JP2021131297A - Pressure sensor - Google Patents

Pressure sensor Download PDF

Info

Publication number
JP2021131297A
JP2021131297A JP2020026180A JP2020026180A JP2021131297A JP 2021131297 A JP2021131297 A JP 2021131297A JP 2020026180 A JP2020026180 A JP 2020026180A JP 2020026180 A JP2020026180 A JP 2020026180A JP 2021131297 A JP2021131297 A JP 2021131297A
Authority
JP
Japan
Prior art keywords
support member
diaphragm
pressure sensor
pressure
joint portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020026180A
Other languages
Japanese (ja)
Other versions
JP7436235B2 (en
Inventor
祐希 瀬戸
Yuki Seto
祐希 瀬戸
里奈 小笠原
Rina Ogasawara
里奈 小笠原
悠祐 新村
Yusuke Niimura
悠祐 新村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP2020026180A priority Critical patent/JP7436235B2/en
Publication of JP2021131297A publication Critical patent/JP2021131297A/en
Application granted granted Critical
Publication of JP7436235B2 publication Critical patent/JP7436235B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Fluid Pressure (AREA)

Abstract

To provide a pressure sensor, with which the minute deflection of a diaphragm is efficiently transmitted to a sensing unit through a support member that supports sensing, and a decrease in pressure-resisting performance due to a residual joint stress between the diaphragm and the support member is suppressed.MEANS FOR SOLVING THE PROBLEM: Provided is a pressure sensor 1A comprising: a diaphragm 10 having a pressure-receiving face 11 that receives the pressure of the fluid to be measured and a sensor holding face 12; a sensor chip 20A in which a plurality of resistors constituting a strain gauge are provided; and a plurality of electrically insulating support members 41, 42 extended along the normal of the holding face 12 and joined at one end to the sensor chip 20A. The plurality of support members 41, 42 are joined to an intermediate member 50A, the linear expansion coefficient of which is smaller than that of the diaphragm 10, and fixed to the sensor holding face 12 via this intermediate member 50A.SELECTED DRAWING: Figure 1

Description

本発明は、流体等の圧力を検出する圧力センサ、特にサニタリー用圧力センサに関するものである。 The present invention relates to a pressure sensor that detects the pressure of a fluid or the like, particularly a pressure sensor for sanitary use.

流体の圧力を検出する圧力センサのうち、食品や医薬品等の分野の製造現場等で用いられるサニタリー用圧力センサに対しては、衛生的な配慮が必要とされることから、耐食性、清浄性、信頼性および汎用性等に関して厳しい要件が課せられている。このような要件は、衛生管理に関する法規制の厳格化が図られている近年において、さらに厳しいものとなっている。 Of the pressure sensors that detect the pressure of fluids, sanitary pressure sensors used at manufacturing sites in the fields of foods and pharmaceuticals require hygienic consideration, so corrosion resistance, cleanliness, etc. Strict requirements are imposed on reliability and versatility. Such requirements have become even more stringent in recent years when laws and regulations related to hygiene management have been tightened.

このような状況にあるサニタリー用圧力センサにおいては、例えば耐食性の要件から、圧力の測定対象の流体(例えば液体)が接触する接液部分にステンレス鋼(SUS)、セラミックスおよびチタン等の耐食性の高い材料が用いられている。また、清浄性の要件から、洗浄しやすいフラッシュダイアフラム構造が採用され、且つ蒸気洗浄に対する高い耐熱衝撃性をもつように設計されている。さらに、信頼性の要件から、封入剤を使用しない構造(オイルフリー構造)およびダイアフラムが破れ難い構造(バリア高剛性)が採用されている。 In a sanitary pressure sensor in such a situation, for example, due to the requirement of corrosion resistance, stainless steel (SUS), ceramics, titanium, etc. have high corrosion resistance to the wetted portion where the fluid (for example, liquid) whose pressure is to be measured comes into contact. The material is used. Further, due to the requirement of cleanliness, a flash diaphragm structure that is easy to clean is adopted, and it is designed to have high heat and shock resistance to steam cleaning. Further, due to reliability requirements, a structure that does not use an encapsulant (oil-free structure) and a structure in which the diaphragm is not easily torn (barrier high rigidity) are adopted.

このように、サニタリー用圧力センサにおいては、使用する材料や構造が他の圧力センサに比べて制限されている。このため、高い耐圧性能を有しかつ測定誤差が抑制されたなかで、さらに高感度化を図ることは容易ではない。例えば、高い耐圧強度を有しかつ圧力に対するヒステリシスを低減して測定誤差を抑制するためには、膜厚を大きくした(厚みに対する径のアスペクト比を小さくした)高剛性のダイアフラムとすることが有用であるが、このような高剛性のダイアフラムにおいては、圧力変化に対する変形量が微小となり、これを直接センシングするだけでは十分なセンサ感度を得ることができない。このため、ダイアフラムの微小な変形量を効率的にセンシング部へ伝達してセンサ感度を高める技術が幾つか提案されている。 As described above, in the sanitary pressure sensor, the materials and structures used are limited as compared with other pressure sensors. Therefore, it is not easy to further increase the sensitivity while having high withstand voltage performance and suppressing measurement error. For example, in order to have high pressure resistance and reduce hysteresis with respect to pressure to suppress measurement error, it is useful to use a high-rigidity diaphragm with a large film thickness (decreased aspect ratio of diameter to thickness). However, in such a high-rigidity diaphragm, the amount of deformation with respect to a pressure change is very small, and sufficient sensor sensitivity cannot be obtained only by directly sensing this. For this reason, some techniques have been proposed in which a minute amount of deformation of the diaphragm is efficiently transmitted to the sensing unit to increase the sensor sensitivity.

例えば、特許文献1には、ダイアフラム(3)の支持面(3B)に3つの支持部材(2a、2b,2c)を所定の位置に立設し、これら支持部材の上に半導体チップを載置した圧力センサ(100)が記載されている。この圧力センサ(100)においては、ダイアフラム(3)の微小なたわみが、3つの支持部材(2a、2b,2c)を通じセンシング部である半導体チップ(1)へ効率的に伝えられる(具体的には、半導体チップ1が、支持面3Bに直接設けられている場合に比べて大きく歪むように構成されている)ことで、センサ感度が高められている。この圧力センサ(100)が備える上記3つの支持部材(2a、2b,2c)は、いずれも支持面(3B)に対し略垂直に起立しており、このうちの1つ(支持部材(2a))が支持面(3B)の中心(30)に配設され、残りの2つ(支持部材(2b,2c))が中心(30)に対して点対称となる位置に配設していることを特徴とする。 For example, in Patent Document 1, three support members (2a, 2b, 2c) are erected at predetermined positions on the support surface (3B) of the diaphragm (3), and a semiconductor chip is placed on these support members. The pressure sensor (100) is described. In this pressure sensor (100), the minute deflection of the diaphragm (3) is efficiently transmitted to the semiconductor chip (1), which is the sensing unit, through the three support members (2a, 2b, 2c) (specifically). The semiconductor chip 1 is configured to be significantly distorted as compared with the case where the semiconductor chip 1 is directly provided on the support surface 3B), so that the sensor sensitivity is enhanced. The three support members (2a, 2b, 2c) included in the pressure sensor (100) all stand up substantially perpendicular to the support surface (3B), and one of them (support member (2a)). ) Is arranged at the center (30) of the support surface (3B), and the remaining two (support members (2b, 2c)) are arranged at positions symmetrical with respect to the center (30). It is characterized by.

また、特許文献2には、ダイアフラム(3)の支持面(3B)に台座(5b)を設け、この台座の上に少なくとも1つの支持部材(2b)を起立させ、さらにこの台座上に起立する支持部材と他の支持部材との上に半導体チップ(1)を載置した圧力センサ(100)が記載されている。この圧力センサ(100)においては、ダイアフラム(3)の微小なたわみが、台座および支持部材を通じて、センシング部である半導体チップ(1)へ効率的に伝えられることで、センサ感度が高められている。 Further, in Patent Document 2, a pedestal (5b) is provided on the support surface (3B) of the diaphragm (3), at least one support member (2b) is erected on the pedestal, and the pedestal is further erected. A pressure sensor (100) in which a semiconductor chip (1) is placed on a support member and another support member is described. In this pressure sensor (100), the sensor sensitivity is enhanced by efficiently transmitting the minute deflection of the diaphragm (3) to the semiconductor chip (1) which is a sensing unit through the pedestal and the support member. ..

特開2017−120214号公報JP-A-2017-120214 特開2017−120212号公報JP-A-2017-120212

上記引用文献1に記載の圧力センサにおいては、例えば、ダイアフラムが線膨張率の大きなステンレス鋼(例えばSUS304の線膨張率は約17.3×10−6)からなり、支持部材は、絶縁性を有する線膨張率の小さなガラス(例えばホウケイ酸ガラスの線膨張率は約3.0×10−6)からなる。このような線膨張率に大きな差がある2つの部材が接合する部分には接合残留応力(引張り残留応力)が発生する。この接合残留応力は、接合する2つの材料の線膨張率が大きいほど顕著に現れ、ダイアフラムおよび支持部材の強度を低下させてダイアフラムの耐圧性能を悪化させるといった事態をもたらす。当該事態は、衛生管理に関する法規制の厳格化が図られている現状に鑑みれば、早急に解消しなければならない技術課題の1つである。 In the pressure sensor described in Reference 1 above, for example, the diaphragm is made of stainless steel having a large coefficient of linear expansion (for example, the coefficient of linear expansion of SUS304 is about 17.3 × 10-6 ), and the support member has an insulating property. It is made of glass having a small coefficient of linear expansion (for example, the coefficient of linear expansion of borosilicate glass is about 3.0 × 10-6 ). A joint residual stress (tensile residual stress) is generated at a portion where two members having such a large difference in linear expansion coefficient are joined. This joint residual stress becomes more prominent as the coefficient of linear expansion of the two materials to be joined increases, resulting in a situation in which the strength of the diaphragm and the support member is lowered and the pressure resistance performance of the diaphragm is deteriorated. This situation is one of the technical issues that must be resolved urgently in view of the current situation where laws and regulations related to hygiene management are being tightened.

本発明は、上記課題を解決すべく創作されたものであって、その目的は、支持部材を通じてダイアフラム3の微小なたわみを効率的にセンシング部に伝達しつつ、接合残留応力による耐圧性能の低下が抑制された圧力センサを提供することにある。 The present invention has been created to solve the above problems, and an object of the present invention is to efficiently transmit a minute deflection of the diaphragm 3 to the sensing portion through a support member, and to reduce the pressure resistance performance due to the joint residual stress. Is to provide a suppressed pressure sensor.

上記課題を解決するための本発明に係る圧力センサ(1A、1B、1C)は、測定対象の流体の圧力を受ける第1主面(11)とこの第1主面の反対側に位置する第2主面(12)とを有するダイアフラム(10)と、ひずみゲージを構成する複数の抵抗が設けられたセンサチップ(20A、20B)と、前記第2主面の法線に沿って延設されかつ一端が前記センサチップに接合する電気的絶縁性の複数の支持部材(41、42)と、を備え、前記複数の支持部材は、前記ダイアフラムよりも線膨張率が小さい中間材(50A、50B、50C)と接合しこの中間材を介して前記第2主面に固定されていることを特徴とする。 The pressure sensor (1A, 1B, 1C) according to the present invention for solving the above problems is located on the opposite side of the first main surface (11) that receives the pressure of the fluid to be measured and the first main surface. A diaphragm (10) having two main surfaces (12), sensor chips (20A, 20B) provided with a plurality of resistors constituting a strain gauge, and extending along the normal line of the second main surface. Further, the plurality of electrically insulating support members (41, 42) having one end bonded to the sensor chip are provided, and the plurality of support members are intermediate members (50A, 50B) having a linear expansion rate smaller than that of the diaphragm. , 50C) and fixed to the second main surface via the intermediate material.

