JP7436235B2 - pressure sensor - Google Patents

pressure sensor Download PDF

Info

Publication number
JP7436235B2
JP7436235B2 JP2020026180A JP2020026180A JP7436235B2 JP 7436235 B2 JP7436235 B2 JP 7436235B2 JP 2020026180 A JP2020026180 A JP 2020026180A JP 2020026180 A JP2020026180 A JP 2020026180A JP 7436235 B2 JP7436235 B2 JP 7436235B2
Authority
JP
Japan
Prior art keywords
support member
pressure sensor
diaphragm
main surface
intermediate material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020026180A
Other languages
Japanese (ja)
Other versions
JP2021131297A (en
Inventor
祐希 瀬戸
里奈 小笠原
悠祐 新村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP2020026180A priority Critical patent/JP7436235B2/en
Publication of JP2021131297A publication Critical patent/JP2021131297A/en
Application granted granted Critical
Publication of JP7436235B2 publication Critical patent/JP7436235B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、流体等の圧力を検出する圧力センサ、特にサニタリー用圧力センサに関するものである。 TECHNICAL FIELD The present invention relates to a pressure sensor that detects the pressure of a fluid or the like, and particularly to a sanitary pressure sensor.

流体の圧力を検出する圧力センサのうち、食品や医薬品等の分野の製造現場等で用いられるサニタリー用圧力センサに対しては、衛生的な配慮が必要とされることから、耐食性、清浄性、信頼性および汎用性等に関して厳しい要件が課せられている。このような要件は、衛生管理に関する法規制の厳格化が図られている近年において、さらに厳しいものとなっている。 Among pressure sensors that detect fluid pressure, sanitary pressure sensors used at manufacturing sites in the food and pharmaceutical industries require hygienic considerations, so they must have corrosion resistance, cleanliness, Strict requirements are imposed on reliability, versatility, etc. These requirements have become even more stringent in recent years as laws and regulations regarding hygiene management have become stricter.

このような状況にあるサニタリー用圧力センサにおいては、例えば耐食性の要件から、圧力の測定対象の流体(例えば液体)が接触する接液部分にステンレス鋼(SUS)、セラミックスおよびチタン等の耐食性の高い材料が用いられている。また、清浄性の要件から、洗浄しやすいフラッシュダイアフラム構造が採用され、且つ蒸気洗浄に対する高い耐熱衝撃性をもつように設計されている。さらに、信頼性の要件から、封入剤を使用しない構造(オイルフリー構造)およびダイアフラムが破れ難い構造(バリア高剛性)が採用されている。 In sanitary pressure sensors in this situation, for example, due to the requirement of corrosion resistance, the wetted parts that come into contact with the fluid (e.g. liquid) to be measured are made of materials with high corrosion resistance such as stainless steel (SUS), ceramics, and titanium. material is used. In addition, due to cleanliness requirements, a flush diaphragm structure is adopted that is easy to clean, and is designed to have high thermal shock resistance against steam cleaning. Furthermore, due to reliability requirements, a structure that does not use an encapsulant (oil-free structure) and a structure in which the diaphragm is difficult to tear (high barrier rigidity) are adopted.

このように、サニタリー用圧力センサにおいては、使用する材料や構造が他の圧力センサに比べて制限されている。このため、高い耐圧性能を有しかつ測定誤差が抑制されたなかで、さらに高感度化を図ることは容易ではない。例えば、高い耐圧強度を有しかつ圧力に対するヒステリシスを低減して測定誤差を抑制するためには、膜厚を大きくした(厚みに対する径のアスペクト比を小さくした)高剛性のダイアフラムとすることが有用であるが、このような高剛性のダイアフラムにおいては、圧力変化に対する変形量が微小となり、これを直接センシングするだけでは十分なセンサ感度を得ることができない。このため、ダイアフラムの微小な変形量を効率的にセンシング部へ伝達してセンサ感度を高める技術が幾つか提案されている。 As described above, sanitary pressure sensors are more limited in the materials and structures that can be used than other pressure sensors. For this reason, it is not easy to achieve even higher sensitivity while having high breakdown voltage performance and suppressing measurement errors. For example, in order to suppress measurement errors by having high pressure resistance and reducing pressure hysteresis, it is useful to use a highly rigid diaphragm with a large membrane thickness (small diameter to thickness aspect ratio). However, in such a highly rigid diaphragm, the amount of deformation due to pressure changes is minute, and sufficient sensor sensitivity cannot be obtained by directly sensing this. For this reason, several techniques have been proposed to improve sensor sensitivity by efficiently transmitting minute amounts of deformation of the diaphragm to the sensing section.

例えば、特許文献1には、ダイアフラム(3)の支持面(3B)に3つの支持部材(2a、2b,2c)を所定の位置に立設し、これら支持部材の上に半導体チップを載置した圧力センサ(100)が記載されている。この圧力センサ(100)においては、ダイアフラム(3)の微小なたわみが、3つの支持部材(2a、2b,2c)を通じセンシング部である半導体チップ(1)へ効率的に伝えられる(具体的には、半導体チップ1が、支持面3Bに直接設けられている場合に比べて大きく歪むように構成されている)ことで、センサ感度が高められている。この圧力センサ(100)が備える上記3つの支持部材(2a、2b,2c)は、いずれも支持面(3B)に対し略垂直に起立しており、このうちの1つ(支持部材(2a))が支持面(3B)の中心(30)に配設され、残りの2つ(支持部材(2b,2c))が中心(30)に対して点対称となる位置に配設していることを特徴とする。 For example, Patent Document 1 discloses that three support members (2a, 2b, 2c) are erected at predetermined positions on the support surface (3B) of a diaphragm (3), and a semiconductor chip is placed on these support members. A pressure sensor (100) is described. In this pressure sensor (100), minute deflection of the diaphragm (3) is efficiently transmitted to the semiconductor chip (1) which is the sensing part through the three supporting members (2a, 2b, 2c) (specifically (The semiconductor chip 1 is configured to be more distorted than when it is directly provided on the support surface 3B), thereby increasing the sensor sensitivity. The three support members (2a, 2b, 2c) of this pressure sensor (100) all stand approximately perpendicular to the support surface (3B), and one of them (support member (2a) ) is arranged at the center (30) of the support surface (3B), and the remaining two (support members (2b, 2c)) are arranged at positions that are point symmetrical with respect to the center (30). It is characterized by

また、特許文献2には、ダイアフラム(3)の支持面(3B)に台座(5b)を設け、この台座の上に少なくとも1つの支持部材(2b)を起立させ、さらにこの台座上に起立する支持部材と他の支持部材との上に半導体チップ(1)を載置した圧力センサ(100)が記載されている。この圧力センサ(100)においては、ダイアフラム(3)の微小なたわみが、台座および支持部材を通じて、センシング部である半導体チップ(1)へ効率的に伝えられることで、センサ感度が高められている。 Further, in Patent Document 2, a pedestal (5b) is provided on the support surface (3B) of the diaphragm (3), at least one support member (2b) is erected on this pedestal, and further erected on this pedestal. A pressure sensor (100) is described in which a semiconductor chip (1) is mounted on a support member and another support member. In this pressure sensor (100), the minute deflection of the diaphragm (3) is efficiently transmitted to the semiconductor chip (1), which is the sensing part, through the pedestal and the support member, thereby increasing the sensor sensitivity. .

特開2017-120214号公報JP 2017-120214 Publication 特開2017-120212号公報JP 2017-120212 Publication

上記引用文献1に記載の圧力センサにおいては、例えば、ダイアフラムが線膨張率の大きなステンレス鋼(例えばSUS304の線膨張率は約17.3×10-6)からなり、支持部材は、絶縁性を有する線膨張率の小さなガラス(例えばホウケイ酸ガラスの線膨張率は約3.0×10-6)からなる。このような線膨張率に大きな差がある2つの部材が接合する部分には接合残留応力(引張り残留応力)が発生する。この接合残留応力は、接合する2つの材料の線膨張率が大きいほど顕著に現れ、ダイアフラムおよび支持部材の強度を低下させてダイアフラムの耐圧性能を悪化させるといった事態をもたらす。当該事態は、衛生管理に関する法規制の厳格化が図られている現状に鑑みれば、早急に解消しなければならない技術課題の1つである。 In the pressure sensor described in the above cited document 1, for example, the diaphragm is made of stainless steel with a large coefficient of linear expansion (for example, the coefficient of linear expansion of SUS304 is about 17.3×10 -6 ), and the support member has insulation properties. It is made of glass having a small coefficient of linear expansion (for example, the coefficient of linear expansion of borosilicate glass is about 3.0×10 −6 ). Bonding residual stress (tensile residual stress) is generated at a portion where two members having such a large difference in coefficient of linear expansion are bonded. This bonding residual stress becomes more pronounced as the coefficients of linear expansion of the two materials to be bonded increase, resulting in a situation where the strength of the diaphragm and the support member is reduced and the pressure resistance of the diaphragm is deteriorated. This situation is one of the technical issues that must be resolved as soon as possible in view of the current situation where laws and regulations regarding hygiene management are becoming stricter.

本発明は、上記課題を解決すべく創作されたものであって、その目的は、支持部材を通じてダイアフラム3の微小なたわみを効率的にセンシング部に伝達しつつ、接合残留応力による耐圧性能の低下が抑制された圧力センサを提供することにある。 The present invention was created to solve the above problems, and its purpose is to efficiently transmit minute deflections of the diaphragm 3 to the sensing section through the support member, while reducing pressure resistance due to bonding residual stress. The object of the present invention is to provide a pressure sensor in which the pressure is suppressed.

上記課題を解決するための本発明に係る圧力センサ(1A、1B、1C)は、測定対象の流体の圧力を受ける第1主面(11)とこの第1主面の反対側に位置する第2主面(12)とを有するダイアフラム(10)と、ひずみゲージを構成する複数の抵抗が設けられたセンサチップ(20A、20B)と、前記第2主面の法線に沿って延設されかつ一端が前記センサチップに接合する電気的絶縁性の複数の支持部材(41、42)と、を備え、前記複数の支持部材は、前記ダイアフラムよりも線膨張率が小さい中間材(50A、50B、50C)と接合しこの中間材を介して前記第2主面に固定されていることを特徴とする。 A pressure sensor (1A, 1B, 1C) according to the present invention for solving the above problems has a first main surface (11) that receives the pressure of a fluid to be measured, and a first main surface (11) located on the opposite side of the first main surface. a diaphragm (10) having two principal surfaces (12); a sensor chip (20A, 20B) provided with a plurality of resistors constituting a strain gauge; and a plurality of electrically insulating support members (41, 42) whose one ends are joined to the sensor chip, and the plurality of support members are made of intermediate materials (50A, 50B) having a coefficient of linear expansion smaller than that of the diaphragm. , 50C) and fixed to the second main surface via this intermediate material.

前記圧力センサにおいて、前記中間材が、前記支持部材より線膨張率が大きい材料から成るように構成してもよい。 In the pressure sensor, the intermediate material may be made of a material having a higher coefficient of linear expansion than the support member.

また、前記圧力センサにおいて、前記中間材が、前記複数の支持部材に接合する複数の接合部(51、52、53、56、57、58)とこれら複数の接合部の少なくとも2つをつなぐ連結部(54、55、59)とから構成され、前記連結部の前記法線に沿った厚みが、前記複数の接合部の前記厚みよりも小さくなるように形成してもよい。 Further, in the pressure sensor, the intermediate material may connect a plurality of joint parts (51, 52, 53, 56, 57, 58) joined to the plurality of support members and at least two of these joint parts. (54, 55, 59), and the thickness of the connecting portion along the normal line may be smaller than the thickness of the plurality of joint portions.

さらに、前記圧力センサにおいて、前記連結部が、前記ダイアフラムの板厚よりも薄い薄膜として形成されてもよい。 Furthermore, in the pressure sensor, the connecting portion may be formed as a thin film that is thinner than the thickness of the diaphragm.

