JP7435942B2 - Method for differentiating neural stem cells or neural progenitor cells into dopaminergic neurons - Google Patents

Method for differentiating neural stem cells or neural progenitor cells into dopaminergic neurons Download PDF

Info

Publication number
JP7435942B2
JP7435942B2 JP2022091546A JP2022091546A JP7435942B2 JP 7435942 B2 JP7435942 B2 JP 7435942B2 JP 2022091546 A JP2022091546 A JP 2022091546A JP 2022091546 A JP2022091546 A JP 2022091546A JP 7435942 B2 JP7435942 B2 JP 7435942B2
Authority
JP
Japan
Prior art keywords
mrna
cells
stem cells
dopamine
dopaminergic neurons
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022091546A
Other languages
Japanese (ja)
Other versions
JP2022107819A (en
Inventor
パク、チャン-ファン
キム、サン-ミ
Original Assignee
インダストリー‐ユニバーシティー コーぺレーション ファンデーション ハンヤン ユニバーシティ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by インダストリー‐ユニバーシティー コーぺレーション ファンデーション ハンヤン ユニバーシティ filed Critical インダストリー‐ユニバーシティー コーぺレーション ファンデーション ハンヤン ユニバーシティ
Priority to JP2022091546A priority Critical patent/JP7435942B2/en
Publication of JP2022107819A publication Critical patent/JP2022107819A/en
Application granted granted Critical
Publication of JP7435942B2 publication Critical patent/JP7435942B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Description

特許法第30条第2項適用 Molecular Therapy,September 2017;25(9):2028-2037Application of Article 30, Paragraph 2 of the Patent Act Molecular Therapy, September 2017; 25 (9): 2028-2037

本発明は、神経幹細胞または神経前駆細胞からドーパミン神経細胞への分化方法に関し、より具体的には、神経幹細胞または神経前駆細胞にドーパミン神経細胞誘導転写因子のmRNAを時間的制御を基盤として細胞に導入することにより、染色体安定性が維持されるドーパミン神経細胞に分化させる方法に関する。 The present invention relates to a method for differentiating neural stem cells or neural progenitor cells into dopaminergic neurons, and more specifically, the present invention relates to a method for differentiating neural stem cells or neural progenitor cells into dopaminergic neurons, and more specifically, to inject mRNA of a dopaminergic neuron-inducing transcription factor into neural stem cells or neural progenitor cells based on temporal control. It relates to a method for differentiating into dopaminergic neurons in which chromosomal stability is maintained by introducing the present invention.

パーキンソン病(Parkinson’s disease;PD)は、運動不能、硬直、震えのような運動障害を伴う中枢神経系退行性脳疾患であって、中脳黒質に存在するドーパミン神経細胞の漸進的な死滅に起因して線条体に到達しなければならないドーパミン神経細胞の減少が発病原因であると知られている。 Parkinson's disease (PD) is a central nervous system degenerative brain disease accompanied by movement disorders such as akinesia, rigidity, and tremors, and is caused by gradual loss of dopaminergic neurons in the substantia nigra of the midbrain. It is known that the cause of the disease is a decrease in the number of dopamine neurons that must reach the striatum due to death.

現在のパーキンソン病の治療法としては、ドーパミン前駆物質であるlevo-DOPA(L-DOPA)を投与する方法があるが、これは、吐き気、イライラ、睡眠障害、低血圧、常同運動、幻覚と妄想などの副作用があり、その他の方法も、一時的に病症を好転させる水準の効果を有する。しかし、約15年前にドーパミン神経細胞が含まれている死産されたヒト胎児の脳組織をパーキンソン病患者に移植したとき、ドーパミン神経伝達が回復されて線条体にドーパミン神経細胞の到達が可能になり、これにより、いくつかのパーキンソン病患者において運動不能症状の改善が観察された(NeuroRX,October 2004,Volume 1,Issue 4,pp.382~393)。この結果、損失された細胞を外部から移植して症状の好転を期待する細胞治療の概念が導入された。しかし、これも、倫理的、技術的問題を伴うにつれて、このような問題点を解決するために、細胞分裂により自分と同じ細胞を生産することができ、分化刺激によりそれぞれ異なる特定細胞に分化し得る柔軟性を有する神経幹細胞を利用した細胞治療法の研究が提起された。既存の神経幹細胞を利用してドーパミン神経細胞を誘導するための方法としては、レトロウイルスを利用する方法が知られている。しかし、前記方法は、遺伝子変形の危険性、突然変異の発生という問題点があり、ひいては、臨床適用には適していないという限界点がある。したがって、逆分化幹細胞の研究に用いられたRNA、タンパク質を基礎とする遺伝子伝達方法が、DNA-フリーのドーパミン神経細胞を発生させる適切な方法として注目された。しかし、タンパク質伝達方法は、所望の遺伝子を発現させるにあたって、多量のタンパク質を準備および精製しなければならず、RNA伝達方法は、RNAウイルスを利用したので、ウイルス-フリーの状態を維持するための追加としての選別段階が必要であるという限界点がある。 Current treatment for Parkinson's disease involves administering levo-DOPA (L-DOPA), a dopamine precursor, but this treatment has been shown to cause nausea, irritability, sleep disturbances, hypotension, stereotypic movements, and hallucinations. There are side effects such as delusions, and other methods have the effect of temporarily improving the disease. However, about 15 years ago, when brain tissue from a stillborn human fetus containing dopamine neurons was transplanted into Parkinson's disease patients, dopamine neurotransmission was restored and dopamine neurons were able to reach the striatum. As a result, improvement in akinesia symptoms was observed in some Parkinson's disease patients (NeuroRX, October 2004, Volume 1, Issue 4, pp. 382-393). As a result, the concept of cell therapy was introduced in which the lost cells are transplanted from the outside in hopes of improving symptoms. However, this also comes with ethical and technical issues, and in order to solve these issues, it is possible to produce cells that are the same as oneself through cell division, and differentiate into different specific cells using differentiation stimulation. Research on cell therapy methods using neural stem cells, which have the flexibility to achieve this goal, has been proposed. As a method for inducing dopaminergic neurons using existing neural stem cells, a method using a retrovirus is known. However, this method has problems such as the risk of genetic modification and the occurrence of mutations, and has the limitation that it is not suitable for clinical application. Therefore, gene transfer methods based on RNA and proteins, which have been used in research on reverse differentiated stem cells, have attracted attention as an appropriate method for generating DNA-free dopaminergic neurons. However, the protein delivery method requires the preparation and purification of a large amount of protein in order to express the desired gene, and the RNA delivery method uses RNA viruses, so it is necessary to prepare and purify a large amount of protein in order to express the desired gene. A limitation is that an additional screening step is required.

これより、新しい効率的遺伝子発現技法を用いて神経幹細胞から安定したドーパミン神経細胞を分化させることができる方法の開発が必要である。 There is therefore a need to develop methods that can differentiate stable dopaminergic neurons from neural stem cells using new efficient gene expression techniques.

本発明者らは、前述したような従来の問題点を解決し、神経幹細胞または神経前駆細胞からドーパミン神経細胞を効率的且つ安定的に分化させるための方法を研究した結果、神経幹細胞にドーパミン神経細胞誘導転写因子のmRNAを導入することにより、染色体の安定性が維持される機能的なドーパミン神経細胞の分化が可能であることを知見したところ、これに基づいて本発明を完成した。 The present inventors solved the conventional problems described above and researched a method for efficiently and stably differentiating dopaminergic neurons from neural stem cells or neural progenitor cells. The present invention was completed based on the finding that functional dopaminergic neurons in which chromosome stability is maintained can be differentiated by introducing mRNA of a cell-inducing transcription factor.

これより、本発明は、神経幹細胞または神経前駆細胞からドーパミン神経細胞への分化方法および前記分化方法により製造されたドーパミン神経細胞を提供することを目的とする。 Accordingly, an object of the present invention is to provide a method for differentiating neural stem cells or neural progenitor cells into dopamine neurons, and dopamine neurons produced by the differentiation method.

また、本発明は、前記ドーパミン神経細胞を含むパーキンソン病治療用細胞治療剤を提供することを他の目的とする。 Another object of the present invention is to provide a cell therapeutic agent for treating Parkinson's disease containing the dopaminergic neurons.

しかし、本発明が達成しようとする技術的課題は、以上で言及した課題に限定されず、言及されていない他の課題は、下記の記載から当業者に明確に理解され得る。 However, the technical problems to be achieved by the present invention are not limited to the problems mentioned above, and other problems not mentioned can be clearly understood by those skilled in the art from the following description.

前記本発明の目的を達成するために、本発明は、神経幹細胞または神経前駆細胞にドーパミン神経細胞誘導転写因子のmRNAを導入する段階を含む、神経幹細胞または神経前駆細胞からドーパミン神経細胞への分化方法を提供する。 To achieve the object of the present invention, the present invention provides a method for differentiating neural stem cells or neural progenitor cells into dopaminergic neurons, which comprises the step of introducing mRNA of a dopaminergic neuron-inducing transcription factor into neural stem cells or neural progenitor cells. provide a method.