前記圧力センサにおいて、前記中間材が、前記支持部材より線膨張率が大きい材料から成るように構成してもよい。 In the pressure sensor, the intermediate material may be configured to be made of a material having a coefficient of linear expansion larger than that of the support member.

また、前記圧力センサにおいて、前記中間材が、前記複数の支持部材に接合する複数の接合部(51、52、53、56、57、58)とこれら複数の接合部の少なくとも2つをつなぐ連結部(54、55、59)とから構成され、前記連結部の前記法線に沿った厚みが、前記複数の接合部の前記厚みよりも小さくなるように形成してもよい。 Further, in the pressure sensor, the intermediate material connects a plurality of joints (51, 52, 53, 56, 57, 58) to be joined to the plurality of support members and at least two of the plurality of joints. It may be formed so as to be composed of portions (54, 55, 59) so that the thickness of the connecting portion along the normal line is smaller than the thickness of the plurality of joint portions.

さらに、前記圧力センサにおいて、前記連結部が、前記ダイアフラムの板厚よりも薄い薄膜として形成されてもよい。 Further, in the pressure sensor, the connecting portion may be formed as a thin film thinner than the plate thickness of the diaphragm.

また、前記圧力センサにおいて、前記複数の支持部材が、互いに離間する少なくとも2つの前記中間材を介して前記第2主面に固定されてもよい。 Further, in the pressure sensor, the plurality of support members may be fixed to the second main surface via at least two intermediate members separated from each other.

さらに、前記圧力センサにおいて、前記中間材が、前記支持部材と対をなすように設けられてもよい。 Further, in the pressure sensor, the intermediate material may be provided so as to form a pair with the support member.

また、前記圧力センサにおいて、前記中間材と前記第2主面との接合面積が、前記中間材と前記支持部材との接合面積よりも小さくなるように形成してもよい。 Further, in the pressure sensor, the joint area between the intermediate material and the second main surface may be formed to be smaller than the joint area between the intermediate material and the support member.

さらに、前記圧力センサにおいて、前記中間材が、異なる線膨張率をもつ複数の材料から成り、前記材料は、前記第2主面と接合する側から前記センサチップと接合する側に向かうにつれて線膨張率が小さなくなるよう前記法線に沿って積層されてもよい。 Further, in the pressure sensor, the intermediate material is composed of a plurality of materials having different linear expansion coefficients, and the material linearly expands from the side joined with the second main surface toward the side joined with the sensor chip. It may be laminated along the normal line so that the ratio becomes small.

なお、上記説明では、一例として、発明の構成要素に対応する図面上の参照符号を括弧付きで記載している。 In the above description, as an example, reference numerals on drawings corresponding to the components of the invention are described in parentheses.

本発明によれば、支持部材を通じてダイアフラム3の微小なたわみを効率的にセンシング部に伝達しつつ、接合残留応力による耐圧性能の低下が抑制された圧力センサを提供することができる。 According to the present invention, it is possible to provide a pressure sensor in which a decrease in pressure resistance performance due to joint residual stress is suppressed while efficiently transmitting a minute deflection of the diaphragm 3 to a sensing unit through a support member.

図1は、本発明の実施の形態に係る圧力センサの断面図である。FIG. 1 is a cross-sectional view of a pressure sensor according to an embodiment of the present invention. 図2は、本発明の実施の形態に係る圧力センサ及びこれと接合した配管の断面図である。FIG. 2 is a cross-sectional view of a pressure sensor according to an embodiment of the present invention and a pipe joined to the pressure sensor. 図3は、本発明の実施の形態に係る圧力センサが備えるダイアフラム近傍を拡大した平面図である。FIG. 3 is an enlarged plan view of the vicinity of the diaphragm included in the pressure sensor according to the embodiment of the present invention. 図4は、図3におけるQ−Q線の断面図である。FIG. 4 is a cross-sectional view taken along the line QQ in FIG. 図5は、本発明の実施の形態に係る圧力センサが備えるダイアフラムの変形態様を表した概念図である。FIG. 5 is a conceptual diagram showing a modified mode of the diaphragm included in the pressure sensor according to the embodiment of the present invention. 図6は、本発明の他の実施の形態に係る圧力センサの断面図である。FIG. 6 is a cross-sectional view of a pressure sensor according to another embodiment of the present invention. 図7は、本発明の他の実施の形態に係る圧力センサが備えるダイアフラム近傍を拡大した平面図である。FIG. 7 is an enlarged plan view of the vicinity of the diaphragm included in the pressure sensor according to another embodiment of the present invention. 図8は、図7におけるQ−Q線の断面図である。FIG. 8 is a cross-sectional view taken along the line QQ in FIG. 図9は、本発明の他の実施の形態に係る圧力センサが備えるダイアフラムの変形態様を表した概念図である。FIG. 9 is a conceptual diagram showing a modified mode of the diaphragm included in the pressure sensor according to another embodiment of the present invention. 図10は、本発明の他の実施の形態に係る圧力センサの断面図である。FIG. 10 is a cross-sectional view of a pressure sensor according to another embodiment of the present invention. 図11は、本発明の他の実施の形態に係る圧力センサが備えるダイアフラム近傍を拡大した平面図である。FIG. 11 is an enlarged plan view of the vicinity of the diaphragm included in the pressure sensor according to another embodiment of the present invention. 図12は、図11におけるQ−Q線の断面図である。FIG. 12 is a cross-sectional view taken along the line QQ in FIG. 図13は、本発明の他の実施の形態に係る圧力センサが備えるダイアフラムの変形態様を表した概念図である。FIG. 13 is a conceptual diagram showing a modified mode of the diaphragm included in the pressure sensor according to another embodiment of the present invention. 図14は、本発明の他の実施の形態に係る圧力センサが備える中間材および支持部材を表した概念図である。FIG. 14 is a conceptual diagram showing an intermediate material and a support member included in the pressure sensor according to another embodiment of the present invention. 図15は、本発明の他の実施の形態に係る圧力センサが備える中間材および支持部材を表した概念図である。FIG. 15 is a conceptual diagram showing an intermediate material and a support member included in the pressure sensor according to another embodiment of the present invention.

以下、本発明の好ましい実施の形態である第1の実施の形態ないし第3の実施の形態を、図1ないし図15に基づいて説明する。各実施の形態において共通する構成要素については、同一の参照符号を付するとともに繰り返しの説明を割愛する。なお、説明文中の左右方向、前後方向および上下方向は、各図に示されたX、YおよびZ軸に沿った方向、または各図に示された圧力センサ1A、1B、1Cまたはダイアフラム10の紙面に対する奥行き方向、上下方向および左右方向としてそれぞれ定義する。ここで、+Z方向は被測定流体Fの圧力Pが印加される方向と一致するように定義される。また、各図は概念図であって、それぞれに示された内容は、実際の圧力センサと必ずしも同一ではない。 Hereinafter, the first to third embodiments, which are preferred embodiments of the present invention, will be described with reference to FIGS. 1 to 15. The components common to each embodiment are designated by the same reference numerals and the repeated description is omitted. In the description, the horizontal direction, the front-rear direction, and the vertical direction are the directions along the X, Y, and Z axes shown in each figure, or the pressure sensors 1A, 1B, 1C, or the diaphragm 10 shown in each figure. It is defined as the depth direction, the vertical direction, and the horizontal direction with respect to the paper surface, respectively. Here, the + Z direction is defined so as to coincide with the direction in which the pressure P of the fluid F to be measured is applied. Further, each diagram is a conceptual diagram, and the content shown in each diagram is not necessarily the same as the actual pressure sensor.

≪第1の実施の形態≫
はじめに、本発明の第1の実施の形態である圧力センサ1Aを、図1ないし図5に基づいて説明する。
<< First Embodiment >>
First, the pressure sensor 1A according to the first embodiment of the present invention will be described with reference to FIGS. 1 to 5.

〔圧力センサの構成〕
まず、圧力センサ1Aの構成を、図1ないし図4に基づいて説明する。この圧力センサ1Aは、図1に示すように、ダイアフラム10とセンサチップ20Aとを少なくとも備え、さらに、ダイアフラム10の外周部と接合してこれを支持するハウジング30を含む。当該構成の圧力センサ1Aにおいては、被測定流体Fの圧力Pを受圧してたわむダイアフラム10の変位がセンサチップ20Aを通じて電気信号(例えば、電圧信号)として検出される。このセンサチップ20Aは、支持部材40Aおよび中間材50Aを介してダイアフラム10の表面(後述するセンサ保持面12)に配設されている。
[Composition of pressure sensor]
First, the configuration of the pressure sensor 1A will be described with reference to FIGS. 1 to 4. As shown in FIG. 1, the pressure sensor 1A includes at least a diaphragm 10 and a sensor chip 20A, and further includes a housing 30 that joins and supports the outer peripheral portion of the diaphragm 10. In the pressure sensor 1A having this configuration, the displacement of the diaphragm 10 that receives the pressure P of the fluid F to be measured and bends is detected as an electric signal (for example, a voltage signal) through the sensor chip 20A. The sensor chip 20A is arranged on the surface of the diaphragm 10 (sensor holding surface 12 described later) via the support member 40A and the intermediate member 50A.

[ダイアフラム10]
ダイアフラム10は、図1に示すように、円板状の薄板部材であって、上述したように、その外周縁10aが、ハウジング30、より具体的には、後述するハウジング30の開口部31を画成する内周側壁面31aと、例えば溶接によって接合されている。これにより、ダイアフラム10は、図2に示すように、ハウジング30の内側に形成された空間(後述する空間30V)と、被測定流体Fが流出入する空間Vとを隔絶する薄膜の隔壁を形成している。
[Diaphragm 10]
As shown in FIG. 1, the diaphragm 10 is a disk-shaped thin plate member, and as described above, the outer peripheral edge 10a thereof forms a housing 30, and more specifically, an opening 31 of a housing 30, which will be described later. It is joined to the inner peripheral side wall surface 31a to be defined by welding, for example. As a result, as shown in FIG. 2, the diaphragm 10 forms a thin-film partition wall that isolates the space formed inside the housing 30 (the space 30V described later) and the space V into which the fluid F to be measured flows in and out. doing.

ダイアフラム10の下面は、被測定流体Fに接触してその圧力Pを受ける受圧面11を形成している。この受圧面11は、特許請求の範囲に記載の第1主面に相当する部位である。また、その上面、すなわち、受圧面11と反対側に位置する面は、図1ないし図4に示すように、支持部材40および中間材50を介してセンサチップ20Aが配設されこれを保持するセンサ保持面12を形成している。このセンサ保持面12は、特許請求の範囲に記載の第2主面に相当する部位である。 The lower surface of the diaphragm 10 forms a pressure receiving surface 11 that comes into contact with the fluid F to be measured and receives the pressure P. The pressure receiving surface 11 is a portion corresponding to the first main surface described in the claims. Further, as shown in FIGS. 1 to 4, the sensor chip 20A is arranged and held on the upper surface thereof, that is, the surface located on the side opposite to the pressure receiving surface 11, via the support member 40 and the intermediate member 50. The sensor holding surface 12 is formed. The sensor holding surface 12 is a portion corresponding to the second main surface described in the claims.

ダイアフラム10は、耐食性が高い材料、例えば、ステンレス鋼(SUS)またはチタンからなる。これら材料は、線膨張率が比較的大きく、例えば、SUS304の線膨張率は約17.3/K×10−6であり、チタンの線膨張率は約11.3/K×10−6である。 The diaphragm 10 is made of a highly corrosion resistant material, such as stainless steel (SUS) or titanium. These materials have a relatively large coefficient of linear expansion, for example, the coefficient of linear expansion of SUS304 is about 17.3 / K × 10-6 , and the coefficient of linear expansion of titanium is about 11.3 / K × 10-6 . be.