また、前記圧力センサにおいて、前記複数の支持部材が、互いに離間する少なくとも2つの前記中間材を介して前記第2主面に固定されてもよい。 Further, in the pressure sensor, the plurality of support members may be fixed to the second main surface via at least two intermediate members spaced apart from each other.

さらに、前記圧力センサにおいて、前記中間材が、前記支持部材と対をなすように設けられてもよい。 Furthermore, in the pressure sensor, the intermediate member may be provided to form a pair with the support member.

また、前記圧力センサにおいて、前記中間材と前記第2主面との接合面積が、前記中間材と前記支持部材との接合面積よりも小さくなるように形成してもよい。 Further, in the pressure sensor, the bonding area between the intermediate material and the second main surface may be smaller than the bonding area between the intermediate material and the support member.

さらに、前記圧力センサにおいて、前記中間材が、異なる線膨張率をもつ複数の材料から成り、前記材料は、前記第2主面と接合する側から前記センサチップと接合する側に向かうにつれて線膨張率が小さなくなるよう前記法線に沿って積層されてもよい。 Furthermore, in the pressure sensor, the intermediate material is made of a plurality of materials having different coefficients of linear expansion, and the materials linearly expand from the side where it joins with the second main surface toward the side where it joins with the sensor chip. The layers may be stacked along the normal line so that the ratio is small.

なお、上記説明では、一例として、発明の構成要素に対応する図面上の参照符号を括弧付きで記載している。 In the above description, as an example, reference numerals on the drawings corresponding to the constituent elements of the invention are written in parentheses.

本発明によれば、支持部材を通じてダイアフラム3の微小なたわみを効率的にセンシング部に伝達しつつ、接合残留応力による耐圧性能の低下が抑制された圧力センサを提供することができる。 According to the present invention, it is possible to provide a pressure sensor in which a minute deflection of the diaphragm 3 is efficiently transmitted to the sensing portion through the support member, and a decrease in pressure resistance due to bonding residual stress is suppressed.

図1は、本発明の実施の形態に係る圧力センサの断面図である。FIG. 1 is a sectional view of a pressure sensor according to an embodiment of the invention. 図2は、本発明の実施の形態に係る圧力センサ及びこれと接合した配管の断面図である。FIG. 2 is a sectional view of a pressure sensor and piping connected thereto according to an embodiment of the present invention. 図3は、本発明の実施の形態に係る圧力センサが備えるダイアフラム近傍を拡大した平面図である。FIG. 3 is an enlarged plan view of the vicinity of the diaphragm included in the pressure sensor according to the embodiment of the present invention. 図4は、図3におけるQ-Q線の断面図である。FIG. 4 is a sectional view taken along the line QQ in FIG. 3. 図5は、本発明の実施の形態に係る圧力センサが備えるダイアフラムの変形態様を表した概念図である。FIG. 5 is a conceptual diagram showing a modification of the diaphragm included in the pressure sensor according to the embodiment of the present invention. 図6は、本発明の他の実施の形態に係る圧力センサの断面図である。FIG. 6 is a sectional view of a pressure sensor according to another embodiment of the invention. 図7は、本発明の他の実施の形態に係る圧力センサが備えるダイアフラム近傍を拡大した平面図である。FIG. 7 is an enlarged plan view of the vicinity of a diaphragm included in a pressure sensor according to another embodiment of the present invention. 図8は、図7におけるQ-Q線の断面図である。FIG. 8 is a cross-sectional view taken along the line QQ in FIG. 図9は、本発明の他の実施の形態に係る圧力センサが備えるダイアフラムの変形態様を表した概念図である。FIG. 9 is a conceptual diagram showing a modification of a diaphragm included in a pressure sensor according to another embodiment of the present invention. 図10は、本発明の他の実施の形態に係る圧力センサの断面図である。FIG. 10 is a sectional view of a pressure sensor according to another embodiment of the invention. 図11は、本発明の他の実施の形態に係る圧力センサが備えるダイアフラム近傍を拡大した平面図である。FIG. 11 is an enlarged plan view of the vicinity of a diaphragm included in a pressure sensor according to another embodiment of the present invention. 図12は、図11におけるQ-Q線の断面図である。FIG. 12 is a sectional view taken along the line QQ in FIG. 11. 図13は、本発明の他の実施の形態に係る圧力センサが備えるダイアフラムの変形態様を表した概念図である。FIG. 13 is a conceptual diagram showing a modification of a diaphragm included in a pressure sensor according to another embodiment of the present invention. 図14は、本発明の他の実施の形態に係る圧力センサが備える中間材および支持部材を表した概念図である。FIG. 14 is a conceptual diagram showing an intermediate member and a support member included in a pressure sensor according to another embodiment of the present invention. 図15は、本発明の他の実施の形態に係る圧力センサが備える中間材および支持部材を表した概念図である。FIG. 15 is a conceptual diagram showing an intermediate member and a support member included in a pressure sensor according to another embodiment of the present invention.

以下、本発明の好ましい実施の形態である第1の実施の形態ないし第3の実施の形態を、図1ないし図15に基づいて説明する。各実施の形態において共通する構成要素については、同一の参照符号を付するとともに繰り返しの説明を割愛する。なお、説明文中の左右方向、前後方向および上下方向は、各図に示されたX、YおよびZ軸に沿った方向、または各図に示された圧力センサ1A、1B、1Cまたはダイアフラム10の紙面に対する奥行き方向、上下方向および左右方向としてそれぞれ定義する。ここで、+Z方向は被測定流体Fの圧力Pが印加される方向と一致するように定義される。また、各図は概念図であって、それぞれに示された内容は、実際の圧力センサと必ずしも同一ではない。 First to third embodiments, which are preferred embodiments of the present invention, will be described below based on FIGS. 1 to 15. Components common to each embodiment are given the same reference numerals and repeated explanations will be omitted. Note that the left-right direction, front-back direction, and up-down direction in the explanatory text refer to directions along the X, Y, and Z axes shown in each figure, or directions of the pressure sensors 1A, 1B, 1C or diaphragm 10 shown in each figure. Defined as the depth direction, vertical direction, and horizontal direction with respect to the paper surface. Here, the +Z direction is defined to match the direction in which the pressure P of the fluid F to be measured is applied. Furthermore, each figure is a conceptual diagram, and the contents shown in each are not necessarily the same as those of an actual pressure sensor.

≪第1の実施の形態≫
はじめに、本発明の第1の実施の形態である圧力センサ1Aを、図1ないし図5に基づいて説明する。
<<First embodiment>>
First, a pressure sensor 1A according to a first embodiment of the present invention will be described based on FIGS. 1 to 5.

〔圧力センサの構成〕
まず、圧力センサ1Aの構成を、図1ないし図4に基づいて説明する。この圧力センサ1Aは、図1に示すように、ダイアフラム10とセンサチップ20Aとを少なくとも備え、さらに、ダイアフラム10の外周部と接合してこれを支持するハウジング30を含む。当該構成の圧力センサ1Aにおいては、被測定流体Fの圧力Pを受圧してたわむダイアフラム10の変位がセンサチップ20Aを通じて電気信号(例えば、電圧信号)として検出される。このセンサチップ20Aは、支持部材40Aおよび中間材50Aを介してダイアフラム10の表面(後述するセンサ保持面12)に配設されている。
[Pressure sensor configuration]
First, the configuration of the pressure sensor 1A will be explained based on FIGS. 1 to 4. As shown in FIG. 1, this pressure sensor 1A includes at least a diaphragm 10 and a sensor chip 20A, and further includes a housing 30 that joins to and supports the outer circumference of the diaphragm 10. In the pressure sensor 1A having this configuration, the displacement of the diaphragm 10 which bends upon receiving the pressure P of the fluid F to be measured is detected as an electrical signal (for example, a voltage signal) through the sensor chip 20A. This sensor chip 20A is disposed on the surface of the diaphragm 10 (sensor holding surface 12, which will be described later) via a support member 40A and an intermediate member 50A.

[ダイアフラム10]
ダイアフラム10は、図1に示すように、円板状の薄板部材であって、上述したように、その外周縁10aが、ハウジング30、より具体的には、後述するハウジング30の開口部31を画成する内周側壁面31aと、例えば溶接によって接合されている。これにより、ダイアフラム10は、図2に示すように、ハウジング30の内側に形成された空間(後述する空間30V)と、被測定流体Fが流出入する空間Vとを隔絶する薄膜の隔壁を形成している。
[Diaphragm 10]
As shown in FIG. 1, the diaphragm 10 is a disc-shaped thin plate member, and as described above, the outer peripheral edge 10a of the diaphragm 10 is connected to the housing 30, more specifically, the opening 31 of the housing 30, which will be described later. It is joined to the defining inner peripheral side wall surface 31a by, for example, welding. As a result, the diaphragm 10 forms a thin film partition wall that separates a space formed inside the housing 30 (a space 30V to be described later) from a space V through which the fluid to be measured F flows in and out, as shown in FIG. are doing.

ダイアフラム10の下面は、被測定流体Fに接触してその圧力Pを受ける受圧面11を形成している。この受圧面11は、特許請求の範囲に記載の第1主面に相当する部位である。また、その上面、すなわち、受圧面11と反対側に位置する面は、図1ないし図4に示すように、支持部材40および中間材50を介してセンサチップ20Aが配設されこれを保持するセンサ保持面12を形成している。このセンサ保持面12は、特許請求の範囲に記載の第2主面に相当する部位である。 The lower surface of the diaphragm 10 forms a pressure receiving surface 11 that comes into contact with the fluid F to be measured and receives its pressure P. This pressure receiving surface 11 is a portion corresponding to the first main surface described in the claims. Further, on the upper surface thereof, that is, the surface located on the opposite side to the pressure receiving surface 11, as shown in FIGS. 1 to 4, a sensor chip 20A is disposed and held via a support member 40 and an intermediate member 50. A sensor holding surface 12 is formed. This sensor holding surface 12 is a portion corresponding to the second main surface described in the claims.

ダイアフラム10は、耐食性が高い材料、例えば、ステンレス鋼(SUS)またはチタンからなる。これら材料は、線膨張率が比較的大きく、例えば、SUS304の線膨張率は約17.3/K×10-6であり、チタンの線膨張率は約11.3/K×10-6である。 The diaphragm 10 is made of a material with high corrosion resistance, such as stainless steel (SUS) or titanium. These materials have relatively large coefficients of linear expansion; for example, the coefficient of linear expansion of SUS304 is approximately 17.3/K×10 −6 , and the coefficient of linear expansion of titanium is approximately 11.3/K×10 −6 . be.

[センサチップ20A]
センサチップ20Aは、ダイアフラム10の機械的な変位を電気信号として検出する回路を備えた要素であって、上述したように、ダイアフラム10に形成されたセンサ保持面12の略中央に配設されている。センサチップ20Aは、例えば、Si等の半導体材料から成る基板とこの基板の上面20Aaに形成されたホイートストンブリッジ回路からなるひずみゲージとから構成されている。ホイートストンブリッジ回路が備える4つの抵抗素子(例えば拡散抵抗)は、ダイアフラム10の変形(より具体的には、載置されているダイアフラム10のセンサ保持面12の変形)に応じてその長さが変位(伸縮)することで抵抗値が増減するように構成されている。これにより、ダイアフラム10の変形がホイートストンブリッジ回路の中間点の電圧値の変化として検出される。
[Sensor chip 20A]
The sensor chip 20A is an element equipped with a circuit that detects mechanical displacement of the diaphragm 10 as an electrical signal, and as described above, is arranged approximately at the center of the sensor holding surface 12 formed on the diaphragm 10. There is. The sensor chip 20A is composed of a substrate made of a semiconductor material such as Si, and a strain gauge made of a Wheatstone bridge circuit formed on the upper surface 20Aa of this substrate. The lengths of the four resistance elements (for example, diffused resistance) included in the Wheatstone bridge circuit change according to the deformation of the diaphragm 10 (more specifically, the deformation of the sensor holding surface 12 of the diaphragm 10 on which it is placed). It is configured so that the resistance value increases or decreases by expanding and contracting. Thereby, deformation of the diaphragm 10 is detected as a change in the voltage value at the midpoint of the Wheatstone bridge circuit.

