JP7439808B2 - Disconnection detection method and disconnection detection device - Google Patents

Disconnection detection method and disconnection detection device Download PDF

Info

Publication number
JP7439808B2
JP7439808B2 JP2021152403A JP2021152403A JP7439808B2 JP 7439808 B2 JP7439808 B2 JP 7439808B2 JP 2021152403 A JP2021152403 A JP 2021152403A JP 2021152403 A JP2021152403 A JP 2021152403A JP 7439808 B2 JP7439808 B2 JP 7439808B2
Authority
JP
Japan
Prior art keywords
resistance value
cable
conductor
disconnection
shaped bending
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021152403A
Other languages
Japanese (ja)
Other versions
JP2023044389A (en
Inventor
文乃 加藤
泉 深作
秀樹 南畝
規之 今井
高宏 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Proterial Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Proterial Ltd filed Critical Proterial Ltd
Priority to JP2021152403A priority Critical patent/JP7439808B2/en
Priority to KR1020220112544A priority patent/KR20230041607A/en
Priority to TW111134082A priority patent/TW202314269A/en
Priority to CN202211097779.4A priority patent/CN115825811A/en
Publication of JP2023044389A publication Critical patent/JP2023044389A/en
Application granted granted Critical
Publication of JP7439808B2 publication Critical patent/JP7439808B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、U字屈曲されるケーブルにおいて導体の断線を検知する断線検知方法および断線検知装置に関する。 The present invention relates to a disconnection detection method and a disconnection detection device for detecting disconnection of a conductor in a U-shaped cable.

特許文献1には、複数の素線を撚り合わせた撚線導体からなる導体を有するワイヤケーブルを対象として、屈曲に起因した導体の断線の予兆を検知する方法が示される。具体的には、当該方法では、ワイヤケーブルを、電流を流した状態で一方向に向けて周期的に屈曲伸長させ、この屈曲周期に同期して変化する電流成分を検知している。すなわち、当該方法では、一部の断線箇所が屈曲周期に同期して接触と分離とを繰り返している状態が検知される。 Patent Document 1 discloses a method for detecting signs of conductor breakage due to bending in a wire cable having a conductor made of a stranded conductor made of a plurality of wires twisted together. Specifically, in this method, a wire cable is periodically bent and extended in one direction while a current is flowing therethrough, and a current component that changes in synchronization with the bending period is detected. That is, in this method, a state in which a part of the wire breakage repeatedly contacts and separates in synchronization with the bending cycle is detected.

特開2007-139488号公報JP2007-139488A

U字屈曲されるケーブルの導体における断線の発生は、一般的に、ケーブル内の導体の電気抵抗を測定することで検知されている。導体に含まれる素線の一部に断線が発生すると、導体の抵抗値が増大するため、例えば、断線が発生していない初期状態における導体の抵抗値をあらかじめ測定しておくことで、抵抗値の初期状態からの抵抗値の増加率に基づいて断線の発生を検知することができる。 The occurrence of a disconnection in a conductor of a cable that is bent in a U-shape is generally detected by measuring the electrical resistance of the conductor within the cable. If a break occurs in some of the wires included in the conductor, the resistance value of the conductor increases. The occurrence of wire breakage can be detected based on the rate of increase in the resistance value from the initial state.

しかしながら、導体に含まれる素線の極一部で断線が発生した場合、すなわち素線の断線本数が少ない場合には、抵抗値の増加率は極めて微小となる。このため、実用上、導体における素線の断線本数の割合が少なくとも50%以上といったレベルに達しない限り、抵抗値の増加率に基づく明確な断線検知は困難となり得る。その結果、断線が発生した直後となる初期の段階で断線を検知することは容易でなく、断線の発生を高感度で検知できないおそれがある。 However, when disconnection occurs in only a small portion of the wires included in the conductor, that is, when the number of wire breaks is small, the rate of increase in the resistance value becomes extremely small. For this reason, in practice, it may be difficult to clearly detect a wire breakage based on the rate of increase in resistance value unless the ratio of the number of broken wires in the conductor reaches a level of at least 50% or more. As a result, it is not easy to detect a wire breakage at an early stage immediately after the wire breakage occurs, and there is a possibility that the occurrence of a wire breakage cannot be detected with high sensitivity.

そこで、本発明は、導体に断線が発生したことを高感度で検知可能な断線検知方法および断線検知装置を提供することを目的とする。 SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a disconnection detection method and a disconnection detection device that can detect with high sensitivity the occurrence of a disconnection in a conductor.

本発明は、上記課題を解決することを目的として、複数の素線を撚り合わせた撚線導体からなる導体を有するケーブルの前記素線の断線を検知する方法であって、前記ケーブルをU字状に屈曲した状態として、前記ケーブルの一端部を当該一端部のケーブル長手方向に沿って所定のストロークで周期的にスライド移動させるU字屈曲動作を行い、前記U字屈曲動作により時系列的に変化する前記導体の抵抗値を測定し、前記U字屈曲動作の周期に対応する周波数を動作周波数として、前記導体の抵抗値の時系列的な変化に含まれる前記動作周波数の抵抗値変動成分を抽出し、抽出した前記動作周波数の抵抗値変動成分の大きさに基づいて、前記素線の断線を検知する、断線検知方法を提供する。 In order to solve the above-mentioned problems, the present invention provides a method for detecting a disconnection of a wire in a cable having a conductor made of a stranded conductor made by twisting a plurality of wires, the method comprising: A U-shaped bending operation is performed in which one end of the cable is periodically slid at a predetermined stroke along the longitudinal direction of the cable, and the U-shaped bending operation is performed in a time-series manner. Measure the changing resistance value of the conductor, set the frequency corresponding to the cycle of the U-shaped bending operation as the operating frequency, and calculate the resistance value fluctuation component of the operating frequency included in the time-series change in the resistance value of the conductor. A wire breakage detection method is provided, which detects a wire breakage in the strand based on the magnitude of the extracted resistance value fluctuation component of the operating frequency.

また、本発明は、上記課題を解決することを目的として、複数の素線を撚り合わせた撚線導体からなる導体を有するケーブルの前記素線の断線を検知する装置であって、前記ケーブルをU字状に屈曲した状態として、前記ケーブルの一端部を当該一端部のケーブル長手方向に沿って所定のストロークで周期的にスライド移動させるU字屈曲動作を行うU字屈曲機構と、前記U字屈曲動作により時系列的に変化する前記導体の抵抗値を測定し、前記U字屈曲動作の周期に対応する周波数を動作周波数として、前記導体の抵抗値の時系列的な変化に含まれる前記動作周波数の抵抗値変動成分を抽出する測定器と、を備え、抽出した前記動作周波数の抵抗値変動成分の大きさに基づいて、前記素線の断線を検知する、断線検知装置を提供する。 Further, in order to solve the above-mentioned problems, the present invention provides a device for detecting disconnection of the strands of a cable having a conductor made of a stranded conductor made of a plurality of strands twisted together. a U-shaped bending mechanism that performs a U-shaped bending operation of periodically sliding one end of the cable at a predetermined stroke along the longitudinal direction of the cable while the cable is bent in a U-shape; Measure the resistance value of the conductor that changes over time due to the bending operation, and set the frequency corresponding to the cycle of the U-shaped bending operation as the operating frequency, and measure the operation included in the time-series change in the resistance value of the conductor. A measuring device for extracting a resistance value fluctuation component of a frequency, and a wire breakage detection device that detects a wire breakage of the strand based on the magnitude of the extracted resistance value fluctuation component of the operating frequency.

本発明によれば、導体に断線が発生したことを高感度で検知可能な断線検知方法および断線検知装置を提供できる。 According to the present invention, it is possible to provide a disconnection detection method and a disconnection detection device that can detect with high sensitivity the occurrence of a disconnection in a conductor.

(a)は、本発明の一実施の形態に係る断線検知装置を示す概略図であり、(b)は、(a)におけるU字屈曲機構の動作例を説明する模式図である。(a) is a schematic diagram showing a disconnection detection device according to an embodiment of the present invention, and (b) is a schematic diagram illustrating an example of the operation of the U-shaped bending mechanism in (a). ケーブルの概略的な構成例を示す断面図である。FIG. 2 is a cross-sectional view showing a schematic configuration example of a cable. ケーブルに断線が生じた場合の抵抗値を説明するための模式図である。FIG. 3 is a schematic diagram for explaining the resistance value when a cable breaks. ケーブル抵抗値の測定原理を説明する模式図である。It is a schematic diagram explaining the measurement principle of a cable resistance value. 測定器の概略的な構成例および動作例を示す図である。FIG. 2 is a diagram illustrating a schematic configuration example and an operation example of a measuring instrument. 図4の測定原理を用いることによる効果の一例を説明する図である。5 is a diagram illustrating an example of an effect obtained by using the measurement principle of FIG. 4. FIG. ケーブルの断線検知を行った結果の一例を示す図である。It is a figure which shows an example of the result of performing disconnection detection of a cable. 本発明の一実施の形態に係る断線検知方法において、処理内容の一例を示すフロー図である。FIG. 2 is a flow diagram showing an example of processing contents in a disconnection detection method according to an embodiment of the present invention. (a)は、導体の抵抗値の時系列的な変化において、所定の時間間隔で区切られた測定区間毎に、抵抗値の最大値、最小値、及び平均値を算出したグラフであり、(b)は(a)から求めた規格化抵抗値のグラフである。(a) is a graph in which the maximum value, minimum value, and average value of the resistance value are calculated for each measurement section separated by a predetermined time interval in the time-series change in the resistance value of the conductor; b) is a graph of the normalized resistance value obtained from (a).

[実施の形態]
以下、本発明の実施の形態を添付図面にしたがって説明する。
[Embodiment]
Embodiments of the present invention will be described below with reference to the accompanying drawings.

(断線検知装置)
図1は、図1(a)は、本実施の形態に係る断線検知装置の構成例を示す概略図であり、図1(b)は、図1(a)におけるU字屈曲機構の動作例を説明する模式図である。図2は、断線検知の対象となるケーブルの概略的な構成例を示す断面図である。
(Disconnection detection device)
FIG. 1(a) is a schematic diagram showing a configuration example of a disconnection detection device according to the present embodiment, and FIG. 1(b) is an operational example of the U-shaped bending mechanism in FIG. 1(a). FIG. FIG. 2 is a cross-sectional view illustrating a schematic configuration example of a cable to be detected for disconnection.

