JP7436802B2 - Rotary vibrator and vibrating conveyance device - Google Patents

Rotary vibrator and vibrating conveyance device Download PDF

Info

Publication number
JP7436802B2
JP7436802B2 JP2020003118A JP2020003118A JP7436802B2 JP 7436802 B2 JP7436802 B2 JP 7436802B2 JP 2020003118 A JP2020003118 A JP 2020003118A JP 2020003118 A JP2020003118 A JP 2020003118A JP 7436802 B2 JP7436802 B2 JP 7436802B2
Authority
JP
Japan
Prior art keywords
mass body
leaf spring
axis
base
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020003118A
Other languages
Japanese (ja)
Other versions
JP2021109746A (en
Inventor
喜文 田邉
智三 犬井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sinfonia Technology Co Ltd
Original Assignee
Sinfonia Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sinfonia Technology Co Ltd filed Critical Sinfonia Technology Co Ltd
Priority to JP2020003118A priority Critical patent/JP7436802B2/en
Priority to KR1020210000764A priority patent/KR20210089584A/en
Priority to TW110100859A priority patent/TW202126559A/en
Priority to CN202110021981.8A priority patent/CN113173386A/en
Publication of JP2021109746A publication Critical patent/JP2021109746A/en
Application granted granted Critical
Publication of JP7436802B2 publication Critical patent/JP7436802B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Jigging Conveyors (AREA)

Description

本発明は、共振特性を決定づける主機械要素の取付状態を適正化することで振動機としての高周波数、大振幅化を図った、回転振動機及び振動搬送装置に関するものである。 The present invention relates to a rotary vibrator and a vibrating conveyance device that achieve high frequency and large amplitude as a vibrator by optimizing the mounting state of main mechanical elements that determine resonance characteristics.

この種の回転振動機として、例えば図10に示すような構造が従来より一般的である。この回転振動機100は、第1質量体である振動盤101と、この振動盤101に対し対向軸m方向に相対して配置される第2質量体である基台102と、前記振動盤101と前記基台102を前記対向軸m回りに相対振動させる加振源103と、前記振動盤101と前記基台102の間を接続する位置に配置される第1弾性体104と、を備えて構成されている。 As this type of rotary vibrator, a structure as shown in FIG. 10, for example, is conventionally common. This rotary vibrator 100 includes a diaphragm 101 that is a first mass body, a base 102 that is a second mass body that is arranged opposite to the diaphragm 101 in the direction of the opposing axis m, and and an excitation source 103 that causes the base 102 to vibrate relatively around the opposing axis m, and a first elastic body 104 disposed at a position connecting the vibration plate 101 and the base 102. It is configured.

このような回転振動機100の振動盤101上に図10のように搬送路105を取り付けて例えば物品搬送装置であるパーツフィーダPFとして用いるとき、搬送速度を高めるためにも、かかる回転振動機100に高周波数、大振幅化が求められる。 When a conveying path 105 is attached to the vibrating plate 101 of such a rotary vibrator 100 as shown in FIG. 10 and used as a parts feeder PF, which is an article conveying device, for example, the rotary vibrator 100 is used in order to increase the conveying speed. High frequency and large amplitude are required.

回転振動機100は、主として第1弾性体104が共振特性を決定する要因になる。例えば第1弾性体104が図示のような板バネである場合、板バネ104を厚く、長くすれば、近時の高周波数、大振幅化の要請に応えることができる。 In the rotary vibrator 100, the first elastic body 104 is the main factor that determines the resonance characteristics. For example, when the first elastic body 104 is a leaf spring as shown in the figure, by making the leaf spring 104 thicker and longer, it is possible to meet the recent demands for higher frequencies and larger amplitudes.

特許文献1は、振動盤と基台を接続する板バネを改良した重ね板バネ構造を示している。従来は単体の板バネで構成されていたため、厚肉にすることで折れ易くなるという不具合があった。これに対して同文献のものは、複数の板バネで一枚の板バネの機能を実現しており、個々の板バネは曲がり易くなっているので、全体として板バネが折れることが解消されている。 Patent Document 1 shows a stacked leaf spring structure in which a leaf spring connecting a diaphragm and a base is improved. Conventionally, they were constructed from a single leaf spring, which had the problem of being made thicker and more likely to break. On the other hand, in the same document, multiple leaf springs perform the function of a single leaf spring, and each individual leaf spring bends easily, eliminating the problem of the leaf spring breaking as a whole. ing.

特開2012-96853号公報Japanese Patent Application Publication No. 2012-96853

ところで、高周波数、大振幅を実現するためには、加振ロスを極力低減することが求められる。加振ロスとは、ばねと固定部材との間の内部摩擦などによる加振エネルギーの損失をさす。 By the way, in order to achieve high frequency and large amplitude, it is required to reduce excitation loss as much as possible. Vibration loss refers to the loss of vibration energy due to internal friction between the spring and the fixed member.

図10は、第1弾性体104が長方形の板バネによって構成されている。板バネ104は長方形状であり、振動盤101と基台102の対向軸mの周囲において当該対向軸mと傾斜する方向に延在して配置されている。 In FIG. 10, the first elastic body 104 is constituted by a rectangular leaf spring. The leaf spring 104 has a rectangular shape and is disposed around the opposing axis m of the diaphragm 101 and the base 102 so as to extend in a direction inclined to the opposing axis m.

図11のように、板バネ104の基台固定側βの厚み方向・幅方向中心に原点Oをとり、長手方向をz軸、厚み方向をx軸、幅方向をy軸、対向軸mを回転軸とする。 As shown in Fig. 11, the origin O is set at the center of the thickness direction and width direction of the base fixed side β of the leaf spring 104, the longitudinal direction is the z axis, the thickness direction is the x axis, the width direction is the y axis, and the opposing axis m is Let it be the axis of rotation.

今、図10に示すパーツフィーダPFにおいて振動盤101と基台102が互いに異なる方向に回転した場合、外周に縦向きに設置された板バネ104には、図12に示すように原点O側及び反対側のバネ両固定端にx方向の力Fx、F´xと、y軸回りの固定モーメントMy、M´yからなる長手方向の曲げであるAモードのたわみが発生する。つまり、板バネ104を両端で固定接続している振動盤101、基台102にもFx、F´xとMy、M´yが作用する。 Now, when the vibrating plate 101 and the base 102 rotate in different directions from each other in the parts feeder PF shown in FIG. A-mode deflection, which is longitudinal bending, is generated at both fixed ends of the opposite spring, consisting of forces Fx, F'x in the x direction and fixing moments My, M'y about the y-axis. That is, Fx, F'x and My, M'y also act on the diaphragm 101 and the base 102 to which the plate spring 104 is fixedly connected at both ends.

従来において例えば原点Oと反対側の板バネの留め方として、図13(a)に示すようにy軸方向への留め方と、図13(b)に示すようにx軸方向への留め方がある。 Conventionally, for example, there are two ways to fasten a leaf spring on the side opposite to the origin O: in the y-axis direction, as shown in FIG. 13(a), and in the x-axis direction, as shown in FIG. 13(b). There is.

図13(a)の場合、y軸方向ボルト留めのため、y軸回りの曲げモーメントMyが発生すると板バネ104がボルトvの回りで回転滑りが発生する。この滑りが生じた際、摩擦によるエネルギー損失につながり、共振倍率が下がる結果、小さい加振力で大振幅を達成できなくなる。 In the case of FIG. 13A, since the bolts are fastened in the y-axis direction, when a bending moment My about the y-axis occurs, the leaf spring 104 rotates and slips around the bolt v. When this slippage occurs, it leads to energy loss due to friction, and as a result, the resonance magnification decreases, making it impossible to achieve a large amplitude with a small excitation force.

