JP7436182B2 - Underground structure design method, underground structure construction method, and underground structure - Google Patents

Underground structure design method, underground structure construction method, and underground structure Download PDF

Info

Publication number
JP7436182B2
JP7436182B2 JP2019205917A JP2019205917A JP7436182B2 JP 7436182 B2 JP7436182 B2 JP 7436182B2 JP 2019205917 A JP2019205917 A JP 2019205917A JP 2019205917 A JP2019205917 A JP 2019205917A JP 7436182 B2 JP7436182 B2 JP 7436182B2
Authority
JP
Japan
Prior art keywords
earth retaining
retaining member
solidified material
underground structure
body surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019205917A
Other languages
Japanese (ja)
Other versions
JP2021080628A (en
Inventor
幸夫 阿部
範寛 大高
剛男 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Metal Products Co Ltd
Original Assignee
Nippon Steel Metal Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Metal Products Co Ltd filed Critical Nippon Steel Metal Products Co Ltd
Priority to JP2019205917A priority Critical patent/JP7436182B2/en
Publication of JP2021080628A publication Critical patent/JP2021080628A/en
Priority to JP2024017865A priority patent/JP2024042107A/en
Application granted granted Critical
Publication of JP7436182B2 publication Critical patent/JP7436182B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Description

本発明は、地中構造物の設計方法、地中構造物の施工方法および地中構造物に関する。 The present invention relates to a method for designing an underground structure, a method for constructing an underground structure, and an underground structure.

深礎基礎は、一般に、地盤を掘削しながらライナープレートの左右ならびに上下の縁端を順次接続する手順を所定深度まで繰り返すことで、立坑の内側に土留壁を構築し、土留壁の内側に鉄筋を建て込み、さらにコンクリートを打設することによって施工される。このような深礎基礎に関する従来技術の例が、特許文献1に記載されている。 Generally speaking, deep foundations are constructed by repeating the procedure of sequentially connecting the left and right and top and bottom edges of liner plates while excavating the ground until a specified depth is reached, constructing an earth retaining wall inside the shaft, and installing reinforcing bars inside the earth retaining wall. It is constructed by erecting the concrete and pouring concrete. An example of a prior art related to such a deep foundation is described in Patent Document 1.

特許文献1に記載された技術では、スペースホルダーをライナープレートに固定し、スペースホルダーにガイドバーを介して取り付けられるブラケットにフープ筋を載置し、ブラケットとフープ筋との交点を針金で緊縛し、さらにフープ筋の内側に主鉄筋を建て込み、主鉄筋とフープ筋との交点を針金で緊縛することによって、深礎基礎におけるコンクリート打設前の鉄筋の建て込み工程が完了する。 In the technique described in Patent Document 1, a space holder is fixed to a liner plate, a hoop muscle is placed on a bracket that is attached to the space holder via a guide bar, and the intersection of the bracket and the hoop muscle is tied with a wire. Furthermore, by erecting the main reinforcing bars inside the hoop reinforcements and binding the intersections between the main reinforcing bars and the hoop reinforcements with wire, the process of erecting the reinforcing bars before placing concrete in the deep foundation is completed.

実用新案登録第3158383号Utility model registration No. 3158383

しかしながら、特許文献1に記載された技術では、鉄筋を建て込むためにスペースホルダー、ガイドバー、およびブラケットなどの部材が必要であり、部材のコストが上昇するのに加えて、鉄筋の建て込み前に上記の部材を配置する工程によって工期が長くなってしまうという問題があった。 However, the technology described in Patent Document 1 requires members such as space holders, guide bars, and brackets to erect reinforcing bars, which increases the cost of the members and also There was a problem in that the process of arranging the above-mentioned members would lengthen the construction period.

そこで、本発明は、土留部材を有する地中構造物において、鉄筋の配筋量を減らす、または鉄筋を省略することによって、配筋工程にかかるコストの節減および工期の短縮を可能にする地中構造物の設計方法、地中構造物の施工方法および地中構造物を提供することを目的とする。 Therefore, the present invention provides an underground structure that reduces the amount of reinforcing bars or eliminates reinforcing bars in underground structures having earth retaining members, thereby reducing costs and shortening the construction period for the reinforcing process. The purpose of this invention is to provide a method for designing a structure, a method for constructing an underground structure, and an underground structure.