図2に示すケーブル10は、5本の電線11と糸状の介在12とを撚り合わせたケーブルコア13の周囲に押さえ巻きテープ14をらせん状に巻きつけ、押さえ巻きテープ14の周囲を覆うようにシース15を設けて構成されている。電線11は、複数の素線を撚り合わせた撚線導体からなる導体11aと、導体11aの周囲を覆うように設けられた絶縁体11bと、を有している。導体11aは、例えば、外径0.08mmの軟銅線からなる素線を19本集合撚りして構成されている。介在12は、例えばジュートやスフからなる。絶縁体11bは、例えば、ETFE(テトラフルオロエチレン-エチレン共重合体)等のフッ素樹脂からなる。なお、ケーブル10に使用する電線11の本数は5本に限定されない。押さえ巻きテープ14は、例えば、不織布や紙、樹脂等からなるテープ部材からなる。シース15は、例えばPE(ポリエチレン)、PP(ポリプロピレン)、PVC(ポリ塩化ビニル)等からなる。なお、ケーブル10は、図示の構成に限らず、少なくとも撚線導体からなる導体11aを含んでいれば様々な構成であってよい。すなわち、電線11は、1本でもよいし、数本でもよいし、数十本以上でもよい。なお、電線11が1本の場合は、介在12、押さえ巻きテープ14、及びシース15を無くす場合が多い。この場合、ケーブル10と電線11は、同じものを示す。 In the cable 10 shown in FIG. 2, a pressure-wrapping tape 14 is spirally wound around a cable core 13 in which five electric wires 11 and a thread-like interposition 12 are twisted together, and the pressure-wrapping tape 14 is wrapped around the cable core 13 so as to cover the periphery of the pressure-wrapping tape 14. A sheath 15 is provided. The electric wire 11 includes a conductor 11a made of a stranded conductor obtained by twisting a plurality of wires together, and an insulator 11b provided so as to cover the periphery of the conductor 11a. The conductor 11a is constructed by, for example, twisting together 19 strands of annealed copper wire with an outer diameter of 0.08 mm. The interposition 12 is made of jute or cotton, for example. The insulator 11b is made of, for example, a fluororesin such as ETFE (tetrafluoroethylene-ethylene copolymer). Note that the number of electric wires 11 used in the cable 10 is not limited to five. The pressing tape 14 is made of a tape member made of, for example, nonwoven fabric, paper, resin, or the like. The sheath 15 is made of, for example, PE (polyethylene), PP (polypropylene), PVC (polyvinyl chloride), or the like. Note that the cable 10 is not limited to the illustrated configuration, and may have various configurations as long as it includes at least the conductor 11a made of a stranded wire conductor. That is, the number of electric wires 11 may be one, several, or several dozen or more. Note that when there is only one electric wire 11, the interposer 12, the pressing tape 14, and the sheath 15 are often eliminated. In this case, the cable 10 and the electric wire 11 are the same.

図1(a)に示す断線検知装置1は、ケーブル10に含まれる導体11aにおいて素線に断線が発生したことを検知するための装置であり、U字屈曲機構20と、測定器30とを備える。 The disconnection detection device 1 shown in FIG. Be prepared.

U字屈曲機構20は、ケーブル10をU字状に屈曲した状態として、ケーブル10の一端部を当該一端部のケーブル長手方向に沿って所定のストロークで周期的にスライド移動させるU字屈曲動作を行う。U字状に屈曲した状態において、ケーブル10は、平行に配置された2つの直線部10a,10bと、両直線部10a,10bを連結する半円弧状の湾曲部10cと、を有する。U字屈曲機構20は、ケーブル10の一方の端部(一方の直線部10a)が固定された固定部21と、ケーブル10の他方の端部(他方の直線部10b)が固定されたスライド部22と、を有する。スライド部22は、両直線部10a,10bの対向方向と同じ方向において、固定部21と対向するように設けられており、図示しない駆動部により、固定部21に対して相対的にスライド移動可能に構成されている。スライド部22のスライド方向は、スライド部22に固定されている直線部10bの長手方向に沿った方向である。 The U-shaped bending mechanism 20 performs a U-shaped bending operation in which the cable 10 is bent into a U-shape and one end of the cable 10 is periodically slid at a predetermined stroke along the longitudinal direction of the cable. conduct. In the U-shaped bent state, the cable 10 has two straight portions 10a and 10b arranged in parallel, and a semicircular curved portion 10c connecting the straight portions 10a and 10b. The U-shaped bending mechanism 20 includes a fixed part 21 to which one end of the cable 10 (one straight part 10a) is fixed, and a sliding part to which the other end of the cable 10 (the other straight part 10b) is fixed. 22. The sliding part 22 is provided to face the fixed part 21 in the same direction as the opposing direction of both the linear parts 10a and 10b, and can be slid relative to the fixed part 21 by a drive part (not shown). It is composed of The sliding direction of the sliding portion 22 is a direction along the longitudinal direction of the straight portion 10b fixed to the sliding portion 22.

図1(b)に示されるように、U字屈曲機構20は、ケーブル10が第1U字屈曲状態40aと第2U字屈曲状態40bとの間を往復するようにケーブル10に一定の周期でU字屈曲動作を行う。第1U字屈曲状態40aは、スライド部22を最も湾曲部10c側にスライド移動させた状態であり、固定部21に固定された直線部10aのケーブル長手方向に沿った長さが最も長くなり、スライド部22に固定された直線部10bのケーブル長手方向に沿った長さが最も短くなる。つまり、第1U字屈曲状態40aでは、ケーブル長手方向において湾曲部10cが最も直線部10b側のケーブル端部に近づくことになり、湾曲部10cから直線部10bのケーブル端部までの直線距離(スライド移動させる方向に沿った距離)が最も短くなる。第2U字屈曲状態40bは、スライド部22を最も湾曲部10cから離れた位置にスライド移動させた状態であり、固定部21に固定された直線部10aのケーブル長手方向に沿った長さが最も短くなり、スライド部22に固定された直線部10bのケーブル長手方向に沿った長さが最も長くなる。つまり、第2U字屈曲状態40bでは、ケーブル長手方向において湾曲部10cが最も直線部10a側のケーブル端部に近づくことになり、湾曲部10cから直線部10aのケーブル端部までの直線距離(スライド移動させる方向に沿った距離)が最も短くなる。 As shown in FIG. 1(b), the U-shaped bending mechanism 20 causes the cable 10 to be bent at regular intervals so that the cable 10 reciprocates between the first U-shaped bent state 40a and the second U-shaped bent state 40b. Perform a curving motion. The first U-shaped bent state 40a is a state in which the sliding part 22 is slid furthest toward the curved part 10c, and the length of the straight part 10a fixed to the fixed part 21 along the longitudinal direction of the cable is the longest, The length of the straight portion 10b fixed to the slide portion 22 along the longitudinal direction of the cable is the shortest. That is, in the first U-shaped bent state 40a, the curved part 10c approaches the cable end closest to the straight part 10b in the longitudinal direction of the cable, and the linear distance from the curved part 10c to the cable end of the straight part 10b (slide distance along the direction of movement) is the shortest. The second U-shaped bent state 40b is a state in which the sliding portion 22 is slid to a position farthest from the curved portion 10c, and the length of the straight portion 10a fixed to the fixed portion 21 along the cable longitudinal direction is the longest. The straight portion 10b fixed to the slide portion 22 has the longest length along the longitudinal direction of the cable. That is, in the second U-shaped bent state 40b, the curved part 10c comes closest to the cable end on the straight part 10a side in the cable longitudinal direction, and the linear distance from the curved part 10c to the cable end of the straight part 10a (slide distance along the direction of movement) is the shortest.

第1U字屈曲状態40aと第2U字屈曲状態40bとの間を一往復すると、U字屈曲動作が1周期となる。以下、U字屈曲動作の周期に対応する周波数、すなわち、第1U字屈曲状態40aと第2U字屈曲状態40bとの間を一往復する周波数を動作周波数と呼称する。例えば、図1(b)に示すU字屈曲動作の1周期(一往復)が1秒である場合、動作周波数fは1Hzとなる。この場合、U字屈曲機構20は、0.5秒かけて第1U字屈曲状態40aから第2U字屈曲状態40bに推移させたのち、0.5秒かけて第2U字屈曲状態40bから第1U字屈曲状態40aに戻すといったU字屈曲動作を繰り返す。このU字屈曲動作の回数である動作回数は、U字屈曲動作1周期で1回とする。なお、動作周波数fは、実使用上のケーブル10の使用条件等を加味して適切な値に定められればよい。また、湾曲部10cの曲率半径についても、実使用上のケーブル10の使用条件等を加味して適切な値に定められればよい。 One reciprocation between the first U-shaped bending state 40a and the second U-shaped bending state 40b corresponds to one cycle of the U-shaped bending operation. Hereinafter, the frequency corresponding to the cycle of the U-shaped bending operation, that is, the frequency of one round trip between the first U-shaped bending state 40a and the second U-shaped bending state 40b, will be referred to as the operating frequency. For example, when one cycle (one round trip) of the U-shaped bending motion shown in FIG. 1(b) is 1 second, the operating frequency f is 1 Hz. In this case, the U-shaped bending mechanism 20 takes 0.5 seconds to transition from the first U-shaped bent state 40a to the second U-shaped bent state 40b, and then changes from the second U-shaped bent state 40b to the first U-shaped bent state 40b in 0.5 seconds. The U-shaped bending operation of returning to the bent state 40a is repeated. The number of operations, which is the number of times this U-shaped bending operation is performed, is once in one cycle of the U-shaped bending operation. Note that the operating frequency f may be determined to an appropriate value by taking into consideration the usage conditions of the cable 10 in actual use. Further, the radius of curvature of the curved portion 10c may also be determined to an appropriate value by taking into consideration the usage conditions of the cable 10 in actual use.

測定器30は、U字屈曲機構20のU字屈曲動作に応じて時系列的に変化するケーブル10の導体11aの抵抗値を測定し、当該ケーブル10の抵抗値の時系列的な変化に含まれる動作周波数fの抵抗値変動成分を抽出する。そして、断線検知装置1は、この測定器30で抽出された動作周波数fの抵抗値変動成分の大きさに基づいて導体11aの素線の断線を検知する。 The measuring device 30 measures the resistance value of the conductor 11a of the cable 10 that changes over time according to the U-shaped bending operation of the U-shaped bending mechanism 20, and measures the resistance value included in the time-series change in the resistance value of the cable 10. The resistance value fluctuation component of the operating frequency f is extracted. Then, the wire breakage detection device 1 detects a wire breakage of the conductor 11a based on the magnitude of the resistance value fluctuation component of the operating frequency f extracted by the measuring device 30.

