JP7436840B2 - Hot-dip Zn-Al-Mg plated steel - Google Patents
Hot-dip Zn-Al-Mg plated steel Download PDFInfo
- Publication number
- JP7436840B2 JP7436840B2 JP2020100075A JP2020100075A JP7436840B2 JP 7436840 B2 JP7436840 B2 JP 7436840B2 JP 2020100075 A JP2020100075 A JP 2020100075A JP 2020100075 A JP2020100075 A JP 2020100075A JP 7436840 B2 JP7436840 B2 JP 7436840B2
- Authority
- JP
- Japan
- Prior art keywords
- plating layer
- region
- phase
- mass
- steel material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000831 Steel Inorganic materials 0.000 title claims description 131
- 239000010959 steel Substances 0.000 title claims description 131
- 229910018134 Al-Mg Inorganic materials 0.000 title claims description 55
- 229910018467 Al—Mg Inorganic materials 0.000 title claims description 55
- 238000007747 plating Methods 0.000 claims description 190
- 239000000463 material Substances 0.000 claims description 100
- 229910017706 MgZn Inorganic materials 0.000 claims description 39
- 230000005496 eutectics Effects 0.000 claims description 32
- 230000006911 nucleation Effects 0.000 claims description 28
- 238000010899 nucleation Methods 0.000 claims description 28
- 229910000765 intermetallic Inorganic materials 0.000 claims description 26
- 239000000203 mixture Substances 0.000 claims description 23
- 239000012535 impurity Substances 0.000 claims description 16
- 229910052782 aluminium Inorganic materials 0.000 claims description 14
- 239000002245 particle Substances 0.000 claims description 14
- 229910052725 zinc Inorganic materials 0.000 claims description 14
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 7
- 229910017708 MgZn2 Inorganic materials 0.000 claims description 6
- 229910052796 boron Inorganic materials 0.000 claims description 5
- 229910052791 calcium Inorganic materials 0.000 claims description 5
- 229910052745 lead Inorganic materials 0.000 claims description 5
- 229910052748 manganese Inorganic materials 0.000 claims description 5
- 229910052759 nickel Inorganic materials 0.000 claims description 5
- 229910052698 phosphorus Inorganic materials 0.000 claims description 5
- 229910052706 scandium Inorganic materials 0.000 claims description 5
- 229910052712 strontium Inorganic materials 0.000 claims description 5
- 229910052718 tin Inorganic materials 0.000 claims description 5
- 229910052719 titanium Inorganic materials 0.000 claims description 5
- 229910052727 yttrium Inorganic materials 0.000 claims description 5
- 229910052726 zirconium Inorganic materials 0.000 claims description 5
- 229910052787 antimony Inorganic materials 0.000 claims description 2
- 229910019752 Mg2Si Inorganic materials 0.000 claims 1
- 229910019805 Mg2Zn11 Inorganic materials 0.000 claims 1
- 239000011701 zinc Substances 0.000 description 219
- 239000010410 layer Substances 0.000 description 149
- 238000005260 corrosion Methods 0.000 description 68
- 230000007797 corrosion Effects 0.000 description 68
- 238000005259 measurement Methods 0.000 description 20
- 238000001816 cooling Methods 0.000 description 19
- 238000000034 method Methods 0.000 description 15
- 239000006104 solid solution Substances 0.000 description 14
- 229910052749 magnesium Inorganic materials 0.000 description 12
- 239000000523 sample Substances 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 10
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 10
- 239000011159 matrix material Substances 0.000 description 10
- 238000010587 phase diagram Methods 0.000 description 10
- 229910019018 Mg 2 Si Inorganic materials 0.000 description 9
- 238000004458 analytical method Methods 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 150000002500 ions Chemical class 0.000 description 8
- 238000009826 distribution Methods 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 238000013507 mapping Methods 0.000 description 6
- 238000010791 quenching Methods 0.000 description 6
- 230000000171 quenching effect Effects 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 5
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 3
- 229910001297 Zn alloy Inorganic materials 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 230000000996 additive effect Effects 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 238000000227 grinding Methods 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 229910018571 Al—Zn—Mg Inorganic materials 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000007373 indentation Methods 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 206010015150 Erythema Diseases 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910000655 Killed steel Inorganic materials 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- ZCDOYSPFYFSLEW-UHFFFAOYSA-N chromate(2-) Chemical compound [O-][Cr]([O-])(=O)=O ZCDOYSPFYFSLEW-UHFFFAOYSA-N 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000007739 conversion coating Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000005238 degreasing Methods 0.000 description 1
- 238000004993 emission spectroscopy Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 238000009616 inductively coupled plasma Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Coating With Molten Metal (AREA)
Description
本発明は、溶融Zn-Al-Mg系めっき鋼材に関する。 The present invention relates to hot-dip Zn-Al-Mg plated steel materials.
家電、自動車、建材または土木の分野では、耐食性に優れた溶融Zn-Al-Mg系めっき鋼材が使用されることが多い。特許文献1~6には、各種の溶融Zn-Al-Mg系めっき鋼材が記載されている。先に例示した分野では、溶融Zn-Al-Mg系めっき鋼材を所定の部品形状になるように切断することで鋼材断面が露出する場合があり、また、所定の部品形状になるように曲げ加工等の塑性加工が施されることでめっき層が変形する場合がある。 In the fields of home appliances, automobiles, building materials, and civil engineering, hot-dip Zn-Al-Mg-based plated steel materials with excellent corrosion resistance are often used. Patent Documents 1 to 6 describe various hot-dip Zn-Al-Mg-based plated steel materials. In the field mentioned above, the cross section of the steel material may be exposed by cutting the hot-dip Zn-Al-Mg coated steel material into a predetermined part shape. The plating layer may be deformed due to plastic working such as.
特許文献1には、鋼板の表面に、Mg:1~10重量%、Al:2~19重量%、Si:0.01~2重量%を含有し、かつ、MgとAlが下式、Mg(%)+Al(%)≦20%を満たし、残部がZn及び不可避的不純物よりなるZn合金めっき層を有し、Zn合金めっき層が〔Al/Zn/MgZn2の三元共晶組織〕の素地中に〔Mg2Si相〕と〔MgZn2相〕及び〔Zn相〕が混在した金属組織を有する耐食性に優れためっき鋼板が記載されている。 Patent Document 1 discloses that the surface of the steel plate contains Mg: 1 to 10% by weight, Al: 2 to 19% by weight, and Si: 0.01 to 2% by weight, and Mg and Al are expressed by the following formula, Mg (%)+Al(%)≦20%, the remainder is Zn and unavoidable impurities, and the Zn alloy plating layer has a [ternary eutectic structure of Al/Zn/MgZn 2 ]. A plated steel sheet having excellent corrosion resistance and having a metal structure in which [Mg 2 Si phase], [MgZn two phases], and [Zn phase] are mixed in the base material is described.
特許文献2には、Al:4.0~10重量%、Mg:1.0~4.0重量%、残部がZnおよび不可避的不純物からなる溶融Zn-Al-Mgめっき層を鋼板表面に形成した溶融Zn基めっき鋼板であって、当該めっき層が、〔Al/Zn/MgZn2の三元共晶組織〕の素地中に〔Al相〕が混在した金属組織を有する耐食性および表面外観の良好な溶融Zn-Al-Mgめっき鋼板が記載されている。 Patent Document 2 discloses that a hot-dip Zn-Al-Mg plating layer consisting of Al: 4.0 to 10% by weight, Mg: 1.0 to 4.0% by weight, and the balance being Zn and unavoidable impurities is formed on the surface of a steel sheet. A hot-dip Zn-based plated steel sheet, in which the plating layer has a metal structure in which [Al phase] is mixed in the base [ternary eutectic structure of Al/Zn/MgZn 2 ], and has good corrosion resistance and surface appearance. A hot-dip Zn-Al-Mg coated steel sheet is described.
特許文献3には、鋼板の片面または両面に、Al:4~10質量%、Mg:1~5質量%、Ti:0.01質量%以下を含有し残部が亜鉛及び不可避的不純物よりなる亜鉛系めっき層を有し、中間層としてクロメート皮膜もしくはりん酸塩被膜の化成被膜を有し、上層として0.2~100μm厚の有機被膜層を有する鮮映性の優れた高耐食性塗装鋼板が記載されている。 Patent Document 3 discloses that zinc contains 4 to 10% by mass of Al, 1 to 5% by mass of Mg, and 0.01% by mass or less of Ti, with the balance consisting of zinc and inevitable impurities, on one or both sides of a steel plate. A highly corrosion-resistant coated steel sheet with excellent image clarity is described, which has a chemical conversion coating such as a chromate coating or a phosphate coating as an intermediate layer, and an organic coating layer with a thickness of 0.2 to 100 μm as an upper layer. has been done.
特許文献4には、Mg:2.8%以上、Al:10.5%以上、Si:0.01~0.5%含有し、残りがZnおよび不可避的不純物よりなるZn合金めっき層を有し、このZn合金めっき層中でMg2Zn11/MgZn2のX線強度比が0.5以下である均一外観を有する溶融Zn-Al-Mg-Siめっき鋼板が記載されている。 Patent Document 4 discloses a Zn alloy plating layer containing 2.8% or more of Mg, 10.5% or more of Al, 0.01 to 0.5% of Si, and the remainder consisting of Zn and inevitable impurities. However, a hot-dip Zn--Al--Mg--Si-plated steel sheet having a uniform appearance in which the X-ray intensity ratio of Mg 2 Zn 11 /MgZn 2 in the Zn alloy plating layer is 0.5 or less is described.
特許文献5には、鋼板と、4質量%以上22質量%以下のAlと、1質量%以上5質量%以下のMgとを含有し、残部がZn及び不可避的不純物を含む溶融めっき層と、を備え、溶融めっき層の表面に平行な前記溶融めっき層の断面における、Al相の(200)面のX線回折強度I(200)とAl相の(111)面のX線回折強度I(111)との比である回折強度比I(200)/1(111)が、0.8以上であるZn-Al-Mg系溶融めっき鋼板が記載されている。 Patent Document 5 describes a steel plate, a hot-dipped layer containing 4% by mass or more and 22% by mass or less Al, 1% by mass or more and 5% by mass or less Mg, and the balance containing Zn and inevitable impurities; and the X-ray diffraction intensity I(200) of the (200) plane of the Al phase and the X-ray diffraction intensity I( A Zn-Al-Mg hot-dip plated steel sheet is described in which the diffraction intensity ratio I(200)/1(111), which is the ratio of
特許文献6には、鋼材の表面に、Al:5~18質量%、Mg:1~10質量%、Si:0.01~2質量%、残部Zn及び不可避的不純物とからなるめっき層を有するめっき鋼材表面に、〔Al相〕が1mm2当たり200個以上存在する表面性状に優れた溶融Zn-Al-Mg-Siめっき鋼材が記載されている。 Patent Document 6 discloses that the surface of the steel material has a plating layer consisting of Al: 5 to 18% by mass, Mg: 1 to 10% by mass, Si: 0.01 to 2% by mass, the balance being Zn and inevitable impurities. A hot-dip Zn--Al--Mg--Si-plated steel material with excellent surface properties in which 200 or more [Al phases] exist per 1 mm 2 on the surface of the plated steel material is described.
上述のように、溶融Zn-Al-Mg系めっき鋼材を所定の部品形状に切断すると、切断面を含む端部に、鋼材とめっき層の断面が現れる。鋼板断面にはめっき層が存在しないため、耐食性が劣位になる場合がある。また、溶融Zn-Al-Mg系めっき鋼材に対して曲げ加工等の塑性加工を施すと、曲げ部においてめっき層が変形し、この変形箇所から腐食が進展する場合がある。
このため、溶融Zn-Al-Mg系めっき鋼材には、端部の耐食性の向上と、加工部の耐食性の向上とがより一層強く求められている。
As described above, when a hot-dip Zn-Al-Mg-based plated steel material is cut into a predetermined part shape, a cross section of the steel material and the plating layer appears at the end including the cut surface. Since there is no plating layer on the cross section of the steel plate, corrosion resistance may be inferior. Furthermore, when plastic working such as bending is applied to hot-dip Zn-Al-Mg plated steel, the plating layer may be deformed at the bent portion, and corrosion may progress from this deformed portion.
For this reason, hot-dip Zn--Al--Mg based plated steel materials are required to have improved corrosion resistance at the edges and at processed parts.
本発明は上記事情に鑑みてなされたものであり、端部の耐食性及び加工部の耐食性に優れた溶融Zn-Al-Mg系めっき鋼材を提供することを課題とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a hot-dip Zn-Al-Mg-based plated steel material that has excellent corrosion resistance at edges and processed parts.
