JP7437242B2 - Manganese-added barium zirconate particles and organic matter decomposition catalyst containing them - Google Patents

Manganese-added barium zirconate particles and organic matter decomposition catalyst containing them Download PDF

Info

Publication number
JP7437242B2
JP7437242B2 JP2020102202A JP2020102202A JP7437242B2 JP 7437242 B2 JP7437242 B2 JP 7437242B2 JP 2020102202 A JP2020102202 A JP 2020102202A JP 2020102202 A JP2020102202 A JP 2020102202A JP 7437242 B2 JP7437242 B2 JP 7437242B2
Authority
JP
Japan
Prior art keywords
manganese
slurry
barium zirconate
hydroxide
zirconium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020102202A
Other languages
Japanese (ja)
Other versions
JP2021195274A (en
Inventor
洋尚 松田
稔 米田
秀人 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Sakai Chemical Industry Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Sakai Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd, Sakai Chemical Industry Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2020102202A priority Critical patent/JP7437242B2/en
Priority to CN202110605869.9A priority patent/CN113797923B/en
Publication of JP2021195274A publication Critical patent/JP2021195274A/en
Application granted granted Critical
Publication of JP7437242B2 publication Critical patent/JP7437242B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/32Manganese, technetium or rhenium
    • B01J23/34Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • B01J35/612
    • B01J35/613
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/06Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases
    • F23G7/07Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases in which combustion takes place in the presence of catalytic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts

Description

本発明はマンガン添加ジルコン酸バリウム粒子に関し、詳しくは、マンガンによるジルコニウムの置換率が8モル%以上であって、微細であり、高結晶性であって、有機物分解触媒として好適に用いることができるマンガン添加ジルコン酸バリウム粒子に関する。 The present invention relates to manganese-doped barium zirconate particles, and more specifically, the substitution rate of zirconium by manganese is 8 mol % or more, the particles are fine and highly crystalline, and can be suitably used as an organic substance decomposition catalyst. The present invention relates to manganese-doped barium zirconate particles.

有機物を熱分解するための有機物分解触媒としてマンガン添加ジルコン酸バリウム粒子が既に知られている(特許文献1参照)。上記マンガン添加ジルコン酸バリウム粒子は固相法によって製造されている。即ち、例えば、炭酸バリウムと酸化ジルコニウムと四酸化三マンガン(Mn34)をBa:Zr:Mnモル比を1:0.9:0.1として1100℃で熱処理し、得られた粉末を成形した後、1100℃で焼成し、粉砕することによって、ジルコニウムの10モル%がマンガンで置換されたマンガン添加ジルコン酸バリウム粒子が得られる。 Manganese-doped barium zirconate particles are already known as an organic substance decomposition catalyst for thermally decomposing organic substances (see Patent Document 1). The above manganese-doped barium zirconate particles are manufactured by a solid phase method. That is, for example, barium carbonate, zirconium oxide, and trimanganese tetroxide (Mn 3 O 4 ) are heat-treated at 1100° C. at a Ba:Zr:Mn molar ratio of 1:0.9:0.1, and the resulting powder is After shaping, it is fired at 1100°C and pulverized to obtain manganese-doped barium zirconate particles in which 10 mol% of zirconium is replaced with manganese.

マンガン添加ジルコン酸バリウム粒子は、これを有機物分解触媒として用いるには、比表面積が高い微粒子であることが望ましいが、しかし、よく知られているように、一般に、固相法によっては、マンガン添加ジルコン酸バリウム粒子を含めて、ペロブスカイト型複合酸化物を微粒子として得ることは困難である。 Manganese-added barium zirconate particles are preferably fine particles with a high specific surface area in order to be used as an organic substance decomposition catalyst, but as is well known, manganese-added barium zirconate particles are generally It is difficult to obtain perovskite-type composite oxides as fine particles, including barium zirconate particles.

また、一方、マンガン添加ジルコン酸バリウム粒子において、燃焼活性成分であるマンガンによるジルコニウムの置換率を高めることによって、有機物分解触媒として触媒活性が向上するが、しかし、上記置換率が高くなるにつれて、マンガン添加ジルコン酸バリウム粒子の結晶性が低下する。更に、マンガンの一部がジルコン酸バリウム中に固溶せずに、副生物を生じやすくなり、その結果、得られるマンガン添加ジルコン酸バリウム粒子は上記副生物との混相となる。このように結晶性が低く、又は混相のマンガン添加ジルコン酸バリウムは、有機物分解触媒としての活性が低い。 On the other hand, in manganese-added barium zirconate particles, by increasing the substitution rate of zirconium with manganese, which is a combustion active component, the catalytic activity as an organic matter decomposition catalyst is improved. The crystallinity of the added barium zirconate particles decreases. Furthermore, part of the manganese does not dissolve in the barium zirconate and tends to generate by-products, and as a result, the obtained manganese-added barium zirconate particles form a mixed phase with the above-mentioned by-products. Manganese-added barium zirconate having such low crystallinity or mixed phase has low activity as an organic matter decomposition catalyst.

特開2015-229137号公報Japanese Patent Application Publication No. 2015-229137

本発明は、特に、有機物分解触媒として用いられるマンガン添加ジルコン酸バリウム粒子における上述した問題を解決するためになされたものであって、マンガンによるジルコニウムの置換率が8モル%以上であり、比表面積が高く、微細であり、しかも、結晶子径/比表面積換算粒子径が0.3~1.1の範囲にあって、結晶性が高いマンガン添加ジルコン酸バリウム粒子を提供することを目的とする。 In particular, the present invention was made to solve the above-mentioned problems in manganese-doped barium zirconate particles used as an organic substance decomposition catalyst, and the substitution rate of zirconium by manganese is 8 mol% or more, and the specific surface area is The object of the present invention is to provide manganese-added barium zirconate particles that are fine and have a high crystallite diameter/specific surface area particle diameter in the range of 0.3 to 1.1, and have high crystallinity. .

特に、本発明は、好ましくは、マンガンによるジルコニウムの置換率が実質的に10モル%以上であり、比表面積が高く、微細であり、結晶子径/比表面積換算粒子径が0.4~1.1の範囲にあって、結晶性が高く、有機物分解触媒として好適に用いることができるマンガン添加ジルコン酸バリウム粒子を提供することを目的とする。 Particularly, in the present invention, preferably, the substitution rate of zirconium by manganese is substantially 10 mol % or more, the specific surface area is high and fine, and the crystallite diameter/specific surface area equivalent particle diameter is 0.4 to 1. It is an object of the present invention to provide manganese-doped barium zirconate particles that have a particle diameter of 0.1, have high crystallinity, and can be suitably used as an organic substance decomposition catalyst.

本発明によれば、組成式(I)
BaZr1-xMn3-δ
(式中、xは0.08≦x≦0.25を満たす数であり、δは酸素欠損量を示す。)
で表され、結晶子径/比表面積換算粒子径が0.455~1.090の範囲にあり、比表面積が8.2m /g以上であるマンガン添加ジルコン酸バリウム粒子が提供される。
According to the invention, compositional formula (I)
BaZr 1-x Mn x O 3-δ
(In the formula, x is a number satisfying 0.08≦x≦0.25, and δ indicates the amount of oxygen vacancies.)
Manganese-doped barium zirconate particles are provided, which are represented by the following formula, have a crystallite diameter/specific surface area equivalent particle diameter in the range of 0.455 to 1.090 , and have a specific surface area of 8.2 m 2 /g or more .

本発明によれば、マンガン添加ジルコン酸バリウム粒子は、好ましくは、8m/g以上の比表面積を有する。 According to the invention, the manganese-doped barium zirconate particles preferably have a specific surface area of 8 m 2 /g or more.

更に、本発明によれば、上記マンガン添加ジルコン酸バリウム粒子を含む有機物分解触媒が提供される。 Further, according to the present invention, there is provided an organic matter decomposition catalyst containing the manganese-doped barium zirconate particles.

本発明によるマンガン添加ジルコン酸バリウム粒子は、マンガンによるジルコニウムの置換率が8モル%以上であり、比表面積が高く、微細であり、結晶子径/比表面積換算粒子径が0.3~1.1の範囲にあって、結晶性が高い。 The manganese-added barium zirconate particles according to the present invention have a substitution rate of zirconium by manganese of 8 mol % or more, a high specific surface area, are fine, and have a crystallite diameter/specific surface area equivalent particle diameter of 0.3 to 1. 1, indicating high crystallinity.

このようなマンガン添加ジルコン酸バリウム粒子は、高い燃焼触媒活性を有する有機物分解触媒として好適に用いることができる。 Such manganese-added barium zirconate particles can be suitably used as an organic substance decomposition catalyst having high combustion catalytic activity.

本発明の実施例4と比較例2によるマンガン添加ジルコン酸バリウム粒子のそれぞれの粉末X線回折パターンを示す。3 shows powder X-ray diffraction patterns of manganese-doped barium zirconate particles according to Example 4 of the present invention and Comparative Example 2.

本発明によるマンガン添加ジルコン酸バリウム粒子は、組成式(I)
BaZr1-xMn3-δ
(式中、xは0.08≦x≦0.25を満たす数であり、δは酸素欠損量を示す。)
で表され、結晶子径/比表面積換算粒子径が0.3~1.1の範囲にある。
The manganese-doped barium zirconate particles according to the present invention have the composition formula (I)
BaZr 1-x Mn x O 3-δ
(In the formula, x is a number satisfying 0.08≦x≦0.25, and δ indicates the amount of oxygen vacancies.)
The crystallite diameter/specific surface area equivalent particle diameter is in the range of 0.3 to 1.1.

本発明において、前記組成式(I)において、Mn/(Zr+Mn)モル比、即ち、xの値をマンガンによるジルコニウムの置換割合といい、Mn/(Zr+Mn)×100をマンガンによるジルコニウムの置換率(モル%)という。 In the present invention, in the composition formula (I), the Mn/(Zr+Mn) molar ratio, that is, the value of x, is referred to as the substitution ratio of zirconium by manganese, and Mn/(Zr+Mn)×100 is the substitution ratio of zirconium by manganese ( (mol%).

マンガンによるジルコニウムの置換割合xが0.08よりも小さいときは、そのようなマンガン添加ジルコン酸バリウム粒子は有機物分解触媒として高い触媒活性をもたず、一方、xが0.25よりも大きいときは、そのようなマンガン添加ジルコン酸バリウム粒子は、マンガンを含む副生成物に由来する異相乃至異物を含むこととなり、同様に、有機物分解触媒として高い触媒活性をもたない。 When the substitution ratio x of zirconium by manganese is smaller than 0.08, such manganese-doped barium zirconate particles do not have high catalytic activity as an organic matter decomposition catalyst, while when x is larger than 0.25. However, such manganese-added barium zirconate particles contain foreign substances or foreign substances derived from by-products containing manganese, and similarly do not have high catalytic activity as an organic matter decomposition catalyst.

上記結晶子径/比表面積換算粒子径は、マンガン添加ジルコン酸バリウム粒子の結晶性の尺度であり、本発明によるマンガン添加ジルコン酸バリウム粒子は、結晶子径/比表面積換算粒子径が0.3~1.1の範囲内にあって、高い結晶性を有する。 The crystallite diameter/specific surface area equivalent particle diameter is a measure of the crystallinity of the manganese-doped barium zirconate particles, and the manganese-doped barium zirconate particles according to the present invention have a crystallite diameter/specific surface area equivalent particle diameter of 0.3. -1.1 and has high crystallinity.

一般に、粒子は、結晶子径/比表面積換算粒子径が1に近い値である程、幾何学的粒子径と単結晶の大きさが近いために、高結晶性である。 Generally, the closer the crystallite diameter/specific surface area equivalent particle diameter is to 1, the closer the geometric particle diameter and single crystal size are, and therefore the higher the crystallinity of the particles.

通常、粒子における比表面積相当径は結晶子径より大きい。即ち、結晶子径/比表面積換算粒子径の値は1より小さいことが多いが、比表面積相当径は各粒子が真球状であると想定して算出されているため、粒子形状が真球でない場合は、実際の粒子形状との相違が影響し、結晶子径/比表面積換算粒子径の値が1より大きくなることがある。 Usually, the specific surface area equivalent diameter of particles is larger than the crystallite diameter. In other words, the value of crystallite diameter/specific surface area equivalent particle diameter is often smaller than 1, but the specific surface area equivalent diameter is calculated assuming that each particle is perfectly spherical, so the particle shape is not perfectly spherical. In this case, the value of crystallite diameter/specific surface area converted particle diameter may be larger than 1 due to the difference from the actual particle shape.

本発明によるマンガン添加ジルコン酸バリウム粒子は、好ましくは、8m/g以上の比表面積を有し、微細であって、有機物分解触媒として好適に用いることができる。 The manganese-doped barium zirconate particles according to the present invention preferably have a specific surface area of 8 m 2 /g or more, are fine, and can be suitably used as an organic matter decomposition catalyst.

例えば、カーボンブラックを熱分解(燃焼)させる場合、カーボンブラックに熱分解触媒として本発明によるマンガン添加ジルコン酸バリウム粒子を混合し、熱重量分析を行い、カーボンブラックの熱分解挙動の指標として、熱重量変化の微分曲線によるピークトップ温度を活性の指標とすれば、後述するように、比較例によるマンガン添加ジルコン酸バリウム粒子を熱分解触媒として用いた場合に比べて、上記ピークトップ温度は大幅に低く、よって、本発明によるマンガン添加ジルコン酸バリウム粒子を熱分解触媒として用いることによって、カーボンブラックをより少ないエネルギーで燃焼させることができる。 For example, when carbon black is thermally decomposed (combusted), manganese-doped barium zirconate particles according to the present invention are mixed with carbon black as a thermal decomposition catalyst, and thermogravimetric analysis is performed to determine the thermal decomposition behavior of carbon black. If the peak top temperature according to the differential curve of weight change is used as an indicator of activity, as will be described later, the peak top temperature is significantly higher than when manganese-added barium zirconate particles according to a comparative example are used as a thermal decomposition catalyst. Therefore, by using the manganese-doped barium zirconate particles according to the invention as a pyrolysis catalyst, carbon black can be combusted with less energy.

