレオチド、約29ヌクレオチド、約30ヌクレオチド、約31ヌクレオチド、約32ヌクレオチド、約33ヌクレオチド、約34ヌクレオチド、約35ヌクレオチド、約36ヌクレオチド、約37ヌクレオチド、約38ヌクレオチド、約39ヌクレオチド、約40ヌクレオチド、約41ヌクレオチド、約42ヌクレオチド、約43ヌクレオチド、約44ヌクレオチド、または約45ヌクレオチドである。
一実施形態では、捕捉プローブは、約100ヌクレオチド、約200ヌクレオチド、約300ヌクレオチド、約400ヌクレオチド、または約100ヌクレオチドである。別の実施形態では、捕捉プローブは、約100ヌクレオチド~約500ヌクレオチド、約200ヌクレオチド~約500ヌクレオチド、約300ヌクレオチド~約500ヌクレオチド、もしくは約400ヌクレオチド~約500ヌクレオチド、またはこれらに介在する任意の範囲である。
特定の実施形態では、捕捉プローブは、60ヌクレオチドではない。
別の実施形態では、捕捉プローブは、60ヌクレオチドより実質的に小さいが、同じDNA標的領域を標的にする60ヌクレオチド捕捉プローブと同程度に、同様に、またはそれより良好にハイブリダイズする。
ある特定の実施形態では、捕捉プローブは、40ヌクレオチドである。
ある特定の実施形態では、捕捉プローブモジュールは、テール配列を含む。本明細書で使用する場合、用語「テール配列」は、特定の実施形態ではプライマー結合部位として役立つことができる、捕捉プローブモジュールの5’末端のポリヌクレオチドを指す。特定の実施形態では、シークエンシングプライマーは、テール領域内のプライマー結合部位と結合する。
特定の実施形態では、テール配列は、約5~約100ヌクレオチド、約10~約100ヌクレオチド、約5~約75ヌクレオチド、約5~約50ヌクレオチド、約5~約25ヌクレオチド、または約5~約20ヌクレオチドである。ある特定の実施形態では、第3の領域は、約10~約50ヌクレオチド、約15~約40ヌクレオチド、約20~約30ヌクレオチドもしくは約20ヌクレオチド、または介在する任意の数のヌクレオチドである。
特定の実施形態では、テール配列は、約30ヌクレオチド、約31ヌクレオチド、約32ヌクレオチド、約33ヌクレオチド、約34ヌクレオチド、約35ヌクレオチド、約36ヌクレオチド、約37ヌクレオチド、約38ヌクレオチド、約39ヌクレオチド、または約40ヌクレオチドである。
様々な実施形態では、捕捉プローブモジュールは、捕捉プローブにハイブリダイズするタグ付きおよび/または増幅cfDNAライブラリーの1つまたは複数の捕捉断片の単離および/または精製を可能にするための、結合対の特異的メンバーを含む。特定の実施形態では、捕捉プローブモジュールはビオチンまたは別の好適なハプテン、例えば、ジニトロフェノール、ジゴキシゲニンに結合している。
様々な実施形態では、捕捉プローブモジュールを、必要に応じて増幅されたタグ付きのcfDNAライブラリーにハイブリダイズさせて複合体を形成する。一部の実施形態では、多官能性捕捉プローブモジュールは、cfDNAライブラリーの特異的ゲノム標的領域に実質的にハイブリダイズする。
ハイブリダイゼーションまたはハイブリダイズ条件は、2つのヌクレオチド配列が安定な複合体を形成する、例えば、タグ付きcfDNAライブラリーと捕捉プローブモジュールが安定なタグ付きcfDNAライブラリー-捕捉プローブモジュール複合体を形成する、任意の反応条件を含むことができる。そのような反応条件は当技術分野において周知であり、そのような条件を適宜改変することができる、例えば、より短い長さの捕捉プローブを用いてアニーリング温度を低下させることができること、およびそのような条件が本発明の範囲内でありうることは、当業者には理解されるであろう。実質的なハイブリダイゼーションは、捕捉プローブ複合体の第2の領域がタグ付きcfDNAライブラリーの領域と100%、99%、98%、97%、96%、95%、94%、93%、92%、91%、90%、89%、88%、85%、80%、75%または70%の配列同一性、相同性または相補性を示すときに起こりうる。
特定の実施形態では、捕捉プローブは、約40ヌクレオチドであり、約44℃~約47℃の最適アニーリング温度を有する。
ある特定の実施形態では、本明細書において企図される方法は、タグ付きcfDNAライブラリー-捕捉プローブモジュール複合体を単離するステップを含む。特定の実施形態では、DNA複合体を単離する方法は当業者に周知であり、当業者によって適切と思われる任意の方法を本発明の方法とともに用いることができる(Ausubelら、Current Protocols in Molecular Biology、2007~2012年)。特定の実施形態では、複合体
は、ビオチン-ストレプトアビジン単離技術を使用して単離される。
特定の実施形態では、単離されたタグ付きcfDNAライブラリー-捕捉プローブモジュール複合体からの一本鎖3’末端の除去が企図される。ある特定の実施形態では、方法は、一本鎖3’末端を除去するための、単離されたタグ付きDNAライブラリー-多官能性捕捉プローブモジュール複合体の3’-5’エキソヌクレアーゼ酵素的処理を含む。
ある特定の他の実施形態では、方法は、単離されたタグ付きDNAライブラリー断片を鋳型として利用して多官能性捕捉プローブの5’-3’DNAポリメラーゼ伸長を行うステップを含む。
ある特定の他の実施形態では、方法は、5’FLAPエンドヌクレアーゼの協奏作用、DNA重合、およびDNAリガーゼによるニック閉鎖による、捕捉プローブと単離されたタグ付きcfDNAのハイブリッド標的分子を生成するステップを含む。
単離されたタグ付きcfDNAライブラリー-多官能性捕捉プローブモジュール複合体の3’-5’エキソヌクレアーゼ酵素的処理に様々な酵素を利用することができる。特定の実施形態で利用することができる、3’-5’エキソヌクレアーゼ酵素活性を示す好適な酵素の実例としては、T4またはエキソヌクレアーゼI、III、Vが挙げられるが、これらに限定されない(Shevelev IV、Hubscher U.、「The 3' 5' exonucleases」
、Nat Rev Mol Cell Biol.、3巻(5号):364~76頁(2002年)も参照されたい)。特定の実施形態では、3’-5’エキソヌクレアーゼ活性を含む酵素は、T4ポリメラーゼである。特定の実施形態では、3’-5’エキソヌクレアーゼ酵素活性を示し、プライマー鋳型伸長能力がある酵素を利用することができ、そのような酵素としては、例えば、T4またはエキソヌクレアーゼI、III、Vが挙げられる。同書。
一部の実施形態では、本明細書において企図される方法は、上記および本明細書中の他の箇所で論じられている3’-5’エキソヌクレアーゼで酵素的に処理された複合体に関するシークエンシングおよび/またはPCRを行うステップを含む。特定の実施形態では、捕捉プローブ分子のテール部分をコピーして、ハイブリッド核酸分子を生成する。一実施形態では、生成されるハイブリッド核酸分子は、捕捉プローブモジュールおよび捕捉プローブモジュールテール配列の相補体にハイブリダイズすることができる標的領域を含む。
特定の実施形態では、遺伝子解析は、a)1つまたは複数の捕捉プローブモジュールを複数のcfDNAライブラリークローン中の1つまたは複数の標的遺伝子座位にハイブリダイズさせて、1つまたは複数の捕捉プローブモジュール-cfDNAライブラリークローン複合体を形成するステップ、b)a)からの1つまたは複数の捕捉プローブモジュール-cfDNAライブラリークローン複合体を単離するステップ、c)ステップb)からの1つまたは複数の単離された捕捉プローブモジュール-cfDNAライブラリークローン複合体を酵素的に処理するステップ、d)c)からの酵素的に処理された複合体に関するPCRを行うステップであって、捕捉プローブ分子のテール部分をコピーして増幅されたハイブリッド核酸分子を生成し、増幅されたハイブリッド核酸分子が、捕捉プローブおよび捕捉プローブモジュールテール配列の相補体にハイブリダイズすることができる標的ゲノム座位の標的配列を含むステップ、ならびにe)d)からの増幅されたハイブリッド核酸分子に関する定量的遺伝子解析を行うステップを含む。
特定の実施形態では、特異的標的遺伝子座位のコピー数を決定する方法であって、a)1つまたは複数の捕捉プローブモジュールを複数のcfDNAライブラリークローン中の1つまたは複数の標的遺伝子座位にハイブリダイズさせて、1つまたは複数の捕捉プローブモジュール-cfDNAライブラリークローン複合体を形成するステップ、b)a)からの1つまたは複数の捕捉プローブモジュール-cfDNAライブラリークローン複合体を単離するステップ、c)ステップb)からの1つまたは複数の単離された捕捉プローブモジュール-cfDNAライブラリークローン複合体を酵素的に処理するステップ、d)c)からの酵素的に処理された複合体に関するPCRを行うステップであって、捕捉プローブ分子のテール部分をコピーして、増幅されたハイブリッド核酸分子を生成し、増幅されたハイブリッド核酸分子が、捕捉プローブおよび捕捉プローブモジュールテール配列の相補体にハイブリダイズすることができる標的遺伝子座位の標的配列を含むステップ、e)d)における増幅されたハイブリッド核酸分子のPCR増幅を行うステップ、ならびにf)e)におけるPCR反応を定量するステップであって、定量が、特異的標的領域のコピー数の決定を可能にするステップを含む方法が企図される。
一実施形態では、ステップc)の酵素的処理は、3’-5’エキソヌクレアーゼ活性を使用してb)からの1つもしくは複数の捕捉プローブモジュール-cfDNAライブラリークローン複合体に関する3’-5’エキソヌクレアーゼ酵素的処理を行って、一本鎖3’末端を除去すること;5’FLAPエンドヌクレアーゼの協奏作用、DNA重合、およびDNAリガーゼによるニック閉鎖によって捕捉プローブモジュールとcfDNAライブラリークローンの1つもしくは複数のハイブリッド分子を生成すること;または複合体中の単離されたcfDNAクローンを鋳型として使用して捕捉プローブの5’-3’DNAポリメラーゼ伸長を行うことを含む。
一実施形態では、ステップc)の酵素的処理は、複合体中の単離されたcfDNAクローンを鋳型として使用して捕捉プローブの5’-3’DNAポリメラーゼ伸長を行うことを含む。
特定の実施形態では、PCRは、当業者に周知の任意の標準PCR反応条件を使用して行うことができる。ある特定の実施形態では、e)におけるPCR反応は、2つのPCRプライマーを利用する。一実施形態では、e)におけるPCR反応は、標的遺伝子座位内の反復配列にハイブリダイズする第1のPCRプライマーを利用する。特定の実施形態では、e)におけるPCR反応は、ハイブリッド核酸分子の標的遺伝子座位/テールジャンクションにハイブリダイズする第2のPCRプライマーを利用する。ある特定の実施形態では、e)におけるPCR反応は、標的遺伝子座位にハイブリダイズする第1のPCRプライマーと、増幅されたハイブリッド核酸分子の標的遺伝子座位/テールジャンクションにハイブリダイズする第2のPCRプライマーとを利用する。特定の実施形態では、第2のプライマーは、標的遺伝子座位/テールジャンクションに、プライマーの少なくとも1つまたは複数のヌクレオチドが標的遺伝子座位にハイブリダイズし、プライマーの少なくとも1つまたは複数のヌクレオチドがテール配列にハイブリダイズするように、ハイブリダイズする。
ある特定の実施形態では、ステップe)から得られる増幅されたハイブリッド核酸分子がシークエンシングされ、それらの配列は水平方向にアラインされる、すなわち、互いにアラインされるが、参照配列にアラインされない。特定の実施形態では、ステップa)~e)は、1つまたは複数の捕捉プローブモジュールを用いて1回または複数回反復される。捕捉プローブモジュールは、同じであってもまたは異なってもよく、標的遺伝子座位のcfDNA鎖のどちらか一方を標的にするように設計することができる。一部の実施形態では、捕捉プローブが異なる場合、それらは、タグ付きcfDNAクローンライブラリー中の標的遺伝子座位内の重複または隣接標的配列にハイブリダイズする。一実施形態では、複数の捕捉プローブが標的遺伝子座位にハイブリダイズし、複数の捕捉プローブの各々が、タグ付きcfDNAクローンライブラリー中の標的遺伝子座位にハイブリダイズする任意の他の捕捉プローブの約5、10、15、20、25、30、35、40、45、50、100、200bp以内(介在するすべての距離を含む)の標的遺伝子座位にハイブリダイズする、高密度捕捉プローブ戦略を使用する。
一部の実施形態では、方法は、1つが標的領域の上流の「ワトソン」鎖(非コード鎖または鋳型鎖)にハイブリダイズし、1つが標的領域の下流の「クリック」鎖(コード鎖または非鋳型鎖)にハイブリダイズする、2つの捕捉プローブモジュールを、標的遺伝子座位1つにつき使用して行うことができる。
特定の実施形態では、本明細書において企図される方法は、標的遺伝子座位1つにつき任意の数の捕捉プローブモジュール、例えば、2、3、4、5、6、7、8、9もしくは10またはそれ超の捕捉プローブモジュールであって、それらのうちの任意の数がワトソンまたはクリック鎖にハイブリダイズする捕捉プローブモジュールを任意の組合せで用いて、さらに何度も行うことができる。一部の実施形態では、得られた配列を互いにアラインして、いくつかの差のいずれかを同定することができる。
ある特定の実施形態では、1つまたは複数の捕捉プローブモジュールを使用して、単一反応で複数の標的遺伝子座位、例えば、100、200、300、400、500、600、700、800、900、1000、1500、2000、2500、3000、3500、4000、4500、5000、10000、50000、100000、500000またはそれ超の標的遺伝子座位が調べられる。
(b)シークエンシング
特定の実施形態では、定量的遺伝子解析は、上記の、本明細書中の他の箇所で論じたような、複数のハイブリッド核酸分子を、複数のユニークシークエンシングリードを得るのに十分なシークエンシング深度を生じさせるようにシークエンシングするステップを含む。ユニークリードは、すべてがcfDNA内の同じリードコードおよび配列開始点を共有するリードの「ファミリー」からの単一のコンセンサスリードと定義する。各捕捉プローブは、ファミリーに分類することによって全リードから計算により抜き出される、1セットのユニークリードを生じさせる。次いで、所与の試料についてのユニークリードは、プローブごとに観測されたすべてのユニークリードの平均値として計算される。明らかなコピー数変化があるケースは、平均値の計算に使用されるデータセットから除外される。各ユニークリードをユニークcfDNAクローンから導出しなければならないので、ユニークリードは重要である。各ユニークリードは、ゲノムDNAの一倍体当量のインプットおよび解析を表す。ユニークリードの合計は、解析された一倍体ゲノムの合計である。そしてまた、解析されたゲノム数によって、シークエンシングアッセイの感度が定義される。非限定的な例として、平均ユニークリード数が100ゲノム当量である場合には、その特定のアッセイは、100個中の1個、すなわち1%の変異リードを検出することができる感度を有する。これ未満のいかなる観測も正当でない。
特定の実施形態では、定量的遺伝子解析は、複数の試料に由来するハイブリッド核酸分子の多重シークエンシングを含む。
様々な実施形態では、定量的遺伝子解析は、1つもしくはそれ超または複数のタグ付きDNAライブラリークローンを得るステップであって、各クローンが、第1のDNA配列および第2のDNA配列を含み、第1のDNA配列が標的化遺伝子座位の配列を含み、第2のDNA配列が捕捉プローブ配列を含むステップ、1つもしくは複数のクローンに関する対の末端シークエンシング反応を行い、1つもしくは複数のシークエンシングリードを得るステップ、または約100、200、300、400、500もしくはそれ超のヌクレオチドより大きい単一の長いシークエンシングリードが得られる1つもしくは複数のクローンに関するシークエンシング反応を行うステップであって、リードが、第1のDNA配列と第2のDNA配列の両方を同定するのに十分であるステップ、ならびにシークエンシングリードのプローブ配列に従って1つまたは複数のクローンのシークエンシングリードを順序付けまたはクラスタリングするステップを含む。
(c)バイオインフォマティクス解析
様々な実施形態では、定量的遺伝子解析は、シークエンシングリードのバイオインフォマティック解析をさらに含む。バイオインフォマティック解析は、シークエンシングのための組成物または方法の不在下で行われる任意の純粋な精神分析を除外する。ある特定の実施形態では、バイオインフォマティクス解析は、配列アラインメント、ゲノム当量解析、一塩基バリアント(SNV)解析、遺伝子コピー数変動(CNV)解析、および遺伝子病変の検出を含むが、これらに限定されない。特定の実施形態では、バイオインフォマティクス解析は、cfDNAクローンライブラリー中の解析されるゲノム当量の数の定量に、標的遺伝子座位の遺伝子状態の検出に、標的遺伝子座位内の遺伝子病変の検出に、および標的遺伝子座位内のコピー数増減の測定に有用である。
配列アラインメントを配列リードと1つまたは複数のヒト参照DNA配列との間で行ってもよい。特定の実施形態では、シークエンシングアラインメントは、ヌクレオチドトランジションもしくはトランスバージョン、ヌクレオチド挿入もしくは欠失、ゲノム再編成、コピー数の変化または遺伝子融合の検出を含むがこれらに限定されない、標的遺伝子座位での遺伝子病変の検出に使用することができる。原因または予後指標である遺伝子病変の検出は、特定の遺伝性状態または疾患の診断、予後予測、処置および/またはモニタリングに有用でありうる。
本明細書では水平配列解析と呼ぶ、参照配列へのアラインメントを必要とせずに行うことができる配列アラインメント解析の方法も本明細書において企図される。そのような解析を、本明細書において企図される方法または任意の他の方法によって生成された任意の配列に対して行うことができる。特定の実施形態では、配列解析は、本明細書において企図される方法によって得られるリードに関する配列アラインメントを行うことを含む。
一実施形態では、cfDNAクローンライブラリー中のゲノム当量は、シークエンシングを行った後にバイオインフォマティクスベースの計数を使用して決定される。各シークエンシングリードは特定の捕捉プローブと関連付けられ、各捕捉プローブに割り当てられた一群のリードは、グループに分別される。グループ内の個々のリードのセットは、同じリードコードおよびゲノム配列内の同じDNA配列開始位置を共有する。これらの個々のリードを「ファミリー」に分類し、このファミリーの単一のコンセンサス代表を「ユニークリード」として繰越す。ファミリーを構成する個々のリードのすべてが単一のライゲーション事象に由来し、したがって、それらは、互いに増幅由来の「同胞」である。各ユニークリードは、ユニークライゲーション事象と考えられ、ユニークリードの合計は、解析されるゲノム当量の数と等しいと考えられる。
ユニーククローン数が可能性のある配列の組合せの総数に近づくと、確率により、同じコードおよび開始部位の組合せが独立事象によって生じることになり、これらの独立事象が単一ファミリー内で不適切にグループ化されることになることが決定される。最終結果は、解析されるゲノム当量の過小推定となり、低頻度の変異リードは、同じ識別子を有する野生型リードと重複するので、シークエンシングエラーとして処分されることがある。