[センサチップ20A]
センサチップ20Aは、ダイアフラム10の機械的な変位を電気信号として検出する回路を備えた要素であって、上述したように、ダイアフラム10に形成されたセンサ保持面12の略中央に配設されている。センサチップ20Aは、例えば、Si等の半導体材料から成る基板とこの基板の上面20Aaに形成されたホイートストンブリッジ回路からなるひずみゲージとから構成されている。ホイートストンブリッジ回路が備える4つの抵抗素子(例えば拡散抵抗)は、ダイアフラム10の変形(より具体的には、載置されているダイアフラム10のセンサ保持面12の変形)に応じてその長さが変位(伸縮)することで抵抗値が増減するように構成されている。これにより、ダイアフラム10の変形がホイートストンブリッジ回路の中間点の電圧値の変化として検出される。
[Sensor chip 20A]
The sensor chip 20A is an element provided with a circuit for detecting the mechanical displacement of the diaphragm 10 as an electric signal, and is arranged substantially in the center of the sensor holding surface 12 formed on the diaphragm 10 as described above. There is. The sensor chip 20A is composed of, for example, a substrate made of a semiconductor material such as Si and a strain gauge made of a Wheatstone bridge circuit formed on the upper surface 20Aa of the substrate. The four resistance elements (for example, diffusion resistance) included in the Wheatstone bridge circuit are displaced in length according to the deformation of the diaphragm 10 (more specifically, the deformation of the sensor holding surface 12 of the mounted diaphragm 10). It is configured so that the resistance value increases or decreases by (expanding and contracting). As a result, the deformation of the diaphragm 10 is detected as a change in the voltage value at the midpoint of the Wheatstone bridge circuit.

[ハウジング30]
ハウジング30は、図1に示すように、内側に開口部31が開口する略円筒状のケーシング要素であって、耐食性の高い金属材料、例えば、ステンレス鋼(SUS)から形成されている。ハウジング30は、その下部に、配管Hのフェルールフランジ部Hfと接合するフェルールフランジ部30fが、半径方向外側に向かって突出するように設けられている。圧力センサ1Aと配管Hとは、上下に重なり合うフェルールフランジ部30fとフェルールフランジ部HfとがクランプCによって上下方向に挟持されることで互いが連結している。開口部31の内周側壁面31aは、上述したように、その下部でダイアフラム10の外周縁10aと接合し、ダイアフラム10、より具体的には、ダイアフラム10のセンサ保持面12と共に、被測定流体Fが流出入する配管Hの内部と隔絶された円柱状の空間30Vを形成している。この空間30Vは、例えば大気と連通し、内側に上述したセンサチップ20Aが配置される。
[Housing 30]
As shown in FIG. 1, the housing 30 is a substantially cylindrical casing element having an opening 31 inside, and is made of a metal material having high corrosion resistance, for example, stainless steel (SUS). The housing 30 is provided with a ferrule flange portion 30f to be joined to the ferrule flange portion Hf of the pipe H so as to project outward in the radial direction at the lower portion thereof. The pressure sensor 1A and the pipe H are connected to each other by vertically overlapping the ferrule flange portion 30f and the ferrule flange portion Hf being sandwiched in the vertical direction by the clamp C. As described above, the inner peripheral side wall surface 31a of the opening 31 is joined to the outer peripheral edge 10a of the diaphragm 10 at the lower portion thereof, and together with the diaphragm 10, more specifically, the sensor holding surface 12 of the diaphragm 10, the fluid to be measured. It forms a columnar space 30V isolated from the inside of the pipe H through which F flows in and out. This space 30V communicates with the atmosphere, for example, and the above-mentioned sensor chip 20A is arranged inside.

[支持部材40A]
支持部材40Aは、センサチップ20Aを支持する柱として機能する部材であって、図1ないし図4に示すように、ダイアフラム10のセンサ保持面12に対して垂直に起立するように配設(センサ保持面12の法線方向(Z軸方向)に沿って延設)された2つの柱状部材、具体的には、四角柱状に形成された同一形状の第1支持部材41および第2支持部材42から構成されている。第1支持部材41および第2支持部材42は、電気的に絶縁性を有する材料、好ましくは、熱伝導率の小さい材料からなり、例えば、ガラス、具体的にはホウケイ酸ガラス(パイレックス、登録商標))から形成されている。第1支持部材41および第2支持部材42は、その一端(頂部)がセンサチップ20Aの下面20Ab、より具体的には、下面20Abの左右両端部近傍に接合し、他端が中間材50Aの上面50Aaに接合している。
[Support member 40A]
The support member 40A is a member that functions as a pillar that supports the sensor chip 20A, and is arranged so as to stand upright with respect to the sensor holding surface 12 of the diaphragm 10 as shown in FIGS. 1 to 4. Two columnar members (extended along the normal direction (Z-axis direction) of the holding surface 12), specifically, a first support member 41 and a second support member 42 having the same shape formed in a square columnar shape. It is composed of. The first support member 41 and the second support member 42 are made of an electrically insulating material, preferably a material having a low thermal conductivity, for example, glass, specifically borosilicate glass (Pyrex, registered trademark). )) Is formed from. One end (top) of the first support member 41 and the second support member 42 is joined to the lower surface 20Ab of the sensor chip 20A, more specifically, to the vicinity of the left and right ends of the lower surface 20Ab, and the other end is the intermediate member 50A. It is joined to the upper surface 50Aa.

上記中間材50Aは、後述するように、ダイアフラム10のセンサ保持面12に接合しており、第1支持部材41および第2支持部材42が、中間材50Aを介してダイアフラム10のセンサ保持面12に上記態様(垂直に起立した態様)で固定されている。第1支持部材41および第2支持部材42は、例えば平面視において、ダイアフラム10の中心点P0に対して点対称となる2つの第1の支持点P41Aおよび第2の支持点P42Aに固定されている。ここで、ダイアフラム10の中心点P10とは、センサ保持面12に加わる圧力(例えば大気圧)よりも大きな圧力が受圧面11に加わった状態において、ダイアフラム10が上下方向(Z軸方向)に最も大きく変位する点として定義される。当該中心点P10は、円板状のダイアフラム10の厚みが均一であって剛性に偏りがない場合、図3に示すように、幾何学的な中心点と一致する。 As will be described later, the intermediate member 50A is joined to the sensor holding surface 12 of the diaphragm 10, and the first support member 41 and the second support member 42 are connected to the sensor holding surface 12 of the diaphragm 10 via the intermediate member 50A. Is fixed in the above mode (vertically standing mode). The first support member 41 and the second support member 42 are fixed to two first support points P41A and a second support point P42A that are point-symmetric with respect to the center point P0 of the diaphragm 10 in a plan view, for example. There is. Here, the center point P10 of the diaphragm 10 means that the diaphragm 10 is most vertically (Z-axis direction) in a state where a pressure larger than the pressure applied to the sensor holding surface 12 (for example, atmospheric pressure) is applied to the pressure receiving surface 11. It is defined as a point that is greatly displaced. The center point P10 coincides with the geometric center point as shown in FIG. 3 when the thickness of the disk-shaped diaphragm 10 is uniform and the rigidity is not biased.

[中間材50A]
中間材50Aは、ダイアフラム10と支持部材40Aとの間に介在する部材であって、例えば図3に示すように、平面視略長方形の薄板部材から形成されている。中間材50Aは、その線膨張率がダイアフラム10を形成する材料、例えば、ステンレス鋼(SUS)の線膨張率(SUS304の線膨張率は約17.3/K×10−6)よりも小さい材料から形成されており、好ましくは、支持部材40A(支持部材41、42)を形成する材料、例えばガラスの線膨張率(ホウケイ酸ガラスの線膨張率は約3.0×10−6)よりも大きな材料から形成されている。この好ましい形態の中間材50Aとして、例えばコバール(コバールの線膨張率は約5.2/K×10−6)挙げられる。
[Intermediate material 50A]
The intermediate member 50A is a member interposed between the diaphragm 10 and the support member 40A, and is formed of, for example, a thin plate member having a substantially rectangular shape in a plan view, as shown in FIG. The intermediate material 50A is a material whose linear expansion coefficient is smaller than that of a material forming the diaphragm 10, for example, a linear expansion coefficient of stainless steel (SUS) (the linear expansion coefficient of SUS304 is about 17.3 / K × 10-6). It is formed from, preferably, rather than the material forming the support member 40A (support members 41, 42), for example, the coefficient of linear expansion of glass (the coefficient of linear expansion of borosilicate glass is about 3.0 × 10-6). It is made of a large material. Examples of the intermediate material 50A having this preferred form include Kovar (the coefficient of linear expansion of Kovar is about 5.2 / K × 10-6 ).

中間材50Aは、図3および図4に示すように、ダイアフラム10が被測定流体Fの圧力Pを受圧して変形する(たわむ)領域にあってその中心点がダイアフラム10の中心点P0と一致する位置に、下面50Abを通じてスポット溶接等によってセンサ保持面12に接合されている。また、中間材50Aは、例えばその上面50Aaの両端部近傍に、スポット溶接等によって第1支持部材41および第2支持部材42の下端部が接合されている。これにより、第1支持部材41および第2支持部材42は、ダイアフラム10の中心点P0に対して点対称の位置にある第1支持点P41Aおよび第2支持点P42Aに固定されることとなる。 As shown in FIGS. 3 and 4, the intermediate material 50A is in a region where the diaphragm 10 receives the pressure P of the fluid to be measured and deforms (deflects), and its center point coincides with the center point P0 of the diaphragm 10. It is joined to the sensor holding surface 12 by spot welding or the like through the lower surface 50Ab at the position where the sensor is to be formed. Further, in the intermediate member 50A, for example, the lower ends of the first support member 41 and the second support member 42 are joined to the vicinity of both ends of the upper surface 50Aa by spot welding or the like. As a result, the first support member 41 and the second support member 42 are fixed to the first support point P41A and the second support point P42A located at positions symmetrical with respect to the center point P0 of the diaphragm 10.

〔圧力センサ1Aの動作態様〕
つづいて、圧力センサ1Aの動作態様を、図5に基づいて説明する。この図5は、ダイアフラム10が変形したときの第1支持部材41、第2支持部材42および中間材50A、ならびにセンサチップ20AのXZ断面における変位を模式的に示した図である。
[Operation mode of pressure sensor 1A]
Subsequently, the operation mode of the pressure sensor 1A will be described with reference to FIG. FIG. 5 is a diagram schematically showing the displacements of the first support member 41, the second support member 42, the intermediate member 50A, and the sensor chip 20A in the XZ cross section when the diaphragm 10 is deformed.

センサ保持面12に加わる圧力(例えば大気圧)よりも大きな圧力Pを有する被測定流体Fが受圧面11に接すると、薄板部材からなるダイアフラム10は、中心点P10が上方(+Z方向)に突出した略円錐状に変形する(たわむ)。このとき、薄膜状の中間材50Aもまた、ダイアフラム10の変形に倣って変形(たわむ)。 When the fluid F to be measured, which has a pressure P larger than the pressure applied to the sensor holding surface 12 (for example, atmospheric pressure), comes into contact with the pressure receiving surface 11, the center point P10 of the diaphragm 10 made of a thin plate member projects upward (+ Z direction). It deforms (deflects) into a substantially conical shape. At this time, the thin film intermediate material 50A is also deformed (deflected) following the deformation of the diaphragm 10.