本発明の一具現例において、前記ドーパミン神経細胞誘導転写因子は、Nurr1(Nuclear receptor related 1)またはFoxA2(Forkhead box protein A2)であり得る。 In one embodiment of the present invention, the dopaminergic neuron-inducing transcription factor may be Nurr1 (Nuclear receptor related 1) or FoxA2 (Forkhead box protein A2).

本発明の他の具現例において、前記mRNAの導入前に、神経幹細胞または神経前駆細胞を5日~10日間ドーパミン神経細胞への分化を誘導する段階をさらに含むことができる。 In another embodiment of the present invention, the method may further include the step of inducing differentiation of neural stem cells or neural progenitor cells into dopaminergic neurons for 5 to 10 days before introducing the mRNA.

本発明のさらに他の具現例において、前記mRNAは、神経幹細胞または神経前駆細胞のドーパミン神経細胞に1日~2日間隔で繰り返し導入され得る。 In yet another embodiment of the present invention, the mRNA may be repeatedly introduced into dopaminergic neurons of neural stem cells or neural progenitor cells at intervals of 1 to 2 days.

また、本発明は、前記分化方法により製造された、ドーパミン神経細胞を提供する。 The present invention also provides dopaminergic neurons produced by the above differentiation method.

また、本発明は、前記ドーパミン神経細胞を含む、パーキンソン病治療用細胞治療剤を提供する。 Further, the present invention provides a cell therapy agent for treating Parkinson's disease, which includes the dopamine neuron.

本発明によるドーパミン神経細胞への分化方法は、ドーパミン神経細胞誘導転写因子を、従来レトロウイルスベクターを利用した方法とは異なって遺伝子変形の危険がないmRNA形態で合成および導入することにより、成熟し且つ機能的な染色体安定型ドーパミン神経細胞を製造できるところ、パーキンソン病の治療のための臨床分野において有用に用いられる。 The method for differentiation into dopaminergic neurons according to the present invention synthesizes and introduces dopaminergic neuron-inducing transcription factors in the form of mRNA, which has no risk of genetic modification, unlike conventional methods using retroviral vectors. Furthermore, since functional chromosome-stable dopaminergic neurons can be produced, the present invention can be usefully used in the clinical field for the treatment of Parkinson's disease.

本発明によるドーパミン誘導転写因子mRNAを合成するための鋳型であるプラスミドDNAの構造である。1 is a structure of plasmid DNA that is a template for synthesizing dopamine-induced transcription factor mRNA according to the present invention. 前記プラスミドDNAが試験管内転写(in vitro transcription)を通じてmRNAに発現される過程を示す図である。FIG. 2 is a diagram illustrating a process in which the plasmid DNA is expressed into mRNA through in vitro transcription. 図2は、HEK293細胞またはラット神経幹細胞(rat NPCs)内に導入されたmRNAのタンパク質発現の如何を検証したものであり、図2aは、実験方法を示したものである。FIG. 2 shows the verification of protein expression of mRNA introduced into HEK293 cells or rat neural stem cells (rat NPCs), and FIG. 2a shows the experimental method. 前記細胞内にそれぞれドーパミン誘導転写因子であるNurr1またはFoxA2 mRNAを導入した後、免疫細胞化学染色法を用いてタンパク質発現水準を確認した結果およびcAMPによる発現水準増加を示す結果である。These are the results of confirming the protein expression level using immunocytochemical staining after introducing Nurr1 or FoxA2 mRNA, each of which is a dopamine-induced transcription factor, into the cells, and the results showing an increase in the expression level due to cAMP. 図3は、細胞内に導入されたmRNAによるタンパク質発現維持の如何を検証したものであり、図3aは、実験方法を示したものである。FIG. 3 shows how protein expression is maintained by mRNA introduced into cells, and FIG. 3a shows the experimental method. ラット神経幹細胞(rat NPCs)にNurr1 mRNAを導入した後、分化期間(diff.0,1,2,および3)中にタンパク質発現水準が減少することを示す結果である。The results show that after introducing Nurr1 mRNA into rat neural stem cells (rat NPCs), the protein expression level decreases during the differentiation period (diff.0, 1, 2, and 3). 図4は、細胞内にmRNAの繰り返し導入によるドーパミン神経細胞分化の如何を検証した結果であって、図4aは、実験方法を示したものである。FIG. 4 shows the results of verifying the differentiation of dopaminergic neurons by repeated introduction of mRNA into cells, and FIG. 4a shows the experimental method. ラット神経幹細胞(rat NPCs)にNurr1 mRNAを繰り返し導入(N mRNA)しながら、分化3日(diff.3)および7日目(diff.7)にドーパミン神経細胞への分化を確認したものであり、この際、FoxA2を追加発現させる場合、分化効率が有意に増加することを示す結果である。Nurr1 mRNA was repeatedly introduced (N mRNA) into rat neural stem cells (rat NPCs), and differentiation into dopaminergic neurons was confirmed on day 3 (diff.3) and day 7 (diff.7) of differentiation. At this time, the results show that when FoxA2 is additionally expressed, the differentiation efficiency is significantly increased. 図5は、細胞内にmRNAの繰り返し導入による影響を検証したものであって、図5aは、実験方法を示したものである。FIG. 5 shows the effect of repeated introduction of mRNA into cells, and FIG. 5a shows the experimental method. ラット神経幹細胞(rat NPCs)にNurr1 mRNAを繰り返し導入(N mRNA)した結果、分化7日(diff.7)目からドーパミン神経細胞の細胞死滅が誘導されることを示す結果である。These results show that repeated introduction of Nurr1 mRNA (N mRNA) into rat neural stem cells (rat NPCs) induces cell death of dopaminergic neurons from day 7 of differentiation (diff.7). 図6は、時間的制御を基盤とするmRNAの繰り返し導入によるドーパミン神経細胞の分化効率を検証した結果であって、図6aは、実験方法を示したものである。FIG. 6 shows the results of verifying the efficiency of differentiation of dopaminergic neurons by repeatedly introducing mRNA based on temporal control, and FIG. 6a shows the experimental method. 分化開始7日目からNurr1またはFoxA2 mRNAをそれぞれラット神経幹細胞(rat NPCs)に繰り返し導入しながら、分化期間(diff.10,16,22,および28)中に観察した結果、タンパク質発現の維持およびドーパミン神経細胞分化効率の増加を確認した結果である。Nurr1 or FoxA2 mRNA was repeatedly introduced into rat neural stem cells (rat NPCs) from day 7 of differentiation, and observations were made during the differentiation period (diff. 10, 16, 22, and 28), indicating that protein expression was maintained and These results confirmed an increase in dopaminergic neuron differentiation efficiency. 図7は、前記図6の方法で分化させたドーパミン神経細胞の特性および機能性を検証したものであって、図7aは、実験方法を示したものである。FIG. 7 shows the verification of the characteristics and functionality of dopaminergic neurons differentiated by the method shown in FIG. 6, and FIG. 7a shows the experimental method. ドーパミン神経細胞の特異的マーカー(TH、AADC、DAT、VMAT2、およびLmx1A)発現を確認した結果である。These are the results of confirming the expression of specific markers (TH, AADC, DAT, VMAT2, and Lmx1A) of dopaminergic neurons. ドーパミン神経細胞の特異的マーカー(TH、AADC、DAT、VMAT2、およびLmx1A)発現を確認した結果である。These are the results of confirming the expression of specific markers (TH, AADC, DAT, VMAT2, and Lmx1A) of dopaminergic neurons. ドーパミン分泌能を確認した結果である。This is the result of confirming dopamine secretion ability. 活性ナトリウム電流と活動電位発火(図7e)を確認した結果である。This is the result of confirming active sodium current and action potential firing (Figure 7e). レトロウイルスベクターを利用したNurr1遺伝子導入と比較して本発明によるNurr1 mRNA導入により分化したドーパミン神経細胞の染色体安定性を示す結果である。These results show the chromosomal stability of dopaminergic neurons differentiated by Nurr1 mRNA introduction according to the present invention compared to Nurr1 gene introduction using a retrovirus vector.

本発明者らは、神経幹細胞にドーパミン神経細胞誘導転写因子のmRNAを導入して、成熟し且つ機能的な染色体安定型ドーパミン神経細胞の分化が可能であることを知見することにより、本発明を完成した。 The present inventors have discovered that it is possible to differentiate into mature and functional chromosome-stable dopaminergic neurons by introducing mRNA of a dopaminergic neuron-inducing transcription factor into neural stem cells. completed.

これより、本発明は、神経幹細胞または神経前駆細胞にドーパミン神経細胞誘導転写因子のmRNAを導入する段階を含む、神経幹細胞または神経前駆細胞からドーパミン神経細胞への分化方法および前記分化方法により製造されたドーパミン神経細胞を提供する。 Accordingly, the present invention provides a method for differentiating neural stem cells or neural progenitor cells into dopaminergic neurons, which comprises the step of introducing mRNA of a dopaminergic neuron-inducing transcription factor into neural stem cells or neural progenitor cells, and a method for producing dopaminergic neurons by the differentiation method. Provides dopaminergic neurons.