特定の実施形態では、cfDNAクローンライブラリーの正確な解析をもたらすために、解析されるゲノム当量の数は、可能性のあるユニーククローンの数の約1/10、約1/12、約1/14、約1/16、約1/18、約1/20、約1/25またはそれ未満である。上で概要を述べた手順は、説明に役立つものに過ぎず、限定ではないことを理解するべきである。
一部の実施形態では、解析されるゲノム当量の数を増加させる必要があることもある。ゲノム当量の深度を拡大するために少なくとも2つの解決策が企図される。第1の解決策は、試料1つにつき1つより多くのアダプターセットを使用することである。アダプターを組み合わせることにより、可能性のあるクローンの総数を乗法的に拡大することが可能であり、したがって、ゲノムインプットの満足のいく限界を拡大することが可能である。第2の解決策は、リードコードを1、2、3、4、または5もしくはそれ超の塩基、拡大することである。他のすべてのリードコードと少なくとも2塩基異なる、可能性のあるリードコードの数は、4(n-1)となり、式中、nは、リードコード内の塩基の数である。したがって、非限定的な例では、リードコードが5ヌクレオチドである場合、4(5-1)=256。したがって、追加の塩基を含めることで利用可能なレパートリーは追加の塩基ごとに4倍拡大される。
一実施形態では、定量的遺伝子解析は、低頻度の一塩基バリアント(SNV)を同定するためのシークエンシングリードのバイオインフォマティック解析を含む。
次世代シークエンシングは、およそ0.02~0.02%の固有エラー率を有し、これは、1/200~1/500塩基コールが不正確であることを意味する。これより低い頻度で、例えば1000配列に1配列の頻度で発生するバリアントおよび他の変異を検出するために、分子アノテーション戦略を行使する必要がある。非限定的な例として、標的化配列捕捉技術を使用する5000のユニーク分子の解析は、各ユニークリードが、すべてが同じリードコードを有するリードの「ファミリー」に属する一群の5000ユニークリードを、50,000リードを超える十分なシークエンシング深度で生成する。ファミリー内で発生するSNVは、低頻度バリアントであることの候補である。この同じバリアントが1つより多くのファミリーで観測された場合、それは、出発試料内に存在する低頻度バリアントであることの非常に強い候補になる。対照的に、ファミリー内で散発的に発生するバリアントは、シークエンシングエラーである可能性が高く、1つのおよび1つだけのファミリー内で発生するバリアントは、低頻度であるか、エクスビボで発生する塩基の変化(例えば、DNA塩基の酸化またはPCR導入エラー)の結果である。
一実施形態では、SNVを検出する方法は、アッセイの所望の標的感度に応じて10倍を超えるゲノムインプット(ゲノムまたはゲノム当量)を導入するステップを含む。1つの非限定的な例では、所望の感度が2%(100中2)である場合には、実験標的は、2000ゲノムのインプットである。
特定の実施形態では、シークエンシングデータのバイオインフォマティクス解析は、遺伝子状態、遺伝性状態または遺伝疾患、遺伝子モザイク、胎児試験、親子鑑定、薬物処置に対する応答の予測、病状の診断またはモニタリング、マイクロバイオームプロファイリング、病原体スクリーニングおよび臓器移植のモニタリングに関連するSNVを検出または同定するために使用する。
様々な実施形態では、コピー数決定解析のための方法であって、1つもしくはそれ超または複数のクローンを得るステップを含み、各クローンが、第1のDNA配列および第2のDNA配列を含み、第1のDNA配列が標的化遺伝子座位の配列を含み、第2のDNA配列が捕捉プローブ配列を含む方法が提供される。関連実施形態では、1つまたは複数のクローンに関する対の末端シークエンシング反応を行い、1つまたは複数のシークエンシングリードを得る。別の実施形態では、1つまたは複数のクローンに関するシークエンシング反応であって、約100より多いヌクレオチドの単一の長いシークエンシングリードが得られ、リードが第1のDNA配列と第2のDNA配列の両方を同定するのに十分である、シークエンシング反応を行う。1つまたは複数のクローンのシークエンシングリードを、該シークエンシングリードのプローブ配列に従って順序付けまたはクラスタリングすることができる。
コピー数解析は、所与のゲノムDNA試料中で発生する特定の遺伝子または変異のコピー数を調査する解析であって、所与の試料中の所与の遺伝子のコピー数または配列差異の定量的判定をさらに含むことができる解析を含むが、これらに限定されない。特定の実施形態では、コピー数解析は、遺伝子状態、遺伝性状態または遺伝疾患、胎児試験、遺伝子モザイク、親子鑑定、薬物処置に対する応答の予測、病状の診断またはモニタリング、マイクロバイオームプロファイリング、病原体スクリーニングおよび臓器移植のモニタリングに関連する遺伝子増幅を検出または同定するために使用される。
特定の実施形態では、シークエンシングデータのバイオインフォマティクス解析は、ヌクレオチドトランジションもしくはトランスバージョン、ヌクレオチド挿入もしくは欠失、ゲノム再編成、コピー数の変化または遺伝子融合の検出を含むがこれらに限定されない、標的遺伝子座位での1つまたは複数の配列または遺伝子病変の検出または同定に使用される。原因または予後指標である遺伝子病変の検出は、特定の遺伝性状態または遺伝疾患の診断、予後予測、処置および/またはモニタリングに有用でありうる。一実施形態では、遺伝子病変は、遺伝子状態、遺伝性状態または遺伝疾患、胎児試験、遺伝子モザイク、親子鑑定、薬物処置に対する応答の予測、病状の診断またはモニタリング、マイクロバイオームプロファイリング、病原体スクリーニングおよび臓器移植のモニタリングに関連する。
D.定量的遺伝子解析の臨床的応用
様々な実施形態では、本発明は、対象における状態または疾患を検出、同定、予測、診断またはモニターする方法を企図している。
特定の実施形態では、対象における遺伝子状態、遺伝性状態または遺伝疾患を検出、同定、予測、診断またはモニターする方法は、cfDNAクローンライブラリー中の1つまたは複数の標的遺伝子座位の定量的遺伝子解析を行って、1つまたは複数の標的遺伝子座位における配列の変化を検出または同定するステップを含む。
一実施形態では、遺伝子状態、遺伝性状態または遺伝疾患を検出、同定、予測、診断またはモニターする方法は、対象の生体試料からcfDNAを単離するまたは得るステップ、cfDNAを1つまたは複数の末端修復酵素で処置して末端修復cfDNAを生成するステップ、末端修復cfDNAの各末端に1つまたは複数のアダプターをライゲーションしてcfDNAライブラリーを生成するステップ、cfDNAライブラリーを増幅させてcfDNAクローンライブラリーを生成するステップ、cfDNAクローンライブラリー中のゲノム当量の数を決定するステップ、およびcfDNAクローンライブラリー中の1つまたは複数の標的遺伝子座位の定量的遺伝子解析を行って、1つまたは複数の標的遺伝子座位における配列の変化を検出または同定するステップを含む。
特定の実施形態では、遺伝疾患、遺伝子モザイクからなる群から選択される遺伝子状態、または遺伝性状態または遺伝疾患の検出、同定、予測、診断またはモニタリング、胎児試験、親子鑑定、親子鑑定、薬物処置に対する応答の予測、病状の診断またはモニタリング、マイクロバイオームプロファイリング、病原体スクリーニングおよび臓器移植モニタリングの方法であって、対象の生体試料からcfDNAを単離するまたは得るステップ、cfDNAを1つまたは複数の末端修復酵素で処置して末端修復cfDNAを生成するステップ、末端修復cfDNAの各末端に1つまたは複数のアダプターをライゲーションしてcfDNAライブラリーを生成するステップ、cfDNAライブラリーを増幅させてcfDNAクローンライブラリーを生成するステップ、cfDNAクローンライブラリー中のゲノム当量の数を決定するステップ、およびcfDNAクローンライブラリー中の1つまたは複数の標的遺伝子座位の定量的遺伝子解析を行って、1つまたは複数の標的遺伝子座位の配列におけるヌクレオチドトランジションもしくはトランスバージョン、ヌクレオチド挿入もしくは欠失、ゲノム再編成、コピー数の変化または遺伝子融合を検出または同定するステップを含む方法。
本明細書において企図される組成物および方法を用いて検出、同定、予測、診断またはモニターすることができる遺伝疾患の実例としては、がん、アルツハイマー病(APOE1)、シャルコー・マリー・トゥース病、レーバー遺伝性視神経萎縮症(LHON)、アンジェルマン症候群(UBE3A、ユビキチン-タンパク質リガーゼE3A)、プラダー・ウィリー症候群(15番染色体内の領域)、β-サラセミア(HBB、β-グロビン)、ゴーシェ病(I型)(GBA、グルコセレブロシダーゼ)、嚢胞性線維症(CFTR上皮クロライドチャネル)、鎌状赤血球症(HBB、β-グロビン)、テイ・サックス病(HEXA、ヘキソサミニダーゼA)、フェニルケトン尿症(PAH、フェニルアラニンヒドロリアーゼ)、家族性高コレステロール血症(LDLR、低密度リポタンパク質受容体)、成人型嚢胞腎(PKD1、ポリシスチン)、ハンチントン病(HDD、ハンチンチン)、神経線維腫症I型(NF1、NF1腫瘍抑制遺伝子)、筋強直性ジストロフィー(DM、ミオトニン)、結節性硬化症(TSC1、ツベリン)、軟骨無形成症(FGFR3、線維芽細胞増殖因子受容体)、脆弱X症候群(FMR1、RNA結合タンパク質)、デュシェンヌ型筋ジストロフィー(DMD、ジストロフィン)、血友病A(F8C、血液凝固第VIII因子)、レッシュ・ナイハン症候群(HPRT1、ヒポキサンチングアニンリボシルトランスフェラーゼ1)、および副腎白質ジストロフィー(ABCD1)が挙げられるが、これらに限定されない。
本明細書において企図される組成物および方法を用いて検出、同定、予測、診断またはモニターすることができるがんの実例としては、B細胞がん、例えば多発性骨髄腫、黒色腫、乳がん、肺がん(例えば、非小細胞肺癌またはNSCLC)、気管支がん、結腸直腸がん、前立腺がん、膵がん、胃がん(stomach cancer)、卵巣がん、膀胱がん、脳または中枢神経系のがん、末梢神経系のがん、食道がん、子宮頸がん、子宮または子宮内膜がん、口腔または咽頭のがん、肝臓がん、腎臓がん、精巣がん、胆道がん、小腸または虫垂がん、唾液腺がん、甲状腺がん、副腎がん、骨肉腫、軟骨肉腫、血液組織のがん、腺癌、炎症性筋線維芽細胞性腫瘍、消化管間質腫瘍(GIST)、結腸がん、多発性骨髄腫(MM)、骨髄異形成症候群(MDS)、骨髄増殖性疾患(MPD)、急性リンパ球性白血病(ALL)、急性骨髄性白血病(AML)、慢性骨髄性白血病(CML)、慢性リンパ球性白血病(CLL)、真正赤血球増加症、ホジキンリンパ腫、非ホジキンリンパ腫(NHL)、軟部組織肉腫、線維肉腫、粘液肉腫、脂肪肉腫、骨原性肉腫、脊索腫、血管肉腫、内皮肉腫、リンパ管肉腫、リンパ管内皮肉腫、滑膜腫、中皮腫、ユーイング腫瘍、平滑筋肉腫、横紋筋肉腫、扁平上皮癌、基底細胞癌、腺癌、汗腺癌、皮脂腺癌、乳頭癌、乳頭状腺癌、髄様癌、気管支原性肺癌、腎細胞癌、ヘパトーマ、胆管癌、絨毛癌、精上皮腫、胎児性癌、ウィルムス腫瘍、膀胱癌、上皮癌、神経膠腫、星細胞腫、髄芽腫、頭蓋咽頭腫、脳室上衣腫、松果体腫、血管芽細胞腫、聴神経腫瘍、乏突起神経膠腫、髄膜腫、神経芽細胞腫、網膜芽細胞腫、濾胞性リンパ腫、びまん性大細胞型B細胞性リンパ腫、マントル細胞リンパ腫、肝細胞癌、甲状腺がん、胃がん(gastric cancer)、頭頸部がん、小細胞がん、本態性血小板血症、原因不明の骨髄化生、好酸球増加症候群、全身性肥満細胞症、家族性過好酸球増加症、慢性好酸球性白血病、神経内分泌がん、カルチノイド腫瘍などが挙げられるが、これらに限定されない。
一実施形態では、遺伝子病変は、Cosmicデータベース(病変および配列データをcancer.sanger.ac.uk/cosmic/censusからダウンロードすることができる)でアノテーシ
ョンされている病変、またはCancer Genome Atlas(病変および配列データをtcga-data.nci.nih.gov/tcga/tcgaDownload.jspからダウンロードすることがで
きる)でアノテーションされている病変である。
本明細書において企図される組成物および方法を用いて検出、同定、予測、診断またはモニターすることができるがんに関連する1つまたは複数の遺伝子病変を有する遺伝子の実例としては、ABCB1、ABCC2、ABCC4、ABCG2、ABL1、ABL2、AKT1、AKT2、AKT3、ALDH4A1、ALK、APC、AR、ARAF、ARFRP1、ARID1A、ATM、ATR、AURKA、AURKB、BCL2、BCL2A1、BCL2L1、BCL2L2、BCL6、BRAF、BRCA1、BRCA2、Clorf144、CARD11、CBL、CCND1、CCND2、CCND3、CCNE1、CDH1、CDH2、CDH20、CDH5、CDK4、CDK6、CDK8、CDKN2A、CDKN2B、CDKN2C、CEBPA、CHEK1、CHEK2、CRKL、CRLF2、CTNNB1、CYP1B1、CYP2C19、CYP2C8、CYP2D6、CYP3A4、CYP3A5、DNMT3A、DOT1L、DPYD、EGFR、EPHA3、EPHA5、EPHA6、EPHA7、EPHB1、EPHB4、EPHB6、EPHX1、ERBB2、ERBB3、ERBB4、ERCC2、ERG、ESR1、ESR2、ETV1、ETV4、ETV5、ETV6、EWSR1、EZH2、FANCA、FBXW7、FCGR3A、FGFR1、FGFR2、FGFR3、FGFR4、FLT1、FLT3、FLT4、FOXP4、GATA1、GNA11、GNAQ、GNAS、GPR124、GSTP1、GUCY1A2、HOXA3、HRAS、HSP90AA1、IDH1、IDH2、IGF1R、IGF2R、IKBKE、IKZF1、INHBA、IRS2、ITPA、JAK1、JAK2、JAK3、JUN、KDR、KIT、KRAS、LRP1B、LRP2、LTK、MAN1B1、MAP2K1、MAP2K2、MAP2K4、MCL1、MDM2、MDM4、MEN1、MET、MITF、MLH1、MLL、MPL、MRE11A、MSH2、MSH6、MTHFR、MTOR、MUTYH、MYC、MYCL1、MYCN、NF1、NF2、NKX2-1、NOTCH1、NPM1、NQO1、NRAS、NRP2、NTRK1、NTRK3、PAK3、PAX5、PDGFRA、PDGFRB、PIK3CA、PIK3R1、PKHD1、PLCG1、PRKDC、PTCH1、PTEN、PTPN11、PTPRD、RAF1、RARA、RB1、RET、RICTOR、RPTOR、RUNX1、SLC19A1、SLC22A2、SLCO1B3、SMAD2、SMAD3、SMAD4、SMARCA4、SMARCB1、SMO、SOD2、SOX10、SOX2、SRC、STK11、SULT1A1、TBX22、TET2、TGFBR2、TMPRSS2、TNFRSF14、TOP1、TP53、TPMT、TSC1、TSC2、TYMS、UGT1A1、UMPS、USP9X、VHLおよびWT1が挙げられるが、これらに限定されない。
特定の実施形態では、遺伝子病変は、ヌクレオチドトランジションもしくはトランスバージョン、ヌクレオチド挿入もしくは欠失、ゲノム再編成、コピー数の変化、または遺伝子融合を含む。
一実施形態では、遺伝子病変は、ALK遺伝子の3’コード領域を別の遺伝子に融合させる遺伝子融合である。
一実施形態では、遺伝子病変は、ALK遺伝子の3’コード領域をEML4遺伝子に融合させる遺伝子融合である。
本明細書において企図される組成物および方法を用いて検出、同定、予測、診断またはモニターすることができる胎児試験に好適な状態の実例としては、ダウン症候群(トリソミー21)、エドワーズ症候群(トリソミー18)、パトー症候群(トリソミー13)、クラインフェルター症候群(XXY)、トリプルX症候群、XYY症候群、トリソミー8、トリソミー16、ターナー症候群(XO)、ロバートソン型転座、ディ・ジョージ症候群およびウォルフ・ヒルショルン症候群が挙げられるが、これらに限定されない。
本明細書において企図される組成物および方法を用いて検出、同定、予測、診断またはモニターすることができる親子鑑定に好適な対立遺伝子の実例は、D20S1082、D6S474、D12ATA63、D22S1045、D10S1248、D1S1677、D11S4463、D4S2364、D9S1122、D2S1776、D10S1425、D3S3053、D5S2500、D1S1627、D3S4529、D2S441、D17S974、D6S1017、D4S2408、D9S2157、アメロゲニン、D17S1301、D1GATA113、D18S853、D20S482およびD14S1434のうちの16またはそれ超を含むが、これらに限定されない。
本明細書において企図される組成物および方法を用いて検出、同定、予測、診断またはモニターすることができる薬物処置に対する応答の予測に好適な遺伝子の実例は、次の遺伝子の1つまたは複数を含むが、これらに限定されない:ABCB1(ATP結合カセット、サブファミリーB(MDR/TAP)、メンバー1)、ACE(アンジオテンシンI転換酵素)、ADH1A(アルコールデヒドロゲナーゼ1A(クラスI)、アルファポリペプチド)、ADH1B(アルコールデヒドロゲナーゼIB(クラスI)、ベータポリペプチド)、ADH1C(アルコールデヒドロゲナーゼ1C(クラスI)、ガンマポリペプチド)、ADRB1(アドレナリン作用性、ベータ-1-、受容体)、ADRB2(アドレナリン作用性、ベータ-2-、受容体、表面)、AHR(アリール炭化水素受容体)、ALDH1A1(アルデヒドデヒドロゲナーゼ1ファミリー、メンバーA1)、ALOX5(アラキドン酸5-リポキシゲナーゼ)、BRCA1(乳がん1、早期発症型)、COMT(カテコール-O-メチルトランスフェラーゼ)、CYP2A6(チトクロムP450、ファミリー2、サブファミリーA、ポリペプチド6)、CYP2B6(チトクロムP450、ファミリー2、サブファミリーB、ポリペプチド6)、CYP2C9(チトクロムP450、ファミリー2、サブファミリーC、ポリペプチド9)、CYP2C19(チトクロムP450、ファミリー2、サブファミリーC、ポリペプチド19)、CYP2D6(チトクロムP450、ファミリー2、サブファミリーD、ポリペプチド6)、CYP2J2(チトクロムP450、ファミリー2、サブファミリーJ、ポリペプチド2)、CYP3A4(チトクロムP450、ファミリー3、サブファミリーA、ポリペプチド4)、CYP3A5(チトクロムP450、ファミリー3、サブファミリーA、ポリペプチド5)、DPYD(ジヒドロピリミジンデヒドロゲナーゼ)、DRD2(ドーパミン受容体D2)、F5(凝固第V因子)、GSTP1(グルタチオンS-トランスフェラーゼパイ)、HMGCR(3-ヒドロキシ-3-メチルグルタリル補酵素Aレダクターゼ)、KCNH2(カリウム電位依存性チャネル、サブファミリーH(eag関連)、メンバー2)、KCNJ11(内向き整流性カリウムチャネル、サブファミリーJ、メンバー11)、MTHFR(5,10-メチレンテトラヒドロ葉酸レダクターゼ(NADPH))、NQO1(NAD(P)Hデヒドロゲナーゼ、キノン1)、P2RY1(プリン受容体P2Y、Gタンパク質結合型、1)、P2RY12(プリン受容体P2Y、Gタンパク質結合型、12)、PTGIS(プロスタグランジンI2(プロスタサイクリン)シンターゼ)、SCN5A(ナトリウムチャネル、電圧依存性、V型、アルファ(QT延長症候群3))、SLC19A1(溶質輸送体ファミリー19(葉酸トランスポーター)、メンバー1)、SLCO1B1(溶質輸送体有機アニオントランスポーターファミリー、メンバー1B1)、SULT1A1(スルホトランスフェラーゼファミリー、サイトゾル性、1A、フェノール選択性、メンバー1)、TPMT(チオプリンS-メチルトランスフェラーゼ)、TYMS(チミジル酸シンセターゼ)、UGT1A1(UDPグルクロノシルトランスフェラーゼ1ファミリー、ポリペプチドA1)、VDR(ビタミンD(1,25-ジヒドロキシビタミンD3)受容体)、VKORC1(ビタミンKエポキシドレダクターゼ複合体、サブユニット1)。