[1]地盤を掘削して形成された立坑の壁面に沿って設置される土留部材と、土留部材の内側に充填される内側固化材料と、土留部材と立坑の壁面との間に充填される外側固化材料とを含む地中構造物の設計方法において、内側固化材料および外側固化材料によって形成される構造体の補強部材として土留部材を考慮する、地中構造物の設計方法。
[2]補強部材として、土留部材と、内側固化材料に埋設される鉄筋とを考慮し、補強部材として土留部材を考慮することによって鉄筋の配筋量を減らすか、または前記鉄筋を省略する、[1]に記載の地中構造物の設計方法。
[3]鉄筋は、立坑の深さ方向に延びる主筋と、立坑の周方向に延びるフープ筋からなり、補強部材として土留部材を考慮することによってフープ筋の配筋量を減らすか、または前記フープ筋を省略する、[2]に記載の地中構造物の設計方法。
[4]土留部材の本体面は、波形断面を有する、[1]から[3]のいずれか1項に記載の地中構造物の設計方法。
[5]複数の土留部材が立坑の深さ方向および周方向に配列されて互いに連結されることによって筒状の土留壁が構成され、複数の土留部材は、深さ方向または周方向のいずれかで千鳥配置される、[1]から[4]のいずれか1項に記載の地中構造物の設計方法。
[6]地盤を掘削して立坑を形成する掘削工程と、立坑の壁面に沿って土留部材を設置する土留部材設置工程と、土留部材と立坑の壁面との間に外側固化材料を充填する外側充填工程と、土留部材の内側に内側固化材料を充填する内側充填工程とを含み、土留部材の内側に、内側固化材料に埋設される鉄筋を配置する配筋工程を含まない、地中構造物の施工方法。
[7]地盤を掘削して立坑を形成する掘削工程と、立坑の壁面に沿って土留部材を設置する土留部材設置工程と、土留部材と立坑の壁面との間に外側固化材料を充填する外側充填工程と、土留部材の内側に内側固化材料を充填する内側充填工程とを含み、複数の土留部材が立坑の深さ方向および周方向に配列されて互いに連結されることによって筒状の土留壁が構成され、土留部材設置工程は、複数の土留部材を深さ方向または周方向のいずれかで千鳥配置する工程を含む、地中構造物の施工方法。
[8]土留部材の内側に、内側固化材料に埋設される鉄筋を配置する配筋工程をさらに含み、配筋工程は、深さ方向に延びる主筋を配置する工程含み、周方向に延びるフープ筋を配置する工程を含まない、[7]に記載の地中構造物の施工方法。
[9]外側充填工程は、立坑の壁面に第1の固化材料を吹き付ける吹付工程と、土留部材と第1の固化材料との間に第2の固化材料を流し込む流し込み工程とを含む、[6]から[8]のいずれか1項に記載の地中構造物の施工方法。
[10]地盤を掘削して形成された立坑の内部に設置された土留部材と、土留部材と立坑の壁面との間に充填される外側固化材料と、土留部材の内側に充填される内側固化材料とを含み、内側固化材料に埋設される鉄筋を含まない、地中構造物。
[11]地盤を掘削して形成された立坑の内部に設置された土留部材と、土留部材と立坑の壁面との間に充填される外側固化材料と、土留部材の内側に充填される内側固化材料と、を含み、複数の土留部材が立坑の深さ方向および周方向に配列されて互いに連結されることによって筒状の土留壁が構成され、複数の土留部材は、深さ方向または周方向のいずれかで千鳥配置される、地中構造物。
[12]内側固化材料に埋設される鉄筋をさらに含み、鉄筋は、深さ方向に延びる主筋を含み、周方向に延びるフープ筋を含まない、[11]に記載の地中構造物。
[13]土留部材は、波形断面を有する本体面と、本体面の端部に形成されるフランジとを有する、[10]から[12]のいずれか1項に記載の地中構造物。
[14]土留部材は、本体面とフランジとの間に形成される溶接部またはリブをさらに含む、[13]に記載の地中構造物。
[15]内側固化材料は、中心に形成される内部空間と土留部材との間に充填される、[10]から[14]のいずれか1項に記載の地中構造物。
[16]外側固化材料は、立坑の壁面に吹き付けられた第1の固化材料と、第1の固化材料と土留部材との間に流し込まれた第2の固化材料とを含む、[10]から[15]のいずれか1項に記載の地中構造物。
[17]土留部材は、降伏点が205N/mmを超える鋼材で形成される、[10]から[16]のいずれか1項に記載の地中構造物。
[1] An earth retaining member installed along the wall of a shaft formed by excavating the ground, an inner solidified material filled inside the earth retaining member, and a material filled between the earth retaining member and the wall of the shaft. A method for designing an underground structure including an outer solidified material, in which an earth retaining member is considered as a reinforcing member of a structure formed by the inner solidified material and the outer solidified material.
[2] Considering the earth retaining member and the reinforcing bars buried in the inner solidified material as reinforcing members, and reducing the amount of reinforcing bars by considering the earth retaining member as the reinforcing member, or omitting the reinforcing bars, The method for designing an underground structure according to [1].
[3] The reinforcing bars consist of main bars that extend in the depth direction of the shaft and hoop bars that extend in the circumferential direction of the shaft, and the amount of hoop bars can be reduced by considering earth retaining members as reinforcing members, or The method for designing an underground structure according to [2], in which the striations are omitted.
[4] The method for designing an underground structure according to any one of [1] to [3], wherein the main body surface of the earth retaining member has a corrugated cross section.
[5] A cylindrical earth retaining wall is constructed by arranging a plurality of earth retaining members in the depth direction and circumferential direction of the shaft and connecting them to each other, and the plurality of earth retaining members are arranged in either the depth direction or the circumferential direction. The method for designing an underground structure according to any one of [1] to [4], which is arranged in a staggered manner.
[6] An excavation process in which a shaft is formed by excavating the ground, an earth retention member installation process in which an earth retaining member is installed along the wall of the shaft, and an outer solidifying material is filled between the earth retaining member and the wall of the shaft. An underground structure that includes a filling process and an inner filling process of filling the inside of the earth retaining member with an inner solidified material, but does not include a reinforcement process of arranging reinforcing bars to be buried in the inner solidified material inside the earth retaining member. construction method.
[7] An excavation process in which a shaft is formed by excavating the ground, an earth retention member installation process in which an earth retaining member is installed along the wall of the shaft, and an outer solidifying material is filled between the earth retaining member and the wall of the shaft. A cylindrical earth retaining wall is formed by arranging a plurality of earth retaining members in the depth direction and circumferential direction of the shaft and connecting them to each other, including a filling step and an inner filling step of filling the inside of the earth retaining member with an inner solidified material. A construction method for an underground structure, wherein the earth retaining member installation step includes a step of arranging a plurality of earth retaining members in a staggered manner either in the depth direction or in the circumferential direction.
[8] It further includes a reinforcing step of arranging reinforcing bars to be buried in the inner solidified material inside the earth retaining member, and the reinforcing step includes a step of arranging main reinforcing bars extending in the depth direction, and hoop reinforcing bars extending in the circumferential direction. The method for constructing an underground structure according to [7], which does not include the step of arranging.
[9] The outer filling step includes a spraying step of spraying the first solidified material onto the wall surface of the shaft, and a pouring step of pouring the second solidified material between the earth retaining member and the first solidified material, [6 ] to [8]. The construction method for an underground structure according to any one of [8].
[10] An earth retaining member installed inside a shaft formed by excavating the ground, an outer solidified material filled between the earth retaining member and the wall of the shaft, and an inner solidified material filled inside the earth retaining member. An underground structure that includes steel but does not contain reinforcing steel embedded in the inner solidified material.
[11] An earth retaining member installed inside a shaft formed by excavating the ground, an outer solidified material filled between the earth retaining member and the wall of the shaft, and an inner solidified material filled inside the earth retaining member. A cylindrical earth retaining wall is constituted by a plurality of earth retaining members arranged in the depth direction and circumferential direction of the shaft and connected to each other, and the plurality of earth retaining members are arranged in the depth direction and circumferential direction of the shaft and are connected to each other. Underground structures arranged in a staggered manner.
[12] The underground structure according to [11], further including reinforcing bars embedded in the inner solidified material, the reinforcing bars including main bars extending in the depth direction and not including hoop bars extending in the circumferential direction.
[13] The underground structure according to any one of [10] to [12], wherein the earth retaining member has a main body surface having a corrugated cross section and a flange formed at an end of the main body surface.
[14] The underground structure according to [13], wherein the earth retaining member further includes a welded portion or a rib formed between the main body surface and the flange.
[15] The underground structure according to any one of [10] to [14], wherein the inner solidified material is filled between the internal space formed at the center and the earth retaining member.
[16] From [10], the outer solidified material includes a first solidified material sprayed onto the wall surface of the shaft, and a second solidified material poured between the first solidified material and the earth retention member. The underground structure according to any one of [15].
[17] The underground structure according to any one of [10] to [16], wherein the earth retaining member is formed of a steel material having a yield point exceeding 205 N/mm 2 .

上記の構成によれば、土留部材を有する地中構造物において、鉄筋の配筋量を減らす、または鉄筋を省略することによって、配筋工程にかかるコストの節減および工期の短縮が可能になる。 According to the above configuration, in an underground structure having earth retaining members, by reducing the amount of reinforcing bars or omitting reinforcing bars, it is possible to reduce the cost and shorten the construction period for the reinforcing process.

本発明の第1の実施形態に係る深礎基礎の断面図であるIt is a sectional view of the deep foundation according to the first embodiment of the present invention. 本発明の第2の実施形態に係る深礎基礎の断面図である。FIG. 3 is a sectional view of a deep foundation according to a second embodiment of the present invention. 本発明の第3の実施形態に係る深礎基礎の断面図である。FIG. 3 is a sectional view of a deep foundation according to a third embodiment of the present invention. 土留部材の周方向の千鳥配置の例を示す図である。It is a figure which shows the example of the staggered arrangement|positioning of the earth retention member in the circumferential direction. 土留部材の深さ方向の千鳥配置の例を示す図である。It is a figure which shows the example of the staggered arrangement|positioning of the earth retention member in the depth direction. 土留部材に隅肉溶接を追加する例を示す図である。It is a figure which shows the example which adds a fillet weld to an earth retaining member. 図6のVII-VII線断面図である。7 is a sectional view taken along the line VII-VII in FIG. 6. FIG. 土留部材にリブを追加する例を示す図である。It is a figure which shows the example of adding a rib to a retaining member. 図8のIX-IX線断面図である。9 is a sectional view taken along the line IX-IX in FIG. 8. FIG.

以下に添付図面を参照しながら、本発明の好適な実施形態について詳細に説明する。なお、本明細書および図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。 DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described in detail below with reference to the accompanying drawings. Note that, in this specification and the drawings, components having substantially the same functional configurations are designated by the same reference numerals and redundant explanation will be omitted.