一方、図13(b)の場合、x軸方向のボルト留めのため、図12に示したx軸方向の力Fxに対しては直交方向にボルト固定しているので、問題はない。しかし、図13(c)のようにy軸回りの曲げモーメントMyが例えば回転盤側固定部αに伝達される。すなわち、板バネ104が変形すると、本来なら同図13(c)に破線で示すようにバネが片持ち梁的に撓むところ、これを回転盤側固定部αに保持するために図中矢印で示すようなy軸回りのモーメントMyが回転盤側固定部αに伝達される。このとき、接続される振動盤101が軽量化のために薄い円盤型になっている場合等には、回転盤側固定部αが曲げモーメントに負けてしまい、図13(d)のように振動盤101が波打つように撓んでしまう。すると、バネがS字に曲がらず、周波数が上がらないため、高周波数を実現できなくなる。また、振動盤101が波打つことで、振動盤101の上に配置される搬送体Bと接触干渉や摩擦が生じ、やはり、加振ロスが生じ、大振幅化を実現できなくなる。ばねがS字に曲がらない場合、第1弾性体の弾性係数計算に、振動盤101などのたわみによるばね固定端条件を追加する必要があり、より複雑な計算式となってしまう。 On the other hand, in the case of FIG. 13(b), since the bolts are fastened in the x-axis direction, there is no problem because the bolts are fastened in a direction perpendicular to the force Fx in the x-axis direction shown in FIG. However, as shown in FIG. 13(c), the bending moment My around the y-axis is transmitted to, for example, the rotary disk side fixed part α. That is, when the leaf spring 104 is deformed, the spring would normally bend in a cantilevered manner as shown by the broken line in FIG. A moment My around the y-axis as shown in is transmitted to the rotating disk side fixed part α. At this time, if the diaphragm 101 to be connected has a thin disk shape to reduce weight, the fixed part α on the rotary disk side will succumb to the bending moment, causing vibration as shown in FIG. 13(d). The board 101 bends in a wavy manner. If this happens, the spring will not bend into an S-shape, and the frequency will not increase, making it impossible to achieve high frequencies. Further, the undulation of the vibration plate 101 causes contact interference and friction with the carrier B placed on the vibration plate 101, which also causes vibration loss and makes it impossible to achieve a large amplitude. If the spring does not bend in an S-shape, it is necessary to add the spring fixed end condition due to the deflection of the diaphragm 101 etc. to the calculation of the elastic coefficient of the first elastic body, resulting in a more complicated calculation formula.

さりとて、第1質量体である振動盤101を厚くすると、慣性モーメントが上がり、外周が厚くなると回りにくくなる。したがって、これによっても高周波数、大振幅化を実現することは難しい。 In other words, if the diaphragm 101, which is the first mass body, is made thicker, the moment of inertia will increase, and if the outer periphery becomes thicker, it will become difficult to rotate. Therefore, even with this, it is difficult to achieve high frequency and large amplitude.

このような不具合は、重ね板バネの前身である単一板バネ構造であっても全く同様である。重ね板バネ構造の場合にはさらに、板バネ同士の間にも滑りの問題がある。 Such problems are exactly the same even in the single leaf spring structure, which is the predecessor of the stacked leaf spring. In the case of a stacked leaf spring structure, there is also the problem of slippage between the leaf springs.

本発明は、共振特性を決定づける主機械要素である第1弾性体を質量体に適切に取り付けることで、部品間の滑りやばね固定部材のたわみによる加振ロスを解消して、振動機としての高周波数、大振幅化を実現可能とした、回転振動機及び振動搬送装置を実現することを目的としている。 By properly attaching the first elastic body, which is the main mechanical element that determines the resonance characteristics, to the mass body, the present invention eliminates vibration loss caused by slipping between parts and deflection of the spring fixing member. The objective is to realize a rotary vibrator and a vibration transfer device that can achieve high frequency and large amplitude.

本発明は、かかる目的を達成するために、次のような手段を講じたものである。 In order to achieve this object, the present invention takes the following measures.

すなわち、本発明に係る回転振動機は、第1質量体と、この第1質量体に対し対向軸方向に相対して配置される第2質量体と、前記第1質量体と前記第2質量体を前記対向軸回りに相対振動させる加振源と、前記第1質量体と前記第2質量体の間を接続する位置に配置される第1弾性体と、を具備するものにおいて、前記第1弾性体を、板バネと、前記板バネの一端側に連設されて前記第1質量体の一部をなす第1連設部と、前記板バネの他端側に連設されて前記第2質量体の一部をなす第2連設部とを含む一体型板バネ構造とし、このうち少なくとも前記第1連設部と前記第1質量体の本体部との間を前記対向軸に平行な方向に沿って連結具で連結され、前記板バネは前記対向軸に沿って延在し、且つ、前記対向軸の方向に沿った前記第1連設部の投影断面内に配置されていることを特徴とする。
That is, the rotary vibrator according to the present invention includes a first mass body, a second mass body disposed opposite to the first mass body in the opposite axial direction, and the first mass body and the second mass body. An excitation source that causes a body to vibrate relatively around the opposing axis; and a first elastic body disposed at a position connecting between the first mass body and the second mass body, the first elastic body comprising: 1 elastic body, a leaf spring, a first connecting part that is connected to one end of the leaf spring and forms a part of the first mass body, and a first connecting part that is connected to the other end of the leaf spring and forms a part of the first mass body. an integral leaf spring structure including a second continuous portion forming a part of the second mass body; The leaf springs are connected by connecting devices along parallel directions , the leaf springs extend along the opposing axes, and are arranged within a projected cross section of the first connecting portion along the direction of the opposing axes. It is characterized by the presence of

板バネの厚み方向をx方向、幅方向をy方向、長手方向をz方向とすると、板バネの両端を第1質量体と第2質量体に固定してS字状に変形させたときにy軸回りの曲げモーメントが掛かる。しかし、上記のように構成すると、連結具の軸力が対向方向すなわち軸回りの曲げモーメントに直交するので、固定部回りのすべりが発生しにくい。また、少なくとも第1弾性体が第1連設部を介して第1質量体の一部と一体になることで、固定モーメントを部材剛性で受けることができ、第1質量体の撓みの発生が抑えられ、第1質量体の適切な平行移動が実現できる。これにより、第1連設部と第1質量体の間の滑りや第1質量体の撓みによる加振ロスを解消して共振倍率があがり、小さな加振力でも高周波数、大振幅化を適切に実現できるようになる。 Assuming that the thickness direction of the leaf spring is the x direction, the width direction is the y direction, and the longitudinal direction is the z direction, when both ends of the leaf spring are fixed to the first mass body and the second mass body and deformed into an S shape, A bending moment around the y-axis is applied. However, with the above configuration, the axial force of the connector is perpendicular to the opposing direction, that is, the bending moment around the axis, so slippage around the fixed portion is less likely to occur. Further, since at least the first elastic body is integrated with a part of the first mass body via the first continuous portion, the fixing moment can be received by the member rigidity, and the occurrence of deflection of the first mass body is prevented. Therefore, appropriate parallel movement of the first mass body can be realized. This eliminates excitation loss due to slipping between the first connecting part and the first mass body and deflection of the first mass body, increasing the resonance magnification, and appropriately increasing the frequency and amplitude even with a small excitation force. It will be possible to realize this.