本明細書において企図される組成物および方法を用いて検出、同定、予測、診断またはモニターすることができる病状の実例としては、脳卒中、一過性虚血発作、外傷性脳損傷、心疾患、心臓発作、狭心症、アテローム動脈硬化症および高血圧が挙げられるが、これらに限定されない。
本明細書において企図される組成物および方法を用いてスクリーニングすることができる病原体の実例としては、細菌、真菌およびウイルスが挙げられるが、これらに限定されない。
本明細書において企図される組成物および方法を用いてスクリーニングすることができる細菌種の実例としては、Mycobacterium spp.、Pneumococcus spp.、Escherichia spp.、Campylobacter spp.、Corynebacterium spp.、Clostridium spp.、Streptococcus spp.、Staphylococcus spp.、Pseudomonas spp.、Shigella spp.、Treponema spp.、またはSalmonella spp.が挙げられるが、これらに限定されない。
本明細書において企図される組成物および方法を用いてスクリーニングすることができる真菌種の実例としては、Aspergillis spp.、Blastomyces
spp.、Candida spp.、Coccicioides spp.、Cryptococcus spp.、皮膚糸状菌、Tinea spp.、Trichophyton spp.、Microsporum spp.、Fusarium spp.、Histoplasma spp.、Mucoromycotina spp.、Pneumocystis spp.、Sporothrix spp.、Exserophilum spp.またはCladosporium spp.が挙げられるが、これらに限定されない。
本明細書において企図される組成物および方法を用いてスクリーニングすることができるウイルスの実例としては、A型インフルエンザ、例えばH1N1、H1N2、H3N2およびH5N1(鳥インフルエンザ)、B型インフルエンザ、C型インフルエンザウイルス、A型肝炎ウイルス、B型肝炎ウイルス、C型肝炎ウイルス、D型肝炎ウイルス、E型肝炎ウイルス、ロタウイルス、ノーウォークウイルス群のあらゆるウイルス、腸内アデノウイルス、パルボウイルス、デング熱ウイルス、サルポックス、モノネガウイルス、ラッサウイルス、例えば狂犬病ウイルス、ラゴスコウモリウイルス、モコラウイルス、ドゥベンヘイジウイルス、ヨーロッパコウモリウイルス1および2ならびにオーストラリアコウモリウイルス、エフェメロウイルス、ベシクロウイルス、水疱性口内炎ウイルス(VSV)、ヘルペスウイルス、例えば単純ヘルペスウイルス1および2型、水痘帯状疱疹、サイトメガロウイルス、エプスタイン・バーウイルス(EBV)、ヒトヘルペスウイルス(HHV)、ヒトヘルペスウイルス6および8型、モロニーマウス白血病ウイルス(M-MuLV)、モロニーマウス肉腫ウイルス(MoMSV)、ハーベイマウス肉腫ウイルス(HaMuSV)、マウス乳癌ウイルス(MuMTV)、テナガザル白血病ウイルス(GaLV)、ネコ白血病ウイルス(FLV)、スプーマウイルス、フレンドマウス白血病ウイルス、マウス幹細胞ウイルス(MSCV)およびラウス肉腫ウイルス(RSV)、HIV(ヒト免疫不全ウイルス;HIV1型およびHIV2型を含む)、ビスナ・マエディウイルス(VMV)ウイルス、ヤギ関節炎脳炎ウイルス(CAEV)、ウマ伝染性貧血ウイルス(EIAV)、ネコ免疫不全ウイルス(FIV)、ウシ免疫不全ウイルス(BIV)およびサル免疫不全ウイルス(SIV)、パピローマウイルス、マウスガンマヘルペスウイルス、アレナウイルス、例えばアルゼンチン出血熱ウイルス、ボリビア出血熱ウイルス、サビア関連出血熱ウイルス、ベネズエラ出血熱ウイルス、ラッサ熱ウイルス、マチュポウイルス、リンパ球性脈絡髄膜炎ウイルス(LCMV)、Bunyaviridiae、例えばクリミア・コンゴ出血熱ウイルス、ハンタウイルス、腎症候性出血熱原因ウイルス、リフトバレー熱ウイルス、Filoviridae(フィロウイルス)(エボラ出血熱およびマールブルグ出血熱を含む)、Flaviviridae(キャサヌル森林病ウイルス、オムスク出血熱ウイルス、マダニ媒介脳炎原因ウイルスを含む)、ならびにParamyxoviridae、例えばヘンドラウイルスおよびニパウイルス、大痘瘡および小痘瘡(天然痘)、アルファウイルス、例えばベネズエラウマ脳炎ウイルス、東部ウマ脳炎ウイルス、西部ウマ脳炎ウイルス、SARS関連コロナウイルス(SARS-CoV)、西ナイルウイルスおよび任意の脳炎原因ウイルスが挙げられるが、これらに限定されない。
本明細書において企図される組成物および方法を用いて検出、同定、予測、診断またはモニターすることができる移植レシピエントにおける臓器移植のモニタリングに好適な遺伝子の実例は、次の遺伝子の1つまたは複数を含むが、これらに限定されない:HLA-A、HLA-B、HLA-C、HLA-DR、HLA-DPおよびHLA-DQ。
特定の実施形態では、バイオインフォマティック解析は、cfDNAクローンライブラリー中の解析されるゲノム当量の数を定量するために、標的遺伝子座位の遺伝子バリアントを検出するために、標的遺伝子座位内の変異を検出するために、標的遺伝子座位内の遺伝子融合を検出するために、または標的遺伝子座位内のコピー数増減を測定するために使用される。
E.コンパニオン診断
様々な実施形態では、遺伝疾患のコンパニオン診断であって、対象の生体試料からcfDNAを単離するまたは得るステップ、cfDNAを1つまたは複数の末端修復酵素で処置して末端修復cfDNAを生成するステップ、末端修復cfDNAの各末端に1つまたは複数のアダプターをライゲーションしてcfDNAライブラリーを生成するステップ、cfDNAライブラリーを増幅させてcfDNAクローンライブラリーを生成するステップ、cfDNAクローンライブラリー中のゲノム当量の数を決定するステップ、およびcfDNAクローンライブラリー中の遺伝疾患に関連する1つまたは複数のバイオマーカーの定量的遺伝子解析を行うステップを含み、1つまたは複数のバイオマーカーの少なくとも1つの検出、または検出できないことが、対象を遺伝疾患について処置すべきかどうかを示す、コンパニオン診断が提供される。
本明細書で使用する場合、用語「コンパニオン診断」は、特定の抗がん療法に結びつけられる診断検査を指す。特定の実施形態では、これらの診断方法は、生体試料中の関連するバイオマーカーに関する遺伝子病変の検出を含み、それによって抗がん療法で処置すべきまたはすべきでない患者の迅速な同定が可能になる。
抗がん療法は、外科手術、放射線、化学療法薬、抗がん薬および免疫調節薬を含むが、これらに限定されない。
抗がん薬の実例としては、アルキル化剤、例えば、チオテパおよびシクロホスファミド(CYTOXAN(商標));アルキルスルホン酸、例えばブスルファン、インプロスルファンおよびピポスルファン;アジリジン、例えば、ベンゾドーパ、カルボコン、メツレドーパおよびウレドーパ;エチレンイミンおよびメチルメラミン(methylamelamines)(アルトレタミン、トリエチレンメラミン、トリエチレンホスホラミド、トリエチレンチオホスホラミドおよびトリメチロールメラミン(trimethylolomelamine)レジュメを含む);ナイトロジェンマスタード、例えば、クロラムブシル、クロルナファジン、コロホスファミド、エストラムスチン、イホスファミド、メクロレタミン、メクロレタミンオキシド塩酸塩、メルファラン、ノベムビチン、フェネステリン、プレドニムスチン、トロホスファミド、ウラシルマスタード;ニトロソウレア、例えば、カルムスチン、クロロゾトシン、ホテムスチン、ロムスチン、ニムスチン、ラニムスチン;抗生物質、例えば、アクラシノマイシン(aclacinomysins)、アクチノマイシン、アントラマイシン(authramycin)
、アザセリン、ブレオマイシン、カクチノマイシン、カリケアマイシン、カラビシン、カルミノマイシン、カルジノフィリン、クロモマイシン、ダクチノマイシン、ダウノルビシン、デトルビシン、6-ジアゾ-5-オキソ-L-ノルロイシン、ドキソルビシンおよびそのPEG化製剤、エピルビシン、エソルビシン、イダルビシン、マルセロマイシン、マイトマイシン、ミコフェノール酸、ノガラマイシン、オリボマイシン、ペプロマイシン、ポトフィロマイシン、ピューロマイシン、クエラマイシン、ロドルビシン、ストレプトニグリン、ストレプトゾシン、ツベルシジン、ウベニメクス、ジノスタチン、ゾルビシン;代謝拮抗薬、例えば、メトトレキサートおよび5-フルオロウラシル(5-FU);葉酸類似体、例えば、デノプテリン、メトトレキサート、プテロプテリン、トリメトレキサート;プリン類似体、例えば、フルダラビン、6-メルカプトプリン、チアミプリン、チオグアニン;ピリミジン類似体、例えば、アンシタビン、アザシチジン、6-アザウリジン、カルモフール、シタラビン、ジデオキシウリジン、ドキシフルリジン、エノシタビン、フロクスウリジン、5-FU;アンドロゲン、例えば、カルステロン、プロピオン酸ドロモスタノロン、エピチオスタノール、メピチオスタン、テストラクトン;抗副腎薬(anti-adrenals)、例えば、アミノグルテチミド、ミトタン、トリロスタン;葉酸補充薬、例
えば、フォリン酸(frolinic acid);アセグラトン;アルドホスファミドグリコシド;アミノレブリン酸;アムサクリン;ベストラブシル;ビスアントレン;エダトレキサート(edatraxate);デフォファミン;デメコルシン;ジアジコン;エルフォルミチン;酢酸エリプチニウム;エトグルシド;硝酸ガリウム;ヒドロキシウレア;レンチナン;ロニダミン;ミトグアゾン;ミトキサントロン;モピダモール;ニトラクリン;ペントスタチン;フェナメット;ピラルビシン;ポドフィリン酸;2-エチルヒドラジド;プロカルバジン;PSK(登録商標);ラゾキサン;シゾフィラン;スピロゲルマニウム;テヌアゾン酸;トリアジコン;2,2’,2”-トリクロロトリエチルアミン;ウレタン;ビンデシン;ダカルバジン;マンノムスチン;ミトブロニトール;ミトラクトール;ピポブロマン;ガシトシン;アラビノシド(「Ara-C」);シクロホスファミド;チオテパ;タキソイド、例えば、パクリタキセル(TAXOL(登録商標)、Bristol-Myers Squibb Oncology、Princeton、N.J.)およびドセタキセル(doxetaxel)(TAXOTERE(登録商標)、Rhne-Poulenc Ro
rer、Antony、France);クロラムブシル;ゲムシタビン;6-チオグアニン;メルカプトプリン;メトトレキサート;白金類似体、例えば、シスプラチンおよびカルボプラチン;ビンブラスチン;白金;エトポシド(VP-16);イホスファミド;マイトマイシンC;ミトキサントロン;ビンクリスチン;ビノレルビン;ナベルビン;ノバントロン;テニポシド;アミノプテリン;ゼローダ;イバンドロネート;CPT-11;トポイソメラーゼ阻害剤RFS 2000;ジフルオロメチルオルニチン(difluoromethylomithine)(DMFO);レチノイン酸誘導体、例えば、Targretin(商標)(ベキサロテン)、Panretin(商標)(アリトレチノイン);ONTAK(商標)(デニロイキンジフチトクス);エスペラミシン;カペシタビン;ならびに上記のいずれかの薬学的に許容される塩、酸または誘導体が挙げられるが、これらに限定されない。がんに対するホルモン作用を調節または阻害するように作用する抗ホルモン剤、例えば、抗エストロゲン剤、例えば、タモキシフェン、ラロキシフェン、4(5)-イミダゾールを阻害するアロマターゼ、4-ヒドロキシタモキシフェン、トリオキシフェン、ケオキシフェン、LY117018、オナプリストン、およびトレミフェン(フェアストン)など;ならびに抗アンドロゲン剤、例えば、フルタミド、ニルタミド、ビカルタミド、ロイプロリドおよびゴセレリン;ならびに上記のいずれかの薬学的に許容される塩、酸または誘導体もこの定義に含まれる。
免疫調節薬の実例としては、シクロスポリン、タクロリムス、トレスペリムス、ピメクロリムス、シロリムス、ベロリムス、ラフルニムス、ラキニモドおよびイミキモド、ならびにこれらの類似体、誘導体、塩、イオンおよび複合体が挙げられるが、これらに限定されない。
本明細書に引用されているすべての出版物、特許出願および発行特許は、個々の出版物、特許出願または発行特許各々が参照により組み入れられていると具体的にかつ個々に示されているかのごとく、参照により本明細書に組み入れられている。
上述の発明は、理解を明確にする目的で説明および例としてある程度詳細に記載されているが、本発明の教示を考慮して、添付の特許請求の範囲の趣旨または範囲を逸脱することなく、ある特定の変更および改変をそこに加えることができることは、当業者には容易に明らかであろう。以下の実施例は、単に説明として与えるものであり、限定として与えるものではない。当業者は、本質的に同様の結果が得られるように変更または改変することができる、様々な重要性の低いパラメータに容易に気付くであろう。
(実施例1)
標的化配列捕捉技術を使用する低頻度変異の正確な検出
目的
本実験の目的は、標的化配列捕捉技術を使用する低頻度バリアント検出の原理証明を直接実証することであった。
背景
標的配列捕捉技術は、核酸の定量的な配列ベースの遺伝子解析をもたらし、この技術を活用して、薬物代謝遺伝子の変異数とコピー数の組合せ解析を行うことができる。本発明者らは、標的化配列捕捉技術およびその後の遺伝子解析を使用して、低頻度配列バリアントを検出した。
ゲノムDNAインプットは、低頻度バリアント検出に中心的な役割を果たすが、ゲノムインプットの定量的解析および制御によって、低頻度バリアント解析の推定感度の限界値がおかれる。本発明者らはゲノムインプットを推定するためにゲノムqPCRアッセイを使用した。
低頻度バリアント解析の1つの実験目標は、アッセイの標的感度に対して10倍多いゲノムインプットの導入である。言い換えると、1%(100中1)の感度でバリアントを測定するためには、実験標的は、1000ゲノムのインプットとなる。シークエンシングの下流でバイオインフォマティクス解析がユニークリード数を明らかにし、これは、ゲノムインプットの直交的測定とより直接的な測定の両方であるという望ましい品質を有する。
概要
SNVが既知である細胞株(ZR75-30)と生殖系列DNA試料(NA12878)とを1対1~1対1000の範囲の希釈系列で混合した。既知の配列差に対応する標的領域を、標的化配列捕捉技術を使用して検索し、シークエンシングした。1000配列につき1未満の頻度で発生する配列バリアントを検出した。
方法
捕捉プローブ
次の表は、この実験で使用した一群の62捕捉プローブを示す。
Figure 0007441584000001
Figure 0007441584000002
Figure 0007441584000003
捕捉プローブモジュールをストックプレートからプールし、パートナーオリゴ#138(配列番号63)(GTGAAAACCAGGATCAACTCCCGTGCCAGTCACAT/3BioTEG/)と併せ、1nMの最終作業濃度に希釈した。
ゲノム試料
生殖系列試料NA12878および細胞株ZR75-30からの商業的に購入したゲノムDNAを、Covaris超音波処理装置で、10~20ng/μlの濃度で500bpの標的断片サイズに断片化した。そのDNAを1:1濃度のDNA精製ビーズで精製し、New England Biolabs(NEB)Quick bluntキットを使用して15~30ng/μLの最終濃度で末端修復した。生殖系列DNAと細胞株DNAをそれぞれ1:1、10:1、100:1および1000:1の比でブレンドした。ライブラリーを構築し、精製し、定量した。ライブラリー構築に使用した試料コード、ライブラリー定量およびインプットを表2に示す。
Figure 0007441584000004
ゲノムライブラリーをプールし、変性させ、プローブと併せ、ハイブリダイズし、洗浄した。洗浄した捕捉プローブ-タグ付きゲノムライブラリー複合体をフォワードおよびリバース完全長プライマーで増幅させ、精製し、Pippin-prep装置で225~600bp断片をサイズ選択した。最後に、150-V3 Illuminaシークエンシングキットを使用して、捕捉された物質をシークエンシングした。
結果
BRAF(2つの座位で)、MYCNおよびCDH1を標的にする対の捕捉プローブを使用して、これらの座位におけるSNVを解析した。結果を表3に示す。
Figure 0007441584000005
Figure 0007441584000006
縦列3は、ユニークリード数の総数を示し、そしてまたその数によってアッセイの感度における限界値が提供される。推定および測定ゲノムインプットは、十分に互いの範囲内であった。薄い影を付けたボックスは、細胞株配列が生殖系列配列とは異なっていたSNVを強調する。表の右の部分に示した、ユニークリードのフィルタリング不在下では、これら4つの選択位置で、測定可能な、非ゼロ頻度の、ランダムな塩基変化が発生した。図1。変化がユニークリードファミリー内で発生することを要求することにより、間違いの元となるノイズから真のシグナルを選別することが可能になった。図2。
(実施例2)
高度に断片化されたgDNA内の標的領域の包括的シークエンシングに有効な新規プローブ設計
目的
これらの実験の目的は、循環DNAを確実にかつ再現可能に調べるためのアッセイシステムを開発することである。
背景
体液からの循環DNAの解析は、分子診断の胸の高鳴るような、しかしまだ実現されていない機会を意味する。ゲノムDNAは、非常にインタクトである。文献は、循環DNAの平均サイズが、単一ヌクレオソームヒストン複合体に巻き付いているDNAのサイズに十分に相関する約150bpであることを示唆している。
概要
本明細書において企図される標的化配列捕捉技術の技術パラメータは、高度に断片化されたDNAに対応するように、および標的化DNAの広範囲にわたる配列カバレッジを生じさせる能力を保持するように設計した。捕捉プローブ密度を増加させ、捕捉プローブ配列の長さを60ヌクレオチドから40ヌクレオチドに短縮して、クローンライブラリーにおける情報価値のない配列の生成を最小にした。ヒトゲノムには、反復配列、および塩基組成の極端な増減が多く存在するので、より高い捕捉プローブ密度およびより短い捕捉プローブを実装することの適切性は認められておらず、この新規アッセイの実験による検証を要した。