上記課題を解決するため、本発明は以下の構成を採用する。
[1] 鋼材と、前記鋼材の表面に形成されためっき層とを備え、
前記めっき層は、平均組成で、Mg:1~10質量%、Al:4~22質量%を含有し、残部がZn及び不純物からなり、
前記めっき層には、〔Al/Zn/MgZn2の三元共晶組織〕の素地中に、〔Al・Zn混合組織〕を含んでおり、
前記〔Al・Zn混合組織〕には、Zn濃度が75質量%以上85質量%未満の範囲である第1領域と、前記第1領域の内側にあって、Zn濃度が67質量%以上75質量%未満の範囲である第2領域とを含み、
前記第2領域には、Al相とZn相とが混在しており、前記めっき層の表面に垂直な前記めっき層の断面における、前記Al相及び前記Zn相の平均粒径が50nm以下であることを特徴とする溶融Zn-Al-Mg系めっき鋼材。
[2] 前記第2領域の前記Al相中に、Mgを含有する金属間化合物相が含まれることを特徴とする[1]に記載の溶融Zn-Al-Mg系めっき鋼材。
[3] 前記Mgを含有する金属間化合物相が、MgZn2、Mg2Zn11、Mg2Si、Mg32(Al,Zn)49のうちの1種または2種以上であることを特徴とする[2]に記載の溶融Zn-Al-Mg系めっき鋼材。
[4] 前記Al相中に含まれる前記Mgを含有する金属間化合物相の個数が、3個以上であることを特徴とする[2]または[3]に記載の溶融Zn-Al-Mg系めっき鋼材。
[5] 前記めっき層の表面に垂直な前記めっき層の断面における前記〔Al・Zn混合組織〕の面積率が10~70%の範囲であることを特徴とする[1]乃至[4]の何れか一項に記載の溶融Zn-Al-Mg系めっき鋼材。
[6] 前記めっき層の平均組成が、Mg:1~10質量%、Al:8~22質量%を含有し、残部がZn及び不純物であり、
前記〔Al・Zn混合組織〕には、前記第1領域と、前記第2領域と、前記第2領域の内側にあって、Zn濃度が55質量%以上67質量%未満の範囲である第3領域とを含むことを特徴とする[1]乃至[5]の何れか一項に記載の溶融Zn-Al-Mg系めっき鋼材。
[7] 前記めっき層をめっき厚方向の1/2位置にて前記鋼材側とめっき層表面側とに2等分に分割した場合に、前記〔Al・Zn混合組織〕の核生成点のうちの個数割合で60%以上の核生成点が、前記めっき層の鋼材側の領域に存在することを特徴とする[1]乃至[6]の何れか一項に記載の溶融Zn-Al-Mg系めっき鋼材。
[8] 前記めっき層に更に、平均組成で、0.0001~2質量%のSiを含有することを特徴とする[1]乃至[7]の何れか一項に記載の溶融Zn-Al-Mg系めっき鋼材。
[9] 前記めっき層に更に、平均組成で、Ni、Ti、Zr、Srのいずれか1種または2種以上を合計で0.0001~2質量%の範囲で含有することを特徴とする[1]乃至[8]の何れか一項に記載の溶融Zn-Al-Mg系めっき鋼材。
[10] 前記めっき層に更に、平均組成で、Sb、Pb、Sn、Ca、Co、Mn、P、B、Bi、Cr、Sc、Y、REM、Hfのいずれか1種または2種以上を合計で、0.0001~2質量%の範囲で含有することを特徴とする[1]乃至[9]の何れか一項に記載の溶融Zn-Al-Mg系めっき鋼材。
In order to solve the above problems, the present invention employs the following configuration.
[1] Comprising a steel material and a plating layer formed on the surface of the steel material,
The plating layer has an average composition of Mg: 1 to 10% by mass, Al: 4 to 22% by mass, and the remainder consists of Zn and impurities,
The plating layer contains [Al/Zn mixed structure] in the base of [ternary eutectic structure of Al/Zn/MgZn 2] ,
The [Al/Zn mixed structure] includes a first region where the Zn concentration is in the range of 75% by mass or more and less than 85% by mass, and a region inside the first region where the Zn concentration is in the range of 67% by mass or more and 75% by mass. and a second region in a range of less than %,
In the second region, an Al phase and a Zn phase are mixed, and the average particle size of the Al phase and the Zn phase in a cross section of the plating layer perpendicular to the surface of the plating layer is 50 nm or less. A hot-dip Zn-Al-Mg based plated steel material.
[2] The hot-dip Zn-Al-Mg-based plated steel material according to [1], wherein the Al phase in the second region contains an intermetallic compound phase containing Mg.
[3] The intermetallic compound phase containing Mg is one or more of MgZn 2 , Mg 2 Zn 11 , Mg 2 Si, Mg 32 (Al, Zn) 49 The hot-dip Zn-Al-Mg-based plated steel material according to [2].
[4] The molten Zn-Al-Mg system according to [2] or [3], wherein the number of the Mg-containing intermetallic compound phases contained in the Al phase is 3 or more. Plated steel.
[5] The area ratio of the [Al/Zn mixed structure] in a cross section of the plating layer perpendicular to the surface of the plating layer is in the range of 10 to 70% [1] to [4]. The hot-dip Zn-Al-Mg-based plated steel material according to any one of the items.
[6] The average composition of the plating layer contains Mg: 1 to 10% by mass, Al: 8 to 22% by mass, and the remainder is Zn and impurities,
The [Al/Zn mixed structure] includes the first region, the second region, and a third region located inside the second region and having a Zn concentration in a range of 55% by mass or more and less than 67% by mass. The hot-dip Zn-Al-Mg-based plated steel material according to any one of [1] to [5], characterized by comprising a region.
[7] When the plating layer is divided into two equal parts at 1/2 position in the plating thickness direction into the steel material side and the plating layer surface side, among the nucleation points of the [Al/Zn mixed structure] Molten Zn-Al-Mg according to any one of [1] to [6], wherein 60% or more of the nucleation points are present in the region on the steel material side of the plating layer. Series plated steel.
[8] The molten Zn-Al- according to any one of [1] to [7], wherein the plating layer further contains Si in an average composition of 0.0001 to 2% by mass. Mg-based plated steel.
[9] The plating layer further contains one or more of Ni, Ti, Zr, and Sr in an average composition of 0.0001 to 2% by mass in total [ 1] to [8], the hot-dip Zn-Al-Mg-based plated steel material.
[10] The plating layer further contains one or more of Sb, Pb, Sn, Ca, Co, Mn, P, B, Bi, Cr, Sc, Y, REM, and Hf in an average composition. The hot-dip Zn-Al-Mg-based plated steel material according to any one of [1] to [9], characterized in that the total content is in the range of 0.0001 to 2% by mass.
本発明によれば、端部の耐食性及び加工部の耐食性に優れた溶融Zn-Al-Mg系めっき鋼材を提供できる。 According to the present invention, it is possible to provide a hot-dip Zn-Al-Mg-based plated steel material that has excellent corrosion resistance at the end portions and corrosion resistance at the processed portions.
溶融Zn-Al-Mg系めっき鋼材は、Mgと、Alと、残部Zn及び不純物を含む成分を有し、金属組織として、〔Al/Zn/MgZn2の三元共晶組織〕の素地中に、〔MgZn2相〕、〔Zn相〕、〔Al・Zn混合組織〕の少なくとも1種が混在しためっき層を有している。また、Zn、Al、Mgに加えて溶融めっき層にSiが含有される場合は、上記の相及び組織に加え、〔Mg2Si相〕が含まれることがある。めっき層を形成する際には、Mg、Al及びZnを含むめっき浴に鋼材を浸漬させてから鋼材を引き上げることにより、鋼材表面に付着させた溶融金属を凝固させる。めっき層が凝固する際には、〔Al・Zn混合組織〕が晶出し、その後、〔Al/Zn/MgZn2の三元共晶組織〕の素地が晶出することで形成される。 Hot-dip Zn-Al-Mg-based plated steel has components including Mg, Al, and the balance Zn and impurities, and has a metal structure in the base of [ternary eutectic structure of Al/Zn/MgZn 2 ]. , [MgZn two- phase], [Zn phase], and [Al/Zn mixed structure]. Moreover, when Si is contained in the hot-dip plating layer in addition to Zn, Al, and Mg, [Mg 2 Si phase] may be contained in addition to the above-mentioned phases and structures. When forming a plating layer, the steel material is immersed in a plating bath containing Mg, Al, and Zn and then pulled up, thereby solidifying the molten metal attached to the surface of the steel material. When the plating layer solidifies, the [Al/Zn mixed structure] crystallizes out, and then the matrix of [ternary eutectic structure of Al/Zn/MgZn 2 ] crystallizes, thereby forming the plating layer.
このような溶融Zn-Al-Mg系めっき鋼材の表面耐食性を向上させるために本発明者らが鋭意検討したところ、〔Al・Zn混合組織〕が腐食の初期の起点になることを突き止めた。〔Al・Zn混合組織〕は、Al-Zn-Mgの三元系平衡状態図における高温のAl″相(Znを固溶するAl固溶体であって少量のMgを含むことが多い)に由来するものであり、状態図によれば、常温では微細なZn相と微細なAl相とを含む状態にある。この〔Al・Zn混合組織〕の内部構造について詳細に検討したところ、〔Al・Zn混合組織〕は、Zn濃度が比較的高い第1領域と、第1領域の内側にあってZn濃度が比較的低い第2領域とに分けることができ、第2領域の断面の面積1μm2当たりのZn相及びAl相の平均粒径が50nmより大きいときに、端面耐食性が低下する傾向にあることがわかった。そして、従来の溶融Zn-Al-Mg系めっき鋼材は、第2領域の断面の面積1μm2当たりのZn相及びAl相の平均粒径が50nmより大きいことが判明した。そこで、第2領域におけるZn相及びAl相の析出形態を、面積1μm2当たりの平均粒径で50nm以下とすることで、端面部の耐食性に優れた溶融Zn-Al-Mg系めっき鋼材が得られることを知見した。また、溶融Zn-Al-Mg系めっき鋼材の端面部の耐食性が向上することで、溶融Zn-Al-Mg系めっき鋼材の加工部の耐食性も向上することが判明した。 In order to improve the surface corrosion resistance of such hot-dip Zn-Al-Mg plated steel materials, the present inventors conducted extensive studies and found that [Al/Zn mixed structure] is the initial starting point of corrosion. [Al/Zn mixed structure] originates from the high-temperature Al'' phase (an Al solid solution containing Zn and often containing a small amount of Mg) in the ternary equilibrium phase diagram of Al-Zn-Mg. According to the phase diagram, it is in a state containing a fine Zn phase and a fine Al phase at room temperature.A detailed study of the internal structure of this [Al/Zn mixed structure] revealed that [Al/Zn The mixed structure] can be divided into a first region with a relatively high Zn concentration and a second region inside the first region with a relatively low Zn concentration, and the cross-sectional area of the second region is 1 μm 2 . It was found that the end face corrosion resistance tends to decrease when the average grain size of the Zn phase and Al phase is larger than 50 nm. It was found that the average grain size of the Zn phase and Al phase per area of 1 μm 2 was larger than 50 nm. Therefore, the precipitation form of the Zn phase and Al phase in the second region was determined to be 50 nm in average grain size per 1 μm 2 of area. It has been found that a hot-dip Zn-Al-Mg-based plated steel material with excellent corrosion resistance at the end face can be obtained by doing the following.Also, the corrosion resistance at the end face of the hot-dip Zn-Al-Mg-based plated steel material is improved. It has been found that the corrosion resistance of the processed parts of hot-dip Zn-Al-Mg plated steel material is also improved.
本実施形態の溶融Zn-Al-Mg系めっき鋼材は、鋼材と、鋼材の表面に形成されためっき層とを備え、めっき層は、平均組成で、Mg:1~10質量%、Al:4~22質量%を含有し、残部がZn及び不純物からなり、めっき層には、〔Al/Zn/MgZn2の三元共晶組織〕の素地中に、〔Al・Zn混合組織〕を含んでおり、〔Al・Zn混合組織〕には、Zn濃度が75質量%以上85質量%未満の範囲である第1領域と、第1領域の内側にあって、Zn濃度が67質量%以上75質量%未満の範囲である第2領域とを含み、第2領域には、Al相とZn相とが混在しており、めっき層の表面に垂直な前記めっき層の断面における、Al相及びZn相の平均粒径が50nm以下である。
また、本実施形態の溶融Zn-Al-Mg系めっき鋼材は、第2領域のAl相中に、Mgを含有する金属間化合物相が含まれることが好ましい。
また、本実施形態の溶融Zn-Al-Mg系めっき鋼材は、第2領域のAl相中に含まれるMgを含有する金属間化合物相が、MgZn2、Mg2Zn11、Mg2Si、Mg32(Al,Zn)49のうちの1種または2種以上であることが好ましい。
また、本実施形態の溶融Zn-Al-Mg系めっき鋼材は、第2領域のAl相中に含まれるMgを含有する金属間化合物相の個数が、3個以上であることが好ましい。
また、本実施形態の溶融Zn-Al-Mg系めっき鋼材は、めっき層の表面に垂直なめっき層の断面における〔Al・Zn混合組織〕の面積率が10~70%の範囲であることが好ましい。
また、本実施形態の溶融Zn-Al-Mg系めっき鋼材は、めっき層の平均組成が、Mg:1~10質量%、Al:8~22質量%を含有し、残部がZn及び不純物であり、〔Al・Zn混合組織〕には、第1領域と、第2領域と、第2領域の内側にあって、Zn濃度が55質量%以上67質量%未満の範囲である第3領域とを含むことが好ましい。
また、本実施形態の溶融Zn-Al-Mg系めっき鋼材は、めっき層をめっき厚方向の1/2位置にて鋼材側とめっき層表面側とに2等分に分割した場合に、〔Al・Zn混合組織〕の核生成点のうちの個数割合で60%以上の核生成点が、めっき層の鋼材側の領域に存在することが好ましい。
以下、本実施形態の溶融Zn-Al-Mg系めっき鋼材について説明する。
The hot-dip Zn-Al-Mg-based plated steel material of the present embodiment includes a steel material and a plating layer formed on the surface of the steel material, and the plating layer has an average composition of Mg: 1 to 10% by mass, Al: 4 The plating layer contains [Al/Zn mixed structure] in the [ternary eutectic structure of Al/Zn/MgZn2 ] . [Al/Zn mixed structure] includes a first region where the Zn concentration is in the range of 75% by mass or more and less than 85% by mass, and a region inside the first region where the Zn concentration is in the range of 67% by mass or more and 75% by mass. %, the second region contains an Al phase and a Zn phase, and the Al phase and Zn phase in a cross section of the plating layer perpendicular to the surface of the plating layer. The average particle size is 50 nm or less.