本発明において使用される用語「分化」とは、初期段階の未分化状態の幹細胞が各組織としての特性を有するようになる過程を称するものであって、本発明の目的上、神経幹細胞または神経前駆細胞がドーパミン神経細胞としての特性を有するようになることを意味する。 The term "differentiation" used in the present invention refers to a process in which stem cells in an undifferentiated state at an early stage acquire the characteristics of each tissue. This means that the progenitor cells come to have characteristics as dopaminergic neurons.

本発明において使用される用語「神経幹細胞」は、神経細胞および神経膠細胞を生成し得る分化能を有する細胞を意味し、前記細胞は、40回以上、より好ましくは50回以上、最も好ましくは無制限的な細胞分裂を行うことができる。前記神経幹細胞は、多様な出処で収得することが可能であり、好ましくは、ヒト、マウス、またはラットのような哺乳類で得ることができ、より好ましくは、胚体、成体組織、胎児組織、胚性幹細胞(ES)に由来する。 The term "neural stem cell" as used in the present invention means a cell that has the ability to differentiate into nerve cells and glial cells, and said cell has been differentiated more than 40 times, more preferably more than 50 times, most preferably Capable of unlimited cell division. The neural stem cells can be obtained from various sources, preferably from mammals such as humans, mice, or rats, and more preferably from embryonic bodies, adult tissues, fetal tissues, embryos. Derived from sexual stem cells (ES).

また、「神経前駆細胞」は、成熟した神経細胞である子孫を生成し得る細胞であって、胚性幹細胞または成体幹細胞や神経幹細胞から分化させて使用してもよく、または、哺乳動物の中脳、大脳皮質または側面神経節隆起(線条体原基)から直接分離して使用することができる。 In addition, "neural progenitor cells" are cells that can produce progeny that are mature nerve cells, and may be used after being differentiated from embryonic stem cells, adult stem cells, or neural stem cells, or may be used by differentiation from embryonic stem cells, adult stem cells, or neural stem cells, or It can be used by directly separating it from the brain, cerebral cortex, or lateral ganglionic eminence (striatal primordium).

本発明において使用される用語「ドーパミン神経細胞」は、チロシンヒドロキシラーゼ(TH)を発現する神経細胞を意味する。ドーパミン神経細胞は、中脳黒質に特異的に位置し、生体内で線条体、辺縁系および新皮質を刺激して、姿勢反射、運動、および補償関連挙動を調節する。特に、実際に体内でドーパミン性神経細胞として機能するためには、中脳特性を示さなければならない。 The term "dopamine neuron" as used in the present invention refers to a neuron that expresses tyrosine hydroxylase (TH). Dopaminergic neurons are specifically located in the substantia nigra of the midbrain and innervate the striatum, limbic system, and neocortex in vivo to modulate postural reflexes, locomotion, and compensation-related behaviors. In particular, in order to actually function as dopaminergic neurons in the body, they must exhibit midbrain characteristics.

本発明において、前記ドーパミン神経細胞誘導転写因子は、Nurr1(Nuclear receptor related 1)またはFoxA2(Forkhead box protein A2)であり得る。 In the present invention, the dopamine neuron-inducing transcription factor may be Nurr1 (Nuclear receptor related 1) or FoxA2 (Forkhead box protein A2).

本発明によるNurr1またはFoxA2を暗号化する各核酸は、当業界において公知されたNurr1またはFoxA2を暗号化する塩基配列を有するものであれば、制限なしに使用され得る。 Each nucleic acid encoding Nurr1 or FoxA2 according to the present invention can be used without restriction as long as it has a base sequence encoding Nurr1 or FoxA2 known in the art.

前記Nurr1は、中脳ドーパミン性神経細胞で発現されるステロイド/甲状腺ホルモン受容体に属する転写因子であって、ドーパミン性神経細胞で発現されて中脳ドーパミン性神経細胞の発生に役割をするものと考えられている。Nurr1の変移は、パーキンソン病、統合失調症、および躁鬱症を含むドーパミン性機能異常に関連した障害と関連があり、前記遺伝子の発現調節異常は、リューマチ関節炎に関連していると知られている。 Nurr1 is a transcription factor that belongs to the steroid/thyroid hormone receptor expressed in midbrain dopaminergic neurons, and is expressed in dopaminergic neurons and plays a role in the development of midbrain dopaminergic neurons. It is considered. Alterations in Nurr1 are associated with disorders associated with dopaminergic dysfunction, including Parkinson's disease, schizophrenia, and manic depression, and dysregulated expression of this gene is known to be associated with rheumatoid arthritis. .

前記FoxA2は、中枢神経系で発現される転写因子であって、中脳ドーパミン性神経細胞発達との関連性はほとんど知られていないが、ドーパミン神経細胞の発達および維持に必要な転写因子であると知られている。本発明の実施例では、前記Nurr1 mRNAのみを神経前駆細胞に単独で導入する場合に比べて、FoxA2を一緒に導入したとき、ドーパミン神経細胞への分化効率が顕著に増加することが明らかにされた(図4b参照)。 FoxA2 is a transcription factor expressed in the central nervous system, and although little is known about its relationship with midbrain dopaminergic neuron development, it is a transcription factor necessary for the development and maintenance of dopaminergic neurons. It is known that In an example of the present invention, it was revealed that when Nurr1 mRNA was introduced into neural progenitor cells alone, the efficiency of differentiation into dopaminergic neurons was significantly increased when FoxA2 was introduced together with the Nurr1 mRNA. (See Figure 4b).

本発明において、前記mRNAの導入は、発現しようとする遺伝子をメッセンジャー NAで合成させて伝達する方法を意味する。これは、既存の塩基成分であるCTP、UTPでなく、それぞれ変形された5-メチルシチジン、プソイドウリジンを含ませてmRNAが細胞に導入されたとき、先天性の抗ウイルス免疫反応に対応し得るようにし、このようなmRNAの導入を用いた遺伝子発現方法は、簡単であり、遺伝子変形の危険性がなく、高い遺伝子制御による立派な転換効率であるという長所を有する。 In the present invention, the introduction of mRNA refers to a method of synthesizing a gene to be expressed using messenger NA and transmitting the gene. This is because when mRNA is introduced into cells, it contains modified 5-methylcytidine and pseudouridine instead of the existing base components CTP and UTP, so that it can respond to the innate antiviral immune response. However, such a gene expression method using mRNA introduction has the advantages of being simple, without the risk of genetic modification, and having excellent conversion efficiency due to high gene control.

前記mRNAは、mRNAを合成するように製作されたプラスミドDNAを試験管内転写(in vitro transcription)を通じて合成および製造することができる。 The mRNA can be synthesized and manufactured through in vitro transcription of plasmid DNA designed to synthesize mRNA.

本発明において前記ドーパミン神経細胞誘導転写因子であるNurr1および/またはFoxA2 mRNAの導入前に、神経幹細胞または神経前駆細胞を5日~10日間ドーパミン神経細胞への分化を誘導する段階をさらに含むことができ、前記mRNAを神経幹細胞または神経前駆細胞に1日~2日、好ましくは1日間隔で繰り返し導入することにより、ドーパミン神経細胞への分化を成功裏に誘導することができる。 The present invention may further include a step of inducing differentiation of neural stem cells or neural progenitor cells into dopaminergic neurons for 5 to 10 days before introducing the dopaminergic neuron-inducing transcription factors Nurr1 and/or FoxA2 mRNA. By repeatedly introducing the mRNA into neural stem cells or neural progenitor cells at intervals of 1 to 2 days, preferably at intervals of 1 day, differentiation into dopaminergic neurons can be successfully induced.

本発明において、前記mRNAの細胞内導入は、DNA-カルシウム沈殿法、リポソームを利用する方法、ポリアミン系を使用する方法、エレクトロポレーション法、レトロウイルスを利用する方法、アデノウイルスを利用する方法など当該分野において公知となっている遺伝子の細胞内導入技術を当業者が適宜選択して使用することができ、本発明では、好ましくはリポソーム媒介方法を利用した。 In the present invention, the mRNA can be introduced into cells by a DNA-calcium precipitation method, a method using liposomes, a method using a polyamine system, an electroporation method, a method using a retrovirus, a method using an adenovirus, etc. Those skilled in the art can appropriately select and use techniques for introducing genes into cells known in the art, and in the present invention, preferably, a liposome-mediated method was used.

本発明者らは、実施例を通じて前記mRNA導入法を用いたドーパミン神経細胞の分化効率および分化したドーパミン神経細胞の機能性を実験的に確認した。 Through Examples, the present inventors experimentally confirmed the efficiency of differentiation of dopamine neurons and the functionality of differentiated dopamine neurons using the mRNA introduction method.

本発明の一実施例では、HEK293細胞および神経幹細胞にそれぞれNurr1またはFoxA2 mRNAを導入した結果、タンパク質が発現されることを確認した(実施例2参照)。また、前記発現が維持されるかを検証した結果、分化1~2日内にタンパク質水準が減少することを観察することにより、前記mRNAを繰り返し導入する方法を利用することにより、分化7日目まで分化したドーパミン神経細胞を確認した(実施例3参照)。 In one example of the present invention, it was confirmed that the protein was expressed as a result of introducing Nurr1 or FoxA2 mRNA into HEK293 cells and neural stem cells, respectively (see Example 2). In addition, as a result of verifying whether the above expression was maintained, we observed that the protein level decreased within 1 to 2 days of differentiation. Differentiated dopamine neurons were confirmed (see Example 3).