図1は、本発明の第1の実施形態に係る深礎基礎の断面図である。図示されているように、地中構造物1は、地盤2を掘削して形成された立坑3の壁面3Wに沿って設置される土留部材4と、土留部材4の内側に充填される内側固化材料5と、土留部材4と立坑3の壁面3Wとの間に充填される外側固化材料6と、内側固化材料5に埋設される鉄筋7とを含む。図示された例において、外側固化材料6は、立坑3の壁面3Wへの吹き付けによって施工される第1の固化材料6Aと、第1の固化材料6Aと土留部材4との間への流し込みによって施工される第2の固化材料6Bとを含む。内側固化材料5および外側固化材料6は、例えばコンクリートまたはモルタルである。鉄筋7は、立坑3の深さ方向に延びる主筋7Aと、立坑3の周方向に延びるフープ筋7Bとを含む。地中構造物1は、後述するような第2の固化材料6Bの流し込みの際に使用される型枠部材8をさらに含んでもよい。 FIG. 1 is a sectional view of a deep foundation according to a first embodiment of the present invention. As illustrated, the underground structure 1 includes an earth retaining member 4 installed along a wall surface 3W of a shaft 3 formed by excavating the ground 2, and an inner solidification member filled inside the earth retaining member 4. It includes a material 5, an outer solidified material 6 filled between the earth retaining member 4 and the wall surface 3W of the shaft 3, and reinforcing bars 7 buried in the inner solidified material 5. In the illustrated example, the outer solidified material 6 is applied by spraying the first solidified material 6A onto the wall surface 3W of the shaft 3, and by pouring it between the first solidified material 6A and the earth retaining member 4. and a second solidified material 6B. The inner solidified material 5 and the outer solidified material 6 are, for example, concrete or mortar. The reinforcing bars 7 include main bars 7A extending in the depth direction of the shaft 3 and hoop bars 7B extending in the circumferential direction of the shaft 3. The underground structure 1 may further include a formwork member 8 used when pouring the second solidified material 6B as described below.

土留部材4は、本体面41と、本体面41の端部に形成されるフランジ42とを有する。複数の土留部材4が立坑3の深さ方向および立坑3の周方向に配列され、フランジ42でボルトなどを用いて互いに連結されることによって筒状の土留壁が構成される。図示された例では、深さ方向に4段の土留部材4が連結されている。土留部材4によって構成される土留壁の横断面形状は、例えば円形、長円形、矩形、馬蹄形などがありうる。土留部材4として、例えば本体面41が波型断面を有するライナープレートを用いることができるが、ライナープレートと呼ばれるものの他にも、同様の機能を有する各種の部材を土留部材4として使用することができる。 The earth retaining member 4 has a main body surface 41 and a flange 42 formed at an end of the main body surface 41. A plurality of earth retaining members 4 are arranged in the depth direction of the shaft 3 and in the circumferential direction of the shaft 3, and are connected to each other at flanges 42 using bolts or the like, thereby forming a cylindrical earth retaining wall. In the illustrated example, four stages of retaining members 4 are connected in the depth direction. The cross-sectional shape of the earth retaining wall constituted by the earth retaining member 4 may be, for example, circular, oval, rectangular, or horseshoe-shaped. As the earth retaining member 4, for example, a liner plate whose main body surface 41 has a corrugated cross section can be used, but in addition to what is called a liner plate, various members having similar functions can also be used as the earth retaining member 4. can.

本実施形態では、土留部材4の内側に充填される内側固化材料5が、土留部材4の本体面41の波形断面、および土留部材4の内側に突出するように配置されるフランジ42に定着する。土留部材4の外側に充填される外側固化材料6も、土留部材4の本体面41の波型断面に定着する。さらに、上記のように土留部材4は立坑3の深さ方向および周方向に互いに連結されることによって一体的な土留壁を構成する。従って、本実施形態では、深さ方向および周方向のそれぞれについて、土留部材4が内側固化材料5および外側固化材料6によって形成される構造体の補強部材として機能する。 In this embodiment, the inner solidified material 5 filled inside the earth retaining member 4 is fixed on the corrugated cross section of the main body surface 41 of the earth retaining member 4 and on the flange 42 arranged so as to protrude inside the earth retaining member 4. . The outer solidified material 6 filled on the outside of the earth retaining member 4 is also fixed to the corrugated cross section of the main body surface 41 of the earth retaining member 4. Furthermore, as described above, the earth retaining members 4 constitute an integral earth retaining wall by being connected to each other in the depth direction and the circumferential direction of the shaft 3. Therefore, in this embodiment, the earth retaining member 4 functions as a reinforcing member of the structure formed by the inner solidified material 5 and the outer solidified material 6 in both the depth direction and the circumferential direction.

従って、本実施形態では、地中構造物1の設計にあたり、補強部材として土留部材4および鉄筋7の両方を考慮することによって鉄筋7の配筋量を減らすことができる。具体的には、土留部材4を主な補強部材として考慮し、鋼材量の不足分を鉄筋7で補う設計が考えられる。従って、鉄筋7に含まれる主筋7Aおよびフープ筋7Bのそれぞれの総断面積(配置数×断面積)は、土留部材4が補強部材として考慮されない場合に比べて小さくなる。この結果、フープ筋7Bがすべて省略されて主筋7Aだけが配置されてもよい。鉄筋7の配筋量が減ることによって、配筋工程にかかっていたコストの節減および工期の短縮が可能になる。 Therefore, in this embodiment, when designing the underground structure 1, the amount of reinforcing bars 7 can be reduced by considering both the earth retaining members 4 and the reinforcing bars 7 as reinforcing members. Specifically, a design may be considered in which the earth retaining member 4 is considered as the main reinforcing member and the shortfall in the amount of steel material is compensated for with reinforcing bars 7. Therefore, the total cross-sectional area (number of arrangements x cross-sectional area) of each of the main reinforcing bars 7A and the hoop reinforcing bars 7B included in the reinforcing bars 7 is smaller than when the retaining member 4 is not considered as a reinforcing member. As a result, all the hoop reinforcements 7B may be omitted and only the main reinforcements 7A may be arranged. By reducing the amount of reinforcing bars 7, it is possible to reduce costs associated with the reinforcement process and shorten the construction period.

土留部材4を上記のような補強部材として効果的に機能させるために、土留部材4を降伏点が205N/mmを超える鋼材、具体的には例えばSS400材(降伏点245N/mm)やSM490材(降伏点325N/mm)で形成してもよい。 In order to make the earth retaining member 4 effectively function as a reinforcing member as described above, the earth retaining member 4 is made of a steel material with a yield point exceeding 205 N/mm 2 , specifically, for example, SS400 material (yield point 245 N/mm 2 ) or It may be formed from SM490 material (yield point: 325 N/mm 2 ).