Further, in the hot-dip Zn-Al-Mg-based plated steel material of the present embodiment, it is preferable that an intermetallic compound phase containing Mg is included in the Al phase in the second region.
Further, in the hot-dip Zn-Al-Mg-based plated steel material of the present embodiment, the Mg-containing intermetallic compound phase contained in the Al phase in the second region is MgZn 2 , Mg 2 Zn 11 , Mg 2 Si, Mg 32 (Al, Zn) 49 is preferable.
Further, in the hot-dip Zn--Al--Mg based plated steel material of the present embodiment, it is preferable that the number of Mg-containing intermetallic compound phases contained in the Al phase in the second region is 3 or more.
Further, in the hot-dip Zn-Al-Mg-based plated steel material of the present embodiment, the area ratio of the [Al/Zn mixed structure] in the cross section of the plating layer perpendicular to the surface of the plating layer is in the range of 10 to 70%. preferable.
Further, in the hot-dip Zn-Al-Mg-based plated steel material of the present embodiment, the average composition of the plating layer is Mg: 1 to 10% by mass, Al: 8 to 22% by mass, and the remainder is Zn and impurities. , [Al/Zn mixed structure] includes a first region, a second region, and a third region located inside the second region and having a Zn concentration in a range of 55% by mass or more and less than 67% by mass. It is preferable to include.
Furthermore, in the hot-dip Zn-Al-Mg-based plated steel material of this embodiment, when the plating layer is divided into two parts at 1/2 position in the plating thickness direction into the steel material side and the plating layer surface side, the [Al -Zn mixed structure] It is preferable that 60% or more of the nucleation points in terms of number ratio exist in the region of the plating layer on the steel material side.
The hot-dip Zn--Al--Mg based plated steel material of this embodiment will be explained below.
めっき層の下地となる鋼材は、材質に特に制限はない。材質として、一般鋼、Alキルド鋼や一部の高合金鋼に適用することが可能であり、形状にも特に制限はなく、鋼板でもよい。また、鋼材には、Niプレめっきを施してもよい。鋼材に対して後述する溶融めっき法を適用することで、本実施形態に係るめっき層が形成される。 There are no particular restrictions on the steel material that forms the base of the plating layer. As for the material, it is possible to apply general steel, Al-killed steel, and some high-alloy steels, and there is no particular restriction on the shape, and a steel plate may be used. Further, the steel material may be subjected to Ni pre-plating. The plating layer according to this embodiment is formed by applying the hot-dip plating method described below to the steel material.
次に、めっき層の化学成分について説明する。
本実施形態に係るめっき層は、平均組成で、Mg:1~10質量%、Al:4~22質量%を含有し、残部としてZnおよび不純物を含んでいる。また、溶融めっき層は、平均組成で、Si:0.0001~2質量%を含有していてもよい。更に、溶融めっき層は、平均組成で、Ni、Ti、Zr、Srのいずれか1種または2種以上を合計で、0.0001~2質量%含有していてもよい。更にまた、溶融めっき層は、平均組成で、Fe、Sb、Pb、Sn、Ca、Co、Mn、P、B、Bi、Cr、Sc、Y、REM、Hfのいずれか1種または2種以上を合計で、0.0001~2質量%を含有していてもよい。
Next, the chemical components of the plating layer will be explained.
The plating layer according to this embodiment contains Mg: 1 to 10% by mass, Al: 4 to 22% by mass, and the balance contains Zn and impurities. Further, the hot-dip plating layer may contain Si: 0.0001 to 2% by mass in average composition. Further, the average composition of the hot-dip plated layer may contain a total of 0.0001 to 2% by mass of any one or more of Ni, Ti, Zr, and Sr. Furthermore, the hot-dip plating layer has an average composition of one or more of Fe, Sb, Pb, Sn, Ca, Co, Mn, P, B, Bi, Cr, Sc, Y, REM, and Hf. may contain a total of 0.0001 to 2% by mass.
Mgの含有量は、平均組成で1~10質量%の範囲である。Mgは、めっき層の耐食性を向上させるために必要な元素である。めっき層中のMgの含有量が1質量%未満では、耐食性を向上させる効果が不十分になり、10質量%を超えるとめっき浴でのドロス発生が著しくなり、安定的にめっき鋼材を製造するのが困難となる。耐食性とドロス発生のバランスの観点から、好ましくは1.5~6質量%とする。より好ましくは2~5質量%の範囲とする。 The Mg content ranges from 1 to 10% by mass in terms of average composition. Mg is an element necessary to improve the corrosion resistance of the plating layer. If the Mg content in the plating layer is less than 1% by mass, the effect of improving corrosion resistance will be insufficient, and if it exceeds 10% by mass, dross generation in the plating bath will become significant, making it difficult to stably produce plated steel materials. becomes difficult. From the viewpoint of the balance between corrosion resistance and dross generation, the content is preferably 1.5 to 6% by mass. More preferably, it is in the range of 2 to 5% by mass.
Alの含有量は、平均組成で4~22質量%の範囲である。Alは、耐食性を確保するために必要な元素である。めっき層中のAlの含有量が4質量%未満では、耐食性を向上させる効果が不十分になり、22質量%を超えると耐食性を向上させる効果が飽和する。耐食性の観点から、好ましくは8~22質量%とする。より好ましくは9~13質量%とする。 The average content of Al is in the range of 4 to 22% by mass. Al is an element necessary to ensure corrosion resistance. If the content of Al in the plating layer is less than 4% by mass, the effect of improving corrosion resistance will be insufficient, and if it exceeds 22% by mass, the effect of improving corrosion resistance will be saturated. From the viewpoint of corrosion resistance, the content is preferably 8 to 22% by mass. More preferably, it is 9 to 13% by mass.
また、溶融めっき層は、Siを0.0001~2質量%の範囲で含有していてもよい。Siは、溶融めっき層の密着性を向上させるのに有効な元素である。Siを0.0001質量%以上含有させることで密着性を向上させる効果が発現するため、Siを0.0001質量%以上含有させることが好ましい。一方、2質量%を超えて含有させてもめっき密着性を向上させる効果が飽和するため、Siの含有量は2質量%以下とする。めっき密着性の観点からは、0.02~1質量%の範囲にしてもよく、0.03~0.8質量%の範囲にしてもよい。 Further, the hot-dip plating layer may contain Si in a range of 0.0001 to 2% by mass. Si is an effective element for improving the adhesion of the hot-dip plating layer. It is preferable to contain Si in an amount of 0.0001% by mass or more because the effect of improving adhesion is exhibited by containing 0.0001% by mass or more of Si. On the other hand, the effect of improving plating adhesion is saturated even if the content exceeds 2% by mass, so the content of Si is set to 2% by mass or less. From the viewpoint of plating adhesion, the content may be in the range of 0.02 to 1% by mass, or may be in the range of 0.03 to 0.8% by mass.
また、溶融めっき層中には、平均組成で、Ni、Ti、Zr、Srのいずれか1種または2種以上を合計で、0.0001~2質量%含有していてもよい。これらの元素を含む金属間化合物は、〔Al・Zn混合組織〕の晶出核として作用し、〔Al/MgZn2/Znの三元共晶組織〕をより微細、均一にして、めっき層の外観や平滑性を向上させる。これらの元素の1種または2種以上を合計で0.0001~2質量%とした理由は、0.0001質量%未満では、凝固組織を微細均一にする効果が不十分になるためであり、2質量%を超えると、〔Al/Zn/MgZn2の三元共晶組織〕を微細化させる効果が飽和するばかりか、逆にめっき層の表面粗度を大きくして外観が悪くなるため、上限を2質量%とする。特に外観向上を目的として添加する場合、0.001~0.5質量%を含有させることが望ましい。より好ましくは0.001~0.05質量%の範囲であり、さらに好ましくは0.002~0.01質量%の範囲である。 Further, the hot-dip plating layer may contain a total of 0.0001 to 2% by mass of any one or more of Ni, Ti, Zr, and Sr in an average composition. Intermetallic compounds containing these elements act as crystallization nuclei of [Al/Zn mixed structure], make [ternary eutectic structure of Al/MgZn 2 /Zn] finer and more uniform, and improve the plating layer. Improve appearance and smoothness. The reason why one or more of these elements is set to 0.0001 to 2% by mass in total is that if it is less than 0.0001% by mass, the effect of making the solidified structure fine and uniform will be insufficient. If it exceeds 2% by mass, the effect of refining the [ternary eutectic structure of Al/Zn/MgZn2 ] will not only become saturated, but also increase the surface roughness of the plating layer and worsen its appearance. The upper limit is 2% by mass. Particularly when added for the purpose of improving appearance, it is desirable to contain 0.001 to 0.5% by mass. It is more preferably in the range of 0.001 to 0.05% by mass, and still more preferably in the range of 0.002 to 0.01% by mass.
溶融めっき層中には、平均組成で、Fe、Sb、Pb、Sn、Ca、Co、Mn、P、B、Bi、Cr、Sc、Y、REM、Hfの1種又は2種以上を合計で0.0001~2質量%を含有していてもよい。これらの元素を含有することで、さらに耐食性を改善することができる。REMは、周期律表における原子番号57~71の希土類元素の1種または2種以上である。 The average composition of the hot-dip plating layer is one or more of Fe, Sb, Pb, Sn, Ca, Co, Mn, P, B, Bi, Cr, Sc, Y, REM, and Hf in total. It may contain 0.0001 to 2% by mass. By containing these elements, corrosion resistance can be further improved. REM is one or more rare earth elements with atomic numbers 57 to 71 in the periodic table.
めっき層の化学成分の残部は、亜鉛及び不純物である。 The remainder of the chemical components of the plating layer are zinc and impurities.
次に、めっき層の組織について説明する。本実施形態に係るめっき層は、〔Al/Zn/MgZn2の三元共晶組織〕の素地中に、〔Al・Zn混合組織〕を含んでいる。また、〔Al/Zn/MgZn2の三元共晶組織〕の素地中には、〔Al・Zn混合組織〕の他に、〔MgZn2相〕や〔Zn相〕、〔Mg2Si相〕が含まれていてもよい。 Next, the structure of the plating layer will be explained. The plating layer according to the present embodiment includes [Al/Zn mixed structure] in the base of [ternary eutectic structure of Al/Zn/MgZn 2] . In addition, in the matrix of the [ternary eutectic structure of Al/Zn/MgZn 2 ], in addition to the [Al/Zn mixed structure], there are also [MgZn 2 phase], [Zn phase], and [Mg 2 Si phase]. may be included.
〔Al/Zn/MgZn2の三元共晶組織〕とは、Al相と、Zn相と、金属間化合物であるMgZn2相との三元共晶組織であり、〔Al/Zn/MgZn2の三元共晶組織〕を形成しているAl相は例えばAl-Zn-Mgの三元系平衡状態図における高温での「Al″相」(Zn相を固溶するAl固溶体であり、少量のMgを含むことが多い)に相当するものである。この高温でのAl″相は常温では通常は微細なAl主体相と微細なZn主体相に分離して現れる。また、〔Al/Zn/MgZn2の三元共晶組織〕のZn主体相は少量のAlを固溶し、場合によってはさらに少量のMgを固溶したZn固溶体である。〔Al/Zn/MgZn2の三元共晶組織〕のMgZn2相は、Zn-Mgの二元系平衡状態図のZn:約84質量%の付近に存在する金属間化合物相である。状態図で見る限りそれぞれの相にはSi、その他の元素を固溶していても少量であると考えられ、その量は通常の分析では明確に区別できないため、この3つの相からなる三元共晶組織を本明細書では〔Al/Zn/MgZn2の三元共晶組織〕と表す。 [Al/Zn/MgZn 2 ternary eutectic structure] is a ternary eutectic structure of an Al phase, a Zn phase, and an intermetallic compound MgZn 2 phase, and [Al/Zn/MgZn 2 For example, the Al phase forming the ternary eutectic structure of (often contains Mg). This Al'' phase at high temperature usually appears separated into a fine Al-based phase and a fine Zn-based phase at room temperature.Also, the Zn-based phase in [ternary eutectic structure of Al/Zn/MgZn2 ] It is a Zn solid solution containing a small amount of Al and, in some cases, an even smaller amount of Mg.The MgZn 2 phase of [ternary eutectic structure of Al/Zn/MgZn 2 ] is Zn in the system equilibrium phase diagram: This is an intermetallic compound phase that exists in the vicinity of approximately 84% by mass.As seen in the phase diagram, it is thought that each phase contains Si and other elements in solid solution, but only in small amounts. Since the amounts cannot be clearly distinguished by ordinary analysis, the ternary eutectic structure consisting of these three phases is herein referred to as [ternary eutectic structure of Al/Zn/MgZn 2 ].