より短い40mer捕捉プローブ配列が信頼性のある頑強なアッセイ性能を示す条件を確立した。実験の第1のセットでは、アッセイを使用して、2つの大きな領域-腫瘍抑制遺伝子TP53のコード領域とALKがん遺伝子の長い連続する第19イントロン(これらの両方ががん診断の中核をなすものである)-を照会した。実験の第2のセットでは、より短い40ヌクレオチド捕捉プローブ配列を有する、いくつかの高密度の対での捕捉プローブを使用して、NCI-H69細胞株中に存在する既知のSNVを調べた。
この新規の高密度でより短い捕捉プローブを使用して短い断片化DNAの照会に成功し、結果は、このアッセイ設計が血液の血漿画分において見いだされる循環DNAのシークエンシングによく適していることを示した。
方法-改変型40mer捕捉プローブ
40mer捕捉プローブの性能を実験により検証するために使用した捕捉プローブ配列を表4に示す。
Figure 0007441584000007
Figure 0007441584000008
Figure 0007441584000009
Figure 0007441584000010
Figure 0007441584000011
40mer捕捉プローブの性能を60mer捕捉プローブのものと比較した。60merの5’末端から20ヌクレオチド除去することによって、60merから40merを設計した。両方の捕捉プローブセットの3’末端は、捕捉されたゲノムクローンからコピーされる配列に関して同一であるが、プローブ配列シグネチャー(対合末端リードのリード2)は、60merプローブセットと40merプローブセット間で異なる。この設計は、捕捉プローブをシークエンシング中に多重化することが可能であり、その後、それらの性能を下流のバイオインフォマティクスデコンボリューション(deconvolution)中に
解析することが可能であるので、有用である。
ゲノム試料
12のゲノムDNA試料(112ヒトゲノムDNAのCoriellヒトパネルから選択したもの)のプールを標的DNAとして使用した。それらの12試料を、表5に詳細に示すように各々が試料4つの4セットに分けた。
Figure 0007441584000012
ハイブリダイゼーション、洗浄およびシークエンシング
6つの異なるハイブリダイゼーション条件を使用して、60merおよび40merプローブをゲノム標的DNAにハイブリダイズした:
1)60merプローブを50℃で洗浄
2)40merプローブを50℃で洗浄
3)60merプローブを47℃で洗浄
4)40merプローブを47℃で洗浄
5)60merプローブを44℃で洗浄
6)40merプローブを44℃で洗浄。
実験ごとに、捕捉プローブオリゴをパートナーオリゴと併せた。二本鎖捕捉プローブの最終濃度は、各捕捉プローブについて1nMであった。
各ハイブリダイゼーション反応は、全体積40μl中に約2.5μgのゲノムライブラリーを有した。各試料を2分間、98℃に加熱し、次いで、氷で冷却した。20μlの捕捉プローブおよび90μlのハイブリダイゼーションバッファーを添加し、そのハイブリダイゼーション混合物を、80℃で出発して48分ごとに1度低下させて50℃にする24時間のインキュベーションに付した。複合体を全体積1mLのTEzeroバッファー+0.05%Tween20(TT)中の20ulのストレプトアビジンビーズと結合させた。ビーズを200ulのTTで各々5分間、3回洗浄し、45℃で5分間、洗浄バッファー中で1回洗浄した。次いで、ビーズをTEzeroで洗浄し、反応ごとに20μl
TEzeroに再懸濁させた。次いで、複合体を、完全長フォワード(ACA2_FLFP;配列番号152;AATGATACGGCGACCACCGAGATCTACACGTCATGCAGGACCAGAGAATTCGAATACA)および完全長リバース(CAC3_FLRP;配列番号153;CAAGCAGAAGACGGCATACGAGATGTGACTGGCACGGGAGTTGATCCTGGTTTTCAC)プライマーでPCR増幅させた。
増幅および精製後、得られた産物の質量を測定し、等しい質量をシークエンシングのためにプールした。
結果-改変型40merプライマー
長さおよび洗浄温度の関数として捕捉プローブ性能を図3に図示する。全体として、40mer捕捉プローブは、44℃および47℃洗浄で60mer捕捉プローブと同様によく機能した。50℃洗浄では、40mer捕捉プローブは散発的な挙動を示す。これらのデータは、これらの試薬を使用する場合の40mer捕捉プローブおよび44℃~47℃の範囲の洗浄温度の使用を実験により検証するものである。
方法-高密度40mer
一般に、配列捕捉プローブは、特異的「規則」を使用して設計する。例えば、冗長配列の領域、または極度の塩基組成の偏りを示す領域を一般に避ける。高いプローブ密度および標的領域に沿った近いプローブ間隔の要件の1つの重要な含意は、あらゆるそのようなプローブ設計規則に対応するためにプローブを移動させる許容範囲が殆どまたは全くないことである。この研究では、プローブを、プローブ結合配列を一切考慮せずに、互いに対するそれらの位置にのみ基づいて設計したため、この高密度アプローチの使用は、ハイブリダイゼーション方法および処理方法がそのような一群のプローブに対応することを実験により検証することを必要とする。
ヒトALK遺伝子は、早期発生に重要なプロテインキナーゼをコードするが、正常なALK遺伝子発現は、正常な成人では本質的に検出できない。発がん性ALK融合体は、ALKの第19イントロンが、ALKのキナーゼコード部分を別の遺伝子の5’末端に融合させる非正統組換えを受けたとき生成される。そのような遺伝子融合体は、ALKキナーゼの異所性発現を引き起こすことが多く、そしてまたこの異所性発現は、肺腫瘍で観察される不適切な細胞増殖の駆動に重要である。肺がんの場合、この「他の遺伝子」はEML4であることが多いが、他の融合パートナーも検出されている。可能性のあるあらゆるALK遺伝子融合事象を検出することができるアッセイを作成するために、ALKの第19イントロンに80ヌクレオチド間隔で配置される40ヌクレオチドプローブを設計した。これらのプローブを遺伝子に対してアンチセンスになるように配向させた(図4)。これは、それらの3’末端が伸長し、それらのハイブリダイゼーション部位に対して5’にある遺伝子領域をコピーすることを意味する。融合遺伝子が存在する場合、融合ジャンクション付近に位置するプローブからのプローブ伸長は、ジャンクション配列をコピーする。これらのジャンクションクローンから得られるDNA配列は、それらの5’末端に融合パートナー配列を有し、融合ジャンクション配列を有し、そしてそれらの3’末端にALK第19イントロン配列を有する(図4B)。
がんにおけるもう1つの重要な診断標的は、TP53遺伝子である。この遺伝子は、腫瘍抑制因子をコードし、がんにおいて、多くの場合、変異によって不活性化される。遺伝子機能を不活性化することができる変異はこの遺伝子全体にわたって散在するので、TP53不活性化変異についての配列ベースの包括的アッセイは、この遺伝子の全コード領域および非翻訳領域(UTR)に対処しなければならない。循環DNA断片は短いので、高密度プローブを使用してTP53遺伝子のすべての標的領域を調べた。ALKとは異なり、TP53についてのプローブを可能性のある両方の配向で配置する(図5)。高いプローブ密度では、複数のプローブからの累積カバレッジが標的領域の均一な深いシークエンシングカバレッジをもたらす。
この研究に使用した一連の105プローブを表6に示す。ALKの融合しやすい領域およびTP53のコード領域を標的にするプローブに加えて、細胞株DNAにおける既知のSNVを包括するプローブも含めた。
Figure 0007441584000013
Figure 0007441584000014
Figure 0007441584000015
Figure 0007441584000016
Figure 0007441584000017
ゲノム試料
ゲノムDNAの3つの試料を解析した:
1)生殖系列試料NA 06994 - Coriellレポジトリから得た正常ヒト試料、
2)がん細胞株NCI-H69 - TP53に変異があり、MYCN座位の増幅があり、標的プローブセット内に含めたALDH4A1、BRCA1、BRCA2、CDKN2A、DPYD、EPHX1、MYC、RB1およびTNFRSF14にSNVがあることが既知の細胞株、
3)がん細胞株ZR-75-1、この細胞株はEML4-ALK融合遺伝子を有することが報告されている(Linら、Mol.Cancer Res.、7巻(9号):1466頁、2009
年)。
DNAシークエンシングライブラリーは、一般に、共有DNA断片から構築される。音響分解を使用して、サイズが200~>500bpの範囲であるDNA断片を生成した。ヌクレオソームの約150bp断片で構成されていると考えられる循環DNAを模倣する目的で、音響によって断片化されたDNAの酵素的断片化を行った。簡単に言うと、20~40ng/μlのDNAを200bp設定で超音波処理し、サイズが150bp~400bpの範囲である広いスメアの断片を得た。0.01および0.02μlのDNAse酵素(New England Biolabs組換えウシDNAse)をDNAseバッファー(10mM Tris pH8.0、2.5mM MnCl、0.5mM CaCl)中のDNAの50μlアリコートに添加することによって、DNAをさらに断片化した。DNAse反応を37℃で10分間インキュベートし、0.5M EDTAを25mMの最終濃度まで添加することで反応を停止させた。150bpの平均サイズを有するDNAを、最初に0.9体積のビーズを1体積のDNAに添加することにより「両側」ビーズ選択によって精製した。ビーズは望ましくないより大きい断片に結合するので、それらのビーズを廃棄し、追加の1.6体積のビーズをその上清に添加する。次いで、結合物質を精製し、定量する。ライブラリー構築に使用した、結果として生じた高度に断片化された短いDNAのアガロースゲルを図6に示す。
断片化されたDNAを、NEBからのQuick Bluntキットを使用して末端修復し、表7に示す比でブレンドした。次いで、10ナノグラムのブレンドDNAを、表7に示す配列を有するアダプターにライゲーションした。混合物9および15については、各々10ngを用いる2回のライゲーション反応を行い、その後、プールした。混合物16については、4回の反応を行った。qPCRアッセイを使用する各ライブラリーへのゲノムインプットの推定値も表7に示す。
Figure 0007441584000018
Figure 0007441584000019
標的化シークエンシング
表7に示した16のDNAライブラリー各々の1マイクログラムをプールし、160μLの最終体積になるように調整した。8つの同一の20μLアリコートを98℃で変性させ、氷上で冷却し、1nM/プローブでの20μLのプローブ(表6)と50μLのCF
hybバッファーとを添加した。試料を24時間、80℃~50℃でアニールし、洗浄し、増幅させた。結果として生じた捕捉され処理された断片の増幅後、175~400bpのサイズ選択でPippin Prep(商標)装置を使用して最終シークエンシングライブラリーをサイズ選択した。150リードV3キットを使用してIllumina MiSeqでライブラリーをシークエンシングした。
結果
位置に基づいて選択した高密度捕捉プローブの標的配列に関する捕捉プローブ性能をモニターした。各捕捉プローブの性能のグラフ表示を図7に示す。これらのデータは、
1)位置拘束によって厳密に選択したすべての捕捉プローブによってオンターゲット配列情報が得られたこと、
2)大部分の捕捉プローブがオフターゲットのマッピング不能なリード捕捉を殆ど示さないこと、および
3)有用なオンターゲットリードの収量が実質的に均一であったこと
を立証する。
大きな割合のオフターゲットでマッピング不能なリードを捕捉した捕捉プローブをさらに解析した。これらの捕捉プローブは、一般に、低い配列複雑度/高い配列冗長性の領域に位置した。しかし、ここで、そのような捕捉プローブは、シークエンシング深度に有意な有害な影響を与えなかった。なぜなら、高レベルのプローブ冗長性(高密度プローブ)は、いくつかのプローブに由来するリードによってすべての領域が包括されることを意味するからである。正味の効果は、カバレッジの優れた均一性であった。例えば、図8、40mer捕捉プローブを使用するTP53遺伝子のプローブカバレッジを参照されたい。
結論
総合すると、これらのデータは、(捕捉洗浄温度を調整すると)プローブ性能の識別可能な損失が殆どまたは全くなく捕捉プローブ長を60ヌクレオチドから40ヌクレオチドに短縮することができることを立証する。これらのデータは、プローブ設計が位置拘束に従うことができ、一般に配列関係および組成を無視してもよいことも示す。この方法論が、あまりよく機能しないこともあるプローブを生じさせたとしても、近いプローブ間隔での高い冗長性は、個々のプローブの欠損を補って余りある。
(実施例3)
循環DNAの遺伝子解析
目的
この実施例の目的は、cfDNAおよび標的検索システムの効率的クローニング手順を使用してcfDNAの遺伝子解析を評価することであった。
背景
科学および医療団体の「リキッドバイオプシー」-潜在的疾患状態に関連するマーカーについての循環DNA(cfDNA)の解析-に対する意気込みはとてつもなく大きいが、この潜在的分析物についての実際の情報は著しく少ない。
概要
健常ドナーおよび卵巣がんまたは結腸がんのどちらか一方に罹患している個体から採取した血漿試料を使用して、循環DNAの遺伝子解析を行った。循環cfDNAの量および全般的特徴は、個体によって大きく異なりうる。驚くべきことに、本発明者らは、cfDNAを高度に精製された断片化ゲノムDNAと区別できない効率で容易にクローニングすることができること、断片サイズが(7/8試料で)170±10bpの平均クローンインサートサイズで顕著に一致していたこと、およびそのような試料からのゲノム提示が均一であり、精製gDNAを使用して行った実験と同等であったことを見いだした。ユニークリードを計数することによって、各ライブラリーにおける提示の深度により、罹病患者のcfDNA中に存在する腫瘍マーカーについての小さい対立遺伝子頻度の推定値が得られることをさらに確証した。この研究は、本明細書において企図される組成物および標的検索システムがcfDNAの定量的遺伝子解析に有効に適用されることを確証した。
方法
DNA精製
8セットの血漿試料をProteogenex,Inc.、Culver City、CAから購入した(表8)。QiagenからのCirculating Nucleic Acid Purificationキットを使用して循環DNAを試料から(別々に2回)抽出した。遠心分離を使用して試料をDNA miniカラムに通した。検体IDおよびDNAの収量を表8に示す。
Figure 0007441584000020
ライブラリー構築
4mLの血漿からの精製DNAを100μlの溶出バッファーに採取した。結腸がん患者(CRC)から採取した4つの試料について、DNAを半分に分け、各患者からの50μlアリコート1つを超音波処理して200bpにした。未処置cfDNAの50μlアリコート1つおよび各患者(各患者からの全試料)からの50μl断片化cfDNA1つを、
・6μlの10X quick bluntバッファー(New England Biolabs(NEB))
・0.6μlの10mM dNTP
・2.4μlのquick blunt酵素ミックス
・1.2μlのPreCR酵素ミックス
を(試料ごとに)添加することによって末端修復した。
試料を20℃で30分間および70℃で10分間インキュベートした。
・60μl 末端修復cfDNA
・12μl アダプター二本鎖(10μM)
・10μl 10X リガーゼバッファー(NEB)
・15μl 50%PEG8000
・3μl HC T4 DNAリガーゼ
を併せることによってアダプター(表2)とのライゲーションを行った。
Figure 0007441584000021
反応物を22℃で1時間および65℃で10分間インキュベートした。ライゲーション産物を、100μlのビーズの添加、洗浄および40μlのTEzeroでの溶出によって精製した。40μlのライゲーション産物すべてをプライマーACA2(配列番号283)でのPCRによって増幅させ、標的化捕捉のために同質量で併せた。
標的化配列捕捉およびシークエンシング
4つの非断片化および4つの断片化結腸血漿試料(図9C)を、TP53、ALKを特に標的にする本発明者らの高密度、40ヌクレオチドプローブセットとハイブリダイズした。上の実施例2で説明したように捕捉複合体を処理した。
結果
ライブラリーの外観
50ngの各ライブラリーを負荷した2%アガロースゲルの着色写真を図9Aに示す。平均断片サイズは、260±20bpの狭い範囲であった。これらのデータは、cfDNAのクローニング可能画分が主にヌクレオソーム断片として存在することを示した。加えて、cfDNAライブラリーのサイズは、cfDNAライブラリーがアダプター配列の付加によってより高い質量にシフトしたことを除いて、腎臓透析患者のcfDNA(Atamaniukら、Clinical Chemistry 52巻(3号):523~26頁(2006年))と同じ基本的表面外観を有した(図9B)。対照的に、cfDNAライブラリーは、広いスメアとして現れる超音波処理したgDNAライブラリーとは劇的に異なっていた。
cfDNAライブラリーの追加の4セットを、2つの卵巣がん患者血漿試料および健常ボランティアからの2つの血漿試料から構築した。50μlの全体積中、38μlのcfDNAアリコートを末端修復した。ライゲーションは、40μlの末端修復断片、16μlのアダプター(10μM)、8ulの10Xリガーゼバッファー、16μlの50%PEGおよび4μlのHC T4 DNAリガーゼを80μlの全体積で含んだ。ライゲーション反応を20℃で1時間および65℃で10分間インキュベートした。精製のために、20μlのTEzeroおよび150μlのビーズを添加した。精製されたライゲーション産物を40μlに再懸濁させ、そのすべてを、PCRによるその後の200μlライブラリー増幅に使用した。得られた増幅ライブラリーを図9Cに示す。
シークエンシングデータ解析
8つのライブラリーの各々で観測された平均ユニークリード数は、約700ユニークリード~>3000ユニークリードの範囲であり、これは、約0.15%~約0.03%の感度の範囲を規定する。図10。低頻度変異リードは1回より多く観測される可能性が高く、これは、最低感度が上で算出したものより低いことを意味する。好ましい実施形態では、ユニークリードによって統計的に正当な観測頻度の下限が得られる。
cfDNAクローニング効率
試料23407を基準として使用した。10ng/mLのcfDNAを血漿試料から回収し、20ngの単離されたcfDNAを2つのライブラリー構築の取り組みの各々に使用した。ユニークリード数は、本発明者らが非断片化DNA(図10の「23407」)から平均700のユニークリード(ゲノム当量)を回収したことを示した。各ゲノムが0.003ngのgDNAを含有することを考えると、このライブラリーにおける2.1ngのインプットDNA(10%クローニング効率)が回収された。