詳細には、測定器30は、抵抗測定部35と、周波数解析部36とを有する。抵抗測定部35は、例えば、ケーブル10(導体11a)の両端間に定電圧を印加した上で流れる電流を時系列的に測定するか、ケーブル10(導体11a)に定電流を印加した上で両端間に発生する電圧を時系列的に測定することで、ケーブル10(導体11a)の抵抗値の変化を測定する。周波数解析部36は、当該導体11aの抵抗値の時系列的な変化から動作周波数fの抵抗値変動成分を抽出する。なお、測定器30の更なる詳細については後述する。 Specifically, the measuring device 30 includes a resistance measuring section 35 and a frequency analyzing section 36. For example, the resistance measurement unit 35 applies a constant voltage between both ends of the cable 10 (conductor 11a) and measures the current flowing in time series, or applies a constant current to the cable 10 (conductor 11a) and then measures the current flowing over time. By measuring the voltage generated between both ends over time, changes in the resistance value of the cable 10 (conductor 11a) are measured. The frequency analysis unit 36 extracts the resistance value fluctuation component at the operating frequency f from the time-series change in the resistance value of the conductor 11a. Further details of the measuring device 30 will be described later.

(前提となる断線検知の問題点)
図3は、導体11aに断線が生じた場合の抵抗値を説明するための模式図である。導体11aに断線が生じた場合、導体11aの抵抗値R[Ω]は、理論的には、式(1)で表される。式(1)において、ρ[Ω・m]は素線の抵抗率であり、La[m]は非断線箇所の導体長であり、図3に示される導体11a全体の長さ(ケーブル長)L[m]と断線箇所の導体11aの長さLb[m]とを用いて式(2)で表される。また、Sa[m]は、非断線箇所の導体断面積であり、Sb[m]は、断線箇所の導体断面積である。
R=ρ×(La/Sa)+ρ×(Lb/Sb) …(1)
La=L-Lb …(2)
(Issues with disconnection detection as a premise)
FIG. 3 is a schematic diagram for explaining the resistance value when a disconnection occurs in the conductor 11a. When a disconnection occurs in the conductor 11a, the resistance value R [Ω] of the conductor 11a is theoretically expressed by equation (1). In formula (1), ρ [Ω・m] is the resistivity of the strand, La [m] is the conductor length at the non-broken point, and the entire length of the conductor 11a shown in FIG. 3 (cable length) It is expressed by equation (2) using L[m] and the length Lb[m] of the conductor 11a at the disconnection point. Further, Sa [m 2 ] is the conductor cross-sectional area at the non-broken point, and Sb [m 2 ] is the conductor cross-sectional area at the broken line.
R=ρ×(La/Sa)+ρ×(Lb/Sb)…(1)
La=L−Lb…(2)

式(1)に示されるように、導体11aの抵抗値Rは、断線箇所の断面積Sbに対して反比例する特性となる。この場合、断面積Sbがある程度大きい場合には、抵抗値Rはさほど変化せず、断面積Sbが十分に小さくなった段階で、抵抗値Rは急激に増加することになる。つまり、導体11aにおいて素線の断線本数の割合が小さい場合には、断面積Sbが十分に大きいため、抵抗値Rはさほど変化しない。そして、一例として、素線の断線本数の割合が70%~80%程度に達した段階で、断面積Sbが十分に小さくなり、抵抗値Rは、初期抵抗値から20%程度増加し得る。 As shown in equation (1), the resistance value R of the conductor 11a has a characteristic that is inversely proportional to the cross-sectional area Sb of the disconnection location. In this case, when the cross-sectional area Sb is large to some extent, the resistance value R does not change much, but when the cross-sectional area Sb becomes sufficiently small, the resistance value R increases rapidly. That is, when the ratio of the number of broken wires in the conductor 11a is small, the cross-sectional area Sb is sufficiently large, so the resistance value R does not change much. As an example, when the ratio of the number of broken wires reaches about 70% to 80%, the cross-sectional area Sb becomes sufficiently small, and the resistance value R can increase by about 20% from the initial resistance value.

ここで、単純に初期抵抗値からの増加率に基づいて断線を検知する一般的な検知方式を用いる場合を想定する。この場合、前述したように、導体11aにおける素線の断線本数の割合が十分に大きくなるまで抵抗値Rに際立った変化が生じないことに加えて、抵抗値Rは、環境温度や、抵抗測定時の接触電位等によっても変動し得るため、初期の断線がいつの段階で生じたかを判別することは困難である。例えば、抵抗値Rの温度特性を0.4%/℃程度とすると、環境温度が20℃増加すると、抵抗値Rは8%程度増加するが、このような環境温度による抵抗値Rの変化が、素線の断線による抵抗値Rの変化よりも大きくなる場合がある。 Here, a case is assumed in which a general detection method is used to detect wire breakage simply based on the rate of increase from the initial resistance value. In this case, as mentioned above, in addition to the fact that the resistance value R does not change noticeably until the proportion of the number of broken wires in the conductor 11a becomes sufficiently large, the resistance value R also depends on the environmental temperature and the resistance measurement. It is difficult to determine at what stage the initial disconnection occurs because it may vary depending on the contact potential at the time. For example, if the temperature characteristic of the resistance value R is about 0.4%/℃, if the environmental temperature increases by 20℃, the resistance value R will increase by about 8%. , may be larger than the change in resistance value R due to wire breakage.

そのため、一般的な検知方式では、初期の断線を検知することが困難であり、言い換えれば、断線を高感度で検知することが困難である。そこで、図1(a)および図1(b)に示した断線検知装置1を用いることが有益となる。 Therefore, with a general detection method, it is difficult to detect an initial disconnection, or in other words, it is difficult to detect a disconnection with high sensitivity. Therefore, it is advantageous to use the disconnection detection device 1 shown in FIGS. 1(a) and 1(b).

(断線検知の原理)
図4は、図1(a)および図1(b)の断線検知装置1を用いた場合の、断線検知の原理を説明する模式図である。図4の例では、ケーブル10の導体11aに含まれる複数の素線の一部の箇所に断線が生じている。図4では、この断線箇所を符号16で示している。図4には、U字屈曲動作を行った際のケーブル10の抵抗値Rの変化が示される。なお、この例では、U字屈曲動作の動作周期が1秒となっており、動作周波数fは、1Hzとなる。また、この例では、図1(b)に示した第1U字屈曲状態40aと第2U字屈曲状態40bの中間の位置にスライド部22を移動させた状態を基準状態40cとし、基準状態40c(時間0秒)から第1U字屈曲状態40a(時間0.25秒)、基準状態40c(時間0.50秒)、第2U字屈曲状態40b(時間0.75秒)を経由して基準状態40c(時間1.00秒)に戻るようにU字屈曲動作を行う。
(Principle of disconnection detection)
FIG. 4 is a schematic diagram illustrating the principle of wire breakage detection when the wire breakage detection device 1 of FIGS. 1(a) and 1(b) is used. In the example of FIG. 4, a disconnection has occurred at some locations of a plurality of wires included in the conductor 11a of the cable 10. In FIG. 4, this disconnection location is indicated by reference numeral 16. FIG. 4 shows a change in the resistance value R of the cable 10 when performing a U-shaped bending operation. In this example, the operation cycle of the U-shaped bending operation is 1 second, and the operation frequency f is 1 Hz. In addition, in this example, a state in which the slide portion 22 is moved to an intermediate position between the first U-shaped bent state 40a and the second U-shaped bent state 40b shown in FIG. 1(b) is defined as a reference state 40c, and the reference state 40c ( from the first U-shaped bending state 40a (time 0.25 seconds), the reference state 40c (time 0.50 seconds), and the second U-shaped bending state 40b (time 0.75 seconds) to the reference state 40c. Perform a U-shaped bending motion to return to (time 1.00 seconds).

図5に示されるように、基準状態40c(時間0秒)において、断線箇所16は、湾曲部10cでケーブル中心よりも曲げの外側に位置しており、断線箇所16の導体長Lbは長くなる。それに伴い、上記式(1)の抵抗値Rは増加する。その後、第1U字屈曲状態40a(時間0.25秒)となると、断線箇所16が直線部10aに移行するので、基準状態40cと比べて断線箇所16の導体長Lbは短くなり、抵抗値Rが減少する。 As shown in FIG. 5, in the reference state 40c (time 0 seconds), the disconnection point 16 is located on the outside of the bend from the center of the cable at the bending part 10c, and the conductor length Lb of the disconnection point 16 becomes longer. . Accordingly, the resistance value R in the above formula (1) increases. Thereafter, when the first U-shaped bending state 40a (time 0.25 seconds) is reached, the disconnection point 16 shifts to the straight part 10a, so the conductor length Lb of the disconnection point 16 becomes shorter than the reference state 40c, and the resistance value R decreases.

その後、基準状態40c(時間0.50秒)に戻ると、断線箇所16の導体長Lbが長くなり抵抗値Rは再び増加する。その後、第2U字屈曲状態40b(時間0.75秒)となると、断線箇所16が直線部10bに移行するので、基準状態40cと比べて断線箇所16の導体長Lbは短くなり、抵抗値Rが減少する。その後、基準状態40c(時間1.00秒)に戻ると、断線箇所16の導体長Lbが長くなり抵抗値Rは再び増加する。 Thereafter, when returning to the reference state 40c (time 0.50 seconds), the conductor length Lb at the disconnection point 16 becomes longer and the resistance value R increases again. Thereafter, when the second U-shaped bending state 40b (time 0.75 seconds) is reached, the disconnection point 16 moves to the straight part 10b, so the conductor length Lb of the disconnection point 16 becomes shorter than the reference state 40c, and the resistance value R decreases. Thereafter, when returning to the reference state 40c (time 1.00 seconds), the conductor length Lb at the disconnection point 16 becomes longer and the resistance value R increases again.