一方、上述のように、外側固化材料6は、吹き付けによって施工される第1の固化材料6Aと、流し込みによって施工される第2の固化材料6Bとを含む。第1の固化材料6Aは、吹き付け施工に適した速硬化性のコンクリートまたはモルタルであり、例えば急結剤を固化材料1mあたり30kg~60kg程度混入したコンクリートまたはモルタルである。一方、第2の固化材料6Bは、流し込み施工に適した高流動性のコンクリートまたはモルタルである。第2の固化材料6Bは土留部材4の裏側の狭い空間に流し込まれるため、バイブレータによる加振が困難な状況でも十分な充填性を発揮できる程度の流動性を有することが好ましい。例えば、第2の固化材料6Bは、スランプフロー値が30cm以上であり、高性能AE減水剤を固化材料1mあたり3kg以上混入したコンクリートまたはモルタルであってもよい。第1の固化材、第2の固化材ともに、硬化後は土留部材4の内側に打設される内側固化材料5と同等以上の強度、具体的には例えば材齢28日圧縮強度で24N/mm以上を発現することが好ましい。 On the other hand, as described above, the outer solidified material 6 includes the first solidified material 6A applied by spraying and the second solidified material 6B applied by pouring. The first solidified material 6A is a fast-curing concrete or mortar suitable for spray construction, for example, concrete or mortar containing about 30 kg to 60 kg of a rapid setting agent per 1 m 3 of the solidified material. On the other hand, the second solidified material 6B is highly fluid concrete or mortar suitable for pouring construction. Since the second solidified material 6B is poured into the narrow space on the back side of the earth retaining member 4, it is preferable that it has enough fluidity to exhibit sufficient filling performance even in situations where it is difficult to vibrate with a vibrator. For example, the second solidified material 6B may be concrete or mortar having a slump flow value of 30 cm or more and containing 3 kg or more of a high-performance AE water reducer per 1 m 3 of the solidified material. After hardening, both the first solidifying material and the second solidifying material have a strength equivalent to or higher than that of the inner solidifying material 5 cast inside the earth retaining member 4, specifically, for example, a compressive strength of 24N/28 days after the material age. It is preferable to express mm 2 or more.

本実施形態では、このように外側固化材料6のうち第1の固化材料6Aを先行して立坑3の壁面3Wに吹き付けることによって、外側固化材料6の施工中に壁面3Wが崩れて土留部材4と壁面3Wとの距離が設計よりも近くなったり、土留部材4が壁面3Wに直に接したりすることを防止できる。土留部材4と壁面3Wとの間の距離は、第2の固化材料6Bを流し込む前に土留部材4の上端もしくは下端から、または土留部材4に形成された観察用の開口から目視確認することができる。これによって、外側固化材料6の充填によって土留部材4と壁面3Wとの間に適切なかぶり厚さを確保することができ、上述のように土留部材4を補強部材として考慮することができる。 In this embodiment, by spraying the first solidified material 6A of the outer solidified material 6 onto the wall surface 3W of the shaft 3 in advance, the wall surface 3W collapses during construction of the outer solidified material 6 and the earth retaining member 4 It is possible to prevent the distance between the wall surface 3W and the wall surface 3W from becoming closer than designed, or the earth retaining member 4 from coming into direct contact with the wall surface 3W. The distance between the earth retaining member 4 and the wall surface 3W can be visually confirmed from the upper end or lower end of the earth retaining member 4 or from an observation opening formed in the earth retaining member 4 before pouring the second solidified material 6B. can. Thereby, an appropriate cover thickness can be ensured between the earth retaining member 4 and the wall surface 3W by filling with the outer solidified material 6, and the earth retaining member 4 can be considered as a reinforcing member as described above.

ここで、第1の固化材料6Aを吹き付ける工程の後、比較的短い時間のうちに、第2の固化材料6Bを流し込む工程が実施されたような場合、地中構造物1の完成後において第1の固化材料6Aと第2の固化材料6Bとの間に継目は残りにくい。しかしながら、上記のように第1の固化材料6Aと第2の固化材料6Bとの材料的な特性は異なるため、たとえ地中構造物1の完成後において第1の固化材料6Aと第2の固化材料6Bとの境界が明確でなかったとしても、外側固化材料6の壁面3W側と土留部材4側とでそれぞれサンプルを採取して分析すれば、吹き付けによって施工された第1の固化材料6Aと、流し込みによって形成された第2の固化材料6Bとが存在することは特定できうる。 Here, if the step of pouring the second solidified material 6B is carried out within a relatively short time after the step of spraying the first solidified material 6A, the second solidified material 6B may be sprayed after the completion of the underground structure 1. A seam is unlikely to remain between the first solidified material 6A and the second solidified material 6B. However, as described above, since the material properties of the first solidified material 6A and the second solidified material 6B are different, even if the first solidified material 6A and the second solidified material 6B are Even if the boundary with the material 6B is not clear, if samples are taken and analyzed on the wall surface 3W side of the outer solidified material 6 and on the earth retaining member 4 side, it can be determined that it is the first solidified material 6A applied by spraying. , and the second solidified material 6B formed by pouring can be identified.

なお、上記のように外側固化材料6を吹き付けと流し込みとの併用によって施工しなくても、土留部材4と壁面3Wとの間に適切なかぶり厚さが確保されていれば土留部材4を補強部材として考慮することができる。従って、本発明の実施形態は、外側固化材料6を吹き付けと流し込みとの併用によって施工する例には限定されない。 Note that even if the outer solidification material 6 is not applied by a combination of spraying and pouring as described above, the earth retaining member 4 can be reinforced if an appropriate cover thickness is secured between the earth retaining member 4 and the wall surface 3W. It can be considered as a member. Therefore, the embodiments of the present invention are not limited to examples in which the outer solidified material 6 is applied by a combination of spraying and pouring.

本実施形態に係る地中構造物1は、例えば以下のような工程によって施工される。まず、地盤2を掘削して立坑3を形成する掘削工程を実施し、その後に立坑3の壁面3Wに第1の固化材料を吹き付ける吹付工程を実施する。後の工程でさらに第2の固化材料6Bが流し込まれるため、第1の固化材料6Aの吹き付け厚さは第2の固化材料6Bが流し込まれるまでの間、壁面3Wを安定させるのに十分な最低限の厚さ以上であればよい。このような吹き付け厚さは従来の吹き付け工法よりも薄く、具体的には例えば1cm以上、10cm未満であってもよい。 The underground structure 1 according to this embodiment is constructed, for example, by the following steps. First, an excavation step is performed in which the ground 2 is excavated to form the shaft 3, and then a spraying step is performed in which the first solidified material is sprayed onto the wall surface 3W of the shaft 3. Since the second solidified material 6B is further poured in a later step, the sprayed thickness of the first solidified material 6A is a minimum thickness sufficient to stabilize the wall surface 3W until the second solidified material 6B is poured. It is sufficient if the thickness is at least the maximum thickness. Such a spraying thickness may be thinner than that of conventional spraying methods, and specifically may be, for example, 1 cm or more and less than 10 cm.

次に、立坑3の内部に土留部材4を設置する土留部材設置工程を実施する。この例では、吹付工程が土留部材設置工程の前に実施されるため、土留部材4は既に吹き付けられた第1の固化材料6Aの内側に設置される。この時点で構築されている土留壁の下端に位置する土留部材4の下端には、型枠部材8が設置される。型枠部材8には、次の工程で第2の固化材料6Bを流し込むための開口部が設けられていてもよい。 Next, an earth retaining member installation step of installing the earth retaining member 4 inside the shaft 3 is carried out. In this example, since the spraying process is performed before the earth retaining member installation process, the earth retaining member 4 is installed inside the first solidified material 6A that has already been sprayed. A formwork member 8 is installed at the lower end of the earth retaining member 4 located at the lower end of the earth retaining wall constructed at this point. The formwork member 8 may be provided with an opening for pouring the second solidified material 6B in the next step.

土留部材4および型枠部材8の設置後、土留部材4と第1の固化材料6Aとの間に第2の固化材料6Bを流し込む流し込み工程を実施する。上記のような掘削工程、吹付工程、土留部材設置工程、および流し込み工程を所定の回数繰り返し(1回でもよい)、その後に土留部材4の内側に内側固化材料5を充填する内側充填工程を実施することによって、図1に示したような地中構造物1が構築される。 After installing the earth retaining member 4 and the formwork member 8, a pouring step is carried out in which the second solidified material 6B is poured between the earth retaining member 4 and the first solidified material 6A. The above-described excavation process, spraying process, earth retaining member installation process, and pouring process are repeated a predetermined number of times (one time is sufficient), and then an inner filling process is performed in which the inner solidified material 5 is filled inside the earth retaining member 4. By doing so, an underground structure 1 as shown in FIG. 1 is constructed.