この試料でのライブラリー構築前の断片化は、ライブラリー収量を2倍より大きく増加させた(図10の「23407 frag」)。これは、23407試料中に存在するDNAの多くが、クローニング可能であるために断片化を必要とする高分子量DNAであったことを示す。したがって、ライブラリークローニング効率は、10%よりはるかに高い可能性が高く、インプットcfDNAの20%の範囲である可能性が高かった。このクローニング効率は、高度に精製されたゲノムDNAと同等であり、cfDNAが、下流のクローニングの取り組みに有害であるいかなる形でも修飾されない可能性が高かったことを示す。
ライブラリーカバレッジ
cfDNAライブラリーは、ランダムな標的領域カバレッジを有する1セットの個別バンドに似ていた。図11は、配列データのランダム抽出を示す。クローニング前に断片化しなかった(図10を参照)およびTP53プローブ「chr17:7579351:region_3:280nt:41:80:r」(配列番号201)によって捕捉された試料23407からのリードのランダムセットを、BLATを使用してアラインした。試料を調製した方法を考えると、これらは、一般にcfDNA断片の反映である可能性が高い。なぜなら、これらのリードの左側の部分(リード開始部位)が標的領域全体にわたってランダムに分布しているからである。このランダムな分布は、ゲノムDNAのランダム破壊を示し、cfDNAライブラリーのバンド様外観にもかかわらずシークエンシングアウトプットがランダムな標的領域カバレッジであったことを立証する。このランダムな分布は、本明細書において企図される技術を使用する有効な遺伝子解析に重要である。
図12は、典型的なcfDNAライブラリーについてのTP53コード領域シークエンシングのより高い分解能の大要を提供する。標的シークエンシングのエレメント-すべての標的領域にわたるカバレッジおよびシークエンシングした各塩基での均一な深度-が一目瞭然である。塩基1つにつき4000を超えるユニークリードというこの深度で、および正統な候補塩基変化に少なくとも2回遭遇しなければならないという前提条件で、この特定のライブラリーについての変異検出感度は、2000配列中約1変異、すなわち0.05%であったと推定することが可能である。この感度レベルは、驚くべき、予想外の、極めて優れた技術成果を意味する。
結論
細胞株から単離された、高度に精製されたgDNA(判断基準)と同等の効率で、血漿クローンからcfDNAを単離し、クローニングした。cfDNAライブラリーは、循環ヌクレオソームサイズのDNA断片+アダプターに似ており、末端は、効率的遺伝子解析を可能にする十分にランダムな特徴を有した。加えて、血漿cfDNAライブラリーに特有の高度に均一なサイズは、プローブ末端から120bp(=160-40)ほども遠い標的の信頼性のあるカバレッジを最大にするための捕捉戦略および基礎をなすプローブ配列の設計を可能にする。
(実施例4)
循環DNAライブラリーにおけるゲノム当量の測定
目的および背景
循環、無細胞DNAの解析における大きな課題の1つは、十分なアッセイ感度の達成である。十分な感度が達成されない場合には、cfDNAライブラリーの解析が交絡する。試料がシークエンシングされ、変異事象が検出されない場合、その結果は、変異が存在しないこと、または試料抽出深度が小さすぎるため有意な事象が見逃されたことを意味すると解釈されることがある。アッセイの感度は、統計用語で偽陰性率として定義される。循環、無細胞DNAのシークエンシングに関連して、有意な障害は、大過剰の参照配列に混ざっている低頻度配列の検出である。
アッセイ感度を判定する1つの方法は、変異配列を非変異参照配列へと徐々に希釈する1セットの試料における変異配列の出現率の測定である。変異配列がもはや検出されない希釈度によってアッセイ感度が規定される。この方法は、変異配列の正体と希釈度の両方が既知である場合に適している。残念なことに、臨床試料は、一般に、どちらのパラメータも提供しない。多くの場合、変異配列の正体は未知であり、希釈度は、試料によって異なる。この関連で、アッセイ感度は、試料ごとに確立される。
試料ごとに感度値を割り当てるために、シークエンシングライブラリー中に存在するゲノム当量の数を測定することによって各試料中に存在する異なる別個の配列の数を測定する。非限定的な例として、DNAシークエンシングライブラリーが、3ng(3000pg)のヒトゲノムDNAを含有することが分かっており、各ヒトゲノムが3pgの質量を有する場合には、そのライブラリーは、DNAの3000÷3=1000ゲノム当量を有する。統計的に有意であるために変異体DNA配列を2回検出しなければならない場合には、この特定のライブラリーの可能な最高検出感度は、2変異配列÷1000全配列=0.002=0.2%である。感度を確立するために、ゲノム当量の数を各試料ライブラリーについて測定しなければならない。
概要
2つの方法を使用してゲノム当量を測定した。第1の方法は、定量的PCR(qPCR)に基づく。ゲノム断片へのアダプターのライゲーションと、1つが共通ゲノム配列(例えばAlu I反復配列)に特異的であり、1つがアダプターに特異的である、1対のPCRプライマーとを使用して、ゲノムライブラリーを構築した。これらのcfDNAライブラリーのライゲーションされたアダプター:断片配列の存在量を測定した。既知濃度の標準ライブラリーを使用して標準曲線を構築し、得られた標準曲線に測定値をフィッティングし、そのフィットからゲノム当量の値を導出した。
ゲノム当量を測定するための第2の方法は、シークエンシングを行った後にバイオインフォマティクス計数を使用した。ライブラリー内の各ユニーク配列を、そのランダム配列標識およびゲノム配列の出発分子によって同定した。さらに、各ユニーク配列は、独立したゲノムに由来しなければならない。したがって、配列データ中に存在するユニーク配列の合計によって、試料中に存在するゲノム当量の数の正確な定量的測定が確立された。
方法および結果
qPCRアッセイ開発
qPCRベースのゲノム当量アッセイの第1のバージョンは、ACA2プライマー(表10)を使用したが、このアッセイは、cfDNAライブラリー中に存在するゲノム当量の数を慢性的に過小報告する(図13)。
Figure 0007441584000022
アッセイの改良バージョンは、ヒトゲノム全体にわたって非常に高頻度で見いだされる内在性反復配列(例えば、Alu反復配列)に基づいた。Alu特異的プライマーをアダプター特異的プライマーと対にすることによって、アダプターがゲノム断片に連結される頻度を確実に測定した。既知のゲノム当量のライブラリーを使用して標準曲線を作成し、クローニングしたライブラリー中のゲノム当量の数をその曲線へのフィッティングによって測定した。
Alu+アダプターベースのqPCRアッセイを開発するために使用したPCRプライマーを表10に示す。Alu増幅のためのPCRプライマーは、プライマー3(Alu_F1およびAlu_R1、それぞれ配列番号285および286)を使用してコンセンサスヒトAlu配列(BatzerおよびDeininger、Nat Rev Genet.、3巻(5号)370~
9頁(2002年))から設計した。残りの2つのAluプライマー(Alu_F2およびAlu_R2、それぞれ配列番号287および288)は、文献(Marulloら、Genome
Biology 11巻:R9(2010年))に報告されている。
アッセイ設計の概略図を図14に示す。単一PCRプライマーを使用してゲノムDNAライブラリーを増幅させることができる(図14A)ため、アダプター配列を認識するがゲノムクローンを増幅できないプライマーを使用した。58ヌクレオチドACA2-FLFPプライマー(これ以降AFと略記する、配列番号284)は、その長さが強いステム-ループPCR抑制を誘導する(図14B)ので、これらの基準を満たす。加えて、機能性Aluプライマー対を使用した(図14C)。さらに、ゲノムDNAを増幅させない、1つのAluプライマーとロングACA2プライマーとからなるプライマー対を使用した(図14D)。これらの同じプライマーは、ゲノムライブラリークローンも増幅させた(図14E)。
機能性Aluベースのアッセイの必要エレメントのすべてを検証した。図15。具体的には、単独でのロングプライマーは不活性であり、Aluプライマー対の両方のセットがヒトゲノムDNAを認識し、1つのAluプライマーとロングACA2プライマーの任意の組合せがゲノムライブラリークローンを増幅させた(図15A)。最後に、ゲノムDNAとゲノムライブラリークローンとを区別するAluプライマー+ロングACA2プライマー対の能力を図15Bに示す。Alu_R1プライマーとAFプライマーの組合せを、新たに構築したライブラリー中のゲノム当量の測定に使用した。
ACA2ベースのqPCRアッセイとAluベースのqPCRアッセイとの直接比較を図16に示す。ゲノム当量の8倍差が見いだされた。加えて、Aluベースのアッセイは、ライブラリー間のより一貫した性能およびqPCR導出当量とシークエンシングランでバイオインフォマティクスによって計数されたタグ当量とのより良好なアラインメントをもたらした(表11)。
Figure 0007441584000023
ゲノム当量の配列ベースの計数のための高感度ライブラリーアダプター
上で論じたように、変異配列が、他の大過剰の「正常」(生殖系列を意味する)DNA配列中の低頻度成分でありうるというのが、cfDNAを使用する疾患監視の現実である。したがって、高感度で定量可能なシークエンシングアッセイが必要とされている。シークエンシングライブラリー中に存在するユニーク配列の数を計数することによってアッセイ感度を生じさせることができた。しかし、そのような計数は、感度の偽の過小推定につながることになる。なぜなら、cfDNA断片はかなり短く(約165bp)、実際には独立したクローニング事象に由来した同一のリードをもたらすことがあるからである。この問題の1つの解決策は、例えば、ライブラリーを構築するために使用するアダプターに1セットのDNAタグを含めることによって、ライブラリー構築中に独立したシークエンシングクローン各々にマークを付けることである。
そのようなライブラリー構築アダプターセットを、具体的には、cfDNAライブラリー中に存在するゲノム当量の数、およびその延長で、変異配列をモニターするために使用されるシークエンシングアッセイの感度を測定するように設計した。
cfDNAライブラリー中の多数のゲノム当量に対応するように構成した高感度ライブラリーアダプターの構造を図17に示す。末端修復cfDNA断片に結合される鎖である45ヌクレオチドライゲーション鎖内に工学的に作製された相当量の分子がある。アダプターは、少なくとも5つのエレメントを含む。
エレメント1は、単一プライマーライブラリー増幅プライマーACA2のためのPCRプライマー結合部位である(表12)。
Figure 0007441584000024
エレメント2は、5ヌクレオチドリードコードである。このコードとゲノムDNA配列の組合せは、各リードを一意的に同定するために使用したDNAタグを構成する。5ヌクレオチドコードは、このセットの他のすべてのコードと2塩基変化異なるように選択した、可能性のある256のユニーク配列からなる。この特徴によって、ユニークな別個のリードと、コード領域内のシークエンシングエラーのためユニークであるように見えるリードとを区別することが可能になった。G残基が過剰提示される7つのコードであって、アダプター機能に干渉することが実験的に証明されたコードを除去することによって、249のランダムコードが残った。表13。
Figure 0007441584000025
Figure 0007441584000026
Figure 0007441584000027
エレメント3は、少なくとも2塩基変化異なる3ヌクレオチド試料コードである。このエレメントは、異なる試料を同定するために使用し、シークエンシングラン中の試料多重化を可能にした。表14。
Figure 0007441584000028
エレメント4は、ライブラリー構築および下流のシークエンシングに関する3つの重要な特性を有する12ヌクレオチドアンカー配列である。表15。これらの特性は次の通りである:A)12塩基伸長の各々が、伸長内の各部位の可能性のある4つのDNA塩基の各々を集合的に表す4つの12塩基伸長のファミリーの一部である。この特徴、バランスのとれた塩基提示、は、シークエンシングリード中の適正な塩基コーリングを校正するためにIlluminaシークエンシング装置によって必要とされる。B)各伸長が、可能性のある4塩基のうちの2つだけからなり、これらが、6つのA+6つのCまたは6つのG+6つのTのどちらか一方であるように特異的に選択される。2つだけの塩基から形成されるこの伸長は、適正なアダプター機能を不可能にすることになる二次構造形成に伸長配列が関与する可能性を大幅に低下させる。C)各伸長が同数のA+CまたはG+Tからなるので、各伸長は、4つ1セットの他のすべての伸長と大体同じ融解温度および二本鎖安定性を共有する。
Figure 0007441584000029
エレメント5は、エレメント4の3’末端で見いだされる2塩基配列である。特定の2塩基伸長を、これら2塩基配列がライゲーションのための効率的基質であることを示す実験データに基づいて選択した。表15。
4.
アダプターモジュールをパートナーオリゴヌクレオチドにハイブリダイズさせる。表16。エレメント4内の配列とパートナーオリゴヌクレオチドとのハイブリダイゼーションを行う。二本鎖アダプターを末端修復cfDNAにライゲーションした。
Figure 0007441584000030
独立して合成してプールしたライゲーション鎖256本(これらの各々が共通の試料コードを共有し、したがって、単一の試料アダプターセットを構成する)のセットを、ライゲーションに好適な二本鎖に変換するために、45ヌクレオチドライゲーション鎖を適切な相補12ヌクレオチドパートナー鎖と併せ、95℃に加熱し、5分間、65℃に冷却し、次いで、室温に冷却した。この二本鎖は、図17Bに示すように平滑末端ライゲーション基質を形成した。ライゲーションおよびDNA精製後、PCR増幅前に行うDNAポリメラーゼ媒介ステップによってパートナー鎖を置換し、ライゲーション鎖をコピーして、単一プライマーPCRによる指数関数的増幅に好適である二本鎖アダプターを形成した。
次いで、標的化シークエンシングデータから導出したゲノム当量の定量的解析を行った。各ユニークリードをユニークライゲーション事象と考え、ユニークリードの合計を、解析されるゲノム当量の数と等しいと考えた。
おおまかな、「たやすく計算できる」、「おおざっぱな」算定を行って、解析することができるゲノム当量の数を決定した。各cfDNAクローンは、おおよそ150塩基対であり、そのうちの50塩基対が捕捉プローブとの結合に必要であった。これによって、任意の捕捉されたcfDNAクローン中に可能性のあるおおよそ100の配列開始部位が残った。その可能性のある100の開始部位の各々に249のランダムコードを結合させることで、可能性のある約249,000のユニーククローンの全レパートリーを生成した。ユニーククローン数が可能性のある配列の組合せの総数に近づくと、確率により、同じコードおよび開始部位の組合せが独立事象によって生じることになり、これらの独立事象が単一ファミリー内で不適切にグループ化されることになることが決定される。最終結果は、解析されるゲノム当量の過小推定となり、低頻度の変異リードは、同じ識別子を有する野生型リードと重複するので、シークエンシングエラーとして処分されることがある。これを回避するために、qPCRアッセイを使用してゲノムインプットを可能性のあるユニーククローンの数の10分の1またはそれ未満に制約する取り組みを行った。例えば、単一アダプターは、可能性のある24,900のクローンを有し、したがって、2500またはそれ未満のゲノム当量からなるライブラリーの正確な解析をもたらす信頼性のある能力を有する。
概要を述べる手順は、一例として提供するものであり、本明細書において企図される方法をこの実施例によって限定することを意図しない。場合によっては、解析されるゲノム当量の数は、前の段落で説明した限度2500を十分に超えることもある。ゲノム当量の深度を拡大するために、この問題の2つの解決策を容易に得ることができる。第1の解決策は、試料1つにつき1つより多くのアダプターセットを使用することである。アダプターを組み合わせることにより、可能性のあるクローンの総数を拡大することが可能であり、したがって、ゲノムインプットの満足のいく限度を拡大することが可能である。非限定的な例として、1つの試料に使用する4つのアダプターセットの組合せは、解析を可能性のある配列24,900x4=99,600に、および合理的に解析されるゲノム当量約10,000に拡大することになる。第2の解決策は、図17Aのエレメント2のコードを6、7またはそれ超の塩基に拡大することである。他のすべてのコードと少なくとも2塩基異なる、可能性のあるコードの数は、4(n-1)となり、式中、nは、エレメント2内の塩基の数である。したがって、ここで提示する非限定的な例では、n=5および4(5-1)=256。したがって、追加の塩基を含めることで利用可能なレパートリーは追加の塩基ごとに4倍拡大される。
結論
この実施例からの結果は、ゲノム当量の決定のための2つの独立した方法が試料を処理する作業の流れに役立つことを示した。第1の方法、qPCRは、cfDNA解析のライブラリー構築段階中に実施し、妥当な数のゲノム当量をライブラリー増幅、標的化配列捕捉およびDNAシークエンシングによって確実に動かす品質管理ステップとして使用した。他の方法は、情報科学の考慮事項に該当するゲノム当量の実際の数のより直接的な尺度として、ユニークリードの明確な計数を使用する。
(実施例5)
定量的遺伝子解析
目的
この実施例の目的は、定量的遺伝子解析を、正常なDNAが混合されているがんゲノムにおよびがん患者の血漿から単離した特徴付けされていないcfDNAに適用することであった。
背景
3タイプのゲノム事象がヒトがんではよく見られる。これらは、罹患遺伝子およびその発現タンパク質産物の機能を変化させる体細胞変異;新規生物学的特性を有するキメラ遺伝子融合体およびしたがって発現融合タンパク質を生じさせるゲノム再編成;ならびに遺伝子減少および遺伝子産物の過小発現、または逆に遺伝子の増幅および対応する遺伝子産物の過剰提示につながる遺伝子コピー数の変化である。がん患者の循環DNAの場合、これらの異常な座位は、その多くが患者のケアを導出する上で非常に重要な意義を有し、患者の正常な生殖系列DNAと混合されている(混ざっている)。
概要
前の実施例では、がん監視を目的として、循環、無細胞DNA(cfDNA)の解析のために構成した技術を説明した。しかし、この技術は、これらに限定されないが遺伝疾患、胎児試験、メンデル型遺伝病、病原体スクリーニングおよび臓器移植のモニタリングを含む、循環DNAが可能性のある分析物であるあらゆる解析、診断およびモニタリングパラダイムに広く適用可能である。この実施例では、前の実施例で強調した技術的特徴を混合がん試料の解析に適用する。この検証の第1段階では、がん由来の細胞株を正常ヒトDNAと規定の希釈度で混合し、定量的遺伝子解析を行った。この研究の第2段階では、特徴付けされていないcfDNAをがん患者の血漿から単離し、その後、定量的遺伝子解析を使用して調査した。