本発明による前記組成式(I)で表されるマンガン添加ジルコン酸バリウム粒子は、好ましくは、以下に述べる方法によって得ることができる。 The manganese-doped barium zirconate particles represented by the composition formula (I) according to the present invention can preferably be obtained by the method described below.

即ち、
(a)バリウム水酸化物とジルコニウム水酸化物とマンガン水酸化物と平均粒子径が2.0μm以下であるマンガン添加ジルコン酸バリウムの種結晶を水と共に混合して、第1のスラリーを得る工程、
(b)上記第1のスラリーを水熱反応させて、反応混合物としての第2のスラリーを得る工程、及び
(c)上記第2のスラリーを酸処理した後、水洗処理する工程
を含み、
上記工程(a)において、第1のスラリーの有するMn/(Zr+Mn)モル比を0.08~0.25の範囲とし、Ba/(Zr+Mn)モル比を1.0~2.0の範囲とするものである。
That is,
(a) A step of mixing barium hydroxide, zirconium hydroxide, manganese hydroxide, and manganese-added barium zirconate seed crystals having an average particle size of 2.0 μm or less with water to obtain a first slurry. ,
(b) a step of subjecting the first slurry to a hydrothermal reaction to obtain a second slurry as a reaction mixture, and (c) a step of treating the second slurry with an acid and then washing with water,
In the above step (a), the Mn/(Zr+Mn) molar ratio of the first slurry is in the range of 0.08 to 0.25, and the Ba/(Zr+Mn) molar ratio is in the range of 1.0 to 2.0. It is something to do.

上記工程(a)において、上記第1のスラリーの有するMn/(Zr+Mn)モル比が0.08よりも小さい値にてジルコニウム水酸化物とマンガン水酸化物を用いるときは、高い触媒活性を有する有機物分解触媒としてのマンガン添加ジルコン酸バリウム粒子を得ることができない。一方、上記工程(a)において、Mn/(Zr+Mn)モル比が0.25よりも大きい値にてジルコニウム水酸化物とマンガン水酸化物を用いるときは、得られるマンガン添加ジルコン酸バリウム粒子が異物乃至異相を含むこととなるので好ましくない。 In the step (a), when zirconium hydroxide and manganese hydroxide are used at a Mn/(Zr+Mn) molar ratio of less than 0.08 in the first slurry, high catalytic activity is obtained. It is not possible to obtain manganese-doped barium zirconate particles as an organic matter decomposition catalyst. On the other hand, in the above step (a), when zirconium hydroxide and manganese hydroxide are used at a Mn/(Zr+Mn) molar ratio greater than 0.25, the resulting manganese-doped barium zirconate particles may contain foreign substances. This is not preferable because it contains foreign phases.

また、上記工程(a)において、上記第1のスラリーの有するBa/(Zr+Mn)モル比が1.0よりも小さい値でバリウム水酸化物とジルコニウム水酸化物とマンガン水酸化物を用いるときは、比表面積の大きいマンガン添加ジルコン酸バリウム粒子を得難い。しかし、上記Ba/(Zr+Mn)モル比が2.0よりも大きい値にてバリウム水酸化物とジルコニウム水酸化物とマンガン水酸化物を用いるときは、最終的に得られるマンガン添加ジルコン酸バリウム粒子が異相を含むこととなって、好ましくない。 Further, in the step (a), when barium hydroxide, zirconium hydroxide, and manganese hydroxide are used with the Ba/(Zr+Mn) molar ratio of the first slurry being smaller than 1.0, , it is difficult to obtain manganese-doped barium zirconate particles with a large specific surface area. However, when barium hydroxide, zirconium hydroxide, and manganese hydroxide are used with the Ba/(Zr+Mn) molar ratio above 2.0, the final resultant manganese-doped barium zirconate particles contains a foreign phase, which is not desirable.

上述した本発明によるマンガン添加ジルコン酸バリウム粒子の製造において、上記工程(a)におけるMn/(Zr+Mn)モル比とBa/(Zr+Mn)モル比は、工程(a)において用いたバリウム水酸化物とジルコニウム水酸化物とマンガン水酸化物の量、即ち、仕込み量に基づく。一方、上述した方法によって最終的に得られたマンガン添加ジルコン酸バリウム粒子におけるMn/(Zr+Mn)モル比は、後述する分析方法に基づく。 In the production of manganese-doped barium zirconate particles according to the present invention described above, the Mn/(Zr+Mn) molar ratio and Ba/(Zr+Mn) molar ratio in the above step (a) are the same as the barium hydroxide used in the step (a). Based on the amount of zirconium hydroxide and manganese hydroxide, that is, the amount charged. On the other hand, the Mn/(Zr+Mn) molar ratio in the manganese-doped barium zirconate particles finally obtained by the method described above is based on the analysis method described below.

本発明において、前記組成式(I)において、Mn/(Zr+Mn)モル比、即ち、xの値をマンガンによるジルコニウムの置換割合といい、Mn/(Zr+Mn)×100をマンガンによるジルコニウムの置換率(モル%)という。 In the present invention, in the composition formula (I), the Mn/(Zr+Mn) molar ratio, that is, the value of x, is referred to as the substitution ratio of zirconium by manganese, and Mn/(Zr+Mn)×100 is the substitution ratio of zirconium by manganese ( (mol%).

上述した製造方法によれば、工程(a)において、第1のスラリーの有するMn/(Zr+Mn)モル比を0.8~0.25の範囲とすると共に、Ba/(Zr+Mn)モル比を1.0~2.0の範囲とし、工程(b)にて上記第1のスラリーを水熱反応に供して、第2のスラリーを得、かくして得られた第2のスラリーを酸処理した後、水洗処理して、過剰のバリウム水酸化物を除去することによって、マンガンによるジルコニウム置換率が8モル%以上であり、比表面積が高く、微細であって、結晶子径/比表面積換算粒子径が0.3~1.1の範囲にある、前記組成式(I)で表されるマンガン添加ジルコン酸バリウム粒子を得ることができる。 According to the above manufacturing method, in step (a), the first slurry has a Mn/(Zr+Mn) molar ratio in the range of 0.8 to 0.25, and a Ba/(Zr+Mn) molar ratio of 1. .0 to 2.0, and in step (b), the first slurry is subjected to a hydrothermal reaction to obtain a second slurry, and the second slurry thus obtained is treated with an acid, By washing with water to remove excess barium hydroxide, the zirconium substitution rate with manganese is 8 mol% or more, the specific surface area is high, the particles are fine, and the crystallite size/specific surface area equivalent particle size is It is possible to obtain manganese-doped barium zirconate particles represented by the above compositional formula (I) in the range of 0.3 to 1.1.

特に、前記工程(a)において、第1のスラリーの有するMn/(Zr+Mn)モル比を0.095~0.22の範囲とすると共に、Ba/(Zr+Mn)モル比を1.0~2.0の範囲とし、その後、同様に、工程(b)にて上記第1のスラリーを水熱反応に供して、第2のスラリーを得、かくして得られた第2のスラリーを酸処理した後、水洗処理して、過剰のバリウム水酸化物を除去することによって、本発明による好ましい態様としてのマンガン添加ジルコン酸バリウム粒子、即ち、結晶子径/比表面積換算粒子径が0.4~1.1の範囲にある、組成式(Ia)
BaZr1-xMn3-δ
(式中、xは0.095≦x≦0.22を満たす数であり、δは酸素欠損量を示す。)
で表されるマンガン添加ジルコン酸バリウム粒子を得ることができる。
Particularly, in the step (a), the Mn/(Zr+Mn) molar ratio of the first slurry is in the range of 0.095 to 0.22, and the Ba/(Zr+Mn) molar ratio is in the range of 1.0 to 2.0. 0 range, then similarly, in step (b), the first slurry is subjected to a hydrothermal reaction to obtain a second slurry, and the second slurry thus obtained is treated with an acid, By washing with water to remove excess barium hydroxide, the manganese-doped barium zirconate particles according to a preferred embodiment of the present invention, that is, the crystallite diameter/specific surface area equivalent particle diameter is 0.4 to 1.1. Compositional formula (Ia) in the range of
BaZr 1-x Mn x O 3-δ
(In the formula, x is a number satisfying 0.095≦x≦0.22, and δ indicates the amount of oxygen vacancies.)
It is possible to obtain manganese-doped barium zirconate particles represented by:

上記組成式(Ia)で表されるマンガン添加ジルコン酸バリウム粒子においても、置換割合及び置換率に関する定義は前述と同じである。 Also in the manganese-doped barium zirconate particles represented by the above compositional formula (Ia), the definitions regarding the substitution ratio and substitution rate are the same as described above.

かくして、本発明の好ましい態様によれば、マンガンによるジルコニウム置換率が実質的に10モル%以上であり、比表面積が高く、微細であると共に、結晶子径/比表面積換算粒子径が0.4~1.1の範囲にあり、特に好ましい態様によれば、1に近く、高結晶性であって、有機物分解触媒として好適に用いることができるマンガン添加ジルコン酸バリウム粒子を得ることができる。 Thus, according to a preferred embodiment of the present invention, the substitution rate of zirconium by manganese is substantially 10 mol% or more, the specific surface area is high and fine, and the crystallite diameter/specific surface area equivalent particle diameter is 0.4. According to a particularly preferred embodiment, the value is close to 1, it is possible to obtain manganese-doped barium zirconate particles that are highly crystalline and can be suitably used as an organic substance decomposition catalyst.

特に、本発明の好ましい態様によれば、マンガン添加ジルコン酸バリウム粒子は、8m2/g以上の比表面積を有する。 In particular, according to a preferred embodiment of the present invention, the manganese-doped barium zirconate particles have a specific surface area of 8 m 2 /g or more.

上述した本発明によるマンガン添加ジルコン酸バリウム粒子の製造において、上記バリウム水酸化物としては、水酸化バリウムの無水和物、1水和物、8水和物等を用いることができる。 In the production of the manganese-doped barium zirconate particles according to the present invention described above, as the barium hydroxide, barium hydroxide anhydrate, monohydrate, octahydrate, etc. can be used.

上記ジルコニウム水酸化物としては、水酸化ジルコニウムの無水和物や各種水和物の市販品を用いることができる。しかし、上記市販品は、吸水しやすく、不安定である。そこで、上記ジルコニウム水酸化物として、好ましくは、オキシ塩化ジルコニウム、酢酸ジルコニウム等の水溶性ジルコニウム化合物を水酸化ナトリウム、水酸化カリウム、アンモニア水等のアルカリ性化合物の過剰量と水中で反応させて、ほぼ定量的にジルコニウム水酸化物を生成させ、このようにして得る湿潤ケーキとしてのジルコニウム水酸化物を用いることが好ましい。 As the zirconium hydroxide, commercially available anhydrates and various hydrates of zirconium hydroxide can be used. However, the above commercial products easily absorb water and are unstable. Therefore, as the above-mentioned zirconium hydroxide, preferably, a water-soluble zirconium compound such as zirconium oxychloride or zirconium acetate is reacted with an excess amount of an alkaline compound such as sodium hydroxide, potassium hydroxide, or aqueous ammonia in water. Preference is given to producing zirconium hydroxide quantitatively and using the zirconium hydroxide as a wet cake obtained in this way.

上記マンガン水酸化物としては、市販品を用いることができるが、しかし、マンガン水酸化物の市販品も吸水しやすく、不安定である。そこで、上記マンガン水酸化物として、好ましくは、塩化マンガン、硝酸マンガン等の水溶性マンガン化合物を水酸化ナトリウム、水酸化カリウム、アンモニア水等のアルカリ性化合物の過剰量と水中で反応させて、ほぼ定量的にマンガン水酸化物を生成させ、このようにして得る湿潤ケーキとしてのマンガン水酸化物を用いることが好ましい。 Commercially available manganese hydroxides can be used as the manganese hydroxide, but commercially available manganese hydroxides also tend to absorb water and are unstable. Therefore, as the above-mentioned manganese hydroxide, preferably, a water-soluble manganese compound such as manganese chloride or manganese nitrate is reacted with an excess amount of an alkaline compound such as sodium hydroxide, potassium hydroxide, or aqueous ammonia in water to obtain a nearly quantitative amount. Preferably, the manganese hydroxide is produced as a wet cake and the manganese hydroxide thus obtained is used as a wet cake.

上記ジルコニウム水酸化物とマンガン水酸化物は、ジルコニウムとマンガンの混合水酸化物の湿潤ケーキを製造し、これを用いてもよい。 The above-mentioned zirconium hydroxide and manganese hydroxide may be used by producing a wet cake of mixed hydroxide of zirconium and manganese.

前記工程(a)において用いる上記マンガン添加ジルコン酸バリウムの種結晶としては、前記組成式(I)で表されるものであれば、いずれでもよいが、しかし、平均粒子径が2.0μm以下であることが好ましい。上記種結晶の平均粒子径が2.0μmを超えるときは、得られるマンガン添加ジルコン酸バリウム粒子の比表面積が小さく、結晶性も低く、有機物分解触媒として高い触媒活性をもたない。種結晶の平均粒子径の下限値は、特に、制限されるものではないが、通常、0.1μmである。 The seed crystal of the manganese-doped barium zirconate used in the step (a) may be any seed crystal as long as it is represented by the composition formula (I). It is preferable that there be. When the average particle diameter of the seed crystal exceeds 2.0 μm, the resulting manganese-doped barium zirconate particles have a small specific surface area, low crystallinity, and do not have high catalytic activity as an organic matter decomposition catalyst. The lower limit of the average particle diameter of the seed crystal is usually 0.1 μm, although it is not particularly limited.

上記種結晶は、第1のスラリーの含むマンガンとジルコニウムの合計モル部数100モル部に対して1~20モル部の範囲で用いることが好ましい。種結晶の使用量が第1のスラリーの含むマンガンとジルコニウムの合計モル部数100モル部に対して1モル部を下回るときは、高い比表面積を有するマンガン添加ジルコン酸バリウム粒子を得ることが困難である。一方、第1のスラリーの含むジルコニウム水酸化物中のジルコニウムのモル部数100モル部に対して20モル部を超える多量の種結晶を用いても、得られるマンガン添加ジルコン酸バリウム粒子の比表面積に変化はなく、かくして、種結晶をこのように多量に加えても、それに見合う効果が得られない。 The seed crystal is preferably used in an amount of 1 to 20 parts by mole based on 100 parts by mole of the total number of manganese and zirconium contained in the first slurry. When the amount of the seed crystal used is less than 1 mole part per 100 mole parts of the total number of manganese and zirconium contained in the first slurry, it is difficult to obtain manganese-doped barium zirconate particles having a high specific surface area. be. On the other hand, even if a large amount of seed crystals exceeding 20 molar parts per 100 molar parts of zirconium in the zirconium hydroxide contained in the first slurry is used, the specific surface area of the resulting manganese-doped barium zirconate particles will decrease. There is no change, and thus the addition of such large amounts of seed crystals does not have a commensurate effect.

特に、上記種結晶は、第1のスラリーの含むマンガンとジルコニウムの合計モル部数100モル部に対して1~10モル部の範囲で用いることが好ましい。 In particular, it is preferable to use the seed crystal in an amount of 1 to 10 mole parts based on 100 mole parts of the total number of manganese and zirconium contained in the first slurry.

上記工程(b)は、工程(a)において得られた上記第1のスラリーを水熱反応させて、反応生成物としてマンガン添加ジルコン酸バリウム粒子を含む反応混合物を第2のスラリーとして得る工程である。この水熱反応の温度は、通常、120~300℃の範囲であり、好ましくは、130~250℃の範囲であり、最も好ましくは、150~200℃の範囲である。 The step (b) is a step of hydrothermally reacting the first slurry obtained in step (a) to obtain a reaction mixture containing manganese-doped barium zirconate particles as a reaction product as a second slurry. be. The temperature of this hydrothermal reaction is usually in the range of 120 to 300°C, preferably in the range of 130 to 250°C, and most preferably in the range of 150 to 200°C.

上記第2のスラリーは、バリウム水酸化物とジルコニウム水酸化物とマンガン水酸化物の水熱反応によって生成したマンガン添加ジルコン酸バリウム粒子を含む。この場合、Ba/(Zr+Mn)モル比を1.0として、バリウム水酸化物とジルコニウム水酸化物とマンガン水酸化物を水熱反応させても、ジルコニウムやマンガンに比べて、バリウムの反応性が低いことから、通常、得られるマンガン添加ジルコン酸バリウムにおけるBa/(Zr+Mn)モル比は1.0よりも小さく、従って、工程(b)において、水熱反応によって得られた反応混合物中には、未反応のバリウムが水酸化バリウム及び/又は炭酸バリウムとして残存している。 The second slurry contains manganese-doped barium zirconate particles produced by a hydrothermal reaction of barium hydroxide, zirconium hydroxide, and manganese hydroxide. In this case, even if barium hydroxide, zirconium hydroxide, and manganese hydroxide are subjected to a hydrothermal reaction with a Ba/(Zr+Mn) molar ratio of 1.0, the reactivity of barium is lower than that of zirconium or manganese. Since the Ba/(Zr+Mn) molar ratio in the manganese-doped barium zirconate obtained is usually lower than 1.0, in step (b), the reaction mixture obtained by the hydrothermal reaction contains: Unreacted barium remains as barium hydroxide and/or barium carbonate.

そこで、工程(c)において、上記水熱反応によって得られた第2のスラリーに、例えば、硝酸のような酸を加えて酸処理した後、水洗して、得られたマンガン添加ジルコン酸バリウム粒子から上記未反応のバリウムを、例えば、硝酸バリウムのような水溶性バリウム塩として除去するのである。 Therefore, in step (c), the second slurry obtained by the above hydrothermal reaction is treated with an acid such as nitric acid, and then washed with water to obtain manganese-doped barium zirconate particles. The unreacted barium is removed from the reactor as a water-soluble barium salt such as barium nitrate.

一方、Ba/(Zr+Mn)モル比を1.0よりも高い条件にてバリウム水酸化物とジルコニウム水酸化物とマンガン水酸化物を水熱反応させても、有機物分解触媒活性に寄与しない水酸化バリウム及び/又は炭酸バリウムがそのまま、得られるマンガン添加ジルコン酸バリウム粒子中に残存して、その単位重量当たりの有機物分解触媒活性に有害な影響を及ぼすおそれがあるので、Ba/(Zr+Mn)モル比を1.0とした場合と同様に、工程(c)において、上記水熱反応によって得られた第2のスラリーを酸処理し、水洗することが好ましい。 On the other hand, even if barium hydroxide, zirconium hydroxide, and manganese hydroxide are subjected to a hydrothermal reaction under conditions where the Ba/(Zr+Mn) molar ratio is higher than 1.0, hydroxide does not contribute to the organic matter decomposition catalyst activity. Barium and/or barium carbonate may remain as they are in the obtained manganese-added barium zirconate particles and have a detrimental effect on the organic matter decomposition catalyst activity per unit weight, so the Ba/(Zr+Mn) molar ratio In step (c), the second slurry obtained by the hydrothermal reaction is preferably treated with an acid and washed with water, as in the case where the .

かくして、上記第2のスラリーを酸処理した後、水洗処理し、必要に応じて、ろ過、乾燥することによって、未反応のバリウムを異相として含まない単相のマンガン添加ジルコン酸バリウム粒子を得ることができる。 Thus, after the second slurry is acid-treated, it is washed with water, and if necessary, filtered and dried to obtain single-phase manganese-added barium zirconate particles that do not contain unreacted barium as a foreign phase. I can do it.

上記酸処理に用いる酸は、無機酸、有機酸のいずれでもよい。通常、硝酸、塩酸、酢酸等が好ましく用いられて、上記第2のスラリーpH5程度を有するように酸処理される。また、上記水洗処理には、イオン交換水や純水が好ましく用いられる。上記水洗処理は、ろ液の電気伝導率が5ms/m以下になるまで行うことが好ましい。 The acid used in the acid treatment may be either an inorganic acid or an organic acid. Usually, nitric acid, hydrochloric acid, acetic acid, etc. are preferably used, and the acid treatment is performed so that the second slurry has a pH of about 5. Moreover, ion-exchanged water or pure water is preferably used for the water washing treatment. It is preferable that the water washing treatment is carried out until the electrical conductivity of the filtrate becomes 5 ms/m or less.

上述した方法によって得られたマンガン添加ジルコン酸バリウム粒子のバリウム量が欠損している場合、即ち、Ba/(Zr+Mn)モル比が1よりも小さい場合、上記マンガン添加ジルコン酸バリウム粒子にバリウムを補償して、所望のBa/(Zr+Mn)モル比を有するマンガン添加ジルコン酸バリウム粒子を得ることができる。 If the amount of barium in the manganese-doped barium zirconate particles obtained by the above method is deficient, that is, if the Ba/(Zr+Mn) molar ratio is less than 1, the barium is compensated for in the manganese-doped barium zirconate particles. In this way, manganese-doped barium zirconate particles having a desired Ba/(Zr+Mn) molar ratio can be obtained.

即ち、例えば、水熱反応の後、得られた反応混合物(固体)をろ過し、酸処理し、水洗して、反応混合物中、水に溶存しているバリウム水酸化物を除去した後、得られた反応生成物のBa/(Zr+Mn)モル比を分析し、次いで、所望のBa/(Zr+Mn)モル比になるように、上記反応生成物にバリウム化合物を添加剤として加えて、所望のBa/(Zr+Mn)モル比を有せしめ、これを焼結すれば、所望のBa/(Zr+Mn)モル比を有するマンガン添加ジルコン酸バリウム焼結体を得ることができる。 That is, for example, after a hydrothermal reaction, the resulting reaction mixture (solid) is filtered, treated with an acid, and washed with water to remove barium hydroxide dissolved in water from the reaction mixture. The Ba/(Zr+Mn) molar ratio of the reaction product obtained is analyzed, and then a barium compound is added to the reaction product as an additive to obtain the desired Ba/(Zr+Mn) molar ratio. /(Zr+Mn) molar ratio, and by sintering this, a manganese-doped barium zirconate sintered body having a desired Ba/(Zr+Mn) molar ratio can be obtained.

ここに、上記添加剤としては、水への溶解度が低く、更に、このように添加剤を加えた反応混合物を焼結した際に、その添加剤が熱分解しても、バリウム以外のものが焼結体中に残存しないもの、例えば、炭酸塩、有機酸塩、酸化物等が好ましく用いられる。 Here, the above additive has a low solubility in water, and furthermore, when the reaction mixture containing the additive is sintered, even if the additive is thermally decomposed, substances other than barium will be released. Those that do not remain in the sintered body, such as carbonates, organic acid salts, oxides, etc., are preferably used.

以下に本発明によるマンガン添加ジルコン酸バリウム粒子に関する実施例と共に比較例を挙げて本発明を詳細に説明するが、本発明はこれら実施例によって何ら制限されるものではない。併せて、本発明によるマンガン添加ジルコン酸バリウム粒子の製造に用いるジルコニウムとマンガンの混合水酸化物又はそれぞれの水酸化物の製造例を挙げる。 EXAMPLES The present invention will be explained in detail below by giving Examples and Comparative Examples regarding the manganese-doped barium zirconate particles according to the present invention, but the present invention is not limited to these Examples in any way. In addition, production examples of a mixed hydroxide of zirconium and manganese or each hydroxide used in the production of manganese-doped barium zirconate particles according to the present invention will be given.

製造例1
(ジルコニウムとマンガンの混合水酸化物の湿潤ケーキの製造)
ガラスビーカーにオキシ塩化ジルコニウム8水塩(米山薬品工業(株)製)295.29gと塩化マンガン4水塩(富士フイルム和光純薬(株)製)18.62gをイオン交換水2Lに加え、撹拌してオキシ塩化ジルコニウム8水塩と塩化マンガン4水塩を水に溶解させてジルコニウム塩とマンガン塩の混合水溶液を得た。次いで、ナイロン製ビーカーに水酸化ナトリウム79.98g(富士フイルム和光純薬(株)製)とイオン交換水4Lを加え、撹拌、溶解して水酸化ナトリウム水溶液を得た。
Manufacturing example 1
(Production of wet cake of mixed hydroxide of zirconium and manganese)
Add 295.29 g of zirconium oxychloride octahydrate (manufactured by Yoneyama Pharmaceutical Co., Ltd.) and 18.62 g of manganese chloride tetrahydrate (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) to 2 L of ion-exchanged water in a glass beaker, and stir. Then, zirconium oxychloride octahydrate and manganese chloride tetrahydrate were dissolved in water to obtain a mixed aqueous solution of zirconium salt and manganese salt. Next, 79.98 g of sodium hydroxide (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) and 4 L of ion-exchanged water were added to a nylon beaker, and the mixture was stirred and dissolved to obtain an aqueous sodium hydroxide solution.

イオン交換水1Lを入れた別の撹拌機を備えたビーカーにチューブポンプを用いて上記混合水溶液を30mL/分で添加すると共に、pHが10.5~11.5となるように上記ビーカーに上記水酸化ナトリウム水溶液を別のチューブポンプを用いて添加した。 Using a tube pump, add the above mixed aqueous solution at a rate of 30 mL/min to a beaker equipped with another stirrer containing 1 L of ion-exchanged water, and add the above mixture to the beaker so that the pH becomes 10.5 to 11.5. Aqueous sodium hydroxide solution was added using a separate tube pump.

添加終了後、そのまま、1時間撹拌してスラリーを得た。このスラリーをろ過して得られた固形物を水洗水電導度が10mS/m以下になるまでイオン交換水で水洗し、ジルコニウムとマンガンの混合水酸化物の湿潤ケーキ1321.5g(水酸化ジルコニウム濃度10.3%、水酸化マンガン濃度0.6%、Zr/(Zr+Mn)モル比0.907、水酸化ジルコニウムの収率93%、水酸化マンガンの収率95%)を得た。 After the addition was completed, the mixture was stirred for 1 hour to obtain a slurry. The solid matter obtained by filtering this slurry was washed with ion-exchanged water until the water conductivity became 10 mS/m or less, and 1321.5 g of a wet cake of mixed hydroxide of zirconium and manganese (zirconium hydroxide concentration 10.3%, manganese hydroxide concentration 0.6%, Zr/(Zr+Mn) molar ratio 0.907, zirconium hydroxide yield 93%, manganese hydroxide yield 95%).

上記ジルコニウムとマンガンの混合水酸化物は吸湿しやすく、得られた湿潤ケーキ中の上記各水酸化物の濃度を正確に秤量することは困難であるので、上記湿潤ケーキ中のジルコニウムとマンガンの各水酸化物の濃度は下記のようにして求めた。即ち、上記湿潤ケーキを500℃に加熱したときの酸化物残渣中のジルコニウムとマンガンの各濃度を求め、これらを各水酸化物、即ち、Zr(OH)とMn(OH)2 に換算して、各水酸化物の濃度と収率を求めた。上記ケーキを500℃に加熱することによって、物理吸着水と水酸基が完全に除去され、酸化物が形成されることはX線回折にて確認した。 The above mixed hydroxide of zirconium and manganese easily absorbs moisture, and it is difficult to accurately weigh the concentration of each of the above hydroxides in the obtained wet cake. The concentration of hydroxide was determined as follows. That is, when the wet cake was heated to 500°C, the concentrations of zirconium and manganese in the oxide residue were determined, and these were converted to the respective hydroxides, that is, Zr(OH) 4 and Mn(OH) 2 . The concentration and yield of each hydroxide were determined. It was confirmed by X-ray diffraction that physically adsorbed water and hydroxyl groups were completely removed and oxides were formed by heating the cake to 500°C.

(種結晶の製造)
上記ジルコニウムとマンガンの混合水酸化物の湿潤ケーキ51.25gをチタン製容器に入れ、これに水酸化バリウム8水塩(富士フイルム和光純薬(株)製)18.92gとイオン交換水0.1Lを加え、撹拌してスラリーとした。
(Manufacture of seed crystals)
Put 51.25 g of the wet cake of the mixed hydroxide of zirconium and manganese into a titanium container, add 18.92 g of barium hydroxide octahydrate (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) and 0.0 g of ion-exchanged water. 1 L was added and stirred to form a slurry.

上記チタン製容器をオートクレーブに入れ、200℃で2時間加熱して、ジルコニウムとマンガンの混合水酸化物と水酸化バリウムを水熱反応させた。得られたスラリーを撹拌機を備えたポリエチレン製ビーカーに移し、これに0.2%硝酸水溶液を加えてスラリーのpHを5に調整し、そのまま30分間撹拌した。30分経過後、スラリーのpHが再度上昇したため、0.2%硝酸水溶液を追加添加して、pHを5に再調整した。 The titanium container was placed in an autoclave and heated at 200° C. for 2 hours to cause a hydrothermal reaction between the mixed hydroxide of zirconium and manganese and barium hydroxide. The obtained slurry was transferred to a polyethylene beaker equipped with a stirrer, a 0.2% aqueous nitric acid solution was added thereto to adjust the pH of the slurry to 5, and the slurry was stirred for 30 minutes. After 30 minutes, the pH of the slurry rose again, so 0.2% nitric acid aqueous solution was added to readjust the pH to 5.

このスラリーをろ過して得られた固形物を水洗水電導度が10mS/m以下になるまでイオン交換水で水洗した。水洗後、得られたケーキを温度150℃に設定した乾燥機で一晩乾燥し、組成式BaZr0.903Mn0.0973-δで表されるマンガン添加ジルコン酸バリウムの種結晶粒子を得た。 The solid matter obtained by filtering this slurry was washed with ion-exchanged water until the washing water conductivity became 10 mS/m or less. After washing with water, the obtained cake was dried overnight in a dryer set at a temperature of 150°C, and seed crystal particles of manganese-doped barium zirconate represented by the composition formula BaZr 0.903 Mn 0.097 O 3-δ were added. Obtained.

このようにして得られた種結晶粒子を100mL容量ポリ容器に0.11g(0.00040モル)を秤り取り、イオン交換水8mLを加えてスラリーとした。このスラリーに直径1.0mmのジルコニアビーズ8mLを加えた後、遊星ボールミル(フリッチュ社製P-5)に設置し、回転数210rpmで1時間稼動して上記スラリーを湿式粉砕した。篩を用いて、上記スラリーから上記ビーズを分離し、上記ビーズをイオン交換水2mLで洗浄し、この洗浄水を上記スラリーに戻して、スラリーの容量を合計10mLとした。かくして、平均粒子径0.19μm、スラリー濃度0.011g/mL(0.00004モル/mL)の種結晶の粉砕スラリーを得た。 0.11 g (0.00040 mol) of the thus obtained seed crystal particles was weighed into a 100 mL plastic container, and 8 mL of ion-exchanged water was added to form a slurry. After adding 8 mL of zirconia beads with a diameter of 1.0 mm to this slurry, it was placed in a planetary ball mill (P-5 manufactured by Fritsch) and operated at a rotation speed of 210 rpm for 1 hour to wet-pulverize the slurry. The beads were separated from the slurry using a sieve, the beads were washed with 2 mL of ion-exchanged water, and the wash water was returned to the slurry to give a total slurry volume of 10 mL. In this way, a pulverized slurry of seed crystals was obtained with an average particle diameter of 0.19 μm and a slurry concentration of 0.011 g/mL (0.00004 mol/mL).

実施例1
(工程(a))
チタン製容器に前記製造例1において得られたジルコニウムとマンガンの混合水酸化物の湿潤ケーキ51.25gと水酸化バリウム8水塩(富士フイルム和光純薬(株)製)18.92gを秤り取り、イオン交換水0.09Lを加え、更に前記製造例1において得られた種結晶粉砕スラリー10mL(種結晶として0.00040モル、第1のスラリー中のジルコニウムとマンガン合計モル部数100モル部に対して1モル部)を加えて撹拌し、第1のスラリーとした。
Example 1
(Step (a))
In a titanium container, 51.25 g of the wet cake of mixed hydroxide of zirconium and manganese obtained in Production Example 1 and 18.92 g of barium hydroxide octahydrate (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) were weighed. Add 0.09 L of ion-exchanged water, and add 10 mL of the seed crystal pulverized slurry obtained in Production Example 1 (0.00040 mol as seed crystal, to 100 mol parts of the total molar parts of zirconium and manganese in the first slurry). 1 mole part) was added thereto and stirred to prepare a first slurry.

(工程(b))
上記チタン製容器をオートクレーブに入れて200℃で2時間加熱し、上記種結晶の粉砕物の存在下でジルコニウムとマンガンの混合水酸化物と水酸化バリウムを水熱反応させた。
(Step (b))
The titanium container was placed in an autoclave and heated at 200° C. for 2 hours to cause a hydrothermal reaction between the mixed hydroxide of zirconium and manganese and barium hydroxide in the presence of the crushed seed crystals.

(工程(c))
このようにして得られたスラリーを撹拌機を備えたポリエチレン製ビーカーに移し、これに0.2%硝酸水溶液を加えてスラリーのpHを5に調整し、そのまま30分間撹拌した。30分経過後、スラリーのpHが再度上昇していたため、0.2%硝酸水溶液を追加添加して、pHを5に再調整した。
(Step (c))
The slurry thus obtained was transferred to a polyethylene beaker equipped with a stirrer, a 0.2% aqueous nitric acid solution was added thereto to adjust the pH of the slurry to 5, and the slurry was stirred for 30 minutes. After 30 minutes, the pH of the slurry had risen again, so 0.2% nitric acid aqueous solution was further added to readjust the pH to 5.

このスラリーをろ過し、得られた固形物を水洗水電導度が10mS/m以下になるまでイオン交換水で水洗した。水洗後、得られたケーキを温度150℃に設定した乾燥機で一晩乾燥し、組成式BaZr0.903Mn0.0973-δで表されるマンガン添加ジルコン酸バリウム粒子を得た。 This slurry was filtered, and the obtained solid material was washed with ion-exchanged water until the washing water conductivity became 10 mS/m or less. After washing with water, the obtained cake was dried overnight in a dryer set at a temperature of 150° C. to obtain manganese-doped barium zirconate particles represented by the compositional formula BaZr 0.903 Mn 0.097 O 3-δ .

実施例2
前記製造例1において得られた種結晶粒子0.33g(0.0012モル)を100mL容量のポリ容器に秤り取り、イオン交換水8mLを加えてスラリーとした。このスラリーに直径1.0mmのジルコニアビーズ8mLを加えた後、遊星ボールミル(フリッチュ社製P-5)に設置し、回転数210rpmで1時間稼動して上記スラリーを湿式粉砕した。篩を用いて、上記スラリーから上記ビーズを分離し、上記ビーズをイオン交換水2mLで洗浄し、この洗浄水を上記スラリーに戻して、スラリーの容量を合計10mLとした。かくして、平均粒子径0.26μm、スラリー濃度0.033g/mL(0.00012モル/mL)の種結晶の粉砕スラリーを得た。
Example 2
0.33 g (0.0012 mol) of the seed crystal particles obtained in Production Example 1 was weighed into a 100 mL plastic container, and 8 mL of ion-exchanged water was added to form a slurry. After adding 8 mL of zirconia beads with a diameter of 1.0 mm to this slurry, it was placed in a planetary ball mill (P-5 manufactured by Fritsch) and operated at a rotation speed of 210 rpm for 1 hour to wet-pulverize the slurry. The beads were separated from the slurry using a sieve, the beads were washed with 2 mL of ion-exchanged water, and the wash water was returned to the slurry to give a total slurry volume of 10 mL. In this way, a pulverized slurry of seed crystals was obtained with an average particle diameter of 0.26 μm and a slurry concentration of 0.033 g/mL (0.00012 mol/mL).

上記種結晶の粉砕スラリー10mL(種結晶として0.0012モル、第1のスラリー中のジルコニウムとマンガン合計モル部数100モル部に対して3モル部)を用いた以外は、実施例1と同様にして、組成式BaZr0.903Mn0.0973-δで表されるマンガン添加ジルコン酸バリウム粒子を得た。 The procedure was carried out in the same manner as in Example 1, except that 10 mL of the above-mentioned pulverized slurry of the seed crystals (0.0012 mol as the seed crystal, 3 mol parts based on 100 mol parts of the total zirconium and manganese in the first slurry) was used. As a result, manganese-doped barium zirconate particles having the compositional formula BaZr 0.903 Mn 0.097 O 3-δ were obtained.

実施例3
前記製造例1において得られた種結晶粒子1.1g(0.0040モル)を100mL容量ポリ容器に秤り取り、イオン交換水8mLを加えてスラリーとした。このスラリーに直径1.0mmのジルコニアビーズ8mLを加えた後、遊星ボールミル(フリッチュ社製P-5)に設置し、回転数210rpmで1時間稼動して上記スラリーを湿式粉砕した。篩を用いて、上記スラリーから上記ビーズを分離し、上記ビーズをイオン交換水2mLで洗浄し、この洗浄水を上記スラリーに戻して、スラリーの容量を合計10mLとした。かくして、平均粒子径0.31μm、スラリー濃度0.11g/mL(0.00040モル/mL)の種結晶の粉砕スラリーを得た。
Example 3
1.1 g (0.0040 mol) of the seed crystal particles obtained in Production Example 1 were weighed into a 100 mL plastic container, and 8 mL of ion-exchanged water was added to form a slurry. After adding 8 mL of zirconia beads with a diameter of 1.0 mm to this slurry, it was placed in a planetary ball mill (P-5 manufactured by Fritsch) and operated at a rotation speed of 210 rpm for 1 hour to wet-pulverize the slurry. The beads were separated from the slurry using a sieve, the beads were washed with 2 mL of ion-exchanged water, and the wash water was returned to the slurry to give a total slurry volume of 10 mL. In this way, a pulverized slurry of seed crystals was obtained with an average particle diameter of 0.31 μm and a slurry concentration of 0.11 g/mL (0.00040 mol/mL).

上記種結晶の粉砕スラリー10mL(種結晶として0.0040モル、第1のスラリー中のジルコニウムとマンガン合計モル部数100モル部に対して10モル部)を用いた以外は、実施例1と同様にして、組成式BaZr0.903Mn0.0973-δで表されるマンガン添加ジルコン酸バリウム粒子を得た。 The procedure was carried out in the same manner as in Example 1, except that 10 mL of the above-mentioned pulverized slurry of the seed crystals (0.0040 mol as the seed crystal, 10 mol parts based on the total 100 mol parts of zirconium and manganese in the first slurry) was used. As a result, manganese-doped barium zirconate particles having the compositional formula BaZr 0.903 Mn 0.097 O 3-δ were obtained.

製造例2
(ジルコニウムとマンガンの混合水酸化物の湿潤ケーキの製造)
オキシ塩化ジルコニウム8水塩(米山薬品工業(株)製)257.87gと塩化マンガン4水塩(日本化学産業(株)製)39.53gを用いた以外は、製造例1と同様にして、ジルコニウムとマンガンの混合水酸化物の湿潤ケーキ1129.0g(水酸化ジルコニウム濃度10.5%、水酸化マンガン濃度1.5%、Zr/(Zr+Mn)モル比0.800、水酸化ジルコニウムの収率93%、水酸化マンガンの収率95%)を得た。湿潤ケーキ中の水酸化ジルコニウム濃度と水酸化マンガン濃度とそれぞれの収率は、製造例1におけると同様にして求めた。
Manufacturing example 2
(Production of wet cake of mixed hydroxide of zirconium and manganese)
In the same manner as in Production Example 1, except that 257.87 g of zirconium oxychloride octahydrate (manufactured by Yoneyama Yakuhin Kogyo Co., Ltd.) and 39.53 g of manganese chloride tetrahydrate (manufactured by Nihon Kagaku Sangyo Co., Ltd.) were used. 1129.0 g wet cake of mixed hydroxide of zirconium and manganese (zirconium hydroxide concentration 10.5%, manganese hydroxide concentration 1.5%, Zr/(Zr+Mn) molar ratio 0.800, yield of zirconium hydroxide The yield of manganese hydroxide was 93% and the yield of manganese hydroxide was 95%. The zirconium hydroxide concentration and manganese hydroxide concentration in the wet cake and their respective yields were determined in the same manner as in Production Example 1.

(種結晶の製造)
上記ジルコニウムとマンガンの混合水酸化物の湿潤ケーキ37.62gをチタン製容器に秤り取り、これに水酸化バリウム8水塩(富士フイルム和光純薬(株)製)18.92gとイオン交換水0.1Lを加え、撹拌してスラリーとした。
(Manufacture of seed crystals)
Weigh out 37.62 g of the wet cake of the mixed hydroxide of zirconium and manganese into a titanium container, add 18.92 g of barium hydroxide octahydrate (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) and ion exchange water. 0.1 L was added and stirred to form a slurry.

上記チタン製容器をオートクレーブに入れて実施例1と同様の条件で、水熱反応と水熱反応で得られたスラリーのpH調整、水洗、乾燥を行った。このようにして、組成式BaZr0.807Mn0.1933-δで表されるマンガン添加ジルコン酸バリウム種結晶粒子を得た。 The titanium container was placed in an autoclave, and under the same conditions as in Example 1, a hydrothermal reaction and a slurry obtained by the hydrothermal reaction were subjected to pH adjustment, water washing, and drying. In this way, manganese-doped barium zirconate seed crystal particles having the composition formula BaZr 0.807 Mn 0.193 O 3-δ were obtained.

この種結晶粒子を100mL容量ポリ容器に0.11g(0.00040モル)を秤り取り、イオン交換水8mLを加えてスラリーとした。このスラリーに直径1.0mmのジルコニアビーズ8mLを加えた後、遊星ボールミル(フリッチュ社製P-5)に設置し、回転数210rpmで1時間稼動して上記スラリーを湿式粉砕した。篩を用いて、上記スラリーから上記ビーズを分離し、上記ビーズをイオン交換水2mLで洗浄し、この洗浄水を上記スラリーに戻して、スラリーの容量を合計10mLとした。かくして、平均粒子径0.25μm、スラリー濃度0.011g/mL(0.00004モル/mL)の種結晶の粉砕スラリーを得た。 0.11 g (0.00040 mol) of this seed crystal particle was weighed out in a 100 mL plastic container, and 8 mL of ion-exchanged water was added to form a slurry. After adding 8 mL of zirconia beads with a diameter of 1.0 mm to this slurry, it was placed in a planetary ball mill (P-5 manufactured by Fritsch) and operated at a rotation speed of 210 rpm for 1 hour to wet-pulverize the slurry. The beads were separated from the slurry using a sieve, the beads were washed with 2 mL of ion-exchanged water, and the wash water was returned to the slurry to give a total slurry volume of 10 mL. In this way, a pulverized slurry of seed crystals was obtained with an average particle diameter of 0.25 μm and a slurry concentration of 0.011 g/mL (0.00004 mol/mL).

実施例4
前記製造例2において得られた種結晶の粉砕スラリー10mL(種結晶として0.00040モル、第1のスラリー中のジルコニウムとマンガン合計モル部数100モル部に対して1モル部)を用いると共に、前記製造例2において得られたジルコニウムとマンガンの混合水酸化物の湿潤ケーキ37.62gと水酸化バリウム8水塩18.92gを用いた以外は、実施例1と同様にして、組成式BaZr0.797Mn0.2033-δで表されるマンガン添加ジルコン酸バリウム粒子を得た。図1に上記マンガン添加ジルコン酸バリウム粒子の粉末X線回折パターンを示す。
Example 4
Using 10 mL of the seed crystal pulverized slurry obtained in Production Example 2 (0.00040 mol as the seed crystal, 1 mol part per 100 mol parts of the total number of zirconium and manganese molar parts in the first slurry), A product having the composition formula BaZr0. Manganese-doped barium zirconate particles represented by 797 Mn 0.203 O 3-δ were obtained. FIG. 1 shows the powder X-ray diffraction pattern of the manganese-doped barium zirconate particles.

実施例5
前記製造例1において得られた種結晶粒子0.11g(0.00040モル)を実施例1と同様にスラリー化して粉砕し、平均粒子径0.23μm、スラリー濃度0.011g/mL(0.00004モル/mL)の種結晶の粉砕スラリーを得た。上記種結晶の粉砕スラリー10mL(種結晶として0.00040モル、第1のスラリー中のジルコニウムとマンガン合計モル部数100モル部に対して1モル部)を用いると共に、工程(a)におけるBa/(Zr+Mn)モル比を1.0とした以外は、実施例1と同様にして、組成式BaZr0.901Mn0.0993-δで表されるマンガン添加ジルコン酸バリウム粒子を得た。
Example 5
0.11 g (0.00040 mol) of the seed crystal particles obtained in Production Example 1 were slurried and pulverized in the same manner as in Example 1 to obtain an average particle diameter of 0.23 μm and a slurry concentration of 0.011 g/mL (0.01 g/mL). A pulverized slurry of seed crystals with a concentration of 0.00004 mol/mL) was obtained. Using 10 mL of the above-mentioned pulverized slurry of the seed crystal (0.00040 mol as the seed crystal, 1 mol part per 100 mol parts of the total zirconium and manganese in the first slurry), Ba/( Manganese-doped barium zirconate particles represented by the compositional formula BaZr 0.901 Mn 0.099 O 3-δ were obtained in the same manner as in Example 1, except that the molar ratio (Zr+Mn) was 1.0.

実施例6
前記製造例1において得られた種結晶粒子0.33g(0.0012モル)を実施例2と同様にスラリー化して粉砕し、平均粒子径0.20μm、スラリー濃度0.033g/mL(0.00012モル/mL)の種結晶の粉砕スラリーを得た。上記種結晶の粉砕スラリー10mL(種結晶として0.0012モル、第1のスラリー中のジルコニウムとマンガン合計モル部数100モル部に対して3モル部)を用いると共に、工程(a)におけるBa/(Zr+Mn)モル比を1.0とした以外は、実施例1と同様にして、組成式BaZr0.902Mn0.0983-δで表されるマンガン添加ジルコン酸バリウム粒子を得た。
Example 6
0.33 g (0.0012 mol) of the seed crystal particles obtained in Production Example 1 were slurried and ground in the same manner as in Example 2 to obtain an average particle diameter of 0.20 μm and a slurry concentration of 0.033 g/mL (0. A pulverized slurry of seed crystals of 0.00012 mol/mL) was obtained. Using 10 mL of the seed crystal pulverized slurry (0.0012 mol as the seed crystal, 3 mol parts based on 100 mol parts of the total zirconium and manganese in the first slurry), Ba/( Manganese-doped barium zirconate particles represented by the compositional formula BaZr 0.902 Mn 0.098 O 3-δ were obtained in the same manner as in Example 1, except that the molar ratio (Zr+Mn) was 1.0.

実施例7
前記製造例1において得られた種結晶粒子1.1g(0.0040モル)を実施例3と同様にスラリー化して粉砕し、平均粒子径0.23μm、スラリー濃度0.11g/mL(0.00040モル/mL)の種結晶の粉砕スラリーを得た。上記種結晶の粉砕スラリー10mL(種結晶として0.0040モル、第1のスラリー中のジルコニウムとマンガン合計モル部数100モル部に対して10モル部)を用いると共に、工程(a)におけるBa/(Zr+Mn)モル比を1.0とした以外は、実施例1と同様にして、組成式BaZr0.901Mn0.0993-δで表されるマンガン添加ジルコン酸バリウム粒子を得た。
Example 7
1.1 g (0.0040 mol) of the seed crystal particles obtained in Production Example 1 were slurried and pulverized in the same manner as in Example 3, and the average particle diameter was 0.23 μm and the slurry concentration was 0.11 g/mL (0. A pulverized slurry of seed crystals of 0.00040 mol/mL) was obtained. Using 10 mL of the seed crystal pulverized slurry (0.0040 mol as the seed crystal, 10 mol parts based on 100 mol parts of the total number of zirconium and manganese in the first slurry), Ba/( Manganese-doped barium zirconate particles represented by the compositional formula BaZr 0.901 Mn 0.099 O 3-δ were obtained in the same manner as in Example 1, except that the molar ratio (Zr+Mn) was 1.0.

実施例8
前記製造例1において得られた種結晶粒子0.11g(0.00040モル)を実施例1と同様にスラリー化して粉砕し、平均粒子径0.26μm、スラリー濃度0.011g/mL(0.00004モル/mL)の種結晶の粉砕スラリーを得た。上記種結晶の粉砕スラリー10mL(種結晶として0.00040モル、第1のスラリー中のジルコニウムとマンガン合計モル部数100モル部に対して1モル部)を用いると共に、工程(a)におけるBa/(Zr+Mn)モル比を2.0とした以外は、実施例1と同様にして、組成式BaZr0.902Mn0.0983-δで表されるマンガン添加ジルコン酸バリウム粒子を得た。
Example 8
0.11 g (0.00040 mol) of the seed crystal particles obtained in Production Example 1 were slurried and pulverized in the same manner as in Example 1 to obtain an average particle diameter of 0.26 μm and a slurry concentration of 0.011 g/mL (0.01 g/mL). A pulverized slurry of seed crystals with a concentration of 0.00004 mol/mL) was obtained. Using 10 mL of the above-mentioned pulverized slurry of the seed crystal (0.00040 mol as the seed crystal, 1 mol part per 100 mol parts of the total zirconium and manganese in the first slurry), Ba/( Manganese-doped barium zirconate particles represented by the compositional formula BaZr 0.902 Mn 0.098 O 3-δ were obtained in the same manner as in Example 1 except that the molar ratio (Zr+Mn) was 2.0.

実施例9
前記製造例1において得られた種結晶粒子0.33g(0.0012モル)を実施例2と同様にスラリー化して粉砕し、平均粒子径0.21μm、スラリー濃度0.033g/mL(0.00012モル/mL)の種結晶の粉砕スラリーを得た。上記種結晶の粉砕スラリー10mL(種結晶として0.0012モル、第1のスラリー中のジルコニウムとマンガン合計モル部数100モル部に対して3モル部)を用いると共に、工程(a)におけるBa/(Zr+Mn)モル比を2.0とした以外は、実施例1と同様にして、組成式BaZr0.901Mn0.0993-δで表されるマンガン添加ジルコン酸バリウム粒子を得た。
Example 9
0.33 g (0.0012 mol) of the seed crystal particles obtained in Production Example 1 were slurried and ground in the same manner as in Example 2, with an average particle diameter of 0.21 μm and a slurry concentration of 0.033 g/mL (0. A pulverized slurry of seed crystals of 0.00012 mol/mL) was obtained. Using 10 mL of the seed crystal pulverized slurry (0.0012 mol as the seed crystal, 3 mol parts based on 100 mol parts of the total zirconium and manganese in the first slurry), Ba/( Manganese-doped barium zirconate particles represented by the composition formula BaZr 0.901 Mn 0.099 O 3-δ were obtained in the same manner as in Example 1, except that the molar ratio (Zr+Mn) was 2.0.

実施例10
前記製造例1において得られた種結晶粒子1.1g(0.0040モル)を実施例3と同様にスラリー化して粉砕し、平均粒子径0.24μm、スラリー濃度0.11g/mL(0.00040モル/mL)の種結晶の粉砕スラリーを得た。上記種結晶の粉砕スラリー10mL(種結晶として0.0040モル、第1のスラリー中のジルコニウムとマンガン合計モル部数100モル部に対して10モル部)を用いると共に、工程(a)におけるBa/(Zr+Mn)モル比を2.0とした以外は、実施例1と同様にして、組成式BaZr0.901Mn0.0993-δで表されるマンガン添加ジルコン酸バリウム粒子を得た。
Example 10
1.1 g (0.0040 mol) of the seed crystal particles obtained in Production Example 1 were slurried and pulverized in the same manner as in Example 3 to obtain an average particle diameter of 0.24 μm and a slurry concentration of 0.11 g/mL (0.004 μm). A pulverized slurry of seed crystals of 0.00040 mol/mL) was obtained. Using 10 mL of the seed crystal pulverized slurry (0.0040 mol as the seed crystal, 10 mol parts based on 100 mol parts of the total number of zirconium and manganese in the first slurry), Ba/( Manganese-doped barium zirconate particles represented by the composition formula BaZr 0.901 Mn 0.099 O 3-δ were obtained in the same manner as in Example 1, except that the molar ratio (Zr+Mn) was 2.0.

実施例11
前記製造例1において得られた種結晶粒子0.33g(0.0012モル)を実施例2と同様にスラリー化し、直径1.0mmのジルコニアビーズ10mLを加えた後、遊星ボールミル(フリッチュ社製P-5)に設置し、回転数210rpmで2分間稼動してスラリーを粉砕した。このスラリーから篩でビーズを除去し、平均粒子径1.83μm、スラリー濃度0.033g/mL(0.00012モル/mL)の種結晶の粉砕スラリーを得た。
Example 11
0.33 g (0.0012 mol) of the seed crystal particles obtained in Production Example 1 were slurried in the same manner as in Example 2, and 10 mL of zirconia beads with a diameter of 1.0 mm were added thereto. -5) and operated for 2 minutes at a rotational speed of 210 rpm to pulverize the slurry. Beads were removed from this slurry using a sieve to obtain a pulverized slurry of seed crystals with an average particle diameter of 1.83 μm and a slurry concentration of 0.033 g/mL (0.00012 mol/mL).

上記種結晶の粉砕スラリーを10mL(種結晶として0.0012モル、第1のスラリー中のジルコニウムとマンガン合計モル部数100モル部に対して3モル部)を用いた以外は、実施例1と同様にして、組成式BaZr0.903Mn0.0973-δで表されるマンガン添加ジルコン酸バリウム粒子を得た。 Same as Example 1 except that 10 mL of the above-mentioned pulverized slurry of seed crystals was used (0.0012 mol as the seed crystal, 3 mol parts based on 100 mol parts of the total zirconium and manganese in the first slurry). As a result, manganese-doped barium zirconate particles having the compositional formula BaZr 0.903 Mn 0.097 O 3-δ were obtained.

製造例3
(ジルコニウム水酸化物の湿潤ケーキの製造)
ガラスビーカーにオキシ塩化ジルコニウム8水塩(米山薬品工業(株)製)295.29gをイオン交換水2Lに加え、撹拌してオキシ塩化ジルコニウム8水塩を水に溶解させた。次いで、ナイロン製ビーカーに水酸化ナトリウム79.98g(富士フイルム和光純薬(株)製)とイオン交換水4Lを加え、撹拌、溶解して水酸化ナトリウム水溶液を得た。
Manufacturing example 3
(Production of wet cake of zirconium hydroxide)
295.29 g of zirconium oxychloride octahydrate (manufactured by Yoneyama Yakuhin Kogyo Co., Ltd.) was added to 2 L of ion-exchanged water in a glass beaker, and the mixture was stirred to dissolve the zirconium oxychloride octahydrate in the water. Next, 79.98 g of sodium hydroxide (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) and 4 L of ion-exchanged water were added to a nylon beaker, and the mixture was stirred and dissolved to obtain an aqueous sodium hydroxide solution.

イオン交換水1Lを入れた別の撹拌機を備えたビーカーにチューブポンプを用いて上記水溶液を30mL/分で添加すると共に、pHが10.5~11.5となるように上記ビーカーに上記水酸化ナトリウム水溶液を別のチューブポンプを用いて添加した。 Using a tube pump, add the above aqueous solution at a rate of 30 mL/min to a beaker equipped with another stirrer containing 1 L of ion-exchanged water, and add the above water to the beaker so that the pH becomes 10.5 to 11.5. Aqueous sodium oxide solution was added using a separate tube pump.

添加終了後、そのまま1時間撹拌してスラリーを得た。このスラリーをろ過して得られた固形物を水洗水電導度が10mS/m以下になるまでイオン交換水で水洗して、ジルコニウム水酸化物の湿潤ケーキ1669.0g(水酸化ジルコニウム濃度8.1%、収率93%)を得た。湿潤ケーキの水酸化ジルコニウム濃度と収率は、製造例1におけると同様にして求めた。 After the addition was completed, the mixture was stirred for 1 hour to obtain a slurry. The solid material obtained by filtering this slurry was washed with ion-exchanged water until the water conductivity became 10 mS/m or less, and 1669.0 g of a wet cake of zirconium hydroxide (zirconium hydroxide concentration 8.1 %, yield 93%). The zirconium hydroxide concentration and yield of the wet cake were determined in the same manner as in Production Example 1.

(マンガン水酸化物の湿潤ケーキの製造)
ガラスビーカーに塩化マンガン4水塩(富士フイルム和光純薬(株)製)98.1gをイオン交換水500mLに加え、撹拌して塩化マンガン4水塩を水に溶解させた。次いで、ナイロン製ビーカーに水酸化ナトリウム79.98g(富士フイルム和光純薬(株)製)とイオン交換水4Lを加え、撹拌、溶解して水酸化ナトリウム水溶液を得た。
(Production of wet cake of manganese hydroxide)
98.1 g of manganese chloride tetrahydrate (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) was added to 500 mL of ion-exchanged water in a glass beaker, and the mixture was stirred to dissolve the manganese chloride tetrahydrate in the water. Next, 79.98 g of sodium hydroxide (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) and 4 L of ion-exchanged water were added to a nylon beaker, and the mixture was stirred and dissolved to obtain an aqueous sodium hydroxide solution.

イオン交換水100mLを入れた別の撹拌機を備えたビーカーにチューブポンプを用いて上記水溶液を30mL/分で添加すると共に、pHが10.5~11.5となるように上記ビーカーに上記水酸化ナトリウム水溶液を別のチューブポンプを用いて添加した。 Using a tube pump, add the above aqueous solution at a rate of 30 mL/min to a beaker equipped with another stirrer containing 100 mL of ion-exchanged water, and add the above water to the beaker so that the pH becomes 10.5 to 11.5. Aqueous sodium oxide solution was added using a separate tube pump.

添加終了後、そのまま1時間撹拌してスラリーを得た。このスラリーをろ過して得られた固形物を水洗水電導度が10mS/m以下になるまでイオン交換水で水洗して、マンガン水酸化物の湿潤ケーキ535.8g(水酸化マンガン濃度7.8%、収率95%)を得た。湿潤ケーキの水酸化マンガン濃度と収率は、製造例1におけると同様にして求めた。
を得た。
After the addition was completed, the mixture was stirred for 1 hour to obtain a slurry. The solid material obtained by filtering this slurry was washed with ion-exchanged water until the water conductivity became 10 mS/m or less, and 535.8 g of a wet cake of manganese hydroxide (manganese hydroxide concentration 7.8 %, yield 95%). The manganese hydroxide concentration and yield of the wet cake were determined in the same manner as in Production Example 1.
I got it.

実施例12
前記製造例1において得られた種結晶粒子0.11g(0.00040モル)を実施例1と同様にスラリー化して粉砕し、平均粒子径0.23μm、スラリー濃度0.011g/mL(0.00004モル/mL)の種結晶の粉砕スラリーを得た。この種結晶スラリー10mL(種結晶として0.00040モル、第1のスラリー中のジルコニウムとマンガン合計モル部数100モル部に対して1モル部)を用い、前記製造例3において得られたジルコニウム水酸化物ケーキ40.62g、前記製造例3において得られたマンガン水酸化物ケーキ2.57g及び水酸化バリウム8水塩(富士フイルム和光純薬(株)製)18.92gを用いた以外は、実施例1と同様にして、組成式BaZr0.902Mn0.0983-δで表されるマンガン添加ジルコン酸バリウム粒子を得た。
Example 12
0.11 g (0.00040 mol) of the seed crystal particles obtained in Production Example 1 were slurried and pulverized in the same manner as in Example 1 to obtain an average particle diameter of 0.23 μm and a slurry concentration of 0.011 g/mL (0.01 g/mL). A pulverized slurry of seed crystals with a concentration of 0.00004 mol/mL) was obtained. Using 10 mL of this seed crystal slurry (0.00040 mol as seed crystal, 1 mol part per 100 mol parts of total zirconium and manganese in the first slurry), the zirconium hydroxide obtained in Production Example 3 was used. Except that 40.62 g of manganese hydroxide cake, 2.57 g of manganese hydroxide cake obtained in Production Example 3, and 18.92 g of barium hydroxide octahydrate (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) were used. In the same manner as in Example 1, manganese-doped barium zirconate particles having the compositional formula BaZr 0.902 Mn 0.098 O 3-δ were obtained.

比較例1
(固相法によるマンガン添加ジルコン酸バリウム粒子の製造)
炭酸バリウム(富士フイルム和光純薬(株)製)85.58gと酸化ジルコニウム(富士フイルム和光純薬(株)製)49.21gと炭酸マンガン(富士フイルム和光純薬(株)製)5.22gとイオン交換水210mLと直径3.0mmのジルコニアビーズ140mLを500mL容量のプラスチック容器に入れて、スラリーを得た。
Comparative example 1
(Production of manganese-doped barium zirconate particles by solid phase method)
Barium carbonate (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) 85.58 g, zirconium oxide (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) 49.21 g, and manganese carbonate (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) 5.22 g 210 mL of ion-exchanged water and 140 mL of zirconia beads having a diameter of 3.0 mm were placed in a 500 mL plastic container to obtain a slurry.

上記プラスチック容器を遊星ボールミル(フリッチュ社製P-5)に設置し、回転数180rpmで120分稼動して、上記スラリーを湿式粉砕した。得られたスラリーからビーズを篩にて除去し、得られたスラリーをそのまま温度150℃に設定した乾燥機で一晩乾燥した後、サンプルミル(協立理工(株)製、SK-10)で粉砕して、原料粉末を得た。 The plastic container was placed in a planetary ball mill (P-5 manufactured by Fritsch) and operated at a rotational speed of 180 rpm for 120 minutes to wet-pulverize the slurry. The beads were removed from the resulting slurry using a sieve, and the resulting slurry was dried overnight in a dryer set at a temperature of 150°C, and then dried in a sample mill (SK-10, manufactured by Kyoritsu Riko Co., Ltd.). It was pulverized to obtain a raw material powder.

上記得られた原料粉末をアルミナ製坩堝に充填し、電気炉にて温度1200℃大気雰囲気下で2時間焼成した。得られた焼成物を上記サンプルミルで粉砕し、組成式BaZr0.904Mn0.0963-δで表されるマンガン添加ジルコン酸バリウム粒子を得た。 The raw material powder obtained above was filled into an alumina crucible and fired in an electric furnace at a temperature of 1200° C. in an air atmosphere for 2 hours. The obtained fired product was pulverized using the sample mill described above to obtain manganese-doped barium zirconate particles represented by the compositional formula BaZr 0.904 Mn 0.096 O 3-δ .

比較例2
(固相法によるマンガン添加ジルコン酸バリウム粒子の製造)
炭酸バリウム(富士フイルム和光純薬(株)製)86.41gと酸化ジルコニウム(富士フイルム和光純薬(株)製)43.25gと炭酸マンガン(富士フイルム和光純薬(株)製)10.33gを用いた以外は、比較例1と同様にして、組成式BaZr0.809Mn0.1913-δで表されるマンガン添加ジルコン酸バリウム粒子を得た。図1に上記マンガン添加ジルコン酸バリウム粒子の粉末X線回折パターンを示す。上記マンガン添加ジルコン酸バリウム粒子は異相を含むことが示されている。
Comparative example 2
(Production of manganese-doped barium zirconate particles by solid phase method)
Barium carbonate (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) 86.41 g, zirconium oxide (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) 43.25 g, and manganese carbonate (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) 10.33 g Manganese-doped barium zirconate particles having the compositional formula BaZr 0.809 Mn 0.191 O 3-δ were obtained in the same manner as in Comparative Example 1, except that . FIG. 1 shows the powder X-ray diffraction pattern of the manganese-doped barium zirconate particles. It has been shown that the above manganese-doped barium zirconate particles contain a heterophase.

比較例3
(固相法によるジルコン酸バリウム粒子の製造)
炭酸マンガンを用いずに、炭酸バリウム(富士フイルム和光純薬(株)製)86.12gと酸化ジルコニウム(富士フイルム和光純薬(株)製)53.88gを用いた以外は、比較例1と同様にして、組成式BaZrOで表されるジルコン酸バリウム粒子を得た。
Comparative example 3
(Production of barium zirconate particles by solid phase method)
Comparative Example 1 except that 86.12 g of barium carbonate (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) and 53.88 g of zirconium oxide (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) were used instead of manganese carbonate. Similarly, barium zirconate particles represented by the compositional formula BaZrO 3 were obtained.

製造例4
(ジルコニウム水酸化物の湿潤ケーキの製造)
ガラスビーカーにオキシ塩化ジルコニウム8水塩(米山薬品工業(株)製)295.44gをイオン交換水1.8Lに加え、撹拌してオキシ塩化ジルコニウム8水塩を水に溶解させて水溶液を得た。次いで、ナイロン製ビーカーに水酸化ナトリウム79.98g(富士フイルム和光純薬(株)製)とイオン交換水4Lを加え、撹拌、溶解して水酸化ナトリウム水溶液を得た。
Production example 4
(Production of wet cake of zirconium hydroxide)
Add 295.44 g of zirconium oxychloride octahydrate (manufactured by Yoneyama Pharmaceutical Co., Ltd.) to 1.8 L of ion-exchanged water in a glass beaker, and stir to dissolve the zirconium oxychloride octahydrate in water to obtain an aqueous solution. . Next, 79.98 g of sodium hydroxide (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) and 4 L of ion-exchanged water were added to a nylon beaker, and the mixture was stirred and dissolved to obtain an aqueous sodium hydroxide solution.

イオン交換水1Lを入れた別の撹拌機を備えたビーカーにチューブポンプを用いて上記水溶液を30mL/分で添加すると共に、pHが8.5~9.5となるように上記ビーカーに上記水酸化ナトリウム水溶液を別のチューブポンプを用いて添加した。 Using a tube pump, add the above aqueous solution at a rate of 30 mL/min to a beaker equipped with another stirrer containing 1 L of ion-exchanged water, and add the above water to the beaker so that the pH is 8.5 to 9.5. Aqueous sodium oxide solution was added using a separate tube pump.

添加終了後、そのまま1時間撹拌してスラリーを得た。このスラリーをろ過して得られた固形物を水洗水電導度が10mS/m以下になるまでイオン交換水で水洗して、ジルコニウム水酸化物の湿潤ケーキ1564.8g(水酸化ジルコニウム濃度8.5%、収率91%)を得た。湿潤ケーキの水酸化ジルコニウム濃度と収率は、製造例1におけると同様にして求めた。 After the addition was completed, the mixture was stirred for 1 hour to obtain a slurry. The solid material obtained by filtering this slurry was washed with ion-exchanged water until the water conductivity became 10 mS/m or less, and 1564.8 g of a wet cake of zirconium hydroxide (zirconium hydroxide concentration 8.5 %, yield 91%). The zirconium hydroxide concentration and yield of the wet cake were determined in the same manner as in Production Example 1.

(種結晶の製造)
炭酸マンガンを用いずに、上記ジルコニウム水酸化物ケーキ61.08gと水酸化バリウム8水塩18.92gを用いた以外は実施例1と同様にして、組成式BaZrOで表されるジルコン酸バリウムの種結晶粒子を得た。
(Manufacture of seed crystals)
Barium zirconate represented by the composition formula BaZrO 3 was prepared in the same manner as in Example 1 except that 61.08 g of the above zirconium hydroxide cake and 18.92 g of barium hydroxide octahydrate were used without using manganese carbonate. Seed crystal particles were obtained.

上記種結晶粒子0.11g(0.00040モル)を100mL容量ポリ容器に秤り取り、イオン交換水8mLを加えてスラリーとした。このスラリーに直径1.0mmのジルコニアビーズ8mLを加えた後、遊星ボールミル(フリッチュ社製P-5)に設置し、回転数210rpmで1時間稼動して上記スラリーを湿式粉砕した。篩を用いて、上記スラリーから上記ビーズを分離し、上記ビーズをイオン交換水2mLで洗浄し、この洗浄水を上記スラリーに戻して、スラリーの容量を合計10mLとした。かくして、平均粒子径0.25μm、スラリー濃度0.011g/mL(0.00004モル/mL)の種結晶の粉砕スラリーを得た。 0.11 g (0.00040 mol) of the above seed crystal particles were weighed into a 100 mL plastic container, and 8 mL of ion-exchanged water was added to form a slurry. After adding 8 mL of zirconia beads with a diameter of 1.0 mm to this slurry, it was placed in a planetary ball mill (P-5 manufactured by Fritsch) and operated at a rotation speed of 210 rpm for 1 hour to wet-pulverize the slurry. The beads were separated from the slurry using a sieve, the beads were washed with 2 mL of ion-exchanged water, and the wash water was returned to the slurry to give a total slurry volume of 10 mL. In this way, a pulverized slurry of seed crystals was obtained with an average particle diameter of 0.25 μm and a slurry concentration of 0.011 g/mL (0.00004 mol/mL).