中間材50Aを介してセンサ保持面12に略垂直に起立し、かつ点対称の位置にあって中心点P10から離れた第1支持点P41Aおよび第2支持点P42Aに固定されている第1支持部材41および第2支持部材42は、Z軸に対して略線対称となるようにそれぞれが傾く。この結果、センサチップ20Aの下面20bと接合する第1支持部材41および第2支持部材42の頂部は、いずれも+Z方向に略同じ量だけ変位するとともに、一方(第1支持部材41)は−X方向に変位し、他方(第2支持部材42)は+X方向に変位する(図5中の矢印を参照)。当該第1支持部材41および第2支持部材42の頂部における±X方向の変位量は、各支持部材の高さ(詳細には、センサ保持面12から各支持部材の頂部までの高さ)に比例して大きくなる。すなわち、ダイアフラム10の変位量は、第1支持部材41および第2支持部材42によって増幅される形でセンサチップ20Aに伝達される。センサチップ20Aは、当該増幅されたダイアフラム10の変位量に応じた電気信号(例えば電圧信号)を出力する。 A first support that stands substantially perpendicular to the sensor holding surface 12 via an intermediate member 50A and is fixed to a first support point P41A and a second support point P42A at a point-symmetrical position and away from the center point P10. The member 41 and the second support member 42 are tilted so as to be substantially line-symmetrical with respect to the Z axis. As a result, the tops of the first support member 41 and the second support member 42, which are joined to the lower surface 20b of the sensor chip 20A, are both displaced by approximately the same amount in the + Z direction, and one (first support member 41) is −. The other (second support member 42) is displaced in the + X direction while being displaced in the X direction (see the arrow in FIG. 5). The amount of displacement in the ± X direction at the tops of the first support member 41 and the second support member 42 is the height of each support member (specifically, the height from the sensor holding surface 12 to the top of each support member). It grows proportionally. That is, the displacement amount of the diaphragm 10 is transmitted to the sensor chip 20A in a form amplified by the first support member 41 and the second support member 42. The sensor chip 20A outputs an electric signal (for example, a voltage signal) corresponding to the displacement amount of the amplified diaphragm 10.

〔圧力センサ1Aの効果〕
上記構成の圧力センサ1Aによれば、上述したように、支持部材40Aを通じてダイアフラム10の変形量が±X方向に増幅される形でセンサチップ20Aに伝達される。このため、ダイアフラム10を僅かに変位させる程度の小さな圧力変動に対しても、センサチップ20Aは左右方向(+X方向および−X方向)に大きく引っ張られる。この結果、センサチップ20Aに設けられたひずみゲージ(ホイートストンブリッジ回路)を構成する抵抗素子は、出力変動を伴う程度に十分に変位(伸縮)することとなり、被測定流体の圧力を高精度に検知することが可能になる。
[Effect of pressure sensor 1A]
According to the pressure sensor 1A having the above configuration, as described above, the amount of deformation of the diaphragm 10 is transmitted to the sensor chip 20A in the form of being amplified in the ± X direction through the support member 40A. Therefore, the sensor chip 20A is greatly pulled in the left-right direction (+ X direction and −X direction) even for a small pressure fluctuation that slightly displaces the diaphragm 10. As a result, the resistance element constituting the strain gauge (Wheatstone bridge circuit) provided on the sensor chip 20A is sufficiently displaced (expanded and contracted) to the extent that the output fluctuates, and the pressure of the fluid to be measured is detected with high accuracy. Will be possible.

また、ダイアフラム10と支持部材40Aとの間に、線膨張率の値がダイアフラム10のそれよりも小さく支持部材40Aのそれよりも大きな中間材50Aが介在することで、両部材間の接合残留応力を低減させることができる。これにより、ダイアフラム10の耐圧性能の低下を抑えることができる。 Further, an intermediate member 50A having a linear expansion coefficient smaller than that of the diaphragm 10 and larger than that of the support member 40A is interposed between the diaphragm 10 and the support member 40A, so that the joint residual stress between the two members is interposed. Can be reduced. As a result, it is possible to suppress a decrease in the pressure resistance performance of the diaphragm 10.

≪第2の実施の形態≫
つぎに、本発明の第2の実施の形態である圧力センサ1Bを、図6ないし図9に基づいて説明する。
<< Second Embodiment >>
Next, the pressure sensor 1B according to the second embodiment of the present invention will be described with reference to FIGS. 6 to 9.

圧力センサ1Bは、圧力センサ1Aと比較して、支持部材40Bを構成する柱状部材の数とこれらが設けられる位置、および支持部材40Bによって支持されるセンサチップ20Bの形態(支持部材40Bとの接合部分の形態)、ならびに支持部材40Bをダイアフラム10のセンサ保持面12に固定する中間材50Bの形態が相違し、これら以外の構成は同一である。 Compared with the pressure sensor 1A, the pressure sensor 1B has the number of columnar members constituting the support member 40B, the positions where they are provided, and the form of the sensor chip 20B supported by the support member 40B (joining with the support member 40B). The form of the portion) and the form of the intermediate member 50B for fixing the support member 40B to the sensor holding surface 12 of the diaphragm 10 are different, and the configurations other than these are the same.

[支持部材40B]
支持部材40Bは、図6および図8に示すように、3つの柱状部材、具体的には、支持部材40Aを構成する第1支持部材41および第2支持部材42と同一の部材と、これら部材と同一形状かつ同一材料からなる第3支持部材43とから構成されている。支持部材40Bを構成する第1支持部材41および第2支持部材42は、支持部材40Aと同様に、その一端(頂部)が後述するセンサチップ20Bの下面20Bb、より具体的には、下面20Bbの左右両端部近傍(後述する第1接合部51の上面51aおよび第2接合部52の上面52a)に接合している。また、第1支持部材41および第2支持部材42の他端は、中間材50Bの上面の左右両端部近傍に接合している。さらに、追加された第3支持部材43の一端(頂部)および他端が、センサチップ20Bの下面20Bbの略中央および中間材50Bの上面の略中央(後述する第3接合部53の上面53a)にそれぞれ接合している。
[Support member 40B]
As shown in FIGS. 6 and 8, the support member 40B includes three columnar members, specifically, the same members as the first support member 41 and the second support member 42 constituting the support member 40A, and these members. It is composed of a third support member 43 having the same shape and the same material as the above. Similar to the support member 40A, the first support member 41 and the second support member 42 constituting the support member 40B have one end (top) of the lower surface 20Bb of the sensor chip 20B described later, more specifically, the lower surface 20Bb. It is joined to the vicinity of both left and right ends (the upper surface 51a of the first joint 51 and the upper surface 52a of the second joint 52, which will be described later). Further, the other ends of the first support member 41 and the second support member 42 are joined to the vicinity of the left and right ends of the upper surface of the intermediate member 50B. Further, one end (top) and the other end of the added third support member 43 are substantially the center of the lower surface 20Bb of the sensor chip 20B and the substantially center of the upper surface of the intermediate member 50B (the upper surface 53a of the third joint portion 53 described later). It is joined to each.

[中間材50B]
中間材50Bは、ダイアフラム10と支持部材40Bとの間に介在する部材であって、中間材50Aと同一の材料、すなわち、その線膨張率がダイアフラム10を形成する材料よりも小さい材料から形成され、好ましくは、支持部材40Bを形成する材料よりも大きな材料から形成されている。中間材50Bは、例えば図6および図8に示すように、第1接合部51、第2接合部52および第3接合部53、ならびに第1連結部54および第2連結部55から構成されている。
[Intermediate material 50B]
The intermediate member 50B is a member interposed between the diaphragm 10 and the support member 40B, and is formed of the same material as the intermediate member 50A, that is, a material whose linear expansion coefficient is smaller than that of the material forming the diaphragm 10. , Preferably made of a material larger than the material forming the support member 40B. As shown in FIGS. 6 and 8, for example, the intermediate member 50B is composed of a first joint portion 51, a second joint portion 52 and a third joint portion 53, and a first joint portion 54 and a second joint portion 55. There is.

第1接合部51、第2接合部52および第3接合部53は、いずれも同一形状を呈しており、例えば、略直方体を呈した部位として形成されている。なお、第1接合部51、第2接合部52および第3接合部53の形状を異なるものとしてもよい。 The first joint portion 51, the second joint portion 52, and the third joint portion 53 all have the same shape, and are formed as, for example, substantially rectangular parallelepiped portions. The shapes of the first joint portion 51, the second joint portion 52, and the third joint portion 53 may be different.

第1接合部51、第2接合部52および第3接合部53は、その高さ(厚み)が、例えば、ダイアフラム10の厚みよりも大きく設定されており、センサ保持面12に対して略垂直に起立した状態で当該保持面に接合されている。 The height (thickness) of the first joint portion 51, the second joint portion 52, and the third joint portion 53 is set to be larger than, for example, the thickness of the diaphragm 10, and is substantially perpendicular to the sensor holding surface 12. It is joined to the holding surface while standing upright.

第1接合部51、第2接合部52および第3接合部53は、それぞれ第1支持部材41、第2支持部材42および第3支持部材43と、上面51a、52a、53aを通じて、例えばスポット溶接によって接合している。また、第1接合部51、第2接合部52および第3接合部53は、それぞれ下面51b、52b、53bを通じて、例えばスポット溶接によってセンサ保持面12に接合している。ここで、上面51a、52a、53aの表面積Suは、接合される支持部材41、42、43の下端面の表面積と同等か僅かに大きく設定されている。また、本実施の形態では、下面51b、52b、53bの表面積Sdは、上面51a、52a、53aの表面積Suと等しいが、これを表面積Suよりも小さくなるように、第1接合部51、第2接合部52および第3接合部53の形状を変更してもよい。これにより、下面51b、52b、53bとセンサ保持面12との接合面積が小さくなり、ダイアフラム10の変形への影響を抑えることができる。 The first joint portion 51, the second joint portion 52, and the third joint portion 53 are, for example, spot welded through the first support member 41, the second support member 42, and the third support member 43, respectively, through the upper surfaces 51a, 52a, and 53a. It is joined by. Further, the first joint portion 51, the second joint portion 52, and the third joint portion 53 are joined to the sensor holding surface 12 through the lower surfaces 51b, 52b, and 53b, respectively, by spot welding, for example. Here, the surface area Su of the upper surfaces 51a, 52a, 53a is set to be equal to or slightly larger than the surface area of the lower end surfaces of the support members 41, 42, 43 to be joined. Further, in the present embodiment, the surface area Sd of the lower surfaces 51b, 52b, 53b is equal to the surface area Su of the upper surfaces 51a, 52a, 53a, but the surface areas Su of the first joint portions 51, 52b, 53a are smaller than the surface area Su. The shapes of the two joints 52 and the third joint 53 may be changed. As a result, the joint area between the lower surfaces 51b, 52b, 53b and the sensor holding surface 12 becomes smaller, and the influence on the deformation of the diaphragm 10 can be suppressed.

図7に示すように、上記3つの接合部のうちの第1接合部51および第2接合部52は、ダイアフラム10の中心点P10に対して点対称の位置にある第1支持点P41Bおよび第2支持点P42Bに配設されており、第3接合部53は、中心点P10と一致する第3支持点P43Bに配設されている。これにより、第3支持部材43は、中心点P10(第3支持点P43B)に固定され、第1支持部材41および第2支持部材42は、ダイアフラム10の中心点P0(第3支持点P43B)に対して点対称の位置にある第1支持点P41Bおよび第2支持点P42Bに固定されることとなる。 As shown in FIG. 7, the first joint portion 51 and the second joint portion 52 of the above three joint portions are the first support point P41B and the second support point P41B located at a position symmetrical with respect to the center point P10 of the diaphragm 10. It is arranged at the two support points P42B, and the third joint portion 53 is arranged at the third support point P43B that coincides with the center point P10. As a result, the third support member 43 is fixed to the center point P10 (third support point P43B), and the first support member 41 and the second support member 42 are fixed to the center point P0 (third support point P43B) of the diaphragm 10. It will be fixed to the first support point P41B and the second support point P42B which are in a position symmetrical with respect to the point.