方法
細胞株ゲノムDNAと正常ヒトDNAの混合
以下のDNA試料を使用した:
・NA06994 - 正常ヒトゲノムDNA(Coriellレポジトリ)、
・NCI-H2228 - 非法細胞肺がん細胞株(ATCC)、TP53の変異(Q331)およびEML4-ALK遺伝子融合(切断点不明)を有する、ならびに
・NCI-H69 - 小細胞肺がん細胞株(ATCC)、MYCN遺伝子の増幅(約100コピー)を有する。
ライブラリー調製:細胞株(上記3つすべて)から単離したゲノムDNAは、cfDNAの小さいサイズとは異なる高分子量物質である。これらの検証実験では、cfDNAを模倣するために、Covaris Acoustic Sonicatorを使用して「150bp」設定でゲノムDNAをまず断片化した。この超音波処理は、一般に、広いスメアを生じさせ、「両側」ビーズ選択を使用してそのDNAをさらに処理した。DNA精製ビーズの希薄溶液を試料に添加し、ビーズに付着する、より高分子質量の断片を廃棄した(精製DNAのサイズは、添加したビーズの量に比例する)。ビーズの追加のアリコートを残存上清に添加し、この第2ラウンドでは、ビーズに付着しているDNAに添加し、(より高い全濃度の結合バッファー中で)精製する。この「両側」精製は、cfDNAの合理的代用物である狭いサイズ分布を生じさせる(図18)。
断片化されたゲノムDNAを末端修復し、定量し、表17に示した様々な比で混合し、下の結果の節で説明する。
Figure 0007441584000031
cfDNAライブラリーは、限られたDNAインプットを有しうる。患者血漿1mL当りの得られるcfDNAの量は広範に変動しうるが、下限(例えば、実施例3)は一般に約10ng/mLであり、これは3300ヒトゲノムと等価である。限られたcfDNA量に備えるために、混合実験は、患者から日常的に採取されるcfDNAの下限を反映するようにモデル化した。この制約を、最も極端な混合を除いてすべてに適用した。これらの後者の混合では、ライブラリーを、4mL(NA06994:H2228 1000:1)または8mL(NA06994:H69 500:1)の低収量患者cfDNAからのインプットを模倣するように作製した。混合した試料を、次いで、実施例4に記載のアダプターセットにライゲーションした。qPCRを使用する各精製ライブラリー中のゲノム当量の測定値(実施例4)も表17に示す。ライブラリーを増幅させ、定量し、各ライブラリーの等価質量(各々の500ng)をプールした。プールした試料を、実施例2の表6に収載した概念実証、高密度40mer捕捉プローブとハイブリダイズした。得られた複合体を、前の実施例に記載したように、ストレプトアビジン被覆ビーズ上に捕捉し、洗浄し、処理し、増幅させ、精製し、サイズ選択した。得られたライブラリーを、Illumina MiSeq装置でIllumina 150bp-V3 Miseqシークエンシングキットを使用して解析した。
バイオインフォマティクス解析のために、低頻度体細胞バリアントコーラーを使用して変異を検出し、スプリットリードアライナを使用して融合遺伝子を検出し、タグを定量して統計的にフィッティングする自社解析を使用してコピー数変動(CNV)をコールした。
TP53遺伝子の混合点変異の検出を図19に示す。TP53がNCI-H2228細胞株ではヘミ接合性であることは公知であるので、「期待」頻度は混合比から外れる。自動ソフトウェアは、50:1混合の変異体対立遺伝子をコールすることができた。1000:1での変異事象をコールするにはマニュアルキュレーションが必要であった。特異性に関しては、実施例1に記載のタグフィルタリングを解析に適用し、このタグフィルターを適用後はTP53において他の変異コールは検出されなかった。
細胞株NCI-H2228がEML4とALKとの融合遺伝子を有することは公知であり、この細胞株は、蛍光インサイツハイブリダイゼーションにおいても、RT-PCRを使用する融合遺伝子転写物の検出においても陽性対照として役立つ。遺伝子融合ジャンクションの正確な位置についての報告は発表されていない。ALKの第19イントロン領域の高密度プローブカバレッジを使用して、配列解析は、2つの遺伝子が融合したときに形成されるジャンクションの正確な位置および配列を明らかにした(図20)。NCI-H2228細胞株における正常リードのジャンクションリードに対する頻度(それぞれ、378対249)は、融合遺伝子がALKの正常コピーとヘテロ接合体であることを示唆する。
混合の関数としてのジャンクションリードの検出を図21に示す。点変異検出と同様に、変異体対立遺伝子が二倍体ゲノム1つにつき1コピーで見いだされることを反映するように期待値を調整した。1000:1の混合試料では融合リードは検出されなかった。
図22は、MYCN遺伝子についてのCNV決定の結果を混合の関数として示す。NCI-H69細胞株は、高度に増幅されたMYCN遺伝子を有する。MYCNは、通常、単一コピー遺伝子として二倍体ゲノム1つにつき2つ見いだされるため、徐々に希釈した混合物について期待された結果は、タグ算出CNVが漸近的に2コピーに近づくべきであるというものである(漸近線を図中で強調する)。ここに示す検証実験は、本発明で説明されるアッセイシステムが高度に増幅された遺伝子に対する感度が頑強であることを示した。
がん患者からのcfDNAにおけるバリアントの発見
本明細書において企図される技術の最も厳密な検証は、変異スペクトラムが不明であるcfDNA試料への該技術の適用である。解析は、2名の卵巣がん患者からのマッチしたcfDNA、腫瘍および正常隣接組織(NAT)試料をシークエンシングすることによって行った。加えて、結腸直腸がん(CRC)患者からの2つのcfDNA試料および健常ボランティアからの2つのcfDNA試料を解析した。どの場合も、変異、融合および異常CNVは、健常ボランティア試料では検出されなかった。
最初に、4名のがん患者からのcfDNAのライブラリーを、実施例2の表6に記載した標的化プローブを使用してスクリーニングした。これらのプローブは、主として、TP53遺伝子における点変異、ALKとの遺伝子融合、およびMYCNの増幅を検出するように構成した。この初期シークエンシングスクリーンの結果を図23に示す。同じ塩基位置で発生する点変異が1名の卵巣患者のcfDNA、腫瘍およびNATにおいて見いだされた。卵巣がん患者のマッチした試料の他のセットではTP53変異は見いだされなかった。マッチする組織を入手できない2つのCRC cfDNAライブラリーでも点変異が検出された。これらの点変異のすべてが腫瘍において以前に同定されており、すべては、腫瘍発生の原因駆動因子であることが公知である。0.9%のcfDNAライブラリーCRC406における変異配列検出は、十分にアッセイ感度の範囲内であった。感度は、すべてが変異配列を有する、タグ付きリードの複数のファミリーの存在によって定義される。これらのデータは、本明細書において企図されるシステムの臨床上の有用性を強調する。
cfDNAライブラリーおよび関連組織におけるがん関連変化の検出をさらに探求するために、同じライブラリーを、合計20の異なるがん関連遺伝子に指向されているプローブ679個のセット(表18)にハイブリダイズさせた。このプローブセットでは14遺伝子のコード領域のすべてを標的にしたが、残りの6遺伝子では選択座位を標的にした。
Figure 0007441584000032
図24に示したように、TP53の検出可能な変化が一切なかったOVA1試料は、KRASの変異を有し、この変異は、cfDNAにおいても対応する腫瘍においても見いだされた。この観測は、ここに記載するアッセイシステムの有意な特徴を強調する。cfDNAから生成したライブラリーを(この実施例でのように)何百もの、およびさらには何千もの標的化プローブで調べることができる。得られた標的化ライブラリーのシークエンシングは、腫瘍内に存在し、罹患個体の生殖系列の中には存在しない体細胞変異を明らかにした。これらの腫瘍関連体細胞マーカーは、(生殖系列配列を有するcfDNAに対して)腫瘍から排出される循環DNAの量を定量するためにも使用することができる。したがって、変異の発見によって、それらの生物学的意義に関係なく、混合cfDNA中の腫瘍含有量も推定される。
多くの標的療法は、正常遺伝子の存在下で最も大きな成功を収めている(例えば、EGFR阻害剤は、野生型KRASの存在下でのみ機能する)。循環腫瘍DNAレベルの定量的評定は、遺伝子の変異が見いだされないこれらの場合に特に有意になる。言い換えると、特定の標的遺伝子での野生型シークエンシング結果と相まって循環腫瘍DNAの実証可能な存在は、標的遺伝子が腫瘍内では正常であることを示唆しており、そのような結果は、療法の選択の誘導に有意な影響をもたらすことができる。前述のことは、図24で強調されているOVA1試料にも当てはまる。cfDNAライブラリー中のKRAS変異の存在は、この患者の腫瘍が野生型TP53遺伝子を有することを示唆した。
異常な遺伝子発見のもう1つの例を図25に示す。標的化定量的遺伝子解析システムは、HER-2/neuと言い換えられる、ERBB2遺伝子における有意な増幅の存在を明らかにした。このタイプの増幅は、乳がんに関して多く公表されているが、結腸直腸癌でも同定されることがある。
結論
細胞株DNAでの検証実験は、がんにおける新生物成長の駆動の中核をなす3タイプの遺伝的変動の検出の閾値を明らかにした。がん患者に由来するcfDNAの特徴付けは、解析した4つすべての試料での再構成実験によって設定した閾値より十分上である腫瘍関連遺伝子変化を明らかにした。これらのデータは、本明細書において企図される定量的解析には、特に、リキッドバイオプシーが最も適切である状況で、臨床的有用性がありうることを示した。
一般に、下記の特許請求の範囲において使用する用語は、本明細書および本特許請求の範囲において開示する特定の実施形態に本特許請求の範囲を限定すると解釈すべきでなく、そのような特許請求の範囲が権利を与えている均等物の全範囲とともにすべての可能な実施形態を含むと解釈すべきである。したがって、本特許請求の範囲は、本開示によって限定されない。
例えば、本発明は以下の項目を提供する。
(項目1)
無細胞DNA(cfDNA)の遺伝子解析のための方法であって、
(a)cfDNAを1つまたは複数の末端修復酵素で処置して末端修復cfDNAを生成するステップ、
(b)前記末端修復cfDNAの各末端に1つまたは複数のアダプターをライゲーションしてcfDNAライブラリーを生成するステップ、
(c)前記cfDNAライブラリーを増幅させてcfDNAライブラリークローンを生成するステップ、
(d)cfDNAクローンライブラリー中のゲノム当量の数を決定するステップ、および
(e)前記cfDNAライブラリークローン中の1つまたは複数の標的遺伝子座位の定量的遺伝子解析を行うステップ
を含む方法。
(項目2)
対象の生体試料からcfDNAを単離するステップをさらに含む、項目1に記載の方法。
(項目3)
前記cfDNAが、羊水、血液、血漿、血清、精液、リンパ液、脳脊髄液、眼液、尿、唾液、糞便、粘液および汗からなる群から選択される生体試料から単離される、項目1または項目2に記載の方法。
(項目4)
前記1つまたは複数のアダプターが、複数のアダプター種を含む、項目1~3のいずれか一項に記載の方法。
(項目5)
前記1つまたは複数のアダプター各々が、前記cfDNAライブラリーの増幅のためのプライマー結合部位を含む、項目1~4のいずれか一項に記載の方法。
(項目6)
前記1つまたは複数のアダプター各々が、1つまたは複数のユニークリードコードを含む、項目1~5のいずれか一項に記載の方法。
(項目7)
前記1つまたは複数のアダプター各々が、試料多重化のための1つまたは複数の試料コードを含む、項目1~6のいずれか一項に記載の方法。
(項目8)
前記1つまたは複数のアダプター各々が、DNAシークエンシングのための1つまたは複数の配列を含む、項目1~6のいずれか一項に記載の方法。
(項目9)
qPCRを前記cfDNAクローンライブラリーに対して行い、qPCR測定値を既知ゲノム当量の標準と比較して前記cfDNAクローンライブラリーのゲノム当量を決定する、項目1~8のいずれか一項に記載の方法。
(項目10)
Alu配列と結合するプライマーおよびアダプター中の配列と結合するプライマーを用いて前記qPCRを行う、項目9に記載の方法。
(項目11)
前記定量的遺伝子解析を、前記cfDNAライブラリークローン中の複数の遺伝子座位に対して行う、項目1~10のいずれか一項に記載の方法。
(項目12)
前記定量的遺伝子解析を、複数のcfDNAクローンライブラリー中の複数の遺伝子座位に対して行う、項目1~11のいずれか一項に記載の方法。
(項目13)
前記定量的遺伝子解析が、1つまたは複数の捕捉プローブを標的遺伝子座位にハイブリダイズさせて、捕捉プローブ-cfDNAクローン複合体を形成することを含む、項目1~12のいずれか一項に記載の方法。
(項目14)
前記定量的遺伝子解析が、前記捕捉プローブ-cfDNAクローン複合体を単離することを含む、項目13に記載の方法。
(項目15)
前記定量的遺伝子解析が、前記単離されたハイブリダイズした捕捉プローブ-cfDNAクローン複合体中の前記cfDNAクローン配列の増幅を含む、項目14に記載の方法。
(項目16)
前記定量的遺伝子解析が、複数のシークエンシングリードを生成するためのDNAシークエンシングを含む、項目1~15のいずれか一項に記載の方法。
(項目17)
前記複数のシークエンシングリードのバイオインフォマティック解析をさらに含む、項目16に記載の方法。
(項目18)
バイオインフォマティクス解析が、
(a)前記cfDNAクローンライブラリー中の解析されるゲノム当量の数を定量するため、
(b)標的遺伝子座位における遺伝子バリアントを検出するため、
(c)標的遺伝子座位内の変異を検出するため、
(d)標的遺伝子座位内の遺伝子融合を検出するため、および
(e)標的遺伝子座位内のコピー数増減を測定するために
使用される、項目1~17のいずれか一項に記載の方法。
(項目19)
前記対象が、遺伝疾患を有さない、項目2~18のいずれか一項に記載の方法。
(項目20)
前記対象が、遺伝疾患と診断されていない、項目2~18のいずれか一項に記載の方法。
(項目21)
前記対象が、遺伝疾患と診断されている、項目2~18のいずれか一項に記載の方法。(項目22)
前記定量的遺伝子解析が、前記遺伝疾患を引き起こすまたは前記遺伝疾患に関連する1つまたは複数の遺伝子病変を同定または検出するために使用される、項目21に記載の方法。
(項目23)
前記遺伝子病変が、ヌクレオチドトランジションもしくはトランスバージョン、ヌクレオチド挿入もしくは欠失、ゲノム再編成、コピー数の変化、または遺伝子融合を含む、項目22に記載の方法。
(項目24)
前記遺伝子病変が、ALK遺伝子の3’コード領域を別の遺伝子に融合させるゲノム再編成を含む、項目22に記載の方法。
(項目25)
前記ALK遺伝子の3’コード領域が、EML4遺伝子に融合される、項目24に記載の方法。
(項目26)
前記遺伝疾患ががんである、項目22~25のいずれか一項に記載の方法。
(項目27)
前記対象が妊娠している、項目2~18のいずれか一項に記載の方法。
(項目28)
前記定量的遺伝子解析が、胎児cfDNA中の1つまたは複数の標的遺伝子座位の1つまたは複数の遺伝子バリアントまたは遺伝子病変を同定または検出するために使用される、項目27に記載の方法。
(項目29)
前記対象が、移植レシピエントである、項目2~18のいずれか一項に記載の方法。
(項目30)
前記定量的遺伝子解析が、前記対象におけるドナーcfDNAを同定または検出するために使用される、項目27に記載の方法。
(項目31)
対象における遺伝疾患を予測、診断またはモニターする方法であって、
(a)対象の生体試料からcfDNAを単離するまたは得るステップ、
(b)前記cfDNAを1つまたは複数の末端修復酵素で処置して末端修復cfDNAを生成するステップ、
(c)前記末端修復cfDNAの各末端に1つまたは複数のアダプターをライゲーションしてcfDNAライブラリーを生成するステップ、
(d)前記cfDNAライブラリーを増幅させてcfDNAクローンライブラリーを生成するステップ、
(e)前記cfDNAクローンライブラリー中のゲノム当量の数を決定するステップ、および
(f)前記cfDNAクローンライブラリー中の前記遺伝疾患に関連する1つまたは複数の標的遺伝子座位の定量的遺伝子解析を行うステップ
を含み、前記1つまたは複数の標的遺伝子座位における1つまたは複数の遺伝子病変の同定または検出が、前記遺伝疾患の予後を予測し、それを診断し、またはその進行をモニターする、方法。
(項目32)
前記cfDNAが、羊水、血液、血漿、血清、精液、リンパ液、脳脊髄液、眼液、尿、唾液、糞便、粘液および汗からなる群から選択される生体試料から単離される、項目29に記載の方法。
(項目33)
前記遺伝子病変が、ヌクレオチドトランジションもしくはトランスバージョン、ヌクレオチド挿入もしくは欠失、ゲノム再編成、コピー数の変化、または遺伝子融合を含む、項目29に記載の方法。
(項目34)
前記遺伝子病変が、ALK遺伝子の3’コード領域を別の遺伝子に融合させるゲノム再編成を含む、項目31に記載の方法。
(項目35)
前記ALK遺伝子の3’コード領域が、EML4遺伝子に融合される、項目32に記載の方法。
(項目36)
前記遺伝疾患ががんである、項目29~32のいずれか一項に記載の方法。
(項目37)
遺伝疾患のコンパニオン診断であって、
(a)対象の生体試料からcfDNAを単離するまたは得るステップ、
(b)前記cfDNAを1つまたは複数の末端修復酵素で処置して末端修復cfDNAを生成するステップ、
(c)前記末端修復cfDNAの各末端に1つまたは複数のアダプターをライゲーションしてcfDNAライブラリーを生成するステップ、
(d)前記cfDNAライブラリーを増幅させてcfDNAクローンライブラリーを生成するステップ、
(e)前記cfDNAクローンライブラリー中のゲノム当量の数を決定するステップ、および
(f)前記cfDNAクローンライブラリー中の前記遺伝疾患に関連する1つまたは複数のバイオマーカーの定量的遺伝子解析を行うステップ
を含み、前記1つまたは複数のバイオマーカーの少なくとも1つの検出、または検出できないことが、前記対象を前記遺伝疾患について処置すべきかどうかを示す、コンパニオン診断。
(項目38)
前記cfDNAが、羊水、血液、血漿、血清、精液、リンパ液、脳脊髄液、眼液、尿、唾液、糞便、粘液および汗からなる群から選択される生体試料から単離される、項目35に記載の方法。
(項目39)
前記バイオマーカーが、遺伝子病変である、項目35に記載の方法。
(項目40)
前記遺伝子病変が、ヌクレオチドトランジションもしくはトランスバージョン、ヌクレオチド挿入もしくは欠失、ゲノム再編成、コピー数の変化、または遺伝子融合を含む、項目37に記載の方法。
(項目41)
前記遺伝子病変が、ALK遺伝子の3’コード領域を別の遺伝子に融合させるゲノム再編成を含む、項目37に記載の方法。
(項目42)
前記ALK遺伝子の3’コード領域が、EML4遺伝子に融合される、項目39に記載の方法。
(項目43)
前記遺伝疾患ががんである、項目35~40のいずれか一項に記載の方法。