[ハウジング30]
ハウジング30は、図1に示すように、内側に開口部31が開口する略円筒状のケーシング要素であって、耐食性の高い金属材料、例えば、ステンレス鋼(SUS)から形成されている。ハウジング30は、その下部に、配管Hのフェルールフランジ部Hfと接合するフェルールフランジ部30fが、半径方向外側に向かって突出するように設けられている。圧力センサ1Aと配管Hとは、上下に重なり合うフェルールフランジ部30fとフェルールフランジ部HfとがクランプCによって上下方向に挟持されることで互いが連結している。開口部31の内周側壁面31aは、上述したように、その下部でダイアフラム10の外周縁10aと接合し、ダイアフラム10、より具体的には、ダイアフラム10のセンサ保持面12と共に、被測定流体Fが流出入する配管Hの内部と隔絶された円柱状の空間30Vを形成している。この空間30Vは、例えば大気と連通し、内側に上述したセンサチップ20Aが配置される。
[Housing 30]
As shown in FIG. 1, the housing 30 is a substantially cylindrical casing element having an opening 31 on the inside, and is made of a metal material with high corrosion resistance, such as stainless steel (SUS). The housing 30 is provided at its lower portion with a ferrule flange portion 30f that connects with the ferrule flange portion Hf of the pipe H so as to protrude radially outward. The pressure sensor 1A and the pipe H are connected to each other by vertically clamping the ferrule flange portion 30f and the ferrule flange portion Hf, which overlap each other, by the clamp C. As described above, the inner circumferential side wall surface 31a of the opening 31 is joined to the outer circumferential edge 10a of the diaphragm 10 at the lower part thereof, and together with the diaphragm 10, more specifically, the sensor holding surface 12 of the diaphragm 10, the fluid to be measured is A cylindrical space 30V is formed which is isolated from the inside of the pipe H through which F flows in and out. This space 30V communicates with the atmosphere, for example, and the above-mentioned sensor chip 20A is placed inside.

[支持部材40A]
支持部材40Aは、センサチップ20Aを支持する柱として機能する部材であって、図1ないし図4に示すように、ダイアフラム10のセンサ保持面12に対して垂直に起立するように配設(センサ保持面12の法線方向(Z軸方向)に沿って延設)された2つの柱状部材、具体的には、四角柱状に形成された同一形状の第1支持部材41および第2支持部材42から構成されている。第1支持部材41および第2支持部材42は、電気的に絶縁性を有する材料、好ましくは、熱伝導率の小さい材料からなり、例えば、ガラス、具体的にはホウケイ酸ガラス(パイレックス、登録商標))から形成されている。第1支持部材41および第2支持部材42は、その一端(頂部)がセンサチップ20Aの下面20Ab、より具体的には、下面20Abの左右両端部近傍に接合し、他端が中間材50Aの上面50Aaに接合している。
[Support member 40A]
The support member 40A is a member that functions as a pillar that supports the sensor chip 20A, and is disposed so as to stand up perpendicularly to the sensor holding surface 12 of the diaphragm 10, as shown in FIGS. Two columnar members (extending along the normal direction (Z-axis direction) of the holding surface 12), specifically, a first support member 41 and a second support member 42 of the same shape formed in a quadrangular prism shape. It consists of The first support member 41 and the second support member 42 are made of an electrically insulating material, preferably a material with low thermal conductivity, such as glass, specifically borosilicate glass (Pyrex, a registered trademark). )). The first support member 41 and the second support member 42 have one end (top) joined to the lower surface 20Ab of the sensor chip 20A, more specifically, near both left and right ends of the lower surface 20Ab, and the other end to the intermediate member 50A. It is joined to the upper surface 50Aa.

上記中間材50Aは、後述するように、ダイアフラム10のセンサ保持面12に接合しており、第1支持部材41および第2支持部材42が、中間材50Aを介してダイアフラム10のセンサ保持面12に上記態様(垂直に起立した態様)で固定されている。第1支持部材41および第2支持部材42は、例えば平面視において、ダイアフラム10の中心点P0に対して点対称となる2つの第1の支持点P41Aおよび第2の支持点P42Aに固定されている。ここで、ダイアフラム10の中心点P10とは、センサ保持面12に加わる圧力(例えば大気圧)よりも大きな圧力が受圧面11に加わった状態において、ダイアフラム10が上下方向(Z軸方向)に最も大きく変位する点として定義される。当該中心点P10は、円板状のダイアフラム10の厚みが均一であって剛性に偏りがない場合、図3に示すように、幾何学的な中心点と一致する。 The intermediate member 50A is joined to the sensor holding surface 12 of the diaphragm 10, as described later, and the first support member 41 and the second support member 42 are connected to the sensor holding surface 12 of the diaphragm 10 via the intermediate member 50A. It is fixed in the above-mentioned manner (standing vertically). The first support member 41 and the second support member 42 are fixed to two points, a first support point P41A and a second support point P42A, which are symmetrical with respect to the center point P0 of the diaphragm 10, for example, in a plan view. There is. Here, the center point P10 of the diaphragm 10 is the point at which the diaphragm 10 is at its most vertically (Z-axis direction) when a pressure greater than the pressure (for example, atmospheric pressure) applied to the sensor holding surface 12 is applied to the pressure receiving surface 11. Defined as a point with a large displacement. The center point P10 coincides with the geometric center point, as shown in FIG. 3, when the thickness of the disc-shaped diaphragm 10 is uniform and the rigidity is not biased.

[中間材50A]
中間材50Aは、ダイアフラム10と支持部材40Aとの間に介在する部材であって、例えば図3に示すように、平面視略長方形の薄板部材から形成されている。中間材50Aは、その線膨張率がダイアフラム10を形成する材料、例えば、ステンレス鋼(SUS)の線膨張率(SUS304の線膨張率は約17.3/K×10-6)よりも小さい材料から形成されており、好ましくは、支持部材40A(支持部材41、42)を形成する材料、例えばガラスの線膨張率(ホウケイ酸ガラスの線膨張率は約3.0×10-6)よりも大きな材料から形成されている。この好ましい形態の中間材50Aとして、例えばコバール(コバールの線膨張率は約5.2/K×10-6)挙げられる。
[Intermediate material 50A]
The intermediate member 50A is a member interposed between the diaphragm 10 and the support member 40A, and is formed of a thin plate member that is substantially rectangular in plan view, as shown in FIG. 3, for example. The intermediate material 50A is a material whose coefficient of linear expansion is smaller than that of the material forming the diaphragm 10, for example, stainless steel (SUS) (the coefficient of linear expansion of SUS304 is approximately 17.3/K×10 −6 ). Preferably, the coefficient of linear expansion is higher than that of the material forming the support member 40A (support members 41, 42), for example, glass (the coefficient of linear expansion of borosilicate glass is approximately 3.0×10 −6 ). Made from large pieces of material. An example of this preferred intermediate material 50A is Kovar (the coefficient of linear expansion of Kovar is approximately 5.2/K×10 −6 ).

中間材50Aは、図3および図4に示すように、ダイアフラム10が被測定流体Fの圧力Pを受圧して変形する(たわむ)領域にあってその中心点がダイアフラム10の中心点P0と一致する位置に、下面50Abを通じてスポット溶接等によってセンサ保持面12に接合されている。また、中間材50Aは、例えばその上面50Aaの両端部近傍に、スポット溶接等によって第1支持部材41および第2支持部材42の下端部が接合されている。これにより、第1支持部材41および第2支持部材42は、ダイアフラム10の中心点P0に対して点対称の位置にある第1支持点P41Aおよび第2支持点P42Aに固定されることとなる。 As shown in FIGS. 3 and 4, the intermediate material 50A is located in a region where the diaphragm 10 deforms (deflects) in response to the pressure P of the fluid F to be measured, and its center point coincides with the center point P0 of the diaphragm 10. It is joined to the sensor holding surface 12 by spot welding or the like through the lower surface 50Ab. In addition, the lower ends of the first support member 41 and the second support member 42 of the intermediate member 50A are joined, for example, near both ends of the upper surface 50Aa by spot welding or the like. As a result, the first support member 41 and the second support member 42 are fixed to the first support point P41A and the second support point P42A, which are symmetrical with respect to the center point P0 of the diaphragm 10.

〔圧力センサ1Aの動作態様〕
つづいて、圧力センサ1Aの動作態様を、図5に基づいて説明する。この図5は、ダイアフラム10が変形したときの第1支持部材41、第2支持部材42および中間材50A、ならびにセンサチップ20AのXZ断面における変位を模式的に示した図である。
[Operation mode of pressure sensor 1A]
Next, the operation mode of the pressure sensor 1A will be explained based on FIG. 5. FIG. 5 is a diagram schematically showing the displacement of the first support member 41, the second support member 42, the intermediate member 50A, and the sensor chip 20A in the XZ cross section when the diaphragm 10 is deformed.

センサ保持面12に加わる圧力(例えば大気圧)よりも大きな圧力Pを有する被測定流体Fが受圧面11に接すると、薄板部材からなるダイアフラム10は、中心点P10が上方(+Z方向)に突出した略円錐状に変形する(たわむ)。このとき、薄膜状の中間材50Aもまた、ダイアフラム10の変形に倣って変形(たわむ)。 When a fluid to be measured F having a pressure P greater than the pressure applied to the sensor holding surface 12 (for example, atmospheric pressure) comes into contact with the pressure receiving surface 11, the center point P10 of the diaphragm 10 made of a thin plate member protrudes upward (in the +Z direction). It deforms (deflects) into a roughly conical shape. At this time, the thin film-like intermediate material 50A also deforms (deflects) following the deformation of the diaphragm 10.

中間材50Aを介してセンサ保持面12に略垂直に起立し、かつ点対称の位置にあって中心点P10から離れた第1支持点P41Aおよび第2支持点P42Aに固定されている第1支持部材41および第2支持部材42は、Z軸に対して略線対称となるようにそれぞれが傾く。この結果、センサチップ20Aの下面20bと接合する第1支持部材41および第2支持部材42の頂部は、いずれも+Z方向に略同じ量だけ変位するとともに、一方(第1支持部材41)は-X方向に変位し、他方(第2支持部材42)は+X方向に変位する(図5中の矢印を参照)。当該第1支持部材41および第2支持部材42の頂部における±X方向の変位量は、各支持部材の高さ(詳細には、センサ保持面12から各支持部材の頂部までの高さ)に比例して大きくなる。すなわち、ダイアフラム10の変位量は、第1支持部材41および第2支持部材42によって増幅される形でセンサチップ20Aに伝達される。センサチップ20Aは、当該増幅されたダイアフラム10の変位量に応じた電気信号(例えば電圧信号)を出力する。 A first support that stands approximately perpendicular to the sensor holding surface 12 via an intermediate member 50A and is fixed to a first support point P41A and a second support point P42A that are point-symmetrical and distant from the center point P10. The member 41 and the second support member 42 are each tilted so as to be approximately line symmetrical with respect to the Z axis. As a result, the tops of the first support member 41 and the second support member 42, which are connected to the lower surface 20b of the sensor chip 20A, are both displaced by approximately the same amount in the +Z direction, and one (the first support member 41) is - It is displaced in the X direction, and the other (second support member 42) is displaced in the +X direction (see the arrow in FIG. 5). The amount of displacement in the ±X direction at the top of the first support member 41 and the second support member 42 depends on the height of each support member (specifically, the height from the sensor holding surface 12 to the top of each support member). becomes proportionally larger. That is, the amount of displacement of the diaphragm 10 is amplified by the first support member 41 and the second support member 42 and transmitted to the sensor chip 20A. The sensor chip 20A outputs an electric signal (for example, a voltage signal) according to the amplified displacement amount of the diaphragm 10.