また、本発明に係る回転振動機は、第1質量体と、この第1質量体に対し対向軸方向に相対して配置される第2質量体と、前記第1質量体と前記第2質量体を前記対向軸回りに相対振動させる加振源と、前記第1質量体と前記第2質量体の間を接続する位置に配置される第1弾性体と、を具備するものにおいて、前記第1弾性体を、板バネと、前記板バネの一端側に連設されて前記第1質量体の一部をなす第1連設部と、前記板バネの他端側に連設されて前記第2質量体の一部をなす第2連設部とを含む一体型板バネ構造とし、このうち少なくとも前記第1連設部と前記第1質量体の本体部との間を前記対向軸に平行な方向に沿って連結具で連結するとともに、前記第2連設部と前記第2質量体の本体部との間を、前記対向軸方向と交差する第1方向、並びに前記対向軸方向及び前記第1方向と交差する第2方向に沿って連結していることが好適である。 Further, the rotary vibrator according to the present invention includes a first mass body, a second mass body disposed opposite to the first mass body in an opposing axial direction, the first mass body and the second mass body. An excitation source that causes a body to vibrate relatively around the opposing axis; and a first elastic body disposed at a position connecting between the first mass body and the second mass body, the first elastic body comprising: 1 elastic body, a leaf spring, a first connecting part that is connected to one end of the leaf spring and forms a part of the first mass body, and a first connecting part that is connected to the other end of the leaf spring and forms a part of the first mass body. an integral leaf spring structure including a second continuous portion forming a part of the second mass body; The second connecting portion and the main body portion of the second mass body are connected by a connecting tool along parallel directions, and the second connecting portion and the main body portion of the second mass body are connected in a first direction intersecting the opposing axial direction, and in the opposing axial direction and It is preferable that they are connected along a second direction intersecting the first direction.

このようにすると、第2質量体側において第1弾性体のねじり応力に対して強い留め方を第2連設部との間で実現することが可能になる。 In this way, it becomes possible to realize a fastening method that is strong against the torsional stress of the first elastic body on the second mass body side with the second continuous portion.

或いは、前記第2連設部と前記第2質量体の本体部との間も前記対向軸方向に沿って連結しているものも好適である。 Alternatively, it is also preferable that the second connecting portion and the main body portion of the second mass body are also connected along the direction of the opposing axis.

このようにすると、第2連設部と第2質量体との間においても、第1連設部と第1質量体との間におけると同様に、部品間の滑りやばね固定部材のたわみによる加振ロスを解消することができる。 In this way, between the second continuous part and the second mass body, as well as between the first continuous part and the first mass body, slippage between parts and deflection of the spring fixing member can be prevented. Vibration loss can be eliminated.

上記において、前記第2質量体が固定側であり、前記第1質量体が可動側であることが好適である。ここで、可動側とは、搬送体などの加振対象が具備される側であり、固定側とは、可動側のカウンターウェイトとしての働きをする側である。 In the above, it is preferable that the second mass body is on the fixed side and the first mass body is on the movable side. Here, the movable side is a side on which a vibrating object such as a carrier is provided, and the fixed side is a side that functions as a counterweight for the movable side.

このように、第1質量体を可動側に設定することで、可動部側での滑りやばね固定部材のたわみが優先的に解消されることになる。 In this way, by setting the first mass body on the movable side, slippage on the movable part side and deflection of the spring fixing member are preferentially eliminated.

特に、前記第1連設部と前記第1質量体の本体部との間を少なくとも2箇所において前記対向軸方向に沿って連結していることが好適である。 In particular, it is preferable that the first continuous portion and the main body portion of the first mass body are connected at at least two locations along the opposing axis direction.

このようにすれば、第1連設部を介して板バネが第1質量体の本体部に複数箇所でしっかり保持されるので、第1質量体が撓んだり傾いたりすることなく第2質量体に対して平行移動できるようになる。 In this way, the leaf spring is firmly held on the main body of the first mass body at a plurality of locations via the first continuous portion, so that the first mass body does not bend or tilt, and the second mass body You will be able to move parallel to your body.

そして、上記何れかに記載の回転振動機と、前記第1質量体上に固定され螺旋状の搬送路を備えた搬送体とにより振動搬送装置を構成すれば、搬送体上での物品の搬送速度を有効に向上させることが可能となる。 If a vibration conveyance device is constituted by the rotary vibrator according to any one of the above and a conveyance body fixed on the first mass body and provided with a spiral conveyance path, the article can be conveyed on the conveyance body. It becomes possible to effectively improve speed.

以上説明した本発明によれば、共振特性を決定づける主機械要素である第1弾性体を質量体に適切に取り付けることで、部品間の滑りやばね固定部材のたわみによる加振ロスを解消して高周波数、大振幅を実現可能とした、新規有用な回転振動機及び振動搬送装置を提供することができる。 According to the present invention described above, by appropriately attaching the first elastic body, which is the main mechanical element that determines the resonance characteristics, to the mass body, vibration loss due to slippage between parts and deflection of the spring fixing member can be eliminated. It is possible to provide a new and useful rotary vibrator and vibration conveyance device that can achieve high frequency and large amplitude.

本発明の一実施形態に係る回転振動機及び振動搬送装置を示す斜視図。FIG. 1 is a perspective view showing a rotary vibrator and a vibration conveyance device according to an embodiment of the present invention. 図1の分解図。Exploded view of FIG. 1. 図2の要部説明図。FIG. 3 is an explanatory diagram of the main parts of FIG. 2. 同実施形態を構成する第1弾性体を示す斜視図。FIG. 3 is a perspective view showing a first elastic body constituting the same embodiment. 同第1弾性体の構成及び取付説明図。FIG. 4 is an explanatory diagram of the configuration and attachment of the first elastic body. 同第1弾性体の作用説明図。An explanatory diagram of the action of the first elastic body. 本発明の変形例を示す図。The figure which shows the modification of this invention. 本発明の他の変形例を示す図。The figure which shows the other modification of this invention. 本発明のさらに他の変形例を示す図。The figure which shows the other modification of this invention. 従来例に係る回転振動機及び振動搬送装置を示す斜視図。FIG. 2 is a perspective view showing a rotary vibrator and a vibration conveyance device according to a conventional example. 同従来例の第1弾性体に関する説明図。FIG. 4 is an explanatory diagram regarding the first elastic body of the conventional example. 同第1弾性体の振動モードの説明図。FIG. 4 is an explanatory diagram of vibration modes of the first elastic body. 同従来例の不具合を説明する図。FIG. 3 is a diagram illustrating a problem in the conventional example.

以下、本発明の一実施形態を、図1~図6を参照して説明する。 An embodiment of the present invention will be described below with reference to FIGS. 1 to 6.

この実施形態の回転振動機Aは、第1質量体である振動盤1と、この振動盤1に対し対向軸m方向に相対して配置される第2質量体である基台2と、これら振動盤1と基台2を対向軸m回りに相対振動させる加振源3と、振動盤1と基台2の間を接続する位置に配置される第1弾性体4と、を備える。回転振動機Aには螺旋状に立ち上がる搬送路を有する搬送体Bが取り付けられて、振動搬送装置たるパーツフィーダPFが構成される。この実施形態の搬送体Bは、例えばICチップのような微小物品を整列、供給するために構成されるものである。 The rotary vibrator A of this embodiment includes a diaphragm 1 as a first mass body, a base 2 as a second mass body disposed opposite to the diaphragm 1 in the direction of the opposing axis m, and It includes an excitation source 3 that causes the diaphragm 1 and the base 2 to vibrate relative to each other around an opposing axis m, and a first elastic body 4 arranged at a position connecting the diaphragm 1 and the base 2. A conveyor B having a spiral conveyance path is attached to the rotary vibrator A, thereby configuring a parts feeder PF as a vibration conveyance device. The carrier B of this embodiment is configured to align and supply minute articles such as IC chips, for example.