本発明の他の実施例では、前記方法で分化を進めた結果、7日以後にドーパミン神経細胞の死滅が誘導されることを観察し、これを解決するために、時間的制御を基盤とするmRNA導入法を利用した。より具体的に、神経幹細胞のドーパミン神経細胞へ分化開始7日後にドーパミン神経細胞誘導転写因子のmRNAを細胞に繰り返し導入した結果、前記転写因子のタンパク質発現の維持期間およびドーパミン神経細胞数が増加したことを確認した(実施例4を参照)。 In another embodiment of the present invention, it was observed that the death of dopaminergic neurons was induced after 7 days as a result of promoting differentiation by the above method, and in order to solve this problem, a method based on temporal control was used. An mRNA introduction method was used. More specifically, as a result of repeatedly introducing mRNA of a dopamine neuron-inducing transcription factor into the cells 7 days after the start of differentiation of neural stem cells into dopamine neurons, the maintenance period of protein expression of the transcription factor and the number of dopamine neurons increased. This was confirmed (see Example 4).

本発明のさらに他の実施例では、本発明の分化方法で製造されたドーパミン神経細胞の特性および機能性を検証した結果、ドーパミン神経細胞の特異的マーカーの発現、ドーパミン分泌、および電気生理学的特性を確認することにより、成熟し且つ機能性のドーパミン神経細胞への分化が成功裏に行われたことを確認した(実施例5を参照)。 In yet another embodiment of the present invention, as a result of verifying the characteristics and functionality of dopaminergic neurons produced by the differentiation method of the present invention, the expression of specific markers of dopaminergic neurons, dopamine secretion, and electrophysiological properties By confirming this, it was confirmed that differentiation into mature and functional dopaminergic neurons was successfully performed (see Example 5).

本発明のさらに他の実施例では、本発明のmRNA導入方法および従来レトロウイルスベクターを利用した遺伝子導入方法を用いてそれぞれドーパミン神経細胞への分化を誘導した結果、レトロウイルスベクターとは異なって、mRNAを導入した場合、前記神経細胞の染色体安定性が維持されることを確認した(実施例6を参照)。 In still another embodiment of the present invention, differentiation into dopaminergic neurons was induced using the mRNA introduction method of the present invention and a conventional gene introduction method using retrovirus vectors, and as a result, unlike retrovirus vectors, It was confirmed that the chromosomal stability of the neurons was maintained when mRNA was introduced (see Example 6).

前記実施例から本発明の分化方法により染色体安定性が維持される成熟した機能性のドーパミン神経細胞を製造できることがわかる。 The above examples demonstrate that the differentiation method of the present invention can produce mature, functional dopaminergic neurons that maintain chromosome stability.

本発明の他の様態において、本発明は、ドーパミン神経細胞を含むパーキンソン病治療用細胞治療剤を提供する。 In another aspect of the present invention, the present invention provides a cell therapeutic agent for treating Parkinson's disease that includes dopaminergic neurons.

前記細胞治療剤は、ヒトから分離、培養および特殊な機作を通じて製造された細胞および組織にて治療、診断および予防を目的として使用される医薬品(米国FDA規定)であって、細胞あるいは組織の機能を復元させるために、生きている自己、同種、または異種細胞を体外で増殖、選別したり、他の方法で細胞の生物学的特性を変化させるなどの一連の行為を通じて治療、診断および予防を目的として使用される医薬品を指す。細胞治療剤は、細胞の分化程度によって大きく体細胞治療剤と、幹細胞治療剤とに分類される。 The cell therapy agent is a drug (as defined by the US FDA) that is used for the purpose of treatment, diagnosis, and prevention using cells and tissues that are isolated, cultured, and produced from humans through special mechanisms. Treatment, diagnosis and prevention through a range of actions such as growing living autologous, allogeneic, or xenogeneic cells in vitro, sorting them, or otherwise altering the biological properties of cells to restore function. refers to pharmaceuticals used for this purpose. Cell therapeutic agents are broadly classified into somatic cell therapeutic agents and stem cell therapeutic agents, depending on the degree of cell differentiation.

以下、本発明の理解を助けるために好適な実施例を提示する。しかし、下記の実施例は、本発明をより容易に理解するために提供されるものに過ぎず、下記実施例により本発明の内容が限定されるものではない。 In the following, preferred embodiments are presented to aid understanding of the present invention. However, the following examples are merely provided for easier understanding of the present invention, and the content of the present invention is not limited by the following examples.

実施例1.実験準備および実験方法
1-1.ラット神経幹細胞(rat NPC)の分離
実験動物は、韓国漢陽大学校の実験動物運営委員会(IACUC、2016-0194A)の指針に基づいて飼育および処理した。Rat NPC(Neural precursor cells)は、Sprague-Dawley(SD)ラット(DaeHan BioLink)の胎齢14.5日の胎児の大脳皮質から得た。以後、ラットの大脳皮質組織から分離した神経幹細胞を37℃、5%CO2で15mg/mLのポリ-L-オルニチン(poly-L-ornithine;PLO、Sigma-Aldrich)および1mg/mLのフィブロネクチン(fibronectin;FN,Sigma-Aldrich)でコーティングされた培養ディッシュ上で培養した。
Example 1. Experiment preparation and experimental method 1-1. Isolation of Rat Neural Stem Cells (rat NPCs) Experimental animals were raised and treated according to the guidelines of the Laboratory Animal Management Committee (IACUC, 2016-0194A) of Hanyang University, Korea. Rat NPCs (Neural precursor cells) were obtained from the cerebral cortex of a 14.5-day-old fetus of a Sprague-Dawley (SD) rat (DaeHan BioLink). Thereafter, neural stem cells isolated from rat cerebral cortex tissue were treated with 15 mg/mL poly-L-ornithine (PLO, Sigma-Aldrich) and 1 mg/mL fibronectin at 37°C and 5% CO2. ; FN, Sigma-Aldrich) coated culture dishes.

次に、前記ラット由来神経幹細胞を20ng/mLの塩基性線維芽細胞成長因子(basic fibroblast growth factor;bFGF,R&D Systems)が補充されたN2培地で増殖させ、0.2mMのアスコルビン酸(Sigma-Aldrich)、20ng/mLの脳由来神経栄養因子(brain-derived neurotrophic factor;BDNF,R&D ystems)、20ng/mLの膠細胞由来神経栄養因子(glial cell line-derived neurotrophic factor;GDNF,R&D Systems)および250mg/mLのジブチリル-cAMP(db-cAMP,Sigma-Aldrich)が補充されたN2培地で分化させた。また、合成されたmRNAをトランスフェクションする前にdb-cAMP、10mMのホルスコリン(Sigma-Aldrich)および5mMのNKH477(Sigma-Aldrich)のようなcAMP誘導体をラット由来神経幹細胞に処理した。以後、合成されたmRNAをトランスフェクションして細胞内に導入した後、200ng/mLのB18R(インターフェロン-ガンマ抑制剤、eBioscience)を添加した。 Next, the rat-derived neural stem cells were grown in N2 medium supplemented with 20 ng/mL basic fibroblast growth factor (bFGF, R&D Systems), and 0.2 mM ascorbic acid (Sigma- Aldrich), 20 ng/mL brain-derived neurotrophic factor (BDNF, R&D systems), 20 ng/mL glial cell line-derived neurotrophic factor (BDNF, R&D systems), ic factor; GDNF, R&D Systems) and Differentiation was performed in N2 medium supplemented with 250 mg/mL dibutyryl-cAMP (db-cAMP, Sigma-Aldrich). In addition, rat-derived neural stem cells were treated with cAMP derivatives such as db-cAMP, 10 mM forskolin (Sigma-Aldrich), and 5 mM NKH477 (Sigma-Aldrich) before transfecting the synthesized mRNA. Thereafter, the synthesized mRNA was transfected and introduced into the cells, and then 200 ng/mL of B18R (interferon-gamma inhibitor, eBioscience) was added.

1-2.プラスミド構造体
mRNA合成のためのベクターであるpcDNA/UTR120Aは、pcDNA3.1(+)(Invitrogen)プラスミドを利用して製作した。より具体的に、pcDNA3.1+の一部の制限酵素部位(896-930bp、980-992bp)を制限酵素NheI、BamHI、NotIおよびXbaIに代替し、合成された5’UTR、5’UTR逆方向、3’UTR、3’UTR逆方向、120pAおよび120pA逆方向オリゴマー(IDT)をアニーリングし、pcDNA3.1(+)のT7プロモーターの後に挿入した。また、eGFP、FLAGが接合されたNurr1およびHAが接合されたFoxA2遺伝子は、pcDNA/UTR120Aの5’UTRと3’UTRとの間に挿入した。
1-2. pcDNA/UTR120A, a vector for plasmid construct mRNA synthesis, was constructed using the pcDNA3.1(+) (Invitrogen) plasmid. More specifically, some restriction enzyme sites (896-930bp, 980-992bp) of pcDNA3.1+ were replaced with restriction enzymes NheI, BamHI, NotI and XbaI, and the synthesized 5'UTR, 5'UTR reverse direction , 3′UTR, 3′UTR reverse, 120pA and 120pA reverse oligomer (IDT) were annealed and inserted after the T7 promoter of pcDNA3.1(+). Furthermore, the eGFP, FLAG-conjugated Nurr1, and HA-conjugated FoxA2 genes were inserted between the 5'UTR and 3'UTR of pcDNA/UTR120A.