〔圧力センサ1Aの効果〕
上記構成の圧力センサ1Aによれば、上述したように、支持部材40Aを通じてダイアフラム10の変形量が±X方向に増幅される形でセンサチップ20Aに伝達される。このため、ダイアフラム10を僅かに変位させる程度の小さな圧力変動に対しても、センサチップ20Aは左右方向(+X方向および-X方向)に大きく引っ張られる。この結果、センサチップ20Aに設けられたひずみゲージ(ホイートストンブリッジ回路)を構成する抵抗素子は、出力変動を伴う程度に十分に変位(伸縮)することとなり、被測定流体の圧力を高精度に検知することが可能になる。
[Effects of pressure sensor 1A]
According to the pressure sensor 1A having the above configuration, as described above, the amount of deformation of the diaphragm 10 is transmitted to the sensor chip 20A through the support member 40A in the form of being amplified in the ±X direction. Therefore, the sensor chip 20A is pulled significantly in the left-right direction (+X direction and −X direction) even with a small pressure change that slightly displaces the diaphragm 10. As a result, the resistance element that constitutes the strain gauge (Wheatstone bridge circuit) provided on the sensor chip 20A is sufficiently displaced (expanded and contracted) to the extent that the output fluctuates, and the pressure of the fluid to be measured is detected with high precision. It becomes possible to do so.

また、ダイアフラム10と支持部材40Aとの間に、線膨張率の値がダイアフラム10のそれよりも小さく支持部材40Aのそれよりも大きな中間材50Aが介在することで、両部材間の接合残留応力を低減させることができる。これにより、ダイアフラム10の耐圧性能の低下を抑えることができる。 Further, by interposing the intermediate material 50A between the diaphragm 10 and the support member 40A, the coefficient of linear expansion of which is smaller than that of the diaphragm 10 and larger than that of the support member 40A, the bonding residual stress between the two members is reduced. can be reduced. Thereby, it is possible to suppress a decrease in the pressure resistance performance of the diaphragm 10.

≪第2の実施の形態≫
つぎに、本発明の第2の実施の形態である圧力センサ1Bを、図6ないし図9に基づいて説明する。
<<Second embodiment>>
Next, a pressure sensor 1B according to a second embodiment of the present invention will be described based on FIGS. 6 to 9.

圧力センサ1Bは、圧力センサ1Aと比較して、支持部材40Bを構成する柱状部材の数とこれらが設けられる位置、および支持部材40Bによって支持されるセンサチップ20Bの形態(支持部材40Bとの接合部分の形態)、ならびに支持部材40Bをダイアフラム10のセンサ保持面12に固定する中間材50Bの形態が相違し、これら以外の構成は同一である。 The pressure sensor 1B is different from the pressure sensor 1A in terms of the number of columnar members constituting the support member 40B, the positions where these members are provided, and the form of the sensor chip 20B supported by the support member 40B (joint with the support member 40B). The structure is the same except for the shape of the intermediate member 50B that fixes the support member 40B to the sensor holding surface 12 of the diaphragm 10.

[支持部材40B]
支持部材40Bは、図6および図8に示すように、3つの柱状部材、具体的には、支持部材40Aを構成する第1支持部材41および第2支持部材42と同一の部材と、これら部材と同一形状かつ同一材料からなる第3支持部材43とから構成されている。支持部材40Bを構成する第1支持部材41および第2支持部材42は、支持部材40Aと同様に、その一端(頂部)が後述するセンサチップ20Bの下面20Bb、より具体的には、下面20Bbの左右両端部近傍(後述する第1接合部51の上面51aおよび第2接合部52の上面52a)に接合している。また、第1支持部材41および第2支持部材42の他端は、中間材50Bの上面の左右両端部近傍に接合している。さらに、追加された第3支持部材43の一端(頂部)および他端が、センサチップ20Bの下面20Bbの略中央および中間材50Bの上面の略中央(後述する第3接合部53の上面53a)にそれぞれ接合している。
[Support member 40B]
As shown in FIGS. 6 and 8, the support member 40B includes three columnar members, specifically, the same members as the first support member 41 and the second support member 42 that constitute the support member 40A, and these members. and a third support member 43 having the same shape and made of the same material. Like the support member 40A, the first support member 41 and the second support member 42 constituting the support member 40B have one end (top) of the lower surface 20Bb of the sensor chip 20B described later, more specifically, the lower surface 20Bb. It is joined to the vicinity of both left and right ends (upper surface 51a of the first joint portion 51 and upper surface 52a of the second joint portion 52, which will be described later). Further, the other ends of the first support member 41 and the second support member 42 are joined to the vicinity of both left and right ends of the upper surface of the intermediate member 50B. Furthermore, one end (top) and the other end of the added third support member 43 are located approximately in the center of the lower surface 20Bb of the sensor chip 20B and approximately in the center of the upper surface of the intermediate member 50B (the upper surface 53a of the third joint portion 53, which will be described later). are connected to each other.

[中間材50B]
中間材50Bは、ダイアフラム10と支持部材40Bとの間に介在する部材であって、中間材50Aと同一の材料、すなわち、その線膨張率がダイアフラム10を形成する材料よりも小さい材料から形成され、好ましくは、支持部材40Bを形成する材料よりも大きな材料から形成されている。中間材50Bは、例えば図6および図8に示すように、第1接合部51、第2接合部52および第3接合部53、ならびに第1連結部54および第2連結部55から構成されている。
[Intermediate material 50B]
The intermediate material 50B is a member interposed between the diaphragm 10 and the support member 40B, and is made of the same material as the intermediate material 50A, that is, a material whose coefficient of linear expansion is smaller than that of the material forming the diaphragm 10. , preferably made of a larger material than the material forming support member 40B. For example, as shown in FIGS. 6 and 8, the intermediate material 50B is composed of a first joint portion 51, a second joint portion 52, a third joint portion 53, and a first joint portion 54 and a second joint portion 55. There is.

第1接合部51、第2接合部52および第3接合部53は、いずれも同一形状を呈しており、例えば、略直方体を呈した部位として形成されている。なお、第1接合部51、第2接合部52および第3接合部53の形状を異なるものとしてもよい。 The first joint portion 51, the second joint portion 52, and the third joint portion 53 all have the same shape, and are formed, for example, as a substantially rectangular parallelepiped portion. Note that the first joint portion 51, the second joint portion 52, and the third joint portion 53 may have different shapes.

第1接合部51、第2接合部52および第3接合部53は、その高さ(厚み)が、例えば、ダイアフラム10の厚みよりも大きく設定されており、センサ保持面12に対して略垂直に起立した状態で当該保持面に接合されている。 The height (thickness) of the first joint 51 , second joint 52 , and third joint 53 is set to be larger than, for example, the thickness of the diaphragm 10 , and is approximately perpendicular to the sensor holding surface 12 . It is joined to the holding surface in an upright state.

第1接合部51、第2接合部52および第3接合部53は、それぞれ第1支持部材41、第2支持部材42および第3支持部材43と、上面51a、52a、53aを通じて、例えばスポット溶接によって接合している。また、第1接合部51、第2接合部52および第3接合部53は、それぞれ下面51b、52b、53bを通じて、例えばスポット溶接によってセンサ保持面12に接合している。ここで、上面51a、52a、53aの表面積Suは、接合される支持部材41、42、43の下端面の表面積と同等か僅かに大きく設定されている。また、本実施の形態では、下面51b、52b、53bの表面積Sdは、上面51a、52a、53aの表面積Suと等しいが、これを表面積Suよりも小さくなるように、第1接合部51、第2接合部52および第3接合部53の形状を変更してもよい。これにより、下面51b、52b、53bとセンサ保持面12との接合面積が小さくなり、ダイアフラム10の変形への影響を抑えることができる。 The first joint part 51, the second joint part 52, and the third joint part 53 are connected to the first support member 41, the second support member 42, and the third support member 43 through upper surfaces 51a, 52a, and 53a, for example, by spot welding. It is joined by Further, the first joint portion 51, the second joint portion 52, and the third joint portion 53 are joined to the sensor holding surface 12 through the lower surfaces 51b, 52b, and 53b, respectively, by spot welding, for example. Here, the surface area Su of the upper surfaces 51a, 52a, 53a is set to be equal to or slightly larger than the surface area of the lower end surfaces of the supporting members 41, 42, 43 to be joined. Further, in the present embodiment, the surface area Sd of the lower surfaces 51b, 52b, and 53b is equal to the surface area Su of the upper surfaces 51a, 52a, and 53a, but is made smaller than the surface area Su of the first joint portion 51 and the The shapes of the second joint portion 52 and the third joint portion 53 may be changed. Thereby, the bonding area between the lower surfaces 51b, 52b, 53b and the sensor holding surface 12 becomes smaller, and the influence on the deformation of the diaphragm 10 can be suppressed.

図7に示すように、上記3つの接合部のうちの第1接合部51および第2接合部52は、ダイアフラム10の中心点P10に対して点対称の位置にある第1支持点P41Bおよび第2支持点P42Bに配設されており、第3接合部53は、中心点P10と一致する第3支持点P43Bに配設されている。これにより、第3支持部材43は、中心点P10(第3支持点P43B)に固定され、第1支持部材41および第2支持部材42は、ダイアフラム10の中心点P0(第3支持点P43B)に対して点対称の位置にある第1支持点P41Bおよび第2支持点P42Bに固定されることとなる。 As shown in FIG. 7, the first joint part 51 and the second joint part 52 of the three joint parts are connected to a first support point P41B and a first support point P41B, which are located symmetrically with respect to the center point P10 of the diaphragm 10. The third joint portion 53 is provided at a third support point P43B that coincides with the center point P10. Thereby, the third support member 43 is fixed at the center point P10 (third support point P43B), and the first support member 41 and the second support member 42 are fixed at the center point P0 (third support point P43B) of the diaphragm 10. It will be fixed to the first support point P41B and the second support point P42B, which are located point-symmetrically with respect to the first support point P41B and the second support point P42B.

第1連結部54および第2連結部55は、いずれもセンサ保持面12に沿って(平行に)延在する薄膜状の部材として形成されている。第1連結部54は、第1接合部51の下端部(センサ保持面12に近接した端部)と第2接合部52の下端部とに接続してこれら2つの部位を接続している。また、第2連結部55は、第2接合部52の下端部と第3接合部53の下端部とに接続してこれら2つの部位を接続している。このように、第1連結部54および第2連結部55が薄膜状の部材として形成され、かつ各接合部の下端部を接続する形態とすることで、各接合部の相対移動(相対変位)を可能にしている。すなわち、各接合部は、互いに干渉することなく当該変形に倣って(固定されているセンサ保持面12に対して垂直な姿勢を保持したまま)個別に変位(移動)することができる(図9参照)。また、第1連結部54および第2連結部55を上記形態とすることで、中間材50Bの各接合部が厚みのある部位として形成された場合であっても、これによるダイアフラム10の変形への影響(変形の妨げ)を最小限に留めることが可能になる。 The first connecting portion 54 and the second connecting portion 55 are both formed as thin film-like members that extend along (parallel to) the sensor holding surface 12 . The first connecting part 54 is connected to the lower end of the first joint part 51 (the end close to the sensor holding surface 12) and the lower end of the second joint part 52, thereby connecting these two parts. Further, the second connecting portion 55 is connected to the lower end portion of the second joint portion 52 and the lower end portion of the third joint portion 53 to connect these two parts. In this way, by forming the first connecting part 54 and the second connecting part 55 as thin film-like members and connecting the lower ends of each joint, relative movement (relative displacement) of each joint can be achieved. is possible. That is, each joint can be individually displaced (moved) following the deformation without interfering with each other (while maintaining a posture perpendicular to the fixed sensor holding surface 12) (Fig. 9 reference). Further, by making the first connecting portion 54 and the second connecting portion 55 into the above-described configuration, even if each connecting portion of the intermediate member 50B is formed as a thick portion, the diaphragm 10 is prevented from deforming due to this. This makes it possible to minimize the influence of deformation (hinder to deformation).