振動盤1は、第1質量体の主体をなす円盤状の振動盤本体10と、この振動盤本体10に取り付けられて第1質量体の一部をなす後記の第1連設部41とから構成される。振動盤本体10の外周位には、等角複数箇所すなわち本実施形態では3箇所に第1弾性体と接続される振動盤側第1接続部11と、これら振動盤側第1接続部11とは位相のずれた等角複数箇所すなわち本実施形態では3箇所に加振源3と接続される振動盤側第2接続部12とが設けてある。振動盤側第1接続部11は、下方及び径外方向に肉盗みされた形状、具体的には側方からみて下向きU字状で有底をなす凹部である。振動盤側第2接続部12は、振動盤本体10から下向きに突出する突部である。 The diaphragm 1 consists of a disc-shaped diaphragm main body 10 that is the main body of the first mass body, and a first connecting portion 41 (described later) that is attached to the diaphragm main body 10 and forms a part of the first mass body. configured. On the outer periphery of the diaphragm main body 10, there are diaphragm-side first connection parts 11 connected to the first elastic body at multiple equiangular locations, that is, three locations in this embodiment, and these diaphragm-side first connection parts 11. The second connecting portions 12 on the diaphragm side, which are connected to the vibration source 3, are provided at a plurality of equiangular locations with phase shifts, that is, three locations in this embodiment. The first connecting portion 11 on the diaphragm side has a shape that is hollowed out in the downward and radial direction, specifically, it is a concave portion that is downwardly U-shaped and has a bottom when viewed from the side. The second diaphragm-side connecting portion 12 is a protrusion that projects downward from the diaphragm main body 10 .

基台2は、第2質量体の主体をなす切頭円錐状の基台本体20と、この基台本体20に取り付けられて第2質量体の一部をなす後記の第2連接部42とから構成される。基台本体20は設置面に防振部材2aを介して配置される。基台2の外周位には、前記振動盤側第1接続部11と対応する位置にあって第1弾性体4と接続される基台側第1接続部21と、前記振動盤側第1接続部12と対応する位置にあって加振源3と接続される基台側第2接続部22とが設けてある。基台側第1接続部21は、図2及び図3(a)に示すように、上方及び径外方向に肉盗みされた形状、具体的には側方からみてU字溝状で有底をなす凹部である。基台側第2接続部22は、図2及び図3(b)に示すように、振動盤側第2接続部12を遊動可能に配置する空間の内奥に位置して、後記の第2板バネ収容部23及び接続部材当接部24から構成される。 The base 2 includes a truncated conical base main body 20 that forms the main body of the second mass body, and a second connecting portion 42 (described later) that is attached to the base main body 20 and forms a part of the second mass body. It consists of The base body 20 is placed on the installation surface via the vibration isolating member 2a. On the outer periphery of the base 2, there is a base-side first connection part 21 located at a position corresponding to the diaphragm-side first connection part 11 and connected to the first elastic body 4, and a diaphragm-side first connection part 21. A base-side second connection portion 22 is provided at a position corresponding to the connection portion 12 and connected to the vibration source 3 . As shown in FIGS. 2 and 3(a), the base-side first connection portion 21 has a shape that is cut upward and radially outward, specifically, a U-shaped groove with a bottom when viewed from the side. It is a concave part that forms a As shown in FIGS. 2 and 3(b), the base-side second connection part 22 is located deep inside the space in which the diaphragm-side second connection part 12 is movably arranged, and It is composed of a leaf spring accommodating part 23 and a connecting member abutting part 24.

加振源3は、第2質量体である基台2の一部を構成する接続部材31と、この接続部材31に基端を接続され先端側が半径方向に延びる横型配置の第2弾性体たる第2板バネ32と、この第2板バネ32の両面または片面に貼り付けられて振動によって第2板バネ32をたわませるバイモルフまたはユニモルフ型の圧電素子駆動部33と、を備える。基台2には、図3(b)に示すように、上から見て中心から3方向にスター状に延び上方及び径外方向に開口する前記第2板バネ収容部23と、隣接する第2板バネ収容部23同士の間に位置するL字形の前記接続部材当接部24とが設けてあり、第2板バネ32の基端を取り付けた接続部材31は、2面を接続部材当接部24に当接させた状態で対向軸z方向すなわち上方向から止着具であるボルトv1によって基台2の底面に締結される。 The vibration source 3 includes a connecting member 31 constituting a part of the base 2 which is a second mass body, and a second elastic body which is arranged horizontally and whose base end is connected to the connecting member 31 and whose distal end side extends in the radial direction. It includes a second plate spring 32 and a bimorph or unimorph type piezoelectric element drive unit 33 that is attached to both surfaces or one side of the second plate spring 32 and deflects the second plate spring 32 by vibration. As shown in FIG. 3(b), the base 2 includes the second leaf spring accommodating part 23 which extends in a star shape in three directions from the center when viewed from above and opens upward and radially outward, and an adjacent second leaf spring accommodating part 23. The L-shaped connecting member abutting part 24 is located between the two leaf spring accommodating parts 23, and the connecting member 31 to which the base end of the second leaf spring 32 is attached has two sides abutting the connecting member. While in contact with the contact portion 24, it is fastened to the bottom surface of the base 2 from the direction of the opposing axis z, that is, from above, with a bolt v1, which is a fastener.

そして、第2板バネ32の基端部を接続部材31に止着具であるボルト21によって水平方向に連結し、第2板バネ32の先端部を、振動盤本体10から下方に突出させて設けた振動盤側第2接続部12に止着具であるボルトv22によって水平方向に連結している。 Then, the base end of the second leaf spring 32 is horizontally connected to the connecting member 31 by the bolt 21, which is a fastener, and the tip of the second leaf spring 32 is made to protrude downward from the diaphragm body 10. It is horizontally connected to the provided second connection part 12 on the vibration plate side by a bolt v22 which is a fastener.

第1弾性体4は、振動盤1と基台2とを接続することによって主たる共振バネとして機能するもので、図4に示すように複数(本実施形態では2枚)の板バネ40と、各板バネ40の一端側に連設されて振動盤1の一部をなす前記第1連設部41と、各板バネ40の他端側に連設されて基台2の一部をなす前記第2連設部42とを含む一体型板バネ構造(さらに言えば一体型重ね板バネ構造)をなす。 The first elastic body 4 functions as a main resonance spring by connecting the diaphragm 1 and the base 2, and as shown in FIG. The first connecting part 41 is connected to one end of each leaf spring 40 and forms a part of the diaphragm 1, and the first connected part 41 is connected to the other end of each leaf spring 40 and forms a part of the base 2. An integrated leaf spring structure (more specifically, an integrated stacked leaf spring structure) including the second continuous portion 42 is formed.