なお、上記の例では外側固化材料6を充填するための外側充填工程が吹付工程および流し込み工程として土留部材設置工程の前後に分けて実施されたが、他の例では、土留部材設置工程の後に外側充填工程が一括して実施されてもよい。この場合、吹付工程では土留部材4の上方または下方と立坑3の壁面3Wとの間の隙間から吹付ノズルを差し込んで第1の固化材料6Aの吹付工程が実施される。 In addition, in the above example, the outer filling process for filling the outer solidified material 6 was carried out as a spraying process and a pouring process before and after the earth retaining member installation process, but in other examples, the outer filling process for filling the outer solidified material 6 was performed after the earth retaining member installation process. The outer filling process may be performed all at once. In this case, in the spraying process, a spraying nozzle is inserted through the gap between the upper or lower side of the retaining member 4 and the wall surface 3W of the shaft 3, and the spraying process of the first solidified material 6A is carried out.

図2は、本発明の第2の実施形態に係る深礎基礎の断面図である。本実施形態では、上記の第1の実施形態と異なり、土留部材4を内側固化材料5および外側固化材料6によって形成される構造体の補強部材として考慮することによって、鉄筋がすべて省略されている。つまり、図示された例において、地中構造物1は内側固化材料5に埋設される鉄筋を含まない。土留部材4を補強部材として考慮した結果、土留部材4のみで必要とされる鋼材量が満たされる場合、補強部材として土留部材4のみで設計することが可能となる。この場合、地中構造物1の施工方法は土留部材4の内側に鉄筋を配置する配筋工程を含まない。 FIG. 2 is a sectional view of a deep foundation according to a second embodiment of the present invention. In this embodiment, unlike the first embodiment described above, all reinforcing bars are omitted by considering the earth retaining member 4 as a reinforcing member of the structure formed by the inner solidified material 5 and the outer solidified material 6. . That is, in the illustrated example, the underground structure 1 does not include reinforcing bars embedded in the inner solidified material 5. As a result of considering the earth retaining member 4 as a reinforcing member, if the required amount of steel is satisfied only with the earth retaining member 4, it becomes possible to design using only the earth retaining member 4 as a reinforcing member. In this case, the method for constructing the underground structure 1 does not include a reinforcing step of arranging reinforcing bars inside the earth retaining member 4.

図3は、本発明の第3の実施形態に係る深礎基礎の断面図である。本実施形態では、地中構造物1の中心に内部空間SPが形成される。この場合、内側固化材料5は内部空間SPと土留部材4との間に充填される。施工時には、内部空間SPに対応する型枠部材が配置され、内側固化材料5は型枠部材と土留部材4との間に充填される。本発明の実施形態は、このように地中構造物1が中空構造である場合と中実構造である場合との両方を含む。中空構造の地中構造物1は、例えば深礎基礎、立坑または集水井として利用される。あるいは、地中構造物1の内部空間SPに地山掘削時の残土などの土砂を投入した上で、深礎基礎として利用してもよい。中実構造の地中構造物1は、例えば深礎基礎として利用される。なお、図3に示された例では上記の第2の実施形態と同様に鉄筋がすべて省略されているが、第1の実施形態と同様に配筋量が減らされた鉄筋7が配置されてもよい。 FIG. 3 is a sectional view of a deep foundation according to a third embodiment of the present invention. In this embodiment, an internal space SP is formed at the center of the underground structure 1. In this case, the inner solidified material 5 is filled between the internal space SP and the earth retaining member 4. At the time of construction, a formwork member corresponding to the internal space SP is arranged, and the inner solidified material 5 is filled between the formwork member and the earth retaining member 4. The embodiments of the present invention thus include both cases where the underground structure 1 has a hollow structure and cases where it has a solid structure. The hollow underground structure 1 is used, for example, as a deep foundation, a vertical shaft, or a water collection well. Alternatively, earth and sand such as leftover soil from earth excavation may be poured into the internal space SP of the underground structure 1 and then used as a deep foundation. The solid underground structure 1 is used, for example, as a deep foundation. In addition, in the example shown in FIG. 3, all reinforcing bars are omitted as in the second embodiment, but as in the first embodiment, reinforcing bars 7 with a reduced amount of reinforcement are arranged. Good too.

図4は、土留部材の周方向の千鳥配置の例を示す図である。上述した第1から第3の実施形態では、複数の土留部材4が立坑3の深さ方向および周方向に配列されて互いに連結されることによって筒状の土留壁が構成される。図4に示された例では、複数の土留部材4Aが立坑3の周方向で千鳥配置される。つまり、高さ方向(立坑3の深さ方向)について複数の段で配置された土留部材4Aは、隣り合う段で周方向の継目が互い違いになるように配置される。 FIG. 4 is a diagram showing an example of a staggered arrangement of earth retaining members in the circumferential direction. In the first to third embodiments described above, a plurality of earth retaining members 4 are arranged in the depth direction and circumferential direction of the shaft 3 and connected to each other, thereby forming a cylindrical earth retaining wall. In the example shown in FIG. 4, a plurality of retaining members 4A are arranged in a staggered manner in the circumferential direction of the shaft 3. In other words, the earth retaining members 4A arranged in a plurality of stages in the height direction (depth direction of the shaft 3) are arranged so that circumferential joints are alternated between adjacent stages.

上述のように土留部材4を内側固化材料5および外側固化材料6によって形成される構造体の補強部材として考慮する場合、土留部材4同士の継目が構造的な弱点になる。そこで、図4の例では、土留部材4Aを周方向で千鳥配置することによって、土留部材4Aの周方向の継目に作用する力を、高さ方向に隣接して配置された土留部材4A同士の間のせん断抵抗によって、別の土留部材4Aの本体に流すことができ、継目を補強することができる。これによって、周方向における土留部材4Aの補強部材としての機能が向上するため、例えば図示された例のように鉄筋7のうちフープ筋7Bを省略して主筋7Aのみを配置することや、図示していないが、フープ筋7Bの配筋量を減らすことも可能となる。 When considering the earth retaining member 4 as a reinforcing member of the structure formed by the inner solidified material 5 and the outer solidified material 6 as described above, the joint between the earth retaining members 4 becomes a structural weak point. Therefore, in the example shown in FIG. 4, by arranging the earth retaining members 4A in a staggered manner in the circumferential direction, the force acting on the circumferential joints of the earth retaining members 4A is reduced between the earth retaining members 4A arranged adjacent to each other in the height direction. Due to the shear resistance between them, it is possible to flow into the main body of another earth retaining member 4A, and the joint can be reinforced. This improves the function of the earth retaining member 4A as a reinforcing member in the circumferential direction. Although not included, it is also possible to reduce the amount of hoop muscles 7B.