なお、接合部と連結部とが接続する位置によっては、接合部の相対移動(相対変位)が一部規制されることとなる。すなわち、当該接続位置によって、接合部の相対移動(相対変位)を制御することができる、このため、当該接続位置は、センサチップ20Bが配設される位置に応じて適宜変更することが望ましい。上記規制機能をもつ接続態様の一つとして、後述する第3の実施の形態(中間材50Cにおける第1接合部56と第3接合部58とを接続する連結部59の接続形態)がある。 Note that the relative movement (relative displacement) of the joint part is partially regulated depending on the position where the joint part and the connecting part are connected. That is, the relative movement (relative displacement) of the joint can be controlled by the connection position. Therefore, it is desirable to change the connection position as appropriate depending on the position where the sensor chip 20B is disposed. As one of the connection modes having the above-mentioned regulating function, there is a third embodiment (a connection mode of a connecting portion 59 that connects the first joint portion 56 and the third joint portion 58 in the intermediate material 50C), which will be described later.

〔圧力センサ1Bの動作態様〕
つづいて、圧力センサ1Bの動作態様を、図9に基づいて説明する。この図9は、図5と同様に、ダイアフラム10が変形したときの第1支持部材41、第2支持部材42、第3支持部材43および中間材50B(第1接合部51、第2接合部52、第3接合部53、第1連結部54、第2連結部55)、ならびにセンサチップ20BのXZ断面における変位を模式的に示した図である。
[Operation mode of pressure sensor 1B]
Next, the operation mode of the pressure sensor 1B will be explained based on FIG. 9. Similar to FIG. 5, FIG. 9 shows the first support member 41, second support member 42, third support member 43, and intermediate member 50B (first joint 51, second joint 52, a third joint portion 53, a first connecting portion 54, a second connecting portion 55), and a diagram schematically showing the displacement of the sensor chip 20B in the XZ cross section.

センサ保持面12に加わる圧力(例えば大気圧)よりも大きな圧力Pを有する被測定流体Fが受圧面11に接すると、薄板部材からなるダイアフラム10は、中心点P10が上方(+Z方向)に突出した略円錐状に変形する(たわむ)。このとき、上記形態の薄膜状の第1連結部54および第2連結部55を備える中間材50Bは、例え厚みの大きな第1接合部51、第2接合部52および第3接合部53を有してしても、これら接合部によってダイアフラム10の変形を妨げることなく、また、各接合部が互いに干渉することなく当該変形に倣って(各接合部が固定されているセンサ保持面12に対して垂直な姿勢を保持したまま)変形(移動)する。 When a fluid to be measured F having a pressure P greater than the pressure applied to the sensor holding surface 12 (for example, atmospheric pressure) comes into contact with the pressure receiving surface 11, the center point P10 of the diaphragm 10 made of a thin plate member protrudes upward (in the +Z direction). It deforms (deflects) into a roughly conical shape. At this time, the intermediate material 50B having the thin film-like first connecting part 54 and the second connecting part 55 of the above-mentioned form may have the first connecting part 51, the second connecting part 52, and the third connecting part 53 having a large thickness. Even if the diaphragm 10 is deformed by these joints, the joints follow the deformation without interfering with each other (each joint is attached to the sensor holding surface 12 to which it is fixed). deform (move) (while maintaining a vertical posture).

中間材50Bの上記変形(移動)により、中間材50Bの第3接合部53を介して中心点P10(第3支持点P43B)に立設された第3支持部材43は、Z軸に沿って変位する(具体的には、+Z方向に変位する)。この結果、センサチップ20Bの下面20bと接合する第3支持部材43の頂部は、ダイアフラム10の変位量と略同じ量だけ+Z方向に変位する。また、中間材50Bの第1接合部51および第2接合部52を介してセンサ保持面12に略垂直に起立し、かつ点対称の位置にあって中心点P10から離れた第1支持点P41Bおよび第2支持点P42Bに固定されている第1支持部材41および第2支持部材42は、Z軸に対して略線対称となるようにそれぞれが傾く。この結果、センサチップ20Bの下面20bと接合する第1支持部材41および第2支持部材42の頂部は、いずれも+Z方向に略同じ量だけ変位するとともに、一方(第1支持部材41)は-X方向に変位し、他方(第2支持部材42)は+X方向に変位する。当該第1支持部材41および第2支持部材42の頂部の±X方向の変位量は、上述したように、各支持部材の高さ(詳細には、センサ保持面12から各支持部材の頂部までの高さ)に比例して大きくなる。すなわち、ダイアフラム10の変位量は、第1支持部材41および第2支持部材42によって増幅される形でセンサチップ20Bに伝達される。 Due to the above deformation (movement) of the intermediate material 50B, the third support member 43, which is erected at the center point P10 (third support point P43B) via the third joint 53 of the intermediate material 50B, moves along the Z-axis. It is displaced (specifically, it is displaced in the +Z direction). As a result, the top of the third support member 43 that is joined to the lower surface 20b of the sensor chip 20B is displaced in the +Z direction by an amount that is approximately the same as the amount of displacement of the diaphragm 10. Also, a first support point P41B stands up substantially perpendicularly to the sensor holding surface 12 via the first joint 51 and the second joint 52 of the intermediate material 50B, and is located at a point-symmetrical position and away from the center point P10. The first support member 41 and the second support member 42 fixed to the second support point P42B are each tilted so as to be approximately symmetrical with respect to the Z-axis. As a result, the tops of the first support member 41 and the second support member 42, which are connected to the lower surface 20b of the sensor chip 20B, are both displaced by approximately the same amount in the +Z direction, and one (the first support member 41) is - It is displaced in the X direction, and the other (second support member 42) is displaced in the +X direction. As described above, the amount of displacement of the tops of the first support member 41 and the second support member 42 in the ±X direction is determined by the height of each support member (specifically, from the sensor holding surface 12 to the top of each support member). height). That is, the amount of displacement of the diaphragm 10 is transmitted to the sensor chip 20B in a form that is amplified by the first support member 41 and the second support member 42.

〔圧力センサ1Bの効果〕
上記構成の圧力センサ1Bによれば、上述したように、ダイアフラム10の変形量が支持部材40Bの第1支持部材41および第2支持部材42を通じて±X方向に増幅され、かつ第3支持部材43を通じて+Z方向の変位がセンサチップ20Bに伝達される。このセンサチップ20Bに伝達される変形量は、+Z方向の変位分だけセンサチップ20Aのそれよりも大きい。このため、ダイアフラム10を僅かに変位させる程度の小さな圧力変動に対しても、センサチップ20Bは左右方向(+X方向および-X方向)およびに+Z方向に大きく引っ張られる。この結果、センサチップ20Bに設けられたひずみゲージ(ホイートストンブリッジ回路)を構成する抵抗素子は、出力変動を伴う程度に十分に変位(伸縮)することとなり、被測定流体の圧力を高精度に検知することが可能になる。
[Effect of pressure sensor 1B]
According to the pressure sensor 1B having the above configuration, as described above, the amount of deformation of the diaphragm 10 is amplified in the ±X direction through the first support member 41 and the second support member 42 of the support member 40B, and the third support member 43 The displacement in the +Z direction is transmitted to the sensor chip 20B through the sensor chip 20B. The amount of deformation transmitted to this sensor chip 20B is larger than that of the sensor chip 20A by the displacement in the +Z direction. Therefore, even with a small pressure change that slightly displaces the diaphragm 10, the sensor chip 20B is pulled significantly in the left-right direction (+X direction and −X direction) and in the +Z direction. As a result, the resistance element that constitutes the strain gauge (Wheatstone bridge circuit) provided on the sensor chip 20B is sufficiently displaced (expanded and contracted) to the extent that the output fluctuates, and the pressure of the fluid to be measured is detected with high precision. It becomes possible to do so.

また、ダイアフラム10と支持部材40Bとの間に、線膨張率の値がダイアフラム10のそれよりも小さく支持部材40Bのそれよりも大きな中間材50Bを介在させたことで、両部材間の接合残留応力を低減させることができる。これにより、ダイアフラム10の耐圧性能の低下を抑えることができる。この効果は、ダイアフラム10よりも厚く形成された熱容量の大きい接合部、すなわち、ダイアフラム10と支持部材40Bとを熱的に隔絶する作用の大きい第1接合部51、第2接合部52および第3接合部53を設けたことでより顕著なものとなる。 Furthermore, by interposing the intermediate material 50B between the diaphragm 10 and the support member 40B, the coefficient of linear expansion of which is smaller than that of the diaphragm 10 and larger than that of the support member 40B, it is possible to prevent bonding between the two members. Stress can be reduced. Thereby, it is possible to suppress a decrease in the pressure resistance performance of the diaphragm 10. This effect is due to the joints that are thicker than the diaphragm 10 and have a large heat capacity, that is, the first joint 51, the second joint 52, and the third joint that have a large effect of thermally isolating the diaphragm 10 and the support member 40B. The provision of the joint portion 53 makes this more noticeable.

また、中間材50Bに連結部(第1連結部54および第2連結部55)が設けられていることで、上記高さ(厚み)の大きな接合部を有していてもこれによってダイアフラム10の変形が妨げられることを可及的に抑制することができる。これにより、上記接合残留応力を低減させる効果と測定精度(感度)とを高い次元で両立させることができる。 Furthermore, since the connecting portions (first connecting portion 54 and second connecting portion 55) are provided in the intermediate member 50B, even if the connecting portion has a large height (thickness) as described above, the diaphragm 10 can be Obstruction of deformation can be suppressed as much as possible. Thereby, it is possible to achieve both the effect of reducing the bonding residual stress and the measurement accuracy (sensitivity) at a high level.

さらに、中間材50Bが1つの部品として形成されることで、部品点数が削減され、組付け性が向上する。例えば、3つの支持点(第1支持点P41B、第2支持点P42B、第3支持点P43B、)に、各接合部が個別部品として構成された中間材を配置する場合、各支持点(3つの支持点)ごとに位置決めすることが必要となるが、中間材が1つの部品から形成されている場合、2つの支持点において位置決めすれば足りる。これにより、組付け精度の悪化(バラツキ)を抑制することができる。 Furthermore, since the intermediate material 50B is formed as one component, the number of components is reduced and ease of assembly is improved. For example, when placing an intermediate material in which each joint is configured as an individual component at three support points (first support point P41B, second support point P42B, third support point P43B, etc.), each support point (3 However, if the intermediate material is formed from one part, positioning at two support points is sufficient. Thereby, deterioration (variation) in assembly accuracy can be suppressed.

≪第3の実施の形態≫
つぎに、本発明の第3の実施の形態である圧力センサ1Cを、図10ないし図13に基づいて説明する。
<<Third embodiment>>
Next, a pressure sensor 1C according to a third embodiment of the present invention will be described based on FIGS. 10 to 13.

圧力センサ1Cは、圧力センサ1Bと比較して、ダイアフラム10のセンサ保持面12と支持部材40Bとの間に介在する中間材50Cの形態および固定位置が相違し(この関係で支持部材40Bおよびセンサチップ20Bが配置される位置も相違し)、これら以外の構成は同一である。 The pressure sensor 1C is different from the pressure sensor 1B in the form and fixing position of the intermediate member 50C interposed between the sensor holding surface 12 of the diaphragm 10 and the support member 40B (in this relationship, the support member 40B and the sensor The position where the chip 20B is arranged is also different), but the other configurations are the same.