このように、断線箇所16の導体長Lbが、U字屈曲動作に同期してケーブル10の長さ方向に周期的に伸縮する結果、導体11aの抵抗値Rは、動作周波数fで変調されることになる。一方、断線が発生していない場合、理想的には、抵抗値Rの変化の中に動作周波数fで変化する抵抗値変動成分は含まれない。 In this way, as a result of the conductor length Lb at the disconnection point 16 periodically expanding and contracting in the length direction of the cable 10 in synchronization with the U-shaped bending operation, the resistance value R of the conductor 11a is modulated at the operating frequency f. It turns out. On the other hand, if no wire breakage occurs, ideally the change in resistance value R does not include a resistance value fluctuation component that changes at the operating frequency f.

そこで、測定器30は、U字屈曲機構20によるU字屈曲動作に応じて時系列的に変化するケーブル10の抵抗値を測定し、当該ケーブル10の抵抗値の時系列的な変化から動作周波数fの抵抗値変動成分を抽出する。これにより、動作周波数fの抵抗値変動成分が発生した時点を、初期の断線が発生した時点とみなすことができる。すなわち、見方を変えれば、各時点において、動作周波数fの抵抗値変動成分が発生しているか否か(例えば、当該成分の大きさが閾値以上か否か等)に基づいて、初期の断線を含めて、少なくとも導体11aの素線に断線が発生したことを検知することが可能になる。 Therefore, the measuring device 30 measures the resistance value of the cable 10 that changes over time according to the U-shaped bending operation by the U-shaped bending mechanism 20, and determines the operating frequency based on the time-series change in the resistance value of the cable 10. Extract the resistance value fluctuation component of f. Thereby, the time point at which the resistance value fluctuation component of the operating frequency f occurs can be regarded as the time point at which the initial disconnection occurs. In other words, looking at it from a different perspective, the initial disconnection can be detected based on whether or not a resistance value fluctuation component of the operating frequency f occurs at each point in time (for example, whether the magnitude of the component is greater than or equal to a threshold value). Including this, it becomes possible to detect that a disconnection has occurred in at least the strands of the conductor 11a.

(測定器30の詳細)
図5は、図1(a)における測定器30の概略的な構成例および動作例を示す図である。図5に示す測定器30は、測定信号の中から特定周波数の成分を検出するロックインアンプを備えた構成例となっている。図5に示すように、測定器30は、抵抗測定部35および周波数解析部36を有する。
(Details of measuring device 30)
FIG. 5 is a diagram showing a schematic configuration example and an operation example of the measuring device 30 in FIG. 1(a). The measuring instrument 30 shown in FIG. 5 has a configuration example including a lock-in amplifier that detects a specific frequency component from a measurement signal. As shown in FIG. 5, the measuring device 30 includes a resistance measuring section 35 and a frequency analyzing section 36.

抵抗測定部35は、例えば、直流信号源(例えば、直流定電圧源)35a、入力抵抗35bおよび抵抗値検出器35c等を備える。なお、直流信号源35aとして直流定電流源を用いる場合は、入力抵抗35bは不要である。直流信号源35aは、入力抵抗35bを介してケーブル10(導体11a)に直流信号(ここでは直流電圧)を印加する。これに応じて、ケーブル10(導体11a)からは、U字屈曲動作により、図4に示したような動作周波数f(=1Hz)の成分を含んだ変調信号(例えば電圧信号)が出力される。抵抗値検出器35cは、例えば、この変調信号を所定のゲインで増幅することで、導体11aの抵抗値Rの時系列的な変化を検出する。 The resistance measurement unit 35 includes, for example, a DC signal source (for example, a DC constant voltage source) 35a, an input resistor 35b, a resistance value detector 35c, and the like. Note that when a DC constant current source is used as the DC signal source 35a, the input resistor 35b is not necessary. The DC signal source 35a applies a DC signal (DC voltage here) to the cable 10 (conductor 11a) via the input resistor 35b. In response, the cable 10 (conductor 11a) outputs a modulated signal (for example, a voltage signal) including a component of the operating frequency f (=1 Hz) as shown in FIG. 4 through the U-shaped bending operation. . The resistance value detector 35c detects a time-series change in the resistance value R of the conductor 11a, for example, by amplifying this modulation signal with a predetermined gain.

周波数解析部36は、例えば、キャリア信号生成器36a、ミキサ36bおよびロウパスフィルタ(LPF)36c等を備える。キャリア信号生成器36aは、動作周波数f、つまり断線による抵抗値変動周波数と同じキャリア周波数(ωc、図4の場合1Hz)であって、抵抗値変動周波数と同じ位相を持つキャリア信号を生成する。ミキサ36bは、このキャリア信号と、抵抗値検出器35cからの出力信号とを乗算(言い換えれば同期検波)することで、直流成分の信号と"2×ωc"成分の信号とが重畳された信号を出力する。なお、図5に示すキャリア信号生成器36aにおいて、sin(ωct)は、ωc=2πfであるとした場合に動作周波数fの抵抗値変動成分を抽出することができる。 The frequency analysis section 36 includes, for example, a carrier signal generator 36a, a mixer 36b, a low pass filter (LPF) 36c, and the like. The carrier signal generator 36a generates a carrier signal having the same carrier frequency (ωc, 1 Hz in FIG. 4) as the operating frequency f, that is, the resistance value fluctuation frequency due to wire breakage, and the same phase as the resistance value fluctuation frequency. The mixer 36b multiplies this carrier signal by the output signal from the resistance value detector 35c (in other words, performs synchronous detection), thereby producing a signal in which a DC component signal and a "2×ωc" component signal are superimposed. Output. In the carrier signal generator 36a shown in FIG. 5, sin(ωct) can extract the resistance value fluctuation component of the operating frequency f when ωc=2πf.

ロウパスフィルタ36cは、ミキサ36bからの出力信号を受けて、"2×ωc"成分の信号を遮断し、直流成分の信号を通過させる。この直流成分の信号は、動作周波数f(=ωc)の抵抗値変動成分の大きさを表す。このように、キャリア信号生成器36a、ミキサ36bおよびロウパスフィルタ36cを用いて所定周波数(ここでは動作周波数f)の成分を検出する構成が、ロックインアンプの基本構成である。ロウパスフィルタ36cからの信号は、A/Dコンバータ37によりデジタル信号に変換され、図示しないパーソナルコンピュータ等の演算装置に出力される。演算装置では、例えば、入力された信号と閾値とを比較することで、断線の発生を検知する。 The low-pass filter 36c receives the output signal from the mixer 36b, cuts off the "2×ωc" component signal, and passes the DC component signal. This DC component signal represents the magnitude of the resistance value fluctuation component at the operating frequency f (=ωc). The basic configuration of a lock-in amplifier is thus configured to detect a component of a predetermined frequency (here, the operating frequency f) using the carrier signal generator 36a, mixer 36b, and low-pass filter 36c. The signal from the low-pass filter 36c is converted into a digital signal by the A/D converter 37, and output to an arithmetic device such as a personal computer (not shown). The arithmetic device detects the occurrence of wire breakage, for example, by comparing the input signal with a threshold value.

図6は、図4の原理を用いることによる効果の一例を説明する図である。図6において、例えば、前述した一般的な検知方式を用いる場合、断線による抵抗値Rの増加成分が、直流周波数(=0Hz)に生じることになる。ただし、通常、周波数が低くなるほどノイズ成分(例えば、測定時の温度や接触電位等に依存したばらつき成分、半導体素子による増幅等に伴う1/fノイズ)が増大する。このため、一般的な検知方式では、抵抗値Rの増加成分が大きくならない限り(例えば、断線の程度が進行しない限り)、抵抗値Rの増加成分とノイズ成分とを区別することが困難となり得る。言い換えれば、測定結果は、ノイズ成分の要因となる測定環境に大きく影響され得る。 FIG. 6 is a diagram illustrating an example of the effect obtained by using the principle of FIG. 4. In FIG. 6, for example, when the general detection method described above is used, an increased component of the resistance value R due to the disconnection occurs at the DC frequency (=0 Hz). However, normally, as the frequency decreases, noise components (for example, variation components depending on temperature and contact potential during measurement, 1/f noise due to amplification by semiconductor elements, etc.) increase. For this reason, with general detection methods, it may be difficult to distinguish between the increasing component of the resistance value R and the noise component unless the increasing component of the resistance value R becomes large (for example, unless the degree of wire breakage progresses). . In other words, the measurement results can be greatly influenced by the measurement environment that causes noise components.

一方、図4のような方式を用いると、断線による抵抗値Rの変化成分は、動作周波数f(図4では1Hz)に生じることになる。動作周波数f(図4では1Hz)では、直流周波数(=0Hz)と比較してノイズ成分が小さくなる。このため、抵抗値Rの変化成分がある程度小さい場合であっても(すなわち、初期の断線状態であっても)、抵抗値Rの変化成分とノイズ成分とを区別することが可能になる。言い換えれば、測定結果は、測定環境の影響を受け難くなる。 On the other hand, if the method shown in FIG. 4 is used, the component of change in the resistance value R due to the disconnection will occur at the operating frequency f (1 Hz in FIG. 4). At the operating frequency f (1 Hz in FIG. 4), the noise component is smaller than at the DC frequency (=0 Hz). Therefore, even if the change component of the resistance value R is small to some extent (that is, even in an initial disconnection state), it is possible to distinguish between the change component of the resistance value R and the noise component. In other words, the measurement results are less affected by the measurement environment.

また、図5のようなロックインアンプを用いた構成は、ケーブル10からの変調信号(実際には動作周波数fの抵抗値変動成分に加えてノイズ成分も含む)に対して、U字屈曲の動作周波数fを中心周波数とするバンドパスフィルタ(BPF)を通過させた構成と等価である。この際に、測定時間をある程度の時間確保すると、実効的に、このバンドパスフィルタ(BPF)の帯域幅を狭めることができる。これは、図5におけるロウパスフィルタ36cの時定数を大きく設計できることを意味する。そして、バンドパスフィルタ(BPF)の帯域幅を狭めるほど、ノイズ成分の影響をより低減する(言い換えれば、SN比を向上させる)ことが可能になる。 In addition, the configuration using a lock-in amplifier as shown in FIG. This is equivalent to a configuration in which the signal is passed through a band pass filter (BPF) whose center frequency is the operating frequency f. At this time, if a certain amount of measurement time is secured, the bandwidth of this bandpass filter (BPF) can be effectively narrowed. This means that the time constant of the low-pass filter 36c in FIG. 5 can be designed to be large. The narrower the bandwidth of the bandpass filter (BPF), the more the influence of noise components can be reduced (in other words, the SN ratio can be improved).