1-3.mRNA合成
eGFP/UTR120A、Nurr1(FLAG)/UTR120AおよびFoxA2(HA)/UTR120A構造物をEcoRV(Takara Bio)制限酵素を利用して線形化させた後、これを鋳型としてMEGAscript T7 Kit(Ambion)を利用してmRNA合成を進めた。以後、転写混合物を37℃で2時間試験管内で培養し、変形されたリボヌクレオチドの5’-メチルシチジンおよびプソイドウリジン(Trilink Bio technologies)を添加して変形されたmRNAを生産した。次に、DNaseを37℃で15分間処理し、合成されたmRNAにScriptCap m7Gキャッピングシステム、2’-O-メチルトランスフェラーゼおよびポリ(A)ポリメラーゼ(Epicenter、現在CELL SCRIPTから利用可能)を添加して、5’キャッピングおよびポリAテーリングを行った。最後に、mRNAを2.5Mのアンモニウムアセテート(Ambion)で沈殿させ、RNA貯蔵溶液(Ambion)に溶解させた後、-70℃で冷凍保管した。
1-3. After linearizing the mRNA synthesis eGFP/UTR120A, Nurr1 (FLAG)/UTR120A, and FoxA2 (HA)/UTR120A constructs using EcoRV (Takara Bio) restriction enzymes, we used the MEGAscript T7 Kit (Ambion) as a template. We utilized this to proceed with mRNA synthesis. Thereafter, the transcription mixture was incubated in a test tube at 37° C. for 2 hours, and modified ribonucleotides 5'-methylcytidine and pseudouridine (Trilink Bio technologies) were added to produce modified mRNA. DNase was then treated for 15 min at 37°C and the synthesized mRNA was added with ScriptCap m7G capping system, 2'-O-methyltransferase and poly(A) polymerase (Epiccenter, currently available from CELL SCRIPT). , 5' capping and polyA tailing. Finally, mRNA was precipitated with 2.5 M ammonium acetate (Ambion), dissolved in RNA storage solution (Ambion), and then stored frozen at -70°C.

1-4.mRNAトランスフェクション
トランスフェクションの一日前に抗生剤が含まれていない増殖培地が入っているPLO/FNでコーティングされた24-ウェルプレートのスライドガラスの上にラット大脳皮質由来神経幹細胞(NPC)(50,000cells/φ12mm)をシーディングした。以後、合成されたmRNAとトランスフェクション試薬であるリポフェクタミン2000(Invitrogen)をOpti-MEM培地(Invitrogen)でそれぞれ希釈し、室温で5分間放置した後、前記二つの溶液を混合し、室温で20分間培養した。培養された混合物を前記ラット由来神経幹細胞に処理し、3時間後に混合物を増殖培地または組換えタンパク質B18Rが添加された分化培地に交替した。
1-4. mRNA Transfection One day before transfection, rat cerebral cortex-derived neural stem cells (NPCs) (50 ,000 cells/φ12 mm). Thereafter, the synthesized mRNA and the transfection reagent Lipofectamine 2000 (Invitrogen) were each diluted with Opti-MEM medium (Invitrogen), left at room temperature for 5 minutes, and then the two solutions were mixed and incubated at room temperature for 20 minutes. Cultured. The cultured mixture was treated with the rat-derived neural stem cells, and 3 hours later, the mixture was replaced with a proliferation medium or a differentiation medium supplemented with recombinant protein B18R.

1-5.RT-PCRおよびリアルタイムPCR
cDNAを合成するために、TRI REAGENT(Molecular Research Center)を使用してラット由来神経幹細胞からRNAを抽出した後、抽出された5ugのトータルRNAに対しSuperscript Kit(Invitrogen)を使用してcDNAを合成した。以後、合成されたcDNAを増幅に使用し、1.5%のアガロースゲル電気泳動を通じてアンプリコンの同一性を確認した。
1-5. RT-PCR and real-time PCR
To synthesize cDNA, RNA was extracted from rat-derived neural stem cells using TRI REAGENT (Molecular Research Center), and then cDNA was synthesized using Superscript Kit (Invitrogen) from 5 ug of the extracted total RNA. did. Thereafter, the synthesized cDNA was used for amplification, and the identity of the amplicon was confirmed through 1.5% agarose gel electrophoresis.

リアルタイムPCR分析は、従来の方法により行い、iQ SYBR Green Supermix(Bio-Rad)を使用してCFX96リアルタイムシステムで実施し、前記リアルタイムPCR反応条件は、60℃のアニーリング温度と45サイクル反復に設定した。前記RT-PCRおよびリアルタイムPCRに使用したプライマー配列は、下記表1および表2にそれぞれ示した。 Real-time PCR analysis was performed by conventional methods and performed on a CFX96 real-time system using iQ SYBR Green Supermix (Bio-Rad), and the real-time PCR reaction conditions were set to an annealing temperature of 60 °C and 45 cycle repetitions. . The primer sequences used in the RT-PCR and real-time PCR are shown in Tables 1 and 2 below, respectively.



1-6.免疫細胞化学染色法(Immunocytochemistry)
培養された細胞を4%のホルムアルデヒド(Sigma-Aldrich)で固定させた後、前記固定された細胞に0.1%のBSA/PBS、10%の正常ヤギ血清(NGS,Pel-Freez)および0.03%のトリトンX-100(Sigma-Aldrich)を1時間処理した。以後、1次抗体を処理して4℃で一晩培養した後、ビオチンが接合された2次抗体(Vector Laboratories)または蛍光(DTAF,RhodaminまたはCy3)が標識された2次抗体(Jackson ImmunoResearch Labora tories)を処理した。次に、DAPI(Vector Laboratories)マウンティング培地を含むVECTASHIELDでスライドガラスをマウンティングし、染色された細胞を落射蛍光顕微鏡または共焦点顕微鏡で視覚化した。また、チロシンヒドロキシラーゼを発現する細胞(TH+)繊維の長さは、Leica Application Suite(LAS)イメージ分析パッケージを使用して測定した。
1-6. Immunocytochemistry
After fixing the cultured cells with 4% formaldehyde (Sigma-Aldrich), the fixed cells were treated with 0.1% BSA/PBS, 10% normal goat serum (NGS, Pel-Freez), and 0.1% BSA/PBS. Treated with .03% Triton X-100 (Sigma-Aldrich) for 1 hour. Thereafter, the primary antibody was treated and incubated overnight at 4°C, followed by a biotin-conjugated secondary antibody (Vector Laboratories) or a fluorescent (DTAF, Rhodamine or Cy3) labeled secondary antibody (Jackson ImmunoResearch Laboratories). tories) were treated. The slides were then mounted with VECTASHIELD containing DAPI (Vector Laboratories) mounting medium, and the stained cells were visualized with epifluorescence or confocal microscopy. Additionally, the length of cell fibers expressing tyrosine hydroxylase (TH+) was measured using the Leica Application Suite (LAS) image analysis package.

1-7.組換えレトロウイルスの生産
本発明者らは、以前の研究で開示したレトロウイルスベクターpCLを使用した。HAが接合されたFoxA2または空いているレトロウイルス構造物を暗号化するレトロウイルス構造体をリポフェクタミン2000を使用して293GPGパッケージング細胞にトランスフェクションした。72時間後、ウイルスが含まれた上清液を10日間収集し、2mg/mLのポリブレン(hexadimethrine bromide,Sigma-Aldrich)をウイルス上清液に添加した後、-70℃で保管した。
1-7. Production of recombinant retroviruses We used the retroviral vector pCL, which was disclosed in a previous study. Retroviral constructs encoding HA-conjugated FoxA2 or vacant retroviral constructs were transfected into 293GPG packaging cells using Lipofectamine 2000. After 72 hours, the virus-containing supernatant was collected for 10 days, and 2 mg/mL of polybrene (hexadimethrine bromide, Sigma-Aldrich) was added to the virus supernatant and then stored at -70°C.

1-8.DA分泌の分析
ドーパミン(Dopamine;DA)分泌の分析は、Dopamine Research ELISA Kit(Labor Diagnostika Nord)を使用して製造者の指示に従って行った。但し、DAが分泌された上清液を24時間培養したり、56mMのKClで30分間刺激させた二つの条件下に収集した。DA水準は、標準制御で生成された標準曲線をベースに計算した。
1-8. Analysis of DA secretion Analysis of dopamine (DA) secretion was performed using the Dopamine Research ELISA Kit (Labor Diagnostika Nord) according to the manufacturer's instructions. However, the supernatant in which DA was secreted was collected under two conditions: culture for 24 hours and stimulation with 56 mM KCl for 30 minutes. The DA level was calculated based on the standard curve generated with the standard control.