第1連結部54および第2連結部55は、いずれもセンサ保持面12に沿って(平行に)延在する薄膜状の部材として形成されている。第1連結部54は、第1接合部51の下端部(センサ保持面12に近接した端部)と第2接合部52の下端部とに接続してこれら2つの部位を接続している。また、第2連結部55は、第2接合部52の下端部と第3接合部53の下端部とに接続してこれら2つの部位を接続している。このように、第1連結部54および第2連結部55が薄膜状の部材として形成され、かつ各接合部の下端部を接続する形態とすることで、各接合部の相対移動(相対変位)を可能にしている。すなわち、各接合部は、互いに干渉することなく当該変形に倣って(固定されているセンサ保持面12に対して垂直な姿勢を保持したまま)個別に変位(移動)することができる(図9参照)。また、第1連結部54および第2連結部55を上記形態とすることで、中間材50Bの各接合部が厚みのある部位として形成された場合であっても、これによるダイアフラム10の変形への影響(変形の妨げ)を最小限に留めることが可能になる。 Both the first connecting portion 54 and the second connecting portion 55 are formed as thin film-like members extending (parallel) along the sensor holding surface 12. The first connecting portion 54 is connected to the lower end portion of the first joint portion 51 (the end portion close to the sensor holding surface 12) and the lower end portion of the second joint portion 52 to connect these two portions. Further, the second connecting portion 55 is connected to the lower end portion of the second joint portion 52 and the lower end portion of the third joint portion 53 to connect these two portions. In this way, the first connecting portion 54 and the second connecting portion 55 are formed as thin film-like members, and the lower end portions of the respective joint portions are connected to each other, whereby the relative movement (relative displacement) of the respective joint portions is achieved. Is possible. That is, each joint can be individually displaced (moved) according to the deformation (while maintaining a posture perpendicular to the fixed sensor holding surface 12) without interfering with each other (FIG. 9). reference). Further, by adopting the first connecting portion 54 and the second connecting portion 55 in the above-described form, even if each joint portion of the intermediate member 50B is formed as a thick portion, the diaphragm 10 is deformed due to this. It becomes possible to minimize the influence of (deformation hindrance).

なお、接合部と連結部とが接続する位置によっては、接合部の相対移動(相対変位)が一部規制されることとなる。すなわち、当該接続位置によって、接合部の相対移動(相対変位)を制御することができる、このため、当該接続位置は、センサチップ20Bが配設される位置に応じて適宜変更することが望ましい。上記規制機能をもつ接続態様の一つとして、後述する第3の実施の形態(中間材50Cにおける第1接合部56と第3接合部58とを接続する連結部59の接続形態)がある。 The relative movement (relative displacement) of the joint portion is partially restricted depending on the position where the joint portion and the connecting portion are connected. That is, the relative movement (relative displacement) of the joint can be controlled by the connection position. Therefore, it is desirable that the connection position is appropriately changed according to the position where the sensor chip 20B is arranged. As one of the connection modes having the above-mentioned regulation function, there is a third embodiment described later (a connection form of the connecting portion 59 connecting the first joint portion 56 and the third joint portion 58 in the intermediate member 50C).

〔圧力センサ1Bの動作態様〕
つづいて、圧力センサ1Bの動作態様を、図9に基づいて説明する。この図9は、図5と同様に、ダイアフラム10が変形したときの第1支持部材41、第2支持部材42、第3支持部材43および中間材50B(第1接合部51、第2接合部52、第3接合部53、第1連結部54、第2連結部55)、ならびにセンサチップ20BのXZ断面における変位を模式的に示した図である。
[Operation mode of pressure sensor 1B]
Subsequently, the operation mode of the pressure sensor 1B will be described with reference to FIG. FIG. 9 shows the first support member 41, the second support member 42, the third support member 43, and the intermediate member 50B (first joint portion 51, second joint portion) when the diaphragm 10 is deformed, as in FIG. 52, the third joint portion 53, the first connecting portion 54, the second connecting portion 55), and the displacement of the sensor chip 20B in the XZ cross section are schematically shown.

センサ保持面12に加わる圧力(例えば大気圧)よりも大きな圧力Pを有する被測定流体Fが受圧面11に接すると、薄板部材からなるダイアフラム10は、中心点P10が上方(+Z方向)に突出した略円錐状に変形する(たわむ)。このとき、上記形態の薄膜状の第1連結部54および第2連結部55を備える中間材50Bは、例え厚みの大きな第1接合部51、第2接合部52および第3接合部53を有してしても、これら接合部によってダイアフラム10の変形を妨げることなく、また、各接合部が互いに干渉することなく当該変形に倣って(各接合部が固定されているセンサ保持面12に対して垂直な姿勢を保持したまま)変形(移動)する。 When the fluid F to be measured, which has a pressure P larger than the pressure applied to the sensor holding surface 12 (for example, atmospheric pressure), comes into contact with the pressure receiving surface 11, the center point P10 of the diaphragm 10 made of a thin plate member projects upward (+ Z direction). It deforms (deflects) into a substantially conical shape. At this time, the intermediate member 50B provided with the thin film-shaped first connecting portion 54 and the second connecting portion 55 of the above-described form has, for example, a thick first joint portion 51, a second joint portion 52, and a third joint portion 53. Even so, these joints do not hinder the deformation of the diaphragm 10, and the joints do not interfere with each other and follow the deformation (with respect to the sensor holding surface 12 to which each joint is fixed). Deforms (moves) while maintaining a vertical posture.

中間材50Bの上記変形(移動)により、中間材50Bの第3接合部53を介して中心点P10(第3支持点P43B)に立設された第3支持部材43は、Z軸に沿って変位する(具体的には、+Z方向に変位する)。この結果、センサチップ20Bの下面20bと接合する第3支持部材43の頂部は、ダイアフラム10の変位量と略同じ量だけ+Z方向に変位する。また、中間材50Bの第1接合部51および第2接合部52を介してセンサ保持面12に略垂直に起立し、かつ点対称の位置にあって中心点P10から離れた第1支持点P41Bおよび第2支持点P42Bに固定されている第1支持部材41および第2支持部材42は、Z軸に対して略線対称となるようにそれぞれが傾く。この結果、センサチップ20Bの下面20bと接合する第1支持部材41および第2支持部材42の頂部は、いずれも+Z方向に略同じ量だけ変位するとともに、一方(第1支持部材41)は−X方向に変位し、他方(第2支持部材42)は+X方向に変位する。当該第1支持部材41および第2支持部材42の頂部の±X方向の変位量は、上述したように、各支持部材の高さ(詳細には、センサ保持面12から各支持部材の頂部までの高さ)に比例して大きくなる。すなわち、ダイアフラム10の変位量は、第1支持部材41および第2支持部材42によって増幅される形でセンサチップ20Bに伝達される。 Due to the above deformation (movement) of the intermediate member 50B, the third support member 43 erected at the center point P10 (third support point P43B) via the third joint portion 53 of the intermediate member 50B is formed along the Z axis. Displace (specifically, displace in the + Z direction). As a result, the top of the third support member 43 to be joined to the lower surface 20b of the sensor chip 20B is displaced in the + Z direction by substantially the same amount as the displacement amount of the diaphragm 10. Further, the first support point P41B stands up substantially perpendicular to the sensor holding surface 12 via the first joint portion 51 and the second joint portion 52 of the intermediate member 50B, and is at a point-symmetrical position and away from the center point P10. The first support member 41 and the second support member 42 fixed to the second support point P42B are tilted so as to be substantially line-symmetrical with respect to the Z axis. As a result, the tops of the first support member 41 and the second support member 42, which are joined to the lower surface 20b of the sensor chip 20B, are both displaced by approximately the same amount in the + Z direction, and one (first support member 41) is −. It is displaced in the X direction, and the other (second support member 42) is displaced in the + X direction. As described above, the amount of displacement of the tops of the first support member 41 and the second support member 42 in the ± X direction is the height of each support member (specifically, from the sensor holding surface 12 to the top of each support member). It increases in proportion to the height of. That is, the displacement amount of the diaphragm 10 is transmitted to the sensor chip 20B in a form amplified by the first support member 41 and the second support member 42.

〔圧力センサ1Bの効果〕
上記構成の圧力センサ1Bによれば、上述したように、ダイアフラム10の変形量が支持部材40Bの第1支持部材41および第2支持部材42を通じて±X方向に増幅され、かつ第3支持部材43を通じて+Z方向の変位がセンサチップ20Bに伝達される。このセンサチップ20Bに伝達される変形量は、+Z方向の変位分だけセンサチップ20Aのそれよりも大きい。このため、ダイアフラム10を僅かに変位させる程度の小さな圧力変動に対しても、センサチップ20Bは左右方向(+X方向および−X方向)およびに+Z方向に大きく引っ張られる。この結果、センサチップ20Bに設けられたひずみゲージ(ホイートストンブリッジ回路)を構成する抵抗素子は、出力変動を伴う程度に十分に変位(伸縮)することとなり、被測定流体の圧力を高精度に検知することが可能になる。
[Effect of pressure sensor 1B]
According to the pressure sensor 1B having the above configuration, as described above, the amount of deformation of the diaphragm 10 is amplified in the ± X direction through the first support member 41 and the second support member 42 of the support member 40B, and the third support member 43 The displacement in the + Z direction is transmitted to the sensor chip 20B through the sensor chip 20B. The amount of deformation transmitted to the sensor chip 20B is larger than that of the sensor chip 20A by the amount of displacement in the + Z direction. Therefore, the sensor chip 20B is largely pulled in the left-right direction (+ X direction and −X direction) and in the + Z direction even for a small pressure fluctuation that slightly displaces the diaphragm 10. As a result, the resistance element constituting the strain gauge (Wheatstone bridge circuit) provided on the sensor chip 20B is sufficiently displaced (expanded and contracted) to the extent that the output fluctuates, and the pressure of the fluid to be measured is detected with high accuracy. Will be possible.

また、ダイアフラム10と支持部材40Bとの間に、線膨張率の値がダイアフラム10のそれよりも小さく支持部材40Bのそれよりも大きな中間材50Bを介在させたことで、両部材間の接合残留応力を低減させることができる。これにより、ダイアフラム10の耐圧性能の低下を抑えることができる。この効果は、ダイアフラム10よりも厚く形成された熱容量の大きい接合部、すなわち、ダイアフラム10と支持部材40Bとを熱的に隔絶する作用の大きい第1接合部51、第2接合部52および第3接合部53を設けたことでより顕著なものとなる。 Further, by interposing an intermediate member 50B having a linear expansion coefficient smaller than that of the diaphragm 10 and larger than that of the support member 40B between the diaphragm 10 and the support member 40B, the joint residue between the two members is interposed. The stress can be reduced. As a result, it is possible to suppress a decrease in the pressure resistance performance of the diaphragm 10. This effect is obtained by forming a joint portion having a larger heat capacity than the diaphragm 10, that is, a first joint portion 51, a second joint portion 52, and a third joint portion having a large effect of thermally separating the diaphragm 10 and the support member 40B. It becomes more remarkable by providing the joint portion 53.

また、中間材50Bに連結部(第1連結部54および第2連結部55)が設けられていることで、上記高さ(厚み)の大きな接合部を有していてもこれによってダイアフラム10の変形が妨げられることを可及的に抑制することができる。これにより、上記接合残留応力を低減させる効果と測定精度(感度)とを高い次元で両立させることができる。 Further, since the intermediate member 50B is provided with the connecting portions (first connecting portion 54 and second connecting portion 55), even if the intermediate member 50B has a joint portion having a large height (thickness), the diaphragm 10 can be formed by this. It is possible to suppress the deformation from being hindered as much as possible. As a result, the effect of reducing the joint residual stress and the measurement accuracy (sensitivity) can be compatible at a high level.