なお、図5の構成例は、ケーブル10(導体11a)に直流信号を印加するものであったが、直流信号に限らず、交流信号源を用いて所定周波数(例えば10kHz程度)の交流信号を印加するものであってもよい。この場合、ケーブル10からは、この交流信号を動作周波数fの変調信号で振幅変調したような信号が出力される。そこで、この出力信号に対して、ミキサを用いて交流信号源の交流信号と同じ周波数のキャリア信号を乗算すれば、動作周波数fの変調信号を復調できる。このような方式を用いると、より高い周波数(例えば10kHz程度)での測定を行える結果、ノイズ成分の影響がより生じ難くなる。 In addition, although the configuration example of FIG. 5 applies a DC signal to the cable 10 (conductor 11a), it is not limited to DC signals, but can also apply an AC signal of a predetermined frequency (for example, about 10 kHz) using an AC signal source. It may be applied. In this case, the cable 10 outputs a signal obtained by amplitude modulating this AC signal with a modulation signal having an operating frequency f. Therefore, by multiplying this output signal by a carrier signal having the same frequency as the alternating current signal of the alternating current signal source using a mixer, a modulated signal having the operating frequency f can be demodulated. When such a method is used, measurement can be performed at a higher frequency (for example, about 10 kHz), and as a result, the influence of noise components becomes less likely to occur.

なお、図1(a)の測定器30の構成は、図5のようなロックインアンプを用いた構成に限らず、例えば、実際のバンドパスフィルタ(BPF)を用いて動作周波数fの成分を抽出するような構成であってよい。さらに、測定器30の構成は、例えば、図5の抵抗値検出器35cからの出力信号をデジタル信号に変換し、それに対して高速フーリエ変換(FFT)等のデジタル処理を行うことで動作周波数fの成分を抽出するような構成であってもよい。 Note that the configuration of the measuring instrument 30 in FIG. 1(a) is not limited to the configuration using a lock-in amplifier as shown in FIG. The configuration may be such that the information is extracted. Furthermore, the configuration of the measuring device 30 is such that, for example, the output signal from the resistance value detector 35c in FIG. It may be configured to extract the components of

(動作周波数の高次周波数の利用)
図4にて示したように、U字屈曲動作を繰り返した際に得られる抵抗値Rの変化は、所定のデューティー比のパルス波に類似した波形となる。そのため、抵抗値Rの時系列的な変化には、動作周波数fの抵抗値変動成分のみならず、動作周波数のn倍(nは2以上の自然数)の高次周波数の抵抗値変動成分が含まれる。
(Using higher-order frequencies of operating frequency)
As shown in FIG. 4, the change in resistance value R obtained when the U-shaped bending operation is repeated has a waveform similar to a pulse wave with a predetermined duty ratio. Therefore, the time-series change in the resistance value R includes not only a resistance value fluctuation component at the operating frequency f, but also a resistance value fluctuation component at a higher frequency n times the operating frequency (n is a natural number of 2 or more). It will be done.

そこで、周波数解析部36にて、導体11aの抵抗値Rの時系列的な変化に含まれる動作周波数fの抵抗値変動成分及びその動作周波数fのn倍(nは2以上の自然数)の周波数である高次周波数の抵抗値変動成分を抽出するようにし、抽出した動作周波数fの抵抗値変動成分及びその高次周波数の抵抗値変動成分の大きさ(すなわち、後述する図7の抵抗値変動の振幅)に基づいて、素線の断線を検知するように構成することが可能である。上述のように、周波数が低いと外部ノイズの影響を受けやすく、周囲の環境によっては誤検知が生じてしまうおそれがあるが、動作周波数だけでなく、その高次周波数の抵抗値変動成分まで考慮する(例えば、抽出した動作周波数や高次周波数の抵抗値変動成分の大きさを予め設定した閾値と比較する)ことによって、誤検知を抑制し、断線の発生をより高精度に検知することが可能となる。 Therefore, the frequency analysis unit 36 analyzes the resistance value fluctuation component of the operating frequency f included in the time-series change in the resistance value R of the conductor 11a and the frequency n times the operating frequency f (n is a natural number of 2 or more). The resistance value fluctuation component of the extracted operating frequency f and the magnitude of the resistance value fluctuation component of the higher-order frequency (that is, the resistance value fluctuation component of FIG. 7 described later) are extracted. It is possible to detect a break in a strand based on the amplitude of the strand. As mentioned above, when the frequency is low, it is easily affected by external noise, and there is a risk of false detection depending on the surrounding environment, but it is necessary to consider not only the operating frequency but also the resistance value fluctuation component at higher frequencies (For example, by comparing the magnitude of the resistance value fluctuation component of the extracted operating frequency or high-order frequency with a preset threshold value), it is possible to suppress false detections and detect the occurrence of wire breakage with higher accuracy. It becomes possible.

なお、図4を見れば分かるように、抵抗値Rの波形は、ケーブル長手方向における断線箇所16の位置や、湾曲部10cにおいて曲げの内側、外側のどちらに位置するかによって変化する。よって、抵抗測定部35で測定した抵抗値Rの波形を解析することで、ケーブル長手方向におけるどの位置で断線箇所16が発生したかを推定することも可能である。 As can be seen from FIG. 4, the waveform of the resistance value R changes depending on the position of the breakage point 16 in the longitudinal direction of the cable and whether it is located on the inside or outside of the bend in the curved portion 10c. Therefore, by analyzing the waveform of the resistance value R measured by the resistance measuring section 35, it is also possible to estimate at which position in the longitudinal direction of the cable the disconnection point 16 has occurred.

(実測結果)
図7は、図1(a)および図1(b)の断線検知装置1を用いて、ケーブル10の断線検知を行った結果の一例を示す図である。図7の縦軸は、ロウパスフィルタ36cから出力される直流成分の信号の強度(抵抗値変動の振幅)を示す。湾曲部10cにおける曲げ半径は8mmとし、動作周波数fは1.16Hz(70rpm)とした。
(Actual measurement results)
FIG. 7 is a diagram showing an example of the results of detecting a disconnection of the cable 10 using the disconnection detection device 1 shown in FIGS. 1(a) and 1(b). The vertical axis in FIG. 7 indicates the strength of the DC component signal (amplitude of resistance value fluctuation) output from the low-pass filter 36c. The bending radius of the curved portion 10c was 8 mm, and the operating frequency f was 1.16 Hz (70 rpm).

図7に示されるように、U字屈曲回数が63700回程度に達した以降の領域で、動作周波数f(=1.16Hz)、及びそのn倍の高次周波数(2次:2.32Hz、3次:3.48Hz、4次:4.64Hz・・・)の成分が明確に検出されている。このため、U字屈曲回数が63700回程度に達した時点を、初期の断線が生じた時点と推定することができる。 As shown in FIG. 7, in the region after the number of U-shaped bends reaches approximately 63,700 times, the operating frequency f (=1.16 Hz) and higher-order frequencies n times higher than the operating frequency f (=1.16 Hz) (secondary: 2.32 Hz, 3rd order: 3.48Hz, 4th order: 4.64Hz...) components are clearly detected. Therefore, the time when the number of U-shaped bends reaches about 63,700 can be estimated as the time when the initial wire breakage occurs.

(断線検知方法)
図8は、本実施の形態に係る断線検知方法において、処理内容の一例を示すフロー図である。まず、ステップS10において、図1(a)の断線検知装置1に検査対象となるケーブル10が搭載される。続いて、ステップS11において、図1(a)に示したU字屈曲機構20および測定器30の動作が開始される。これに応じて、U字屈曲機構20は、図1(b)に示したように、第1U字屈曲状態40aと第2U字屈曲状態40bとの間を往復するようにスライド部22をスライド移動させて、U字屈曲動作が行われる。また、その間、測定器30は、時系列的に変化するケーブル10(導体11a)の抵抗値を測定し、その変化の中に含まれる動作周波数f及びその高次周波数の抵抗値変動成分を抽出する。
(Disconnection detection method)
FIG. 8 is a flowchart showing an example of processing contents in the disconnection detection method according to the present embodiment. First, in step S10, the cable 10 to be inspected is mounted on the disconnection detection device 1 shown in FIG. 1(a). Subsequently, in step S11, the operations of the U-shaped bending mechanism 20 and the measuring device 30 shown in FIG. 1(a) are started. In response, the U-shaped bending mechanism 20 slides the slide portion 22 to reciprocate between the first U-shaped bent state 40a and the second U-shaped bent state 40b, as shown in FIG. 1(b). Then, a U-shaped bending motion is performed. Also, during that time, the measuring device 30 measures the resistance value of the cable 10 (conductor 11a) that changes over time, and extracts the resistance value fluctuation components of the operating frequency f and its higher-order frequencies included in the change. do.

次いで、ステップS12において、このようなU字屈曲機構20および測定器30の動作が所定の期間継続される。所定の期間とは、例えば、図5に示したようなロックインアンプの構成において、ケーブル10(導体11a)からの出力信号が動作周波数fの抵抗値変動成分をある程度十分に含んでいる場合に、この動作周波数fの抵抗値変動成分を、ロウパスフィルタ36cを介して確実に検出するのに必要とされる期間である。言い換えれば、動作周波数fで変調された周期が単発的ではなく、ある程度持続的に生じている場合に、それを検知するのに要する期間である。この所定の期間は、測定器30の構成や測定環境(すなわちノイズ成分の大きさ)等によって適宜変わり得る。 Next, in step S12, such operations of the U-shaped bending mechanism 20 and the measuring device 30 are continued for a predetermined period. The predetermined period is, for example, in the configuration of a lock-in amplifier as shown in FIG. , is the period required to reliably detect the resistance value fluctuation component at the operating frequency f via the low-pass filter 36c. In other words, it is the period required to detect when the period modulated by the operating frequency f occurs not once, but continuously to some extent. This predetermined period can be changed as appropriate depending on the configuration of the measuring device 30, the measurement environment (that is, the magnitude of the noise component), and the like.

続いて、ステップS13において、U字屈曲機構20および測定器30の動作が停止される。その後、ステップS14において、測定器30の測定結果が参照され、ステップS15において、測定器30によって抽出された動作周波数fの抵抗値変動成分の大きさが予め定めた第1閾値以上か否かが判定される。ステップS15でYESと判定された場合、ステップS16に進む。ステップS15でNOと判定された場合、ステップS18において、断線無しと判定され、処理を終了する。 Subsequently, in step S13, the operations of the U-shaped bending mechanism 20 and the measuring device 30 are stopped. Thereafter, in step S14, the measurement result of the measuring device 30 is referred to, and in step S15, it is determined whether the magnitude of the resistance value fluctuation component of the operating frequency f extracted by the measuring device 30 is greater than or equal to a predetermined first threshold value. It will be judged. If the determination in step S15 is YES, the process advances to step S16. If it is determined NO in step S15, it is determined in step S18 that there is no disconnection, and the process ends.