1-9.電気生理学的分析
ラット由来神経幹細胞からEPC10USB増幅器(HEKA Elektronik)を使用して室温(22±1℃)で全体細胞パッチクランプ記録を行った。140mMのK-グルコネート、5mMのジ-トリス-ホスホクレアチン、5mMのNaCl、4mMのMgATP、0.4mMのNa2GTP、15mMのHEPES、および2.5mMのNa-ピルベートで構成された溶液で充填するとき、ピペットの抵抗は4-8MUであり、KOHでpH7.3に調整した。直列抵抗は、70%~80%で補償され、電流は、2kHzで低域通過フィルタリングされ、10kHzでサンプリングされ、60mVの電位を示した。水槽溶液は、95%のO2および5%のCO2で飽和された124mMのNaCl、26mMのNaHCO3、3.2mMのKCl、2.5mMのCaCl2、1.3mMのMgCl2、1.25mMのNaHPO4および10mMのグルコースを含む。
1-9. Electrophysiological analysis Whole-cell patch-clamp recordings were performed from rat-derived neural stem cells at room temperature (22±1°C) using an EPC10 USB amplifier (HEKA Elektronik). When filling with a solution consisting of 140mM K-gluconate, 5mM di-Tris-phosphocreatine, 5mM NaCl, 4mM MgATP, 0.4mM Na2GTP, 15mM HEPES, and 2.5mM Na-pyruvate. , the resistance of the pipette was 4-8 MU, and the pH was adjusted to 7.3 with KOH. The series resistance was compensated by 70%-80% and the current was low-pass filtered at 2kHz and sampled at 10kHz, giving a potential of 60mV. The aquarium solution was 124mM NaCl, 26mM NaHCO3, 3.2mM KCl, 2.5mM CaCl2, 1.3mM MgCl2, 1.25mM NaHPO4 and 10mM saturated with 95% O2 and 5% CO2. of glucose.

1-10.細胞数の測定および統計分析
細胞数の測定は、実験条件当たり3個のウェルに対してウェル当たり顕微鏡上の10~15個の区域を無作為に選択して実施した。各実験は、独立して最小3回行った
1-10. Cell Number Determination and Statistical Analysis Cell number measurements were performed by randomly selecting 10-15 microscopic areas per well for three wells per experimental condition. Each experiment was performed independently a minimum of three times.

すべての実験結果は、平均±標準誤差(mean±SE)で表示し、データの統計的分析には、対応のある標本t検定法を使用した。 All experimental results are expressed as mean±SE, and the paired sample t-test method was used for statistical analysis of the data.

実施例2.合成されたドーパミン誘導転写因子mRNAの細胞内導入によるタンパク質発現の確認
本発明者らは、前記実施例1-1の方法で分離したラット大脳皮質由来神経幹細胞をドーパミン神経細胞に分化させるために、ドーパミン誘導転写因子のタンパク質発現手段にて前記転写因子のmRNAを合成して、前記神経幹細胞内に導入しようとした。
Example 2. Confirmation of protein expression by intracellular introduction of synthesized dopamine-induced transcription factor mRNA The present inventors conducted the following steps in order to differentiate rat cerebral cortex-derived neural stem cells isolated by the method of Example 1-1 into dopaminergic neurons. An attempt was made to synthesize the mRNA of the dopamine-induced transcription factor using protein expression means and introduce it into the neural stem cells.

このために、まず、ドーパミン誘導転写因子を安定的に発現するmRNAを合成するために、図1aに示した構造のプラスミドDNAをそれぞれ製作した。具体的に、前記プラスミドDNAは、それぞれ試験管内転写(in vitro transcription)のためのT7プロモーター(pT7)、mRNAの安定性のためのUTR(5’UTRおよび3’UTR)およびポリAテール(120pA)、発現させようとする遺伝子(対照群:eGFP、ドーパミン誘導転写因子:Nurr1またはFoxA2)が含まれている。前記のような構造を有するプラスミドDNAは、図1bに示したように、制限酵素を利用した切断により線形を有するようになり(Cut DNA Template with Restriction enzyme)、in vitro転写過程とキャッピング、ポリAテーリング過程を通じて安定したmRNAで合成される。 To this end, first, in order to synthesize mRNA that stably expresses the dopamine-induced transcription factor, plasmid DNAs having the structure shown in FIG. 1a were prepared. Specifically, the plasmid DNA contains a T7 promoter (pT7) for in vitro transcription, a UTR (5'UTR and 3'UTR) and a poly A tail (120pA) for mRNA stability, respectively. ), and the gene to be expressed (control group: eGFP, dopamine-induced transcription factor: Nurr1 or FoxA2). As shown in Figure 1b, the plasmid DNA having the above structure becomes linear by cutting it using a restriction enzyme (Cut DNA Template with Restriction enzyme), and undergoes the in vitro transcription process, capping, and polyA. Stable mRNA is synthesized through the tailing process.

本発明者らは、前記過程を通じて合成されたmRNAが実際に細胞内でタンパク質に発現されるかを検証するために、前記実施例1-4の方法により細胞内高い導入効率を有するHEK293細胞およびラット由来神経幹細胞(rat NPCsまたはrNPCs)に前記合成されたmRNAそれぞれをトランスフェクションし、前記実施例1-6の免疫細胞化学染色法により各タンパク質の発現水準を観察した。 In order to verify whether the mRNA synthesized through the above process is actually expressed as protein within cells, the present inventors used HEK293 cells and HEK293 cells, which have a high intracellular introduction efficiency, by the method of Examples 1-4 above. Rat-derived neural stem cells (rat NPCs or rNPCs) were transfected with each of the synthesized mRNAs, and the expression level of each protein was observed using the immunocytochemical staining method described in Examples 1-6.

図2aの過程により実験した結果、図2bに示したように、ただ一度のmRNA導入だけでドーパミン誘導転写因子であるNURR1およびFOXA2タンパク質が発現されることを観察した。また、細胞内mRNAの安定性と半減期を増加させるために、サイクリックAMP(cAMP)を共に添加した結果、タンパク質の発現水準が有意に増加することを確認した。 As a result of the experiment according to the process shown in FIG. 2a, as shown in FIG. 2b, it was observed that NURR1 and FOXA2 proteins, which are dopamine-induced transcription factors, were expressed by just one introduction of mRNA. Furthermore, in order to increase the stability and half-life of intracellular mRNA, it was confirmed that the protein expression level was significantly increased when cyclic AMP (cAMP) was added.

実施例3.合成されたmRNA導入による細胞内タンパク質発現維持の検証
前記実施例2の結果に加えて細胞内に導入されたmRNAによるタンパク質発現が維持されるか否かを検証するために、前記実施例2と同じ方法でドーパミン誘導転写因子であるNurr1のmRNAをラットの神経幹細胞に導入した後、図3aに示したように、分化期間(diff.1~diff.3)中にタンパク質発現水準を観察した。
Example 3. Verification of maintenance of intracellular protein expression by introduction of synthesized mRNA In addition to the results of Example 2, in order to verify whether protein expression by mRNA introduced into cells is maintained, After introducing Nurr1 mRNA, a dopamine-induced transcription factor, into rat neural stem cells using the same method, the protein expression level was observed during the differentiation period (diff.1 to diff.3), as shown in FIG. 3a.

その結果、図3bに示したように、分化3日目(diff.3)まで観察したとき、細胞内でmRNAの分解が速いため、ドーパミン誘導転写因子であるNURR1タンパク質の発現は1~2日程度のみ維持されることを確認した。 As a result, as shown in Figure 3b, when observed up to the third day of differentiation (diff.3), the expression of NURR1 protein, a dopamine-induced transcription factor, decreased for 1 to 2 days due to rapid mRNA degradation within the cells. It was confirmed that only a certain degree was maintained.

このような問題点を解決するために、本発明者らは、図4aに示したように、細胞内タンパク質の発現が維持されるように、Nurr1 mRNAを1日間隔で繰り返しトランスフェクションした後、分化3日目(diff.3)および7日目(diff.7)に免疫細胞化学染色法でドーパミン神経細胞への分化の如何を観察した。 To solve these problems, the present inventors repeatedly transfected Nurr1 mRNA at 1-day intervals to maintain intracellular protein expression, as shown in Figure 4a. On the third day (diff.3) and the seventh day (diff.7) of differentiation, the differentiation into dopaminergic neurons was observed using immunocytochemical staining.

その結果、図4bに示したように、Nurr1 mRNAを細胞内に繰り返し導入(N mRNA TF)した結果、ドーパミン神経細胞の特異的なマーカーであるチロシンヒドロキシラーゼ(Tyrosine Hydroxylase;TH)を発現するドーパミン神経細胞に分化することを確認し、これにコアクチベーターであるFoxA2 RNAをレトロウイルスを利用して細胞に追加に導入した場合(N mRNA+F mRNA)、ドーパミン神経細胞への分化が顕著に増加したことを確認した。 As a result, as shown in Figure 4b, as a result of repeatedly introducing Nurr1 mRNA into cells (N mRNA TF), dopamine neurons expressing tyrosine hydroxylase (TH), a specific marker for dopamine neurons, When it was confirmed that the cells differentiated into neurons, and the coactivator FoxA2 RNA was additionally introduced into the cells using a retrovirus (N mRNA + F mRNA), differentiation into dopaminergic neurons significantly increased. It was confirmed.