板バネ40は、互いに平行に配置されている。図11に示したと同様、板バネ40の厚み方向・幅方向中心に原点Oをとり、長手方向をz、厚み方向をx、幅方向をyとした場合、図1及び図4等に示す板バネ40は、厚み方向xを回転振動機Aの円周方向に向け、幅方向yを回転振動機Aの径方向に向け、長手方向zを回転振動機Aの対向軸mと傾斜する方向に延在させて配置される。個々の板バネ40を見ると、図5(c)に示すように、そのy方向の幅寸法Wは長手方向に沿って想像線で示すように一端40e1から他端40e2まで一律な長方形状ではなく、実線で示すように上下端40e1、40e2から中央部40mに向かって漸次幅狭となるように滑らかに括れた形状をなしている。この形状は、ばね素材であるばね鋼や炭素鋼等にくびれ加工を施すことによって付与されている。 The leaf springs 40 are arranged parallel to each other. As shown in FIG. 11, if the origin O is set at the center of the thickness direction and width direction of the leaf spring 40, and the longitudinal direction is z, the thickness direction is x, and the width direction is y, the plate shown in FIGS. 1, 4, etc. The spring 40 has a thickness direction x directed toward the circumferential direction of the rotary vibrator A, a width direction y directed toward the radial direction of the rotary vibrator A, and a longitudinal direction z directed in a direction inclined to the opposing axis m of the rotary vibrator A. placed in an extended manner. Looking at the individual leaf springs 40, as shown in FIG. 5(c), the width W in the y direction does not have a uniform rectangular shape from one end 40e1 to the other end 40e2 as shown by an imaginary line along the longitudinal direction. Rather, as shown by solid lines, it has a smoothly constricted shape that gradually becomes narrower from the upper and lower ends 40e1 and 40e2 toward the center portion 40m. This shape is given by constricting the spring material, such as spring steel or carbon steel.

図4に示す第1連設部41は各板バネ40の上端部と一体をなす直方体状のもので、図1及び図2に示すように振動盤側第1接続部である凹部11内に緊密に配置される。図4に示す第2連接部42は各板バネ40の下端部と一体をなす底部42aと、この底部42aの両側に各板バネ40を包囲するように配置される右側部42b及び左側部42cとが一体に構成されたU字状のもので、図1~図3に示すように基台側第1接続部である凹部21内に緊密に配置される。 The first connecting portion 41 shown in FIG. 4 is a rectangular parallelepiped that is integral with the upper end of each leaf spring 40, and is inserted into the recess 11, which is the first connecting portion on the diaphragm side, as shown in FIGS. 1 and 2. Closely placed. The second connecting portion 42 shown in FIG. 4 includes a bottom portion 42a that is integral with the lower end of each leaf spring 40, and a right side portion 42b and a left side portion 42c that are arranged on both sides of this bottom portion 42a so as to surround each leaf spring 40. It is U-shaped and is integrally constructed with a U-shape and is tightly arranged in the recess 21 which is the first connection part on the base side, as shown in FIGS. 1 to 3.

すなわち第1弾性体4は、第1質量体である回転盤1及び第2質量体である基台2に対して外部から着脱可能に嵌め込むことができる位置関係に配置される。 That is, the first elastic body 4 is arranged in a positional relationship that allows it to be removably fitted into the rotary disk 1, which is the first mass body, and the base 2, which is the second mass body, from the outside.

図1、図2及び図4に示すように、第1連設部41と振動盤本体10との間は、2箇所において対向軸mに平行な方向に沿って連結具v3で連結されている。図2及び図4において符合h3で示すものはそのための連結用孔である。 As shown in FIGS. 1, 2, and 4, the first connecting portion 41 and the diaphragm main body 10 are connected at two locations along a direction parallel to the opposing axis m by a connector v3. . In FIGS. 2 and 4, the reference numeral h3 indicates a connecting hole for this purpose.

また、第2連設部42の右側部42bと基台本体20との間は、2箇所において前記対向軸m方向と交差(直交)する第1方向sに沿ってボルトv4で連結され、第2連接部32の左側部32cと基台本体20との間は、2箇所において前記対向軸m方向及び前記第1方向sと交差(直交)する第2方向uに沿ってボルトv5で連結されている。図4において符合h4、h5で示すものはそのための連結用孔である。この実施形態の場合、第1方向sは対向軸mの円周上の接線方向であり、第2方向uは対向軸mを通る半径方向である。また、板バネの長手方向zは対向軸mに対して若干傾斜しており、板バネ30の厚み方向xは第1方向sにほぼ合致し、板バネの幅方向yは第2方向uはほぼ合致している。 Further, the right side portion 42b of the second continuous portion 42 and the base main body 20 are connected at two places by bolts v4 along the first direction s that intersects (orthogonally) with the direction of the opposing axis m. The left side part 32c of the two-part connecting part 32 and the base body 20 are connected at two places by bolts v5 along the direction of the opposing axis m and the second direction u that intersects (orthogonally) with the first direction s. ing. In FIG. 4, reference symbols h4 and h5 are connection holes for this purpose. In this embodiment, the first direction s is a tangential direction on the circumference of the opposing axis m, and the second direction u is a radial direction passing through the opposing axis m. Further, the longitudinal direction z of the leaf spring is slightly inclined with respect to the opposing axis m, the thickness direction x of the leaf spring 30 almost coincides with the first direction s, and the width direction y of the leaf spring coincides with the second direction u. They almost match.

この実施形態では、振動盤本体10を、慣性モーメント低減を図るためにアルミで作成する。しかし、振動盤本体10にばねを直接結合するとアルミ素材のヤング率は鉄よりも低いため、結合部の曲げ剛性が下がる。そこで、図5(b)で示すように、第1質量体の一部である第1連設部41を板バネ40とともにばね鋼や炭素鋼等のばね素材で作っている。このため、第1弾性体4を構成する板バネ40と回転盤本体10との結合部の曲げ剛性を高める効果がある。これは、第1弾性体を構成する板バネ40と第2質量体の本体である基台本体20との結合部においても同様、板バネ40と一体をなす第2連設部42をばね鋼や炭素鋼等のばね素材で作っており、板バネ40と基台本体20との結合部の曲げ剛性を高める効果がある。なお、図5(b)は説明の便宜上、1枚の板バネ40で表してあるが、本実施形態の板バネ40は図5(a)のように2枚であるため、その各々の板バネ40において上記の構成を有し同様の効果がある。 In this embodiment, the diaphragm body 10 is made of aluminum in order to reduce the moment of inertia. However, when a spring is directly connected to the diaphragm body 10, the bending rigidity of the joint decreases because the Young's modulus of aluminum material is lower than that of iron. Therefore, as shown in FIG. 5(b), the first continuous portion 41, which is a part of the first mass body, is made of a spring material such as spring steel or carbon steel together with the leaf spring 40. Therefore, there is an effect of increasing the bending rigidity of the joint between the leaf spring 40 constituting the first elastic body 4 and the rotary disk main body 10. Similarly, at the joint portion between the leaf spring 40 constituting the first elastic body and the base body 20 that is the main body of the second mass body, the second connecting portion 42 that is integral with the leaf spring 40 is made of spring steel. It is made of a spring material such as carbon steel or carbon steel, and has the effect of increasing the bending rigidity of the joint between the leaf spring 40 and the base body 20. Although FIG. 5B shows one leaf spring 40 for convenience of explanation, since there are two leaf springs 40 in this embodiment as shown in FIG. The spring 40 has the above configuration and has similar effects.

そして、圧電素子駆動部33に所要周波数の電圧を繰り返し印加することによって、第2板バネ32を通して振動盤1を正逆方向に加振する。これに伴い、第1弾性体である板バネ40が撓み振動する。 Then, by repeatedly applying a voltage of a required frequency to the piezoelectric element driving section 33, the vibration plate 1 is vibrated in the forward and reverse directions through the second plate spring 32. Along with this, the plate spring 40, which is the first elastic body, bends and vibrates.