図5は、土留部材の深さ方向の千鳥配置の例を示す図である。図5に示された例では、上記で図4に示した例とは異なり、複数の土留部材4Bが高さ方向(立坑3の深さ方向)で千鳥配置される。つまり、複数の列で配置された土留部材4Bは、隣り合う列で高さ方向の継目が互い違いになるように配置される。これによって、土留部材4Bの高さ方向の継目に作用する力を、周方向に隣接して配置された土留部材4B同士の間のせん断抵抗によって、別の土留部材4Bの本体に流すことができ、継目を補強することができる。これによって、高さ方向における土留部材4Bの補強部材としての機能が向上するため、例えば図示された例のように鉄筋7のうち主筋7Aの配筋量を効果的に減らすことができる。 FIG. 5 is a diagram showing an example of a staggered arrangement of earth retaining members in the depth direction. In the example shown in FIG. 5, unlike the example shown in FIG. 4 above, the plurality of retaining members 4B are arranged in a staggered manner in the height direction (depth direction of the shaft 3). In other words, the earth retaining members 4B arranged in a plurality of rows are arranged so that the seams in the height direction alternate between adjacent rows. As a result, the force acting on the joint in the height direction of the earth retaining member 4B can be transferred to the main body of another earth retaining member 4B due to the shear resistance between the earth retaining members 4B arranged adjacent to each other in the circumferential direction. , seams can be reinforced. This improves the function of the earth retaining member 4B as a reinforcing member in the height direction, so that the amount of reinforcement of the main reinforcing bars 7A among the reinforcing bars 7 can be effectively reduced, for example, as in the illustrated example.

図6および図7は、土留部材に隅肉溶接を追加する例を示す図である。図示された例では、土留部材4が、本体面41の高さ方向の両端部に形成されるフランジ42に加えて、本体面41の周方向の両端部に形成されるフランジ43を有する。フランジ43は、本体面41の波形断面に交差する方向に配置される。図6および図7に示された例において、土留部材4は、本体面41とフランジ43との間に形成される両側の隅肉溶接部44をさらに含む。これによって、本体面41からフランジ43に効果的に応力が伝達され(好ましくは全応力が伝達され)、連結された複数の土留部材4を周方向について一体的な補強部材として機能させることができる。なお、両側の隅肉溶接部44に限らず、開先溶接部など、応力を伝達可能な他の種類の溶接部が形成されてもよい。 FIGS. 6 and 7 are diagrams showing an example of adding fillet welds to earth retaining members. In the illustrated example, the retaining member 4 has flanges 42 formed at both ends of the main body surface 41 in the height direction, as well as flanges 43 formed at both ends of the main body surface 41 in the circumferential direction. The flange 43 is arranged in a direction intersecting the corrugated cross section of the main body surface 41. In the example shown in FIGS. 6 and 7, the earth retaining member 4 further includes fillet welds 44 on both sides formed between the main body surface 41 and the flange 43. As a result, stress is effectively transmitted from the main body surface 41 to the flange 43 (preferably, the entire stress is transmitted), and the plurality of connected earth retaining members 4 can function as an integral reinforcing member in the circumferential direction. . Note that other types of welds capable of transmitting stress, such as groove welds, are not limited to the fillet welds 44 on both sides.

図8および図9は、土留部材にリブを追加する例を示す図である。図示された例では、土留部材4が、本体面41およびフランジ42,43に加えて、本体面41とフランジ43との間に形成されるリブ45をさらに含む。これによって、上記で図6および図7を参照して説明した例と同様に、本体面41からフランジ43に効果的に応力が伝達され(好ましくは全応力が伝達され)、連結された複数の土留部材4を周方向について一体的な補強部材として機能させることができる。なお、図示された例のような三角形のリブ45に限らず、台形や扇形など他の形状のリブが形成されてもよい。 FIGS. 8 and 9 are diagrams showing an example of adding ribs to the earth retaining member. In the illustrated example, the earth retaining member 4 further includes a rib 45 formed between the main body surface 41 and the flange 43 in addition to the main body surface 41 and the flanges 42 and 43. This effectively transmits the stress (preferably the entire stress) from the body surface 41 to the flange 43, similar to the example described above with reference to FIGS. The earth retaining member 4 can function as an integral reinforcing member in the circumferential direction. Note that the ribs 45 are not limited to the triangular shape as in the illustrated example, but ribs having other shapes such as a trapezoid or a fan shape may be formed.

なお、本体面41とフランジ43との間で十分に応力が伝達可能であれば、上記のような補強構造は設けられなくてもよい。また、上記では土留部材4が本体面41の端部にフランジ42,43を有する例について説明したが、例えば土留部材4として、フランジ42,43が存在しないコルゲートパイプを用いてもよい。この場合、土留部材4同士の継目にフランジが存在せず、本体面41同士を重ね合わせた部分をボルト等で固定することによって土留部材4同士を連結するため、上記のような本体面とフランジとの間の補強構造は必要なくなる。 Note that, as long as stress can be sufficiently transmitted between the main body surface 41 and the flange 43, the reinforcing structure as described above does not need to be provided. Moreover, although the example in which the earth retaining member 4 has flanges 42 and 43 at the end of the main body surface 41 has been described above, for example, a corrugated pipe without flanges 42 and 43 may be used as the earth retaining member 4. In this case, there is no flange at the joint between the earth retaining members 4, and the earth retaining members 4 are connected by fixing the overlapping parts of the body surfaces 41 with bolts, etc., so the body surfaces and flanges as described above are connected. There is no need for a reinforcing structure between the two.

以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。 Although preferred embodiments of the present invention have been described above in detail with reference to the accompanying drawings, the present invention is not limited to such examples. It is clear that a person with ordinary knowledge in the technical field to which the present invention pertains can come up with various changes or modifications within the scope of the technical idea stated in the claims. It is understood that these also naturally fall within the technical scope of the present invention.

1…地中構造物、2…地盤、3…立坑、3W…壁面、4,4A,4B…土留部材、5…内側固化材料、6…外側固化材料、6A…第1の固化材料、6B…第2の固化材料、7…鉄筋、7A…主筋、7B…フープ筋、8…型枠部材、41…本体面、42,43…フランジ、44…隅肉溶接部、45…リブ、SP…内部空間。 1... Underground structure, 2... Ground, 3... Vertical shaft, 3W... Wall surface, 4, 4A, 4B... Earth retaining member, 5... Inner solidified material, 6... Outer solidified material, 6A... First solidified material, 6B... Second solidified material, 7... Rebar, 7A... Main reinforcement, 7B... Hoop reinforcement, 8... Formwork member, 41... Body surface, 42, 43... Flange, 44... Fillet weld, 45... Rib, SP... Inside space.

Claims (16)