次に、〔Al・Zn混合組織〕について説明する。本実施形態では、高温相のAl相が冷却時に微細なZn主体相と微細なAl主体相に分離して形成された組織を〔Al・Zn混合組織〕と称する。なお、Zn主体相は、AlとMgを固溶することがある。Al主体相は、ZnとMgを固溶することがある。めっき層にSiを含有する場合は、少量のSiを含む場合もある。 Next, [Al/Zn mixed structure] will be explained. In this embodiment, the structure formed by separating the high-temperature Al phase into a fine Zn-based phase and a fine Al-based phase during cooling is referred to as an [Al/Zn mixed structure]. Note that the Zn-based phase may contain Al and Mg in solid solution. The Al-based phase may form a solid solution of Zn and Mg. When the plating layer contains Si, it may contain a small amount of Si.
〔Al・Zn混合組織〕は、走査型電子顕微鏡の反射電子像において、〔Al/Zn/MgZn2の三元共晶組織〕の素地中に明瞭な境界をもって島状に見える相であり、これは例えばAl-Zn-Mgの三元系平衡状態図における高温での「Al″相」(Zn相を固溶するAl固溶体であり、少量のMgを含む)に相当するものである。この高温でのAl″相はめっき浴のAlやMg濃度に応じて固溶するZn量やMg量が相違する。めっき層にSiを含有する場合は、少量のSiを含む場合もある。この高温でのAl″相は常温では通常は微細なAl相と微細なZn相に分離するが、常温で見られる島状の形状は高温でのAl″相の形骸を留めたものであると見てよい。この高温でのAl″相に由来し且つ形状的にはAl″相の形骸を留めている組織を本明細書では〔Al・Zn混合組織〕と呼ぶ。この〔Al・Zn混合組織〕は〔Al/Zn/MgZn2の三元共晶組織〕を形成しているAl相とは走査型電子顕微鏡の反射電子像において明瞭に区別できる。 [Al/Zn mixed structure] is a phase that appears in the form of islands with clear boundaries in the matrix of [ternary eutectic structure of Al/Zn/ MgZn2 ] in the backscattered electron image of a scanning electron microscope. corresponds to, for example, the "Al''phase" (an Al solid solution containing a Zn phase and containing a small amount of Mg) at a high temperature in the ternary equilibrium phase diagram of Al--Zn--Mg. The amount of Zn and Mg dissolved in this Al'' phase at high temperature varies depending on the Al and Mg concentrations of the plating bath. If the plating layer contains Si, it may also contain a small amount of Si. The Al'' phase at high temperatures normally separates into a fine Al phase and a fine Zn phase at room temperature, but the island-like shape seen at room temperature is thought to be the remains of the Al'' phase at high temperatures. A structure that originates from this Al'' phase at high temperatures and retains the shape of the Al'' phase is referred to herein as an [Al/Zn mixed structure]. This [Al/Zn mixed structure] ] can be clearly distinguished from the Al phase forming [ternary eutectic structure of Al/Zn/MgZn 2 ] in a backscattered electron image of a scanning electron microscope.
めっき層の表面に垂直なめっき層の断面における〔Al・Zn混合組織〕の面積率は10~70%の範囲が好ましい。〔Al・Zn混合組織〕の面積率がこの範囲であれば、端部及び加工部の耐食性を向上させることができる。 The area ratio of the [Al/Zn mixed structure] in the cross section of the plating layer perpendicular to the surface of the plating layer is preferably in the range of 10 to 70%. If the area ratio of the [Al/Zn mixed structure] is within this range, the corrosion resistance of the end portions and processed portions can be improved.
〔Al・Zn混合組織〕の面積率の測定方法は、めっき層の表面に垂直なめっき層の断面を走査型電子顕微鏡の反射電子像で観察する。倍率を1000倍に拡大した状態で、5箇所の写真を撮影する。
写真は、めっき層の厚み全体が視野に入るように撮影する。写真撮影位置はランダムに選択する。面積率の計算結果を受けて撮影位置を任意に再選択してはならない。そして、全部の断面写真に現れている〔Al・Zn混合組織〕の全断面積を測定し、これを、全部の断面写真に現れているめっき層の断面積で除することで、〔Al・Zn混合組織〕の面積率を測定する。
The area ratio of the [Al/Zn mixed structure] is measured by observing a cross section of the plating layer perpendicular to the surface of the plating layer using a backscattered electron image using a scanning electron microscope. Photograph five locations at a magnification of 1000x.
Photographs should be taken so that the entire thickness of the plating layer is visible. The photo shooting position is randomly selected. Do not arbitrarily reselect the shooting position based on the calculated area ratio. Then, by measuring the total cross-sectional area of the [Al/Zn mixed structure] appearing in all the cross-sectional photographs and dividing this by the cross-sectional area of the plating layer appearing in all the cross-sectional photographs, Zn mixed structure] is measured.
次に、〔Al/Zn/MgZn2の三元共晶組織〕の素地中に含まれる〔Zn相〕は、〔Al/Zn/MgZn2の三元共晶組織〕の素地中に明瞭な境界をもって島状に見える相であり、実際には少量のAlさらには少量のMgを固溶していることもある。状態図で見る限りこの相にはSi、その他の添加元素を固溶していないか、固溶していても極微量であると考えられる。この〔Zn相〕は〔Al/Zn/MgZn2の三元共晶組織〕を形成しているZn相とは走査型電子顕微鏡の反射電子像において明瞭に区別できる。本実施形態のめっき層には、製造条件により〔Zn相〕が含まれる場合も有るが、実験では端面耐食性及び加工部耐食性の向上に与える影響はほとんど見られなかったため、めっき層に〔Zn相〕が含まれても特に問題はない。 Next, the [Zn phase] contained in the matrix of [ternary eutectic structure of [Al/Zn/MgZn 2 ] has a clear boundary in the matrix of [ternary eutectic structure of [Al/Zn/MgZn 2] ]. This phase appears to be island-like, but it may actually contain a small amount of Al or even a small amount of Mg in solid solution. As far as we can see from the phase diagram, it is thought that Si and other additive elements are not dissolved in solid solution in this phase, or even if they are dissolved in solid solution, the amount is extremely small. This [Zn phase] can be clearly distinguished from the Zn phase forming [ternary eutectic structure of Al/Zn/MgZn 2 ] in a backscattered electron image of a scanning electron microscope. The plating layer of this embodiment may contain a [Zn phase] depending on the manufacturing conditions, but experiments showed that it had almost no effect on improving end face corrosion resistance and processed part corrosion resistance. ] is included, there is no particular problem.
また、〔Al/Zn/MgZn2の三元共晶組織〕の素地中に含まれる〔MgZn2相〕は、〔Al/Zn/MgZn2の三元共晶組織〕の素地中に明瞭な境界をもって島状に見える相であり、実際には少量のAlを分散・固溶していることもある。状態図で見る限りこの相にはSi、その他の添加元素を固溶していないか、固溶していても極微量であると考えられる。この〔MgZn2相〕は〔Al/Zn/MgZn2の三元共晶組織〕を形成しているMgZn2相とは走査型電子顕微鏡の反射電子像において明瞭に区別できる。本実施形態のめっき層には、製造条件により〔MgZn2相〕が含まれない場合も有るが、ほとんどの製造条件ではめっき層中に含まれる。 In addition, the [MgZn two phases] contained in the matrix of [ternary eutectic structure of Al/Zn/MgZn 2 ] have clear boundaries in the matrix of [ternary eutectic structure of Al/Zn/MgZn 2 ]. This phase appears to be island-like, but it may actually contain a small amount of Al dispersed or dissolved in solid solution. As far as we can see from the phase diagram, it is thought that Si and other additive elements are not dissolved in solid solution in this phase, or even if they are dissolved in solid solution, the amount is extremely small. This [MgZn two phase] can be clearly distinguished from the MgZn two phase forming [ternary eutectic structure of Al/Zn/MgZn 2] in a backscattered electron image of a scanning electron microscope. The plating layer of this embodiment may not contain [MgZn two- phase] depending on the manufacturing conditions, but it is included in the plating layer under most manufacturing conditions.
また、〔Al/Zn/MgZn2の三元共晶組織〕の素地中に含まれる〔Mg2Si相〕は、Siを含有するめっき層の凝固組織中に明瞭な境界をもって島状に見える相である。状態図で見る限りZn、Al、その他の添加元素は固溶していないか、固溶していても極微量であると考えられる。この〔Mg2Si相〕はめっき中では走査型電子顕微鏡の反射電子像において明瞭に区別できる。 In addition, the [Mg 2 Si phase] contained in the matrix of the [ternary eutectic structure of Al/Zn/MgZn 2 ] appears as an island-like phase with clear boundaries in the solidified structure of the Si-containing plating layer. It is. As far as we can see from the phase diagram, it is thought that Zn, Al, and other additive elements are not dissolved in solid solution, or even if they are dissolved in solid solution, the amount is extremely small. This [Mg 2 Si phase] can be clearly distinguished in a backscattered electron image of a scanning electron microscope during plating.
次に、〔Al・Zn混合組織〕の微細構造について説明する。〔Al・Zn混合組織〕は、上述のように、高温でのAl″相の形骸を留めた島状の形状を示す。また、〔Al・Zn混合組織〕の内部構造は、状態図によると、微細なAl相と微細なZn相とに分離した形態を示すと推測される。微細なAl相と微細なZn相は、走査型電子顕微鏡の反射電子像などで判別できる。また、次に説明するように、〔Al・Zn混合組織〕は、第1領域と第2領域と第3領域とに分けられる。 Next, the microstructure of the [Al/Zn mixed structure] will be explained. As mentioned above, the [Al/Zn mixed structure] exhibits an island-like shape that retains the remains of the Al'' phase at high temperatures. Also, the internal structure of the [Al/Zn mixed structure] is as follows according to the phase diagram. , it is presumed that it shows a morphology separated into a fine Al phase and a fine Zn phase.The fine Al phase and the fine Zn phase can be distinguished from the backscattered electron image of a scanning electron microscope. As explained, the [Al/Zn mixed structure] is divided into a first region, a second region, and a third region.
〔Al・Zn混合組織〕のZn濃度に着目すると、〔Al・Zn混合組織〕は少なくとも、第1領域と、第1領域の内側にあって第1領域よりも平均Zn濃度が低い第2領域とに区分できる。また、めっき層の平均Al濃度が8~22質量%の場合は、第2領域の内側に、第2領域よりも平均Zn濃度が低い第3領域が含まれる。第1領域は、めっき層を断面視した場合に〔Al・Zn含有組織〕の最も外側に位置しており、〔Al/Zn/MgZn2の三元共晶組織〕との境界を構成している。第2領域は、第1領域の内側にあり、第3領域は、第2領域の更に内側にある。 Focusing on the Zn concentration of the [Al/Zn mixed structure], the [Al/Zn mixed structure] has at least a first region and a second region that is inside the first region and has a lower average Zn concentration than the first region. It can be divided into Further, when the average Al concentration of the plating layer is 8 to 22% by mass, a third region having an average Zn concentration lower than that of the second region is included inside the second region. The first region is located at the outermost side of the [Al/Zn-containing structure] when the plating layer is viewed in cross section, and forms the boundary with the [ternary eutectic structure of Al/Zn/MgZn 2] . There is. The second region is inside the first region, and the third region is further inside the second region.
第1領域は、Zn濃度が75質量%以上85質量%未満の領域であり、第2領域は、Zn濃度が67質量%以上75質量%未満の領域であり、第3領域は、Zn濃度は55質量%以上67質量%未満の領域である。Zn以外の残部は、Al及び不純物である。また、各領域には、少量のMgが含まれる場合がある。更に、めっき層にSiを含有する場合は、第1領域、第2領域及び第3領域の何れかまたは全部の領域にSiが含まれる場合がある。 The first region is a region where the Zn concentration is 75% by mass or more and less than 85% by mass, the second region is a region where the Zn concentration is 67% by mass or more and less than 75% by mass, and the third region is a region where the Zn concentration is The content is in the range of 55% by mass or more and less than 67% by mass. The remainder other than Zn is Al and impurities. Additionally, each region may contain a small amount of Mg. Furthermore, when the plating layer contains Si, Si may be contained in any or all of the first region, the second region, and the third region.