さらに、中間材50Bが1つの部品として形成されることで、部品点数が削減され、組付け性が向上する。例えば、3つの支持点(第1支持点P41B、第2支持点P42B、第3支持点P43B、)に、各接合部が個別部品として構成された中間材を配置する場合、各支持点(3つの支持点)ごとに位置決めすることが必要となるが、中間材が1つの部品から形成されている場合、2つの支持点において位置決めすれば足りる。これにより、組付け精度の悪化(バラツキ)を抑制することができる。 Further, by forming the intermediate material 50B as one component, the number of components is reduced and the assembling property is improved. For example, when an intermediate material in which each joint is configured as an individual component is arranged at three support points (first support point P41B, second support point P42B, third support point P43B), each support point (3). It is necessary to position each support point), but if the intermediate material is formed from one component, positioning at two support points is sufficient. As a result, deterioration (variation) in assembly accuracy can be suppressed.

≪第3の実施の形態≫
つぎに、本発明の第3の実施の形態である圧力センサ1Cを、図10ないし図13に基づいて説明する。
<< Third Embodiment >>
Next, the pressure sensor 1C according to the third embodiment of the present invention will be described with reference to FIGS. 10 to 13.

圧力センサ1Cは、圧力センサ1Bと比較して、ダイアフラム10のセンサ保持面12と支持部材40Bとの間に介在する中間材50Cの形態および固定位置が相違し(この関係で支持部材40Bおよびセンサチップ20Bが配置される位置も相違し)、これら以外の構成は同一である。 Compared with the pressure sensor 1B, the pressure sensor 1C differs in the form and fixing position of the intermediate member 50C interposed between the sensor holding surface 12 of the diaphragm 10 and the support member 40B (in this relationship, the support member 40B and the sensor). The position where the chip 20B is arranged is also different), and the configurations other than these are the same.

[中間材50C]
中間材50Cは、上記実施の形態における中間材50A、50Bと同様に、その線膨張率がダイアフラム10を形成する材料よりも小さい材料から形成され、好ましくは、支持部材40Bを形成する材料よりも大きな材料から形成されている。中間材50Cは、例えば図10および図12に示すように、第1接合部56、第2接合部57および第3接合部58、ならびに連結部59から構成されている。
[Intermediate material 50C]
The intermediate material 50C is formed of a material having a linear expansion coefficient smaller than that of the material forming the diaphragm 10, and is preferably formed of a material having a linear expansion coefficient smaller than that of the material forming the support member 40B, similarly to the intermediate materials 50A and 50B in the above embodiment. It is made of a large material. As shown in FIGS. 10 and 12, for example, the intermediate member 50C is composed of a first joint portion 56, a second joint portion 57 and a third joint portion 58, and a connecting portion 59.

第1接合部56、第2接合部57および第3接合部58は、いずれも同一形状を呈し、例えば、センサ保持面12との接合面が支持部材40Bとの接合面よりも小さくなるよう縦断面形状(XZ平面の断面形状)が逆台形の6面体として形成されている。ただし、当該形状に限定されるわけではなく、また、第1接合部56、第2接合部57および第3接合部58が異なる形状を呈していてもよい。 The first joint portion 56, the second joint portion 57, and the third joint portion 58 all have the same shape, and for example, the joint surface with the sensor holding surface 12 is vertically cut so as to be smaller than the joint surface with the support member 40B. The surface shape (cross-sectional shape of the XZ plane) is formed as an inverted trapezoidal hexahedron. However, the shape is not limited to this, and the first joint portion 56, the second joint portion 57, and the third joint portion 58 may have different shapes.

第1接合部56、第2接合部57および第3接合部58は、その高さ(厚み)が、例えばダイアフラム10の厚みよりも大きく設定されており、センサ保持面12に対して略垂直に起立した状態で当該保持面に接合されている。なお、第1接合部56と第3接合部58とは、連結部59を通じて一体的に接続しているが、第1接合部56および第3接合部58と第2接合部57とは別体として形成されている。 The height (thickness) of the first joint portion 56, the second joint portion 57, and the third joint portion 58 is set to be larger than, for example, the thickness of the diaphragm 10, and is substantially perpendicular to the sensor holding surface 12. It is joined to the holding surface in an upright state. Although the first joint portion 56 and the third joint portion 58 are integrally connected through the connecting portion 59, the first joint portion 56, the third joint portion 58, and the second joint portion 57 are separate bodies. Is formed as.

第1接合部56、第2接合部57および第3接合部58は、支持部材40Bを構成する第1支持部材41、第2支持部材42および第3支持部材43と、上面56a、57a、58aを通じて、例えばスポット溶接によって接合している。また、第1接合部56、第2接合部57および第3接合部58は、それぞれ下面56b、57b、58bを通じて、例えばスポット溶接によってセンサ保持面12に接合している。ここで、上面56a、57a、58aの表面積Suは、接合される支持部材41、42、43の下端面の表面積と同等か僅かに大きく設定されている。また、下面56b、57b、58bの表面積Sdは、上述したように、上面51a、52a、53aの表面積Suよりも小さくなるように形成されている。当該形態とすることで、支持部材41、42、43と安定した状態で接合し、かつセンサ保持面12との接合面積が小さくなることでダイアフラム10の変形への影響(変形の妨げとなること)を抑えることができる。 The first joint portion 56, the second joint portion 57, and the third joint portion 58 include the first support member 41, the second support member 42, and the third support member 43 constituting the support member 40B, and the upper surfaces 56a, 57a, 58a. Through, for example, they are joined by spot welding. Further, the first joint portion 56, the second joint portion 57, and the third joint portion 58 are joined to the sensor holding surface 12 through the lower surfaces 56b, 57b, and 58b, respectively, by spot welding, for example. Here, the surface area Su of the upper surfaces 56a, 57a, 58a is set to be equal to or slightly larger than the surface area of the lower end surfaces of the support members 41, 42, 43 to be joined. Further, as described above, the surface area Sd of the lower surfaces 56b, 57b, 58b is formed to be smaller than the surface area Su of the upper surfaces 51a, 52a, 53a. By adopting this form, the support members 41, 42, and 43 are joined in a stable state, and the joining area with the sensor holding surface 12 is reduced, which affects the deformation of the diaphragm 10 (prevents deformation). ) Can be suppressed.

図11に示すように、第1接合部56は、ダイアフラム10の中心点P10と一致する第1支持点P41Cに配設され、第2接合部57は、X軸上にあって中心点P10よりも+X寄りの第2支持点P42Cに配設され、第3接合部58は、X軸上にあって第1支持点P41Cと第2支持点P42Cとの間に位置する第3支持点P43Cに配設されている。これにより、第1支持部材41は、中心点P10(第1支持点P41C)に固定され、第2支持部材42および第3支持部材43は、いずれもX軸上にあってダイアフラム10の中心点P0に対して同じ側(+X側)に位置する第2支持点P42Cおよび第3支持点P43Cに固定されることとなる。 As shown in FIG. 11, the first joint 56 is arranged at the first support point P41C that coincides with the center point P10 of the diaphragm 10, and the second joint 57 is on the X-axis and from the center point P10. Is also arranged at the second support point P42C closer to + X, and the third joint 58 is located at the third support point P43C located between the first support point P41C and the second support point P42C on the X axis. It is arranged. As a result, the first support member 41 is fixed to the center point P10 (first support point P41C), and the second support member 42 and the third support member 43 are both on the X-axis and are the center points of the diaphragm 10. It will be fixed to the second support point P42C and the third support point P43C located on the same side (+ X side) with respect to P0.

連結部59は、図12に示すように、センサ保持面12に沿って(平行に)延在する薄膜状の部位として形成され、第1接合部56の上端部と第3接合部58の上端部とを一体的に接続している。当該形態の連結部59は、接続する第1接合部56と第3接合部58との相対移動(相対変位)に関し、被測定流体Fの圧力Pが印加される方向(Z軸に沿った方向)は規制せず、当該方向と垂直な面内(XY平面内)を規制するように制御する。これにより、第3接合部58は、第1接合部56に追従するようにしてXY平面内を移動(変位)することとなる。 As shown in FIG. 12, the connecting portion 59 is formed as a thin film-like portion extending (parallel) along the sensor holding surface 12, and the upper end portion of the first joint portion 56 and the upper end portion of the third joint portion 58 are formed. It is integrally connected to the unit. The connecting portion 59 of this form is the direction in which the pressure P of the fluid F to be measured is applied (direction along the Z axis) with respect to the relative movement (relative displacement) between the first joint portion 56 and the third joint portion 58 to be connected. ) Is not regulated, but is controlled so as to regulate the in-plane (in the XY plane) perpendicular to the direction. As a result, the third joint portion 58 moves (displaces) in the XY plane so as to follow the first joint portion 56.

なお、本実施の形態においては、接合部の形状を、上述したようなセンサ保持面12との接合面積が小さくなる形状とし、また、第1接合部56および第3接合部58と第2接合部57とを別体として形成することで、ダイアフラム10の変形への影響(変形の妨げとなること)を小さく抑えている。 In the present embodiment, the shape of the joint portion is such that the joint area with the sensor holding surface 12 as described above is small, and the first joint portion 56 and the third joint portion 58 are second-joined. By forming the portion 57 as a separate body, the influence on the deformation of the diaphragm 10 (which hinders the deformation) is suppressed to a small extent.

〔圧力センサ1Cの動作態様〕
つづいて、圧力センサ1Cの動作態様を、図13に基づいて説明する。この図13は、ダイアフラム10が変形したときの第1支持部材41、第2支持部材42、第3支持部材43および中間材50C(第1接合部56、第2接合部57、第3接合部58、連結部59)、ならびにセンサチップ20BのXZ断面における変位を模式的に示した図である。
[Operation mode of pressure sensor 1C]
Subsequently, the operation mode of the pressure sensor 1C will be described with reference to FIG. FIG. 13 shows the first support member 41, the second support member 42, the third support member 43, and the intermediate member 50C (first joint portion 56, second joint portion 57, third joint portion) when the diaphragm 10 is deformed. 58, the connecting portion 59), and the displacement of the sensor chip 20B in the XZ cross section are schematically shown.

センサ保持面12に加わる圧力(例えば大気圧)よりも大きな圧力Pを有する被測定流体Fが受圧面11に接すると、薄板部材からなるダイアフラム10は、中心点P10が上方(+Z方向)に突出した略円錐状に変形する。このとき、中心点P10の近傍部は曲率の大きな半球状の曲面として形成され、それよりも外側は円錐台面に近い曲面となる。このため、中心点P10の近傍部より外側の部分は、XZ断面において傾きが略等しい斜面として形成されることとなる。 When the fluid F to be measured, which has a pressure P larger than the pressure applied to the sensor holding surface 12 (for example, atmospheric pressure), comes into contact with the pressure receiving surface 11, the center point P10 of the diaphragm 10 made of a thin plate member projects upward (+ Z direction). It transforms into a substantially conical shape. At this time, the vicinity of the center point P10 is formed as a hemispherical curved surface having a large curvature, and the outer side thereof is a curved surface close to the conical base surface. Therefore, the portion outside the vicinity of the center point P10 is formed as a slope having substantially the same inclination in the XZ cross section.