[中間材50C]
中間材50Cは、上記実施の形態における中間材50A、50Bと同様に、その線膨張率がダイアフラム10を形成する材料よりも小さい材料から形成され、好ましくは、支持部材40Bを形成する材料よりも大きな材料から形成されている。中間材50Cは、例えば図10および図12に示すように、第1接合部56、第2接合部57および第3接合部58、ならびに連結部59から構成されている。
[Intermediate material 50C]
The intermediate material 50C, like the intermediate materials 50A and 50B in the above embodiment, is formed from a material whose coefficient of linear expansion is smaller than that of the material forming the diaphragm 10, and preferably, the coefficient of linear expansion is smaller than that of the material forming the support member 40B. Made from large pieces of material. The intermediate material 50C is composed of a first joint part 56, a second joint part 57, a third joint part 58, and a connecting part 59, as shown in FIGS. 10 and 12, for example.

第1接合部56、第2接合部57および第3接合部58は、いずれも同一形状を呈し、例えば、センサ保持面12との接合面が支持部材40Bとの接合面よりも小さくなるよう縦断面形状(XZ平面の断面形状)が逆台形の6面体として形成されている。ただし、当該形状に限定されるわけではなく、また、第1接合部56、第2接合部57および第3接合部58が異なる形状を呈していてもよい。 The first joint portion 56, the second joint portion 57, and the third joint portion 58 all have the same shape, and for example, are vertically sectioned so that the joint surface with the sensor holding surface 12 is smaller than the joint surface with the support member 40B. The surface shape (cross-sectional shape on the XZ plane) is formed as an inverted trapezoidal hexahedron. However, the shape is not limited to this, and the first joint portion 56, second joint portion 57, and third joint portion 58 may have different shapes.

第1接合部56、第2接合部57および第3接合部58は、その高さ(厚み)が、例えばダイアフラム10の厚みよりも大きく設定されており、センサ保持面12に対して略垂直に起立した状態で当該保持面に接合されている。なお、第1接合部56と第3接合部58とは、連結部59を通じて一体的に接続しているが、第1接合部56および第3接合部58と第2接合部57とは別体として形成されている。 The height (thickness) of the first joint portion 56 , second joint portion 57 , and third joint portion 58 is set to be larger than, for example, the thickness of the diaphragm 10 , and the heights (thicknesses) of the first joint portion 56 , the second joint portion 57 , and the third joint portion 58 are set to be larger than, for example, the thickness of the diaphragm 10 . It is joined to the holding surface in an upright state. Note that although the first joint 56 and the third joint 58 are integrally connected through the connecting part 59, the first joint 56, the third joint 58, and the second joint 57 are separate bodies. It is formed as.

第1接合部56、第2接合部57および第3接合部58は、支持部材40Bを構成する第1支持部材41、第2支持部材42および第3支持部材43と、上面56a、57a、58aを通じて、例えばスポット溶接によって接合している。また、第1接合部56、第2接合部57および第3接合部58は、それぞれ下面56b、57b、58bを通じて、例えばスポット溶接によってセンサ保持面12に接合している。ここで、上面56a、57a、58aの表面積Suは、接合される支持部材41、42、43の下端面の表面積と同等か僅かに大きく設定されている。また、下面56b、57b、58bの表面積Sdは、上述したように、上面51a、52a、53aの表面積Suよりも小さくなるように形成されている。当該形態とすることで、支持部材41、42、43と安定した状態で接合し、かつセンサ保持面12との接合面積が小さくなることでダイアフラム10の変形への影響(変形の妨げとなること)を抑えることができる。 The first joint portion 56, the second joint portion 57, and the third joint portion 58 are connected to the first support member 41, the second support member 42, and the third support member 43 that constitute the support member 40B, and the upper surfaces 56a, 57a, and 58a. For example, they are joined by spot welding. Further, the first joint portion 56, the second joint portion 57, and the third joint portion 58 are joined to the sensor holding surface 12 through the lower surfaces 56b, 57b, and 58b, respectively, by spot welding, for example. Here, the surface area Su of the upper surfaces 56a, 57a, 58a is set to be equal to or slightly larger than the surface area of the lower end surfaces of the supporting members 41, 42, 43 to be joined. Moreover, the surface area Sd of the lower surfaces 56b, 57b, and 58b is formed to be smaller than the surface area Su of the upper surfaces 51a, 52a, and 53a, as described above. With this configuration, it is stably joined to the support members 41, 42, and 43, and the joint area with the sensor holding surface 12 is reduced, which affects the deformation of the diaphragm 10 (i.e., prevents deformation). ) can be suppressed.

図11に示すように、第1接合部56は、ダイアフラム10の中心点P10と一致する第1支持点P41Cに配設され、第2接合部57は、X軸上にあって中心点P10よりも+X寄りの第2支持点P42Cに配設され、第3接合部58は、X軸上にあって第1支持点P41Cと第2支持点P42Cとの間に位置する第3支持点P43Cに配設されている。これにより、第1支持部材41は、中心点P10(第1支持点P41C)に固定され、第2支持部材42および第3支持部材43は、いずれもX軸上にあってダイアフラム10の中心点P0に対して同じ側(+X側)に位置する第2支持点P42Cおよび第3支持点P43Cに固定されることとなる。 As shown in FIG. 11, the first joint portion 56 is disposed at a first support point P41C that coincides with the center point P10 of the diaphragm 10, and the second joint portion 57 is located on the X-axis from the center point P10. The third joint 58 is also disposed at a second support point P42C closer to +X, and the third joint 58 is located at a third support point P43C located on the X axis between the first support point P41C and the second support point P42C. It is arranged. As a result, the first support member 41 is fixed at the center point P10 (first support point P41C), and the second support member 42 and the third support member 43 are both located on the X axis and at the center point of the diaphragm 10. It will be fixed to the second support point P42C and the third support point P43C located on the same side (+X side) with respect to P0.

連結部59は、図12に示すように、センサ保持面12に沿って(平行に)延在する薄膜状の部位として形成され、第1接合部56の上端部と第3接合部58の上端部とを一体的に接続している。当該形態の連結部59は、接続する第1接合部56と第3接合部58との相対移動(相対変位)に関し、被測定流体Fの圧力Pが印加される方向(Z軸に沿った方向)は規制せず、当該方向と垂直な面内(XY平面内)を規制するように制御する。これにより、第3接合部58は、第1接合部56に追従するようにしてXY平面内を移動(変位)することとなる。 As shown in FIG. 12, the connecting portion 59 is formed as a thin film-like portion extending along (parallel to) the sensor holding surface 12, and connects the upper end of the first connecting portion 56 and the upper end of the third connecting portion 58. The parts are integrally connected. The connecting part 59 of this form has a relation to the relative movement (relative displacement) between the first joint part 56 and the third joint part 58 to be connected, in the direction in which the pressure P of the fluid to be measured F is applied (the direction along the Z axis). ) is not restricted, but is controlled to be restricted in a plane perpendicular to the direction (in the XY plane). As a result, the third joint portion 58 moves (displaces) within the XY plane so as to follow the first joint portion 56 .

なお、本実施の形態においては、接合部の形状を、上述したようなセンサ保持面12との接合面積が小さくなる形状とし、また、第1接合部56および第3接合部58と第2接合部57とを別体として形成することで、ダイアフラム10の変形への影響(変形の妨げとなること)を小さく抑えている。 In this embodiment, the shape of the joint is such that the joint area with the sensor holding surface 12 as described above is small, and the first joint 56 and the third joint 58 are connected to the second joint. By forming the portion 57 as a separate body, the influence on the deformation of the diaphragm 10 (obstruction of deformation) is suppressed to a small level.

〔圧力センサ1Cの動作態様〕
つづいて、圧力センサ1Cの動作態様を、図13に基づいて説明する。この図13は、ダイアフラム10が変形したときの第1支持部材41、第2支持部材42、第3支持部材43および中間材50C(第1接合部56、第2接合部57、第3接合部58、連結部59)、ならびにセンサチップ20BのXZ断面における変位を模式的に示した図である。
[Operation mode of pressure sensor 1C]
Next, the operation mode of the pressure sensor 1C will be explained based on FIG. 13. FIG. 13 shows the first support member 41, second support member 42, third support member 43, and intermediate member 50C (first joint 56, second joint 57, third joint) when the diaphragm 10 is deformed. 58, a connecting portion 59), and a diagram schematically showing the displacement of the sensor chip 20B in the XZ cross section.

センサ保持面12に加わる圧力(例えば大気圧)よりも大きな圧力Pを有する被測定流体Fが受圧面11に接すると、薄板部材からなるダイアフラム10は、中心点P10が上方(+Z方向)に突出した略円錐状に変形する。このとき、中心点P10の近傍部は曲率の大きな半球状の曲面として形成され、それよりも外側は円錐台面に近い曲面となる。このため、中心点P10の近傍部より外側の部分は、XZ断面において傾きが略等しい斜面として形成されることとなる。 When a fluid to be measured F having a pressure P greater than the pressure applied to the sensor holding surface 12 (for example, atmospheric pressure) comes into contact with the pressure receiving surface 11, the center point P10 of the diaphragm 10 made of a thin plate member protrudes upward (in the +Z direction). It deforms into a roughly conical shape. At this time, the area near the center point P10 is formed as a hemispherical curved surface with a large curvature, and the area outside that area is a curved surface close to a truncated conical surface. Therefore, the portion outside the vicinity of the center point P10 is formed as a slope with substantially equal inclination in the XZ cross section.

上記変形を伴うダイアフラム10の表面(センサ保持面12)に配置された中間材50Cのうち、第1接合部56は、中心点P10(第1支持点P41C)に配置されているためZ軸に沿った方向(+Z方向)に移動(変位)する。
また、第2接合部57は、X軸上にあってダイアフラム10の中心点P0に対して+X側に位置する第2支持点P42C、すなわち、上記斜面上に位置する第2支持点P42Cに単独で配置されているため、上記斜面に対して垂直な方向、例えば、Z軸に対して角度αだけ傾いた軸Z´に沿った方向へ移動(変位)する。
これに対し、第3接合部58は、第2支持点P42Cと同じく上記斜面上に位置する第3支持点P43Cに配置されているものの、上記制御機能をもつ連結部59を介して+Z方向に変位する第1接合部56と接続しているため、XY平面内の移動(変位)が規制されることとなる。このため、第3接合部58は、上記斜面に対して垂直な方向(軸Z´)よりも第1接合部56側へ寄った方向、すなわち、Z軸に対して角度β(β<α)だけ傾いた軸Z´´に沿った方向へ移動(変位)することとなる。
Of the intermediate material 50C disposed on the surface (sensor holding surface 12) of the diaphragm 10 undergoing the above-mentioned deformation, the first joint portion 56 is disposed at the center point P10 (first support point P41C); move (displace) in the direction along (+Z direction).
Further, the second joint portion 57 is attached to a second support point P42C located on the +X side with respect to the center point P0 of the diaphragm 10 on the Therefore, it moves (displaces) in a direction perpendicular to the slope, for example, along an axis Z' inclined at an angle α with respect to the Z axis.
On the other hand, although the third joint part 58 is disposed at the third support point P43C, which is located on the slope like the second support point P42C, it can be moved in the +Z direction via the connection part 59 having the control function. Since it is connected to the first joint portion 56 that is displaced, movement (displacement) in the XY plane is restricted. Therefore, the third joint 58 is formed in a direction closer to the first joint 56 than in a direction perpendicular to the slope (axis Z'), that is, at an angle β (β<α) with respect to the Z axis. This results in movement (displacement) in the direction along the axis Z'' that is tilted by the amount.