第2領域には、Zn相とAl相とが混在しているが、第2領域の断面(めっき層の表面に垂直なめっき層の断面)の面積1μm2当たりのZn相及びAl相の平均粒径は50nm以下である必要がある。第2領域の断面の面積1μm2当たりのZn相及びAl相の平均粒径は50nmより大きい場合、第2領域の腐食によって生成する腐食生成物が少なくなり、鋼材の端部や加工部を腐食生成物によって防食できなくなる。第2領域におけるZn相及びAl相の析出形態を、面積1μm2当たりの平均粒径で50nm以下とすることで、第2領域が優先して腐食されるようになり、端面部の耐食性が向上すると推測される。なお、第1領域や第3領域にもZn相とAl相とが混在しているが、第1領域や第3領域の断面(めっき層の表面に垂直なめっき層の断面)の面積1μm2当たりのZn相とAl相の平均粒径は、端面耐食性及び加工部耐食性に影響を及ぼさない。 The second region contains a mixture of Zn phase and Al phase, and the average amount of Zn phase and Al phase per 1 μm 2 of the cross section of the second region (cross section of the plating layer perpendicular to the surface of the plating layer) The particle size must be 50 nm or less. When the average grain size of the Zn phase and Al phase per 1 μm 2 of cross-sectional area of the second region is larger than 50 nm, less corrosion products are generated due to corrosion in the second region, and the edges and processed parts of the steel material are corroded. Corrosion protection is no longer possible due to the product. By setting the precipitation form of the Zn phase and Al phase in the second region to an average particle size of 50 nm or less per 1 μm area, the second region will be corroded preferentially, improving the corrosion resistance of the end face. It is presumed that. Note that the first region and the third region also contain a Zn phase and an Al phase, but the area of the cross section of the first region and the third region (the cross section of the plating layer perpendicular to the surface of the plating layer) is 1 μm 2 The average particle diameters of the Zn phase and Al phase do not affect the end face corrosion resistance and the processed part corrosion resistance.
また、第2領域に含まれるAl相には、Mgを含有する金属間化合物相が析出相として存在する場合がある。このような析出相が存在すると、端面耐食性及び加工部耐食性が更に向上する。析出相は、MgZn2、Mg2Zn11、Mg2Si、Mg32(Al,Zn)49のうちの1種または2種以上である。微細なAl相の1個あたりに、析出相が平均して3個以上含まれた場合、端面耐食性及び加工部耐食性がさらに向上する。 Further, in the Al phase included in the second region, an intermetallic compound phase containing Mg may exist as a precipitated phase. The presence of such a precipitated phase further improves the end face corrosion resistance and processed part corrosion resistance. The precipitated phase is one or more of MgZn 2 , Mg 2 Zn 11 , Mg 2 Si, and Mg 32 (Al, Zn) 49 . When three or more precipitated phases are contained on average per fine Al phase, the end face corrosion resistance and the processed part corrosion resistance are further improved.
〔Al・Zn混合組織〕の微細構造の特定方法について説明する。〔Al・Zn混合組織〕の微細構造の特定方法は、〔Al・Zn混合組織〕の面積率の測定に用いた写真の元素マッピングデータを活用する。まず、〔Al・Zn混合組織〕内部のZn濃度の分布を分析する。分析する際は、走査型電子顕微鏡(SEM)に付属するエネルギー分散型X線元素分析装置を用い、SEMの加速電圧を15kVに設定する。この場合、特性X線の脱出深さの関係から、実質上、Zn濃度は約1μm2の領域毎に測定される。これをマッピング化することで約1μmのメッシュでの成分分析が可能になる。その成分分析結果から得られたZn濃度(質量%)を基に、第1領域、第2領域及び第3領域の範囲を決定する。 A method for identifying the fine structure of [Al/Zn mixed structure] will be explained. The method for identifying the fine structure of the [Al/Zn mixed structure] utilizes the elemental mapping data of the photograph used to measure the area ratio of the [Al/Zn mixed structure]. First, the distribution of Zn concentration inside [Al/Zn mixed structure] is analyzed. When analyzing, an energy dispersive X-ray elemental analyzer attached to a scanning electron microscope (SEM) is used, and the acceleration voltage of the SEM is set to 15 kV. In this case, due to the escape depth of characteristic X-rays, the Zn concentration is substantially measured for each region of about 1 μm 2 . By mapping this, component analysis using a mesh of approximately 1 μm becomes possible. Based on the Zn concentration (mass %) obtained from the component analysis results, the ranges of the first region, second region, and third region are determined.
具体的には、成分分析結果から、Zn濃度が75質量%以上85質量%未満の範囲の領域を第1領域と特定し、Zn濃度が67質量%以上75質量%未満の範囲の領域を第2領域と特定し、Zn濃度が55質量%以上67質量%未満の範囲の領域を第3領域と特定する。そして、それぞれの領域の断面積を測定する。以上の測定を、全ての写真に現れている全部の〔Al・Zn混合組織〕について実施する。 Specifically, from the component analysis results, a region in which the Zn concentration is in the range of 75% by mass or more and less than 85% by mass is identified as the first region, and a region in which the Zn concentration is in the range of 67% by mass or more and less than 75% by mass is identified as the first region. The second region is defined as the second region, and the third region is defined as the third region where the Zn concentration ranges from 55% by mass to less than 67% by mass. Then, the cross-sectional area of each region is measured. The above measurements are performed on all [Al/Zn mixed structures] appearing in all the photographs.
また、第2領域における面積1μm2当たりのZn相及びAl相の平均粒径は、次のように測定する。まず、めっき層の断面(めっき層の表面に垂直なめっき層の断面)において、前記の方法で特定した〔Al・Zn混合組織〕の第2領域に対し、走査型電子顕微鏡によって2kVの加速電圧で50000倍の反射電子像を5か所ずつ撮影する。組成コントラストによりAl相は暗く、Zn相は明るく観察される。汎用画像処理ソフト(例えば、アドビ社製 Adobe Photoshop(登録商標))を用い、得られた画像を二値化し、白い領域と黒い領域の面積をそれぞれ測定する。また、白い領域と黒い領域の総数を計測する。次いで、白い領域と黒い領域の合計面積を、白い領域と黒い領域の合計個数で除することで、白い領域または黒い領域の1個あたりの面積を求める。この面積から、白い領域または黒い領域の円相当直径を求め、これをZn相及びAl相の平均粒径とする。 Further, the average particle size of the Zn phase and Al phase per 1 μm 2 of area in the second region is measured as follows. First, in the cross section of the plating layer (the cross section of the plating layer perpendicular to the surface of the plating layer) , an accelerating voltage of 2 kV was applied to the second region of the [Al/Zn mixed structure] identified by the above method using a scanning electron microscope. 50,000 times the backscattered electron images are taken at each of the five locations. Due to the compositional contrast, the Al phase is observed to be dark and the Zn phase to be observed to be bright. The obtained image is binarized using general-purpose image processing software (for example, Adobe Photoshop (registered trademark) manufactured by Adobe), and the areas of the white region and the black region are respectively measured. Also, measure the total number of white areas and black areas. Next, the area of each white area or black area is determined by dividing the total area of the white area and the black area by the total number of white areas and black areas. From this area, the equivalent circle diameter of the white region or the black region is determined, and this is taken as the average particle diameter of the Zn phase and the Al phase.
また、第2領域のAl相に、Mgを含有する金属間化合物相が存在するか否かの判定は、3次元アトムプローブ法により行う。まず、部分的に切り出しためっき層を、先端径が100nmの針状の測定試料に加工する。針状の測定試料の先端には、〔Al・Zn混合組織〕の第2領域が含まれるようにする。次いで、針状の測定試料に、最大で10kV程度の正電圧を印加して、測定試料の最先端において電界蒸発現象を発生させる。電界蒸発したイオンを2次元検出器によって検出することで、原子配列が特定される。また、検出器に到達するまでの原子の飛行時間からイオン種も同定される。このようにして個々に検出されたイオンを深さ方向へ連続的に検出し、検出された順番にイオンを並べるデータ再構築を行うことで、3次元の原子分布を得る。得られた原子分布から、MgZn2、Mg2Zn11、Mg2Si、Mg32(Al,Zn)49のいずれかの金属間化合物相の有無を確認する。また、金属間化合物相が確認された場合は、1つの第2領域における金属間化合物相の総数を計数する。5つの測定試料に対して金属間化合物相の総数を計数し、平均値を金属間化合物相の個数とする。 Moreover, the determination of whether or not an intermetallic compound phase containing Mg exists in the Al phase of the second region is performed by a three-dimensional atom probe method. First, a partially cut out plating layer is processed into a needle-shaped measurement sample with a tip diameter of 100 nm. The tip of the needle-shaped measurement sample is made to include a second region of [Al/Zn mixed structure]. Next, a positive voltage of about 10 kV at maximum is applied to the needle-shaped measurement sample to generate an electric field evaporation phenomenon at the leading edge of the measurement sample. The atomic arrangement is determined by detecting the field-evaporated ions using a two-dimensional detector. Ion species can also be identified from the flight time of atoms until they reach the detector. A three-dimensional atomic distribution is obtained by sequentially detecting the individually detected ions in this way in the depth direction and reconstructing the data by arranging the ions in the order in which they were detected. From the obtained atomic distribution, the presence or absence of any one of the intermetallic compound phases of MgZn 2 , Mg 2 Zn 11 , Mg 2 Si, and Mg 32 (Al, Zn) 49 is confirmed. Further, if an intermetallic compound phase is confirmed, the total number of intermetallic compound phases in one second region is counted. The total number of intermetallic compound phases is counted for the five measurement samples, and the average value is taken as the number of intermetallic compound phases.
また、本実施形態の溶融Zn-Al-Mg系めっき鋼材は、鋼材をめっき浴に浸漬させてから鋼材を引き上げることにより、鋼材表面に付着させた溶融金属を凝固させることで形成する。前述したように、めっき層が凝固する際には、まず〔Al・Zn混合組織〕が晶出し、その後、〔Al/Zn/MgZn2の三元共晶組織〕の素地が晶出する。最初に晶出する〔Al・Zn混合組織〕は、Al-Zn-Mgの三元系平衡状態図における高温のAl″相に由来し、この高温のAl″相は、最終的に、本実施形態における〔Al・Zn混合組織〕となる。〔Al・Zn混合組織〕においては、まず、溶融金属中において発生する核生成点が起点となり、核生成点から一次アームが成長し、更に一次アームから二次アームが生成する。そのため、〔Al・Zn混合組織〕は、核生成点を起点とするデンドライト状の組織になっている。 Further, the hot-dip Zn-Al-Mg-based plated steel material of the present embodiment is formed by immersing the steel material in a plating bath and then pulling the steel material to solidify the molten metal deposited on the surface of the steel material. As described above, when the plating layer solidifies, the [Al/Zn mixed structure] is first crystallized, and then the matrix of the [ternary eutectic structure of Al/Zn/MgZn 2] is crystallized. The [Al/Zn mixed structure] that crystallizes first originates from the high-temperature Al'' phase in the ternary equilibrium phase diagram of Al-Zn-Mg, and this high-temperature Al'' phase finally It becomes [Al/Zn mixed structure] in the form. In the [Al/Zn mixed structure], first, a nucleation point generated in the molten metal serves as a starting point, a primary arm grows from the nucleation point, and a secondary arm is further generated from the primary arm. Therefore, the [Al/Zn mixed structure] has a dendrite-like structure starting from the nucleation point.
そして、本実施形態の溶融Zn-Al-Mg系めっき鋼材では、めっき層をめっき厚方向の1/2位置にて鋼材側とめっき層表面側とに2等分に分割した場合に、〔Al・Zn混合組織〕の核生成点のうちの個数割合で60%以上の核生成点が、めっき層の鋼材側の領域に存在することが好ましい。これにより、めっき層の構成組織のうち、腐食の初期の起点となる〔Al・Zn混合組織〕が、鋼材側の領域に多く存在するようになり、めっき層の表面側の領域における〔Al・Zn混合組織〕の存在割合が少なくなる。これにより、めっき層の加工部の耐食性がより高められる。 In the hot-dip Zn-Al-Mg-based plated steel material of this embodiment, when the plating layer is divided into two equal parts at the 1/2 position in the plating thickness direction into the steel material side and the plating layer surface side, the [Al -Zn mixed structure] It is preferable that 60% or more of the nucleation points in terms of number ratio exist in the region of the plating layer on the steel material side. As a result, among the constituent structures of the plating layer, [Al/Zn mixed structure], which is the initial starting point of corrosion, is present in large amounts in the region on the steel material side, and [Al/Zn mixed structure] in the region on the surface side of the plating layer becomes more abundant. The proportion of Zn mixed structure] decreases. This further improves the corrosion resistance of the processed portion of the plating layer.
また、〔Al・Zn混合組織〕が鋼材側の領域に多く存在することで、溶融Zn-Al-Mg系めっき鋼材を任意の位置で切断した場合の切断端面における鋼材の犠牲防食性の向上も期待できる。〔Al・Zn混合組織〕が鋼材の近くにあるため、〔Al・Zn混合組織〕の腐食によって生成する腐食生成物が鋼材を直ちに覆うことが可能となり、鋼材の端面の広い範囲に渡って犠牲防食性が向上するようになる。 In addition, since a large amount of [Al/Zn mixed structure] exists in the region on the steel side, the sacrificial corrosion protection of the steel material at the cut end surface when hot-dip Zn-Al-Mg coated steel material is cut at an arbitrary position can also be improved. You can expect it. Since the [Al/Zn mixed structure] is located near the steel material, the corrosion products generated by the corrosion of the [Al/Zn mixed structure] can immediately cover the steel material, causing damage over a wide range of the end face of the steel material. Corrosion resistance improves.