その撓み振動のうち、図6(a)に示す長手方向の曲げが発生する。この曲げは共振特性を決定づける支配的要因となる。この曲げに伴い、原点O側及び反対側のバネ両固定端にはx方向の力Fx、F´xと、y軸回りの固定モーメントMy、M´yを生じる。これをAモードのたわみとする。 Among the bending vibrations, bending in the longitudinal direction shown in FIG. 6(a) occurs. This bending becomes a dominant factor that determines the resonance characteristics. With this bending, forces Fx, F'x in the x direction and fixing moments My, M'y about the y axis are generated at both fixed ends of the spring on the side of the origin O and on the opposite side. This is called the A-mode deflection.

またこれに伴い、図6(b)に示すz軸回りのねじれが発生する。このねじれに伴い、原点Oの回りにz軸方向から見てモーメントMzを生じる。これをBモードのたわみとする。 Additionally, along with this, twisting around the z-axis as shown in FIG. 6(b) occurs. Along with this twisting, a moment Mz is generated around the origin O when viewed from the z-axis direction. This is called B-mode deflection.

さらこれに伴い、図6(c)に示す幅方向の曲げが発生する。この曲げに伴い、原点と反対側には、y方向の力Fyと、x軸回りの固定モーメントMxを生じる。これはつまり、基台101に対して振動盤102が回転すると、板バネ104の振動盤側固定部αの位相が基台側固定部βの位相に対して変化するため、例えばこれをy-z平面に投影したとき、振動盤側固定部αが幅方向(径外方向)に持ち出される。これをCモードのたわみとする。 Furthermore, along with this, bending in the width direction as shown in FIG. 6(c) occurs. With this bending, a force Fy in the y direction and a fixing moment Mx around the x axis are generated on the side opposite to the origin. In other words, when the diaphragm 102 rotates with respect to the base 101, the phase of the diaphragm-side fixed part α of the leaf spring 104 changes with respect to the phase of the base-side fixed part β, so for example, this is When projected onto the z-plane, the diaphragm-side fixing portion α is brought out in the width direction (radially outward direction). This is called C-mode deflection.

このうち、主としてAモードの撓みによって、共振点若しくは共振点近くで必要な周波数、振幅に増幅され、振動盤1を効率良く駆動することができる。 Of these, the A-mode deflection is amplified to the required frequency and amplitude at or near the resonance point, and the diaphragm 1 can be driven efficiently.

その際、第1弾性体である第1板バネ40は対向軸mに対して斜めの方向であるz軸方向に配置されていることによって、振動盤1は上下方向の並進運動(振動)と円周方向の回転運動(振動)を行う。その結果、振動盤1上に螺旋状の搬送路を備えた搬送体Bを取り付けた振動搬送装置であるパーツフィーダPFは、搬送路上の物品が螺旋状の搬送路に沿って搬送体Bの底部から上部に向かって搬送されることになる。 At this time, the first leaf spring 40, which is the first elastic body, is disposed in the z-axis direction, which is diagonal to the opposing axis m, so that the diaphragm 1 can perform translational movement (vibration) in the vertical direction. Performs rotational movement (vibration) in the circumferential direction. As a result, in the parts feeder PF, which is a vibrating conveyance device in which a conveyor B having a spiral conveyance path is mounted on a vibrating plate 1, the articles on the conveyance path are moved to the bottom of the conveyor B along the spiral conveyance path. It will be transported from the top to the top.

以上のように、本実施形態の回転振動機Aは、第1質量体である回転盤1と、この回転盤1に対し対向軸m方向に相対して配置される第2質量体である基台2と、回転盤1と基台2を対向軸m回りに相対振動させる加振源3と、回転盤1と基台2の間を接続する位置に配置される第1弾性体4と、を備える。 As described above, the rotary vibrator A of the present embodiment includes a rotary disk 1 as a first mass body and a base as a second mass body disposed opposite to the rotary disk 1 in the direction of the opposing axis m. a table 2, an excitation source 3 that causes the rotary disk 1 and the base 2 to vibrate relative to each other around the opposing axis m, and a first elastic body 4 disposed at a position connecting the rotary disk 1 and the base 2; Equipped with.

そしてその第1弾性体4を、板バネ40と、前記板バネ40の一端側に連設されて回転盤1の一部をなす第1連設部41と、前記板バネ40の他端側に連設されて基台2の一部をなす第2連設部42とを含む一体型板バネ構造とし、このうち少なくとも第1連設部41と回転盤本体10との間を対向軸mに平行な方向に沿って連結具であるボルトv3によって連結したものである。 The first elastic body 4 is connected to a leaf spring 40, a first connecting portion 41 that is connected to one end of the leaf spring 40 and forms a part of the rotary disk 1, and a first connecting portion 41 that is connected to the other end of the leaf spring 40. It has an integrated leaf spring structure including a second connecting part 42 which is connected to the base 2 and forms a part of the base 2, and an opposing axis m is formed between at least the first connecting part 41 and the rotary disk main body 10. They are connected by a bolt v3, which is a connecting member, along a direction parallel to .

このような、いわゆる対向軸方向留めを採用すると、図6(a)に示すように板バネ40の両端を回転盤1と基台2に固定してS字状に変形させたときにy軸回りの曲げモーメントMyが掛かっても、図5(b)に示す連結具であるボルトv3の軸力が対向方向すなわち軸回りの曲げモーメントMyに直交するので、固定部回りのすべりが発生しにくい。また、板バネ40の端部が回転盤1の一部である第1連設部10と一体になることで、固定モーメントMyをその部材剛性で受けることができ、振動盤1の撓みの発生が抑えられ、x、y方向に適切な平行移動が実現できる。これにより、第1連設部41と板バネ40の間の滑りや回転盤1のたわみによる加振ロスを解消して共振倍率があがり、小さな加振力でも高周波数、大振幅化を適切に実現できるようになる。 If such a so-called opposing axis direction fastening is adopted, when both ends of the leaf spring 40 are fixed to the rotary disk 1 and the base 2 and deformed into an S-shape, as shown in FIG. 6(a), the y-axis Even if a bending moment My is applied around the fixed part, slipping around the fixed part is unlikely to occur because the axial force of the bolt v3, which is a connector shown in Fig. 5(b), is in the opposite direction, that is, perpendicular to the bending moment My around the axis. . In addition, since the end of the leaf spring 40 is integrated with the first continuous portion 10 that is a part of the rotary disk 1, the fixing moment My can be received by the rigidity of the member, and the diaphragm 1 is deflected. is suppressed, and appropriate parallel movement in the x and y directions can be realized. This eliminates excitation loss due to slippage between the first connecting portion 41 and the leaf spring 40 and deflection of the rotary disk 1, increasing the resonance magnification, and appropriately increasing the frequency and amplitude even with a small excitation force. It becomes possible to realize it.

また、第2連設部42と第2質量体の本体部である基台本体20との間を、対向軸m方向と交差する第1方向s、並びに対向軸m方向及び前記第1方向sと交差する第2方向uに沿って連結しているので、第2質量体である基台2側において第1弾性体3のねじり応力に対して強い留め方を当該基台2と第2連設部42との間で実現することが可能になる。 In addition, a first direction s intersecting the direction of the opposing axis m, and a direction of the opposing axis m and the first direction s exist between the second continuous portion 42 and the base body 20 which is the main body of the second mass body. Since the connection is made along the second direction u that intersects with the base 2, a method of fastening that is strong against the torsional stress of the first elastic body 3 on the side of the base 2, which is the second mass body, is made to connect the base 2 and the second connection. This can be realized between the installation section 42 and the installation section 42.

特に、第2質量体が固定側の基台2であり、第1質量体が可動側の回転盤1であり、少なくとも回転盤1側において上記の対向軸方向留めを採用しているので、可動部側での滑りやばね固定部材のたわみが優先的に解消されることになる。 In particular, the second mass body is the base 2 on the fixed side, the first mass body is the rotary disk 1 on the movable side, and the above-mentioned opposing axial fastening is adopted at least on the rotary disk 1 side, so that the movable This means that slipping on the side and deflection of the spring fixing member are preferentially eliminated.

また、第1連設部41と第1質量体の一部である回転盤本体10との間を少なくとも2箇所において対向軸m方向に沿って連結しており、第1連設部41を介して板バネ40が回転盤本体10に複数箇所でしっかり保持されるので、回転盤10が撓んだり傾くことなく基台2に対して平行移動できるようになる。 Further, the first continuous portion 41 and the rotary disk main body 10, which is a part of the first mass body, are connected at least at two locations along the direction of the opposing axis m. Since the plate springs 40 are firmly held at a plurality of locations on the rotary disk main body 10, the rotary disk 10 can be moved parallel to the base 2 without being bent or tilted.

そして、このような回転振動機Aと、第1質量体である回転盤1上に固定され螺旋状の搬送路を備えた搬送体Bとにより振動搬送装置たるパーツフィーダPFを構成しているので、搬送体B上での物品の搬送速度を有効に向上させることが可能となる。 The parts feeder PF, which is a vibration conveyance device, is constituted by such a rotary vibrator A and a conveyor B, which is fixed on the rotary disk 1, which is the first mass body, and has a spiral conveyance path. , it becomes possible to effectively improve the conveyance speed of articles on the conveyor B.

以上、本発明の一実施形態について説明したが、各部の具体的な構成は上述した実施形態のみに限定されるものではない。 Although one embodiment of the present invention has been described above, the specific configuration of each part is not limited to the above-described embodiment.

例えば、上記実施形態の第1質量体を基台、第2質量体を振動盤となるように上下反転して用いても構わない。この場合、第1弾性体の下に位置する上向きU字状の第2連設部が上に位置して下向きU字状として配置され、反対に上に位置する第1連設部が下に位置することになり、対向軸方向の連結は基台と第1弾性体との間で優先的に行われることになる。第1質量体や第2質量体の形状等は適宜変更すればよい。 For example, the first mass body of the above embodiment may be used as a base, and the second mass body may be used as a diaphragm, upside down. In this case, the second continuous part located under the first elastic body in the shape of an upward U-shape is located above and arranged in a downward U-shape, and conversely, the first continuous part located above is arranged downward. Thus, the connection in the opposing axial direction is preferentially performed between the base and the first elastic body. The shapes of the first mass body and the second mass body may be changed as appropriate.

また、上記実施形態では板バネ40を、端部から中央部に向かって幅狭となるような括れ形状としたが、図7に示す板バネ40´のように長方形状のものにしてもよい。他の基本的な構成は上記実施形態と同様であり、対応する部分には同一符合が付してある。このようにすると、板バネ40´自体の剛性が高くなるため、高周波数化に重点をおいた設計を行うことが可能になる。 Further, in the above embodiment, the leaf spring 40 has a constricted shape that becomes narrower from the end to the center, but it may also have a rectangular shape like the leaf spring 40' shown in FIG. . Other basic configurations are the same as those of the above embodiment, and corresponding parts are given the same reference numerals. In this way, the rigidity of the leaf spring 40' itself becomes high, so that it is possible to design the leaf spring 40' with emphasis on increasing the frequency.

また、上記実施形態では第1連設部41と回転盤本体10との間を2箇所において対向軸mに平行な方向に沿って連結具であるボルトv3によって連結したが、図8(a)に示すように1箇所においてボルトv3によって連結してもよい。この場合、ボルトv3による連結箇所が2枚の板バネ40´(あるいは40)の中間点にあればより好ましく、y軸回りのモーメントMyが軸力と略直交することですべりを防止できる点、当該モーメントMyを第1連設部41の部材剛性で受けることで振動盤のたわみを防止できる点で、同様の効果が奏される。 Furthermore, in the above embodiment, the first connecting portion 41 and the rotary disk main body 10 are connected at two locations along a direction parallel to the opposing axis m by bolts v3, which are connectors. They may be connected by a bolt v3 at one location as shown in FIG. In this case, it is more preferable that the connection point by the bolt v3 is located at the midpoint between the two leaf springs 40' (or 40), since the moment My around the y-axis is approximately perpendicular to the axial force, so that slipping can be prevented; A similar effect can be achieved in that deflection of the diaphragm can be prevented by receiving the moment My by the rigidity of the member of the first continuous portion 41.

また、図8(b)に示すように、第1連設部41と回転盤本体10との間を2箇所において対向軸mに平行な方向に沿って連結具であるボルトv3によって連結する際、連結用孔h3をボルトv5の締結方向uにずらして締結することも有効である。このようにすることで、板バネ40´(あるいは40)の曲げ強度を高めることができる。 Further, as shown in FIG. 8(b), when connecting the first connecting portion 41 and the rotary disk main body 10 at two locations along a direction parallel to the opposing axis m using bolts v3, which are connectors, It is also effective to shift the connection hole h3 in the fastening direction u of the bolt v5 when fastening. By doing so, the bending strength of the leaf spring 40' (or 40) can be increased.

また、上記実施形態では2枚の板バネ40を用いたが、図9(a)に示すように1枚の板バネ40´(あるいは40)のみを用いた構成や、図示しないが3枚以上の板バネを用いた構成で実施することも勿論可能である。 In addition, although two leaf springs 40 are used in the above embodiment, a configuration using only one leaf spring 40' (or 40) as shown in FIG. Of course, it is also possible to implement a configuration using a leaf spring.

また、上記実施形態では第1質量体である回転盤1と第1連設部41の間を対向軸m方向に締結し、第2質量体である基台2と第2連設部42の間をこれと直交するs軸方向、さらにm軸及びs軸と直交するu軸方向に締結したが、図9(b)に示すように第2質量体である基台2と第2連設部42との間も対向軸m方向に沿って連結してもよい。このようにすると、基台2と第2連設部42との間においても、回転盤1と第1連設部41との間におけると同様に、部品間の滑りやばね固定部材のたわみによる加振ロスを解消することができる。 Further, in the above embodiment, the rotary disk 1, which is the first mass body, and the first connecting portion 41 are fastened in the direction of the opposing axis m, and the base 2, which is the second mass body, and the second connecting portion 42 are fastened together. As shown in FIG. 9(b), the second continuous connection with the base 2, which is the second mass body, is performed. The portion 42 may also be connected along the direction of the opposing axis m. In this way, between the base 2 and the second connecting part 42, as well as between the rotary disk 1 and the first connecting part 41, slippage between parts and deflection of the spring fixing member can be prevented. Vibration loss can be eliminated.

その他、板バネを対向軸方向に対して傾斜させずに構成するなど、本発明の趣旨を逸脱しない範囲で種々変形が可能である。 In addition, various modifications can be made without departing from the spirit of the present invention, such as configuring the leaf spring without inclining it with respect to the opposing axis direction.

1…第1質量体(回転盤)
2…第2質量体(基台)
3…加振源
4…第1弾性体
20…第2質量体の本体部(基台本体)
40…板バネ
41…第1連設部
42…第2連設部
A…回転振動機
B…搬送体
m…対向軸
PF…振動搬送装置(パーツフィーダ)
s…第1方向
u…第2方向
v3…連結具(ボルト)

1...First mass body (rotary disk)
2...Second mass body (base)
3... Vibration source 4... First elastic body 20... Main body of second mass body (base main body)
40...Plate spring 41...First connecting part 42...Second connecting part A...Rotating vibrator B...Transporting body m...Opposing shaft PF...Vibration conveying device (parts feeder)
s...First direction u...Second direction v3...Connector (bolt)

Claims (6)

第1質量体と、この第1質量体に対し対向軸方向に相対して配置される第2質量体と、前記第1質量体と前記第2質量体を前記対向軸回りに相対振動させる加振源と、前記第1質量体と前記第2質量体の間を接続する位置に配置される第1弾性体と、を具備するものにおいて、
前記第1弾性体を、板バネと、前記板バネの一端側に連設されて前記第1質量体の一部をなす第1連設部と、前記板バネの他端側に連設されて前記第2質量体の一部をなす第2連設部とを含む一体型板バネ構造とし、このうち少なくとも前記第1連設部と前記第1質量体の本体部との間を前記対向軸に平行な方向に沿って連結具で連結され、前記板バネは前記対向軸に沿って延在し、且つ、前記対向軸の方向に沿った前記第1連設部の投影断面内に配置されていることを特徴とする、回転振動機。
a first mass body, a second mass body disposed opposite to the first mass body in a direction of an opposing axis; A vibration source, and a first elastic body disposed at a position connecting between the first mass body and the second mass body,
The first elastic body is connected to a leaf spring, a first connecting part that is connected to one end of the leaf spring and forms a part of the first mass body, and a first connecting part that is connected to the other end of the leaf spring. and a second continuous portion forming a part of the second mass body, and at least the first continuous portion and the main body portion of the first mass body are connected to each other. connected by a connector along a direction parallel to the axis, the leaf spring extends along the opposing axis, and is disposed within a projected cross section of the first connecting part along the direction of the opposing axis. A rotating vibrator characterized by:
第1質量体と、この第1質量体に対し対向軸方向に相対して配置される第2質量体と、前記第1質量体と前記第2質量体を前記対向軸回りに相対振動させる加振源と、前記第1質量体と前記第2質量体の間を接続する位置に配置される第1弾性体と、を具備するものにおいて、
前記第1弾性体を、板バネと、前記板バネの一端側に連設されて前記第1質量体の一部をなす第1連設部と、前記板バネの他端側に連設されて前記第2質量体の一部をなす第2連設部とを含む一体型板バネ構造とし、このうち少なくとも前記第1連設部と前記第1質量体の本体部との間を前記対向軸に平行な方向に沿って連結具で連結するとともに、
前記第2連設部と前記第2質量体の本体部との間を、前記対向軸方向と交差する第1方向、並びに前記対向軸方向及び前記第1方向と交差する第2方向に沿って連結していることを特徴とする回転振動機。
a first mass body, a second mass body disposed opposite to the first mass body in a direction of an opposing axis; A vibration source, and a first elastic body disposed at a position connecting between the first mass body and the second mass body,
The first elastic body is connected to a leaf spring, a first connecting part that is connected to one end of the leaf spring and forms a part of the first mass body, and a first connecting part that is connected to the other end of the leaf spring. and a second continuous portion forming a part of the second mass body, and at least the first continuous portion and the main body portion of the first mass body are connected to each other. Connected by a connector along the direction parallel to the axis,
between the second continuous portion and the main body of the second mass body along a first direction intersecting the opposing axis direction and a second direction intersecting the opposing axis direction and the first direction; A rotary vibrator characterized by being connected.
前記第2連設部と前記第2質量体の本体部との間も前記対向軸方向に沿って連結している、請求項1に記載の回転振動体。 The rotary vibrating body according to claim 1, wherein the second connecting portion and the main body portion of the second mass body are also connected along the direction of the opposing axis . 前記第2質量体が固定側であり、前記第1質量体が可動側である、請求項1~3の何れかに記載の回転振動機。 The rotary vibrator according to claim 1, wherein the second mass body is on the fixed side and the first mass body is on the movable side. 前記第1連設部と前記第1質量体の本体部との間を少なくとも2箇所において前記対向軸方向に沿って連結している、請求項1~4の何れかに記載の回転振動機。 The rotary vibrator according to any one of claims 1 to 4, wherein the first connecting portion and the main body portion of the first mass body are connected at at least two locations along the direction of the opposing axis . 請求項1~5の何れかに記載の回転振動機と、前記第1質量体上に固定され螺旋状の搬送路を備えた搬送体とを具備することを特徴とする、振動搬送装置。
A vibration conveyance device comprising: the rotary vibrator according to any one of claims 1 to 5; and a conveyance body fixed on the first mass body and provided with a spiral conveyance path.
JP2020003118A 2020-01-08 2020-01-10 Rotary vibrator and vibrating conveyance device Active JP7436802B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020003118A JP7436802B2 (en) 2020-01-10 2020-01-10 Rotary vibrator and vibrating conveyance device
KR1020210000764A KR20210089584A (en) 2020-01-08 2021-01-05 Rotating vibrator and vibration transfer device
TW110100859A TW202126559A (en) 2020-01-08 2021-01-08 Vibration conveying device can easily adjust bumps without causing a significant increase in cost and complexity of the structure
CN202110021981.8A CN113173386A (en) 2020-01-08 2021-01-08 Vibration conveying device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020003118A JP7436802B2 (en) 2020-01-10 2020-01-10 Rotary vibrator and vibrating conveyance device

Publications (2)

Publication Number Publication Date
JP2021109746A JP2021109746A (en) 2021-08-02
JP7436802B2 true JP7436802B2 (en) 2024-02-22

Family

ID=77059015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020003118A Active JP7436802B2 (en) 2020-01-08 2020-01-10 Rotary vibrator and vibrating conveyance device

Country Status (1)

Country Link
JP (1) JP7436802B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102991969A (en) 2012-11-14 2013-03-27 吉林大学 Special elastic supporting piece of vibratory feeder

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102991969A (en) 2012-11-14 2013-03-27 吉林大学 Special elastic supporting piece of vibratory feeder

Also Published As

Publication number Publication date
JP2021109746A (en) 2021-08-02

Similar Documents

Publication Publication Date Title
JP7202372B2 (en) piezoelectric drive unit
US7439653B2 (en) Vibration wave driving apparatus
US8513858B2 (en) Vibrating device
JP4035157B2 (en) Ultrasonic actuator
US7757926B2 (en) Transducer assembly for a bonding apparatus
JP6073991B2 (en) Wire bonding apparatus with vibration mechanism
JP5631018B2 (en) Rotational vibration wave drive
US8237331B2 (en) Vibratory actuator and drive unit including the same
JPH0534910B2 (en)
JP4532591B1 (en) Rotating vibrator and vibratory transfer device using the same
EP2339740A1 (en) Ultrasonic motor
KR20080094596A (en) Vibratory conveying apparatus and rotational vibrator
JP7436802B2 (en) Rotary vibrator and vibrating conveyance device
JP5775183B2 (en) Vibrating transfer device
CN113173386A (en) Vibration conveying device
KR100992678B1 (en) Vibratory parts-feeding apparatus
JP2021109747A (en) Rotational vibration machine and vibration transport unit
JP2007306799A (en) Ultrasonic actuator
JPWO2022176560A5 (en)
CN110311648B (en) Differential resonator and MEMS sensor
EP0430652A2 (en) Damped cradle for SAW device
JP5775190B2 (en) Rotating vibrator and vibratory transfer device using the same
WO2023047482A1 (en) Object
KR100223165B1 (en) Ultrasonic motor which is improving stator and rotor shape
JP2789416B2 (en) Piezoelectric drive type transfer device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240122

R150 Certificate of patent or registration of utility model

Ref document number: 7436802

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150