Claims (42)

  1. 循環無細胞DNA(cfDNA)の標的化遺伝子解析のための方法であって、
    (a)1つまたは複数の捕捉プローブモジュールをタグ付きcfDNAライブラリー中の標的遺伝子座位にハイブリダイズさせて、1つまたは複数の捕捉プローブモジュール/タグ付きcfDNA複合体を形成するステップであって、
    各捕捉プローブモジュールが、テール配列と、該標的遺伝子座位内の標的領域とハイブリダイズできる捕捉プローブ配列とを含み、
    各捕捉プローブモジュールの該捕捉プローブ配列が、長さ25ヌクレオチド~45ヌクレオチドであり、
    該タグ付きcfDNAライブラリーが、アダプターの各末端にライゲーションしたcfDNA分子を含み、
    ここで、該アダプターが、以下:
    i.該cfDNAライブラリーの増幅のための1つまたは複数のPCRプライマー結合部位;
    ii.1つまたは複数のユニークリードコード;
    iii.試料多重化のための1つまたは複数の試料コード;および、
    iv.各々が2つ以上の3’末端ヌクレオチドを含む1つまたは複数のアンカー配列
    を含み、
    該アンカー配列が、伸長内の各部位における可能性のある4つのDNA塩基の各々を集合的に表す4つのファミリーの一部であり、かつ、可能性のある4つの塩基のうちの2つだけからなり、これらが、同数のA、Cまたは同数のG、Tのどちらか一方であるように特異的に選択されるものである、ステップと;
    (b)(a)からの該1つまたは複数の捕捉プローブモジュール/タグ付きcfDNA複合体を単離するステップであって、各単離された捕捉プローブモジュール/タグ付きcfDNA複合体が、捕捉プローブモジュールとタグ付きcfDNA分子とを含む、ステップと;
    (c)(b)からの該1つまたは複数の単離された捕捉プローブモジュール/タグ付きcfDNA複合体を酵素で処置するステップであって、ここで、ステップ(c)は、3’-5’エキソヌクレアーゼ活性を有する酵素を使用して、(b)からの該単離された捕捉プローブ/タグ付きcfDNA複合体に対して3’-5’エキソヌクレアーゼ処理を行うことを含む、ステップと;
    (d)(c)からの該酵素で処置した複合体に対してPCRを行い、二本鎖の増幅されたハイブリッド核酸分子(増幅されたハイブリッド分子)を生成するステップであって、ここで、各増幅されたハイブリッド分子が、以下:
    i.該捕捉プローブとハイブリダイズできる標的遺伝子座位の配列、および、
    ii.該テール配列に相補的な配列
    を含むDNA鎖を含むステップと;そして、
    (e)(d)からの該増幅されたハイブリッド分子の定量的遺伝子解析を行うステップとを含む、方法。
  2. ステップ(c)が、3’-5’エキソヌクレアーゼ活性を持つ酵素を使用して、(b)からの前記単離された捕捉プローブ/タグ付きcfDNA複合体に対して3’-5’エキソヌクレアーゼ処理を行い、一本鎖3’末端を除去することを含む、請求項1に記載の方法。
  3. 前記捕捉プローブモジュールの前記テール配列が、プライマー結合部位を含む、請求項1または2に記載の方法。
  4. 前記捕捉プローブモジュールの前記テール配列が、パートナーオリゴヌクレオチドに対する相補性を有する配列を含む、請求項1~のいずれか一項に記載の方法。
  5. 前記捕捉プローブが、長さ40ヌクレオチドである、請求項1~4のいずれか一項に記載の方法。
  6. 少なくとも1つの捕捉プローブが前記標的領域の下流にハイブリダイズし、少なくとも1つの捕捉プローブモジュールが前記標的領域の上流にハイブリダイズする、請求項1~のいずれか一項に記載の方法。
  7. 複数の捕捉プローブが前記標的遺伝子座位にハイブリダイズし、該複数の捕捉プローブの各々が任意の他の捕捉プローブの200bp以内にハイブリダイズする、請求項1~のいずれか一項に記載の方法。
  8. 前記アダプターが、複数のアダプターから選択される、請求項1~のいずれか一項に記載の方法。
  9. 前記複数のアダプターの各々が、DNAシークエンシングのための1つまたは複数の配列を含む、請求項に記載の方法。
  10. 前記複数のアダプターの各々が、1つまたは複数のシークエンシングプライマー結合部位を含む、請求項に記載の方法。
  11. 前記タグ付きcfDNAライブラリー中のゲノム当量の数を決定するステップを含む、請求項1~10のいずれか一項に記載の方法。
  12. 前記遺伝子解析が、前記タグ付きcfDNAライブラリー中の複数の標的遺伝子座位で行われる、請求項1~11のいずれか一項に記載の方法。
  13. 前記遺伝子解析が、複数のcfDNAライブラリー中の複数の標的遺伝子座位で行われる、請求項1~12のいずれか一項に記載の方法。
  14. 前記定量的遺伝子解析が、複数のシークエンシングリードを生成するためのDNAシークエンシングを含む、請求項1~13のいずれか一項に記載の方法。
  15. 前記複数のシークエンシングリードのバイオインフォマティック解析を行うことをさらに含む、請求項14に記載の方法。
  16. バイオインフォマティクス解析が、
    (a)前記タグ付きcfDNAライブラリー中の解析されるゲノム当量の数を定量するため;
    (b)前記標的遺伝子座位における遺伝子バリアントを検出するため;
    (c)前記標的遺伝子座位内の変異を検出するため;
    (d)前記標的遺伝子座位内の遺伝子融合を検出するため;および
    (e)前記標的遺伝子座位内のコピー数増減を測定するため
    に使用される、請求項1~15のいずれか一項に記載の方法。
  17. 対象の生体試料からcfDNAを単離し、該単離したcfDNAからタグ付きcfDNAライブラリーを生成するステップを含む、請求項1~16のいずれか一項に記載の方法。
  18. 前記対象の前記生体試料が、羊水、血液、血漿、血清、精液、リンパ液、脳脊髄液、眼液、尿、唾液、糞便、粘液(mucous)および汗からなる群から選択される、請求項17に記載の方法。
  19. 前記対象は遺伝疾患を有すると診断されていない、請求項17または請求項18に記載の方法。
  20. 前記対象は遺伝疾患を有すると診断されている、請求項17または請求項18に記載の方法。
  21. 前記定量的遺伝子解析が、前記標的化遺伝子座位内の1つまたは複数の遺伝子病変を同定または検出するために使用される、請求項20に記載の方法。
  22. 前記1つまたは複数の遺伝子病変が、ヌクレオチドトランジションもしくはトランスバージョン、ヌクレオチド挿入もしくは欠失、ゲノム再編成、コピー数の変化、または遺伝子融合を含む、請求項21に記載の方法。
  23. 前記1つまたは複数の遺伝子病変が、ALK(未分化リンパ腫キナーゼ)遺伝子の3’コード領域を別の遺伝子に融合させるゲノム再編成を含む、請求項21に記載の方法。
  24. 前記ALK遺伝子の前記3’コード領域がEML4(棘皮動物微小管結合タンパク質様4)遺伝子に融合している、請求項23に記載の方法。
  25. 前記遺伝疾患ががんである、請求項20~24のいずれか一項に記載の方法。
  26. 前記対象が妊娠している、請求項17~20のいずれか一項に記載の方法。
  27. 前記定量的遺伝子解析が、胎児cfDNA中の1つまたは複数の標的遺伝子座位の1つまたは複数の遺伝子バリアントまたは遺伝子病変を同定または検出するために使用される、請求項26に記載の方法。
  28. 前記対象が移植レシピエントである、請求項17~20のいずれか一項に記載の方法。
  29. 前記定量的遺伝子解析が、前記対象におけるドナーcfDNAを同定または検出するために使用される、請求項28に記載の方法。
  30. 1つまたは複数の標的遺伝子座位内の1つまたは複数の遺伝子病変を、対象における遺伝疾患を予測、診断またはモニターするための指標とする方法であって、
    (a)1つまたは複数の捕捉プローブモジュールをタグ付きcfDNAライブラリー中の標的遺伝子座位にハイブリダイズさせて、1つまたは複数の捕捉プローブモジュール/タグ付きcfDNA複合体を形成するステップであって、
    各捕捉プローブモジュールが、テール配列と、該標的遺伝子座位内の標的領域とハイブリダイズできる捕捉プローブ配列とを含み、
    各捕捉プローブモジュールの該捕捉プローブ配列が、長さ25ヌクレオチド~45ヌクレオチドであり、
    該タグ付きcfDNAライブラリーが、アダプターの各末端にライゲーションしたcfDNA分子を含み、
    ここで、該アダプターが、以下:
    i.該cfDNAライブラリーの増幅のための1つまたは複数のPCRプライマー結合部位;
    ii.1つまたは複数のユニークリードコード;
    iii.試料多重化のための1つまたは複数の試料コード;および、
    iv.各々が2つ以上の3’末端ヌクレオチドを含む1つまたは複数のアンカー配列
    を含み、
    該アンカー配列が、伸長内の各部位における可能性のある4つのDNA塩基の各々を集合的に表す4つのファミリーの一部であり、かつ、可能性のある4つの塩基のうちの2つだけからなり、これらが、同数のA、Cまたは同数のG、Tのどちらか一方であるように特異的に選択されるものである、ステップと;
    (b)(a)からの該1つまたは複数の単離された捕捉プローブモジュール/タグ付きcfDNA複合体を単離するステップであって、各単離された捕捉プローブモジュール/タグ付きcfDNA複合体が、捕捉プローブモジュールとタグ付きcfDNA分子とを含む、ステップと;
    (c)(b)からの該1つまたは複数の単離された捕捉プローブモジュール/タグ付きcfDNA複合体を酵素で処置するステップであって、ここで、ステップ(c)は、3’-5’エキソヌクレアーゼ活性を有する酵素を使用して、(b)からの該単離された捕捉プローブ/タグ付きcfDNA複合体に対して3’-5’エキソヌクレアーゼ処理を行うことを含む、ステップと;
    (d)(c)からの該酵素で処置した複合体に対してPCRを行い、二本鎖の増幅されたハイブリッド核酸分子(増幅されたハイブリッド分子)を生成するステップであって、ここで、各増幅されたハイブリッド分子が、以下:
    i.該捕捉プローブとハイブリダイズできる標的遺伝子座位の配列、および、
    ii.該テール配列に相補的な配列
    を含むDNA鎖を含むステップと;そして、
    (e)該増幅されたハイブリッド分子の定量的遺伝子解析を行うステップと;
    (f)該cfDNAライブラリー中の該遺伝疾患に関連する1つまたは複数の標的遺伝子座位の定量的遺伝子解析を行うステップと
    を含み、該1つまたは複数の標的遺伝子座位における1つまたは複数の遺伝子病変の同定または検出が、該遺伝疾患の予後を予測し、それを診断し、またはその進行をモニターする、方法。
  31. 前記cfDNAが、羊水、血液、血漿、血清、精液、リンパ液、脳脊髄液、眼液、尿、唾液、糞便、粘液および汗からなる群から選択される生体試料から単離される、請求項30に記載の方法。
  32. 前記遺伝子病変が、ヌクレオチドトランジションもしくはトランスバージョン、ヌクレオチド挿入もしくは欠失、ゲノム再編成、コピー数の変化、または遺伝子融合を含む、請求項30に記載の方法。
  33. 前記遺伝子病変が、ALK(未分化リンパ腫キナーゼ)遺伝子の3’コード領域を別の遺伝子に融合させるゲノム再編成を含む、請求項30に記載の方法。
  34. 前記ALK遺伝子の前記3’コード領域がEML4(棘皮動物微小管結合タンパク質様4)遺伝子に融合している、請求項33に記載の方法。
  35. 前記遺伝疾患ががんである、請求項30~34のいずれか一項に記載の方法。
  36. 1つまたは複数のバイオマーカーを、遺伝疾患のコンパニオン診断の指標とする方法であって、
    (a)1つまたは複数の捕捉プローブモジュールをタグ付きcfDNAライブラリー中の標的遺伝子座位にハイブリダイズさせて、1つまたは複数の捕捉プローブモジュール/タグ付きcfDNA複合体を形成するステップであって、
    各捕捉プローブモジュールが、テール配列と、該標的遺伝子座位内の標的領域とハイブリダイズできる捕捉プローブ配列とを含み、
    各捕捉プローブモジュールの該捕捉プローブ配列が、長さ25ヌクレオチド~45ヌクレオチドであり、
    該タグ付きcfDNAライブラリーが、アダプターの各末端にライゲーションしたcfDNA分子を含み、
    ここで、該アダプターが、以下:
    i.該cfDNAライブラリーの増幅のための1つまたは複数のPCRプライマー結合部位;
    ii.1つまたは複数のユニークリードコード;
    iii.試料多重化のための1つまたは複数の試料コード;および、
    iv.各々が2つ以上の3’末端ヌクレオチドを含む1つまたは複数のアンカー配列
    を含み、
    該アンカー配列が、伸長内の各部位における可能性のある4つのDNA塩基の各々を集合的に表す4つのファミリーの一部であり、かつ、可能性のある4つの塩基のうちの2つだけからなり、これらが、同数のA、Cまたは同数のG、Tのどちらか一方であるように特異的に選択されるものである、ステップと;
    (b)(a)からの該1つまたは複数の単離された捕捉プローブモジュール/タグ付きcfDNA複合体を単離するステップであって、各単離された捕捉プローブモジュール/タグ付きcfDNA複合体が、捕捉プローブモジュールとタグ付きcfDNA分子とを含む、ステップと;
    (c)(b)からの該1つまたは複数の単離された捕捉プローブモジュール/タグ付きcfDNA複合体を酵素で処置するステップであって、ここで、ステップ(c)は、3’-5’エキソヌクレアーゼ活性を有する酵素を使用して、(b)からの該単離された捕捉プローブ/タグ付きcfDNA複合体に対して3’-5’エキソヌクレアーゼ処理を行うことを含む、ステップと;
    (d)(c)からの該酵素で処置した複合体に対してPCRを行い、二本鎖の増幅されたハイブリッド核酸分子(増幅されたハイブリッド分子)を生成するステップであって、ここで、各増幅されたハイブリッド分子が、以下:
    i.該捕捉プローブとハイブリダイズできる標的遺伝子座位の配列、および、
    ii.該テール配列に相補的な配列
    を含むDNA鎖を含むステップと;そして、
    (e)該増幅されたハイブリッド分子の定量的遺伝子解析を行うステップと;
    (f)該cfDNAライブラリー中の該遺伝疾患に関連する1つまたは複数のバイオマーカーの定量的遺伝子解析を行うステップと
    を含み、該1つまたは複数のバイオマーカーの少なくとも1つの検出、または検出できないことが、該対象を該遺伝疾患について処置すべきかどうかを示す、方法。
  37. 前記cfDNAが、羊水、血液、血漿、血清、精液、リンパ液、脳脊髄液、眼液、尿、唾液、糞便、粘液および汗からなる群から選択される生体試料から単離される、請求項36に記載の方法。
  38. 前記バイオマーカーが遺伝子病変である、請求項36に記載の方法。
  39. 前記遺伝子病変が、ヌクレオチドトランジションもしくはトランスバージョン、ヌクレオチド挿入もしくは欠失、ゲノム再編成、コピー数の変化、または遺伝子融合を含む、請求項38に記載の方法。
  40. 前記遺伝子病変が、ALK遺伝子の3’コード領域を別の遺伝子に融合させるゲノム再編成を含む、請求項38に記載の方法。
  41. 前記ALK遺伝子の前記3’コード領域がEML4遺伝子に融合している、請求項40に記載の方法。
  42. 前記遺伝疾患ががんである、請求項36~41のいずれか一項に記載の方法。
JP2020090411A 2014-08-22 2020-05-25 無細胞DNA(cfDNA)の定量的遺伝子解析のための方法 Active JP7441584B6 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020090411A JP7441584B6 (ja) 2014-08-22 2020-05-25 無細胞DNA(cfDNA)の定量的遺伝子解析のための方法
JP2021139325A JP2021182940A (ja) 2020-05-25 2021-08-27 無細胞DNA(cfDNA)の定量的遺伝子解析のための方法
JP2023142908A JP2023159462A (ja) 2020-05-25 2023-09-04 無細胞DNA(cfDNA)の定量的遺伝子解析のための方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017510397A JP6709778B2 (ja) 2014-08-22 2014-08-22 無細胞DNA(cfDNA)の定量的遺伝子解析のための方法
JP2020090411A JP7441584B6 (ja) 2014-08-22 2020-05-25 無細胞DNA(cfDNA)の定量的遺伝子解析のための方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017510397A Division JP6709778B2 (ja) 2014-08-22 2014-08-22 無細胞DNA(cfDNA)の定量的遺伝子解析のための方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021139325A Division JP2021182940A (ja) 2020-05-25 2021-08-27 無細胞DNA(cfDNA)の定量的遺伝子解析のための方法