〔Al・Zn混合組織〕の核生成点の分布の測定方法は、次の通りとする。まず、めっき層の断面観察を行うことでめっき層の厚みを測定する。続いて、めっき層の表面において、一辺が1mmの正方形の領域を測定領域とする。次いで、測定領域におけるめっき層を表面から徐々に研削し、新たに現れた研削面を電子顕微鏡によって観察する。具体的には、めっき層の全厚をtとしたとき、研削によってめっき層表面から深さ方向にt/4位置、t/2位置及び3t/4位置を順次露出させ、各研削面において、都度、〔Al・Zn混合組織〕の形態を電子顕微鏡で確認する。研削する深さは事前に付与した圧痕の形状変化を観察することで制御する。 The method for measuring the distribution of nucleation points in [Al/Zn mixed structure] is as follows. First, the thickness of the plating layer is measured by observing the cross section of the plating layer. Next, on the surface of the plating layer, a square area of 1 mm on a side is defined as a measurement area. Next, the plating layer in the measurement area is gradually ground from the surface, and the newly appeared ground surface is observed using an electron microscope. Specifically, when the total thickness of the plating layer is t, t/4 position, t/2 position, and 3t/4 position are sequentially exposed in the depth direction from the surface of the plating layer by grinding, and on each ground surface, Each time, the morphology of the [Al/Zn mixed structure] is confirmed using an electron microscope. The depth of grinding is controlled by observing changes in the shape of the indentations made in advance.
〔Al・Zn混合組織〕における核生成点は、〔Al・Zn混合組織〕の一次アーム同士の結合点である。〔Al・Zn混合組織〕の核生成点から比較的離れた研削面では、一次アームが離散して配置されているように見えるが、核生成点に比較的近い研削面では、4つまたは6つの一次アームが近接するように見える。そこで、各研削面を観察した際に、核生成点が観察中の研削面の鋼材側にあるのか、またはめっき層の表面側にあるかを、各研削面における一次アームの形状の変化から推測する。このようにして、めっき層表面から深さ方向にt/4位置、t/2位置及び3t/4位置における研削面において、都度、〔Al・Zn混合組織〕の形態を確認することで、核生成点が、t/2位置よりも鋼材側にあるか、めっき層表面側にあるかを確認できる。そして、測定領域内において観察された〔Al・Zn混合組織〕の核生成点の全個数のうち、t/2位置よりも鋼材側にある核生成点の個の割合を求める。以上の方法を計5か所の測定領域に対して実施し、得られた値の平均を当該めっき層のt/2位置よりも鋼材側にある核生成点の個の割合とする。 The nucleation point in the [Al/Zn mixed structure] is the connection point between the primary arms of the [Al/Zn mixed structure]. On the ground surface relatively far from the nucleation point of [Al/Zn mixed structure], the primary arms appear to be arranged discretely, but on the ground surface relatively close to the nucleation point, there are four or six primary arms. The two primary arms appear to be close together. Therefore, when observing each ground surface, we can estimate whether the nucleation point is on the steel side of the ground surface being observed or on the surface side of the plating layer from the change in the shape of the primary arm on each ground surface. do. In this way, by checking the morphology of [Al/Zn mixed structure] on the ground surface at t/4 position, t/2 position, and 3t/4 position in the depth direction from the surface of the plating layer each time, the nucleus It can be confirmed whether the generation point is closer to the steel material than the t/2 position or closer to the surface of the plating layer. Then, among the total number of nucleation points of [Al/Zn mixed structure] observed in the measurement region, the ratio of nucleation points located on the steel material side with respect to the t/2 position is determined. The above method is carried out for a total of five measurement regions, and the average of the obtained values is taken as the percentage of nucleation points located on the steel material side from the t/2 position of the plating layer.
めっき層の付着量は、10~300g/m2の範囲が好ましく、20~250g/m2の範囲でもよい。めっき層の付着量が少ないと耐食性を十分に確保できない。また、めっき層の付着量が厚すぎると、部品形状等に加工する際にめっき層に割れが生じるおそれがある。 The amount of the plating layer deposited is preferably in the range of 10 to 300 g/m 2 , and may be in the range of 20 to 250 g/m 2 . If the amount of deposited plating layer is small, sufficient corrosion resistance cannot be ensured. Furthermore, if the amount of the plating layer adhered is too thick, there is a risk that the plating layer will crack during processing into a part shape or the like.
次に、本実施形態の溶融Zn-Al-Mg系めっき鋼材の製造方法を説明する。本実施形態の溶融Zn-Al-Mg系めっき鋼材は、鋼材表面にめっき浴を付着させ、次いで、鋼材をめっき浴から引き上げて鋼材表面に付着した溶融金属を凝固させる所謂溶融めっき法により形成する。 Next, a method for manufacturing the hot-dip Zn--Al--Mg based plated steel material of this embodiment will be explained. The hot-dip Zn-Al-Mg-based plated steel material of the present embodiment is formed by a so-called hot-dip plating method in which a plating bath is attached to the surface of the steel material, and then the steel material is pulled up from the plating bath to solidify the molten metal that has adhered to the surface of the steel material. .
めっき浴の組成は、Mg:1~10質量%、Al:4~22質量%を含有し、残部としてZnおよび不純物を含むものがよい。また、めっき浴には、Si:0.0001~2質量%を含有していてもよい。更に、めっき浴には、Ni、Ti、Zr、Srのいずれか1種または2種以上を合計で、0.0001~2質量%含有していてもよい。更にまた、めっき浴には、Fe、Sb、Pb、Sn、Ca、Co、Mn、P、B、Bi、Cr、Sc、Y、REM、Hfのいずれか1種または2種以上を合計で、0.0001~2質量%を含有していてもよい。 The composition of the plating bath is preferably one containing Mg: 1 to 10% by mass, Al: 4 to 22% by mass, and the balance containing Zn and impurities. Further, the plating bath may contain Si: 0.0001 to 2% by mass. Furthermore, the plating bath may contain a total of 0.0001 to 2% by mass of any one or more of Ni, Ti, Zr, and Sr. Furthermore, the plating bath contains one or more of Fe, Sb, Pb, Sn, Ca, Co, Mn, P, B, Bi, Cr, Sc, Y, REM, and Hf in total, It may contain 0.0001 to 2% by mass.
めっき浴の温度は、340~600℃の範囲が好ましく、400~600℃の範囲であってもよい。 The temperature of the plating bath is preferably in the range of 340 to 600°C, and may be in the range of 400 to 600°C.
めっき浴に浸漬させる前の鋼材は、還元性雰囲気中で加熱することにより、表面を還元処理することが好ましい。例えば、窒素と水素の混合雰囲気中で600℃以上、望ましくは750℃以上で30秒以上熱処理する。還元処理が終了した鋼材は、めっき浴の温度まで冷却した後、めっき浴に浸漬させる。浸漬時間は例えば1秒以上でよい。めっき浴に浸漬した鋼材を引き上げる際に、ガスワイピングによってめっきの付着量を調整する。付着量は、上述したように、10~300g/m2の範囲が好ましく、20~250g/m2の範囲でもよい。 It is preferable that the surface of the steel material before being immersed in the plating bath be subjected to reduction treatment by heating in a reducing atmosphere. For example, heat treatment is performed at 600° C. or higher, preferably 750° C. or higher for 30 seconds or longer in a mixed atmosphere of nitrogen and hydrogen. After the reduction treatment has been completed, the steel material is cooled to the temperature of the plating bath, and then immersed in the plating bath. The immersion time may be, for example, 1 second or more. When pulling up the steel material immersed in the plating bath, the amount of plating deposited is adjusted by gas wiping. As mentioned above, the adhesion amount is preferably in the range of 10 to 300 g/m 2 , and may be in the range of 20 to 250 g/m 2 .
本実施形態の溶融Zn-Al-Mg系めっき鋼材の製造方法では、めっき浴から引き上げ後の冷却条件が重要である。めっき浴から引き上げ後、めっき層の表面温度が200℃~250℃の範囲になるまで平均冷却速度3~6℃/秒の範囲で冷却した後、急冷する。急冷時の平均冷却速度は40℃/秒以上の範囲に制御する。急冷開始温度を250℃より高温にすると、目的とする微細組織が得られない。また、急冷開始温度を200℃未満にすると、〔Al・Zn混合組織〕の構造が変化し、Al相とZn相の混合形態が所望の形態にならないので好ましくない。急冷停止温度は、100℃以下とする。なお、急冷時の平均冷却速度は、急冷開始温度から急冷停止温度までの温度差を、急冷所要時間で除した値とする。 In the method for manufacturing hot-dip Zn-Al-Mg-based plated steel according to this embodiment, the cooling conditions after pulling the steel out of the plating bath are important. After being removed from the plating bath, the plated layer is cooled at an average cooling rate of 3 to 6°C/sec until the surface temperature of the plated layer is in the range of 200°C to 250°C, and then rapidly cooled. The average cooling rate during rapid cooling is controlled to a range of 40° C./second or more. If the quenching start temperature is set higher than 250° C., the desired microstructure cannot be obtained. Furthermore, if the quenching start temperature is lower than 200° C., the structure of the [Al/Zn mixed structure] changes and the mixed form of the Al phase and Zn phase does not become the desired form, which is not preferable. The rapid cooling stop temperature shall be 100°C or less. Note that the average cooling rate during quenching is the value obtained by dividing the temperature difference from the quenching start temperature to the quenching stop temperature by the required quenching time.
めっき層の表面温度が200℃~250℃の範囲になるまで冷却することで、めっき層が凝固して〔Al・Zn混合組織〕及び〔Al/Zn/MgZn2の三元共晶組織〕が形成される。その後、上記の平均冷却速度で急冷することで、第2領域の微細組織を制御して、第2領域の単位面積当たりのZn相とAl相の平均粒径が50μm以下にする。上記の冷却条件から外れると、第2領域の断面の面積1μm2当たりのZn相及びAl相の平均粒径を好ましい範囲に制御することが困難になる。 By cooling the plating layer until its surface temperature falls within the range of 200°C to 250°C, the plating layer solidifies and the [Al/Zn mixed structure] and [ternary eutectic structure of Al/Zn/ MgZn2 ] are formed. It is formed. Thereafter, by rapidly cooling at the above average cooling rate, the microstructure of the second region is controlled so that the average grain size of the Zn phase and Al phase per unit area in the second region is 50 μm or less. If the above cooling conditions are not met, it becomes difficult to control the average particle size of the Zn phase and Al phase per 1 μm 2 of cross-sectional area of the second region within a preferable range.
以上により、本実施形態の溶融Zn-Al-Mg系めっき鋼材を製造できる。
本実施形態の溶融Zn-Al-Mg系めっき鋼材は、端部及び加工部における耐食性をより向上できる。
Through the above steps, the hot-dip Zn--Al--Mg based plated steel material of this embodiment can be manufactured.
The hot-dip Zn-Al-Mg-based plated steel material of this embodiment can further improve the corrosion resistance at the edges and processed parts.
板厚0.8mmまたは2.3mmのSPCC (JIS G3141)を脱脂後、東栄社製の溶融めっきシミュレーターでN2-H2雰囲気中、800℃で加熱還元処理し、めっき浴温まで冷却した後、表1に記載のめっき層の平均組成に対応する種々の組成のめっき浴に浸漬、その後、N2ワイピングでめっき付着量を片面で135g/m2とした。めっき浴温度は450℃とした。 After degreasing SPCC (JIS G3141) with a plate thickness of 0.8 mm or 2.3 mm, heat reduction treatment was performed at 800°C in an N 2 - H 2 atmosphere using a hot-dip plating simulator manufactured by Toeisha, and after cooling to the plating bath temperature. , immersed in plating baths with various compositions corresponding to the average composition of the plating layer listed in Table 1, and then wiping with N 2 to give a coating weight of 135 g/m 2 on one side. The plating bath temperature was 450°C.
〔Al・Zn混合組織〕の制御は、めっき後の冷却制御で行った。めっき後の鋼板を、めっき層の表面温度が200~250℃の範囲になるまで平均冷却速度3~6℃/秒で冷却し、冷却終了後、平均冷却速度40℃/秒以上で100℃以下になるまで急冷した。急冷の手段は水冷とした。このようにして発明例1~44及び比較例1~6のめっき鋼板を製造した。 [Al/Zn mixed structure] was controlled by cooling control after plating. The plated steel plate is cooled at an average cooling rate of 3 to 6°C/sec until the surface temperature of the plating layer is in the range of 200 to 250°C, and after cooling is finished, the average cooling rate is 40°C/sec or more and 100°C or less. It was rapidly cooled until The means of rapid cooling was water cooling. In this way, plated steel sheets of Invention Examples 1 to 44 and Comparative Examples 1 to 6 were produced.
めっき層の平均組成は、めっき層を剥離して溶解した後、誘導結合プラズマ発光分析法により、めっき層に含まれる元素の含有量を分析することで測定した。 The average composition of the plating layer was measured by peeling off the plating layer and dissolving it, and then analyzing the content of elements contained in the plating layer using inductively coupled plasma emission spectrometry.