ステップS16では、動作周波数fのn倍の高次周波数の抵抗値変動成分の大きさが、予め定めた第2閾値以上か否かが判定される。ステップS16で何次の高周波成分を用いるかは、適宜設定可能である。また、nの異なる複数の高次周波数の抵抗値変動成分について、それぞれが閾値以上かを判定するようにしてもよい。ステップS16でYESと判定された場合、ステップS17において、断線有りと判定され、処理を終了する。ステップS16でNOと判定された場合、ステップS18において、断線無しと判定され、処理を終了する。 In step S16, it is determined whether the magnitude of the resistance value fluctuation component at a higher frequency n times the operating frequency f is equal to or greater than a predetermined second threshold value. The order of high frequency components to be used in step S16 can be set as appropriate. Further, it may be determined whether each of a plurality of high-order frequency resistance fluctuation components with different n values is equal to or greater than a threshold value. If YES is determined in step S16, it is determined in step S17 that there is a disconnection, and the process ends. If it is determined NO in step S16, it is determined in step S18 that there is no disconnection, and the process ends.

このようなフローにより、ステップS12での所定の期間を検査時間として、ケーブル10の導体11aの断線を、初期の断線を含めて検知することが可能になる。すなわち、十分に短い検査時間で導体11aの断線を検知することが可能になる。なお、ステップS17において、断線有りと判定されたことを音や光等の発報システムにより管理者等に通知するようにしてもよい。 With such a flow, it becomes possible to detect a break in the conductor 11a of the cable 10, including an initial break, using the predetermined period in step S12 as the inspection time. That is, it becomes possible to detect a disconnection of the conductor 11a in a sufficiently short inspection time. Note that in step S17, the administrator or the like may be notified of the fact that it is determined that there is a disconnection using an alarm system such as sound or light.

(実施の形態の作用及び効果)
以上説明したように、本実施の形態に係る断線検知方法では、ケーブル10をU字状に屈曲した状態として、ケーブル10の一端部を当該一端部のケーブル長手方向に沿って所定のストロークで周期的にスライド移動させるU字屈曲動作を行い、U字屈曲動作により時系列的に変化する導体11aの抵抗値を測定し、U字屈曲動作の周期に対応する周波数を動作周波数fとして、導体11aの抵抗値の時系列的な変化に含まれる動作周波数fの抵抗値変動成分を抽出し、抽出した動作周波数fの抵抗値変動成分の大きさに基づいて、素線の断線を検知している。
(Actions and effects of embodiments)
As described above, in the disconnection detection method according to the present embodiment, the cable 10 is bent into a U-shape, and one end of the cable 10 is periodically moved along the longitudinal direction of the cable at a predetermined stroke. A U-shaped bending operation is performed in which the conductor 11a is slid in a fixed manner, and the resistance value of the conductor 11a that changes over time due to the U-shaped bending operation is measured. The resistance value fluctuation component at the operating frequency f included in the time-series change in the resistance value of is extracted, and a break in the wire is detected based on the magnitude of the resistance value fluctuation component at the extracted operating frequency f. .

これにより、ケーブル10の導体11aでの素線の断線を、初期の断線を含めて検知することが可能になり、結果として、断線を高感度で検知することが可能になる。具体的には、抵抗値の増加率を用いた一般的な検知方式では検知することが困難であった初期の断線を検知することが可能になる。その結果、ケーブル10が装着される各種システムにおいて、重大な障害(例えば、ほぼ全断線)が生じる前に対策を講じることができ、システムの信頼性を向上させることが可能になる。 This makes it possible to detect wire breaks in the conductor 11a of the cable 10, including initial wire breaks, and as a result, it becomes possible to detect wire breaks with high sensitivity. Specifically, it becomes possible to detect an initial disconnection that is difficult to detect using a general detection method that uses the rate of increase in resistance value. As a result, in various systems to which the cable 10 is attached, countermeasures can be taken before a serious failure (for example, almost complete disconnection) occurs, and system reliability can be improved.

また、従来の抵抗値の増加率を用いた一般的な検知方式では、断線前の導体11aの抵抗値、すなわち初期抵抗値が必要であったが、本実施の形態では、抵抗値の絶対値ではなく、U字屈曲動作中の抵抗値の変動量(相対量)を用いて断線の発生を検知するため、初期抵抗値は不要となる。よって、本実施の形態によれば、導体11aの初期抵抗値の不明な場合であっても、導体11aの素線に断線が発生していることを高感度に検出できる。 Further, in the conventional general detection method using the rate of increase in resistance value, the resistance value of the conductor 11a before disconnection, that is, the initial resistance value, is required, but in this embodiment, the absolute value of the resistance value is required. Instead, since the occurrence of wire breakage is detected using the amount of variation (relative amount) in the resistance value during the U-shaped bending operation, the initial resistance value is not necessary. Therefore, according to the present embodiment, even if the initial resistance value of the conductor 11a is unknown, it is possible to detect with high sensitivity that a disconnection has occurred in the strands of the conductor 11a.

(他の実施の形態)
上記実施の形態では、導体11aにおいて断線が発生したことを検知する方法について述べたが、断線の発生後、その断線の進行状態を推定すること(=断線進行状態推定)も可能である。
(Other embodiments)
In the above embodiment, a method of detecting the occurrence of a disconnection in the conductor 11a has been described, but after the occurrence of a disconnection, it is also possible to estimate the progress state of the disconnection (=estimation of the progress state of the disconnection).

図9(a)は、抵抗値Rの時系列的な変化において、所定の時間間隔で区切られた測定区間毎に、抵抗値Rの最大値、最小値、及び平均値を算出し、グラフ化したものである。測定区間とする時間間隔は、U字屈曲動作の周期以上の時間間隔とすることが望ましく、例えば100周期程度の時間間隔とすることができる。 Fig. 9(a) shows the graph of the time-series change in resistance R by calculating the maximum value, minimum value, and average value of resistance value R for each measurement section separated by a predetermined time interval. This is what I did. It is desirable that the time interval used as the measurement section is longer than the cycle of the U-shaped bending motion, and can be, for example, about 100 cycles.

図9(a)に示されるように、U字屈曲動作の回数が増え、断線が進むほど、抵抗値Rの最大値と最小値との差が大きくなっていることがわかる。よって、この抵抗値Rの最大値と最小値との差を基に、導体11aの断線進行状態を推定することが可能である。例えば、段階的に複数の閾値を設定しておき、各閾値と、抵抗値Rの最大値と最小値との差とを比較することで、導体11aの断線進行状態を推定することができる。なお、導体11aの断線進行状態とは、導体11aを構成する全ての素線のうち、何本の素線が断線しているかという割合である。この断線進行状態が、所定の割合(例えば80%以上)となった場合に、ケーブル10の寿命(=ケーブル寿命)に到達したと設定する。そして、推定して得られた断線進行状態がケーブル寿命に到達したか否かを予測する(=ケーブル寿命予測)。そのケーブル寿命予測結果に基づいて、ケーブル10の交換やケーブル10の予知保全等を行うか否かを判断することができる。 As shown in FIG. 9A, it can be seen that as the number of U-shaped bending operations increases and the wire breakage progresses, the difference between the maximum value and the minimum value of the resistance value R becomes larger. Therefore, based on the difference between the maximum value and the minimum value of the resistance value R, it is possible to estimate the progress state of the disconnection of the conductor 11a. For example, by setting a plurality of threshold values in stages and comparing each threshold value with the difference between the maximum value and the minimum value of the resistance value R, it is possible to estimate the progress state of the disconnection of the conductor 11a. Note that the progress state of wire breakage of the conductor 11a is the ratio of how many wires are broken out of all the wires that constitute the conductor 11a. When the progress state of the disconnection reaches a predetermined rate (for example, 80% or more), it is determined that the life of the cable 10 (=cable life) has been reached. Then, it is predicted whether the estimated progress state of the disconnection has reached the end of the cable life (=cable life prediction). Based on the cable life prediction result, it can be determined whether to replace the cable 10 or perform predictive maintenance of the cable 10.

さらに、上記の測定区間毎に、抵抗値Rの平均値を求め、下式
規格化抵抗値変動幅=(最大値-最小値)/平均値
により得られた規格化抵抗値変動幅を複数算出し、それらの平均値を求める。この規格化抵抗値変動幅の平均値を基に、導体11aの断線進行状態を推定するようにしてもよい。図9(a)から求めた規格化抵抗値変動幅のグラフを図9(b)に示す。抵抗値Rの最大値と最小値との差と、平均値とは、周囲の環境温度による影響が同じとなるため、抵抗値Rの最大値と最小値との差を平均値で規格化することにより、環境温度の変化による影響をキャンセルして、より高精度に断線進行状態を推定することが可能になる。そして、推定して得られた断線進行状態に基づいて、上記と同様のケーブル寿命予測を行い、そのケーブル寿命予測結果に基づいて、ケーブル10の交換やケーブル10の予知保全等を行うか否かを判断することができる。
Furthermore, calculate the average value of the resistance value R for each of the above measurement sections, and calculate multiple normalized resistance value fluctuation widths obtained using the following formula: Normalized resistance value fluctuation width = (maximum value - minimum value) / average value and find their average value. The progress state of the disconnection of the conductor 11a may be estimated based on the average value of this normalized resistance value fluctuation width. A graph of the normalized resistance value fluctuation range obtained from FIG. 9(a) is shown in FIG. 9(b). Since the difference between the maximum and minimum values of resistance value R and the average value are affected by the surrounding environmental temperature in the same way, the difference between the maximum and minimum values of resistance value R is normalized by the average value. This makes it possible to cancel the influence of changes in environmental temperature and estimate the progress state of wire breakage with higher accuracy. Then, based on the estimated progress state of disconnection, the cable life is predicted in the same way as above, and based on the cable life prediction result, it is determined whether to replace the cable 10 or perform predictive maintenance of the cable 10. can be judged.