実施例4.時間的制御を基盤とする細胞内合成mRNAの繰り返し導入およびその効果の検証
本発明者らは、前記実施例3のように、ラット神経幹細胞にドーパミン誘導転写因子mRNAを繰り返し導入する場合、細胞に影響を及ぼすかを検証するために、図5aに示したように、Nurr1 mRNAを繰り返してトランスフェクションしながら、分化10日目(diff.10)まで観察した。
Example 4. Repeated introduction of intracellularly synthesized mRNA based on temporal control and verification of its effects The present inventors found that when dopamine-induced transcription factor mRNA is repeatedly introduced into rat neural stem cells as in Example 3, In order to verify the effect, Nurr1 mRNA was repeatedly transfected and observed until differentiation day 10 (diff.10), as shown in FIG. 5a.

その結果、図5bに示したように、mRNAの繰り返し導入の影響でドーパミン神経細胞分化7日以後にはドーパミン神経細胞の細胞死滅が誘導されて、9~10日以後には前記細胞がほとんど観察されないことを確認した。 As a result, as shown in Figure 5b, due to the repeated introduction of mRNA, cell death of dopamine neurons was induced after 7 days of dopamine neuron differentiation, and after 9 to 10 days, most of the cells were observed. We have confirmed that this is not the case.

このような問題点を解決するために、本発明者らは、ドーパミン神経細胞が存在する中脳においてNurr1の発現は、遅延発現パターンを有することを確認し、ドーパミン誘導転写因子であるNurr1およびFoxA2の時間的制御のために遅延発現を試みた。より具体的に、図6aに示したように、ラット神経幹細胞のドーパミン神経細胞への分化開始後7日目からドーパミン誘導転写因子のmRNAを細胞内に繰り返し導入し、分化10日(diff.10)、16日(diff.16)、22日(diff.22)、および28日目(diff.28)にドーパミン神経細胞への分化程度を観察した。 In order to solve these problems, the present inventors confirmed that Nurr1 expression has a delayed expression pattern in the midbrain where dopamine neurons exist, and that Nurr1 and FoxA2, which are dopamine-induced transcription factors, have a delayed expression pattern. We attempted delayed onset for temporal control. More specifically, as shown in Figure 6a, dopamine-induced transcription factor mRNA was repeatedly introduced into the cells starting 7 days after the start of differentiation of rat neural stem cells into dopamine neurons, and 10 days after differentiation (diff. 10). ), the degree of differentiation into dopaminergic neurons was observed on day 16 (diff.16), day 22 (diff.22), and day 28 (diff.28).

その結果、図6bに示したように、NURR1タンパク質の発現水準を測定することにより、前記タンパク質発現の維持期間がさらに増加したことを確認し、THを発現する細胞(TH+)の数およびTH fiberの数と長さを測定することにより、成熟したドーパミン神経細胞が増加したことが分かった。 As a result, as shown in Figure 6b, by measuring the expression level of NURR1 protein, it was confirmed that the maintenance period of the protein expression was further increased, and the number of TH-expressing cells (TH+) and TH fiber By measuring the number and length of neurons, it was found that the number of mature dopamine neurons increased.

実施例5.ドーパミン神経細胞誘導転写因子mRNA導入により分化したドーパミン神経細胞の特性と機能性の検証
前記実施例4の結果に基づいて、本発明者らは、ラット胎児の大脳皮質から分離した神経幹細胞内に時間的制御を通じてドーパミン誘導転写因子mRNAを導入して製造したドーパミン神経細胞の特性と機能性を観察しようとした。
Example 5. Verification of the characteristics and functionality of dopaminergic neurons differentiated by introduction of dopamine neuron-inducing transcription factor mRNA Based on the results of Example 4, the present inventors investigated the characteristics and functionality of dopamine neurons differentiated by introducing transcription factor mRNA. We attempted to observe the characteristics and functionality of dopaminergic neurons produced by introducing dopamine-induced transcription factor mRNA through controlled regulation.

このために、図7aに示した過程により実験を進めた後、まず、分化14日目(diff.14)にドーパミン神経細胞マーカー(TH、AADC、DAT、VMAT2、Lmx1A)の発現をそれぞれRT-PCRおよび定量的リアルタイムPCRで観察した。その結果、図7bおよび図7cから分かるように、対照群細胞(N.C)と比較して分化したドーパミン神経細胞(Nr(L)Fr(L))は、前記マーカーを全部発現することが明らかにされた。 To this end, after proceeding with the experiment according to the process shown in Figure 7a, first, on the 14th day of differentiation (diff.14), the expression of dopamine neuron markers (TH, AADC, DAT, VMAT2, Lmx1A) was determined by RT- Observations were made by PCR and quantitative real-time PCR. As a result, as can be seen from Figures 7b and 7c, the differentiated dopaminergic neurons (Nr(L)Fr(L)) were able to express all of the markers compared to the control group cells (NC). revealed.

次に、分化したドーパミン神経細胞のドーパミン分泌能を確認するために、分化開始15日目に初期ドーパミン神経細胞(Nr+Fr)および後期ドーパミン神経細胞(Nr(L)+Fr(L))をそれぞれ24時間培養するか、または56mMのKClで30分間刺激させた後、培養上清液を回収してドーパミン水準を測定した。その結果、図7dに示したように、Nr(L)+Fr(L)の場合、ドーパミン分泌量が有意に最も高く、KClで刺激させた場合と比較して24時間培養した場合に顕著な差異を示した。また、分化開始22日目に電気生理学的実験を実施した結果、図7eに示したように、活性ナトリウム電流と活動電位発火を確認した。 Next, in order to confirm the dopamine secretion ability of the differentiated dopamine neurons, on the 15th day after the start of differentiation, early dopamine neurons (Nr + Fr) and late dopamine neurons (Nr (L) + Fr (L)) were isolated for 24 hours each. After incubation or stimulation with 56mM KCl for 30 minutes, culture supernatants were collected and dopamine levels were measured. As a result, as shown in Figure 7d, the dopamine secretion amount was significantly highest in the case of Nr(L) + Fr(L), and there was a noticeable difference when cultured for 24 hours compared to when stimulated with KCl. showed that. In addition, as a result of performing an electrophysiological experiment on the 22nd day after the start of differentiation, active sodium current and action potential firing were confirmed as shown in FIG. 7e.

前記結果から、分化したドーパミン神経細胞がその特性および機能性を全部有している成熟した細胞であることが分かった。 From the above results, it was found that the differentiated dopaminergic neurons are mature cells that have all their properties and functionality.

実施例6.ドーパミン神経細胞の染色体安定性維持の検証
本発明者らは、本発明によるmRNA導入を通じて分化したドーパミン神経細胞と従来他の遺伝子導入法を用いて分化したドーパミン神経細胞の染色体安定性を比較しようとした。このために、レトロウイルスベクターを利用してNurr1遺伝子を導入して分化誘導したドーパミン神経細胞(NURR1 retrovirus)およびNurr1 mRNAを導入して分化誘導したドーパミン神経細胞(NURR1 mRNA)から各遺伝子導入3日後に、ゲノムDNAを抽出して遺伝子残存状態を測定した。
Example 6. Verification of maintenance of chromosome stability in dopamine neurons The present inventors attempted to compare the chromosome stability of dopamine neurons differentiated through mRNA introduction according to the present invention and dopamine neurons differentiated using other conventional gene introduction methods. did. For this purpose, each gene was introduced into dopamine neurons (NURR1 retrovirus) that had been induced to differentiate by introducing Nurr1 gene using a retroviral vector and dopamine neurons (NURR1 mRNA) that had been induced to differentiate by introducing Nurr1 mRNA. Afterwards, genomic DNA was extracted and the residual state of the gene was measured.

その結果、図8に示したように、前記ウイルスベクターを利用した場合には、神経細胞の染色体にレトロウイルスが無作為に挿入されて残存することにより、染色体の変形を引き起こすのに対し、mRNAを導入した場合には、染色体への遺伝子挿入がないため、染色体の安定性が維持されることを確認した。これにより、既存のウイルスベクターを使用してドーパミン神経細胞を誘導する方式とは異なって、mRNAを利用して製造されたドーパミン神経細胞は、染色体安定型細胞であって、臨床適用に優れた有効性と安全性を示すことができることが分かった。 As a result, as shown in Figure 8, when the viral vector is used, the retrovirus randomly inserts and remains in the chromosomes of nerve cells, causing chromosomal deformation, whereas mRNA It was confirmed that when chromosomal cells were introduced, chromosomal stability was maintained because there was no gene insertion into the chromosomes. As a result, unlike the existing method of inducing dopamine neurons using viral vectors, dopamine neurons produced using mRNA are chromosomally stable cells and are highly effective and effective for clinical applications. We found that it is possible to demonstrate safety and safety.