比較例4
製造例4で得られた種結晶スラリー8mL(種結晶として0.00032モル、第1のスラリー中のジルコニウムのモル部数100モル部に対して1モル部))を用い、ジルコニウム水酸化物ケーキ61.08gと水酸化バリウム8水塩18.92gを用いた以外は、実施例1と同様にして、組成式BaZrOで表されるジルコン酸バリウム粒子を得た。
Comparative example 4
Using 8 mL of the seed crystal slurry obtained in Production Example 4 (0.00032 mol as seed crystal, 1 mol part per 100 mol parts of zirconium in the first slurry)), zirconium hydroxide cake 61 Barium zirconate particles represented by the compositional formula BaZrO 3 were obtained in the same manner as in Example 1 except that 18.92 g of barium hydroxide octahydrate and 18.92 g of barium hydroxide octahydrate were used.

比較例5
種結晶の不存在下で水熱反応を行った以外は、実施例1と同様にして、組成式BaZr0.904Mn0.0963-δで表されるマンガン添加ジルコン酸バリウムの種結晶粒子を得た。
Comparative example 5
Seed crystals of manganese-doped barium zirconate represented by the compositional formula BaZr 0.904 Mn 0.096 O 3-δ were prepared in the same manner as in Example 1, except that the hydrothermal reaction was carried out in the absence of seed crystals. Particles were obtained.

比較例6
前記製造例1おいて得られた種結晶粒子0.11g(0.00040モル)を実施例1と同様にしてスラリー化し、平均粒子径3.99μm、スラリー濃度0.011g/mL(0.00004モル/mL)の種結晶スラリーを得た。上記種結晶スラリー10mL(種結晶として0.00040モル、第1のスラリー中のジルコニウムとマンガン合計モル部数100モル部に対して1モル部)を用いた以外は、実施例1と同様にして、組成式BaZr0.904Mn0.0963-δで表されるマンガン添加ジルコン酸バリウム粒子を得た。
Comparative example 6
0.11 g (0.00040 mol) of the seed crystal particles obtained in Production Example 1 were slurried in the same manner as in Example 1, with an average particle diameter of 3.99 μm and a slurry concentration of 0.011 g/mL (0.00004 A seed crystal slurry of mol/mL) was obtained. The same procedure as in Example 1 was carried out, except that 10 mL of the above seed crystal slurry (0.00040 mol as the seed crystal, 1 mol part per 100 mol parts of the total number of zirconium and manganese in the first slurry) was used. Manganese-doped barium zirconate particles having the compositional formula BaZr 0.904 Mn 0.096 O 3-δ were obtained.

比較例7
前記製造例1において得られた種結晶粒子0.33g(0.0012モル)を実施例2と同様にしてスラリー化し、平均粒子径3.99μm、スラリー濃度0.033g/mL(0.00012モル/mL)の種結晶スラリーを得た。上記種結晶スラリー10mL(種結晶として0.0012モル、第1のスラリー中のジルコニウムとマンガン合計モル部数100モル部に対して3モル部)を用いた以外は、実施例1と同様にして、組成式BaZr0.903Mn0.0973-δで表されるマンガン添加ジルコン酸バリウム粒子を得た。
Comparative example 7
0.33 g (0.0012 mol) of the seed crystal particles obtained in Production Example 1 was slurried in the same manner as in Example 2, with an average particle diameter of 3.99 μm and a slurry concentration of 0.033 g/mL (0.00012 mol). /mL) of seed crystal slurry was obtained. The same procedure as in Example 1 was carried out, except that 10 mL of the above seed crystal slurry (0.0012 mol as the seed crystal, 3 mol parts per 100 mol parts of the total zirconium and manganese in the first slurry) was used. Manganese-doped barium zirconate particles having the composition formula BaZr 0.903 Mn 0.097 O 3-δ were obtained.

比較例8
前記製造例1において得られた種結晶粒子1.1g(0.0040モル)を実施例3と同様にしてスラリー化し、平均粒子径3.99μm、スラリー濃度0.11g/mL(0.00040モル/mL)の種結晶スラリーを得た。上記種結晶スラリー10mL(種結晶として0.0040モル、第1のスラリー中のジルコニウムとマンガン合計モル部数100モル部に対して10モル部)を用いた以外は、実施例1と同様にして、組成式BaZr0.903Mn0.0973-δで表されるマンガン添加ジルコン酸バリウム粒子を得た。
Comparative example 8
1.1 g (0.0040 mol) of the seed crystal particles obtained in Production Example 1 were slurried in the same manner as in Example 3, with an average particle diameter of 3.99 μm and a slurry concentration of 0.11 g/mL (0.00040 mol). /mL) of seed crystal slurry was obtained. The same procedure as in Example 1 was carried out, except that 10 mL of the above seed crystal slurry (0.0040 mol as the seed crystal, 10 mol parts per 100 mol parts of the total zirconium and manganese in the first slurry) was used. Manganese-doped barium zirconate particles having the composition formula BaZr 0.903 Mn 0.097 O 3-δ were obtained.

比較例9
前記製造例1において得られた種結晶粒子1.1g(0.0040モル)を実施例3と同様にスラリー化し、直径1.0mmのジルコニアビーズ10mLを加えた後、遊星ボールミル(フリッチュ社製P-5)に設置し、回転数210rpmで1分15秒間稼動してスラリーを粉砕した。このスラリーから篩でビーズを除去し、平均粒子径2.10μm、スラリー濃度0.11g/mL(0.00040モル/mL)の種結晶の粉砕スラリーを得た。
Comparative example 9
1.1 g (0.0040 mol) of the seed crystal particles obtained in Production Example 1 were slurried in the same manner as in Example 3, and 10 mL of zirconia beads with a diameter of 1.0 mm were added thereto. -5) and operated at a rotational speed of 210 rpm for 1 minute and 15 seconds to pulverize the slurry. Beads were removed from this slurry using a sieve to obtain a pulverized slurry of seed crystals with an average particle diameter of 2.10 μm and a slurry concentration of 0.11 g/mL (0.00040 mol/mL).

上記種結晶スラリー10mL(種結晶として0.0040モル、第1のスラリー中のジルコニウムとマンガン合計モル部数100モル部に対して10モル部)を用いた以外は、実施例1と同様にして、組成式BaZr0.903Mn0.0973-δで表されるマンガン添加ジルコン酸バリウム粒子を得た。 The same procedure as in Example 1 was carried out, except that 10 mL of the above seed crystal slurry (0.0040 mol as the seed crystal, 10 mol parts per 100 mol parts of the total zirconium and manganese in the first slurry) was used. Manganese-doped barium zirconate particles having the composition formula BaZr 0.903 Mn 0.097 O 3-δ were obtained.

比較例10
ジルコニウムとマンガンの混合水酸化物ケーキを用いず、代わりにオキシ塩化ジルコニウム8水塩(米山薬品工業(株)製)と塩化マンガン4水塩(富士フイルム和光純薬(株)製)を用いた以外は、実施例1と同様にして、水熱合成を行ったところ、目的とするマンガン添加ジルコン酸バリウム粒子は得られなかった。
Comparative example 10
Instead of using a mixed hydroxide cake of zirconium and manganese, zirconium oxychloride octahydrate (manufactured by Yoneyama Pharmaceutical Co., Ltd.) and manganese chloride tetrahydrate (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) were used instead. When hydrothermal synthesis was carried out in the same manner as in Example 1 except for this, the desired manganese-doped barium zirconate particles were not obtained.

以下に上記実施例及び比較例で得られたマンガン添加ジルコン酸バリウム粒子又はジルコン酸バリウム粒子についての種々の測定方法を記載する。以下において、(マンガン添加)ジルコン酸バリウムは、マンガン添加ジルコン酸バリウム又はジルコン酸バリウムを意味する。 Various methods for measuring the manganese-added barium zirconate particles or barium zirconate particles obtained in the above Examples and Comparative Examples will be described below. In the following, (manganese-doped) barium zirconate means manganese-doped barium zirconate or barium zirconate.

有機物分解触媒活性の評価方法
上記実施例及び比較例で得られたそれぞれの(マンガン添加)ジルコン酸バリウム粉末1.0gにカーボンブラック(Sigma-Aldrich社製、CP)を0.2g加え、乳鉢で混合して、試料を作製した。
Method for evaluating organic substance decomposition catalytic activity 0.2 g of carbon black (manufactured by Sigma-Aldrich, CP) was added to 1.0 g of each (manganese-added) barium zirconate powder obtained in the above examples and comparative examples, and the mixture was placed in a mortar. A sample was prepared by mixing.

上記試料10mgを(株)リガク製熱分析装置ThermoPlusEVO TG/DTA/Hを用いて、昇温速度10℃/分、測定雰囲気10%酸素、ガス流量0.4L/分の条件で熱重量分析を行った。有機物カーボンブラックの熱分解挙動の指標として、熱重量変化の微分曲線によるピークトップ温度を求めた。 10 mg of the above sample was subjected to thermogravimetric analysis using a thermal analyzer ThermoPlus EVO TG/DTA/H manufactured by Rigaku Co., Ltd. under the conditions of a heating rate of 10°C/min, a measurement atmosphere of 10% oxygen, and a gas flow rate of 0.4 L/min. went. As an index of the thermal decomposition behavior of organic carbon black, the peak top temperature was determined based on the differential curve of thermogravimetric change.

熱重量変化の微分曲線によるピークトップ温度は、カーボンブラックの燃焼が最も盛んに行われている温度であり、即ち、触媒活性が最大限に発揮されている温度であると考えられる。ピークトップ温度が低温であるほど、少ないエネルギーで燃焼効果が得られるということができる。 The peak top temperature according to the differential curve of thermogravimetric change is considered to be the temperature at which the combustion of carbon black is most active, that is, the temperature at which the catalyst activity is maximized. It can be said that the lower the peak top temperature, the more combustion effect can be obtained with less energy.

(マンガン添加)ジルコン酸バリウムの種結晶粒子の平均粒子径
(マンガン添加)ジルコン酸バリウムの種結晶粒子を試料とし、これにヘキサメタリン酸ナトリウムを分散剤として加え、超音波ホモジナイザーで分散し、レーザー回折・散乱式粒子径分布測定装置((株)堀場製作所製LA-950V2)を用いて、下記条件で測定した。
(Manganese added) Average particle diameter of barium zirconate seed crystal particles (Manganese added) Barium zirconate seed crystal particles were used as a sample, sodium hexametaphosphate was added as a dispersant, dispersed with an ultrasonic homogenizer, and laser diffraction was performed. - Measurement was performed using a scattering particle size distribution measuring device (LA-950V2 manufactured by Horiba, Ltd.) under the following conditions.

粒子屈折率:2.4
溶媒屈折率:1.333
上記粒度分布の測定において得られた体積メジアン径を平均粒子径とした。
Particle refractive index: 2.4
Solvent refractive index: 1.333
The volume median diameter obtained in the above particle size distribution measurement was defined as the average particle diameter.

(マンガン添加)ジルコン酸バリウム粒子の組成比の測定方法
(前処理)
白金坩堝に(マンガン添加)ジルコン酸バリウム0.6gを秤り取り、次いで、四ホウ酸リチウム(富士フイルム和光純薬(株))6.0gを秤り取った。ビーカーに臭化カリウム(富士フイルム和光純薬(株))を25.0g秤り取り、イオン交換水75mLを加えてガラス棒で撹拌溶解し、25%臭化カリウム水溶液とした。この25%臭化カリウム水溶液をマイクロピペッターで40μL取り、(マンガン添加)ジルコン酸バリウムと四ホウ酸リチウムを秤り取った白金坩堝中に加えた。
(Manganese added) Method for measuring the composition ratio of barium zirconate particles (pretreatment)
0.6 g of barium zirconate (with manganese added) was weighed into a platinum crucible, and then 6.0 g of lithium tetraborate (Fuji Film Wako Pure Chemical Industries, Ltd.) was weighed out. 25.0 g of potassium bromide (Fuji Film Wako Pure Chemical Industries, Ltd.) was weighed into a beaker, 75 mL of ion-exchanged water was added, and the mixture was stirred and dissolved using a glass rod to obtain a 25% potassium bromide aqueous solution. 40 μL of this 25% potassium bromide aqueous solution was taken with a micropipettor and added to a platinum crucible in which barium zirconate (with manganese added) and lithium tetraborate had been weighed.

白金坩堝をビード&フューズサンプラ((株)アメナテック製、TK-4100型高周波溶融装置)に取り付けた後、坩堝の内容物を1000℃で加熱溶融し、(マンガン添加)ジルコン酸バリウムのガラスビード試料を得た。 After attaching the platinum crucible to a bead & fuse sampler (manufactured by Amena Tech Co., Ltd., model TK-4100 high-frequency melting equipment), the contents of the crucible were heated and melted at 1000°C, and a glass bead sample of barium zirconate (with manganese added) was prepared. I got it.

(組成比測定)
上記ガラスビード試料を蛍光X線装置((株)リガク製、ZSX PrimusII)を用いて波長分散型蛍光X線分析法により各元素のモル濃度を測定し、検量線法によってモル比を算出した。測定条件は以下のとおりである。
(composition ratio measurement)
The molar concentration of each element in the glass bead sample was measured by wavelength-dispersive fluorescent X-ray analysis using a fluorescent X-ray device (Rigaku Corporation, ZSX Primus II), and the molar ratio was calculated by the calibration curve method. The measurement conditions are as follows.