上記変形を伴うダイアフラム10の表面(センサ保持面12)に配置された中間材50Cのうち、第1接合部56は、中心点P10(第1支持点P41C)に配置されているためZ軸に沿った方向(+Z方向)に移動(変位)する。
また、第2接合部57は、X軸上にあってダイアフラム10の中心点P0に対して+X側に位置する第2支持点P42C、すなわち、上記斜面上に位置する第2支持点P42Cに単独で配置されているため、上記斜面に対して垂直な方向、例えば、Z軸に対して角度αだけ傾いた軸Z´に沿った方向へ移動(変位)する。
これに対し、第3接合部58は、第2支持点P42Cと同じく上記斜面上に位置する第3支持点P43Cに配置されているものの、上記制御機能をもつ連結部59を介して+Z方向に変位する第1接合部56と接続しているため、XY平面内の移動(変位)が規制されることとなる。このため、第3接合部58は、上記斜面に対して垂直な方向(軸Z´)よりも第1接合部56側へ寄った方向、すなわち、Z軸に対して角度β(β<α)だけ傾いた軸Z´´に沿った方向へ移動(変位)することとなる。
Of the intermediate members 50C arranged on the surface (sensor holding surface 12) of the diaphragm 10 accompanied by the above deformation, the first joint portion 56 is arranged at the center point P10 (first support point P41C), so that it is located on the Z axis. It moves (displaces) in the along direction (+ Z direction).
Further, the second joint portion 57 is alone at the second support point P42C located on the X-axis and on the + X side of the center point P0 of the diaphragm 10, that is, the second support point P42C located on the slope. Because it is arranged in, it moves (displaces) in a direction perpendicular to the slope, for example, in a direction along an axis Z'inclined by an angle α with respect to the Z axis.
On the other hand, although the third joint portion 58 is arranged at the third support point P43C located on the slope like the second support point P42C, the third joint portion 58 is arranged in the + Z direction via the connecting portion 59 having the control function. Since it is connected to the first joint portion 56 that is displaced, the movement (displacement) in the XY plane is restricted. Therefore, the third joint 58 is closer to the first joint 56 side than the direction perpendicular to the slope (axis Z'), that is, the angle β (β <α) with respect to the Z axis. It will move (displace) in the direction along the axis Z ″ that is tilted only by.

このように、第1接合部56、第2接合部57および第3接合部58は、それぞれ異なる方向(軸Z、軸Z´、軸Z´´に沿った方向)へ移動(変位)することとなり、それぞれの接合部の上面と接合する第1支持部材41、第2支持部材42および第3支持部材43もそれぞれ異なる方向(軸Z、軸Z´、軸Z´´に沿った方向)へ移動(変位)することとなる。換言すれば、これら3つの支持部材の頂部間で、ダイアフラム10の変形の前後においてX方向とZ方向とで相対変位が生じる。当該2つの方向の相対変位は、センサチップ20に伝達される。ここで、X方向の相対変位は、上述したように、各支持部材の高さ(詳細には、センサ保持面12から各支持部材の頂部までの高さ)に比例して大きくなる。すなわち、ダイアフラム10の変位量は、第1支持部材41、第2支持部材42および第3支持部材43によって増幅される形でセンサチップ20に伝達される。 In this way, the first joint portion 56, the second joint portion 57, and the third joint portion 58 move (displace) in different directions (directions along the axis Z, the axis Z ′, and the axis Z ″). The first support member 41, the second support member 42, and the third support member 43 to be joined to the upper surface of each joint also have different directions (directions along the axis Z, the axis Z ′, and the axis Z ″). It will move (displace). In other words, relative displacement occurs in the X and Z directions before and after the deformation of the diaphragm 10 between the tops of these three support members. The relative displacements in the two directions are transmitted to the sensor chip 20. Here, as described above, the relative displacement in the X direction increases in proportion to the height of each support member (specifically, the height from the sensor holding surface 12 to the top of each support member). That is, the displacement amount of the diaphragm 10 is transmitted to the sensor chip 20 in a form amplified by the first support member 41, the second support member 42, and the third support member 43.

〔圧力センサ1Cの効果〕
中間材50Cが配設されていない場合、すなわち、支持部材40Bが、ダイアフラム10のセンサ保持面12に直接立設されている場合、支持部材40Bを構成する第1支持部材41、第2支持部材42および第3支持部材43は、センサ保持面12と垂直な方向へ変位することとなる。当該場合にあって中心点P10の近傍部より外側に位置する上記斜面に第2支持部材42および第3支持部材43が立設された形態においては、これら2つの支持部材は、ともに同一方向(Z´軸に沿った方向)へ変位することとなる。当該変位態様においては、第2支持部材42の頂部と第3支持部材43の頂部との間には、ダイアフラム10の変形前後で相対変位しないことになる。すなわち、上記形態においては、センサチップ20Bのうちのこれら2つの支持部材によって支持された領域が、ダイアフラム10の変形前後で変位(伸縮)しないこととなる。したがって、上記形態では、被測定流体の圧力を高精度に検知することができない。
[Effect of pressure sensor 1C]
When the intermediate member 50C is not arranged, that is, when the support member 40B is directly erected on the sensor holding surface 12 of the diaphragm 10, the first support member 41 and the second support member constituting the support member 40B are formed. The 42 and the third support member 43 are displaced in the direction perpendicular to the sensor holding surface 12. In this case, in the form in which the second support member 42 and the third support member 43 are erected on the slope located outside the vicinity of the center point P10, both of the two support members are in the same direction ( It will be displaced in the direction along the Z'axis). In this displacement mode, there is no relative displacement between the top of the second support member 42 and the top of the third support member 43 before and after the deformation of the diaphragm 10. That is, in the above embodiment, the region of the sensor chip 20B supported by these two support members does not displace (expand / contract) before and after the deformation of the diaphragm 10. Therefore, in the above embodiment, the pressure of the fluid to be measured cannot be detected with high accuracy.

これに対し、上記構成の圧力センサ1Cによれば、上述したように、中心点P10の近傍部より外側に位置する上記斜面に第2支持部材42および第3支持部材43が立設されていても、これら2つの支持部材の頂部の間で、Z方向の相対変位と各支持部材の高さ(詳細には、センサ保持面12から各支持部材の頂部までの高さ)に応じて増幅されたX方向の相対変位が生じ、これがセンサチップ20に伝達される。このため、上記構成の圧力センサ1Cによれば、ダイアフラム10を僅かに変位させる程度の小さな圧力変動に対しても、センサチップ20の全領域においてX方向およびZ方向に大きく引っ張られる。この結果、センサチップ20に設けられたひずみゲージ(ホイートストンブリッジ回路)を構成する抵抗素子は、出力変動を伴う程度に変位(伸縮)することとなり、被測定流体の圧力を高精度に検知することが可能になる。 On the other hand, according to the pressure sensor 1C having the above configuration, as described above, the second support member 42 and the third support member 43 are erected on the slope located outside the vicinity of the center point P10. Is also amplified between the tops of these two support members according to the relative displacement in the Z direction and the height of each support member (specifically, the height from the sensor holding surface 12 to the top of each support member). A relative displacement in the X direction occurs, which is transmitted to the sensor chip 20. Therefore, according to the pressure sensor 1C having the above configuration, even a small pressure fluctuation that slightly displaces the diaphragm 10 is greatly pulled in the X direction and the Z direction in the entire region of the sensor chip 20. As a result, the resistance element constituting the strain gauge (Wheatstone bridge circuit) provided on the sensor chip 20 is displaced (expanded / contracted) to the extent that the output fluctuates, and the pressure of the fluid to be measured can be detected with high accuracy. Becomes possible.

また、ダイアフラム10と支持部材40Bとの間に、線膨張率の値がダイアフラム10のそれよりも小さく支持部材40Bのそれよりも大きな中間材50Cを介在させたことで、両部材間の接合残留応力を低減させることができる。これにより、ダイアフラム10の耐圧性能の低下を抑えることができる。この効果は、ダイアフラム10よりも厚く形成された熱容量の大きい接合部、すなわち、ダイアフラム10と支持部材40Bとを熱的に隔絶する作用の大きい第1接合部56、第2接合部57および第3接合部58を設けたことでより顕著なものとなる。 Further, by interposing an intermediate member 50C having a linear expansion coefficient smaller than that of the diaphragm 10 and larger than that of the support member 40B between the diaphragm 10 and the support member 40B, the joint residue between the two members is interposed. The stress can be reduced. As a result, it is possible to suppress a decrease in the pressure resistance performance of the diaphragm 10. This effect is obtained by forming a joint portion having a larger heat capacity than the diaphragm 10, that is, a first joint portion 56, a second joint portion 57, and a third joint portion having a large effect of thermally separating the diaphragm 10 and the support member 40B. It becomes more remarkable by providing the joint portion 58.

また、各接合部の形状を、上述したように、センサ保持面12との接合面積が小さくなる形状とし、また、第1接合部56および第3接合部58と第2接合部57とを別体として形成したことで、中間材50Cを配設したことによるダイアフラム10の変形への影響(変形の妨げとなること)を可及的に抑制することができる。これにより、上記接合残留応力を低減させる効果と測定精度(感度)とを高い次元で両立させることができる。 Further, as described above, the shape of each joint portion is such that the joint area with the sensor holding surface 12 is small, and the first joint portion 56, the third joint portion 58, and the second joint portion 57 are separated. By forming it as a body, the influence of the arrangement of the intermediate member 50C on the deformation of the diaphragm 10 (which hinders the deformation) can be suppressed as much as possible. As a result, the effect of reducing the joint residual stress and the measurement accuracy (sensitivity) can be compatible at a high level.

≪変形例≫
上記実施の形態の一部を変形した事例として、例えば、図14で示される中間材50B´がある。この中間材50B´は、上記第2の実施の形態における中間材50Bから第1連結部54および第2連結部55を取り除いたものに相当し、第1接合部51´、第2接合部52´および第3接合部53´から構成されている。なお、その他の構成は、中間材50Bと同一である。
≪Modification example≫
As an example in which a part of the above embodiment is modified, for example, there is an intermediate material 50B'shown in FIG. The intermediate member 50B'corresponds to the intermediate member 50B in the second embodiment in which the first connecting portion 54 and the second connecting portion 55 are removed, and the first joint portion 51'and the second joint portion 52'. It is composed of ′ and a third joint portion 53 ′. The other configurations are the same as those of the intermediate material 50B.

上記構成の中間材50B´を備える圧力センサによれば、中間材50Bを備えた圧力センサ1Bと比較して、中間材を配設したことによるダイアフラム10の変形への影響(変形の妨げとなること)をより小さくすることができる。 According to the pressure sensor provided with the intermediate material 50B'in the above configuration, as compared with the pressure sensor 1B provided with the intermediate material 50B, the influence on the deformation of the diaphragm 10 due to the arrangement of the intermediate material (which hinders the deformation). That) can be made smaller.

また、上記実施の形態の一部を変形した事例として、例えば、図15で示される中間材50C´がある。この中間材50C´は、上記第3の実施の形態における中間材50Cを2層構造にしたものである。具体的には、中間材50Cを構成する第1接合部56、第2接合部57および第3接合部58の全高を低くした第1接合部56´、第2接合部57´および第3接合部58´の上面(支持部材40Bと接合する面)に、当該上面と相補的な形状の下面をもつ略直方体の第4接合部56´´、第5接合部57´´および第6接合部58´´を載置し、さらに第4接合部56´´と第6接合部58´´の上端部を一体的に接続する第2連結部59´´を設けたものである。 Further, as an example in which a part of the above embodiment is modified, for example, there is an intermediate material 50C'shown in FIG. The intermediate material 50C'is a two-layer structure of the intermediate material 50C in the third embodiment. Specifically, the first joint portion 56', the second joint portion 57', and the third joint portion in which the total heights of the first joint portion 56, the second joint portion 57, and the third joint portion 58 constituting the intermediate member 50C are lowered are lowered. The fourth joint portion 56 ″, the fifth joint portion 57 ″, and the sixth joint portion of a substantially rectangular body having a lower surface having a shape complementary to the upper surface on the upper surface (the surface to be joined to the support member 40B) of the portion 58 ″. 58 ″ is placed, and a second connecting portion 59 ″ is provided to integrally connect the upper end portions of the fourth joint portion 56 ″ and the sixth joint portion 58 ″.