前述した本発明の説明は、例示のためのものであり、本発明の属する技術分野における通常の知識を有する者は、本発明の技術的思想や必須の特徴を変更することなく、他の具体的な形態で容易に変形可能であることを理解することができる。したがって、以上で記述した実施例は、すべての側面において例示的なものであり、限定的でなものと理解すべきである。 The foregoing description of the present invention is for illustrative purposes only, and those with ordinary knowledge in the technical field to which the present invention pertains will be able to provide other specific examples without changing the technical idea or essential features of the present invention. It can be understood that it can be easily transformed into a typical form. Therefore, the embodiments described above are illustrative in all respects and should be understood as limiting.

Claims (2)

a)神経幹細胞または神経前駆細胞を、分化を誘導するために5日間培養する段階、及び
b)前記の5日間の培養の後、前記神経幹細胞または前記神経前駆細胞にドーパミン神経細胞誘導転写因子のmRNAを導入する段階を含み、
前記ドーパミン神経細胞誘導転写因子はNurr1(Nuclear receptor related 1)またはFoxA2(Forkhead box protein A2)である、
神経幹細胞または神経前駆細胞からドーパミン神経細胞への分化方法。
a) culturing neural stem cells or neural progenitor cells for 5 days to induce differentiation; and b) after culturing for 5 days, administering a dopaminergic neuron-inducing transcription factor to the neural stem cells or neural progenitor cells. introducing the mRNA;
The dopamine neuron-inducing transcription factor is Nurr1 (Nuclear receptor related 1) or FoxA2 (Forkhead box protein A2),
A method for differentiating neural stem cells or neural progenitor cells into dopaminergic neurons.
前記mRNAは、神経幹細胞または神経前駆細胞に1日~2日間隔で繰り返し導入されることを特徴とする請求項1に記載の分化方法。
2. The differentiation method according to claim 1, wherein the mRNA is repeatedly introduced into neural stem cells or neural progenitor cells at intervals of 1 to 2 days.
JP2022091546A 2017-12-15 2022-06-06 Method for differentiating neural stem cells or neural progenitor cells into dopaminergic neurons Active JP7435942B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022091546A JP7435942B2 (en) 2017-12-15 2022-06-06 Method for differentiating neural stem cells or neural progenitor cells into dopaminergic neurons

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017240499A JP2019106895A (en) 2017-12-15 2017-12-15 Method of differentiating neural stem cells or neural precursor cells into dopamine neurons
JP2022091546A JP7435942B2 (en) 2017-12-15 2022-06-06 Method for differentiating neural stem cells or neural progenitor cells into dopaminergic neurons

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017240499A Division JP2019106895A (en) 2017-12-15 2017-12-15 Method of differentiating neural stem cells or neural precursor cells into dopamine neurons

Publications (2)

Publication Number Publication Date
JP2022107819A JP2022107819A (en) 2022-07-22
JP7435942B2 true JP7435942B2 (en) 2024-02-21

Family

ID=67178008

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017240499A Pending JP2019106895A (en) 2017-12-15 2017-12-15 Method of differentiating neural stem cells or neural precursor cells into dopamine neurons
JP2022091546A Active JP7435942B2 (en) 2017-12-15 2022-06-06 Method for differentiating neural stem cells or neural progenitor cells into dopaminergic neurons

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2017240499A Pending JP2019106895A (en) 2017-12-15 2017-12-15 Method of differentiating neural stem cells or neural precursor cells into dopamine neurons

Country Status (1)

Country Link
JP (2) JP2019106895A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117363581B (en) * 2023-12-07 2024-04-02 首都医科大学宣武医院 Preparation method, kit and application of A9 region dopaminergic neuron

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002300876A (en) 2001-04-03 2002-10-15 Nagoya Industrial Science Research Inst Method for expressing extraneous gene in cell forming tissue
JP2002542818A (en) 1999-05-03 2002-12-17 カロリンスカ イノヴェーションズ アクツィエボラーグ Materials and methods related to neuron development
WO2005052190A1 (en) 2003-11-26 2005-06-09 Eisai Co., Ltd. MARKER Lmx1a SPECIFIC TO DOPAMINE-PRODUCING NEURON
JP2006509497A (en) 2002-09-24 2006-03-23 ニューロ セラピューティクス エービー Methods and substances related to neurogenesis
JP2007503811A (en) 2003-08-29 2007-03-01 ウイスコンシン アラムナイ リサーチ フオンデーシヨン Method for in vitro differentiation of neural stem cells, motor neurons and dopamine neurons from primate embryonic stem cells
WO2015020234A1 (en) 2013-08-06 2015-02-12 武田薬品工業株式会社 Method for producing dopaminergic neurons
JP2015514437A (en) 2012-04-24 2015-05-21 インターナショナル ステム セル コーポレイション Induction of neural stem cells and dopaminergic neurons from human pluripotent stem cells

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE289630T1 (en) * 1999-09-09 2005-03-15 Curevac Gmbh TRANSFER OF MRNAS USING POLYCATIONIC COMPOUNDS
KR101544398B1 (en) * 2010-07-02 2015-08-17 한양대학교 산학협력단 2 1 A Method of Differentiating into Midbrain Dopamine Neurons using co-introducing 2 and 1

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002542818A (en) 1999-05-03 2002-12-17 カロリンスカ イノヴェーションズ アクツィエボラーグ Materials and methods related to neuron development
JP2002300876A (en) 2001-04-03 2002-10-15 Nagoya Industrial Science Research Inst Method for expressing extraneous gene in cell forming tissue
JP2006509497A (en) 2002-09-24 2006-03-23 ニューロ セラピューティクス エービー Methods and substances related to neurogenesis
JP2007503811A (en) 2003-08-29 2007-03-01 ウイスコンシン アラムナイ リサーチ フオンデーシヨン Method for in vitro differentiation of neural stem cells, motor neurons and dopamine neurons from primate embryonic stem cells
WO2005052190A1 (en) 2003-11-26 2005-06-09 Eisai Co., Ltd. MARKER Lmx1a SPECIFIC TO DOPAMINE-PRODUCING NEURON
JP2015514437A (en) 2012-04-24 2015-05-21 インターナショナル ステム セル コーポレイション Induction of neural stem cells and dopaminergic neurons from human pluripotent stem cells
WO2015020234A1 (en) 2013-08-06 2015-02-12 武田薬品工業株式会社 Method for producing dopaminergic neurons

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
Cell Stem Cell,2010年,Vol.7,pp.618-630
Development,2014年,Vol.141,pp.761-772
EMBO Mol. Med.,2015年,Vol.7,pp.510-525
Exp. Mol. Med.,2017年03月10日,Vol.49,e300 (pp.1-11)
Stem Cells,2010年,Vol.28,pp.501-512

Also Published As

Publication number Publication date
JP2019106895A (en) 2019-07-04
JP2022107819A (en) 2022-07-22

Similar Documents

Publication Publication Date Title
JP2019201651A (en) Compounds, compositions, methods, and kits relating to telomere extension
US10119123B2 (en) Cell fate conversion of differentiated somatic cells into glial cells
EP2781595B1 (en) Method for proliferating stem cells by activating c-MET/HGF signalling
Connor et al. Conversion of adult human fibroblasts into neural precursor cells using chemically modified mRNA
JP2011135864A (en) Composition for retrodifferentiating somatic cell to embryonic stem cell-like cell, by using oct4 in combination with bmi1 or upstream regulator thereof, and method for generating embryonic stem cell-like cell using the same
JP7435942B2 (en) Method for differentiating neural stem cells or neural progenitor cells into dopaminergic neurons
US20210260002A1 (en) Methods of treating schizophrenia and other neuropsychiatric disorders
JP2020526212A (en) Induction of neural progenitor cells, oligodendrocyte progenitor cells, and oligodendrocytes by stem cell differentiation using landmark transcription factors
JP5794693B2 (en) Neuronal differentiation promoter
US20220025379A1 (en) Methods of treating schizophrenia and other neuropsychiatric disorders
US20190185812A1 (en) Method of differentiating neural stem cells or neural precursor cells into dopamine neurons
KR102206657B1 (en) Method for differentiation of dopamine neurons from neural stem cells or neural precursor cells and use thereof
EP4249589A1 (en) In vitro genetic disease model cell and method for producing the same
Bianco et al. Rapid serum-free isolation of oligodendrocyte progenitor cells from adult rat spinal cord
WO2022234843A1 (en) Drug kit and method for rebuilding damaged neural pathways
WO2017081033A1 (en) Cell differentiation or reprogramming using fezf2 and lmo4
Balakrishnan et al. SMPD3 suppresses IDH mutant tumor growth via dual autocrine-paracrine roles
EP2554663A2 (en) Method for obtaining oligodendrocyte precursor cells
Schäfer ATP6AP2 is critically involved in adult hippocampal neurogenesis and reveals stage-specific functions for Wnt/ß-Catenin and Wnt/Planar Cell Polarity (PCP) signaling
Feng et al. A simple and efficient method that uses low concentration fetal bovine serum to culture and purify Schwann cells
Zhijian et al. Construction of BMPRR1b-Overexpressing Neural Stem Cells and BMPR1b-Dominant Negative Mutation NSCs

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240123

R150 Certificate of patent or registration of utility model

Ref document number: 7435942

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150