地盤を掘削して形成された立坑の壁面に沿って設置される土留部材と、前記土留部材の内側に充填される内側固化材料と、前記土留部材と前記立坑の壁面との間に充填される外側固化材料とを含む地中構造物の設計方法において、
前記内側固化材料および前記外側固化材料によって形成される構造体の補強部材として前記土留部材を考慮し、
前記土留部材は、開口部がない波形断面を有する本体面を含み、前記外側固化材料は前記本体面と前記立坑の壁面との間に充填され、
前記外側固化材料の強度は前記内側固化材料の強度と同等以上であり、
前記補強部材として少なくとも前記土留部材の前記本体面を考慮する、地中構造物の設計方法。
An earth retaining member installed along the wall of a shaft formed by excavating the ground, an inner solidified material filled inside the earth retaining member, and a material filled between the earth retaining member and the wall of the shaft. In a method for designing an underground structure including an outer solidified material,
Considering the earth retaining member as a reinforcing member of the structure formed by the inner solidified material and the outer solidified material,
The retaining member includes a body surface having a corrugated cross section with no openings , and the outer solidified material is filled between the body surface and the wall surface of the shaft;
The strength of the outer solidified material is equal to or higher than the strength of the inner solidified material,
A method for designing an underground structure, wherein at least the main body surface of the earth retaining member is considered as the reinforcing member .
前記土留部材は、前記本体面の端部に形成されるフランジと、前記本体面と前記フランジとの間で前記本体面の両側に形成される隅肉溶接部とをさらに含む、請求項1に記載の地中構造物の設計方法。 The earth retaining member further includes a flange formed at an end of the main body surface, and a fillet weld formed on both sides of the main body surface between the main body surface and the flange. Design method for underground structures described. 前記土留部材は、前記本体面の端部に形成されるフランジと、前記本体面と前記フランジとの間に形成され、板面が前記本体面および前記フランジに交差するリブとをさらに含む、請求項1または請求項2に記載の地中構造物の設計方法。 The earth retaining member further includes a flange formed at an end of the main body surface, and a rib formed between the main body surface and the flange, the plate surface of which intersects the main body surface and the flange. The method for designing an underground structure according to claim 1 or claim 2. 前記土留部材は、コルゲートパイプである、請求項1に記載の地中構造物の設計方法。 The method for designing an underground structure according to claim 1, wherein the earth retaining member is a corrugated pipe. 前記補強部材として、前記土留部材と、前記内側固化材料に埋設される鉄筋とを考慮し、前記補強部材として前記土留部材を考慮することによって前記鉄筋の配筋量を減らすか、または前記鉄筋を省略する、請求項1から請求項4のいずれか1項に記載の地中構造物の設計方法。 As the reinforcing member, the earth retaining member and the reinforcing bars buried in the inner solidified material are considered, and the amount of reinforcement of the reinforcing bars is reduced by considering the earth retaining member as the reinforcing member, or the reinforcing bars are The method for designing an underground structure according to any one of claims 1 to 4, wherein the method is omitted. 前記鉄筋は、前記立坑の深さ方向に延びる主筋と、前記立坑の周方向に延びるフープ筋からなり、前記補強部材として前記土留部材を考慮することによって前記フープ筋の配筋量を減らすか、または前記フープ筋を省略する、請求項5に記載の地中構造物の設計方法。 The reinforcing bars consist of main bars extending in the depth direction of the shaft and hoop bars extending in the circumferential direction of the shaft, and the amount of reinforcement of the hoop bars is reduced by considering the earth retaining member as the reinforcing member; The method for designing an underground structure according to claim 5, wherein the hoop reinforcement is omitted. 複数の前記土留部材が前記立坑の深さ方向および周方向に配列されて互いに連結されることによって筒状の土留壁が構成され、
前記複数の土留部材は、前記深さ方向または前記周方向のいずれかで千鳥配置される、請求項1から請求項6のいずれか1項に記載の地中構造物の設計方法。
A cylindrical earth retaining wall is constructed by arranging the plurality of earth retaining members in the depth direction and circumferential direction of the shaft and connecting them to each other,
The method for designing an underground structure according to any one of claims 1 to 6, wherein the plurality of earth retaining members are arranged in a staggered manner in either the depth direction or the circumferential direction.
請求項1から請求項7のいずれか1項に記載の地中構造物の設計方法を用いて設計された地中構造物。 An underground structure designed using the underground structure design method according to any one of claims 1 to 7. 地盤を掘削して立坑を形成する掘削工程と、
前記立坑の壁面に沿って土留部材を設置する土留部材設置工程と、
前記土留部材と前記立坑の壁面との間に外側固化材料を充填する外側充填工程と、
前記土留部材の内側に内側固化材料を充填する内側充填工程と
を含み、
前記土留部材の内側に、前記内側固化材料に埋設される鉄筋を配置する配筋工程を含まず、
前記土留部材は、開口部がない波形断面を有する本体面を含み、前記外側固化材料は前記本体面と前記立坑の壁面との間に充填され、
前記外側固化材料の強度は前記内側固化材料の強度と同等以上であり、
前記内側固化材料および前記外側固化材料によって形成される構造体の補強部材として少なくとも前記土留部材の前記本体面を考慮する、地中構造物の施工方法。
an excavation process in which the ground is excavated to form a shaft;
an earth retaining member installation step of installing an earth retaining member along the wall surface of the shaft;
an outer filling step of filling an outer solidified material between the earth retaining member and the wall surface of the shaft;
and an inner filling step of filling an inner solidified material inside the earth retaining member,
Does not include a reinforcing step of arranging reinforcing bars to be buried in the inner solidified material inside the earth retaining member,
The retaining member includes a body surface having a corrugated cross section with no openings , and the outer solidified material is filled between the body surface and the wall surface of the shaft;
The strength of the outer solidified material is equal to or higher than the strength of the inner solidified material,
A method of constructing an underground structure, wherein at least the main body surface of the earth retaining member is considered as a reinforcing member of a structure formed by the inner solidified material and the outer solidified material .
前記土留部材は、前記本体面の端部に形成されるフランジと、前記本体面と前記フランジとの間で前記本体面の両側に形成される隅肉溶接部とをさらに含む、請求項9に記載の地中構造物の施工方法。 The earth retaining member further includes a flange formed at an end of the main body surface, and a fillet weld formed on both sides of the main body surface between the main body surface and the flange. Construction method of the underground structure described. 前記土留部材は、前記本体面の端部に形成されるフランジと、前記本体面と前記フランジとの間に形成され、板面が前記本体面および前記フランジに交差するリブとをさらに含む、請求項9または請求項10に記載の地中構造物の施工方法。 The earth retaining member further includes a flange formed at an end of the main body surface, and a rib formed between the main body surface and the flange, the plate surface of which intersects the main body surface and the flange. The method for constructing an underground structure according to claim 9 or claim 10. 前記土留部材は、コルゲートパイプである、請求項9に記載の地中構造物の施工方法。 The method for constructing an underground structure according to claim 9, wherein the earth retaining member is a corrugated pipe. 地盤を掘削して立坑を形成する掘削工程と、
前記立坑の壁面に沿って土留部材を設置する土留部材設置工程と、
前記土留部材と前記立坑の壁面との間に外側固化材料を充填する外側充填工程と、
前記土留部材の内側に内側固化材料を充填する内側充填工程と
を含み、
複数の前記土留部材が前記立坑の深さ方向および周方向に配列されて互いに連結されることによって筒状の土留壁が構成され、
前記土留部材設置工程は、前記複数の土留部材を前記深さ方向または前記周方向のいずれかで千鳥配置する工程を含み、
前記土留部材は、開口部がない波形断面を有する本体面を含み、前記外側固化材料は前記本体面と前記立坑の壁面との間に充填され、
前記外側固化材料の強度は前記内側固化材料の強度と同等以上であり、
前記内側固化材料および前記外側固化材料によって形成される構造体の補強部材として少なくとも前記土留部材の前記本体面を考慮する、地中構造物の施工方法。
an excavation process in which the ground is excavated to form a shaft;
an earth retaining member installation step of installing an earth retaining member along the wall surface of the shaft;
an outer filling step of filling an outer solidified material between the earth retaining member and the wall surface of the shaft;
and an inner filling step of filling an inner solidified material inside the earth retaining member,
A cylindrical earth retaining wall is constructed by arranging the plurality of earth retaining members in the depth direction and circumferential direction of the shaft and connecting them to each other,
The earth retaining member installation step includes a step of arranging the plurality of earth retaining members in a staggered manner in either the depth direction or the circumferential direction,
The retaining member includes a body surface having a corrugated cross section with no openings , and the outer solidified material is filled between the body surface and the wall surface of the shaft;
The strength of the outer solidified material is equal to or higher than the strength of the inner solidified material,
A method of constructing an underground structure, wherein at least the main body surface of the earth retaining member is considered as a reinforcing member of a structure formed by the inner solidified material and the outer solidified material .
前記土留部材の内側に、前記内側固化材料に埋設される鉄筋を配置する配筋工程をさらに含み、
前記配筋工程は、前記深さ方向に延びる主筋を配置する工程含み、前記周方向に延びるフープ筋を配置する工程を含まない、請求項13に記載の地中構造物の施工方法。
Further comprising a reinforcement step of arranging reinforcing bars to be buried in the inner solidified material inside the earth retaining member,
14. The method for constructing an underground structure according to claim 13, wherein the reinforcement step includes a step of arranging main reinforcements extending in the depth direction and does not include a step of arranging hoop reinforcements extending in the circumferential direction.
前記外側充填工程は、
前記立坑の壁面に第1の固化材料を吹き付ける吹付工程と、
前記土留部材と前記第1の固化材料との間に第2の固化材料を流し込む流し込み工程と
を含む、請求項9から請求項14のいずれか1項に記載の地中構造物の施工方法。
The outer filling step includes:
a spraying step of spraying a first solidified material onto the wall surface of the shaft;
The method for constructing an underground structure according to any one of claims 9 to 14, comprising: a pouring step of pouring a second solidified material between the earth retaining member and the first solidified material.
請求項9から請求項15のいずれか1項に記載の地中構造物の施工方法を用いて施工された地中構造物。 An underground structure constructed using the method for constructing an underground structure according to any one of claims 9 to 15.
JP2019205917A 2019-11-14 2019-11-14 Underground structure design method, underground structure construction method, and underground structure Active JP7436182B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019205917A JP7436182B2 (en) 2019-11-14 2019-11-14 Underground structure design method, underground structure construction method, and underground structure
JP2024017865A JP2024042107A (en) 2019-11-14 2024-02-08 Underground structure design method, underground structure construction method, and underground structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019205917A JP7436182B2 (en) 2019-11-14 2019-11-14 Underground structure design method, underground structure construction method, and underground structure