このように、第1接合部56、第2接合部57および第3接合部58は、それぞれ異なる方向(軸Z、軸Z´、軸Z´´に沿った方向)へ移動(変位)することとなり、それぞれの接合部の上面と接合する第1支持部材41、第2支持部材42および第3支持部材43もそれぞれ異なる方向(軸Z、軸Z´、軸Z´´に沿った方向)へ移動(変位)することとなる。換言すれば、これら3つの支持部材の頂部間で、ダイアフラム10の変形の前後においてX方向とZ方向とで相対変位が生じる。当該2つの方向の相対変位は、センサチップ20に伝達される。ここで、X方向の相対変位は、上述したように、各支持部材の高さ(詳細には、センサ保持面12から各支持部材の頂部までの高さ)に比例して大きくなる。すなわち、ダイアフラム10の変位量は、第1支持部材41、第2支持部材42および第3支持部材43によって増幅される形でセンサチップ20に伝達される。 In this way, the first joint part 56, the second joint part 57, and the third joint part 58 can move (displace) in different directions (directions along the axis Z, axis Z', and axis Z''). Therefore, the first support member 41, second support member 42, and third support member 43 that are connected to the upper surface of each joint are also moved in different directions (directions along the axis Z, axis Z', and axis Z''). It will move (displace). In other words, relative displacement occurs between the tops of these three support members in the X direction and the Z direction before and after the diaphragm 10 is deformed. The relative displacement in the two directions is transmitted to the sensor chip 20. Here, as described above, the relative displacement in the X direction increases in proportion to the height of each support member (specifically, the height from the sensor holding surface 12 to the top of each support member). That is, the amount of displacement of the diaphragm 10 is transmitted to the sensor chip 20 in a form that is amplified by the first support member 41, the second support member 42, and the third support member 43.

〔圧力センサ1Cの効果〕
中間材50Cが配設されていない場合、すなわち、支持部材40Bが、ダイアフラム10のセンサ保持面12に直接立設されている場合、支持部材40Bを構成する第1支持部材41、第2支持部材42および第3支持部材43は、センサ保持面12と垂直な方向へ変位することとなる。当該場合にあって中心点P10の近傍部より外側に位置する上記斜面に第2支持部材42および第3支持部材43が立設された形態においては、これら2つの支持部材は、ともに同一方向(Z´軸に沿った方向)へ変位することとなる。当該変位態様においては、第2支持部材42の頂部と第3支持部材43の頂部との間には、ダイアフラム10の変形前後で相対変位しないことになる。すなわち、上記形態においては、センサチップ20Bのうちのこれら2つの支持部材によって支持された領域が、ダイアフラム10の変形前後で変位(伸縮)しないこととなる。したがって、上記形態では、被測定流体の圧力を高精度に検知することができない。
[Effect of pressure sensor 1C]
When the intermediate member 50C is not provided, that is, when the support member 40B is directly erected on the sensor holding surface 12 of the diaphragm 10, the first support member 41 and the second support member that constitute the support member 40B 42 and the third support member 43 are displaced in a direction perpendicular to the sensor holding surface 12. In this case, in the form in which the second support member 42 and the third support member 43 are erected on the slope located outside the vicinity of the center point P10, these two support members both move in the same direction ( (direction along the Z' axis). In this displacement mode, there is no relative displacement between the top of the second support member 42 and the top of the third support member 43 before and after the diaphragm 10 is deformed. That is, in the above embodiment, the area of the sensor chip 20B supported by these two support members does not displace (expand or contract) before or after the diaphragm 10 is deformed. Therefore, in the above embodiment, the pressure of the fluid to be measured cannot be detected with high accuracy.

これに対し、上記構成の圧力センサ1Cによれば、上述したように、中心点P10の近傍部より外側に位置する上記斜面に第2支持部材42および第3支持部材43が立設されていても、これら2つの支持部材の頂部の間で、Z方向の相対変位と各支持部材の高さ(詳細には、センサ保持面12から各支持部材の頂部までの高さ)に応じて増幅されたX方向の相対変位が生じ、これがセンサチップ20に伝達される。このため、上記構成の圧力センサ1Cによれば、ダイアフラム10を僅かに変位させる程度の小さな圧力変動に対しても、センサチップ20の全領域においてX方向およびZ方向に大きく引っ張られる。この結果、センサチップ20に設けられたひずみゲージ(ホイートストンブリッジ回路)を構成する抵抗素子は、出力変動を伴う程度に変位(伸縮)することとなり、被測定流体の圧力を高精度に検知することが可能になる。 On the other hand, according to the pressure sensor 1C having the above configuration, as described above, the second support member 42 and the third support member 43 are erected on the slope located outside the vicinity of the center point P10. is also amplified between the tops of these two support members according to the relative displacement in the Z direction and the height of each support member (specifically, the height from the sensor holding surface 12 to the top of each support member). A relative displacement in the X direction occurs, and this is transmitted to the sensor chip 20. Therefore, according to the pressure sensor 1C having the above configuration, even in response to a small pressure change that slightly displaces the diaphragm 10, the entire area of the sensor chip 20 is significantly pulled in the X direction and the Z direction. As a result, the resistance element that constitutes the strain gauge (Wheatstone bridge circuit) provided in the sensor chip 20 is displaced (expanded and contracted) to such an extent that the output fluctuates, making it possible to detect the pressure of the fluid to be measured with high precision. becomes possible.

また、ダイアフラム10と支持部材40Bとの間に、線膨張率の値がダイアフラム10のそれよりも小さく支持部材40Bのそれよりも大きな中間材50Cを介在させたことで、両部材間の接合残留応力を低減させることができる。これにより、ダイアフラム10の耐圧性能の低下を抑えることができる。この効果は、ダイアフラム10よりも厚く形成された熱容量の大きい接合部、すなわち、ダイアフラム10と支持部材40Bとを熱的に隔絶する作用の大きい第1接合部56、第2接合部57および第3接合部58を設けたことでより顕著なものとなる。 In addition, by interposing the intermediate material 50C between the diaphragm 10 and the support member 40B, the coefficient of linear expansion of which is smaller than that of the diaphragm 10 and larger than that of the support member 40B, it is possible to prevent bonding between the two members. Stress can be reduced. Thereby, it is possible to suppress a decrease in the pressure resistance performance of the diaphragm 10. This effect is due to the joints formed thicker than the diaphragm 10 and having a large heat capacity, that is, the first joint 56, the second joint 57, and the third joint that have a large effect of thermally isolating the diaphragm 10 and the support member 40B. The provision of the joint portion 58 makes this more noticeable.

また、各接合部の形状を、上述したように、センサ保持面12との接合面積が小さくなる形状とし、また、第1接合部56および第3接合部58と第2接合部57とを別体として形成したことで、中間材50Cを配設したことによるダイアフラム10の変形への影響(変形の妨げとなること)を可及的に抑制することができる。これにより、上記接合残留応力を低減させる効果と測定精度(感度)とを高い次元で両立させることができる。 Further, as described above, the shape of each joint is such that the joint area with the sensor holding surface 12 is small, and the first joint 56 and the third joint 58 are separated from the second joint 57. By forming the intermediate member 50C as a body, it is possible to suppress as much as possible the influence on the deformation of the diaphragm 10 (obstructing the deformation) due to the provision of the intermediate member 50C. Thereby, it is possible to achieve both the effect of reducing the bonding residual stress and the measurement accuracy (sensitivity) at a high level.

≪変形例≫
上記実施の形態の一部を変形した事例として、例えば、図14で示される中間材50B´がある。この中間材50B´は、上記第2の実施の形態における中間材50Bから第1連結部54および第2連結部55を取り除いたものに相当し、第1接合部51´、第2接合部52´および第3接合部53´から構成されている。なお、その他の構成は、中間材50Bと同一である。
≪Modification example≫
As an example of a partially modified version of the above embodiment, there is an intermediate material 50B' shown in FIG. 14, for example. This intermediate material 50B' corresponds to the intermediate material 50B in the second embodiment from which the first connecting part 54 and the second connecting part 55 are removed, and includes a first joint part 51', a second joint part 52 ' and a third joint part 53'. Note that the other configurations are the same as the intermediate material 50B.

上記構成の中間材50B´を備える圧力センサによれば、中間材50Bを備えた圧力センサ1Bと比較して、中間材を配設したことによるダイアフラム10の変形への影響(変形の妨げとなること)をより小さくすることができる。 According to the pressure sensor equipped with the intermediate material 50B' having the above configuration, compared to the pressure sensor 1B equipped with the intermediate material 50B, the influence on the deformation of the diaphragm 10 due to the provision of the intermediate material (which hinders the deformation) ) can be made smaller.

また、上記実施の形態の一部を変形した事例として、例えば、図15で示される中間材50C´がある。この中間材50C´は、上記第3の実施の形態における中間材50Cを2層構造にしたものである。具体的には、中間材50Cを構成する第1接合部56、第2接合部57および第3接合部58の全高を低くした第1接合部56´、第2接合部57´および第3接合部58´の上面(支持部材40Bと接合する面)に、当該上面と相補的な形状の下面をもつ略直方体の第4接合部56´´、第5接合部57´´および第6接合部58´´を載置し、さらに第4接合部56´´と第6接合部58´´の上端部を一体的に接続する第2連結部59´´を設けたものである。 Furthermore, as an example of a partially modified version of the above embodiment, there is an intermediate material 50C' shown in FIG. 15, for example. This intermediate material 50C' is a two-layer structure of the intermediate material 50C in the third embodiment. Specifically, the first joint part 56', the second joint part 57', and the third joint part have a lower overall height of the first joint part 56, the second joint part 57, and the third joint part 58 that constitute the intermediate material 50C. A fourth joint part 56'', a fifth joint part 57'', and a sixth joint part each having a substantially rectangular parallelepiped bottom surface having a shape complementary to the top surface of the portion 58' (the surface joined to the support member 40B). 58'', and further provided with a second connecting portion 59'' that integrally connects the upper ends of the fourth joint portion 56'' and the sixth joint portion 58''.

第4接合部56´´、第5接合部57´´および第6接合部58´´ならびに第2連結部59´´を形成する材料の線膨張率は、第1接合部56´、第2接合部57´および第3接合部58´ならびに第1連結部59´を形成する材料のそれよりも小さく、支持部材40Bを形成する材料のそれよりも大きい。これにより、ダイアフラム10の表面(センサ保持面12)に支持部材40Bを固定する際に生じる接合残留応力をより低減させることができる。 The linear expansion coefficients of the materials forming the fourth joint 56'', the fifth joint 57'', the sixth joint 58'', and the second joint 59'' are as follows: It is smaller than that of the material forming the joint part 57', the third joint part 58', and the first connecting part 59', and larger than that of the material forming the support member 40B. Thereby, bonding residual stress that occurs when fixing the support member 40B to the surface of the diaphragm 10 (sensor holding surface 12) can be further reduced.

また、第1連結部59´および第2連結部59´´からなる多重化された連結部を備えることで結合強度と結合剛性が増大することとなる。この結果、接続された2つの接合部の間の相対移動(相対変位)、例えば、被測定流体Fの圧力Pが印加される方向(Z軸に沿った方向)と垂直な面内(XY平面内)の相対移動(相対変位)をより確実に規制することができる。 Further, by providing a multiplexed connection section consisting of the first connection section 59' and the second connection section 59'', the connection strength and connection rigidity are increased. As a result, the relative movement (relative displacement) between the two connected joints, for example, in the plane perpendicular to the direction in which the pressure P of the fluid to be measured F is applied (direction along the Z axis) (in the XY plane The relative movement (relative displacement) of the inside) can be more reliably regulated.