めっき層における〔Al・Zn混合組織〕の面積率は、めっき層の断面(めっき層の表面に垂直なめっき層の断面)を、走査型電子顕微鏡で1000倍に拡大した状態で、反射電子像を5箇所撮影した。写真は、めっき層の厚み全体が視野に入るように撮影した。写真撮影位置はランダムに選択した。更に、走査型電子顕微鏡に付属するエネルギー分散型X線元素分析装置を用いて、撮影した写真に対応する元素マッピングデータを取得し、〔Al・Zn混合組織〕を特定した。そして、全部の断面写真に現れている〔Al・Zn混合組織〕の全断面積を測定し、これを、全部の断面写真に現れているめっき層の断面積で除することで、〔Al・Zn混合組織〕の面積率を測定した。 The area ratio of [Al/Zn mixed structure] in the plating layer can be determined using a backscattered electron image of a cross section of the plating layer (a cross section of the plating layer perpendicular to the surface of the plating layer) magnified 1000 times using a scanning electron microscope. Photographed at 5 locations. The photographs were taken so that the entire thickness of the plating layer could be seen. The photographic location was randomly selected. Furthermore, using an energy dispersive X-ray elemental analyzer attached to a scanning electron microscope, elemental mapping data corresponding to the photographed photograph was obtained, and [Al/Zn mixed structure] was identified. Then, by measuring the total cross-sectional area of the [Al/Zn mixed structure] appearing in all the cross-sectional photographs and dividing this by the cross-sectional area of the plating layer appearing in all the cross-sectional photographs, The area ratio of [Zn mixed structure] was measured.
〔Al・Zn混合組織〕における第1領域、第2領域及び第3領域の平均Zn濃度は次のようにして測定した。
めっき層の断面(めっき層の表面に平行なめっき層の断面)を、走査型電子顕微鏡で1000倍に拡大した状態で、反射電子像を5箇所撮影した。写真は、めっき層の厚み全体が視野に入るように撮影した。写真撮影位置はランダムに選択した。更に、走査型電子顕微鏡に付属するエネルギー分散型X線元素分析装置を用いて、撮影した写真に対応する元素マッピングデータを取得し、〔Al・Zn混合組織〕を特定した。元素マッピングデータの取得時のSEMの加速電圧は15kVに設定した。この場合、約1μm2の領域毎にZn濃度が測定されるようになり、約1μmのメッシュでの成分分析が可能になる。元素マッピングデータの成分分析結果から得られたZn%を基に、第1領域、第2領域及び第3領域の範囲を決定した。
The average Zn concentration in the first region, second region, and third region in [Al/Zn mixed structure] was measured as follows.
A cross section of the plating layer (a cross section of the plating layer parallel to the surface of the plating layer) was magnified 1000 times using a scanning electron microscope, and backscattered electron images were taken at five locations. The photographs were taken so that the entire thickness of the plating layer could be seen. The photographic location was randomly selected. Furthermore, using an energy dispersive X-ray elemental analyzer attached to a scanning electron microscope, elemental mapping data corresponding to the photographed photograph was obtained, and [Al/Zn mixed structure] was identified. The accelerating voltage of the SEM during acquisition of elemental mapping data was set to 15 kV. In this case, the Zn concentration is measured for each area of about 1 μm 2 , making it possible to analyze the components with a mesh of about 1 μm. The ranges of the first region, second region, and third region were determined based on the Zn% obtained from the component analysis results of the elemental mapping data.
具体的には、Zn濃度が75質量%以上85質量%未満の範囲の領域を第1領域と特定し、Zn濃度が67質量%以上75質量%未満の範囲の領域を第2領域と特定し、Zn濃度が55質量%以上67質量%未満の範囲の領域を第3領域と特定した。 Specifically, a region in which the Zn concentration is in a range of 75% by mass or more and less than 85% by mass is specified as the first region, and a region in which the Zn concentration is in the range of 67% by mass or more and less than 75% by mass is specified as the second region. , the region in which the Zn concentration ranged from 55% by mass to less than 67% by mass was specified as the third region.
また、第2領域における面積1μm2当たりのZn相及びAl相の平均粒径は、次のようにして測定した。まず、めっき層の断面において、前記の方法で特定した〔Al・Zn混合組織〕の第2領域に対し、走査型電子顕微鏡によって2kVの加速電圧で50000倍の反射電子像を5か所ずつ撮影した。組成コントラストによりAl相は暗く、Zn相は明るく観察される。汎用画像処理ソフト(アドビ社製 Adobe Photoshop(登録商標))を用い、得られた画像を二値化し、白い領域と黒い領域の面積をそれぞれ測定した。また、白い領域と黒い領域の総数を計測した。次いで、白い領域と黒い領域の合計面積を、白い領域と黒い領域の合計個数で除することで、白い領域または黒い領域の1個あたりの面積を求めた。この面積から、白い領域または黒い領域の円相当直径を求め、これを第2領域における面積1μm2当たりのZn相及びAl相の平均粒径とした。 Furthermore, the average particle diameters of the Zn phase and Al phase per 1 μm 2 of area in the second region were measured as follows. First, on the cross section of the plating layer, a backscattered electron image was taken at 50,000x magnification at 2kV acceleration voltage at 5 locations for the second region of [Al/Zn mixed structure] identified by the above method using a scanning electron microscope. did. Due to the compositional contrast, the Al phase is observed to be dark and the Zn phase to be observed to be bright. The obtained image was binarized using general-purpose image processing software (Adobe Photoshop (registered trademark) manufactured by Adobe), and the areas of the white region and the black region were measured. In addition, the total number of white areas and black areas was measured. Next, the area of each white area or black area was determined by dividing the total area of the white area and the black area by the total number of white areas and black areas. From this area, the equivalent circle diameter of the white region or the black region was determined, and this was taken as the average particle diameter of the Zn phase and Al phase per 1 μm 2 of area in the second region.
また、第2領域のAl相に、Mgを含有する金属間化合物相が存在するか否かの判定は、3次元アトムプローブ法により行った。まず、部分的に切り出しためっき層を、先端径が100nmの針状の測定試料に加工した。針状の測定試料の先端には、〔Al・Zn混合組織〕の第2領域が含まれるようにした。次いで、針状の測定試料に、最大で10kV程度の正電圧を印加して、測定試料の最先端において電界蒸発現象を発生させた。電界蒸発したイオンを2次元検出器によって検出することで、原子配列を特定した。また、検出器に到達するまでの原子の飛行時間からイオン種を同定した。このようにして個々に検出されたイオンを深さ方向へ連続的に検出し、検出された順番にイオンを並べるデータ再構築を行うことで、3次元の原子分布を得た。得られた原子分布から、金属間化合物相の有無を確認した。また、金属間化合物相が確認された場合は、1つの第2領域における金属間化合物相の総数を計数した。5つの測定試料に対して金属間化合物相の総数を計数し、平均値を金属間化合物相の個数とした。図2A及び図2Bに、Al相の3次元アトムプローブ法(3D-AP分析)の結果の例を示す。この測定方法によれば、測定試料中に金属間化合物が含まれていることが検出できる。 Further, the determination as to whether or not an intermetallic compound phase containing Mg was present in the Al phase in the second region was performed using a three-dimensional atom probe method. First, a partially cut out plating layer was processed into a needle-shaped measurement sample with a tip diameter of 100 nm. The tip of the needle-shaped measurement sample included a second region of [Al/Zn mixed structure]. Next, a positive voltage of about 10 kV at maximum was applied to the needle-shaped measurement sample to generate an electric field evaporation phenomenon at the leading edge of the measurement sample. The atomic arrangement was determined by detecting the field-evaporated ions using a two-dimensional detector. In addition, the ion species were identified from the flight time of the atoms until they reached the detector. A three-dimensional atomic distribution was obtained by sequentially detecting the individually detected ions in this way in the depth direction and reconstructing the data by arranging the ions in the order in which they were detected. The presence or absence of an intermetallic compound phase was confirmed from the obtained atomic distribution. In addition, when an intermetallic compound phase was confirmed, the total number of intermetallic compound phases in one second region was counted. The total number of intermetallic compound phases was counted for the five measurement samples, and the average value was taken as the number of intermetallic compound phases. FIGS. 2A and 2B show examples of the results of the three-dimensional atom probe method (3D-AP analysis) of the Al phase. According to this measurement method, it is possible to detect that an intermetallic compound is contained in the measurement sample.
〔Al・Zn混合組織〕の核生成点の分布の測定方法は、次の通りとした。まず、めっき層の断面観察を行うことでめっき層の厚みを測定した。続いて、めっき層の表面において、一辺が1mmの正方形の領域を測定領域とした。次いで、測定領域におけるめっき層を表面から徐々に研削し、新たに現れた研削面を電子顕微鏡によって観察した。具体的には、めっき層の全厚をtとしたとき、めっき層表面から深さ方向にt/4位置、t/2位置及び3t/4位置において研削面を順次露出させ、各研削面において、都度、〔Al・Zn混合組織〕の形態を電子顕微鏡で確認した。研削する深さは事前に付与した圧痕の形状変化を観察して制御した。 The method for measuring the distribution of nucleation points in [Al/Zn mixed structure] was as follows. First, the thickness of the plating layer was measured by observing the cross section of the plating layer. Subsequently, on the surface of the plating layer, a square area with one side of 1 mm was set as a measurement area. Next, the plating layer in the measurement area was gradually ground from the surface, and the newly appeared ground surface was observed using an electron microscope. Specifically, when the total thickness of the plating layer is t, the ground surfaces are sequentially exposed at t/4 position, t/2 position, and 3t/4 position in the depth direction from the surface of the plating layer, and each ground surface is In each case, the morphology of the [Al/Zn mixed structure] was confirmed using an electron microscope. The depth of grinding was controlled by observing changes in the shape of the indentations made in advance.
〔Al・Zn混合組織〕における核生成点は、〔Al・Zn混合組織〕の一次アーム同士の結合点である。〔Al・Zn混合組織〕の核生成点から比較的離れた研削面では、一次アームが離散して配置されているように見えるが、核生成点に比較的近い研削面では、4つまたは6つの一次アームが近接するように見える。そこで、各研削面を観察した際に、核生成点が観察中の研削面の鋼材側にあるのか、またはめっき層の表面側にあるかを、各研削面における一次アームの形状の変化から推測した。このようにして、めっき層表面から深さ方向にt/4位置、t/2位置及び3t/4位置における研削面において、都度、〔Al・Zn混合組織〕の形態を確認することで、核生成点が、t/2位置よりも鋼材側にあるか、めっき層表面側にあるかを確認した。そして、測定領域内において観察された〔Al・Zn混合組織〕の核生成点の全個数のうち、t/2位置よりも鋼材側にある核生成点の個の割合を求めた。以上の方法を計5か所の測定領域に対して実施し、得られた値の平均を当該めっき層のt/2位置よりも鋼材側にある核生成点の個の割合とした。 The nucleation point in the [Al/Zn mixed structure] is the connection point between the primary arms of the [Al/Zn mixed structure]. On the ground surface relatively far from the nucleation point of [Al/Zn mixed structure], the primary arms appear to be arranged discretely, but on the ground surface relatively close to the nucleation point, there are four or six primary arms. The two primary arms appear to be close together. Therefore, when observing each ground surface, we can estimate whether the nucleation point is on the steel side of the ground surface being observed or on the surface side of the plating layer from the change in the shape of the primary arm on each ground surface. did. In this way, by checking the morphology of [Al/Zn mixed structure] on the ground surface at t/4 position, t/2 position, and 3t/4 position in the depth direction from the surface of the plating layer each time, the nucleus It was confirmed whether the generation point was closer to the steel material than the t/2 position or closer to the surface of the plating layer. Then, among the total number of nucleation points of [Al/Zn mixed structure] observed in the measurement region, the ratio of nucleation points located on the steel material side from the t/2 position was determined. The above method was carried out for a total of five measurement regions, and the average of the obtained values was taken as the percentage of nucleation points located on the steel material side from the t/2 position of the plating layer.
表2に、〔Al・Zn混合組織〕の核生成点の位置の欄を設け、めっき層をめっき厚方向の1/2位置にて鋼材側とめっき層表面側とに2等分に分割した場合に、〔Al・Zn混合組織〕の核生成点のうちの個数割合で60%以上の核生成点が、めっき層の鋼材側の領域に存在する場合を、○とし、そうでない場合を×とした。 Table 2 has a column for the position of the nucleation point of [Al/Zn mixed structure], and the plating layer is divided into two parts at 1/2 position in the plating thickness direction into the steel material side and the plating layer surface side. In this case, if 60% or more of the nucleation points in the [Al/Zn mixed structure] are present in the area on the steel side of the plating layer, it is marked as ○, otherwise it is marked as × And so.
(端面耐食性(端部耐食性))
板厚2.3mmの板を使用して得られためっき鋼板を、100mm×50mmに切断し、端面耐食性試験に供した。端面耐食性の評価は屋外曝露試験(環境中の塩化物イオン濃度が100ppm以下の場所である。)で行い、3日後の端面赤錆面積率で評価した。評価基準は下記の通りとし、◎、○、△を合格とした。
(Edge corrosion resistance (edge corrosion resistance))
A plated steel plate obtained using a plate with a plate thickness of 2.3 mm was cut into 100 mm x 50 mm and subjected to an end face corrosion resistance test. The end face corrosion resistance was evaluated by an outdoor exposure test (in a place where the chloride ion concentration in the environment is 100 ppm or less), and the end face red rust area ratio was evaluated after 3 days. The evaluation criteria were as follows, and ◎, ○, and △ were regarded as passing.