また、ケーブル10は、U字屈曲動作が行われる用途であれば、産業用ロボット等のどのような装置に適用されるものであってもよい。この場合、例えば、ケーブル10に重度の断線(例えば、ほぼ全断線)が生じると、産業用ロボット等の装置の停止、ひいては、工場における生産工程の停止を招き得る。このため、重度の断線が生じる前の早い段階で、その予兆となる軽微な断線(初期の断線)を検知することが望まれる。そこで、例えば、産業用ロボット等の装置の定期的なメンテナンス時等において、上記実施の形態を用いて、初期の断線を検知することが有益となる。 Further, the cable 10 may be applied to any device such as an industrial robot as long as it performs a U-shaped bending motion. In this case, for example, if a severe disconnection occurs in the cable 10 (for example, almost a complete disconnection), it may cause a stoppage of equipment such as an industrial robot and, by extension, a stoppage of the production process at the factory. Therefore, it is desirable to detect a minor wire breakage (initial wire breakage) that is a sign of a serious wire breakage at an early stage before it occurs. Therefore, for example, during periodic maintenance of equipment such as industrial robots, it is useful to detect initial disconnections using the above embodiments.

具体的には、図1(a)の場合と同様の装置を構築し、図1(a)のU字屈曲機構20を、産業用ロボット等の装置におけるU字屈曲部を用いて構成すればよい。そして、産業用ロボット等の装置の制御部を用いて、あるいは、産業用ロボット等の装置に外力を加えられる外部装置を用いてケーブル10のU字屈曲動作を行うとよい。なお、測定器30については、外部からその都度付加する形態であってもよいし、予め産業用ロボット等の装置に内蔵しておく形態であってもよい。なお、このような構成を用いた際の断線検知の手順に関しては、図8の場合と同様である。ただし、図8におけるステップS10の処理は、既にケーブル10が装着された状態となっているため不要となる。このように、既に所定の装置に装着され、実使用状態となっているケーブル10であっても、当該ケーブル10を取り外すことなく初期の断線を高感度に検知することが可能である。 Specifically, if a device similar to that in FIG. 1(a) is constructed and the U-shaped bending mechanism 20 in FIG. 1(a) is configured using a U-shaped bending part in a device such as an industrial robot. good. Then, the U-shaped bending motion of the cable 10 may be performed using a control unit of a device such as an industrial robot, or by using an external device that can apply an external force to the device such as an industrial robot. Note that the measuring device 30 may be added from outside each time, or may be built in a device such as an industrial robot in advance. Note that the procedure for detecting disconnection when such a configuration is used is the same as in the case of FIG. 8. However, the process of step S10 in FIG. 8 is unnecessary because the cable 10 is already attached. In this way, even if the cable 10 is already attached to a predetermined device and is in actual use, it is possible to detect an initial disconnection with high sensitivity without removing the cable 10.

また、このような適用例の他に、図1(a)のような断線検知装置1を用いて、産業用ロボット等の装置に用いられるケーブル10と同種のケーブルの寿命特性を製造段階で取得しておき、その結果を産業用ロボット等の装置のメンテナンスに反映させることも有益である。具体的には、図1(a)の装置を用いることで、ケーブル10において初期の断線が発生し得る屈曲回数が判明するため、例えば、産業用ロボット等の装置の管理者に、この屈曲回数の情報を提供することができる。この場合、管理者は、提供された屈曲回数と、産業用ロボット等の装置の稼働履歴とを照合することで、ケーブル10に重度の断線が生じる(すなわち、ケーブル寿命に達する)前に各種対策を講じることが可能になる。 In addition to such application examples, the life characteristics of a cable similar to the cable 10 used in devices such as industrial robots can be obtained at the manufacturing stage by using a disconnection detection device 1 as shown in Fig. 1(a). It is also beneficial to reflect the results in the maintenance of equipment such as industrial robots. Specifically, by using the device shown in FIG. 1(a), it is possible to determine the number of bends in the cable 10 that can cause an initial disconnection. information can be provided. In this case, by comparing the provided number of bends with the operating history of devices such as industrial robots, the administrator can take various measures before a severe disconnection occurs in the cable 10 (i.e., the cable reaches the end of its service life). It becomes possible to take the following steps.

(実施の形態のまとめ)
次に、以上説明した実施の形態から把握される技術思想について、実施の形態における符号等を援用して記載する。ただし、以下の記載における各符号等は、特許請求の範囲における構成要素を実施の形態に具体的に示した部材等に限定するものではない。
(Summary of embodiments)
Next, technical ideas understood from the embodiments described above will be described using reference numerals and the like in the embodiments. However, each reference numeral in the following description does not limit the constituent elements in the claims to those specifically shown in the embodiments.

[1]複数の素線を撚り合わせた撚線導体からなる導体(11a)を有するケーブル(10)の前記素線の断線を検知する方法であって、前記ケーブル(10)をU字状に屈曲した状態として、前記ケーブル(10)の一端部を当該一端部のケーブル長手方向に沿って所定のストロークで周期的にスライド移動させるU字屈曲動作を行い、前記U字屈曲動作により時系列的に変化する前記導体(11a)の抵抗値を測定し、前記U字屈曲動作の周期に対応する周波数を動作周波数として、前記導体(11a)の抵抗値の時系列的な変化に含まれる前記動作周波数の抵抗値変動成分を抽出し、抽出した前記動作周波数の抵抗値変動成分の大きさに基づいて、前記素線の断線を検知する、断線検知方法。 [1] A method for detecting disconnection of the strands of a cable (10) having a conductor (11a) made of a stranded conductor made by twisting a plurality of strands, the cable (10) being arranged in a U-shape. In the bent state, a U-shaped bending operation is performed in which one end of the cable (10) is periodically slid along the longitudinal direction of the cable at a predetermined stroke, and the U-shaped bending operation causes the cable (10) to move in a time-series manner. Measure the resistance value of the conductor (11a) that changes, and set the frequency corresponding to the cycle of the U-shaped bending operation as the operating frequency, and measure the operation included in the time-series change in the resistance value of the conductor (11a). A wire breakage detection method that extracts a resistance value fluctuation component of a frequency and detects a wire breakage of the strand based on the magnitude of the extracted resistance value fluctuation component of the operating frequency.

[2]前記導体(11a)の抵抗値の時系列的な変化に含まれる前記動作周波数の抵抗値変動成分及びその高次周波数の抵抗値変動成分を抽出し、抽出した前記動作周波数の抵抗値変動成分及びその高次周波数の抵抗値変動成分の大きさに基づいて、前記素線の断線を検知する、[1]に記載の断線検知方法。 [2] Extract the resistance value fluctuation component at the operating frequency and the resistance value fluctuation component at higher-order frequencies included in the time-series change in the resistance value of the conductor (11a), and extract the extracted resistance value at the operating frequency. The disconnection detection method according to [1], wherein disconnection of the strand is detected based on the magnitude of the fluctuation component and the resistance value fluctuation component of its higher-order frequency.

[3]前記U字屈曲動作の周期以上の時間間隔で区切られた測定区間毎に、前記導体(11a)の抵抗値の時系列的な変化における抵抗値の最大値、最小値、を求め、抵抗値の最大値と最小値との差を基に、前記導体(11)の断線進行状態を推定する、[1]または[2]に記載の断線検知方法。 [3] Determine the maximum and minimum values of the resistance value of the conductor (11a) in a time-series change in resistance value for each measurement period separated by a time interval equal to or longer than the cycle of the U-shaped bending operation, The disconnection detection method according to [1] or [2], wherein the progress state of the disconnection of the conductor (11) is estimated based on the difference between the maximum value and the minimum value of the resistance value.

[4]前記測定区間毎に、前記導体(11a)の抵抗値の時系列的な変化における平均値を求め、下式
規格化抵抗値変動幅=(最大値-最小値)/平均値
により得られた規格化抵抗値変動幅を基に、前記導体(11a)の断線進行状態を推定する、[3]に記載の断線検知方法。
[4] For each measurement section, find the average value of the time-series changes in the resistance value of the conductor (11a), and calculate the average value using the following formula: Normalized resistance value variation width = (maximum value - minimum value) / average value. The disconnection detection method according to [3], wherein the progress state of the disconnection of the conductor (11a) is estimated based on the normalized resistance value fluctuation range.

[5]複数の素線を撚り合わせた撚線導体からなる導体(11a)を有するケーブル(10)の前記素線の断線を検知する装置であって、前記ケーブル(10)をU字状に屈曲した状態として、前記ケーブル(10)の一端部を当該一端部のケーブル長手方向に沿って所定のストロークで周期的にスライド移動させるU字屈曲動作を行うU字屈曲機構(20)と、前記U字屈曲動作により時系列的に変化する前記導体(11a)の抵抗値を測定し、前記U字屈曲動作の周期に対応する周波数を動作周波数として、前記導体(11a)の抵抗値の時系列的な変化に含まれる前記動作周波数の抵抗値変動成分を抽出する測定器(30)と、を備え、抽出した前記動作周波数の抵抗値変動成分の大きさに基づいて、前記素線の断線を検知する、断線検知装置(1)。 [5] A device for detecting disconnection of the strands of a cable (10) having a conductor (11a) made of a stranded conductor made by twisting a plurality of strands, the cable (10) being arranged in a U-shape. a U-shaped bending mechanism (20) that performs a U-shaped bending operation of periodically sliding one end of the cable (10) at a predetermined stroke along the longitudinal direction of the cable in the bent state; The resistance value of the conductor (11a) that changes over time due to the U-shaped bending operation is measured, and the time series of the resistance value of the conductor (11a) is determined by setting the frequency corresponding to the cycle of the U-shaped bending operation as the operating frequency. a measuring device (30) for extracting a resistance value fluctuation component of the operating frequency included in a change in the operating frequency, and detecting a break in the wire based on the magnitude of the extracted resistance value fluctuation component of the operating frequency Disconnection detection device (1).

以上、本発明の実施の形態を説明したが、上記に記載した実施の形態は特許請求の範囲に係る発明を限定するものではない。また、実施の形態の中で説明した特徴の組合せの全てが発明の課題を解決するための手段に必須であるとは限らない点に留意すべきである。また、本発明は、その趣旨を逸脱しない範囲で適宜変形して実施することが可能である。 Although the embodiments of the present invention have been described above, the embodiments described above do not limit the invention according to the claims. Furthermore, it should be noted that not all combinations of features described in the embodiments are essential for solving the problems of the invention. Moreover, the present invention can be implemented with appropriate modifications within a range that does not depart from the spirit thereof.