以上、本発明に係る実施の形態を説明したが、本発明はこの実施の形態に限定されるものではなく、その要旨を逸脱しない範囲において種々の変更が可能である。また、明細書および図面に直接記載のない構成であっても、本発明の作用・効果を奏する以上、本発明の技術的思想の範囲内である。さらに、上記記載および各図で示した実施の形態は、その目的および構成等に矛盾がない限り、互いの記載内容を組み合わせることも可能である。 Although the embodiments of the present invention have been described above, the present invention is not limited to these embodiments, and various changes can be made without departing from the gist thereof. Further, even if the configuration is not directly described in the specification or drawings, it is within the scope of the technical idea of the present invention as long as it achieves the functions and effects of the present invention. Further, the embodiments described above and shown in the figures can be combined with each other as long as there is no contradiction in purpose, structure, etc.

例えば、上記実施の形態においては、ダイアフラム変形による圧力検出手法(センシング原理)として、ひずみゲージを含む半導体チップを用いているが、これに限定されるわけではなく、例えば、静電容量式センサ、金属歪みゲージ、抵抗ゲージをスパッタ等により成膜したものを用いた圧力検出手法(センシング原理)であってもよい。 For example, in the above embodiment, a semiconductor chip including a strain gauge is used as a pressure detection method (sensing principle) using diaphragm deformation, but the invention is not limited to this. For example, a capacitive sensor, A pressure detection method (sensing principle) using a metal strain gauge or resistance gauge formed into a film by sputtering or the like may be used.

1A、1B、1C…圧力センサ、10…ダイアフラム、11…受圧面、12…センサ保持面、20A、20B…センサチップ、30…ハウジング、40A、40B…支持部材、41…第1支持部材、42…第2支持部材、43…第3支持部材、50A、50B、50C…中間材、51、56…第1接合部、52、57…第2接合部、53、58…第3接合部、54…第1連結部、55…第2連結部、59…連結部。 1A, 1B, 1C...pressure sensor, 10...diaphragm, 11...pressure receiving surface, 12...sensor holding surface, 20A, 20B...sensor chip, 30...housing, 40A, 40B...support member, 41...first support member, 42 ...Second support member, 43...Third support member, 50A, 50B, 50C...Intermediate material, 51, 56...First joint part, 52, 57...Second joint part, 53, 58...Third joint part, 54 ...first connection part, 55...second connection part, 59...connection part.

Claims (9)

測定対象の流体の圧力を受ける第1主面とこの第1主面の反対側に位置する第2主面とを有するダイアフラムと、
ひずみゲージを構成する複数の抵抗が設けられたセンサチップと、
前記第2主面の法線に沿って延設されかつ一端が前記センサチップに接合する電気的絶縁性の複数の支持部材と、
を備え、
前記複数の支持部材は、前記ダイアフラムよりも線膨張率が小さい中間材と接合しこの中間材を介して前記第2主面に固定され
前記中間材は、前記複数の支持部材に接合する複数の接合部とこれら複数の接合部の少なくとも2つをつなぐ連結部とから構成され、前記連結部の前記法線に沿った厚みは、前記複数の接合部の前記厚みよりも小さくなるように形成されている圧力センサ。
a diaphragm having a first main surface that receives the pressure of the fluid to be measured and a second main surface located on the opposite side of the first main surface;
A sensor chip equipped with multiple resistors forming a strain gauge;
a plurality of electrically insulating support members extending along the normal line of the second main surface and having one end joined to the sensor chip;
Equipped with
The plurality of supporting members are joined to an intermediate material having a coefficient of linear expansion smaller than that of the diaphragm and fixed to the second main surface via this intermediate material ,
The intermediate material includes a plurality of joint parts joined to the plurality of support members and a connecting part connecting at least two of the plurality of joint parts, and the thickness of the connecting part along the normal line is equal to the thickness of the connecting part along the normal line. A pressure sensor formed to have a thickness smaller than the thickness of the plurality of joints .
測定対象の流体の圧力を受ける第1主面とこの第1主面の反対側に位置する第2主面とを有するダイアフラムと、a diaphragm having a first main surface that receives the pressure of the fluid to be measured and a second main surface located on the opposite side of the first main surface;
ひずみゲージを構成する複数の抵抗が設けられたセンサチップと、A sensor chip equipped with multiple resistors forming a strain gauge;
前記第2主面の法線に沿って延設されかつ一端が前記センサチップに接合する電気的絶縁性の複数の支持部材と、a plurality of electrically insulating support members extending along the normal line of the second main surface and having one end joined to the sensor chip;
を備え、Equipped with
前記複数の支持部材は、前記ダイアフラムよりも線膨張率が小さい中間材と接合しこの中間材を介して前記第2主面に固定され、The plurality of supporting members are joined to an intermediate material having a coefficient of linear expansion smaller than that of the diaphragm and fixed to the second main surface via this intermediate material,
前記中間材と前記第2主面との接合面積は、前記中間材と前記支持部材との接合面積よりも小さい圧力センサ。A pressure sensor in which a bonding area between the intermediate material and the second main surface is smaller than a bonding area between the intermediate material and the support member.
請求項1または2に記載の圧力センサにおいて、The pressure sensor according to claim 1 or 2,
前記中間材は、前記支持部材より線膨張率が大きい材料から成る圧力センサ。In the pressure sensor, the intermediate material is made of a material having a higher coefficient of linear expansion than the support member.
請求項2または請求項2を引用する請求項3に記載の圧力センサにおいて、The pressure sensor according to claim 2 or claim 3 citing claim 2,
前記中間材は、前記複数の支持部材に接合する複数の接合部とこれら複数の接合部の少なくとも2つをつなぐ連結部とから構成され、前記連結部の前記法線に沿った厚みは、前記複数の接合部の前記厚みよりも小さくなるように形成されている圧力センサ。The intermediate material includes a plurality of joint parts joined to the plurality of support members and a connecting part connecting at least two of the plurality of joint parts, and the thickness of the connecting part along the normal line is equal to the thickness of the connecting part along the normal line. A pressure sensor formed to have a thickness smaller than the thickness of the plurality of joints.
請求項1および請求項1を引用する請求項3、ならびに請求項4のいずれか1つに記載の圧力センサにおいて、A pressure sensor according to any one of claims 1 and 3 and 4 referring to claim 1,
前記連結部は、前記ダイアフラムの板厚よりも薄い薄膜として形成されている圧力センサ。In the pressure sensor, the connecting portion is formed as a thin film thinner than the plate thickness of the diaphragm.
請求項1ないし5のいずれか1つに記載の圧力センサにおいて、The pressure sensor according to any one of claims 1 to 5,
前記複数の支持部材は、互いに離間する少なくとも2つの前記中間材を介して前記第2主面に固定されている圧力センサ。A pressure sensor in which the plurality of support members are fixed to the second main surface via at least two intermediate members spaced apart from each other.
請求項6に記載の圧力センサにおいて、The pressure sensor according to claim 6,
前記中間材は、前記支持部材と対をなすように設けられている圧力センサ。The intermediate member is a pressure sensor provided so as to be paired with the support member.
請求項1および請求項1を引用する請求項3ないし7のいずれか1つに記載の圧力センサにおいて、A pressure sensor according to claim 1 and any one of claims 3 to 7 referring to claim 1,
前記中間材と前記第2主面との接合面積は、前記中間材と前記支持部材との接合面積よりも小さい圧力センサ。A pressure sensor in which a bonding area between the intermediate material and the second main surface is smaller than a bonding area between the intermediate material and the support member.
請求項1ないし8のいずれか1つに記載の圧力センサにおいて、The pressure sensor according to any one of claims 1 to 8,
前記中間材は、異なる線膨張率をもつ複数の材料から成り、前記材料は、前記第2主面と接合する側から前記センサチップと接合する側に向かうにつれて線膨張率が小さなくなるよう前記法線に沿って積層されている圧力センサ。The intermediate material is made of a plurality of materials having different coefficients of linear expansion, and the materials are subjected to the method so that the coefficient of linear expansion decreases from the side where the material is bonded to the second main surface to the side where it is bonded to the sensor chip. Pressure sensors stacked along a line.
JP2020026180A 2020-02-19 2020-02-19 pressure sensor Active JP7436235B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020026180A JP7436235B2 (en) 2020-02-19 2020-02-19 pressure sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020026180A JP7436235B2 (en) 2020-02-19 2020-02-19 pressure sensor

Publications (2)

Publication Number Publication Date
JP2021131297A JP2021131297A (en) 2021-09-09
JP7436235B2 true JP7436235B2 (en) 2024-02-21

Family

ID=77550870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020026180A Active JP7436235B2 (en) 2020-02-19 2020-02-19 pressure sensor

Country Status (1)

Country Link
JP (1) JP7436235B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114199433B (en) * 2021-11-19 2024-04-23 张誉元 Wall residual stress test fixture and operation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000508425A (en) 1996-04-13 2000-07-04 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Pressure sensor
JP2004045140A (en) 2002-07-10 2004-02-12 Tem-Tech Kenkyusho:Kk Load converting metal diaphragm pressure sensor
JP2007516746A (en) 2003-12-11 2007-06-28 プロテウス バイオメディカル インコーポレイテッド Implantable pressure sensor
JP2008527313A (en) 2005-01-03 2008-07-24 ハイダック エレクトロニク ゲゼルシャフト ミット ベシュレンクテル ハフツング Force measuring device, in particular pressure gauge and associated manufacturing method
JP2014145623A (en) 2013-01-28 2014-08-14 Omron Corp Semiconductor pressure sensor
US20140291812A1 (en) 2013-03-29 2014-10-02 Stmicroelectronics Pte Ltd. Semiconductor packages having an electric device with a recess
JP2017120212A (en) 2015-12-28 2017-07-06 アズビル株式会社 Pressure sensor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000508425A (en) 1996-04-13 2000-07-04 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Pressure sensor
JP2004045140A (en) 2002-07-10 2004-02-12 Tem-Tech Kenkyusho:Kk Load converting metal diaphragm pressure sensor
JP2007516746A (en) 2003-12-11 2007-06-28 プロテウス バイオメディカル インコーポレイテッド Implantable pressure sensor
JP2008527313A (en) 2005-01-03 2008-07-24 ハイダック エレクトロニク ゲゼルシャフト ミット ベシュレンクテル ハフツング Force measuring device, in particular pressure gauge and associated manufacturing method
JP2014145623A (en) 2013-01-28 2014-08-14 Omron Corp Semiconductor pressure sensor
US20140291812A1 (en) 2013-03-29 2014-10-02 Stmicroelectronics Pte Ltd. Semiconductor packages having an electric device with a recess
JP2017120212A (en) 2015-12-28 2017-07-06 アズビル株式会社 Pressure sensor

Also Published As

Publication number Publication date
JP2021131297A (en) 2021-09-09

Similar Documents

Publication Publication Date Title
JP2925319B2 (en) Pressure transducer with flow-through measurement capability
US6877380B2 (en) Diaphragm for bonded element sensor
EP3764072B1 (en) Compact or miniature high temperature differential pressure sensor capsule
JP3821852B2 (en) Pressure sensor
US10101232B2 (en) Pressure difference sensor with protection against static overloads
JP7436235B2 (en) pressure sensor
US10359330B2 (en) Pressure sensor
US10704976B2 (en) Pressure sensor
JP6663314B2 (en) Pressure sensor
US10890500B2 (en) Pressure sensor
JP7184608B2 (en) Pressure sensor element and pressure sensor
JP6579965B2 (en) Pressure sensor
JP7460388B2 (en) Pressure Sensors
JP2017120211A (en) Pressure sensor
CN113280970B (en) Pressure sensor
JP2017120212A (en) Pressure sensor
JP7184609B2 (en) Pressure sensor element and pressure sensor
JP2021110687A (en) Pressure sensor and pressure gauge
JP2017120213A (en) Pressure sensor
JPH01109232A (en) Fine differential pressure transducer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240208

R150 Certificate of patent or registration of utility model

Ref document number: 7436235

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150