第4接合部56´´、第5接合部57´´および第6接合部58´´ならびに第2連結部59´´を形成する材料の線膨張率は、第1接合部56´、第2接合部57´および第3接合部58´ならびに第1連結部59´を形成する材料のそれよりも小さく、支持部材40Bを形成する材料のそれよりも大きい。これにより、ダイアフラム10の表面(センサ保持面12)に支持部材40Bを固定する際に生じる接合残留応力をより低減させることができる。 The linear expansion coefficient of the material forming the fourth joint 56 ″, the fifth joint 57 ″, the sixth joint 58 ″, and the second joint 59 ″ is the first joint 56 ″, the second joint. It is smaller than that of the material forming the joint portion 57'and the third joint portion 58'and the first connecting portion 59', and larger than that of the material forming the support member 40B. As a result, the joint residual stress generated when the support member 40B is fixed to the surface of the diaphragm 10 (sensor holding surface 12) can be further reduced.

また、第1連結部59´および第2連結部59´´からなる多重化された連結部を備えることで結合強度と結合剛性が増大することとなる。この結果、接続された2つの接合部の間の相対移動(相対変位)、例えば、被測定流体Fの圧力Pが印加される方向(Z軸に沿った方向)と垂直な面内(XY平面内)の相対移動(相対変位)をより確実に規制することができる。 Further, by providing the multiplexed connecting portion including the first connecting portion 59 ′ and the second connecting portion 59 ″, the bonding strength and the bonding rigidity are increased. As a result, the relative movement (relative displacement) between the two connected joints, for example, in-plane (XY plane) perpendicular to the direction in which the pressure P of the fluid F to be measured is applied (direction along the Z axis). The relative movement (relative displacement) of (inside) can be regulated more reliably.

以上、本発明に係る実施の形態を説明したが、本発明はこの実施の形態に限定されるものではなく、その要旨を逸脱しない範囲において種々の変更が可能である。また、明細書および図面に直接記載のない構成であっても、本発明の作用・効果を奏する以上、本発明の技術的思想の範囲内である。さらに、上記記載および各図で示した実施の形態は、その目的および構成等に矛盾がない限り、互いの記載内容を組み合わせることも可能である。 Although the embodiments according to the present invention have been described above, the present invention is not limited to the embodiments, and various modifications can be made without departing from the gist thereof. Further, even if the configuration is not directly described in the specification and the drawings, it is within the scope of the technical idea of the present invention as long as the action and effect of the present invention are exhibited. Further, the above description and the embodiments shown in each figure can be combined with each other as long as there is no contradiction in the purpose, configuration, and the like.

例えば、上記実施の形態においては、ダイアフラム変形による圧力検出手法(センシング原理)として、ひずみゲージを含む半導体チップを用いているが、これに限定されるわけではなく、例えば、静電容量式センサ、金属歪みゲージ、抵抗ゲージをスパッタ等により成膜したものを用いた圧力検出手法(センシング原理)であってもよい。 For example, in the above embodiment, a semiconductor chip including a strain gauge is used as a pressure detection method (sensing principle) by deforming the diaphragm, but the present invention is not limited to this, and for example, a capacitance type sensor. A pressure detection method (sensing principle) using a metal strain gauge or a resistance gauge formed by deposition or the like may be used.

1A、1B、1C…圧力センサ、10…ダイアフラム、11…受圧面、12…センサ保持面、20A、20B…センサチップ、30…ハウジング、40A、40B…支持部材、41…第1支持部材、42…第2支持部材、43…第3支持部材、50A、50B、50C…中間材、51、56…第1接合部、52、57…第2接合部、53、58…第3接合部、54…第1連結部、55…第2連結部、59…連結部。 1A, 1B, 1C ... Pressure sensor, 10 ... Diaphragm, 11 ... Pressure receiving surface, 12 ... Sensor holding surface, 20A, 20B ... Sensor chip, 30 ... Housing, 40A, 40B ... Support member, 41 ... First support member, 42 ... 2nd support member, 43 ... 3rd support member, 50A, 50B, 50C ... Intermediate material, 51, 56 ... 1st joint, 52, 57 ... 2nd joint, 53, 58 ... 3rd joint, 54 ... 1st connecting portion, 55 ... 2nd connecting portion, 59 ... connecting portion.

Claims (8)

測定対象の流体の圧力を受ける第1主面とこの第1主面の反対側に位置する第2主面とを有するダイアフラムと、
ひずみゲージを構成する複数の抵抗が設けられたセンサチップと、
前記第2主面の法線に沿って延設されかつ一端が前記センサチップに接合する電気的絶縁性の複数の支持部材と、
を備え、
前記複数の支持部材は、前記ダイアフラムよりも線膨張率が小さい中間材と接合しこの中間材を介して前記第2主面に固定されている圧力センサ。
A diaphragm having a first main surface that receives the pressure of the fluid to be measured and a second main surface located on the opposite side of the first main surface,
A sensor chip with multiple resistors that make up a strain gauge,
A plurality of electrically insulating support members extending along the normal of the second main surface and having one end joined to the sensor chip.
With
A pressure sensor in which the plurality of support members are joined to an intermediate material having a linear expansion coefficient smaller than that of the diaphragm and fixed to the second main surface via the intermediate material.
請求項1に記載の圧力センサにおいて、
前記中間材は、前記支持部材より線膨張率が大きい材料から成る圧力センサ。
In the pressure sensor according to claim 1,
The intermediate material is a pressure sensor made of a material having a coefficient of linear expansion larger than that of the support member.
請求項1または2に記載の圧力センサにおいて、
前記中間材は、前記複数の支持部材に接合する複数の接合部とこれら複数の接合部の少なくとも2つをつなぐ連結部とから構成され、前記連結部の前記法線に沿った厚みは、前記複数の接合部の前記厚みよりも小さくなるように形成されている圧力センサ。
In the pressure sensor according to claim 1 or 2.
The intermediate material is composed of a plurality of joints to be joined to the plurality of support members and a connecting portion connecting at least two of the plurality of joints, and the thickness of the connecting portion along the normal is the said. A pressure sensor formed so as to be smaller than the thickness of a plurality of joints.
請求項3に記載の圧力センサにおいて、
前記連結部は、前記ダイアフラムの板厚よりも薄い薄膜として形成されている圧力センサ。
In the pressure sensor according to claim 3,
The connecting portion is a pressure sensor formed as a thin film thinner than the plate thickness of the diaphragm.
請求項1ないし4のいずれか1つに記載の圧力センサにおいて、
前記複数の支持部材は、互いに離間する少なくとも2つの前記中間材を介して前記第2主面に固定されている圧力センサ。
In the pressure sensor according to any one of claims 1 to 4.
A pressure sensor in which the plurality of support members are fixed to the second main surface via at least two intermediate members that are separated from each other.
請求項5に記載の圧力センサにおいて、
前記中間材は、前記支持部材と対をなすように設けられている圧力センサ。
In the pressure sensor according to claim 5,
The intermediate material is a pressure sensor provided so as to form a pair with the support member.
請求項1ないし6のいずれか1つに記載の圧力センサにおいて、
前記中間材と前記第2主面との接合面積は、前記中間材と前記支持部材との接合面積よりも小さい圧力センサ。
In the pressure sensor according to any one of claims 1 to 6.
A pressure sensor in which the joint area between the intermediate material and the second main surface is smaller than the joint area between the intermediate material and the support member.
請求項1ないし7のいずれか1つに記載の圧力センサにおいて、
前記中間材は、異なる線膨張率をもつ複数の材料から成り、前記材料は、前記第2主面と接合する側から前記センサチップと接合する側に向かうにつれて線膨張率が小さなくなるよう前記法線に沿って積層されている圧力センサ。
In the pressure sensor according to any one of claims 1 to 7.
The intermediate material is composed of a plurality of materials having different linear expansion coefficients, and the material is said to have a smaller linear expansion coefficient from the side joined to the second main surface toward the side joined to the sensor chip. Pressure sensors stacked along the line.
JP2020026180A 2020-02-19 2020-02-19 pressure sensor Active JP7436235B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020026180A JP7436235B2 (en) 2020-02-19 2020-02-19 pressure sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020026180A JP7436235B2 (en) 2020-02-19 2020-02-19 pressure sensor

Publications (2)

Publication Number Publication Date
JP2021131297A true JP2021131297A (en) 2021-09-09
JP7436235B2 JP7436235B2 (en) 2024-02-21

Family

ID=77550870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020026180A Active JP7436235B2 (en) 2020-02-19 2020-02-19 pressure sensor

Country Status (1)

Country Link
JP (1) JP7436235B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114199433A (en) * 2021-11-19 2022-03-18 张誉元 Wall surface residual stress test fixture and operation method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6062088A (en) 1996-04-13 2000-05-16 Robert Bosch Gmbh Pressure sensor
JP2004045140A (en) 2002-07-10 2004-02-12 Tem-Tech Kenkyusho:Kk Load converting metal diaphragm pressure sensor
EP1692457A4 (en) 2003-12-11 2007-09-26 Proteus Biomedical Inc Implantable pressure sensors
DE102005001298A1 (en) 2005-01-03 2006-07-13 Hydac Electronic Gmbh Device for measuring forces, in particular pressure sensor, and associated manufacturing method
JP6024481B2 (en) 2013-01-28 2016-11-16 オムロン株式会社 Semiconductor pressure sensor
US9824924B2 (en) 2013-03-29 2017-11-21 Stmicroelectronics Pte Ltd. Semiconductor packages having an electric device with a recess
JP2017120212A (en) 2015-12-28 2017-07-06 アズビル株式会社 Pressure sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114199433A (en) * 2021-11-19 2022-03-18 张誉元 Wall surface residual stress test fixture and operation method thereof
CN114199433B (en) * 2021-11-19 2024-04-23 张誉元 Wall residual stress test fixture and operation method thereof

Also Published As

Publication number Publication date
JP7436235B2 (en) 2024-02-21

Similar Documents

Publication Publication Date Title
JP2925319B2 (en) Pressure transducer with flow-through measurement capability
US6877380B2 (en) Diaphragm for bonded element sensor
EP3764072B1 (en) Compact or miniature high temperature differential pressure sensor capsule
US9891124B2 (en) Pressure sensor, and mass flow meter, and mass flow controller using same
JP3821852B2 (en) Pressure sensor
JP6663315B2 (en) Pressure sensor
US10101232B2 (en) Pressure difference sensor with protection against static overloads
JP7436235B2 (en) pressure sensor
US10704976B2 (en) Pressure sensor
JP6663314B2 (en) Pressure sensor
JP6521876B2 (en) Pressure sensor
JP7184608B2 (en) Pressure sensor element and pressure sensor
JPS6188120A (en) Pressure transducer
JP7460388B2 (en) Pressure Sensors
JP2017120211A (en) Pressure sensor
JP6579965B2 (en) Pressure sensor
CN113280970B (en) Pressure sensor
JP2017120212A (en) Pressure sensor
JP7184609B2 (en) Pressure sensor element and pressure sensor
JP2021110687A (en) Pressure sensor and pressure gauge
JP2023055534A (en) Pressure sensor element and pressure sensor
JP2020035973A (en) Piezoelectric actuator
JP2020035972A (en) Piezoelectric actuator
JP2017120213A (en) Pressure sensor
WO2005040748A1 (en) Diaphragm for bonded element sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240208

R150 Certificate of patent or registration of utility model

Ref document number: 7436235

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150