1…断線検知装置
10…ケーブル
10a,10b…直線部
10c…湾曲部
11…電線
11a…導体
16…断線箇所
20…U字屈曲機構
21…固定部
22…スライド部
30…測定器
35…抵抗測定部
36…周波数解析部
40a…第1U字屈曲状態
40b…第2U字屈曲状態
40c…基準状態
1... Disconnection detection device 10... Cables 10a, 10b... Straight section 10c... Curved section 11... Electric wire 11a... Conductor 16... Disconnection point 20... U-shaped bending mechanism 21... Fixed section 22... Slide section 30... Measuring device 35... Resistance measurement Section 36...Frequency analysis section 40a...First U-shaped bending state 40b...Second U-shaped bending state 40c...Reference state

Claims (4)

複数の素線を撚り合わせた撚線導体からなる導体を有するケーブルの前記素線の断線を検知する方法であって、
前記ケーブルをU字状に屈曲した状態として、前記ケーブルの一端部を当該一端部のケーブル長手方向に沿って所定のストロークで周期的にスライド移動させるU字屈曲動作を行い、
前記U字屈曲動作により時系列的に変化する前記導体の抵抗値を測定し、前記U字屈曲動作の周期に対応する周波数を動作周波数として、前記導体の抵抗値の時系列的な変化に含まれる前記動作周波数の抵抗値変動成分及びその高次周波数の抵抗値変動成分を抽出し、
抽出した前記動作周波数の抵抗値変動成分及びその高次周波数の抵抗値変動成分の大きさに基づいて、前記素線の断線を検知する、
断線検知方法。
A method for detecting disconnection of the strands of a cable having a conductor made of a stranded conductor made by twisting a plurality of strands, the method comprising:
performing a U-shaped bending operation in which the cable is bent into a U-shape, and one end of the cable is periodically slid at a predetermined stroke along the longitudinal direction of the cable;
A resistance value of the conductor that changes over time due to the U-shaped bending action is measured, and a frequency corresponding to the cycle of the U-shaped bending action is set as an operating frequency and is included in the time-series change in the resistance value of the conductor. extracting a resistance value fluctuation component at the operating frequency and a resistance value fluctuation component at its higher-order frequency ;
Detecting a break in the wire based on the magnitude of the extracted resistance value fluctuation component at the operating frequency and the resistance value fluctuation component at its higher-order frequency ;
Disconnection detection method.
前記U字屈曲動作の周期以上の時間間隔で区切られた測定区間毎に、前記導体の抵抗値の時系列的な変化における抵抗値の最大値、最小値、を求め、抵抗値の最大値と最小値との差を基に、前記導体の断線進行状態を推定する、
請求項に記載の断線検知方法。
For each measurement period separated by a time interval equal to or longer than the cycle of the U-shaped bending operation, the maximum value and minimum value of the resistance value in the time-series change in the resistance value of the conductor are determined, and the maximum value and the minimum value of the resistance value are determined. estimating the progress state of disconnection of the conductor based on the difference from the minimum value;
The disconnection detection method according to claim 1 .
前記測定区間毎に、前記導体の抵抗値の時系列的な変化における平均値を求め、下式
規格化抵抗値変動幅=(最大値-最小値)/平均値
により得られた規格化抵抗値変動幅を基に、前記導体の断線進行状態を推定する、
請求項に記載の断線検知方法。
For each measurement section, find the average value of the time-series changes in the resistance value of the conductor, and calculate the normalized resistance value obtained from the following formula: Normalized resistance value variation width = (maximum value - minimum value) / average value estimating the progress state of disconnection of the conductor based on the fluctuation range;
The disconnection detection method according to claim 2 .
複数の素線を撚り合わせた撚線導体からなる導体を有するケーブルの前記素線の断線を検知する装置であって、
前記ケーブルをU字状に屈曲した状態として、前記ケーブルの一端部を当該一端部のケーブル長手方向に沿って所定のストロークで周期的にスライド移動させるU字屈曲動作を行うU字屈曲機構と、
前記U字屈曲動作により時系列的に変化する前記導体の抵抗値を測定し、前記U字屈曲動作の周期に対応する周波数を動作周波数として、前記導体の抵抗値の時系列的な変化に含まれる前記動作周波数の抵抗値変動成分及びその高次周波数の抵抗値変動成分を抽出する測定器と、を備え、
抽出した前記動作周波数の抵抗値変動成分及びその高次周波数の抵抗値変動成分の大きさに基づいて、前記素線の断線を検知する、
断線検知装置。
A device for detecting disconnection of the strands of a cable having a conductor made of a stranded conductor made by twisting a plurality of strands,
a U-shaped bending mechanism that performs a U-shaped bending operation in which the cable is bent into a U-shape, and one end of the cable is periodically slid at a predetermined stroke along the longitudinal direction of the cable;
A resistance value of the conductor that changes over time due to the U-shaped bending action is measured, and a frequency corresponding to the cycle of the U-shaped bending action is set as an operating frequency and is included in the time-series change in the resistance value of the conductor. a measuring device that extracts a resistance value fluctuation component at the operating frequency and a resistance value fluctuation component at a higher-order frequency thereof ,
Detecting a break in the wire based on the magnitude of the extracted resistance value fluctuation component at the operating frequency and the resistance value fluctuation component at its higher-order frequency ;
Disconnection detection device.
JP2021152403A 2021-09-17 2021-09-17 Disconnection detection method and disconnection detection device Active JP7439808B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021152403A JP7439808B2 (en) 2021-09-17 2021-09-17 Disconnection detection method and disconnection detection device
KR1020220112544A KR20230041607A (en) 2021-09-17 2022-09-06 Method and apparatus for detecting wire disconnection
TW111134082A TW202314269A (en) 2021-09-17 2022-09-08 Wire breakage detection method and wire breakage detection device capable of detecting wire breakage of the U-shape bent cable based on the magnitude of the extracted resistance value fluctuation component
CN202211097779.4A CN115825811A (en) 2021-09-17 2022-09-08 Method and apparatus for detecting disconnection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021152403A JP7439808B2 (en) 2021-09-17 2021-09-17 Disconnection detection method and disconnection detection device

Publications (2)

Publication Number Publication Date
JP2023044389A JP2023044389A (en) 2023-03-30
JP7439808B2 true JP7439808B2 (en) 2024-02-28

Family

ID=85523523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021152403A Active JP7439808B2 (en) 2021-09-17 2021-09-17 Disconnection detection method and disconnection detection device

Country Status (4)

Country Link
JP (1) JP7439808B2 (en)
KR (1) KR20230041607A (en)
CN (1) CN115825811A (en)
TW (1) TW202314269A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040183544A1 (en) 2001-01-31 2004-09-23 Cm Technologies Corporation Method and apparatus for monitoring integrity of wires or electrical cables
JP2012068171A (en) 2010-09-24 2012-04-05 Canon Inc Disconnection sign detection method, disconnection sign detection device and robot for work
JP2014233763A (en) 2013-05-30 2014-12-15 株式会社安川電機 Forecasting system
JP2018115992A (en) 2017-01-19 2018-07-26 トヨタ自動車株式会社 Rupture sign detector of wire cable

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02198792A (en) * 1989-01-24 1990-08-07 Mitsubishi Electric Corp Service life prediction device for movable cable part of industrial robot
US6230109B1 (en) * 1995-05-16 2001-05-08 The United States Of America As Represented By The Secretary Of The Navy Multiconductor continuity and intermittent fault analyzer with distributed processing and dynamic stimulation
JP2007139488A (en) 2005-11-16 2007-06-07 Omron Corp Break sign detection method, break sign detection apparatus, and power source incorporating the apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040183544A1 (en) 2001-01-31 2004-09-23 Cm Technologies Corporation Method and apparatus for monitoring integrity of wires or electrical cables
JP2012068171A (en) 2010-09-24 2012-04-05 Canon Inc Disconnection sign detection method, disconnection sign detection device and robot for work
JP2014233763A (en) 2013-05-30 2014-12-15 株式会社安川電機 Forecasting system
JP2018115992A (en) 2017-01-19 2018-07-26 トヨタ自動車株式会社 Rupture sign detector of wire cable

Also Published As

Publication number Publication date
CN115825811A (en) 2023-03-21
JP2023044389A (en) 2023-03-30
KR20230041607A (en) 2023-03-24
TW202314269A (en) 2023-04-01

Similar Documents

Publication Publication Date Title
EP2641099B1 (en) Cable fatigue monitor and method thereof
JP7121933B2 (en) Disconnection detection system and disconnection detection method
JP6293388B1 (en) Load abnormality detection device
JP4287381B2 (en) Load receiver for wind turbine blades
JP6190841B2 (en) Diagnostic equipment for electric motors
CN102985836A (en) Fast distance protection for energy supply networks
KR101478507B1 (en) High voltage distributing board, low voltage distributing board, distribuging board, motor contorl board monitoring intact overheat for connector
JP2022140768A (en) Disconnection detection method
JP6316510B1 (en) Diagnostic equipment for electric motors
JP2012068171A (en) Disconnection sign detection method, disconnection sign detection device and robot for work
JP7439808B2 (en) Disconnection detection method and disconnection detection device
JPWO2020208743A1 (en) Motor equipment abnormality diagnosis device, motor equipment abnormality diagnosis method, and motor equipment abnormality diagnosis system
JP2013182716A (en) Cable with disconnection detection function
US10778285B2 (en) Cable with integral sensing elements for fault detection
CN112162030A (en) Steel cable on-line monitoring method and system, electronic equipment and storage medium
US20240019338A1 (en) Disconnection detection method and disconnection detection device
JP2023044388A (en) Method and device for estimating state of progress of disconnection
CN116643115A (en) Wire breakage detection method and wire breakage detection device
KR101984432B1 (en) Diagnosis device for monitoring degradation of cable and diagnosis method thereof
KR100912094B1 (en) Method for removing external noise during measurement of partial discharge signal
JP7439814B2 (en) Conductor strain evaluation method and device, cable life prediction method
JP2019200064A (en) Crack detection system and crack detection method
JP2006032060A (en) Cable with function for detecting breaking of wire
KR102592408B1 (en) Apparatus and method for real-time monitoring of cables based on frictional energy harvesters
WO2023145803A1 (en) Cable equipped with function for detecting indicator of fault and system for detecting indicator of fault in electric wire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230808

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20230808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240129

R150 Certificate of patent or registration of utility model

Ref document number: 7439808

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150