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2024017865A Division JP2024042107A (en) 2019-11-14 2024-02-08 Underground structure design method, underground structure construction method, and underground structure

Publications (2)

Publication Number Publication Date
JP2021080628A JP2021080628A (en) 2021-05-27
JP7436182B2 true JP7436182B2 (en) 2024-02-21

Family

ID=75965517

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019205917A Active JP7436182B2 (en) 2019-11-14 2019-11-14 Underground structure design method, underground structure construction method, and underground structure
JP2024017865A Pending JP2024042107A (en) 2019-11-14 2024-02-08 Underground structure design method, underground structure construction method, and underground structure

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2024017865A Pending JP2024042107A (en) 2019-11-14 2024-02-08 Underground structure design method, underground structure construction method, and underground structure

Country Status (1)

Country Link
JP (2) JP7436182B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000087348A (en) 1998-09-11 2000-03-28 Nippon Steel Metal Prod Co Ltd Steel segment, underground reinforced concrete columnar structure and construction method thereof
JP2004270245A (en) 2003-03-07 2004-09-30 East Japan Railway Co Steel pipe pile press-in method and device
JP2019124090A (en) 2018-01-19 2019-07-25 Jfe建材株式会社 Connection member
JP2020105806A (en) 2018-12-27 2020-07-09 日鉄建材株式会社 Construction metho of underground structure, and underground structure

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58134485U (en) * 1982-02-27 1983-09-09 東鋼業株式会社 Liner plate for shaft
JPS58195692A (en) * 1982-05-12 1983-11-14 川崎製鉄株式会社 Sheathing wall for shaft pit
JPS5956295U (en) * 1982-10-04 1984-04-12 日本鋼管ライトスチ−ル株式会社 Liner plate for retaining earth at the bottom of deep foundation work
JPS6217295A (en) * 1985-07-15 1987-01-26 株式会社 ダイクレ Concrete flow-down member of liner plate for shaft and usagethereof
JPH02153110A (en) * 1988-11-30 1990-06-12 Daikure:Kk Constructing method for bottom enlarging and deepening pile
JPH04112987U (en) * 1991-03-20 1992-10-01 住金鋼材工業株式会社 Joint structure of liner plate for deep foundations
JPH10183643A (en) * 1996-12-20 1998-07-14 Nippon Kokan Light Steel Kk Vertical shaft building method for deep foundation
JPH10266793A (en) * 1997-03-27 1998-10-06 Teijin Meton Kk Liner plate
JP3683069B2 (en) * 1997-04-23 2005-08-17 株式会社コプロス Earth retaining method for shafts
JP3930149B2 (en) * 1998-06-09 2007-06-13 株式会社加藤建設 Segment piece and underground structure construction method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000087348A (en) 1998-09-11 2000-03-28 Nippon Steel Metal Prod Co Ltd Steel segment, underground reinforced concrete columnar structure and construction method thereof
JP2004270245A (en) 2003-03-07 2004-09-30 East Japan Railway Co Steel pipe pile press-in method and device
JP2019124090A (en) 2018-01-19 2019-07-25 Jfe建材株式会社 Connection member
JP2020105806A (en) 2018-12-27 2020-07-09 日鉄建材株式会社 Construction metho of underground structure, and underground structure

Also Published As

Publication number Publication date
JP2024042107A (en) 2024-03-27
JP2021080628A (en) 2021-05-27

Similar Documents

Publication Publication Date Title
KR100951097B1 (en) Slab and subgrade external wall structure and method for constructing underground slab and subgrade external wall, bracket
JP5308116B2 (en) How to build a tunnel
KR20110103000A (en) Precast bridge joint structure with composite hollow concrete filled tube and a construction method for the same
KR101182704B1 (en) Construction method of undergroud structure using PHC pile
KR101167511B1 (en) Underpass using precast concrete pile and method for constructing the same
JP2008223339A (en) Pile head strengthening method for hollow pile and pile head strengthening reinforcement material
JP2004244955A (en) Cast-in-place concrete-filled steel pipe pile, construction method for cast-in-place concrete-filled steel pipe pile and foundation structure of structure
JP5480744B2 (en) Foundation for structure and its construction method
JP3756385B2 (en) Composite pile and its construction method
KR20110052360A (en) Downward construction method of underground structure that enables continuous basement wall using non-wale and diaphragm action of concrete slab
KR101210368B1 (en) Uniting Method of Temporary earth wall with basement exterior Wall using Couplers and Bolts.
JP7436182B2 (en) Underground structure design method, underground structure construction method, and underground structure
KR102319143B1 (en) Soil retaining wall for phc pile
JP7386095B2 (en) Underground structure construction method
KR20100118482A (en) To use reclamation steel perimeter beam and slab diaphragm effect in order for one side of the basement outer wall continuous construct was possible ,which the basement infrastructure construction method
JP2003027462A (en) Construction method of underground continuous wall, and construction method of underground structure
JP6088883B2 (en) Connection method and connection structure of fiber reinforced pile material for shield excavation
JP6924683B2 (en) Pile head seismic isolation structure and its construction method
KR100620366B1 (en) Construction method of underground structures comprising composite reinforced concrete girders and beams using FRP
JP6924682B2 (en) Pile head seismic isolation structure and its construction method
KR101219451B1 (en) Concrete structure and construction method for the same, constructing method of underground wall as a retaining structural wall used in the same
JPH01315520A (en) Underground outer wall constructing method for superstructure
KR102656370B1 (en) Underground structure capable of forming a supporting point of a molded beam and its construction method
KR100694762B1 (en) Method for constructing underground slabs and walls without preliminary wall-attached supports
JP5480745B2 (en) Reinforcement method for existing foundations for structures

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230620

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240208

R150 Certificate of patent or registration of utility model

Ref document number: 7436182

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150