サンプルスピン:有り
ターゲット:Rh、50KV-60mA
Sample spin: Yes Target: Rh, 50KV-60mA

(マンガン添加)ジルコン酸バリウム粒子の比表面積の測定方法
得られた(マンガン添加)ジルコン酸バリウムの比表面積は、比表面積測定装置((株)マウンテック製、Macsorb HM-1220)を用いて、BET流動法により測定した。吸着ガスには純窒素を用い、230℃で30分間保持した。
Method for measuring the specific surface area of barium zirconate particles (added with manganese) The specific surface area of the obtained barium zirconate (added with manganese) was determined by BET using a specific surface area measuring device (Macsorb HM-1220, manufactured by Mountech Co., Ltd.). Measured by flow method. Pure nitrogen was used as the adsorption gas, and the temperature was maintained at 230°C for 30 minutes.

(マンガン添加)ジルコン酸バリウム粒子のX線回折パターンの測定方法
得られた(マンガン添加)ジルコン酸バリウム粒子のX線回折パターンは、粉末X線回折装置((株)リガク製、試料水平型強力X線回折装置RINT-TTRIII)により下記条件で測定した。
Method for measuring the X-ray diffraction pattern of (manganese-added) barium zirconate particles The X-ray diffraction pattern of the obtained (manganese-added) barium zirconate particles was measured using a powder X-ray diffractometer (manufactured by Rigaku Co., Ltd., sample horizontal type Measurement was performed using an X-ray diffractometer (RINT-TTRIII) under the following conditions.

光学系:平行ビーム光学系(長尺スリット:PSA200/開口角度:0.057°)
管電圧:50kV
電流:300mA
測定方法:平行法(連続)
測定範囲(2θ):10~70°
サンプリング幅:0.04°
スキャンスピード:5°/分
Optical system: Parallel beam optical system (long slit: PSA200/aperture angle: 0.057°)
Tube voltage: 50kV
Current: 300mA
Measurement method: Parallel method (continuous)
Measurement range (2θ): 10~70°
Sampling width: 0.04°
Scan speed: 5°/min

(マンガン添加)ジルコン酸バリウム粒子の結晶子径の測定方法
上述した方法で測定した(マンガン添加)ジルコン酸バリウム粒子のX線回折パターンにおけるペロブスカイト相の(110)面に対する回折線の半価幅から、シェラーの式を用いて、(マンガン添加)ジルコン酸バリウム粒子の結晶子径を算出した。
Method for measuring the crystallite diameter of (manganese-added) barium zirconate particles From the half-value width of the diffraction line for the (110) plane of the perovskite phase in the X-ray diffraction pattern of (manganese-added) barium zirconate particles measured by the method described above. The crystallite diameter of the (manganese-added) barium zirconate particles was calculated using Scherrer's equation.

結晶子径=K×λ/βcosθ
K:シェラー定数(=0.94)
λ:X線の波長(Cu-Kα線 1.5418Å)
β:半価幅(ラジアン単位)
θ:ブラッグ(Bragg)角 (回折角2θの1/2)
Crystallite diameter=K×λ/βcosθ
K: Scherrer constant (=0.94)
λ: X-ray wavelength (Cu-Kα ray 1.5418 Å)
β: Half width (in radians)
θ: Bragg angle (1/2 of the diffraction angle 2θ)

上記実施例及び比較例における反応条件と共に、得られた(マンガン添加)ジルコン酸バリウム粒子の物性を表1及び表2に示す。 Tables 1 and 2 show the reaction conditions in the above Examples and Comparative Examples as well as the physical properties of the obtained (manganese-added) barium zirconate particles.

Figure 0007437242000001
Figure 0007437242000001

Figure 0007437242000002
Figure 0007437242000002

表1及び表2の実施例に示すように、水熱法によって得られた本発明によるマンガン添加ジルコン酸バリウム粒子はいずれも、比表面積が大きく、微細で且つ結晶子径/比表面積換算粒子径が1に近く、高結晶性であって、異相を含まず、単相の粒子である。 As shown in the examples in Tables 1 and 2, the manganese-doped barium zirconate particles according to the present invention obtained by the hydrothermal method all have a large specific surface area, are fine, and have a crystallite diameter/specific surface area equivalent particle diameter. is close to 1, the particles are highly crystalline, do not contain foreign phases, and are single-phase particles.

特に、実施例4によるマンガン添加ジルコン酸バリウム粒子は、図1の粉末X線回折パターンマンガンに示されているように、ジルコニウムの置換割合が20モル%であるにもかかわらず、異相を含まず、単相である。 In particular, as shown in the powder X-ray diffraction pattern of manganese in Figure 1, the manganese-doped barium zirconate particles according to Example 4 do not contain any foreign phase, even though the zirconium substitution ratio is 20 mol%. , is single phase.

このような本発明によるマンガン添加ジルコン酸バリウム粒子は、有機物分解触媒として高い触媒活性を有する。即ち、前述したように、熱重量変化の微分曲線によるピークトップ温度が後述する比較例によるマンガン添加ジルコン酸バリウム粒子よりも約100℃も低く、少ないエネルギーで燃焼効果が得られる。 Such manganese-doped barium zirconate particles according to the present invention have high catalytic activity as an organic matter decomposition catalyst. That is, as described above, the peak top temperature according to the differential curve of thermogravimetric change is about 100° C. lower than that of manganese-added barium zirconate particles according to a comparative example described later, and a combustion effect can be obtained with less energy.

これに対して、比較例による(マンガン添加)ジルコン酸バリウム粒子は、水熱法、固相法の製造方法の相違にかかわらず、概して、有機物分解触媒として高い触媒活性をもたない。 On the other hand, the barium zirconate particles (with manganese added) according to the comparative example generally do not have high catalytic activity as an organic matter decomposition catalyst, regardless of the difference in the production method between the hydrothermal method and the solid phase method.

より詳細には、比較例1~3は固相法によって得られた(マンガン添加)ジルコン酸バリウム粒子であり、特に、比較例2によるマンガン添加ジルコン酸バリウム粒子は、Zrのマンガン置換割合が20モル%に近く、異相を含むものであった。また、Mnを含まない比較例3によるジルコン酸バリウム粒子に比べて、比較例1及び2によるマンガン添加ジルコン酸バリウム粒子は結晶性が低く、比表面積も比較的高いにもかかわらず、有機物分解触媒としての触媒活性は比較例3によるものとほぼ同等である。 More specifically, Comparative Examples 1 to 3 are barium zirconate particles (with manganese added) obtained by a solid phase method, and in particular, the barium zirconate particles with manganese added according to Comparative Example 2 have a manganese substitution ratio of Zr of 20. It was close to mol% and contained a different phase. In addition, compared to the barium zirconate particles of Comparative Example 3 that do not contain Mn, the manganese-added barium zirconate particles of Comparative Examples 1 and 2 have lower crystallinity and relatively high specific surface areas, but they are also catalysts for organic matter decomposition. The catalytic activity is almost the same as that of Comparative Example 3.

比較例4~9は水熱法によって得られた(マンガン添加)ジルコン酸バリウム粒子を示す。比較例4はマンガンを含まないジルコン酸バリウム粒子の結果を示し、結晶性は比較的高いが、異相を含み、有機物分解触媒としての触媒活性は低い。 Comparative Examples 4 to 9 show barium zirconate particles (with manganese added) obtained by a hydrothermal method. Comparative Example 4 shows the results of barium zirconate particles that do not contain manganese, and although the crystallinity is relatively high, it contains a different phase and has low catalytic activity as an organic substance decomposition catalyst.

比較例5は、種結晶を用いなかった以外は、実施例1と同様にして、マンガン添加ジルコン酸バリウム粒子を得たものであるが、比表面積が小さく、有機物分解触媒としての触媒活性も低い。 In Comparative Example 5, manganese-added barium zirconate particles were obtained in the same manner as in Example 1 except that no seed crystal was used, but the specific surface area was small and the catalytic activity as an organic matter decomposition catalyst was low. .

比較例6~9は、用いた種結晶の平均粒子径が大きすぎた結果、いずれも比表面積が小さく、有機物分解触媒としての触媒活性も低い。
In Comparative Examples 6 to 9, the average particle size of the seed crystals used was too large, resulting in a small specific surface area and a low catalytic activity as an organic substance decomposition catalyst.

Claims (2)

組成式(I)
BaZr1-xMn3-δ
(式中、xは0.08≦x≦0.25を満たす数であり、δは酸素欠損量を示す。)
で表され、結晶子径/比表面積換算粒子径が0.455~1.090の範囲にあり、比表面積が8.2m /g以上である、マンガン添加ジルコン酸バリウム粒子。
Compositional formula (I)
BaZr 1-x Mn x O 3-δ
(In the formula, x is a number satisfying 0.08≦x≦0.25, and δ indicates the amount of oxygen vacancies.)
Manganese-added barium zirconate particles, which are represented by the following formula, have a crystallite diameter/specific surface area equivalent particle diameter in the range of 0.455 to 1.090 , and have a specific surface area of 8.2 m 2 /g or more.
請求項1に記載のマンガン添加ジルコン酸バリウム粒子を含む有機物分解触媒。 An organic matter decomposition catalyst comprising the manganese-doped barium zirconate particles according to claim 1 .
JP2020102202A 2020-06-12 2020-06-12 Manganese-added barium zirconate particles and organic matter decomposition catalyst containing them Active JP7437242B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020102202A JP7437242B2 (en) 2020-06-12 2020-06-12 Manganese-added barium zirconate particles and organic matter decomposition catalyst containing them
CN202110605869.9A CN113797923B (en) 2020-06-12 2021-05-31 Barium zirconate particles added with manganese

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020102202A JP7437242B2 (en) 2020-06-12 2020-06-12 Manganese-added barium zirconate particles and organic matter decomposition catalyst containing them

Publications (2)

Publication Number Publication Date
JP2021195274A JP2021195274A (en) 2021-12-27
JP7437242B2 true JP7437242B2 (en) 2024-02-22

Family

ID=78942436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020102202A Active JP7437242B2 (en) 2020-06-12 2020-06-12 Manganese-added barium zirconate particles and organic matter decomposition catalyst containing them

Country Status (2)

Country Link
JP (1) JP7437242B2 (en)
CN (1) CN113797923B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015229137A (en) 2014-06-05 2015-12-21 株式会社村田製作所 Organic matter decomposition catalyst
JP2021195273A (en) 2020-06-12 2021-12-27 堺化学工業株式会社 Method of producing manganese-added barium zirconate particle

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4708943B2 (en) * 2005-09-26 2011-06-22 トヨタ自動車株式会社 Perovskite complex oxide particles and method for producing the same
JP2017081812A (en) * 2015-10-30 2017-05-18 東ソー株式会社 Manganese-zirconium-based composite oxide and manufacturing method therefor and application thereof
JP6870432B2 (en) * 2016-03-31 2021-05-12 三菱ケミカル株式会社 Composite metal oxide particles, and dispersions using them, hybrid composite particles, hybrid composite materials, and optical materials.
WO2019215951A1 (en) * 2018-05-11 2019-11-14 株式会社村田製作所 Organic matter decomposition catalyst, organic matter decomposition aggregate, and organic matter decomposition device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015229137A (en) 2014-06-05 2015-12-21 株式会社村田製作所 Organic matter decomposition catalyst
JP2021195273A (en) 2020-06-12 2021-12-27 堺化学工業株式会社 Method of producing manganese-added barium zirconate particle

Also Published As

Publication number Publication date
CN113797923A (en) 2021-12-17
CN113797923B (en) 2023-07-25
JP2021195274A (en) 2021-12-27

Similar Documents

Publication Publication Date Title
US9242871B2 (en) Nanoparticulate composition and method for its production
JP6351523B2 (en) Method for producing vanadium dioxide
KR20070051935A (en) Fine-particle alkaline-earth titanates and method for the production thereof using titanium oxide particles
EP3003983A1 (en) Process for the preparation of lithium titanium spinel and its use
JP2008289985A (en) Method for manufacturing catalytic carrier for cleaning exhaust gas
Dolcet et al. Very fast crystallisation of MFe 2 O 4 spinel ferrites (M= Co, Mn, Ni, Zn) under low temperature hydrothermal conditions: a time-resolved structural investigation
JP3713758B2 (en) Method for producing iron-containing composite oxide powder
Tsuchida et al. Influence of preparation factors on Ca/P ratio and surface basicity of hydroxyapatite catalyst
US5637545A (en) Metallo manganese oxides
JP2021195273A (en) Method of producing manganese-added barium zirconate particle
JP7437242B2 (en) Manganese-added barium zirconate particles and organic matter decomposition catalyst containing them
JP3384412B2 (en) Method for producing crystalline zirconium phosphate
JP6787537B1 (en) Ytterbium-added barium zirconate particles and their manufacturing method
JP6352210B2 (en) Method for producing perovskite oxynitride fine particles, perovskite oxynitride fine particles
JP5750662B2 (en) Cerium oxide nanoparticle-zeolite composite, its production method and use as ultraviolet shielding material
WO2020217830A1 (en) Method for producing rare earth element-containing titanium hydroxide and titanium dioxide
KR101313045B1 (en) Process for production of granular cobalt oxide black pigment, and granular cobalt oxide black pigment
JP5801622B2 (en) Plate-like titanic acid compound and method for producing the same
JP6986149B2 (en) Zinc oxide powder and zinc oxide sintered body for producing zinc oxide sintered body, and a method for producing these.
JP7363227B2 (en) Zirconate-based perovskite-type composite oxide particles and their manufacturing method
JP6186814B2 (en) Metal-substituted manganese trioxide, method for producing the same, and method for producing lithium manganese composite oxide using the same
EP3778487A1 (en) Titanium oxide particles and manufacturing method therefor
KR100483169B1 (en) Method for the preparation of multielement-based metal oxide powders
EP4317063A1 (en) Molybdenum compound and method for producing same
WO2024009948A1 (en) Mtio3 alkaline earth metal titanate powder and resin composition using same

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20220214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20220214

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240209

R150 Certificate of patent or registration of utility model

Ref document number: 7437242

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150