Publications (4)

Publication Number Publication Date
JP2020188767A JP2020188767A (ja) 2020-11-26
JP2020188767A5 JP2020188767A5 (ja) 2021-04-08
JP7441584B2 JP7441584B2 (ja) 2024-03-01
JP7441584B6 true JP7441584B6 (ja) 2024-03-15

Family

ID=73453009

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2020090411A Active JP7441584B6 (ja) 2014-08-22 2020-05-25 無細胞DNA(cfDNA)の定量的遺伝子解析のための方法
JP2021139325A Withdrawn JP2021182940A (ja) 2020-05-25 2021-08-27 無細胞DNA(cfDNA)の定量的遺伝子解析のための方法
JP2023142908A Pending JP2023159462A (ja) 2020-05-25 2023-09-04 無細胞DNA(cfDNA)の定量的遺伝子解析のための方法

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2021139325A Withdrawn JP2021182940A (ja) 2020-05-25 2021-08-27 無細胞DNA(cfDNA)の定量的遺伝子解析のための方法
JP2023142908A Pending JP2023159462A (ja) 2020-05-25 2023-09-04 無細胞DNA(cfDNA)の定量的遺伝子解析のための方法

Country Status (1)

Country Link
JP (3) JP7441584B6 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013536679A (ja) 2010-09-03 2013-09-26 セントル ナショナル デ ラ ルシュルシュ サイエンティフィーク(シーエヌアールエス) 無細胞核酸の分析方法および用途
JP2014512817A (ja) 2011-04-12 2014-05-29 ベリナタ ヘルス インコーポレイテッド 多型カウントを用いたゲノム画分の分析
WO2014093330A1 (en) 2012-12-10 2014-06-19 Clearfork Bioscience, Inc. Methods for targeted genomic analysis
WO2014093825A1 (en) 2012-12-14 2014-06-19 Chronix Biomedical Personalized biomarkers for cancer

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG11201701113WA (en) * 2014-08-22 2017-03-30 Resolution Bioscience Inc Methods for quantitative genetic analysis of cell free dna

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013536679A (ja) 2010-09-03 2013-09-26 セントル ナショナル デ ラ ルシュルシュ サイエンティフィーク(シーエヌアールエス) 無細胞核酸の分析方法および用途
JP2014512817A (ja) 2011-04-12 2014-05-29 ベリナタ ヘルス インコーポレイテッド 多型カウントを用いたゲノム画分の分析
WO2014093330A1 (en) 2012-12-10 2014-06-19 Clearfork Bioscience, Inc. Methods for targeted genomic analysis
WO2014093825A1 (en) 2012-12-14 2014-06-19 Chronix Biomedical Personalized biomarkers for cancer

Also Published As

Publication number Publication date
JP7441584B2 (ja) 2024-03-01
JP2020188767A (ja) 2020-11-26
JP2021182940A (ja) 2021-12-02
JP2023159462A (ja) 2023-10-31

Similar Documents

Publication Publication Date Title
JP6709778B2 (ja) 無細胞DNA(cfDNA)の定量的遺伝子解析のための方法
JP7223788B2 (ja) Dnaライブラリーの高効率構築
JP7304393B2 (ja) Dna試料中のゲノムコピー変化の検出方法
US20180179578A1 (en) Methods for quantitative genetic analysis of cell free dna
US20220073906A1 (en) Adaptors and methods for high efficiency construction of genetic libraries and genetic analysis
JP7441584B6 (ja) 無細胞DNA(cfDNA)の定量的遺伝子解析のための方法
KR20240004397A (ko) 다중 라이브러리의 동시 유전자 분석을 위한 조성물 및 방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210527

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210827

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220602

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220602

C11 Written invitation by the commissioner to file amendments

Free format text: JAPANESE INTERMEDIATE CODE: C11

Effective date: 20220615

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20220726

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20220727

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20220819

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20220823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231208

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20240207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240214

R150 Certificate of patent or registration of utility model

Ref document number: 7441584

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20240221

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D04