◎:赤錆面積率 0%以上20%未満
○:赤錆面積率 20%以上30%未満
△:赤錆面積率 30%以上40%未満
×:赤錆面積率 40%以上100%以下
◎: Red rust area ratio 0% or more and less than 20% ○: Red rust area ratio 20% or more and less than 30% △: Red rust area ratio 30% or more and less than 40% ×: Red rust area ratio 40% or more and less than 100%
(加工部耐食性)
板厚0.8mmの板を使用して得られためっき鋼板を、30×60mmに切断し、2T曲げ後に加工部耐食性に供した。加工部耐食性の評価は、CCT試験(塩水噴霧(0.5%NaCl、35℃)6時間→乾燥(50℃、45%RH)3時間→湿潤(50℃、95%RH)14時間→乾燥(50℃、45%RH)1時間)で行い、頭頂部の赤錆発生サイクル数で評価した。評価基準は下記の通りとし、◎、○、△を合格とした。
(Corrosion resistance of processed parts)
A plated steel plate obtained by using a plate with a thickness of 0.8 mm was cut into 30×60 mm, and after 2T bending, the processed portion was subjected to corrosion resistance. The corrosion resistance of processed parts was evaluated by CCT test (salt spray (0.5% NaCl, 35°C) for 6 hours → drying (50°C, 45% RH) for 3 hours → wet (50°C, 95% RH) for 14 hours → drying. (50° C., 45% RH) for 1 hour) and evaluated by the number of cycles in which red rust appeared on the top of the head. The evaluation criteria were as follows, and ◎, ○, and △ were regarded as passing.
◎:赤錆発生サイクル数 100サイクル以上
○:赤錆発生サイクル数 80以上100サイクル未満
△:赤錆発生サイクル数 60以上80サイクル未満
×:赤錆発生サイクル数 60サイクル以下
◎: Number of cycles where red rust occurs: 100 cycles or more ○: Number of cycles where red rust occurs: 80 or more but less than 100 cycles △: Number of cycles where red rust occurs: 60 or more but less than 80 cycles ×: Number of cycles where red rust occurs: 60 cycles or less
図1Aには、比較例5のめっき層の断面を走査型電子顕微鏡の反射電子モードで観察した反射電子像写真を示し、図1Bには、発明例1の反射電子像写真を示す。いずれも、〔Al/Zn/MgZn2の三元共晶組織〕の素地中に、〔Al・Zn混合組織〕を含んでいた。
同様に、発明例のNo.2~44、比較例No.1~4及び6のめっき層は、〔Al/Zn/MgZn2の三元共晶組織〕の素地中に、〔Al・Zn混合組織〕を含んでいた。
表1及び表2に示すように、発明例のNo.1~44の溶融Zn-Al-Mg系めっき鋼板は、いずれも本発明の範囲を満たしており、端面耐食性及び加工部耐食性が良好である。また、表2に示すように、〔Al・Zn混合組織〕の核生成点の位置が「○」と評価された溶融Zn-Al-Mg系めっき鋼材は、端面耐食性及び加工部耐食性がより優れている。
FIG. 1A shows a backscattered electron image photograph of a cross section of the plating layer of Comparative Example 5 observed in the backscattered electron mode of a scanning electron microscope, and FIG. 1B shows a backscattered electron image photograph of Invention Example 1. All contained [Al/Zn mixed structure] in the matrix of [ternary eutectic structure of Al/Zn/MgZn 2] .
Similarly, invention example No. 2 to 44, Comparative Example No. Plating layers 1 to 4 and 6 included [Al/Zn mixed structure] in the base of [ternary eutectic structure of Al/Zn/MgZn 2] .
As shown in Tables 1 and 2, invention example No. All of the hot-dip Zn-Al-Mg-based plated steel sheets of Nos. 1 to 44 satisfy the scope of the present invention, and have good end face corrosion resistance and processed part corrosion resistance. In addition, as shown in Table 2, hot-dip Zn-Al-Mg coated steel materials for which the position of the nucleation point of [Al/Zn mixed structure] was evaluated as "○" have better end face corrosion resistance and processed part corrosion resistance. ing.
一方、比較例No.1の溶融Zn-Al-Mg系めっき鋼材は、めっき層のAl含有量が低く、めっき層における〔Al・Zn混合組織〕の面積率が低く、また、〔Al・Zn混合組織〕中に第2領域が含まれなかった。このため、端面耐食性及び加工部耐食性が劣位になった。
比較例No.2の溶融Zn-Al-Mg系めっき鋼材は、めっき層のAl含有量が過剰であり、めっき層における〔Al・Zn混合組織〕の面積率が高くなり、端面耐食性及び加工部耐食性が劣位になった。
比較例No.3の溶融Zn-Al-Mg系めっき鋼材は、めっき層中にMgが含まれなかったため、端面耐食性及び加工部耐食性が劣位になった。
比較例No.4の溶融Zn-Al-Mg系めっき鋼材は、めっき層中のMg含有量が過剰であったため、端面耐食性及び加工部耐食性が劣位になった。
比較例No.5の溶融Zn-Al-Mg系めっき鋼材は、200℃~250℃の範囲外で急冷したため、〔Al・Zn混合組織〕中の第2領域の断面の面積1μm2当たりのZn相及びAl相の平均粒径が発明範囲から外れ、端面耐食性及び加工部耐食性が劣位になった。
比較例No.6の溶融Zn-Al-Mg系めっき鋼材は、冷却速度が40℃/s未満で急冷したため、〔Al・Zn混合組織〕中の第2領域の断面の面積1μm2当たりのZn相及びAl相の平均粒径が発明範囲から外れ、端面耐食性及び加工部耐食性が劣位になった。
On the other hand, comparative example No. The hot-dip Zn-Al-Mg-based plated steel material No. 1 has a low Al content in the plating layer, a low area ratio of the [Al/Zn mixed structure] in the plating layer, and a large number of particles in the [Al/Zn mixed structure]. Two areas were not included. For this reason, the end face corrosion resistance and processed part corrosion resistance were inferior.
Comparative example no. In the hot-dip Zn-Al-Mg-based plated steel material No. 2, the Al content in the plated layer is excessive, and the area ratio of [Al/Zn mixed structure] in the plated layer becomes high, resulting in inferior end face corrosion resistance and processed part corrosion resistance. became.
Comparative example no. Since the hot-dip Zn-Al-Mg-based plated steel material of No. 3 did not contain Mg in the plating layer, the end face corrosion resistance and processed part corrosion resistance were inferior.
Comparative example no. In the hot-dip Zn-Al-Mg-based plated steel material of No. 4, the end face corrosion resistance and processed part corrosion resistance were inferior because the Mg content in the plating layer was excessive.
Comparative example no. Since the hot-dip Zn-Al-Mg-based plated steel material of No. 5 was rapidly cooled outside the range of 200°C to 250°C, the Zn phase and Al phase per 1 μm 2 of the cross-sectional area of the second region in the [Al/Zn mixed structure] The average particle size of the steel was out of the invention range, and the end face corrosion resistance and processed part corrosion resistance were inferior.
Comparative example no. Since the hot-dip Zn-Al-Mg-based plated steel material No. 6 was rapidly cooled at a cooling rate of less than 40°C/s, the Zn phase and Al phase per 1 μm 2 of the cross-sectional area of the second region in the [Al/Zn mixed structure] The average particle size of the steel was out of the invention range, and the end face corrosion resistance and processed part corrosion resistance were inferior.
Claims (10)
前記めっき層は、平均組成で、Mg:1~10質量%、Al:4~22質量%を含有し、残部がZn及び不純物からなり、
前記めっき層には、〔Al/Zn/MgZn2の三元共晶組織〕の素地中に、〔Al・Zn混合組織〕を含んでおり、
前記〔Al・Zn混合組織〕には、Zn濃度が75質量%以上85質量%未満の範囲である第1領域と、前記第1領域の内側にあって、Zn濃度が67質量%以上75質量%未満の範囲である第2領域とを含み、
前記第2領域には、Al相とZn相とが混在しており、前記めっき層の表面に垂直な前記めっき層の断面における、前記Al相及び前記Zn相の平均粒径が50nm以下であることを特徴とする溶融Zn-Al-Mg系めっき鋼材。 comprising a steel material and a plating layer formed on the surface of the steel material,
The plating layer has an average composition of Mg: 1 to 10% by mass, Al: 4 to 22% by mass, and the remainder consists of Zn and impurities,
The plating layer contains [Al/Zn mixed structure] in the base of [ternary eutectic structure of Al/Zn/MgZn 2] ,
The [Al/Zn mixed structure] includes a first region where the Zn concentration is in the range of 75% by mass or more and less than 85% by mass, and a region inside the first region where the Zn concentration is in the range of 67% by mass or more and 75% by mass. and a second region in a range of less than %,
In the second region, an Al phase and a Zn phase are mixed, and the average particle size of the Al phase and the Zn phase in a cross section of the plating layer perpendicular to the surface of the plating layer is 50 nm or less. A hot-dip Zn-Al-Mg based plated steel material.
前記〔Al・Zn混合組織〕には、前記第1領域と、前記第2領域と、前記第2領域の内側にあって、Zn濃度が55質量%以上67質量%未満の範囲である第3領域とを含むことを特徴とする請求項1乃至請求項5の何れか一項に記載の溶融Zn-Al-Mg系めっき鋼材。 The average composition of the plating layer contains Mg: 1 to 10% by mass, Al: 8 to 22% by mass, and the remainder is Zn and impurities,
The [Al/Zn mixed structure] includes the first region, the second region, and a third region located inside the second region and having a Zn concentration in a range of 55% by mass or more and less than 67% by mass. The hot-dip Zn-Al-Mg based plated steel material according to any one of claims 1 to 5, characterized by comprising a region.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020100075A JP7436840B2 (en) | 2020-06-09 | 2020-06-09 | Hot-dip Zn-Al-Mg plated steel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020100075A JP7436840B2 (en) | 2020-06-09 | 2020-06-09 | Hot-dip Zn-Al-Mg plated steel |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021195563A JP2021195563A (en) | 2021-12-27 |
JP7436840B2 true JP7436840B2 (en) | 2024-02-22 |
Family
ID=79196415
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020100075A Active JP7436840B2 (en) | 2020-06-09 | 2020-06-09 | Hot-dip Zn-Al-Mg plated steel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7436840B2 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003268517A (en) | 2002-03-08 | 2003-09-25 | Nippon Steel Corp | Hot dip plated steel having excellent surface smoothness |
WO2017073579A1 (en) | 2015-10-26 | 2017-05-04 | 新日鐵住金株式会社 | Plated steel sheet |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3179401B2 (en) * | 1996-12-13 | 2001-06-25 | 日新製鋼株式会社 | Hot-dip Zn-Al-Mg plated steel sheet with good corrosion resistance and surface appearance and method for producing the same |
-
2020
- 2020-06-09 JP JP2020100075A patent/JP7436840B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003268517A (en) | 2002-03-08 | 2003-09-25 | Nippon Steel Corp | Hot dip plated steel having excellent surface smoothness |
WO2017073579A1 (en) | 2015-10-26 | 2017-05-04 | 新日鐵住金株式会社 | Plated steel sheet |
Also Published As
Publication number | Publication date |
---|---|
JP2021195563A (en) | 2021-12-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI664315B (en) | Coated steel | |
JP6428974B1 (en) | Plated steel | |
EP3266900B1 (en) | Molten al-zn-mg-si-plated steel sheet | |
JP6368730B2 (en) | Molten Al-Zn-Mg-Si plated steel sheet and method for producing the same | |
JP7445128B2 (en) | Hot-dip Zn-Al-Mg coated steel with excellent workability and corrosion resistance | |
CN117026132A (en) | Molten Al-Zn-Mg-Si-Sr plated steel sheet and method for producing same | |
CN113508186A (en) | Molten Al-Zn-Mg-Si-Sr plated steel sheet and method for producing same | |
WO2020213688A1 (en) | Plated steel sheet | |
Lee et al. | Newly designed surface control using Si addition in trace quantity for Zn-2Al-3Mg alloy coated steel sheet with improved corrosion resistance | |
JP7401827B2 (en) | Hot-dip Zn-based plated steel sheet | |
JP7277822B2 (en) | plated steel | |
JP7417102B2 (en) | Hot-dip Zn-Al-Mg plated steel | |
JP7436840B2 (en) | Hot-dip Zn-Al-Mg plated steel | |
JPWO2019049307A1 (en) | Zn-Al-Mg plated steel sheet | |
JP7417103B2 (en) | Hot-dip Zn-Al-Mg plated steel material | |
JP7356069B2 (en) | Hot-dip Zn-Al-Mg plated steel material | |
JP7564133B2 (en) | Hot-dip Al-Zn-Si-Mg-plated steel sheet and its manufacturing method | |
WO2024214328A1 (en) | Molten al-zn-based plated steel sheet and method for manufacturing same | |
JP7499849B2 (en) | Hot-dip Al-Zn coated steel sheet and its manufacturing method | |
JP2023036982A (en) | HOT-DIP Al-Zn-Si-Mg BASED PLATED STEEL SHEET AND METHOD FOR MANUFACTURING THE SAME | |
JP2022140247A (en) | HOT-DIP Al-Zn-Si-Mg BASED PLATED STEEL SHEET AND METHOD FOR MANUFACTURING THE SAME | |
JP2023005987A (en) | Zn-Al-Mg ALLOY-PLATED STEEL SHEET AND METHOD FOR PRODUCING THE SAME | |
Lee et al. | Newly Designed Surface Control Using Si Addition in Trace Quantity for Zn-2al-3mg Alloy Coated Steel Sheet with Superior Corrosion Resistance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20230217 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20231122 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20231128 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20231219 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240109 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240122 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 7436840 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |