WO2022234843A1 - Drug kit and method for rebuilding damaged neural pathways - Google Patents

Drug kit and method for rebuilding damaged neural pathways Download PDF

Info

Publication number
WO2022234843A1
WO2022234843A1 PCT/JP2022/019484 JP2022019484W WO2022234843A1 WO 2022234843 A1 WO2022234843 A1 WO 2022234843A1 JP 2022019484 W JP2022019484 W JP 2022019484W WO 2022234843 A1 WO2022234843 A1 WO 2022234843A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
pharmaceutical kit
l1cam
protein
kit according
Prior art date
Application number
PCT/JP2022/019484
Other languages
French (fr)
Japanese (ja)
Inventor
淳 ▲高▼橋
諒輔 土持
Original Assignee
国立大学法人京都大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人京都大学 filed Critical 国立大学法人京都大学
Priority to JP2023518693A priority Critical patent/JPWO2022234843A1/ja
Publication of WO2022234843A1 publication Critical patent/WO2022234843A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/30Nerves; Brain; Eyes; Corneal cells; Cerebrospinal fluid; Neuronal stem cells; Neuronal precursor cells; Glial cells; Oligodendrocytes; Schwann cells; Astroglia; Astrocytes; Choroid plexus; Spinal cord tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/48Reproductive organs
    • A61K35/54Ovaries; Ova; Ovules; Embryos; Foetal cells; Germ cells
    • A61K35/545Embryonic stem cells; Pluripotent stem cells; Induced pluripotent stem cells; Uncharacterised stem cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/02Peptides of undefined number of amino acids; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia

Definitions

  • the present invention relates to a pharmaceutical kit for reconstructing damaged neural pathways.
  • the invention also relates to methods of reconstructing damaged neural pathways.
  • Neural pathways are damaged by various factors, which impairs the functions that the pathways are responsible for. For example, in cerebral infarction or stroke, nerve cells exposed to ischemia are lost, and the nerve pathways formed by these nerve cells are damaged, resulting in functional impairment.
  • a typical example is voluntary movement disorder (for example, hemiplegia, etc.) due to damage to the corticospinal tract. The same applies to the loss of specific nerve cells due to neurodegenerative disease, head injury, or the like.
  • cell transplantation to replenish the nerve cells forming the neural pathway is considered to be the most effective therapeutic method for diseases caused by disorders of neural pathways.
  • nerve cells and/or neural progenitor cells are usually transplanted into or near the site of injury.
  • the transplanted cells In order to obtain a sufficient therapeutic effect, it is necessary for the transplanted cells to engraft (in some cases, differentiate into the desired nerve cells), extend their axons to the desired target cells, and form neural connections.
  • the axon elongation efficiency of transplanted cells is generally low, and furthermore, there is a problem that the percentage of axons that can elongate axons over a long distance is very low.
  • the axons of upper motor neurons in the cerebral cortex motor cortex pass through the ventral midbrain peduncle via the internal capsule, penetrate the pontine nucleus, ventral medulla oblongata, and cross the pyramidal chiasma to the spinal cord. Enters and descends the spinal cord, connecting to the lower motor neurons in the anterior horn of the spinal cord.
  • This pathway is called the corticospinal tract, and as mentioned above, there is a high demand for reconstruction. Therefore, various methods for reconstructing the corticospinal tract by cell transplantation are being investigated.
  • Non-Patent Document 1 in an adult mouse brain injury model, almost no transplanted cell-derived nerve axons reached the spinal cord when mouse fetal brains were transplanted immediately after injury. They reported that when transplanted, the transplanted cell-derived axons reaching the spinal cord were significantly observed, and a tendency toward improvement in exercise capacity was also observed. This suggested the importance of the timing of cell transplantation.
  • CTIP2 or L1CAM can be a marker for neurons that can project to the spinal cord (Patent document 1, Non-Patent Document 2).
  • L1CAM is a membrane protein expressed on the cell surface, it is suitable for the reconstruction of cells with the ability to extend axons to the spinal cord, that is, the corticospinal tract, in the preparation of cells for human transplantation. It is now possible to enrich the cells
  • the present invention has been made in view of the above background, and is used in a method for reconstructing neural pathways by cell transplantation, even in long-distance neural pathways such as the corticospinal tract.
  • the challenge is to provide a kit.
  • L1CAM is a membrane protein involved in axonal growth and guidance in mammalian neurogenesis (Maness, PF & Schachner, M. Nature Neuroscience, 10 (1), 19-26, 2007; Neural Other proteins known as recognition molecules of the immunoglobulin superfamily: signaling transducers of axon guidance and neuronal migration, axon guidance cues, may have similar effects.
  • the present invention includes the following features.
  • (3-1) The pharmaceutical kit according to (1) or (2) above, wherein the first formulation is administered to a patient with a neural pathway disorder at or near the site of the disorder.
  • the cell population is derived from pluripotent stem cells or somatic stem cells.
  • the pluripotent stem cells are induced pluripotent stem (iPS) cells or embryonic stem (ES) cells.
  • the axon outgrowth-inducing protein is from the group consisting of L1CAM, Netrin family, Semaphorin family, Slit family, Ephrin family, morphogen and neurotrophic factor
  • the pharmaceutical kit according to any one of (1) to (8) above, wherein the axonal outgrowth-inducing protein is L1CAM.
  • the protein or nucleic acid is contained in a drug delivery system.
  • the vector is a viral vector.
  • AAV adeno-associated virus
  • a pharmaceutical kit according to . (14) a patient with a neuropathy disorder, comprising administering the first formulation of the pharmaceutical kit according to any one of (1) to (13) above to a patient with a neuropathy disorder at or near the site of the disorder; A method for reconstructing neural pathways.
  • (16) comprising administering the first formulation of the pharmaceutical kit according to any one of (1) to (13) above to the cerebral cortical motor area of a patient with corticospinal tract disorder.
  • a method for reconstructing the corticospinal tract 17.
  • the corticospinal tract disorder is caused by head injury or cerebrovascular accident.
  • (19) The method according to any one of (14) to (18) above, wherein the patient is human.
  • a vector expressably comprising an axonal outgrowth-inducing protein, a nucleic acid encoding said protein, or a DNA encoding said protein for use in remodeling damaged neural pathways.
  • a vector expressably comprising an axonal outgrowth-inducing protein, a nucleic acid encoding said protein, or a DNA encoding said protein for use in remodeling damaged neural pathways.
  • the present invention provides a method for promoting axonal outgrowth of transplanted cells, which enables reconstruction of long-distance neural pathways such as the corticospinal tract, and a kit for use in the method.
  • FIG. 1A shows the results of internal capsules, the upper panel is the L1CAM expression vector (mL1cam-AAV) injection group, the lower panel is the vehicle injection group (PBS (-), negative control), and from the left L1CAM signal (white ) and FLAG signal (red) double staining signal (left panel), EGFP signal (middle panel, green), L1CAM (white), FLAG (red), and EGFP (green) triple staining signal (right panel). represent each.
  • L1CAM expression vector mL1cam-AAV
  • PBS vehicle injection group
  • FIG. 1B is the results of the spinal cord contralateral to the internal capsule of FIG. 1A, showing the L1CAM (white), FLAG (red), and EGFP (green) triple staining signals.
  • the upper panel shows the results of the L1CAM expression vector-injected group, and the lower panel shows the results of the vehicle-injected group (PBS(-)).
  • the EGFP-positive axons basically merged with the L1CAM-FLAG double-positive axons.
  • Scale bar represents 20 ⁇ m.
  • the Mann-Whitney test was used for the significance test.
  • the figure shows the L1CAM expression vector (pAAV[Exp]-CMV>mL1cam[NM_008478.3]/FLAG) (Fig. 3A), mCherry expression vector (pAAV[Exp]-CMV>mCherry:WPRE) (Fig.
  • mL1CAM-FLAG is the DNA encoding mouse L1CAM with a FLAG tag added to the C-terminus
  • mCherry is the DNA encoding the fluorescent protein mCherry
  • WPRE is the woodchuck hepatitis virus posttranscriptional regulatory element.
  • ITR represents AAV-derived inverted terminal repeat
  • CMV represents cytomegalovirus promoter
  • BGHpA represents bovine growth hormone polyadenylation signal.
  • the upper diagram shows a schematic diagram of the method of preparing the construct used in Example 3 and introducing it into HEK cells.
  • the figure below shows a schematic diagram showing the method of the in vitro assay in Example 3.
  • HEK-293 (PB-L1Cam/Flag) cells were seeded, and doxycycline was added to the medium to not induce expression of the Tet-On gene ("L1CAM - " in the figure) ("L1CAM + " in the figure). ”) was prepared.
  • Lane 2 is HEK cells added with DOX.
  • Lane 3 is HEK-L1 without DOX.
  • Lane 4 is HEK-L1 with DOX added.
  • L1CAM was detected only in HEK-L1 cells supplemented with doxycycline (DOX), and was not detected in wild-type HEK cells or HEK-L1 cells without DOX.
  • This figure shows representative images of GFP + neurites in HEK-L1 with and without DOX (left 2 panels) and with 5G3 added (right 2 panels), respectively.
  • L1CAM + cells were shown to promote neurite outgrowth through allogeneic binding. Scale bar is 20 ⁇ m. This figure shows the results of quantitative analysis of temporal changes in neurite length of primary neurons on HEK-L1.
  • This figure is an electron micrograph of a host brain implanted with a graft.
  • L1CAM 25 nm gold colloid; indicated by an arrow
  • FLAG 10 nm gold colloid; indicated by an arrowhead
  • A L1CAM (25 nm gold colloid; indicated by an arrow) and FLAG (10 nm gold colloid; indicated by an arrowhead) are recognized on the myelin sheath of the host brain.
  • (B) Graft-derived axons stained with DAB run between host brain axons. Graft-derived axons run outside the myelin sheath of the axons of the host brain. Scale bars are 500 nm (A) or 1 ⁇ m (B).
  • This figure shows immunostaining of cerebral organoids 39 days after differentiation. Expression of L1CAM is observed at a site corresponding to the cortical plate (Ctip2-positive, Pax6-negative) at the developmental stage. Scale bar is 20 ⁇ m.
  • the present invention regenerates damaged neural pathways, comprising a first preparation containing, as an active ingredient, an axon outgrowth-inducing protein, a nucleic acid encoding the protein, or a vector capable of expressing the DNA encoding the protein.
  • a pharmaceutical kit is provided for construction.
  • the pharmaceutical kit of the present invention may comprise a first formulation, and in one aspect, the pharmaceutical kit comprises an axon outgrowth-inducing protein, a nucleic acid encoding the protein, or a vector containing a DNA encoding the protein so that it can be expressed.
  • As an active ingredient it is provided as a restructuring agent for damaged neural pathways.
  • neural pathway (also referred to as “neural circuit”) refers to neural pathways of the central and peripheral nervous systems, including both motor and sensory pathways, and narrowly defined as projection It can also be said to be a pathway formed by axons of neurons.
  • Projection neurons refer to neurons that extend their axons not only within the neuronal population to which they belong (neuronal nucleus, cerebral cortical area, etc.) but also far away, and are responsible for information transmission between different regions.
  • the pathways of the central nervous system include the pathways of the central nervous system from the cerebral cortex to the spinal cord (including the corticospinal pathway), as well as the neural pathways within the cranial nerves and spinal nerves.
  • neural pathways other than the corticospinal tract are sometimes referred to as "other neural pathways.”
  • the corticospinal tract has originating cells in the motor area of the cerebral cortex, passes through the internal capsule, passes through the cerebral peduncle on the ventral side of the midbrain, penetrates the pontine nucleus, and passes through the ventral side of the medulla oblongata to the chiasm pyramidale to the spinal cord.
  • Nerve pathway that enters and descends the spinal cord and connects to motor neurons in the anterior horn of the spinal cord. It is one of the main neural circuits that control voluntary movements such as voluntarily moving limbs, sending movement commands from the cerebral cortex to the spinal cord.
  • Cranial nerves include the nerves that connect the brain and organs such as the head, face, eyes, nose, muscles, and ears, as well as the vagus nerve that innervates the thoracoabdominal internal organs.
  • Spinal nerves are nerves that connect the spinal cord to the rest of the body and are functionally sensory (or afferent) nerves (including somatosensory and visceral sensory nerves) and motor (or efferent) nerves (including somatomotor nerves, which innervate skeletal muscles, and visceral motor nerves, which innervate blood vessels and muscles of internal organs).
  • functionally sensory (or afferent) nerves including somatosensory and visceral sensory nerves
  • motor (or efferent) nerves including somatomotor nerves, which innervate skeletal muscles, and visceral motor nerves, which innervate blood vessels and muscles of internal organs.
  • Axons have a fibrous structure extending from the nerve cell body and are responsible for the output of nerve cell signals.
  • Axons extending from the cerebral cortex cross at the cones in the lower medulla oblongata below the brain and extend to the contralateral side of the spinal cord, so that cortical neurons on one side control the movements of the limbs on the opposite side.
  • disorder of neural pathway means “any one or more of reduction, degeneration, or disappearance of the number of axons that make up the neural pathway occurs, and information transmission via the pathway is significantly reduced.
  • state of in addition, “regeneration of (damaged) neural pathways” means that one or more of an increase in the number of axons that make up a neural pathway or regeneration occurs, and information transmission through the pathway is restored. It means that it will be in a state where it can be expected.
  • Factors that cause "disorders of neural pathways” include cerebrovascular disorders (e.g., stroke (cerebral infarction, cerebral hemorrhage, subarachnoid hemorrhage), etc.), brain injuries (e.g., cerebral contusion, cerebral laceration, etc.), spinal cord injuries ( motor and sensory disturbances distal to the injured spinal cord), neurodegenerative diseases (e.g., multiple sclerosis, epilepsy, Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, Creutzfeldt-Jakob disease, etc.), ophthalmic diseases (glaucoma, etc.), and the like.
  • cerebrovascular disorders e.g., stroke (cerebral infarction, cerebral hemorrhage, subarachnoid hemorrhage), etc.
  • brain injuries e.g., cerebral contusion, cerebral laceration, etc.
  • spinal cord injuries motor and sensory disturbances distal to the injured spinal cord
  • neurodegenerative diseases e.
  • paired neural pathway refers to a neural pathway that has been damaged due to the above factors.
  • an axonal outgrowth-inducing agent specifically an axonal outgrowth-inducing protein, a nucleic acid encoding the protein, or a DNA encoding the protein.
  • a first formulation containing a vector containing the vector as an active ingredient is administered to a patient with a neural pathway disorder (also referred to as a "subject") at or near the lesion site (typically, administered before transplantation of the second formulation). to do).
  • Non-Patent Document 1 transplantation of mouse frontal cortex-derived neurons into the rat brain and rehabilitation promotes axonal outgrowth of the transplanted neurons in a rat brain injury model. It has been reported (T. Shimogawa et al., npj Regenerative Medicine: 2019; Therapeutic effects of combined cell transplantation and locomotor training intrarats with brain injury).
  • the pharmaceutical kit of the present invention can reconstruct neural pathways that have been damaged by axonal outgrowth, it is expected that voluntary movement disorders caused by impaired neural pathways will be improved by rehabilitation, if necessary, in combination. can. Therefore, the pharmaceutical kit of the present invention can be used as a therapeutic agent for voluntary movement disorders caused by disorders of neural pathways.
  • axonal outgrowth-inducing protein refers to a protein that exerts the effect of inducing axonal outgrowth on nerve cells, includes an axonal guidance factor, and is an attractive axonal guidance factor (simply “ attraction factor”), repulsive axonal guidance factor (also simply referred to as “repulsion factor”), or both.
  • axons extend in various ways. under good control.
  • a typical example is axonal guidance by an axonal guidance factor.
  • Axonal guidance factors are defined as molecules that exist region-specifically within developing tissues to provide spatial information to growth cones and guide the growth cones to the correct target cells.
  • Axonal guidance factors present in vivo are roughly classified into four modes of action. There are contact factors that are expressed in the extracellular matrix and cell membrane and act in short distances through contact, diffusible factors that are secreted and act in long distances due to concentration gradients, and attraction factors and repulsion factors for each of them. . In vivo, these four types of axonal guidance factors are thought to guide axons to their correct targets (ET Stoeckli, Development 2018 145: dev151415 doi: 10.1242/ dev.151415).
  • axonal guidance factor or its mRNA expressed in the neuronal cell body as well as the miRNAs involved in regulating the expression of the axonal guidance factor, are transported via axons to the growth cone. (ET Stoeckli, supra) is not well understood.
  • axonal guidance factors There are various molecular types of axonal guidance factors. Factors that exhibit repulsive action include the semaphorin family, ephrin family, and slit family. Factors that exhibit attractive action include netrin, semaphorin 3C, and brain. A brain-derived neurotrophic factor and the like are known. Specific receptor families exist on the growth cone for individual axonal guidance factors, and expression of the receptors on the plasma membrane defines growth cone sensitivity to axonal guidance factors. Furthermore, growth cones are known to have a mechanism that switches responsiveness to the same axonal guidance factor depending on location and time.
  • the above axonal guidance factor can be suitably used as the axonal outgrowth-inducing protein according to the present invention.
  • Axonal outgrowth-inducing proteins according to the present invention can also include other neuronal cell adhesion molecules (eg, NrCAM, axonin, etc.) that exert the above effects.
  • axonal outgrowth-inducing proteins include L1CAM, Netrin family (eg, Netrin-1, Netrin-3, Netrin-4, etc.), Semaphorin family (eg, Sema3A, Sema3B, Sema3C, Sema6, etc.), ephrin family (e.g., EphA, EPHB, etc.), slit family (e.g., Slit2, etc.), morphogens (e.g., hedgehog, Wnt, TGF- ⁇ , bone morphogenetic protein (BMP) , etc.), neurotrophic factors (e.g., brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), neurotrophin-3 (NT-3), neurotrophin-4/5 (NT-4/5), etc.) preferably L1CAM, or a combination of L1CAM and at least one other axonal guidance factor selected from the group consisting of netrin family, semaphorin family, e
  • L1CAM L1 cell adhesion molecule
  • GenBank accession numbers NM_000425/NP_000416, NM_024003/ NP_076493, NM_001143963/NP_001137435, NM_001278116/NP_001265045, and in mouse, for example, NM_008478/NP_032504, NM_001374694/NP_001361623.
  • L1CAM is also known as CAML1, CD171, HSAS, HSAS1, MASA, MIC5, N-CAM-L1, N-CAML1, NCAM-L1, S10, SPG1.
  • the nucleotide and amino acid sequences of human L1CAM are shown, for example, as SEQ ID NO: 1 and SEQ ID NO: 2, respectively, and the nucleotide and amino acid sequences of mouse L1CAM are shown as SEQ ID NO: 3 and SEQ ID NO: 4, respectively, in the sequence listing below.
  • it is a sequence having 85% or more, 90% or more, or 95% or more sequence identity with the above sequence as long as it has an axon guidance effect.
  • Sequence identity (%) is preferably obtained by introducing a gap between the two sequences using a protein or gene search system by known algorithms BLAST or FASTA, or without introducing a gap. can be determined by introducing gaps (SF Altschul et al., Journal of Molecular Biology, 1990; 215:403-410; WR Pearson et al., Proc. Natl. Acad. Sci. USA, 1988;85:2444-2448).
  • Netrin is a type of axonal guidance factor identified as a secreted protein that is secreted from the floor plate of the spinal cord and attracts the axons of spinal commissural neurons.
  • the amino acid and nucleotide sequences of Netrin-1 (sometimes abbreviated as "Ntn1") are available from GenBank and are registered under accession numbers NM_004822 (human), BC141294, and NM_008744.2 (mouse), for example. or have a sequence identity of 85% or more, 90% or more, or 95% or more with the above sequence as long as it has an axon guidance effect.
  • the amino acid and nucleotide sequences of Sema3C are available from GenBank and are registered under accession numbers NM_001350120 (human), NM_006379 (human), NM_001350121 (human), NM_013657.5 (mouse), etc., or A sequence having a sequence identity of 85% or more, 90% or more, or 95% or more with the above sequence as long as it has an axon-inducing action.
  • nucleic acid encoding the axonal outgrowth-inducing protein is, for example, DNA (e.g., cDNA, etc.) or RNA (e.g., mRNA, etc.) encoding protein such as L1CAM, netrin, semaphorin, slit, ephrin, morphogen, neurotrophic factor, etc. )including.
  • DNA e.g., cDNA, etc.
  • RNA e.g., mRNA, etc.
  • protein amino acid sequences are available from nucleotide sequence databases such as GenBank (USA), EMBL (Europe), and DDBJ (Japan).
  • An axonal outgrowth-inducing protein and a nucleic acid encoding an axonal outgrowth-inducing protein can be produced, for example, using genetic recombination technology. Specifically, mRNA is extracted from tissues or cells that express an axonal outgrowth-inducing protein, and cDNA is synthesized to prepare the nucleic acid, and furthermore, a control sequence such as a promoter, and a selection marker gene sequence such as a drug resistance gene.
  • the above protein can be produced by a method including inserting a cassette containing the above nucleic acid (DNA) together with elements such as the above into a vector such as a plasmid, and inserting the cassette into a cell such as an animal cell to transform the cell.
  • Gene recombination technology is described, for example, by M. et al. R. Green and J. Sambrook, Molecular Cloning; A Laboratory Manual, Fourth Ed. (2012) Cold Spring Harbor and available.
  • the vector containing DNA capable of expressing the axonal outgrowth-inducing protein can be selected from, for example, plasmids, viral vectors and liposomes and used in vivo (for example, those that can be used for gene therapy). can be done.
  • a plasmid vector can contain elements such as a target gene (or DNA), a promoter, a replication origin, a polyA addition signal, and a selectable marker gene.
  • the plasmid is preferably a DNA plasmid that has been recognized as safe for gene therapy or regenerative medicine and manufactured in compliance with GMP. Plasmids include, for example, plasmids used in the preparation of HGF plasmids for gene therapy (R. Morishita et al., Hypertension 2004; 44(2): 203-209).
  • Viral vectors include, for example, AAV, adenovirus, retrovirus (eg, MMLV retrovirus, etc.), lentivirus, Sendai virus, etc., preferably AAV.
  • AAV vectors are known to be safe because they are capable of long-term expression of target genes, have low immunogenicity, and are non-pathogenic viruses.
  • AAV vectors for example, a cassette containing a promoter and a target gene (or DNA) is inserted in place of a region containing Rep and Cap (proteins necessary for viral replication and encapsidation) between wild-type ITRs (inverted terminal repeats).
  • Rep and Cap proteins necessary for viral replication and encapsidation
  • wild-type ITRs inverted terminal repeats
  • This production method includes, for example, a step of removing the two genes Rep and Cap between the ITRs and producing a vector plasmid in which the promoter and the gene of interest are inserted in the space, a step of supplying Rep and Cap with a separate plasmid,
  • the E1A, E1B, E2A, VA, and E4 genes are required for adenoviral helper action, of which E1A and E1B are isolated from HEK293 cells (transformed with E1A and E1B), the remaining E2A, E4, and VA are provided as helper plasmids, transfection of HEK293 cells with these three plasmids to produce virus particles with only the target gene between ITRs without Rep and Cap genes (Hirokazu Hirai, DOI: 10.14931/bsd.7632, 2018).
  • the promoter is preferably a promoter that is functional in nerve cells, and is not limited to, for example, Tet on/off element-containing promoter, ramamycin-inducible promoter, metallothionein promoter, viral promoter (e.g., CMV promoter, RSV promoter, SV40 promoter, etc.), cellular promoters (eg, PGK (phosphoglycerate kinase) promoter, etc.), and the like.
  • Tet on/off element-containing promoter e.g., ramamycin-inducible promoter, metallothionein promoter, viral promoter (e.g., CMV promoter, RSV promoter, SV40 promoter, etc.), cellular promoters (eg, PGK (phosphoglycerate kinase) promoter, etc.), and the like.
  • Liposomes are microvesicles consisting of bilayer membranes of amphipathic lipid molecules and are used for drug delivery.
  • Lipid constituents of liposomes can include, but are not limited to, phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, cholesterol, derivatives thereof, mixtures thereof, and the like.
  • Liposomes have structures that contain hydrophilic and hydrophobic moieties so that they are amphiphilic.
  • Said derivatives are those in which two, for example, the same or different fatty acid esters are attached to the glycerol backbone of a glycerophospholipid, where examples of fatty acids are stearic acid, oleic acid, palmitic acid, myristic acid, linoleic acid, etc. .
  • the liposomes may also be PEGylated by attaching polyethylene glycol chains (eg, molecular weight less than 5,000, eg, 3,000 or less, preferably 2,000). Examples of such derivatives include distearoyl phosphatidylcholine (DSPC), palmitoyl phosphatidylcholine (POPC), dioleoyl-sn-glycero-phosphoethanolamine, and the like.
  • the first formulation contains, in addition to the above active ingredients, a pharmaceutically acceptable carrier (e.g., physiological saline, phosphate-buffered saline, etc.), neurotrophic factors (e.g., BDNF, NGF, etc.), axons Growth or maintenance promoting factors (eg, neurotrophins, transforming growth factors, extracellular matrix components, etc.) and the like can be included.
  • a pharmaceutically acceptable carrier e.g., physiological saline, phosphate-buffered saline, etc.
  • neurotrophic factors e.g., BDNF, NGF, etc.
  • axons Growth or maintenance promoting factors eg, neurotrophins, transforming growth factors, extracellular matrix components, etc.
  • the pharmaceutical kit of the present invention can further comprise a second formulation containing a cell population containing nerve cells and/or their progenitor cells.
  • a cell population containing nerve cells and/or their progenitor cells may contain DNA (e.g., vector, etc.) that encodes at least one axonal outgrowth-inducing protein described above in an expressible manner, or It does not have to contain the DNA.
  • DNA e.g., vector, etc.
  • a second preparation containing a cell population containing nerve cells and/or their progenitor cells into or near the damaged site of the neural pathway, It can further promote the reconstruction of damaged neural pathways.
  • Nerve cells and/or their progenitor cells refer to cells that make up the nervous system such as the central (brain, spinal cord) and peripheral.
  • Neural progenitor cells mean undifferentiated cells that have the ability to differentiate into mature nerve cells. Examples of neural progenitor cells used in the present invention include, but are not limited to, cerebral cortical neural progenitor cells, dopaminergic neural progenitor cells, GABAergic neural progenitor cells, motor neuron progenitor cells, retinal ganglion progenitor cells, and the like. .
  • differentiation-inducing factors examples include bFGF, BMP inhibitors, BMP/SMAD inhibitors, retinoic acid (RA), sonic hedgehog (SHH), Activin, SB431542 (4-[4-(1,3-benzodioxol-5 -yl)-5-(2-pyridinyl)-1H-imidazol-2-yl]benzamide)/LDN193189 (4-(6-(4-(piperazin-1-yl)phenyl)pyrazolo[1,5-a] pyrimidin-3-yl)quinoline), and combinations thereof, or miRNAs and the like can be used.
  • ES cells which are one of the pluripotent stem cells, are embryo-derived stem cells derived from the inner cell mass of a blastocyst, which is a post-morula embryo, at the 8-cell stage of a fertilized egg, and constitute an adult. It has the ability to differentiate into any cell that can do so, so-called pluripotency, and the ability to proliferate through self-renewal.
  • ES cells were discovered in mice in 1981 (MJ Evans and MH Kaufman, Nature 1981; 292: 154-156), and thereafter ES cell lines were established in primates such as humans and monkeys. (JA Thomson et al., Science 1998; 282: 1145-1147; JA Thomson et al., Proc. Natl. Acad. Sci. USA 1995; 92: 7844-7848; Thomson et al., Biol. Reprod. 1996;55:254-259; JA Thomson and VS Marshall, Curr. Top.
  • iPS cells induced pluripotent stem cells
  • iPS cells can be generated by introducing specific reprogramming factors into somatic cells in the form of DNA or protein, much like ES cells.
  • characteristics such as pluripotency and self-renewal proliferation ability (K. Takahashi and S. Yamanaka, Cell 2006; 126: 663-676; K. Takahashi et al., Cell 2007; 131: 861-872; J. Yu et al., Science 207; 318: 1917-1920; M. Nakagawa et al., Nat. Biotechnol.
  • Reprogramming factors are, for example, genes that are specifically expressed in ES cells, their gene products or non-coding RNAs (e.g., miRNA, etc.), genes that play an important role in maintaining undifferentiated ES cells, Gene products or non-coding RNA (eg, miRNA, etc.), or low-molecular-weight compounds.
  • initialization factors include Oct3/4, Sox2, Sox1, Sox3, Sox15, Sox17, Klf4, Klf2, c-Myc, N-Myc, L-Myc, Nanog, Lin28, Fbx15, ERAs, ECAT15-2, Tcl1 , beta-catenin, Lin28b, Sall1, Sall4, Esrrb, Nr5a2, Tbx3, etc., and these reprogramming factors may be used alone or in combination.
  • stem cells capable of differentiating into nerve cells and/or their neural progenitor cells is somatic stem cells, including neural stem cells and mesenchymal stem cells.
  • the method for obtaining, for example, cerebral cortical neurons and/or their neural progenitor cells, which are the active ingredients of the second formulation, is not particularly limited, but can be exemplified by the method by the present applicant (WO2016/167372).
  • This method includes the following steps. (i) suspension culture of the pluripotent stem cells in a medium containing a TGF ⁇ inhibitor, bFGF, a Wnt inhibitor and a BMP inhibitor for at least 3 days; (ii) suspension culture of the cells obtained in step (i) above for at least 6 days in a medium containing a Wnt inhibitor and a BMP inhibitor; (iii) further culturing the cells obtained in step (ii) above, and (iv) extracting cells positive for at least one marker protein selected from the group consisting of CD231, PCDH17 and CDH8;
  • the TGF ⁇ inhibitor is, for example, SB431542, A-83-01 (3-(6-methyl-2-pyridinyl)-N-phenyl-4-(4-quinolinyl)-1H-pyrazole-1-carbothioamide), etc. be.
  • Wnt inhibitors are, for example, PORCN inhibitors, C59, LGK-974, and the like.
  • the above BMP inhibitor is, for example, LDN193189.
  • the medium may further contain serum or a serum substitute.
  • the medium in step (i) above can further contain a ROCK inhibitor (eg, Y-27632 (T. Ishizaki et al., Mol. Pharmacol. 2000; 57: 976-983)).
  • a ROCK inhibitor eg, Y-27632 (T. Ishizaki et al., Mol. Pharmacol. 2000; 57: 976-983).
  • Cerebral cortex neural progenitor cells are known to be characterized by the expression of specific cell markers such as Pax6, Ctip2, Emx1 and Fezf, or by miRNAs (eg, JP-A-2020-202865).
  • the cerebral cortical neurons and/or their neural progenitor cells obtained by the above method are preferably cells expressing Ctip2, for example, neurons in the motor cortex of the cerebral cortex (eg, Ctip2 + CoupTF1 ⁇ ).
  • the nerve cells and/or neural progenitor cells of the present invention may be used as purified cell populations or cells containing other cell types. It may be produced as a population, and for example, preferably 60% or more, 70% or more, 80% or more, or 90% or more can be included in the produced cell population.
  • a method for inducing the differentiation of pluripotent stem cells into dopaminergic progenitor cells includes, for example: (ii) culturing the cells obtained in step (i) above in a medium containing a reagent selected from the group consisting of FGF8 and GSK3 ⁇ inhibitors, and (ii) culturing cells containing neurotrophic factors;
  • a method of inducing the differentiation of dopaminergic neural progenitor cells by a step of floating culture in a liquid, and the like (WO2015/034012).
  • Neurotrophic factors include, for example, NGF, BDNF, NT-3, NT-4/5, Neurotrophin 6 (NT-6), bFGF, acidic FGF, FGF-5, epidermal growth factor (EGF), hepatocyte growth factor ( HGF), Insulin, Insulin Like Growth Factor 1 (IGF1), Insulin Like Growth Factor 2 (IGF2), Glia cell line-derived Neurotrophic Factor (GDNF), TGF-b2, TGF-b3, Interleukin 6 Ciliary Neurotrophic Factor (CNTF) and LIF.
  • Preferred neurotrophic factors are GDNF and/or BDNF.
  • Analysis of the induction of nerve cells and their progenitor cells can be performed, for example, by gene expression of nestin, PAX6, SO1X, OTX2.
  • Dopaminergic neural progenitor cells are, for example, floor plate cells that have the ability to differentiate into mesencephalic dopaminergic neurons, neuroectodermal cells characterized by expression markers such as the intermediate filament protein Nestin, and the like. Mature mesencephalic dopaminergic neurons are characterized in vitro by the expression of specific cell markers such as tyrosine hydroxylase (TH), FOXA2, and Nurr1, or by miRNAs (for example, JP-A-2020-202865). It has been known.
  • TH tyrosine hydroxylase
  • FOXA2 tyrosine hydroxylase
  • Nurr1 tyrosine hydroxylase
  • miRNAs for example, JP-A-2020-202865
  • retinal ganglion cells and their progenitor cells are shown below for differentiation induction from pluripotent stem cells (e.g., iPS cells or ES cells) (e.g., Table 2016/ 021709).
  • pluripotent stem cells e.g., iPS cells or ES cells
  • This method creates retinal ganglion cells and their progenitor cells via the creation of retinal progenitor cells.
  • iPS cells are cultured in a retinal differentiation medium (containing Wnt signal inhibitors and Rock inhibitors), further cultured in FBS-containing medium, and medium containing Wnt signal activator and Shh signal activator.
  • Retinal ganglion cells and their progenitor cells can be generated by methods including culturing in retinoic acid and retinal maturation medium containing retinoic acid and N2 supplements, and culturing in BDNF-containing medium. Induction of retinal ganglion cells can be confirmed by the expression of markers such as Brn3b, Math5, Sncg, Islet1 and Tuj1.
  • a method for producing retinal ganglion cells and their progenitor cells is also described, for example, in Japanese Patent Publication No. 2017-532954.
  • a method for reconstructing a damaged neural pathway A method is provided for reconstructing a neural pathway that has been modified.
  • the first formulation of the pharmaceutical kit is described in section 1.1. As explained in
  • Neural pathway disorders are disorders caused by nerve damage in the central nervous system and peripheral nervous system (e.g. trauma, rupture, ischemia, hemolysis, neurodegeneration, etc.), for example, cerebrovascular disorders (e.g., stroke ( cerebral infarction, cerebral hemorrhage, subarachnoid hemorrhage, etc.), brain injury (e.g., cerebral contusion, cerebral laceration, etc.), spinal cord injury (impairment of movement and perception distal to the injured spinal cord), neurodegenerative disease (eg, multiple sclerosis, epilepsy, Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, Creutzfeldt-Jakob disease, etc.), eye diseases (glaucoma, etc.).
  • cerebrovascular disorders e.g., stroke ( cerebral infarction, cerebral hemorrhage, subarachnoid hemorrhage, etc.), brain injury (e.g., cerebral contusion, cerebral laceration, etc.), spinal cord injury (impairment
  • Diseases such as the above cerebrovascular disorders, brain injuries, and neurodegenerative diseases are disorders related to the cerebrum (including cerebral cortical disorders), and often cause severe functional disorders such as movement, language, and memory.
  • the above ophthalmic diseases tend to develop severe visual impairment.
  • the first preparation is administered to the patient at or near the lesion site.
  • loss of nerve cells often occurs due to nerve damage. is denatured and partially remains.
  • Viable neurons are believed to induce neuronal cell proliferation and axonal outgrowth by the first formulation, thereby remodeling the damaged neural pathways (corticospinal or other neural pathways).
  • the present invention also provides, according to an embodiment, a cortex damaged in a patient having a corticospinal tract disorder, comprising administering the first formulation of the pharmaceutical kit to the cerebral cortex, particularly the motor cortex, of the patient.
  • a method for reconstructing the spinal tract is also provided.
  • Corticospinal tract disorders include paralysis of motor function due to blockage of the corticospinal tract when the motor cortex is impaired, for example, by the above-mentioned cerebrovascular disease or head injury (or brain injury). Therefore, the first formulation can be administered to or near the damaged site of the damaged motor cortex.
  • the dose of the first preparation is not particularly limited as long as it is an amount capable of inducing axonal outgrowth (that is, an effective amount). .
  • the second formulation of the pharmaceutical kit may be implanted at or near the site of injury in the patient in order to support growth or proliferation of nerve cells at the site of injury.
  • the above second formulation is the above 1.2. and contains a cell population containing neurons and/or their progenitor cells, or a cell population containing cerebral cortical neurons and/or their progenitor cells as an active ingredient. The production of these cells or cell populations is described above.
  • the number of nerve cells or cerebral cortical nerve cells and/or their progenitor cells necessary for the transplantation is not particularly limited as long as the graft can engraft after administration, but is, for example, 1 ⁇ 10 5 or more, 1 ⁇ 10 6 . 1 ⁇ 10 7 or more, 1 ⁇ 10 8 or more, 1 ⁇ 10 9 or more, etc., and may be adjusted appropriately according to the severity, age, weight, sex, etc. of the patient.
  • the second formulation may be administered before administration of the first formulation, simultaneously with administration of the first formulation, or after administration of the first formulation.
  • the second formulation may be administered after administration of the first formulation, more preferably 1 to 60 days after administration of the first formulation, more preferably 5 to 30 days, still more preferably 7 days. It may be administered ⁇ 20 days later, most preferably 10-14 days later.
  • the first formulation or the cells are suspended in a carrier (or excipient) such as physiological saline or phosphate-buffered saline (PBS) and placed at or near the patient's nerve pathway lesion site, for example, at the patient's skull. It can be administered by injection or the like through a drilled hole. Transplantation of cerebral cortical neurons is described, for example, in P. et al. Piccini et al. , Nature Neuroscience, 2, 1137, 1999; R. Freed et al. , N Engl J Med. ; 344:710-9, 2001 and the like. In the case of injection, it can be administered directly into the patient's brain, spinal cord, or periphery at or near (or around) the site of injury using an appropriate device such as a syringe, cannula, or catheter.
  • a carrier such as physiological saline or phosphate-buffered saline (PBS)
  • PBS physiological saline or phosphat
  • Principals as used herein are mammals, for example, primates including humans, rodents, ornamental animals, pet animals, etc., preferably humans.
  • mL1CAM-FLAG refers to the murine L1CAM protein or nucleic acid encoding it with a C-terminal FLAG tag.
  • pAAV[Exp]-CMV>mL1cam[NM_008478.3]/FLAG This term refers to AAV packaged with a construct encoding mL1CAM-FLAG (FIG. 3A) under the control of the CMV promoter. It may also be abbreviated as mL1cam-AAV and referred to as an L1CAM expression vector.
  • pAAV[Exp]-CMV>mNtn1[NM_008744.2]:T2A:mCherry:WPRE The term refers to an AAV plasmid containing nucleic acid encoding the mNtn1 protein and nucleic acid encoding the mCherry protein under the control of the CMV promoter.
  • the sequence encoding the T2A peptide causes mNtn1 protein and mCherry protein to be expressed as separate proteins.
  • WPRE stands for woodchuck hepatitis virus posttranscriptional regulatory element.
  • AAV9-packaged product of this plasmid is abbreviated as rAAV9-Ntn1-mCherry.
  • pAAV[Exp]-CMV>mSema3a[NM_001243072.1]:T2A:mCherry:WPRE The term refers to an AAV vector comprising nucleic acid encoding the mSema3a protein and nucleic acid encoding the mCherry protein under the control of the CMV promoter.
  • the sequence encoding the T2A peptide causes it to be expressed as a separate protein from the mSema3a and mCherry proteins.
  • AAV9-packaged product of this plasmid is abbreviated as rAAV9-Sema3a-mCherry.
  • pAAV[Exp]-CMV>mSema3c[NM_013657.5]:T2A:mCherry:WPRE The term refers to an AAV plasmid containing nucleic acid encoding the mSema3c protein and nucleic acid encoding the mCherry protein under the control of the CMV promoter.
  • the sequence encoding the T2A peptide causes it to be expressed as a separate protein from the mSema3c and mCherry proteins.
  • AAV9-packaged product of this plasmid is abbreviated as rAAV9-Sema3c-mCherry.
  • Example 1 ⁇ Axon elongation from a graft in the cerebral cortex overexpressing L1CAM to the spinal cord> 1.
  • mice Sixteen 13-week-old male mice (C57BL/6NCrSlc) were used as transplant recipients, and graft tissue was obtained from 15 fetal mice derived from two EGFP-transgenic mice (C57BL/6-Tg[CAG-EGFP]). Obtained. All mice were purchased from Shimizu Experimental Materials (Kyoto, Japan). Mice were group-housed with a 12-hour light-dark cycle and had free access to food and water.
  • ⁇ Vector> A construct encoding mL1CAM-FLAG under the control of the CMV promoter (Fig. 3A) was generated and packaged into AAV9 to construct pAAV[Exp]-CMV>mL1cam[NM_008478.3]/FLAG (Fig. 3A).
  • Vector Builder The ID of this vector is VB190707-1042dgs, which can be used to obtain detailed information about the vector from VectorBuilder.com.
  • pAAV[Exp]-CMV>mCherry:WPRE was constructed in the same manner as described above (Vector Builder). The ID of this vector is VB190114-1227see.
  • ⁇ Vector injection> Recipient mice were anesthetized by intraperitoneal injection of a mixture of medetomidine hydrochloride (0.75 mg/kg), midazolam (4 mg/kg) and butorphanol (5 mg/kg), and stereotaxic. to hold the head in a horizontal position.
  • a midline scalp incision is made and the superior rostral forelimb area (RFA) of the motor cortex (1.0 mm anterior and 1.0 mm lateral from the apex) and the superior caudal forelimb area (CFA) of the motor cortex (apical apex).
  • Two small fenestrations were made in the skull at 0.5 mm posterior and 1.8 mm lateral from the head using a drill (Minitor, Tokyo).
  • Cerebral cortical tissue was harvested from E14.5 EGFP transgenic mice (fetuses), transferred to HBSS (Gibco, USA) and kept on ice until transplantation. The tissue is aspirated and a sterile 22-gauge needle (Hamilton®, USA) was used to transplant 0.3 ⁇ l each.
  • mice were deeply anesthetized by intraperitoneal injection of pentobarbital (50 mg/kg) and transcardially perfused with 4% formaldehyde (PFA) (Wako Pure Chemical Industries, Osaka). Brains and spinal cords were post-fixed with PFA overnight, transferred to PBS containing 30% sucrose and stored at 4°C. Thereafter, the brain and spinal cord were placed in O.D. C. T. It was embedded in a compound (Sakura Fine Tech Japan, Tokyo) and sectioned with a thickness of 35 ⁇ m using a cryostat (CM-3050; Leica Biosystems, USA).
  • PFA formaldehyde
  • the sections were permeabilized with a PBS solution containing 0.3% Triton X-100 (Sigma-Aldrich, USA) (room temperature, 45 minutes), and then placed in a PBS solution containing 2% skimmed milk powder (BD Biosciences, USA). Blocking treatment (room temperature, 30 minutes) was followed by primary antibody treatment (4°C, overnight) and secondary antibody treatment (2 hours at room temperature with secondary antibodies conjugated with Alexa488, 594 and 647, respectively). rice field.
  • the primary antibodies include rabbit anti-EGFP antibody (1:1000, #598; Institute of Medical and Biological Sciences, Nagoya, Japan), mouse anti-FLAG M2 antibody (1:1000, #F1804; Sigma-Aldrich), rabbit anti- mCherry antibody (1:500, #ab167453; abcam, UK) and rat anti-L1CAM antibody (1:1000, #MAB5674; R&D Systems, USA) were conjugated with Alexa488, 594 and 647 as secondary antibodies, respectively. Secondary antibodies were used. Nuclear staining was performed with 4',6-diamidino-2-phenylindole (DAPI).
  • DAPI 4',6-diamidino-2-phenylindole
  • a confocal laser microscope (LSM700, Carl Zeiss, USA; Yokogawa Electric Corporation, Ishikawa) was used to visualize the signals of the secondary antibody and DAPI.
  • Maximum intensity projection (MIP) images of EGFP/DAPI were created using CellPathfinder software (Yokogawa) and analyzed with Fiji software (J. Schindelin et al., Nat Methods, 2012;9(7):676). -682) were used to convert to tiled figures.
  • Fiji software J. Schindelin et al., Nat Methods, 2012;9(7):676).
  • -682 were used to convert to tiled figures.
  • Nine sections per mouse were used for analysis. The number of axons derived from anti-EGFP antibody-labeled grafts was manually counted in sagittal sections and the average number of axons was recorded.
  • FIG. 1 shows immunostained images of sections of the internal capsule (FIG. 1A) and its contralateral spinal cord (FIG. 1B) obtained in the transplantation experiment using PBS(-) as a negative control.
  • no FLAG-positive (red) axons were observed in the negative control group, and very few EGFP-positive (green) axons (ie, transplanted cell-derived axons) were observed.
  • very few EGFP-positive (green) axons ie, transplanted cell-derived axons
  • Fig. 1A right panel the L1CAM expression vector-injected group, many EGFP-positive (green) axons were observed, and they basically merged with the L1CAM/FLAG double-positive (red and white intermediate color) axons.
  • Figure 2 shows the results of quantitative analysis of the number of EGFP-positive nerve axons in the ipsilateral internal capsule, ipsilateral cerebral peduncle, and contralateral spinal cord in the L1CAM-expressing vector-injected group and the control group.
  • L1CAM in the brain of the recipient prior to cell transplantation significantly promotes axonal outgrowth from neurons derived from the transplanted cells and is shown to enable access to the spinal cord. rice field.
  • Example 2 ⁇ Axon extension from a graft in the cerebral cortex overexpressing an axon guidance molecule other than L1CAM to the spinal cord> Next, the effects on axon elongation when overexpressing axon guidance molecules other than L1CAM were examined. 1. Experiments and Methods ⁇ Animals> The same animals as in Example 1 were used.
  • mice were anesthetized by intraperitoneal injection of a mixture of medetomidine hydrochloride (0.75 mg/kg), midazolam (4 mg/kg), and butorphanol (5 mg/kg), and placed in a stereotaxic instrument so that their heads were horizontal. Fixed. A midline scalp incision was made and the rostral forelimb area (RFA) of the motor cortex (1.0 mm anterior to bregma, 1.0 mm lateral) and the caudal forelimb area (CFA) of the motor cortex (0.5 mm posterior to bregma, lateral 1.8 mm) were drilled with a drill (Minitor Co., Ltd., Tokyo, Japan).
  • ROA rostral forelimb area
  • CFA caudal forelimb area
  • FIG. 4 shows the results of quantitative analysis of the number of GFP + neurites in the CST (ipsilateral internal capsule, ipsilateral cerebral zonules, contralateral spinal cord).
  • CST ipsilateral internal capsule, ipsilateral cerebral zonules, contralateral spinal cord.
  • L1CAM promoted axonal outgrowth from the graft.
  • rAAV vectors into which the netrin1, semaphorin3A, semaphorin3C, L1CAM and mCherry genes were introduced were injected into the motor cortex, respectively.
  • Donor cells were harvested from the frontal cortex of GFP transgenic mice on embryonic day 14 and transplanted.
  • GFP + axons were significantly increased only in the L1CAM group compared to the control group when counting the number of GFP + axons in the host's CST (ipsilateral internal capsule, ipsilateral cerebral temporal, contralateral spinal cord). There were many. There was no significant difference in the number of axons between the other axon guidance molecules group and the control group.
  • Sema3A which acts on axon repulsion
  • Sema3C which acts on attraction
  • Semaphorins act as attractive and repulsive guidance signals during the development of cortical projects.
  • netrin-1 diffuses from the basal ganglia primordium and forms a concentration gradient (C. Metin et al., Development: 5063-5074, 1997; A role for netrin-1 in the guidance of cortical effects.).
  • Example 3 ⁇ Co-culture experiment of L1CAM-expressing cells and primary neurons> In vitro, it was examined whether homogenous binding of L1CAM promotes neurite outgrowth. 1.
  • Experiments and methods ⁇ Transfection of HEK-293 cells expressing L1CAM> A DNA segment encoding L1CAM/FLAG was extracted from pAAV[Exp]-CMV>mL1cam[NM_008478.3]/FLAG (Vector ID: VB190707-1042dgs) with a 15 bp overlapping primer (FOR: tcctaccctcgtaaaacaagttgtgtacaaagcagg, RE NO: 5 :aactagaaggcacagctacttgtcgtcatcgtctttgtag (SEQ ID NO: 6)).
  • a PiggyBac transposon plasmid (VB201202-1242 kvw) containing TRE3G, TetOn3G, and a puromycin resistance gene (Puro) was linearized by PCR with overlapping primers and the L1cam/FLAG PCR product was subjected to In-Fusion (Clontech, Mountain View, CA, USA).
  • HEK-293 cells were cultured in DMEM supplemented with 10% fetal bovine serum (FBS), 100 U/ml penicillin and 100 ⁇ g/ml streptomycin.
  • HEK-293 cells were detached by trypsin in PBS, centrifuged at 200 g for 3 minutes, the supernatant discarded and the pellet resuspended in 1 ml DMEM. After counting the cells, 1 ⁇ 10 6 HEK-293 cells were transferred to a new 1.5 ml reaction tube and centrifuged again under the above conditions. The supernatant was discarded and the pellet resuspended in 100 ⁇ l Opti-MEM® I (Gibco).
  • a mixture of 1 ⁇ g of PB Tet-On-L1CAM/FLAG plasmid and 1 ⁇ g of pCAG-PBase (Transposase) was added to the cell suspension and placed in an electroporation cuvette (2 mm gap, Nepa Gene Co. Ltd., Chiba, Japan). ). Electroporation was performed with the P023 program using a Nucleofector 2b (Lonza, Basel, Switzerland). After 2 days of incubation, 1 ⁇ g/ml Puromycin was added for selection. After 5 days of selection, cells were passaged.
  • Wild-type HEK-293 cells and HEK-293 cells expressing L1CAM/FLAG were seeded at 300,000 cells/well and cultured in a 6-well plate. After becoming confluent, the cell culture plate was placed on ice and the cells were washed with ice-cold PBS. After aspirating PBS, ice-cold RIPA buffer (150 mM sodium chloride, 1.0% Triton X-100, 0.5% sodium deoxycholate, 0.1% SDS (sodium dodecyl sulfate), 50 mM Tris (pH 8.0). 0), 1:100 protease inhibitor cocktail, distilled water) (0.5 mL per well) was added.
  • ice-cold RIPA buffer 150 mM sodium chloride, 1.0% Triton X-100, 0.5% sodium deoxycholate, 0.1% SDS (sodium dodecyl sulfate), 50 mM Tris (pH 8.0). 0
  • the membrane was blocked with Tris-buffered saline (TBST) containing 5% skimmed milk and 0.1% Tween-20 for 1 hour at room temperature and treated with a primary antibody (rat anti-L1CAM (1:5000, #MAB5674, R&D Systems), After overnight incubation at 4° C. with mouse anti- ⁇ -actin (1:5000, #A2228, Sigma-Aldrich)), horseradish peroxidase-conjugated secondary antibody (anti-rat IgG-HRP (1:10000, #sc -2006, Santa Cruz), anti-mouse IgG-HRP (1:10000, #ab6820, abcam)) for 90 minutes at room temperature. Signals were detected using Pierce ECL Plus Western Blotting Substrate (Thermo Fisher). Images were also acquired with an ImageQuant LAS4000 (Cytiva, Tokyo, Jaoan).
  • HEK-293 (PB-L1Cam/Flag) cells were seeded into each well of collagen (COSMO) coated 96-well plates and incubated at 37°C.
  • Doxycycline (100 ng/mL) was added to the medium to induce expression of the Tet-On gene and maintained throughout the experiment. After the cells formed a confluent monolayer, growth was stopped by adding 100 ng/mL mitomycin followed by incubation at 37° C. for 2 hours.
  • EGFP transgenic mouse cortical nerve cells on day 14 of embryonic development were collected, enzymatically dissociated using Neuron Dissociation Solutions (Fujifilm Wako Pure Chemical Industries, Ltd., Osaka), and 10% FBS (Merck) was added to Neuron. It was suspended in Culture Medium (Fuji Film Wako Pure Chemical Industries, Ltd.). Then, these nerve cells were seeded on the above cultured HEK cells at a density of 10,000 cells/cm 2 .
  • anti-L1CAM mAb 5G3 known to inhibit the same intermolecular binding of L1CAM, was added to the medium at 1:200 (Balaian et al., 2000; Wolterink et al., 2010). Images were acquired every 12 hours using an IncuCyte S3 and GFP-positive neurite length was automatically measured using the IncuCyte Neurotrack software. The experiment was repeated 4 times with 4 wells for each group.
  • FIG. 6 shows the results of Western blotting. It was confirmed that the target protein L1CAM was expressed in the cells prepared in this example.
  • FIG. 7 shows the results of the in vitro assay
  • FIG. 8 shows the results of quantitative analysis of temporal changes in neurite length of primary neurons on HEK-L1.
  • DOX axons of neurons on HEK cells
  • L1CAM elongated longer than those on cells not expressing L1CAM.
  • Addition of the inhibitor 5G3 inhibited axonal outgrowth regardless of L1CAM expression.
  • L1CAM exerts an axon elongation effect through at least the same intermolecular bond not only in mice but also in humans, and even in cells other than neurons. That is, the axon elongation phenomenon shown in Example 1 does not depend on the cell type or the animal species from which the cells are derived, and the important point is whether or not the cells express L1CAM. shown. Therefore, not only cells derived from a living body but also cells induced to differentiate from pluripotent stem cells (eg, cerebral nerve/progenitor cells) can similarly be expected to exhibit an axonal elongation effect if they express L1CAM. On the other hand, 5G3 inhibited axonal elongation regardless of the expression of L1CAM, suggesting that a mechanism other than the same intermolecular bond works in promoting axonal elongation by L1CAM.
  • pluripotent stem cells eg, cerebral nerve/progenitor cells
  • Example 4 ⁇ Observation of expression of L1CAM by electron microscope> To explore the mechanism of the axonal outgrowth effect, we observed the expression of L1CAM in the graft-implanted host brain by electron microscopy. 1. Experiments and Methods Transplantation was performed one week after brain cortical injection of AAV-L1CAM/FLAG. Cerebral cortex tissue was collected from E14.5 EGFP transgenic mice (fetuses), the tissue was sucked up, and the injection site of the vector-injected mouse (1.0 mm and 0.5 mm in the RFA and CFA, respectively). depth) were implanted in 0.3 ⁇ l aliquots using a sterile 22-gauge needle (Hamilton, USA).
  • Brain sections were washed twice with PBS and incubated for 15 minutes with PBS containing 0.3% H 2 O 2 and 0.4% Photo-Flo (Kodak, Rochester, NY, USA). After washing with PBS three times for 10 minutes, sections were blocked with 2% skim milk in PBS (BD Biosciences) for 1 hour at room temperature and treated with rabbit anti-GFP antibody (1:1000, #598, #598, 2% skim milk in PBS). (Medical and Biological Laboratories Company Limited) at 4° C. overnight.
  • Sections were washed with PBS (7 times, 1 min each) and treated with secondary antibody (biotin-conjugated goat anti-rabbit IgG antibody (1:1000; #BA-1000, Vector laboratories, Burlingame, Calif., USA), goat anti-rat IgG (25 nm Gold) (1:30; #ab41513, Abcam), goat anti-mouse IgG (10 nm Gold) (1:30, #ab39619, Abcam) for 2 hours at room temperature, then fixed with 2% glutaraldehyde diluted with PBS for 15 minutes, washed with distilled water, stained with uranyl acetate and lead citrate, and subjected to an electron microscope (JEM1400 Flash, JEOL). Ltd., Tokyo, Japan) TEM was performed at the Electron Microscopy Research Department, Center for Anatomy, graduate School of Medicine, Kyoto University.
  • FIG. 9 shows photomicrographs of host brains in which the grafts were implanted. It was shown that L1CAM is expressed on the myelin sheath of the host brain and that the graft-derived axons run outside the myelin sheath of the axons of the host brain.
  • Example 5 ⁇ Induction of neurons expressing L1CAM> Finally, neural cells expressing L1CAM, which are candidates for cells to be transplanted, were induced from human iPS cells. 1. Experiments and Methods S17 was used as a cell line. Human iPS cells (established using Sendai virus vector CytoTune 2.0LG) were maintained in StemFit medium on 6-well plates coated with iMatrix-511 silk. On the day before the cells were transferred to the 96-well plate (day -1), the medium was replaced with StemFit's C-fluid-free medium supplemented with 5 ⁇ M SB431542.
  • FIG. 10 shows the results of immunostaining of cerebral organoids 39 days after differentiation. Expression of L1CAM is observed at a site corresponding to the cortical plate (Ctip2-positive, Pax6-negative) at the developmental stage. Thus, cells expressing L1CAM and also expressing Ctip2 can be suitably used for human therapy.
  • the present invention makes it possible to reconstruct damaged neural pathways (eg, corticospinal pathway).

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Cell Biology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Developmental Biology & Embryology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Immunology (AREA)
  • Neurology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Neurosurgery (AREA)
  • Virology (AREA)
  • Reproductive Health (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Botany (AREA)
  • Genetics & Genomics (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Dermatology (AREA)
  • Ophthalmology & Optometry (AREA)
  • Gynecology & Obstetrics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Transplantation (AREA)
  • Molecular Biology (AREA)
  • Hospice & Palliative Care (AREA)
  • Psychiatry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

The present invention provides a drug kit for rebuilding a damaged neural pathway, wherein the drug kit comprises a first formulation comprising axonal elongation-inducing protein, nucleic acid encoding said protein, or a vector that expressibly contains DNA encoding said protein. The present invention also provides a method for rebuilding a damaged neural pathway in a patient, the method comprising the administration of the first formulation of this drug kit.

Description

障害された神経経路を再構築するための医薬キット及び方法Pharmaceutical kits and methods for rebuilding damaged neural pathways
 本発明は、障害された神経経路を再構築するための医薬キットに関する。
 本発明はまた、障害された神経経路を再構築する方法に関する。
The present invention relates to a pharmaceutical kit for reconstructing damaged neural pathways.
The invention also relates to methods of reconstructing damaged neural pathways.
 神経経路はさまざまな要因で障害され、それにより当該経路が担っていた機能が損なわれる。例えば、脳梗塞や脳卒中では虚血に晒された神経細胞が欠損するため、当該神経細胞が形成していた神経経路が障害されて機能障害が生じる。代表的なものが、皮質脊髄路の障害による随意運動障害(例えば、半身不随等)である。また、神経変性疾患や頭部外傷等により特定の神経細胞が欠損する場合も同様である。このように、神経経路の障害によって生じる疾患に対しては、当該神経経路を形成していた神経細胞を補充する細胞移植が最も有効な治療方法と考えられている。 Neural pathways are damaged by various factors, which impairs the functions that the pathways are responsible for. For example, in cerebral infarction or stroke, nerve cells exposed to ischemia are lost, and the nerve pathways formed by these nerve cells are damaged, resulting in functional impairment. A typical example is voluntary movement disorder (for example, hemiplegia, etc.) due to damage to the corticospinal tract. The same applies to the loss of specific nerve cells due to neurodegenerative disease, head injury, or the like. Thus, cell transplantation to replenish the nerve cells forming the neural pathway is considered to be the most effective therapeutic method for diseases caused by disorders of neural pathways.
 神経細胞の細胞移植治療では通常、神経細胞及び/又は神経前駆細胞を障害部位又はその近傍に移植する。十分な治療効果を得るには、移植後の細胞が生着し、(場合によっては所望の神経細胞へと分化し)所望の標的細胞まで軸索を伸長し、神経結合を形成する必要がある。しかしながら、一般に移植した細胞の軸索伸長効率は低く、さらに長距離にわたって軸索を伸長できるものの割合は非常に低いという問題があった。 In cell transplantation therapy of nerve cells, nerve cells and/or neural progenitor cells are usually transplanted into or near the site of injury. In order to obtain a sufficient therapeutic effect, it is necessary for the transplanted cells to engraft (in some cases, differentiate into the desired nerve cells), extend their axons to the desired target cells, and form neural connections. . However, the axon elongation efficiency of transplanted cells is generally low, and furthermore, there is a problem that the percentage of axons that can elongate axons over a long distance is very low.
 例えば、大脳皮質運動野に存在する上位運動ニューロンの軸索は、内包を経由して中脳腹側面の大脳脚を通過し、橋核を貫通して延髄腹側面から錐体交叉を経て脊髄に入り、脊髄側索を下行しながら脊髄前角の下位運動ニューロンに接続する。この経路が皮質脊髄路と呼ばれるもので、前述した通り再構築の需要が非常に高い経路だが、ヒト成人では1m以上に及ぶ場合もあるため、当該経路の再構築は困難を極めている。そのため、細胞移植によって皮質脊髄路を再構築するためのさまざまな工夫が検討されている。 For example, the axons of upper motor neurons in the cerebral cortex motor cortex pass through the ventral midbrain peduncle via the internal capsule, penetrate the pontine nucleus, ventral medulla oblongata, and cross the pyramidal chiasma to the spinal cord. Enters and descends the spinal cord, connecting to the lower motor neurons in the anterior horn of the spinal cord. This pathway is called the corticospinal tract, and as mentioned above, there is a high demand for reconstruction. Therefore, various methods for reconstructing the corticospinal tract by cell transplantation are being investigated.
 例えば、非特許文献1では、成体マウスの脳損傷モデルにおいて、損傷直後にマウス胎仔脳を移植した場合には移植細胞由来神経軸索の脊髄到達はほとんど認められなかったが、損傷から1週間後に移植した場合には、脊髄まで到達した移植細胞由来軸索が有意に認められ、運動能力の改善傾向も認められたことを報告している。これにより、細胞移植を行うタイミングの重要性が示唆された。 For example, in Non-Patent Document 1, in an adult mouse brain injury model, almost no transplanted cell-derived nerve axons reached the spinal cord when mouse fetal brains were transplanted immediately after injury. They reported that when transplanted, the transplanted cell-derived axons reaching the spinal cord were significantly observed, and a tendency toward improvement in exercise capacity was also observed. This suggested the importance of the timing of cell transplantation.
 また、本発明者らは、ヒトES細胞由来脳オルガノイドを成体マウスの脳損傷モデルに移植する系において、CTIP2又はL1CAMが脊髄に投射可能な神経細胞のマーカーになり得ることを見出した(特許文献1、非特許文献2)。特に、L1CAMは細胞表面に発現する膜タンパク質であるため、これにより、ヒト移植用細胞の調製において、脊髄にまで軸索伸長し得る能力を持った細胞、すなわち、皮質脊髄路の再構築に適した細胞の濃縮が可能となった。 In addition, the present inventors have found that in a system in which human ES cell-derived brain organoids are transplanted into an adult mouse brain injury model, CTIP2 or L1CAM can be a marker for neurons that can project to the spinal cord (Patent document 1, Non-Patent Document 2). In particular, since L1CAM is a membrane protein expressed on the cell surface, it is suitable for the reconstruction of cells with the ability to extend axons to the spinal cord, that is, the corticospinal tract, in the preparation of cells for human transplantation. It is now possible to enrich the cells
 しかしながら、移植タイミングの最適化によって得られる効果は限定的であり、また、脳オルガノイドに含まれるL1CAM陽性細胞の割合は非常に少ないため、細胞濃縮のみに頼ると大変高額な治療方法になる。よって、これらの方法に代わる、又は、これらの方法と併用可能な方法であって、皮質脊髄路のような長距離にわたる神経経路の再構築をも可能とする、移植細胞の軸索伸長を効果的に促進する方法が切望されていた。 However, the effect obtained by optimizing the timing of transplantation is limited, and the proportion of L1CAM-positive cells contained in brain organoids is very small, so relying on cell concentration alone would be a very expensive treatment method. Therefore, alternatives to, or in combination with, these methods are methods for effecting axonal outgrowth of transplanted cells that also enable remodeling of neural pathways over long distances, such as the corticospinal tract. There has been a need for a method to effectively promote
国際公開WO2020/138510号International publication WO2020/138510
 本発明は上記背景事情を鑑みてなされたものであり、皮質脊髄路のような長距離にわたる神経経路であっても、細胞移植によって神経経路の再構築を可能にする方法及び該方法で使用するキットの提供を課題とする。 The present invention has been made in view of the above background, and is used in a method for reconstructing neural pathways by cell transplantation, even in long-distance neural pathways such as the corticospinal tract. The challenge is to provide a kit.
 本発明者らは、鋭意検討を行った結果、マウスの大脳皮質運動野においてL1CAMなどの軸索伸長誘導タンパク質を過剰発現させ、その後当該部位に大脳皮質神経細胞(集団)を移植すると、移植細胞由来の神経軸索が脊髄にまで到達できるようになることを見出した。L1CAMは、哺乳動物の神経発生において軸索の成長やガイダンスに関与する膜タンパク質であることから(Maness,P.F.&Schachner,M.Nature Neuroscience,10(1),19-26,2007;Neural recognition molecules of the immunoglobulin superfamily:signaling transducers of axon guidance and neuronal migration)、軸索ガイダンス因子(axon guidance cue)として知られる他のタンパク質も同様の効果を奏するだろう。 As a result of intensive studies, the present inventors found that when an axonal outgrowth-inducing protein such as L1CAM is overexpressed in the motor area of the mouse cerebral cortex, and then cerebral cortical neurons (population) are transplanted to the site, the transplanted cells We found that the derived nerve axons can reach the spinal cord. L1CAM is a membrane protein involved in axonal growth and guidance in mammalian neurogenesis (Maness, PF & Schachner, M. Nature Neuroscience, 10 (1), 19-26, 2007; Neural Other proteins known as recognition molecules of the immunoglobulin superfamily: signaling transducers of axon guidance and neuronal migration, axon guidance cues, may have similar effects.
 上記の知見は全く意外であった。なぜなら、たとえ中枢神経系及び末梢神経系の障害部位付近の生きた残存神経細胞に軸索ガイダンス因子を発現させても、移植した神経細胞(集団)に対して遠隔まで軸索伸長を誘導することは難しいと予想されたからである。具体的に言えば、軸索の周囲はオリゴデンドロサイト(中枢神経系)又はシュワン細胞(末梢神経系)からなる髄鞘で被覆されているため、移植された神経細胞が、残存神経細胞の軸索上に発現している軸索ガイダンス因子(例、L1CAM等)と相互作用するのは困難であるだろうと考えられたからである。しかしながら、実際に軸索ガイダンス因子であるL1CAMを移植予定部位の残存神経細胞で発現させたところ、意外なことに、L1CAMは髄鞘上にも発現していることを見出した。 The above findings were completely unexpected. This is because even if the axonal guidance factor is expressed in viable residual neurons near the site of injury in the central and peripheral nervous systems, it is not possible to induce axonal outgrowth to the transplanted neurons (population) to a distant extent. was expected to be difficult. Specifically, since the axons are surrounded by a myelin sheath consisting of oligodendrocytes (central nervous system) or Schwann cells (peripheral nervous system), the transplanted nerve cells are the axis of the remaining nerve cells. It was thought that it would be difficult to interact with axonal guidance factors (eg, L1CAM, etc.) expressed on the cord. However, when L1CAM, which is an axonal guidance factor, was actually expressed in residual nerve cells at the planned transplantation site, it was unexpectedly found that L1CAM was also expressed on the myelin sheath.
 本発明は、以下の特徴を含む。
(1)軸索伸長誘導タンパク質、該タンパク質をコードする核酸、又は該タンパク質をコードするDNAを発現可能に含むベクターを有効成分として含む第1製剤を含む、障害された神経経路を再構築するための医薬キット。
(2)上記神経経路が、皮質脊髄路又はその他の神経経路である、上記(1)に記載の医薬キット。
(3-1)第1製剤が、神経経路障害をもつ患者の該障害部位又はその近傍に投与される、上記(1)又は(2)に記載の医薬キット。
(3-2)第1製剤が、皮質脊髄路障害をもつ患者の大脳皮質運動野に投与される、上記(1)~(3-1)のいずれかに記載の医薬キット。
(4)神経細胞及び/又はその前駆細胞を含む細胞集団を含む第2製剤をさらに含む、上記(1)~(3-2)のいずれかに記載の医薬キット。
(5-1)上記第2製剤が、大脳皮質細胞及び/又はその前駆細胞を含む細胞集団を含む、上記(4)に記載の医薬キット。
(5-2)上記細胞が、Ctip2を発現する細胞である、上記(5-1)に記載の医薬キット。
(6)上記細胞集団が、多能性幹細胞由来又は体性幹細胞由来である、上記(4)~(5-2)のいずれかに記載の医薬キット。
(7)上記多能性幹細胞が、人工多能性幹(iPS)細胞又は胚性幹(ES)細胞である、上記(6)に記載の医薬キット。
(8)上記軸索伸長誘導タンパク質が、L1CAM、ネトリン(Netrin)ファミリー、セマフォリン(Semaphorin)ファミリー、スリット(Slit)ファミリー、エフリン(Ephrin)ファミリー、モルフォゲン(morphogen)及び神経栄養因子からなる群から選択される少なくとも1つの軸索ガイダンス因子である、上記(1)~(7)のいずれかに記載の医薬キット。
(9)上記軸索伸長誘導タンパク質が、L1CAMである、上記(1)~(8)のいずれかに記載の医薬キット。
(10)上記タンパク質又は前記核酸が、薬物送達システムに含まれている、上記(1)~(9)のいずれかに記載の医薬キット。
(11)上記ベクターが、ウイルスベクターである、上記(1)~(10)のいずれかに記載の医薬キット。
(12)上記ウイルスベクターが、アデノ随伴ウイルス(AAV:Adeno-associated virus)ベクターである、上記(11)に記載の医薬キット。
(13)L1CAMをコードするDNAを含むAAVベクターを含む第1製剤と、iPS細胞由来又は体性幹細胞由来の前記細胞集団を含む第2製剤とを含む、上記(4)~(12)のいずれかに記載の医薬キット。
(14)上記(1)~(13)のいずれかに記載の医薬キットの第1製剤を、神経経路障害をもつ患者の該障害部位又はその近傍に投与することを含む、上記患者において障害された神経経路を再構築するための方法。
(15)上記医薬キットの第2製剤を上記患者の前記障害部位又はその近傍に移植することをさらに含む、上記(14)に記載の方法。
(16)上記(1)~(13)のいずれかに記載の医薬キットの第1製剤を、皮質脊髄路障害をもつ患者の大脳皮質運動野に投与することを含む、上記患者において障害された皮質脊髄路を再構築するための方法。
(17)上記医薬キットの第2製剤を上記患者の大脳皮質の上記障害部位又はその近傍に移植することをさらに含む、上記(16)に記載の方法。
(18)上記皮質脊髄路障害が、頭部外傷又は脳血管障害を原因とする障害である、上記(16)又は(17)に記載の方法。
(19)上記患者がヒトである、上記(14)~(18)のいずれかに記載の方法。
(20)障害された神経経路の再構築における使用のための、軸索伸長誘導タンパク質、該タンパク質をコードする核酸、又は該タンパク質をコードするDNAを発現可能に含むベクター。
(21)障害された神経経路の再構築剤の製造のための、軸索伸長誘導タンパク質、該タンパク質をコードする核酸、又は該タンパク質をコードするDNAを発現可能に含むベクターの使用。
The present invention includes the following features.
(1) To reconstruct damaged neural pathways, which contains a first preparation containing, as an active ingredient, an axonal outgrowth-inducing protein, a nucleic acid encoding the protein, or a vector capable of expressing the DNA encoding the protein. medicine kit.
(2) The pharmaceutical kit according to (1) above, wherein the neural pathway is the corticospinal pathway or other neural pathway.
(3-1) The pharmaceutical kit according to (1) or (2) above, wherein the first formulation is administered to a patient with a neural pathway disorder at or near the site of the disorder.
(3-2) The pharmaceutical kit according to any one of (1) to (3-1) above, wherein the first formulation is administered to the cortical motor area of a patient with corticospinal tract disorder.
(4) The pharmaceutical kit according to any one of (1) to (3-2) above, further comprising a second preparation containing a cell population containing nerve cells and/or their progenitor cells.
(5-1) The pharmaceutical kit according to (4) above, wherein the second preparation contains a cell population containing cerebral cortical cells and/or their progenitor cells.
(5-2) The pharmaceutical kit according to (5-1) above, wherein the cells are cells expressing Ctip2.
(6) The pharmaceutical kit according to any one of (4) to (5-2) above, wherein the cell population is derived from pluripotent stem cells or somatic stem cells.
(7) The pharmaceutical kit according to (6) above, wherein the pluripotent stem cells are induced pluripotent stem (iPS) cells or embryonic stem (ES) cells.
(8) the axon outgrowth-inducing protein is from the group consisting of L1CAM, Netrin family, Semaphorin family, Slit family, Ephrin family, morphogen and neurotrophic factor The pharmaceutical kit according to any one of (1) to (7) above, which is at least one selected axonal guidance factor.
(9) The pharmaceutical kit according to any one of (1) to (8) above, wherein the axonal outgrowth-inducing protein is L1CAM.
(10) The pharmaceutical kit according to any one of (1) to (9) above, wherein the protein or nucleic acid is contained in a drug delivery system.
(11) The pharmaceutical kit according to any one of (1) to (10) above, wherein the vector is a viral vector.
(12) The pharmaceutical kit according to (11) above, wherein the viral vector is an adeno-associated virus (AAV) vector.
(13) Any of the above (4) to (12), comprising a first preparation containing an AAV vector containing DNA encoding L1CAM, and a second preparation containing the iPS cell-derived or somatic stem cell-derived cell population. A pharmaceutical kit according to .
(14) a patient with a neuropathy disorder, comprising administering the first formulation of the pharmaceutical kit according to any one of (1) to (13) above to a patient with a neuropathy disorder at or near the site of the disorder; A method for reconstructing neural pathways.
(15) The method according to (14) above, further comprising transplanting the second formulation of the pharmaceutical kit to or near the lesion site of the patient.
(16) comprising administering the first formulation of the pharmaceutical kit according to any one of (1) to (13) above to the cerebral cortical motor area of a patient with corticospinal tract disorder. A method for reconstructing the corticospinal tract.
(17) The method according to (16) above, further comprising transplanting the second formulation of the pharmaceutical kit to or near the damaged site of the cerebral cortex of the patient.
(18) The method according to (16) or (17) above, wherein the corticospinal tract disorder is caused by head injury or cerebrovascular accident.
(19) The method according to any one of (14) to (18) above, wherein the patient is human.
(20) A vector expressably comprising an axonal outgrowth-inducing protein, a nucleic acid encoding said protein, or a DNA encoding said protein for use in remodeling damaged neural pathways.
(21) Use of an axonal outgrowth-inducing protein, a nucleic acid encoding the protein, or a vector expressing the DNA encoding the protein for the production of an agent for reconstructing damaged neural pathways.
 本発明により、皮質脊髄路のような長距離にわたる神経経路の再構築を可能とする、移植細胞の軸索伸長を促進する方法及び該方法で使用するキットが提供される。 The present invention provides a method for promoting axonal outgrowth of transplanted cells, which enables reconstruction of long-distance neural pathways such as the corticospinal tract, and a kit for use in the method.
この図は、L1CAM-FLAGが皮質脊髄路に沿って発現し、移植片からの神経軸索が脊髄まで伸長したことを示す免疫組織化学染色画像である。図1Aは内包(internal capsule)の結果で、上段パネルはL1CAM発現ベクター(mL1cam-AAV)注射群、下段パネルはビヒクル注射群(PBS(-)、陰性コントロール)であり、左からL1CAMシグナル(白色)とFLAGシグナル(赤色)の二重染色シグナル(左パネル)、EGFPシグナル(中央パネル、緑色)、L1CAM(白色)、FLAG(赤色)、およびEGFP(緑色)の三重染色シグナル(右パネル)をそれぞれ表す。L1CAM発現ベクター注射群では、EGFP陽性の軸索は基本的にL1CAM・FLAG二重陽性の軸索とマージしていた。図1Bは、図1Aの内包に対する対側(contralateral)の脊髄の結果であって、L1CAM(白色)、FLAG(赤色)、およびEGFP(緑色)の三重染色シグナルを表す。上段パネルはL1CAM発現ベクター注射群、下段はビヒクル注射群(PBS(-))の結果である。L1CAM発現ベクター注射群では、EGFP陽性の軸索は基本的にL1CAM・FLAG二重陽性の軸索とマージしていた。スケールバーは20μmを表す。This figure is an immunohistochemical staining image showing that L1CAM-FLAG is expressed along the corticospinal tract and nerve axons from the graft extend into the spinal cord. Figure 1A shows the results of internal capsules, the upper panel is the L1CAM expression vector (mL1cam-AAV) injection group, the lower panel is the vehicle injection group (PBS (-), negative control), and from the left L1CAM signal (white ) and FLAG signal (red) double staining signal (left panel), EGFP signal (middle panel, green), L1CAM (white), FLAG (red), and EGFP (green) triple staining signal (right panel). represent each. In the L1CAM expression vector-injected group, the EGFP-positive axons basically merged with the L1CAM-FLAG double-positive axons. FIG. 1B is the results of the spinal cord contralateral to the internal capsule of FIG. 1A, showing the L1CAM (white), FLAG (red), and EGFP (green) triple staining signals. The upper panel shows the results of the L1CAM expression vector-injected group, and the lower panel shows the results of the vehicle-injected group (PBS(-)). In the L1CAM expression vector-injected group, the EGFP-positive axons basically merged with the L1CAM-FLAG double-positive axons. Scale bar represents 20 μm. この図は、L1CAM発現ベクター注射群(n=8)とmCherry発現ベクター注射群(陰性コントロール群)(n=7)における、皮質脊髄路、すなわち、同側内包(ipsilateral internal capsule)(図2A)、同側大脳脚(ipsilateral cerebral peduncle)(図2B)、及び対側脊髄(contralateral spinal cord)(図2C)内のEGFP陽性神経突起の数の定量分析結果を示す(平均±標準誤差(SEM))。有意差検定にはMann-Whitneyテストを用いた。This figure shows the corticospinal tract, i.e., the ipsilateral internal capsule, in the L1CAM expression vector-injected group (n = 8) and the mCherry expression vector-injected group (negative control group) (n = 7) (Fig. 2A). , ipsilateral cerebral peduncle (Fig. 2B), and contralateral spinal cord (Fig. 2C). ). The Mann-Whitney test was used for the significance test. この図は、L1CAM発現ベクター(pAAV[Exp]-CMV>mL1cam[NM_008478.3]/FLAG)(図3A)、mCherry発現ベクター(pAAV[Exp]-CMV>mCherry:WPRE)(図3B)および軸索伸長因子(具体的には、L1CAM、Ntn1、Sema3a、Sema3c)(図3C)中に挿入した発現カセットの構造を示す。図中、mL1CAM-FLAGは、C末端にFLAGタグが付加されたマウスL1CAMをコードするDNA、mCherryは蛍光タンパク質であるmCherryをコードするDNA、WPREは転写後調節因子であるwoodchuck hepatitis virus posttranscriptional regulatory element、ITRは、AAV由来のinverted terminal repeat、CMVはサイトメガロウイルスプロモーター、BGHpAは、ウシ成長ホルモンポリAシグナル(bovine growth hormone polyadenylation signal)をそれぞれ表す。The figure shows the L1CAM expression vector (pAAV[Exp]-CMV>mL1cam[NM_008478.3]/FLAG) (Fig. 3A), mCherry expression vector (pAAV[Exp]-CMV>mCherry:WPRE) (Fig. 3B) and axis The structures of the expression cassettes inserted into the cord elongation factors (specifically L1CAM, Ntn1, Sema3a, Sema3c) (Fig. 3C) are shown. In the figure, mL1CAM-FLAG is the DNA encoding mouse L1CAM with a FLAG tag added to the C-terminus, mCherry is the DNA encoding the fluorescent protein mCherry, and WPRE is the woodchuck hepatitis virus posttranscriptional regulatory element. , ITR represents AAV-derived inverted terminal repeat, CMV represents cytomegalovirus promoter, and BGHpA represents bovine growth hormone polyadenylation signal. この図は、L1CAM群のCST上の移植片由来の軸索の数が、対照群に比べて有意に多かったことを示す。CST(同側内包、同側大脳小帯、対側脊髄)におけるGFP神経突起の数を定量的に解析した。L1CAM発現ベクターを注入した群では、宿主の皮質脊髄路上、内包、脳小帯、脊髄の各部位における移植片からの軸索数が、コントロール(mCherry)群に比べて有意に多かった。他の軸索誘導分子群では、軸索の数に有意な差はなかった。Kruscal-Wallis検定を実施した。コントロール群とNetrin1群ではn=7、Sema3A群、Sema3C群、L1CAM群ではn=8。結果は平均値±SEMで示した。This figure shows that the number of graft-derived axons on the CST in the L1CAM group was significantly higher than in the control group. The number of GFP + neurites in the CST (ipsilateral internal capsule, ipsilateral zonules, contralateral spinal cord) was quantitatively analyzed. In the group into which the L1CAM expression vector was injected, the number of axons from the graft in each site of the host's corticospinal tract, internal capsule, zonules, and spinal cord was significantly higher than in the control (mCherry) group. There was no significant difference in the number of axons in other axon guidance molecule groups. A Kruscal-Wallis test was performed. n=7 for control and Netrin1 groups, n=8 for Sema3A, Sema3C and L1CAM groups. Results are shown as mean ± SEM. 上図は、実施例3で用いたコンストラクトの作製およびHEK細胞への導入方法の概要図を示す。下図は、実施例3におけるin vitroアッセイの方法を示した概要図を示す。HEK-293(PB-L1Cam/Flag)細胞を播種し、ドキシサイクリンを培地に加えてTet-On遺伝子の発現を誘導しなかったもの(図における「L1CAM」)としたもの(図における「L1CAM」)を準備した。細胞がコンフルエントな単層を形成した後、EGFPトランスジェニックマウスの胎生14日目の皮質神経細胞を採取し、上記の培養HEK細胞上に播種した。ネガティブコントロールとして、L1CAMの同一分子間結合を阻害することが知られている抗L1CAM mAb 5G3を1:200で培地に添加した(図における「+5G3」)。The upper diagram shows a schematic diagram of the method of preparing the construct used in Example 3 and introducing it into HEK cells. The figure below shows a schematic diagram showing the method of the in vitro assay in Example 3. HEK-293 (PB-L1Cam/Flag) cells were seeded, and doxycycline was added to the medium to not induce expression of the Tet-On gene ("L1CAM - " in the figure) ("L1CAM + " in the figure). ”) was prepared. After the cells formed a confluent monolayer, cortical neurons from embryonic day 14 of EGFP transgenic mice were harvested and seeded onto cultured HEK cells as described above. As a negative control, anti-L1CAM mAb 5G3, known to inhibit the same intermolecular binding of L1CAM, was added to the medium at 1:200 ("+5G3" in the figure). この図は、ウエスタンブロッティングの結果を示す。野生型HEK-293細胞(HEK細胞)およびL1CAM/FLAGを発現するHEK-293細胞(HEK-L1)におけるL1CAM、FLAG、およびβ-アクチン(ローディングコントロール)のウエスタンブロッティング。Lane1はドキシサイクリン(DOX)を添加していないHEK細胞。Lane2はHEK細胞にDOXを添加したもの。Lane3はDOXを含まないHEK-L1。Lane4はHEK-L1にDOXを添加したもの。L1CAMはドキシサイクリン(DOX)を添加したHEK-L1でのみ検出され、ワイルドタイプのHEK細胞やDOXを添加していないHEK-L1では検出されなかった。This figure shows the results of Western blotting. Western blotting of L1CAM, FLAG, and β-actin (loading control) in wild-type HEK-293 cells (HEK cells) and HEK-293 cells expressing L1CAM/FLAG (HEK-L1). Lane 1 is HEK cells without doxycycline (DOX). Lane 2 is HEK cells added with DOX. Lane 3 is HEK-L1 without DOX. Lane 4 is HEK-L1 with DOX added. L1CAM was detected only in HEK-L1 cells supplemented with doxycycline (DOX), and was not detected in wild-type HEK cells or HEK-L1 cells without DOX. この図は、HEK-L1にDOXを添加した場合と添加しない場合(左2枚)、それぞれに5G3を添加した場合(右2枚)のGFP神経突起の代表画像を示す。In vitroにおいて、L1CAM細胞は同種の結合により神経突起の伸長を促進したことが示された。スケールバーは20μm。This figure shows representative images of GFP + neurites in HEK-L1 with and without DOX (left 2 panels) and with 5G3 added (right 2 panels), respectively. In vitro, L1CAM + cells were shown to promote neurite outgrowth through allogeneic binding. Scale bar is 20 μm. この図は、HEK-L1上の初代ニューロンの神経突起の長さの時間変化を定量的に分析した結果を示す。実験は、各グループの4倍の数を用いて4回繰り返した。*p < 0.05, **p < 0.01, ***p < 0.001, repeated measure two-way ANOVA with Tukey’s multiple comparisons test。観察開始時には両群間に差はなかったが、観察開始から48時間後には、DOX存在下での神経線維の長さがDOX非存在下での神経線維の長さよりも有意に長くなり、60時間後には有意な差はなくなった(時間経過とともにL1CAMの効果が頭打ちとなったと考えられる)。5G3を投与した群では、48時間後の観察では、DOXの有無にかかわらず、神経線維の長さが非投与群に比べて有意に短くなった。This figure shows the results of quantitative analysis of temporal changes in neurite length of primary neurons on HEK-L1. The experiment was repeated four times with four times the number of each group. *p < 0.05, **p < 0.01, ***p < 0.001, repeated measure two-way ANOVA with Tukey's multiple comparisons test. Although there was no difference between the two groups at the start of observation, 48 hours after the start of observation, the length of nerve fibers in the presence of DOX became significantly longer than the length of nerve fibers in the absence of DOX. There was no significant difference over time (it is believed that the effect of L1CAM peaked out over time). In the 5G3-administered group, the nerve fiber length was significantly shortened compared to the non-administered group, regardless of the presence or absence of DOX, when observed 48 hours later. この図は、移植片を移植したホスト脳における電子顕微鏡の写真である。(A)ホスト脳の髄鞘上にL1CAM(25nm 金コロイド;矢印で示す)とFLAG(10nm 金コロイド;矢頭で示す)を認める。(B)ホスト脳の軸索の間にDABで染色される移植片由来の軸索が走行している。移植片由来の軸索はホスト脳の軸索の髄鞘の外側を走行する。スケールバーは500nm(A)または1μm(B)。This figure is an electron micrograph of a host brain implanted with a graft. (A) L1CAM (25 nm gold colloid; indicated by an arrow) and FLAG (10 nm gold colloid; indicated by an arrowhead) are recognized on the myelin sheath of the host brain. (B) Graft-derived axons stained with DAB run between host brain axons. Graft-derived axons run outside the myelin sheath of the axons of the host brain. Scale bars are 500 nm (A) or 1 μm (B). この図は、分化後39日目の大脳オルガノイドの免疫染色を示す。発生段階における、皮質板(cortical plate)(Ctip2陽性、Pax6陰性)に相当する部位にL1CAMの発現が認められる。スケールバーは20μm。This figure shows immunostaining of cerebral organoids 39 days after differentiation. Expression of L1CAM is observed at a site corresponding to the cortical plate (Ctip2-positive, Pax6-negative) at the developmental stage. Scale bar is 20 μm.
 本発明をさらに詳細に説明する。
1.医薬キット
 本発明は、軸索伸長誘導タンパク質、該タンパク質をコードする核酸、又は該タンパク質をコードするDNAを発現可能に含むベクターを有効成分として含む第1製剤を含む、障害された神経経路を再構築するための医薬キットを提供する。本発明の医薬キットは、第1製剤からなってもよく、一態様において、医薬キットは、軸索伸長誘導タンパク質、該タンパク質をコードする核酸、又は該タンパク質をコードするDNAを発現可能に含むベクターを有効成分として含む、障害された神経経路の再構築剤として提供される。
The present invention will now be described in more detail.
1. Pharmaceutical kit The present invention regenerates damaged neural pathways, comprising a first preparation containing, as an active ingredient, an axon outgrowth-inducing protein, a nucleic acid encoding the protein, or a vector capable of expressing the DNA encoding the protein. A pharmaceutical kit is provided for construction. The pharmaceutical kit of the present invention may comprise a first formulation, and in one aspect, the pharmaceutical kit comprises an axon outgrowth-inducing protein, a nucleic acid encoding the protein, or a vector containing a DNA encoding the protein so that it can be expressed. As an active ingredient, it is provided as a restructuring agent for damaged neural pathways.
 本明細書で使用する「神経経路」(「神経回路」とも称する)は、中枢神経系及び末梢神経系の神経経路を指し、運動神経経路及び感覚神経経路のいずれも含み、狭義には、投射ニューロンの軸索が形成する経路ということもできる。投射ニューロンとは、軸索をそのニューロンが属している神経集団(神経核や大脳皮質領野、等)の中だけに限局せず遠方にも伸ばし、異なる領域間の情報伝達を担うニューロンを指す。 As used herein, "neural pathway" (also referred to as "neural circuit") refers to neural pathways of the central and peripheral nervous systems, including both motor and sensory pathways, and narrowly defined as projection It can also be said to be a pathway formed by axons of neurons. Projection neurons refer to neurons that extend their axons not only within the neuronal population to which they belong (neuronal nucleus, cerebral cortical area, etc.) but also far away, and are responsible for information transmission between different regions.
 中枢神経系の経路は、大脳皮質から脊髄までの中枢神経の経路(皮質脊髄路を含む)、並びに、脳神経や脊髄神経のなかの神経経路を含む。本明細書では、皮質脊髄路以外の神経経路を「その他の神経経路」と称することがある。 The pathways of the central nervous system include the pathways of the central nervous system from the cerebral cortex to the spinal cord (including the corticospinal pathway), as well as the neural pathways within the cranial nerves and spinal nerves. In this specification, neural pathways other than the corticospinal tract are sometimes referred to as "other neural pathways."
 皮質脊髄路は、大脳皮質運動野に起始細胞が存在し、内包を経由して中脳腹側面の大脳脚を通過し、橋核を貫通して延髄腹側面から錐体交叉を経て脊髄に入り、脊髄側索を下行しながら脊髄前角の運動ニューロンに接続する神経経路である。自発的に手足を動かすなどの随意運動を制御する主要な神経回路の一つであり、大脳皮質から脊髄へと運動の指令を送る。 The corticospinal tract has originating cells in the motor area of the cerebral cortex, passes through the internal capsule, passes through the cerebral peduncle on the ventral side of the midbrain, penetrates the pontine nucleus, and passes through the ventral side of the medulla oblongata to the chiasm pyramidale to the spinal cord. Nerve pathway that enters and descends the spinal cord and connects to motor neurons in the anterior horn of the spinal cord. It is one of the main neural circuits that control voluntary movements such as voluntarily moving limbs, sending movement commands from the cerebral cortex to the spinal cord.
 一般に皮質脊髄路が障害されると運動麻痺が生じ、多くの患者がその後遺症に苦しんでいる。損傷された皮質脊髄路を細胞移植によって再構築し麻痺を改善させる治療法に期待が寄せられているが、まだ臨床への応用は行われていない。 In general, motor paralysis occurs when the corticospinal tract is damaged, and many patients suffer from its sequelae. There are high hopes for a therapeutic method that reconstructs the damaged corticospinal tract by cell transplantation and improves paralysis, but it has not yet been applied clinically.
 脳神経は、脳と、頭部、顔面、眼、鼻、筋肉、耳などの器官をつなぐ神経、並びに、胸腹部の内臓を支配する迷走神経を含む。 Cranial nerves include the nerves that connect the brain and organs such as the head, face, eyes, nose, muscles, and ears, as well as the vagus nerve that innervates the thoracoabdominal internal organs.
 脊髄神経は、脊髄と体の他の部位をつなぐ神経であり、機能的には感覚性(もしくは、求心性)の神経(体性感覚神経、臓性感覚神経を含む)と運動性(もしくは、遠心性)の神経(骨格筋を支配する体性運動神経、血管や内臓の筋を支配する臓性運動神経を含む)を含む。 Spinal nerves are nerves that connect the spinal cord to the rest of the body and are functionally sensory (or afferent) nerves (including somatosensory and visceral sensory nerves) and motor (or efferent) nerves (including somatomotor nerves, which innervate skeletal muscles, and visceral motor nerves, which innervate blood vessels and muscles of internal organs).
 軸索は、神経細胞体から伸びる線維状の構造を有し、神経細胞の信号の出力を担っている。大脳皮質から伸長した軸索は、脳の下方にある延髄下部の錐体で交叉して脊髄の対側へと伸びるため、片側の大脳皮質神経細胞は、反対側の手足の運動を制御する。 Axons have a fibrous structure extending from the nerve cell body and are responsible for the output of nerve cell signals. Axons extending from the cerebral cortex cross at the cones in the lower medulla oblongata below the brain and extend to the contralateral side of the spinal cord, so that cortical neurons on one side control the movements of the limbs on the opposite side.
 本明細書で使用する「神経経路の障害」とは、「神経経路を構成する軸索の数の減少、変性、消失のいずれか1以上が起こり、当該経路を介した情報伝達が顕著に低下した状態」を意味する。そして、「(障害された)神経経路の再構築(regeneration)」とは、神経経路を構成する軸索の数の増加、再生のいずれか1以上が起こり、当該経路を介した情報伝達の回復が見込める状態になることを意味する。 As used herein, "disorder of neural pathway" means "any one or more of reduction, degeneration, or disappearance of the number of axons that make up the neural pathway occurs, and information transmission via the pathway is significantly reduced. means “the state of In addition, "regeneration of (damaged) neural pathways" means that one or more of an increase in the number of axons that make up a neural pathway or regeneration occurs, and information transmission through the pathway is restored. It means that it will be in a state where it can be expected.
 「神経経路の障害」が起こる要因としては、脳血管障害(例えば、脳卒中(脳梗塞、脳出血、くも膜下出血)、等)、脳損傷(例えば、脳挫傷、脳裂傷、等)、脊髄損傷(損傷された脊髄から遠位の運動や知覚の障害が生じる)、神経変性疾患(例えば、多発性硬化症、てんかん、アルツハイマー病、パーキンソン病、筋萎縮性側索硬化症、クロイツフェルト・ヤコブ病、等)、眼科疾患(緑内障、等)などが挙げられる。 Factors that cause "disorders of neural pathways" include cerebrovascular disorders (e.g., stroke (cerebral infarction, cerebral hemorrhage, subarachnoid hemorrhage), etc.), brain injuries (e.g., cerebral contusion, cerebral laceration, etc.), spinal cord injuries ( motor and sensory disturbances distal to the injured spinal cord), neurodegenerative diseases (e.g., multiple sclerosis, epilepsy, Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, Creutzfeldt-Jakob disease, etc.), ophthalmic diseases (glaucoma, etc.), and the like.
 本明細書で使用する「障害された神経経路」とは、上記要因等によって神経経路の障害が起こった神経経路を指す。 As used herein, "impaired neural pathway" refers to a neural pathway that has been damaged due to the above factors.
 障害された神経経路の再構築のために、本発明では、軸索伸長誘導剤、具体的には軸索伸長誘導タンパク質、該タンパク質をコードする核酸、又は該タンパク質をコードするDNAを発現可能に含むベクターを有効成分として含む第1製剤を、神経経路障害をもつ患者(「被験体」とも称する)の該障害部位又はその近傍に投与する(典型的には、第2製剤の移植前に投与する)ことを含む。 In order to reconstruct damaged neural pathways, the present invention enables expression of an axonal outgrowth-inducing agent, specifically an axonal outgrowth-inducing protein, a nucleic acid encoding the protein, or a DNA encoding the protein. A first formulation containing a vector containing the vector as an active ingredient is administered to a patient with a neural pathway disorder (also referred to as a "subject") at or near the lesion site (typically, administered before transplantation of the second formulation). to do).
 成体マウスの脳損傷モデルにおいて、マウス胎仔脳をマウスの脳に移植した場合、脊髄まで到達した移植細胞由来軸索が有意に認められ、運動能力の改善傾向も認められること(非特許文献1)、また本発明者らにより、生体ラットの脳損傷モデルにおいて、マウス前頭皮質由来の神経細胞をラットの脳に移植し、リハビリを行うことで、移植された神経細胞の軸索伸長が促進されることが報告されている(T. Shimogawa et al., npj Regenerative Medicine: 2019; Therapeutic effects of combined cell transplantation and locomotor training in rats with brain injury)。本発明の医薬キットにより、軸索伸長により障害された神経経路を再構築できるため、必要であればリハビリ等を併用することで、該再構築により神経経路の障害による随意運動障害の改善が期待できる。従って、本発明の医薬キットは、神経経路の障害による随意運動障害の治療剤として用いられ得る。 In adult mouse brain injury models, transplanted cell-derived axons reaching the spinal cord were significantly observed when fetal mouse brains were transplanted into mouse brains, and a tendency toward improvement in motor performance was also observed (Non-Patent Document 1). Furthermore, the present inventors have demonstrated that transplantation of mouse frontal cortex-derived neurons into the rat brain and rehabilitation promotes axonal outgrowth of the transplanted neurons in a rat brain injury model. It has been reported (T. Shimogawa et al., npj Regenerative Medicine: 2019; Therapeutic effects of combined cell transplantation and locomotor training intrarats with brain injury). Since the pharmaceutical kit of the present invention can reconstruct neural pathways that have been damaged by axonal outgrowth, it is expected that voluntary movement disorders caused by impaired neural pathways will be improved by rehabilitation, if necessary, in combination. can. Therefore, the pharmaceutical kit of the present invention can be used as a therapeutic agent for voluntary movement disorders caused by disorders of neural pathways.
1.1.第1製剤
 本願明細書において「軸索伸長誘導タンパク質」は、神経細胞に対し、軸索伸長を誘導する効果を奏するタンパク質を指し、軸索ガイダンス因子を含み、誘引性軸索ガイダンス因子(単に「誘引因子」ともいう)、反発性軸索ガイダンス因子(単に「反発因子」ともいう)、又はその両因子を含む。
1.1. First Formulation In the present specification, "axonal outgrowth-inducing protein" refers to a protein that exerts the effect of inducing axonal outgrowth on nerve cells, includes an axonal guidance factor, and is an attractive axonal guidance factor (simply " attraction factor"), repulsive axonal guidance factor (also simply referred to as "repulsion factor"), or both.
 軸索伸長の「誘導」には、「誘引」(attraction)、「反発」(repulsion)又はそれらの組み合わせが関係しており、皮質脊髄路などの神経経路において目的の標的部位に正確に軸索伸長させるためには、誘引因子と反発因子の両方の関与が必要であることが知られている(戸島拓郎ら,生物物理51(5),214-217,2011)。 "Guidance" of axonal outgrowth involves "attraction," "repulsion," or a combination thereof, to precisely direct axons to desired target sites in neural pathways such as the corticospinal tract. It is known that the involvement of both attracting and repelling factors is necessary for elongation (Takuro Toshima et al., Biophysics 51(5), 214-217, 2011).
 神経細胞間の情報伝達は軸索と樹状突起で構築されるシナプスを介して行われており、正確な情報伝達網、すなわち、神経回路網を形成するために、神経軸索の伸長はさまざまな制御を受けている。その代表が、軸索ガイダンス因子による軸索誘導である。 Information is transmitted between neurons via synapses, which are constructed by axons and dendrites. To form an accurate information transmission network, that is, a neural network, axons extend in various ways. under good control. A typical example is axonal guidance by an axonal guidance factor.
 軸索ガイダンス因子は、発生過程の組織内に領域特異的に存在することで成長円錐(growth cone)に空間情報を提供し、成長円錐を正しい標的細胞へ誘導する分子として定義される。生体内に存在する軸索ガイダンス因子は、主に4つの作用様式に大別される。細胞外基質や細胞膜に発現し接触を介して近距離に作用する接触因子と、分泌性で濃度勾配によって長距離に作用する拡散性因子、そしてそのそれぞれに対して誘引因子と反発因子が存在する。生体内では、これら4種類の軸索ガイダンス因子が協調的に働くことにより、軸索を正しい標的へ導くと考えられている(E.T.Stoeckli,Development 2018 145:dev151415 doi:10.1242/dev.151415)。また、この関連で、神経細胞体で発現された軸索ガイダンス因子もしくはそのmRNA、並びに軸索ガイダンス因子の発現調節に関わるmiRNA類は、軸索を介して成長円錐まで輸送されるという仮説がある(E.T.Stoeckli,上記)が、よく分かっていない。 Axonal guidance factors are defined as molecules that exist region-specifically within developing tissues to provide spatial information to growth cones and guide the growth cones to the correct target cells. Axonal guidance factors present in vivo are roughly classified into four modes of action. There are contact factors that are expressed in the extracellular matrix and cell membrane and act in short distances through contact, diffusible factors that are secreted and act in long distances due to concentration gradients, and attraction factors and repulsion factors for each of them. . In vivo, these four types of axonal guidance factors are thought to guide axons to their correct targets (ET Stoeckli, Development 2018 145: dev151415 doi: 10.1242/ dev.151415). Also in this context, it is hypothesized that the axonal guidance factor or its mRNA expressed in the neuronal cell body, as well as the miRNAs involved in regulating the expression of the axonal guidance factor, are transported via axons to the growth cone. (ET Stoeckli, supra) is not well understood.
 軸索ガイダンス因子にはさまざまな分子種があり、反発作用を示す因子にはセマフォリンファミリー、エフリンファミリー、スリットファミリーなどが知られており、誘引作用を示す因子にはネトリン、セマフォリン3C、脳由来神経栄養因子(brain-derived neurotrophic factor)などが知られている。成長円錐には個々の軸索ガイダンス因子に対する特異的な受容体ファミリーが存在しており、受容体の形質膜への発現は軸索ガイダンス因子に対する成長円錐の感受性を規定する。さらに、成長円錐には同一の軸索ガイダンス因子に対する反応性を場所や時期に応じて切り替える機構が備わっていることが知られている。 There are various molecular types of axonal guidance factors. Factors that exhibit repulsive action include the semaphorin family, ephrin family, and slit family. Factors that exhibit attractive action include netrin, semaphorin 3C, and brain. A brain-derived neurotrophic factor and the like are known. Specific receptor families exist on the growth cone for individual axonal guidance factors, and expression of the receptors on the plasma membrane defines growth cone sensitivity to axonal guidance factors. Furthermore, growth cones are known to have a mechanism that switches responsiveness to the same axonal guidance factor depending on location and time.
 本発明に係る軸索伸長誘導タンパク質として、上記の軸索ガイダンス因子を好適に用いることができる。 The above axonal guidance factor can be suitably used as the axonal outgrowth-inducing protein according to the present invention.
 また、神経細胞の膜上に発現し細胞接着に寄与するタンパク質(細胞接着分子)の中にも、神経細胞に対し軸索伸長を誘導する効果を奏するものが知られている。その代表として、L1CAMが挙げられる。本発明に係る軸索伸長誘導タンパク質には、前記効果を奏する他の神経細胞接着分子(例えば、NrCAM、アクソニン(axonin)、等)も含めることができる。 In addition, some proteins (cell adhesion molecules) that are expressed on the membrane of nerve cells and contribute to cell adhesion are known to have the effect of inducing axonal growth in nerve cells. A typical example is L1CAM. Axonal outgrowth-inducing proteins according to the present invention can also include other neuronal cell adhesion molecules (eg, NrCAM, axonin, etc.) that exert the above effects.
 このように、軸索伸長誘導タンパク質の例として、非限定的に、L1CAM、ネトリンファミリー(例えば、Netrin-1、Netrin-3、Netrin-4、等)、セマフォリンファミリー(例えば、Sema3A、Sema3B、Sema3C、Sema6、等)、エフリンファミリー(例えば、EphA、EPHB、等)、スリットファミリー(例えば、Slit2、等)、モルフォゲン(例えば、ヘジホッグ(hedgehog)、Wnt、TGF-β、骨形成因子(BMP)、等)、神経栄養因子(例えば、brain-derived neurotrophic factor(BDNF)、nerve growth factor(NGF)、neurotrophin-3(NT-3)、neurotrophin-4/5(NT-4/5)、等)などが挙げられ、好ましくはL1CAM、或いは、L1CAMと、ネトリンファミリー、セマフォリンファミリー、エフリンファミリー、スリット、モルフォゲン及び神経栄養因子からなる群から選択される少なくとも1つの他の軸索ガイダンス因子との組み合わせである。 Thus, non-limiting examples of axonal outgrowth-inducing proteins include L1CAM, Netrin family (eg, Netrin-1, Netrin-3, Netrin-4, etc.), Semaphorin family (eg, Sema3A, Sema3B, Sema3C, Sema6, etc.), ephrin family (e.g., EphA, EPHB, etc.), slit family (e.g., Slit2, etc.), morphogens (e.g., hedgehog, Wnt, TGF-β, bone morphogenetic protein (BMP) , etc.), neurotrophic factors (e.g., brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), neurotrophin-3 (NT-3), neurotrophin-4/5 (NT-4/5), etc.) preferably L1CAM, or a combination of L1CAM and at least one other axonal guidance factor selected from the group consisting of netrin family, semaphorin family, ephrin family, slit, morphogen and neurotrophic factor is.
 L1CAM(L1 cell adhesion molecule)は、イムノグロブリンスーパーファミリーに属する軸索糖タンパク質であり、そのヌクレオチド配列/アミノ酸配列は、ヒトでは、例えばNCBIのGenBank(米国)にアクセッション番号NM_000425/NP_000416、NM_024003/NP_076493、NM_001143963/NP_001137435、NM_001278116/NP_001265045、マウスでは、例えばNM_008478/NP_032504、NM_001374694/NP_001361623として登録されている。L1CAMは、別名CAML1、CD171、HSAS、HSAS1、MASA、MIC5、N-CAM-L1、N-CAML1、NCAM-L1、S10、SPG1とも呼ばれている。ヒトL1CAMのヌクレオチド配列及びアミノ酸配列はそれぞれ、例えば配列番号1、配列番号2として、またマウスL1CAMのヌクレオチド配列及びアミノ酸配列はそれぞれ配列番号3、配列番号4として後述の配列表に示されている配列、或いは、軸索誘導作用をもつ限り上記配列と85%以上、90%以上、又は95%以上の配列同一性を有する配列である。 L1CAM (L1 cell adhesion molecule) is an axonal glycoprotein belonging to the immunoglobulin superfamily, and its nucleotide sequence/amino acid sequence in humans is, for example, in GenBank of NCBI (USA) with accession numbers NM_000425/NP_000416, NM_024003/ NP_076493, NM_001143963/NP_001137435, NM_001278116/NP_001265045, and in mouse, for example, NM_008478/NP_032504, NM_001374694/NP_001361623. L1CAM is also known as CAML1, CD171, HSAS, HSAS1, MASA, MIC5, N-CAM-L1, N-CAML1, NCAM-L1, S10, SPG1. The nucleotide and amino acid sequences of human L1CAM are shown, for example, as SEQ ID NO: 1 and SEQ ID NO: 2, respectively, and the nucleotide and amino acid sequences of mouse L1CAM are shown as SEQ ID NO: 3 and SEQ ID NO: 4, respectively, in the sequence listing below. Alternatively, it is a sequence having 85% or more, 90% or more, or 95% or more sequence identity with the above sequence as long as it has an axon guidance effect.
 本明細書における「配列同一性(%)」は、公知のアルゴリズムBLASTやFASTAによるタンパク質又は遺伝子の検索システムを用いて、2つの配列間にギャップを導入して、又はギャップを導入しないで、好ましくはギャップを導入して、決定することができる(S.F.Altschul et al.,Journal of Molecular Biology,1990;215:403-410;W.R.Pearson et al.,Proc.Natl.Acad.Sci.U.S.A.,1988;85:2444-2448)。 "Sequence identity (%)" as used herein is preferably obtained by introducing a gap between the two sequences using a protein or gene search system by known algorithms BLAST or FASTA, or without introducing a gap. can be determined by introducing gaps (SF Altschul et al., Journal of Molecular Biology, 1990; 215:403-410; WR Pearson et al., Proc. Natl. Acad. Sci. USA, 1988;85:2444-2448).
 ネトリンは、脊髄のフロアプレートから分泌され、脊髄交連神経細胞の軸索を誘引する分泌タンパク質として同定された軸索ガイダンス因子の1種である。Netrin-1(「Ntn1」と略記することがある。)のアミノ酸配列及びヌクレオチド配列は、GenBankから入手可能であり、例えばアクセッション番号NM_004822(ヒト)、BC141294、NM_008744.2(マウス)として登録されている配列、或いは、軸索誘導作用をもつ限り上記配列と85%以上、90%以上、又は95%以上の配列同一性を有する配列である。 Netrin is a type of axonal guidance factor identified as a secreted protein that is secreted from the floor plate of the spinal cord and attracts the axons of spinal commissural neurons. The amino acid and nucleotide sequences of Netrin-1 (sometimes abbreviated as "Ntn1") are available from GenBank and are registered under accession numbers NM_004822 (human), BC141294, and NM_008744.2 (mouse), for example. or have a sequence identity of 85% or more, 90% or more, or 95% or more with the above sequence as long as it has an axon guidance effect.
 Sema3Cのアミノ酸配列及びヌクレオチド配列は、GenBankから入手可能であり、例えばアクセッション番号NM_001350120(ヒト)、NM_006379(ヒト)、NM_001350121(ヒト)、NM_013657.5(マウス)などとして登録されている配列、或いは、軸索誘導作用をもつ限り上記配列と85%以上、90%以上、又は95%以上の配列同一性を有する配列である。 The amino acid and nucleotide sequences of Sema3C are available from GenBank and are registered under accession numbers NM_001350120 (human), NM_006379 (human), NM_001350121 (human), NM_013657.5 (mouse), etc., or A sequence having a sequence identity of 85% or more, 90% or more, or 95% or more with the above sequence as long as it has an axon-inducing action.
 さらに、軸索伸長誘導タンパク質をコードする核酸は、例えばL1CAM、ネトリン、セマフォリン、スリット、エフリン、モルフォゲン、神経栄養因子などのタンパク質をコードするDNA(例、cDNA等)又はRNA(例、mRNA等)を含む。これらのDNAのヌクレオチド配列及びタンパク質のアミノ酸配列は、GenBank(米国)、EMBL(欧州)、DDBJ(日本)などの塩基配列データーベースから入手可能である。 Furthermore, the nucleic acid encoding the axonal outgrowth-inducing protein is, for example, DNA (e.g., cDNA, etc.) or RNA (e.g., mRNA, etc.) encoding protein such as L1CAM, netrin, semaphorin, slit, ephrin, morphogen, neurotrophic factor, etc. )including. These DNA nucleotide sequences and protein amino acid sequences are available from nucleotide sequence databases such as GenBank (USA), EMBL (Europe), and DDBJ (Japan).
 軸索伸長誘導タンパク質及び、軸索伸長誘導タンパク質をコードする核酸の作製は、例えば遺伝子組換え技術を用いて行うことができる。具体的には、軸索伸長誘導タンパク質を発現する組織又は細胞からmRNAを抽出し、cDNAを合成することによって上記核酸を作製し、さらにプロモーターなどの制御配列、薬剤耐性遺伝子などの選択マーカー遺伝子配列などのエレメントとともに上記核酸(DNA)を含むカセットをプラスミドなどのベクターに挿入し、動物細胞などの細胞に挿入し形質転換することを含む方法により上記タンパク質を作製することができる。遺伝子組換え技術は、例えばM.R.Green and J.Sambrook、Molecular Cloning;A Laboratory Manual,Fourth Ed.(2012)Cold Spring Harborに記載されており利用することができる。 An axonal outgrowth-inducing protein and a nucleic acid encoding an axonal outgrowth-inducing protein can be produced, for example, using genetic recombination technology. Specifically, mRNA is extracted from tissues or cells that express an axonal outgrowth-inducing protein, and cDNA is synthesized to prepare the nucleic acid, and furthermore, a control sequence such as a promoter, and a selection marker gene sequence such as a drug resistance gene. The above protein can be produced by a method including inserting a cassette containing the above nucleic acid (DNA) together with elements such as the above into a vector such as a plasmid, and inserting the cassette into a cell such as an animal cell to transform the cell. Gene recombination technology is described, for example, by M. et al. R. Green and J. Sambrook, Molecular Cloning; A Laboratory Manual, Fourth Ed. (2012) Cold Spring Harbor and available.
 さらにまた、軸索伸長誘導タンパク質をコードするDNAを発現可能に含むベクターは、例えばプラスミド、ウイルスベクター及びリポソームから生体に使用可能なもの(例えば遺伝子治療に使用可能なもの)を選択し使用することができる。 Furthermore, the vector containing DNA capable of expressing the axonal outgrowth-inducing protein can be selected from, for example, plasmids, viral vectors and liposomes and used in vivo (for example, those that can be used for gene therapy). can be done.
 プラスミドベクターは、目的遺伝子(もしくはDNA)、プロモーター、複製起点、ポリA付加シグナル、選択マーカー遺伝子などのエレメントを含むことができる。プラスミドは、遺伝子治療用又は再生医療用の安全性が認められた、かつ、GMPに準拠して製造されたDNAプラスミドが好ましい。プラスミドとして、例えば遺伝子治療用HGFプラスミド(R.Morishita et al.,Hypertension 2004;44(2):203-209)の作製に利用されたプラスミドなどが挙げられる。 A plasmid vector can contain elements such as a target gene (or DNA), a promoter, a replication origin, a polyA addition signal, and a selectable marker gene. The plasmid is preferably a DNA plasmid that has been recognized as safe for gene therapy or regenerative medicine and manufactured in compliance with GMP. Plasmids include, for example, plasmids used in the preparation of HGF plasmids for gene therapy (R. Morishita et al., Hypertension 2004; 44(2): 203-209).
 ウイルスベクターは、例えばAAV、アデノウイルス、レトロウイルス(例えば、MMLVレトロウイルス等)、レンチウイルス、センダイウイルスなどを含み、好ましくはAAVである。AAVベクターは、長期間の目的遺伝子の発現が可能であり、免疫原性が低く、非病原性ウイルスであるため安全であることが知られている。 Viral vectors include, for example, AAV, adenovirus, retrovirus (eg, MMLV retrovirus, etc.), lentivirus, Sendai virus, etc., preferably AAV. AAV vectors are known to be safe because they are capable of long-term expression of target genes, have low immunogenicity, and are non-pathogenic viruses.
 AAVベクターは、例えば、野生型のITR(inverted terminal repeat)間のRep及びCap(ウイルス複製やカプシド形成に必要なタンパク質)を含む領域に替えてプロモーター及び目的遺伝子(もしくはDNA)を含むカセットを挿入して得られた複製欠損ゲノムをウイルス粒子にパッケージングすることによって作製することができる。この作製法は、例えば、ITR間のRep、Capの2つの遺伝子を取り除き、そのスペースにプロモーターと目的の遺伝子を挿入したベクタープラスミドを作製する工程、Rep、Capは別のプラスミドで供給する工程、アデノウイルスのヘルパー作用としてE1A、E1B、E2A、VA、E4遺伝子が必要となるが、このうちE1AとE1BはHEK293細胞(E1AとE1Bでトランスフォームしている)から、残りのE2A、E4、VAはヘルパープラスミドとして供給する工程、これら3つのプラスミドでHEK293細胞をトランスフェクションし、Rep、Cap遺伝子をもたずITR間の目的遺伝子のみをもつウイルス粒子を産生する工程を含む(平井宏和,DOI:10.14931/bsd.7632,2018)。 For AAV vectors, for example, a cassette containing a promoter and a target gene (or DNA) is inserted in place of a region containing Rep and Cap (proteins necessary for viral replication and encapsidation) between wild-type ITRs (inverted terminal repeats). can be produced by packaging the resulting replication-deficient genome into virus particles. This production method includes, for example, a step of removing the two genes Rep and Cap between the ITRs and producing a vector plasmid in which the promoter and the gene of interest are inserted in the space, a step of supplying Rep and Cap with a separate plasmid, The E1A, E1B, E2A, VA, and E4 genes are required for adenoviral helper action, of which E1A and E1B are isolated from HEK293 cells (transformed with E1A and E1B), the remaining E2A, E4, and VA are provided as helper plasmids, transfection of HEK293 cells with these three plasmids to produce virus particles with only the target gene between ITRs without Rep and Cap genes (Hirokazu Hirai, DOI: 10.14931/bsd.7632, 2018).
 上記プロモーターは、好ましくは、神経細胞において機能的であるプロモーターであり、限定することなく、例えば、Tet on/offエレメント含有プロモーター、ラママイシン誘導性プロモーター、メタロチオネインプロモーター、ウイルスプロモーター(例えば、CMVプロモーター、RSVプロモーター、SV40プロモーター、等)、細胞性プロモーター(例えば、PGK(ホスホグリセリン酸キナーゼ)プロモーター、等)などを含む。 The promoter is preferably a promoter that is functional in nerve cells, and is not limited to, for example, Tet on/off element-containing promoter, ramamycin-inducible promoter, metallothionein promoter, viral promoter (e.g., CMV promoter, RSV promoter, SV40 promoter, etc.), cellular promoters (eg, PGK (phosphoglycerate kinase) promoter, etc.), and the like.
 リポソームは、両親媒性脂質分子の二分子膜からなる微小胞であり、薬剤のドラッグデリバリーのために使用されている。リポソームの構成成分となる脂質は、非限定的に、例えばホスファチジルコリン、ホスファチジルエタノールアミン、ホスファチジルセリン、コレステロール、それらの誘導体、及びそれらの混合物、などを含むことができる。リポソームは両親媒性となるように親水性部分と疎水性部分を含む構造を有している。該誘導体は、グリセロリン脂質のグリセロール骨格に2個の例えば同じもしくは異なる脂肪酸エステルを結合したものであり、ここで脂肪酸の例は、ステアリン酸、オレイン酸、パルミチン酸、ミリスチン酸、リノール酸などである。リポソームはまた、ポリエチレングリコール鎖(例えば分子量5,000未満、例えば3,000以下、好ましくは2,000)を結合してペグ化(PEGylation)されていてもよい。上記誘導体の例は、distearoyl phosphatidylcholine(DSPC)、palmitoyloleyl phosphatidylcholine(POPC)、dioleoyl-sn-glycero-phosphoethanolamineなどを含む。 Liposomes are microvesicles consisting of bilayer membranes of amphipathic lipid molecules and are used for drug delivery. Lipid constituents of liposomes can include, but are not limited to, phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, cholesterol, derivatives thereof, mixtures thereof, and the like. Liposomes have structures that contain hydrophilic and hydrophobic moieties so that they are amphiphilic. Said derivatives are those in which two, for example, the same or different fatty acid esters are attached to the glycerol backbone of a glycerophospholipid, where examples of fatty acids are stearic acid, oleic acid, palmitic acid, myristic acid, linoleic acid, etc. . The liposomes may also be PEGylated by attaching polyethylene glycol chains (eg, molecular weight less than 5,000, eg, 3,000 or less, preferably 2,000). Examples of such derivatives include distearoyl phosphatidylcholine (DSPC), palmitoyl phosphatidylcholine (POPC), dioleoyl-sn-glycero-phosphoethanolamine, and the like.
 第1製剤は、上記の有効成分の他に、薬学的に許容可能な担体(例えば生理食塩水、リン酸緩衝生理食塩水など)、神経栄養因子(例えば、BDNF、NGF、等)、軸索成長又は維持促進因子(例えば、ニュートロフィン、トランスフォーミング成長因子、細胞外マトリックス成分、等)などを含むことができる。 The first formulation contains, in addition to the above active ingredients, a pharmaceutically acceptable carrier (e.g., physiological saline, phosphate-buffered saline, etc.), neurotrophic factors (e.g., BDNF, NGF, etc.), axons Growth or maintenance promoting factors (eg, neurotrophins, transforming growth factors, extracellular matrix components, etc.) and the like can be included.
1.2.第2製剤
 本発明の医薬キットは、神経細胞及び/又はその前駆細胞を含む細胞集団を含む第2製剤をさらに含むことができる。
1.2. Second Formulation The pharmaceutical kit of the present invention can further comprise a second formulation containing a cell population containing nerve cells and/or their progenitor cells.
 神経細胞及び/又はその前駆細胞を含む細胞集団は、上記の少なくとも1つの軸索伸長誘導タンパク質をコードするDNA(例えば、ベクター、等)を発現可能に含むものであってもよいし、或いは、当該DNAを含まなくてもよい。 A cell population containing nerve cells and/or their progenitor cells may contain DNA (e.g., vector, etc.) that encodes at least one axonal outgrowth-inducing protein described above in an expressible manner, or It does not have to contain the DNA.
 好ましくは、第1製剤の投与前又は投与後、上記神経経路の上記障害部位又はその近傍に、神経細胞及び/又はその前駆細胞を含む細胞集団を含む第2製剤を投与し移植することによって、障害された神経経路の再構築をさらに促進することができる。 Preferably, before or after administration of the first preparation, by administering and transplanting a second preparation containing a cell population containing nerve cells and/or their progenitor cells into or near the damaged site of the neural pathway, It can further promote the reconstruction of damaged neural pathways.
 神経細胞及び/又はその前駆細胞は、中枢(脳、脊髄)、末梢などの神経系を構成する細胞を指す。神経前駆細胞とは、成熟した神経細胞への分化能を有する未分化細胞を意味する。本発明において使用される神経前駆細胞としては、非限定的に、例えば大脳皮質神経前駆細胞、ドーパミン神経前駆細胞、GABA作動性神経前駆細胞、運動神経前駆細胞、網膜神経節前駆細胞などが挙げられる。 Nerve cells and/or their progenitor cells refer to cells that make up the nervous system such as the central (brain, spinal cord) and peripheral. Neural progenitor cells mean undifferentiated cells that have the ability to differentiate into mature nerve cells. Examples of neural progenitor cells used in the present invention include, but are not limited to, cerebral cortical neural progenitor cells, dopaminergic neural progenitor cells, GABAergic neural progenitor cells, motor neuron progenitor cells, retinal ganglion progenitor cells, and the like. .
 神経細胞及び/又はその前駆細胞への分化誘導は、特開2020-202865号公報、特開2019-106895号公報、WO2019/031595、WO2018/074567、特開2018-029585号公報、WO2017/183736、特開2016-198101号公報、特開2013-226159号公報、特開2010-051326号公報、US10,752,883A1、US10,093,897A1、US7,531,354A1、M.Zhang et al.Stem Cell Research&Therapy 2018;9:67、B.Shekhar Jha et al.,Stem Cell Rev and Rep DOI 10.1007/s12015-014-9541-0、S.F.McComish,M.A.Caldwell,Phil.Trans.R.Soc.2018;B373:20170214、E.V.Grigor’eva et al.,Cytotechnology 2020;72:649-663などに記載される方法によって行うことができる。 Differentiation induction into nerve cells and / or their progenitor cells is disclosed in JP-A-2020-202865, JP-A-2019-106895, WO2019/031595, WO2018/074567, JP-A-2018-029585, WO2017/183736, JP-A-2016-198101, JP-A-2013-226159, JP-A-2010-051326, US10,752,883A1, US10,093,897A1, US7,531,354A1, M. Zhang et al. Stem Cell Research & Therapy 2018; 9:67, B. Shekhar Jha et al. , Stem Cell Rev and Rep DOI 10.1007/s12015-014-9541-0, S. F. McComish, M.; A. Caldwell, Phil. Trans. R. Soc. 2018; B373:20170214; V. Grigor'eva et al. , Cytotechnology 2020; 72: 649-663.
 分化誘導因子として、例えばbFGF、BMP阻害剤、BMP/SMAD阻害剤、レチノイン酸(RA)、sonic hedgehog(SHH)、アクチビン(Activin)、SB431542(4-[4-(1,3-benzodioxol-5-yl)-5-(2-pyridinyl)-1H-imidazol-2-yl]benzamide)/LDN193189(4-(6-(4-(piperazin-1-yl)phenyl)pyrazolo[1,5-a]pyrimidin-3-yl)quinoline)、及びそれらの組み合わせ、或いはmiRNAsなどを使用することができる。 Examples of differentiation-inducing factors include bFGF, BMP inhibitors, BMP/SMAD inhibitors, retinoic acid (RA), sonic hedgehog (SHH), Activin, SB431542 (4-[4-(1,3-benzodioxol-5 -yl)-5-(2-pyridinyl)-1H-imidazol-2-yl]benzamide)/LDN193189 (4-(6-(4-(piperazin-1-yl)phenyl)pyrazolo[1,5-a] pyrimidin-3-yl)quinoline), and combinations thereof, or miRNAs and the like can be used.
 以下において、多能性幹細胞又は体性幹細胞から神経細胞及び/又は神経前駆細胞を分化誘導する方法について例示する。 In the following, methods for inducing the differentiation of pluripotent stem cells or somatic stem cells into neural cells and/or neural progenitor cells will be exemplified.
 多能性幹細胞の一つであるES細胞は、受精卵の例えば8細胞期の、桑実胚後の胚である胚盤胞の内部細胞塊に由来する胚由来の幹細胞であり、成体を構成するあらゆる細胞に分化する能力、いわゆる分化多能性と、自己複製による増殖能とを有している。ES細胞は、マウスで1981年に発見され(M.J.Evans and M.H.Kaufman,Nature 1981;292:154-156)、その後、ヒト、サル等の霊長類でもES細胞株が樹立された(J.A.Thomson et al.,Science 1998;282:1145-1147;J.A.Thomson et al.,Proc.Natl.Acad.Sci.USA 1995;92:7844-7848;J.A.Thomson et al.,Biol.Reprod.1996;55:254-259;J.A.Thomson and V.S.Marshall,Curr.Top.Dev.Biol.1998;38:133-165)。 ES cells, which are one of the pluripotent stem cells, are embryo-derived stem cells derived from the inner cell mass of a blastocyst, which is a post-morula embryo, at the 8-cell stage of a fertilized egg, and constitute an adult. It has the ability to differentiate into any cell that can do so, so-called pluripotency, and the ability to proliferate through self-renewal. ES cells were discovered in mice in 1981 (MJ Evans and MH Kaufman, Nature 1981; 292: 154-156), and thereafter ES cell lines were established in primates such as humans and monkeys. (JA Thomson et al., Science 1998; 282: 1145-1147; JA Thomson et al., Proc. Natl. Acad. Sci. USA 1995; 92: 7844-7848; Thomson et al., Biol. Reprod. 1996;55:254-259; JA Thomson and VS Marshall, Curr. Top.
 別の多能性幹細胞である人工多能性幹細胞(iPS細胞)は、特定の初期化因子を、DNA又はタンパク質の形態で体細胞に導入することによって作製することができる、ES細胞とほぼ同等の特性、例えば分化多能性と自己複製による増殖能を有する体細胞由来の人工幹細胞である(K.Takahashi and S.Yamanaka,Cell 2006;126:663-676;K.Takahashi et al.,Cell 2007;131:861-872;J.Yu et al.,Science 207;318:1917-1920;M.Nakagawa et al.,Nat.Biotechnol.2008;26:101-106;WO2007/069666)。 Another pluripotent stem cell, induced pluripotent stem cells (iPS cells), can be generated by introducing specific reprogramming factors into somatic cells in the form of DNA or protein, much like ES cells. characteristics, such as pluripotency and self-renewal proliferation ability (K. Takahashi and S. Yamanaka, Cell 2006; 126: 663-676; K. Takahashi et al., Cell 2007; 131: 861-872; J. Yu et al., Science 207; 318: 1917-1920; M. Nakagawa et al., Nat. Biotechnol.
 初期化因子は、例えば、ES細胞に特異的に発現している遺伝子、その遺伝子産物若しくはnon-coding RNA(例えば、miRNA、等)又はES細胞の未分化維持に重要な役割を果たす遺伝子、その遺伝子産物若しくはnon-coding RNA(例えば、miRNA、等)、或いは、低分子化合物などである。初期化因子として、例えば、Oct3/4、Sox2、Sox1、Sox3、Sox15、Sox17、Klf4、Klf2、c-Myc、N-Myc、L-Myc、Nanog、Lin28、Fbx15、ERas、ECAT15-2、Tcl1、beta-catenin、Lin28b、Sall1、Sall4、Esrrb、Nr5a2、Tbx3等が例示され、これらの初期化因子は、単独又は組み合わせて用いてもよい。初期化因子の組み合わせとしては、WO2007/069666、WO2008/118820、WO2009/007852、WO2009/032194、WO2009/058413、WO2009/057831、WO2009/075119、WO2009/079007、WO2009/091659、WO2009/101084、WO2009/101407、WO2009/102983、WO2009/114949、WO2009/117439、WO2009/126250、WO2009/126251、WO2009/126655、WO2009/157593、WO2010/009015、WO2010/033906、WO2010/033920、WO2010/042800、WO2010/050626、WO2010/056831、WO2010/068955、WO2010/098419、WO2010/102267、WO2010/111409、WO2010/111422、WO2010/115050、WO2010/124290、WO2010/147395、WO2010/147612、D.Huangfu et al.,Nat.Biotechnol.2008;26:795-797、Y.Shi et al.,Cell Stem Cell 2008;2:525-528、S.Eminli et al.,Stem Cells 2008;26:2467-2474、D.Huangfu et al.,Nat Biotechnol.2008;26:1269-1275、Y.Shi et al.,Cell Stem Cell 2008;3:568-574、Y.Zhao et al.,Cell Stem Cell 2008;3:475-479、A.Marson,Cell Stem Cell 2008;3:132-135、B.Feng et al.,Nat Cell Biol.2009;11:197-203、R.L.Judson et al.,Nat. Biotech.2009;27:459-461、C.A.Lyssiotis et al.,Proc Natl Acad Sci USA.2009;106:8912-8917、JB Kim et al.,Nature 2009;461:649-643、J.K.Ichida et al.,Cell Stem Cell 2009;5:491-503、J.C.Heng et al.,Cell Stem Cell 2010;6:167-74、J.Han et al.Nature 2010;463:1096-100、P.Mali et al.,Stem Cells 2010;28:713-720などに記載の組み合わせが例示される。 Reprogramming factors are, for example, genes that are specifically expressed in ES cells, their gene products or non-coding RNAs (e.g., miRNA, etc.), genes that play an important role in maintaining undifferentiated ES cells, Gene products or non-coding RNA (eg, miRNA, etc.), or low-molecular-weight compounds. Examples of initialization factors include Oct3/4, Sox2, Sox1, Sox3, Sox15, Sox17, Klf4, Klf2, c-Myc, N-Myc, L-Myc, Nanog, Lin28, Fbx15, ERAs, ECAT15-2, Tcl1 , beta-catenin, Lin28b, Sall1, Sall4, Esrrb, Nr5a2, Tbx3, etc., and these reprogramming factors may be used alone or in combination.初期化因子の組み合わせとしては、WO2007/069666、WO2008/118820、WO2009/007852、WO2009/032194、WO2009/058413、WO2009/057831、WO2009/075119、WO2009/079007、WO2009/091659、WO2009/101084、WO2009/ 101407、WO2009/102983、WO2009/114949、WO2009/117439、WO2009/126250、WO2009/126251、WO2009/126655、WO2009/157593、WO2010/009015、WO2010/033906、WO2010/033920、WO2010/042800、WO2010/050626、 WO2010/056831, WO2010/068955, WO2010/098419, WO2010/102267, WO2010/111409, WO2010/111422, WO2010/115050, WO2010/124290, WO2010/147395, WO2010/147395 Huangfu et al. , Nat. Biotechnol. 2008;26:795-797; Shi et al. , Cell Stem Cell 2008; 2:525-528; Eminli et al. , Stem Cells 2008;26:2467-2474; Huangfu et al. , Nat Biotechnol. 2008;26:1269-1275; Shi et al. , Cell Stem Cell 2008;3:568-574; Zhao et al. , Cell Stem Cell 2008;3:475-479; Marson, Cell Stem Cell 2008;3:132-135; Feng et al. , Nat Cell Biol. 2009; 11:197-203, R. L. Judson et al. , Nat. Biotech. 2009;27:459-461, C.I. A. Lyssiotis et al. , Proc Natl Acad Sci USA. 2009; 106:8912-8917, JB Kim et al. , Nature 2009;461:649-643, J. Am. K. Ichida et al. , Cell Stem Cell 2009;5:491-503, J. Am. C. Heng et al. , Cell Stem Cell 2010; 6:167-74, J. Am. Han et al. Nature 2010;463:1096-100; Mali et al. , Stem Cells 2010; 28: 713-720 and the like.
 さらに神経細胞及び/又はその神経前駆細胞に分化可能な別の幹細胞の例として、体性幹細胞が挙げられ、神経幹細胞、間葉系幹細胞などが例示される。 Another example of stem cells capable of differentiating into nerve cells and/or their neural progenitor cells is somatic stem cells, including neural stem cells and mesenchymal stem cells.
 第2製剤の有効成分である、例えば大脳皮質神経細胞及び/又はその神経前駆細胞を得る方法としては、特に限定されないが、例えば本出願人による方法(WO2016/167372)を例示することができる。 The method for obtaining, for example, cerebral cortical neurons and/or their neural progenitor cells, which are the active ingredients of the second formulation, is not particularly limited, but can be exemplified by the method by the present applicant (WO2016/167372).
 この方法は、以下の工程を含む。
(i)多能性幹細胞をTGFβ阻害剤、bFGF、Wnt阻害剤及びBMP阻害剤を含む培地中で少なくとも3日間浮遊培養する工程、
(ii)上記工程(i)で得られた細胞をWnt阻害剤及びBMP阻害剤を含む培地中で少なくとも6日間浮遊培養する工程、
(iii)上記工程(ii)で得られた細胞をさらに培養する工程、並びに、
(iv)CD231、PCDH17及びCDH8から成る群より選択される少なくとも一つのマーカータンパク質が陽性である細胞を抽出する工程。
This method includes the following steps.
(i) suspension culture of the pluripotent stem cells in a medium containing a TGFβ inhibitor, bFGF, a Wnt inhibitor and a BMP inhibitor for at least 3 days;
(ii) suspension culture of the cells obtained in step (i) above for at least 6 days in a medium containing a Wnt inhibitor and a BMP inhibitor;
(iii) further culturing the cells obtained in step (ii) above, and
(iv) extracting cells positive for at least one marker protein selected from the group consisting of CD231, PCDH17 and CDH8;
 上記TGFβ阻害剤は、例えばSB431542、A-83-01(3-(6-メチル-2-ピリジニル)-N-フェニル-4-(4-キノリニル)-1H-ピラゾール-1-カルボチオアミド)などである。 The TGFβ inhibitor is, for example, SB431542, A-83-01 (3-(6-methyl-2-pyridinyl)-N-phenyl-4-(4-quinolinyl)-1H-pyrazole-1-carbothioamide), etc. be.
 上記Wnt阻害剤は、例えばPORCN阻害剤、C59、LGK-974などである。 The above Wnt inhibitors are, for example, PORCN inhibitors, C59, LGK-974, and the like.
 上記BMP阻害剤は、例えばLDN193189などである。 The above BMP inhibitor is, for example, LDN193189.
 上記培地は、血清又は血清代替物をさらに含んでもよい。上記工程(i)の培地はさらにROCK阻害剤(例えば、Y-27632(T.Ishizaki et al.,Mol.Pharmacol.2000;57:976-983))を含むことができる。 The medium may further contain serum or a serum substitute. The medium in step (i) above can further contain a ROCK inhibitor (eg, Y-27632 (T. Ishizaki et al., Mol. Pharmacol. 2000; 57: 976-983)).
 大脳皮質神経前駆細胞はPax6、Ctip2、Emx1及びFezfなどの特定の細胞マーカーの発現、或いはmiRNAs(例えば、特開2020-202865号公報)により特徴付けられることが知られている。  Cerebral cortex neural progenitor cells are known to be characterized by the expression of specific cell markers such as Pax6, Ctip2, Emx1 and Fezf, or by miRNAs (eg, JP-A-2020-202865).
 上記方法で得られる大脳皮質神経細胞及び/又はその神経前駆細胞は、好ましくはCtip2を発現する細胞であり、例えば、大脳皮質の運動野の神経細胞(例えば、Ctip2CoupTF1)である。 The cerebral cortical neurons and/or their neural progenitor cells obtained by the above method are preferably cells expressing Ctip2, for example, neurons in the motor cortex of the cerebral cortex (eg, Ctip2 + CoupTF1 ).
 本発明において製造される大脳皮質神経細胞及び/又はその神経前駆細胞などの本発明の神経細胞及び/又はその神経前駆細胞は、純化された細胞集団として、或いは、他の細胞種が含まれる細胞集団として製造されてもよく、例えば、製造された細胞集団において好ましくは60%以上、70%以上、80%以上又は90%以上含むことができる。 The nerve cells and/or neural progenitor cells of the present invention, such as cerebral cortical nerve cells and/or neural progenitor cells thereof produced in the present invention, may be used as purified cell populations or cells containing other cell types. It may be produced as a population, and for example, preferably 60% or more, 70% or more, 80% or more, or 90% or more can be included in the produced cell population.
 神経細胞/神経前駆細胞の他の例として多能性幹細胞からドーパミン神経前駆細胞を分化誘導する方法は、例えば、(i)多能性幹細胞をBMP阻害剤、TGFβ阻害剤、SHHシグナル刺激剤、FGF8及びGSK3β阻害剤から成る群より選択される試薬を含む培地中で細胞外基質上にて接着培養する工程、及び(ii)上記工程(i)で得られた細胞を神経栄養因子を含む培養液中で浮遊培養する工程により、ドーパミン神経前駆細胞を分化誘導する方法などが挙げられる(WO2015/034012)。 As another example of nerve cells/neural progenitor cells, a method for inducing the differentiation of pluripotent stem cells into dopaminergic progenitor cells includes, for example: (ii) culturing the cells obtained in step (i) above in a medium containing a reagent selected from the group consisting of FGF8 and GSK3β inhibitors, and (ii) culturing cells containing neurotrophic factors; A method of inducing the differentiation of dopaminergic neural progenitor cells by a step of floating culture in a liquid, and the like (WO2015/034012).
 神経栄養因子としては、例えば、NGF、BDNF、NT-3、NT-4/5、Neurotrophin 6(NT-6)、bFGF、acidic FGF、FGF-5、Epidermal Growth Factor(EGF)、Hepatocyte Growth Factor(HGF)、Insulin、Insulin Like Growth Factor 1(IGF1)、Insulin Like Growth Factor 2(IGF2)、Glia cell line-derived Neurotrophic Factor(GDNF)、TGF-b2、TGF-b3、Interleukin 6(IL-6)、Ciliary Neurotrophic Factor(CNTF)及びLIFなどが挙げられる。好ましい神経栄養因子は、GDNF及び/又はBDNFである。 Neurotrophic factors include, for example, NGF, BDNF, NT-3, NT-4/5, Neurotrophin 6 (NT-6), bFGF, acidic FGF, FGF-5, epidermal growth factor (EGF), hepatocyte growth factor ( HGF), Insulin, Insulin Like Growth Factor 1 (IGF1), Insulin Like Growth Factor 2 (IGF2), Glia cell line-derived Neurotrophic Factor (GDNF), TGF-b2, TGF-b3, Interleukin 6 Ciliary Neurotrophic Factor (CNTF) and LIF. Preferred neurotrophic factors are GDNF and/or BDNF.
 神経細胞及びその前駆細胞の誘導の分析は、例えばネスチン、PAX6、SO1X、OTX2の遺伝子発現などによって行うことができる。 Analysis of the induction of nerve cells and their progenitor cells can be performed, for example, by gene expression of nestin, PAX6, SO1X, OTX2.
 ドーパミン神経前駆細胞は、例えば、中脳ドーパミン神経への分化能を有する底板細胞、中間体フィラメントタンパク質Nestin等の発現マーカーにより特徴付けられる神経外胚葉の細胞などである。成熟した中脳ドーパミン神経細胞は、インビトロでは、例えばチロシンヒドロキシラーゼ(TH)、FOXA2、Nurr1などの特定の細胞マーカーの発現、或いはmiRNAs(例えば、特開2020-202865号公報)により特徴付けられることが知られている。 Dopaminergic neural progenitor cells are, for example, floor plate cells that have the ability to differentiate into mesencephalic dopaminergic neurons, neuroectodermal cells characterized by expression markers such as the intermediate filament protein Nestin, and the like. Mature mesencephalic dopaminergic neurons are characterized in vitro by the expression of specific cell markers such as tyrosine hydroxylase (TH), FOXA2, and Nurr1, or by miRNAs (for example, JP-A-2020-202865). It has been known.
 神経細胞/神経前駆細胞のさらに別の例として網膜神経節細胞及びその前駆細胞を多能性幹細胞(例えば、iPS細胞又はES細胞)から分化誘導する方法を以下に示す(例えば、再表2016/021709号公報)。 As yet another example of nerve cells/neural progenitor cells, retinal ganglion cells and their progenitor cells are shown below for differentiation induction from pluripotent stem cells (e.g., iPS cells or ES cells) (e.g., Table 2016/ 021709).
 この方法は、網膜前駆細胞の作製を経由して網膜神経節細胞及びその前駆細胞を作製する。具体的には、iPS細胞を網膜分化培地(Wntシグナル阻害剤、Rock阻害剤を含む)中で培養し、さらにFBS含有培地での培養、Wntシグナル活性化剤及びShhシグナル活性化剤を含む培地での培養、レチノイン酸及びN2サプリメントを含む網膜成熟培地での培養、並びに、BDNF含有培地での培養を含む方法によって、網膜神経節細胞及びその前駆細胞を作製することができる。網膜神経節細胞の誘導は、マーカーBrn3b,Math5,Sncg,Islet1,Tuj1などの発現によって確認することができる。 This method creates retinal ganglion cells and their progenitor cells via the creation of retinal progenitor cells. Specifically, iPS cells are cultured in a retinal differentiation medium (containing Wnt signal inhibitors and Rock inhibitors), further cultured in FBS-containing medium, and medium containing Wnt signal activator and Shh signal activator. Retinal ganglion cells and their progenitor cells can be generated by methods including culturing in retinoic acid and retinal maturation medium containing retinoic acid and N2 supplements, and culturing in BDNF-containing medium. Induction of retinal ganglion cells can be confirmed by the expression of markers such as Brn3b, Math5, Sncg, Islet1 and Tuj1.
 網膜神経節細胞及びその前駆細胞の作製法はまた、例えば特表2017-532954号公報にも記載されている。 A method for producing retinal ganglion cells and their progenitor cells is also described, for example, in Japanese Patent Publication No. 2017-532954.
2.障害された神経経路を再構築するための方法
 本発明はさらに、上記医薬キットの第1製剤を、神経経路障害をもつ患者の該障害部位又はその近傍に投与することを含む、該患者において障害された神経経路を再構築するための方法を提供する。
2. A method for reconstructing a damaged neural pathway A method is provided for reconstructing a neural pathway that has been modified.
 上記医薬キットの第1製剤は、上記セクション1.1.で説明したとおりである。 The first formulation of the pharmaceutical kit is described in section 1.1. As explained in
 神経経路障害は、中枢神経系及び末梢神経系の神経損傷(例えば、外傷、断裂、虚血、溶血、神経変性、等)を原因とする障害であり、例えば、脳血管障害(例えば、脳卒中(脳梗塞、脳出血、くも膜下出血)、等)、脳損傷(例えば、脳挫傷、脳裂傷、等)、脊髄損傷(損傷された脊髄から遠位の運動や知覚の障害が生じる)、神経変性疾患(例えば、多発性硬化症、てんかん、アルツハイマー病、パーキンソン病、筋萎縮性側索硬化症、クロイツフェルト・ヤコブ病、等)、眼科疾患(緑内障、等)などの疾患を含む。上記脳血管障害、脳損傷、神経変性疾患などの疾患は、大脳に関わる障害(大脳皮質障害を含む)であり、運動、言語、記憶など重度の機能障害を発症することが多い。また、上記眼科疾患は、重度の視覚障害を発症しやすい。 Neural pathway disorders are disorders caused by nerve damage in the central nervous system and peripheral nervous system (e.g. trauma, rupture, ischemia, hemolysis, neurodegeneration, etc.), for example, cerebrovascular disorders (e.g., stroke ( cerebral infarction, cerebral hemorrhage, subarachnoid hemorrhage, etc.), brain injury (e.g., cerebral contusion, cerebral laceration, etc.), spinal cord injury (impairment of movement and perception distal to the injured spinal cord), neurodegenerative disease (eg, multiple sclerosis, epilepsy, Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, Creutzfeldt-Jakob disease, etc.), eye diseases (glaucoma, etc.). Diseases such as the above cerebrovascular disorders, brain injuries, and neurodegenerative diseases are disorders related to the cerebrum (including cerebral cortical disorders), and often cause severe functional disorders such as movement, language, and memory. In addition, the above ophthalmic diseases tend to develop severe visual impairment.
 上記方法では、第1製剤を、患者の上記障害部位又はその近傍に投与する。このような障害では、神経損傷に起因してしばしば神経細胞の欠落が生じるが、この場合、障害部位又はその近傍に生きた神経細胞が部分的に残存している、或いは、神経細胞の一部が変性し一部は残存している、ことが好ましい。生きた神経細胞は、第1製剤によって神経細胞増殖及び軸索伸長を誘導し、これによって障害された神経経路(皮質脊髄路又はその他の神経経路)が再構築されると考えられる。 In the above method, the first preparation is administered to the patient at or near the lesion site. In such disorders, loss of nerve cells often occurs due to nerve damage. is denatured and partially remains. Viable neurons are believed to induce neuronal cell proliferation and axonal outgrowth by the first formulation, thereby remodeling the damaged neural pathways (corticospinal or other neural pathways).
 この関連で、本発明はまた、実施形態により、上記医薬キットの第1製剤を、皮質脊髄路障害をもつ患者の大脳皮質、とりわけ運動野に投与することを含む、該患者において障害された皮質脊髄路を再構築するための方法も提供する。 In this regard, the present invention also provides, according to an embodiment, a cortex damaged in a patient having a corticospinal tract disorder, comprising administering the first formulation of the pharmaceutical kit to the cerebral cortex, particularly the motor cortex, of the patient. A method for reconstructing the spinal tract is also provided.
 皮質脊髄路障害は、例えば上記の脳血管障害や頭部外傷(もしくは脳損傷)によって運動野に障害が生じたとき皮質脊髄路が遮断されることによる運動機能の麻痺を包含する。このため、障害された運動野の障害部位又はその近傍に第1製剤を投与することができる。 Corticospinal tract disorders include paralysis of motor function due to blockage of the corticospinal tract when the motor cortex is impaired, for example, by the above-mentioned cerebrovascular disease or head injury (or brain injury). Therefore, the first formulation can be administered to or near the damaged site of the damaged motor cortex.
 第1製剤の用量は、軸索伸長を誘導することが可能な量(すなわち、有効量)であれば特に限定されないが、患者の重症度、年齢、体重、性別などに応じて適宜選択される。 The dose of the first preparation is not particularly limited as long as it is an amount capable of inducing axonal outgrowth (that is, an effective amount). .
 上記方法ではさらに、上記障害部位での神経細胞の成長もしくは増殖を助けるために、好ましくは上記医薬キットの第2製剤を患者の上記障害部位又はその近傍に移植してもよい。 In the above method, preferably, the second formulation of the pharmaceutical kit may be implanted at or near the site of injury in the patient in order to support growth or proliferation of nerve cells at the site of injury.
 上記第2製剤は、上記1.2.で説明したとおりであり、神経細胞及び/又はその前駆細胞を含む細胞集団、或いは、大脳皮質神経細胞及び/又はその前駆細胞を含む細胞集団を有効成分として含む。これらの細胞又は細胞集団の作製については上記のとおりである。 The above second formulation is the above 1.2. and contains a cell population containing neurons and/or their progenitor cells, or a cell population containing cerebral cortical neurons and/or their progenitor cells as an active ingredient. The production of these cells or cell populations is described above.
 上記移植に必要な神経細胞又は大脳皮質神経細胞及び/又はその前駆細胞の細胞数は、移植片が投与後に生着できれば特に限定されないが、例えば、1×10個以上、1×10個以上、1×10個以上、1×10個以上、1×10個以上などであり、患者の重症度、年齢、体重、性別などに応じて適宜増減してもよい。 The number of nerve cells or cerebral cortical nerve cells and/or their progenitor cells necessary for the transplantation is not particularly limited as long as the graft can engraft after administration, but is, for example, 1×10 5 or more, 1×10 6 . 1×10 7 or more, 1×10 8 or more, 1×10 9 or more, etc., and may be adjusted appropriately according to the severity, age, weight, sex, etc. of the patient.
 上記第2製剤は、第1製剤の投与前、第1製剤の投与と同時に、或いは、第1製剤の投与後のいずれにおいて投与されてもよい。好ましい態様として、第2製剤は、第1製剤の投与後に投与されてよく、さらに好ましくは、第1製剤の投与から1日~60日後、より好ましくは5日~30日後、さらに好ましくは7日~20日後、最も好ましくは10日~14日後に投与されてもよい。 The second formulation may be administered before administration of the first formulation, simultaneously with administration of the first formulation, or after administration of the first formulation. As a preferred embodiment, the second formulation may be administered after administration of the first formulation, more preferably 1 to 60 days after administration of the first formulation, more preferably 5 to 30 days, still more preferably 7 days. It may be administered ˜20 days later, most preferably 10-14 days later.
 上記第1製剤又は上記細胞を生理食塩水、リン酸緩衝生理食塩水(PBS)などの担体(もしくは賦形剤)に懸濁して患者の神経経路障害部位又はその近傍に、例えば患者の頭骨にドリルで開けた穴から注射等によって投与することができる。大脳皮質神経細胞の移植は、例えば、P.Piccini et al.,Nature Neuroscience,2,1137,1999、C.R.Freed et al.,N Engl J Med.;344:710-9,2001などに記載されるような手法によって行うことができる。
 注射による場合、例えばシリンジ、カニューレ又はカテーテルのような適切な装置を用いて、患者の脳内、脊髄内又は末梢の上記障害部位又はその近傍(もしくは周辺)に直接投与することができる。
The first formulation or the cells are suspended in a carrier (or excipient) such as physiological saline or phosphate-buffered saline (PBS) and placed at or near the patient's nerve pathway lesion site, for example, at the patient's skull. It can be administered by injection or the like through a drilled hole. Transplantation of cerebral cortical neurons is described, for example, in P. et al. Piccini et al. , Nature Neuroscience, 2, 1137, 1999; R. Freed et al. , N Engl J Med. ; 344:710-9, 2001 and the like.
In the case of injection, it can be administered directly into the patient's brain, spinal cord, or periphery at or near (or around) the site of injury using an appropriate device such as a syringe, cannula, or catheter.
 本明細書で使用する「患者」は、哺乳動物であり、例えば、ヒトを含む霊長類、齧歯類、観賞動物、ペット動物などを含み、好ましくはヒトである。 "Patients" as used herein are mammals, for example, primates including humans, rodents, ornamental animals, pet animals, etc., preferably humans.
 本発明を下記の実施例によってさらに具体的に説明するが、本発明の範囲は実施例によって制限されるものではない。以下に、実施例で使用する用語について説明する。
(i)mL1CAM-FLAG
 この用語は、C末端にFLAGタグが付加された、マウスのL1CAMタンパク質又はそれをコードする核酸を指す。
(ii)pAAV[Exp]-CMV>mL1cam[NM_008478.3]/FLAG
 この用語は、CMVプロモーターの制御下にmL1CAM-FLAGをコードするコンストラクト(図3A)がパッケージングされたAAVを指す。また、mL1cam-AAVと略記し、L1CAM発現ベクターと呼称する場合がある。
(iii)pAAV[Exp]-CMV>mNtn1[NM_008744.2]:T2A:mCherry:WPRE
 この用語は、CMVプロモーターの制御下にmNtn1タンパク質をコードする核酸およびmCherryタンパク質をコードする核酸を含むAAVプラスミドを指す。T2Aペプチドをコードする配列により、mNtn1タンパク質とmCherryタンパク質とは別のタンパク質として発現する。WPREは転写後調節因子であるwoodchuck hepatitis virus posttranscriptional regulatory elementを表す。また、このプラスミドをAAV9にパッケージングしたものをrAAV9-Ntn1-mCherryと略記する。
(iv)pAAV[Exp]-CMV>mSema3a[NM_001243072.1]:T2A:mCherry:WPRE
 この用語は、CMVプロモーターの制御下にmSema3aタンパク質をコードする核酸およびmCherryタンパク質をコードする核酸を含むAAVベクターを指す。T2Aペプチドをコードする配列により、mSema3aタンパク質とmCherryタンパク質とは別のタンパク質として発現する。また、このプラスミドをAAV9にパッケージングしたものをrAAV9-Sema3a-mCherryと略記する。
(v)pAAV[Exp]-CMV>mSema3c[NM_013657.5]:T2A:mCherry:WPRE
 この用語は、CMVプロモーターの制御下にmSema3cタンパク質をコードする核酸およびmCherryタンパク質をコードする核酸を含むAAVプラスミドを指す。T2Aペプチドをコードする配列により、mSema3cタンパク質とmCherryタンパク質とは別のタンパク質として発現する。また、このプラスミドをAAV9にパッケージングしたものをrAAV9-Sema3c-mCherryと略記する。
The present invention will be described in more detail by the following examples, but the scope of the present invention is not limited by the examples. The terms used in the examples are explained below.
(i) mL1CAM-FLAG
The term refers to the murine L1CAM protein or nucleic acid encoding it with a C-terminal FLAG tag.
(ii) pAAV[Exp]-CMV>mL1cam[NM_008478.3]/FLAG
This term refers to AAV packaged with a construct encoding mL1CAM-FLAG (FIG. 3A) under the control of the CMV promoter. It may also be abbreviated as mL1cam-AAV and referred to as an L1CAM expression vector.
(iii) pAAV[Exp]-CMV>mNtn1[NM_008744.2]:T2A:mCherry:WPRE
The term refers to an AAV plasmid containing nucleic acid encoding the mNtn1 protein and nucleic acid encoding the mCherry protein under the control of the CMV promoter. The sequence encoding the T2A peptide causes mNtn1 protein and mCherry protein to be expressed as separate proteins. WPRE stands for woodchuck hepatitis virus posttranscriptional regulatory element. AAV9-packaged product of this plasmid is abbreviated as rAAV9-Ntn1-mCherry.
(iv) pAAV[Exp]-CMV>mSema3a[NM_001243072.1]:T2A:mCherry:WPRE
The term refers to an AAV vector comprising nucleic acid encoding the mSema3a protein and nucleic acid encoding the mCherry protein under the control of the CMV promoter. The sequence encoding the T2A peptide causes it to be expressed as a separate protein from the mSema3a and mCherry proteins. AAV9-packaged product of this plasmid is abbreviated as rAAV9-Sema3a-mCherry.
(v) pAAV[Exp]-CMV>mSema3c[NM_013657.5]:T2A:mCherry:WPRE
The term refers to an AAV plasmid containing nucleic acid encoding the mSema3c protein and nucleic acid encoding the mCherry protein under the control of the CMV promoter. The sequence encoding the T2A peptide causes it to be expressed as a separate protein from the mSema3c and mCherry proteins. AAV9-packaged product of this plasmid is abbreviated as rAAV9-Sema3c-mCherry.
[実施例1]
<L1CAMを過剰発現させた大脳皮質内の移植片から脊髄までの軸索伸長>
1.実験と方法
<動物>
 研究での動物実験のすべてが、京都大学動物研究施設(京都、日本)の実験動物委員会によって承認され、京都大学動物実験規則に従って行われた。この研究では、使用する動物の数と疾病を最小化するようにした。
[Example 1]
<Axon elongation from a graft in the cerebral cortex overexpressing L1CAM to the spinal cord>
1. Experiments and Methods <Animals>
All animal experiments in the study were approved by the Laboratory Animal Committee of the Kyoto University Animal Research Facility (Kyoto, Japan) and were performed in accordance with the Kyoto University Animal Care Regulations. This study sought to minimize the number of animals used and morbidity.
 13週齢の雄マウス(C57BL/6NCrSlc)16匹を移植レシピエントに用い、また2匹のEGFPトランスジェニックマウス(C57BL/6-Tg[CAG-EGFP])由来胎仔マウス15匹から移植片組織を得た。マウスはすべて清水実験材料(京都、日本)から購入した。
 マウスを12時間明暗周期で集団飼育し、餌と水を自由に取れるようにした。
Sixteen 13-week-old male mice (C57BL/6NCrSlc) were used as transplant recipients, and graft tissue was obtained from 15 fetal mice derived from two EGFP-transgenic mice (C57BL/6-Tg[CAG-EGFP]). Obtained. All mice were purchased from Shimizu Experimental Materials (Kyoto, Japan).
Mice were group-housed with a 12-hour light-dark cycle and had free access to food and water.
<ベクター>
 CMVプロモーターの制御下にmL1CAM-FLAGをコードするコンストラクト(図3A)を作製し、当該コンストラクトをAAV9にパッケージングして、pAAV[Exp]-CMV>mL1cam[NM_008478.3]/FLAGを構築した(VectorBuilder社製)。このベクターのIDはVB190707-1042dgsであり、当該IDを用いてベクタービルダー社(vectorbuilder.com)から当該ベクターに関する詳細な情報を取得することができる。
 また、コントロール用のベクターとして、上記同様にpAAV[Exp]-CMV>mCherry:WPREを構築した(VectorBuilder社製)。このベクターのIDはVB190114―1227seeである。
<Vector>
A construct encoding mL1CAM-FLAG under the control of the CMV promoter (Fig. 3A) was generated and packaged into AAV9 to construct pAAV[Exp]-CMV>mL1cam[NM_008478.3]/FLAG (Fig. 3A). Vector Builder). The ID of this vector is VB190707-1042dgs, which can be used to obtain detailed information about the vector from VectorBuilder.com.
As a control vector, pAAV[Exp]-CMV>mCherry:WPRE was constructed in the same manner as described above (Vector Builder). The ID of this vector is VB190114-1227see.
<ベクター注射>
 メデトミジン(medetomidine)塩酸(0.75mg/kg)、ミダゾラム(midazolam)(4mg/kg)及びブトルファノール(butorphanol)(5mg/kg)の混合液をレシピエントマウスに腹腔内注射して麻酔し、定位装置に固定して頭を水平位置に保持した。正中切開(midline scalp incision)を行い、運動皮質の吻側前肢領域(RFA)上部(前頂から前面1.0mm及び側面1.0mm)と運動皮質の尾側前肢領域(CFA)上部(前頂から後面0.5mm及び側面1.8mm)の頭蓋骨にドリル(ミニター、東京)を用いて2つの小さな窓となる穴を開けた。その後、0.3μlのmL1cam-AAV溶液(1.0×1013コピー/ml)(n=8)、陰性コントロールとしてmCherry-AAV溶液(1.0×1013コピー/ml)(n=8)、又は等量のビヒクル(PBS(-))(n=8)、を上記RFA及びCFA中のそれぞれ1.0mm、0.5mmの深さのところに、滅菌した33ゲージのマイクロシリンジ(伊藤製作所、静岡)を用いて注射した。
<Vector injection>
Recipient mice were anesthetized by intraperitoneal injection of a mixture of medetomidine hydrochloride (0.75 mg/kg), midazolam (4 mg/kg) and butorphanol (5 mg/kg), and stereotaxic. to hold the head in a horizontal position. A midline scalp incision is made and the superior rostral forelimb area (RFA) of the motor cortex (1.0 mm anterior and 1.0 mm lateral from the apex) and the superior caudal forelimb area (CFA) of the motor cortex (apical apex). Two small fenestrations were made in the skull at 0.5 mm posterior and 1.8 mm lateral from the head using a drill (Minitor, Tokyo). Then, 0.3 μl of mL1cam-AAV solution (1.0×10 13 copies/ml) (n=8), mCherry-AAV solution (1.0×10 13 copies /ml) (n=8) as a negative control , or an equal volume of vehicle (PBS(−)) (n=8), was injected into the above RFA and CFA at a depth of 1.0 mm and 0.5 mm, respectively, in sterile 33-gauge microsyringes (Ito Seisakusho , Shizuoka).
<大脳皮質組織の採取と移植>
 上記ベクター又はビヒクルの注射1週間後に移植を行った。E14.5 EGFPトランスジェニックマウス(胎仔)から大脳皮質組織を採取し、HBSS(Gibco、米国)に移し、移植まで氷上に置いた。この組織を吸い上げて、前記ベクター注射を行ったマウスの前記注射部位(当該RFA及びCFA中のそれぞれ1.0mm、0.5mmの深さのところ)に、滅菌した22ゲージの注射針(Hamilton、米国)を用いて0.3μlずつ移植した。
<Collection and transplantation of cerebral cortical tissue>
Transplantation was performed one week after injection of the vector or vehicle. Cerebral cortical tissue was harvested from E14.5 EGFP transgenic mice (fetuses), transferred to HBSS (Gibco, USA) and kept on ice until transplantation. The tissue is aspirated and a sterile 22-gauge needle (Hamilton®, USA) was used to transplant 0.3 μl each.
<免疫染色>
 移植12週間後に、前記マウスをペントバルビタール(pentobarbital;50mg/kg)の腹腔内注射によって深麻酔し、4%ホルムアルデヒド(PFA)(和光純薬、大阪)を経心的に灌流した。脳と脊髄をPFAで一晩後固定(post-fixed)し、30%スクロース含有PBS溶液に移し、4℃で保存した。その後、上記脳と脊髄をO.C.T.コンパウンド(サクラファインテックジャパン、東京)に包埋し、クリオスタット(CM-3050;Leica Biosystems、米国)を用いて厚さ35μmの切片を作製した。
<Immunostaining>
Twelve weeks after transplantation, the mice were deeply anesthetized by intraperitoneal injection of pentobarbital (50 mg/kg) and transcardially perfused with 4% formaldehyde (PFA) (Wako Pure Chemical Industries, Osaka). Brains and spinal cords were post-fixed with PFA overnight, transferred to PBS containing 30% sucrose and stored at 4°C. Thereafter, the brain and spinal cord were placed in O.D. C. T. It was embedded in a compound (Sakura Fine Tech Japan, Tokyo) and sectioned with a thickness of 35 μm using a cryostat (CM-3050; Leica Biosystems, USA).
 前記切片を0.3%Triton X-100(Sigma-Aldrich、米国)含有PBS溶液を用いて膜透過処理し(室温、45分間)、2%脱脂粉乳(BD Biosciences、米国)含有PBS溶液中でブロッキング処理(室温、30分間)後に、一次抗体類処理(4℃、一晩)、二次抗体処理(Alexa488、594及び647をそれぞれ結合した二次抗体類と一緒に室温で2時間)を行った。上記一次抗体類には、ウサギ抗EGFP抗体(1:1000、#598;医学生物学研究所、名古屋、日本)、マウス抗FLAG M2抗体(1:1000、#F1804;Sigma-Aldrich)、ウサギ抗mCherry抗体(1:500、#ab167453;abcam、英国)、及びラット抗L1CAM抗体(1:1000、#MAB5674;R&D Systems、米国)を、二次抗体には、Alexa488、594及び647をそれぞれ結合した二次抗体類を使用した。核染色は、4’,6-diamidino-2-phenylindole(DAPI)を用いて行った。 The sections were permeabilized with a PBS solution containing 0.3% Triton X-100 (Sigma-Aldrich, USA) (room temperature, 45 minutes), and then placed in a PBS solution containing 2% skimmed milk powder (BD Biosciences, USA). Blocking treatment (room temperature, 30 minutes) was followed by primary antibody treatment (4°C, overnight) and secondary antibody treatment (2 hours at room temperature with secondary antibodies conjugated with Alexa488, 594 and 647, respectively). rice field. The primary antibodies include rabbit anti-EGFP antibody (1:1000, #598; Institute of Medical and Biological Sciences, Nagoya, Japan), mouse anti-FLAG M2 antibody (1:1000, #F1804; Sigma-Aldrich), rabbit anti- mCherry antibody (1:500, #ab167453; abcam, UK) and rat anti-L1CAM antibody (1:1000, #MAB5674; R&D Systems, USA) were conjugated with Alexa488, 594 and 647 as secondary antibodies, respectively. Secondary antibodies were used. Nuclear staining was performed with 4',6-diamidino-2-phenylindole (DAPI).
 共焦点レーザー顕微鏡(LSM700、Carl Zeiss、米国;横河電機、石川)を用いて、前記二次抗体及びDAPIのシグナルを視覚化した。EGFP/DAPIの最大値投影法(MIP)画像を、CellPathfinderソフトウエア(横河電機)を用いて作成し、Fijiソフトウエア(J.Schindelin et al.,Nat Methods,2012;9(7):676-682)を用いてタイル張りの図に変換した。各マウスあたり9個の切片を解析に使用した。抗EGFP抗体でラベルされた移植片から誘導された軸索の数を、矢状切片内で手動でカウントし、さらに、軸索の平均数を記録した。 A confocal laser microscope (LSM700, Carl Zeiss, USA; Yokogawa Electric Corporation, Ishikawa) was used to visualize the signals of the secondary antibody and DAPI. Maximum intensity projection (MIP) images of EGFP/DAPI were created using CellPathfinder software (Yokogawa) and analyzed with Fiji software (J. Schindelin et al., Nat Methods, 2012;9(7):676). -682) were used to convert to tiled figures. Nine sections per mouse were used for analysis. The number of axons derived from anti-EGFP antibody-labeled grafts was manually counted in sagittal sections and the average number of axons was recorded.
<統計解析>
 統計解析は、PRISM9(GraphPadソフトウエア)を用いて行った。2群間の有意差はMann-Whitneyテストによって決定した。確率値(p)が<0.05である場合、差は統計的に有意であるとみなした。データは、平均±標準誤差(SEM)として表した。
<Statistical analysis>
Statistical analysis was performed using PRISM9 (GraphPad software). Significant difference between two groups was determined by Mann-Whitney test. Differences were considered statistically significant if the probability value (p) was <0.05. Data are expressed as mean±standard error (SEM).
2.結果
 図1に、陰性コントロールとしてPBS(-)を使用した移植実験で得られた、内包(図1A)とその対側脊髄(図1B)の切片の免疫染色画像を示す。内包において、陰性コントロール群ではFLAG陽性(赤)の軸索は観察されず、EGFP陽性(緑)の軸索(すなわち、移植細胞由来の軸索)も非常に少なかった。これに対し、L1CAM発現ベクター注射群では、EGFP陽性(緑)の軸索が多数認められ、それらは基本的にL1CAM・FLAG二重陽性(赤と白の中間色)の軸索とマージしていた(図1A右パネル)。
2. Results FIG. 1 shows immunostained images of sections of the internal capsule (FIG. 1A) and its contralateral spinal cord (FIG. 1B) obtained in the transplantation experiment using PBS(-) as a negative control. In the inclusions, no FLAG-positive (red) axons were observed in the negative control group, and very few EGFP-positive (green) axons (ie, transplanted cell-derived axons) were observed. In contrast, in the L1CAM expression vector-injected group, many EGFP-positive (green) axons were observed, and they basically merged with the L1CAM/FLAG double-positive (red and white intermediate color) axons. (Fig. 1A right panel).
 さらに対側の脊髄では、コントロール群ではEGFP陽性(緑)の軸索は観察されなかったが、L1CAM発現ベクター注射群ではEGFP陽性(緑)の軸索が複数観察され、それらはL1CAM・FLAG二重陽性(赤と白の中間色)の軸索とマージしていた。 Furthermore, in the contralateral spinal cord, no EGFP-positive (green) axons were observed in the control group, but multiple EGFP-positive (green) axons were observed in the L1CAM expression vector-injected group. It merged with the axons of the double-positive (intermediate color between red and white).
 これらの結果から、コントロール群では、移植細胞に由来する神経細胞で内包まで軸索を伸長できたものは非常に少ないが、L1CAM発現ベクター注射群では、内包を越えて脊髄にまで軸索を伸長させた移植細胞由来神経細胞が多数あり、それらの軸索はL1CAMを発現しているレシピエントの軸索に寄り添っていることが明らかになった。 From these results, in the control group, very few of the neurons derived from the transplanted cells were able to extend axons within the internal capsule, but in the L1CAM-expressing vector-injected group, the axons extended beyond the internal capsule to the spinal cord. It was found that there were a large number of transplanted cell-derived neurons that had been transfected, and their axons nestled with recipient axons expressing L1CAM.
 図2に、L1CAM発現ベクター注射群及びコントロール群における、同側内包、同側大脳脚、及び対側脊髄におけるEGFP陽性神経軸索の数の定量分析結果を示す。 Figure 2 shows the results of quantitative analysis of the number of EGFP-positive nerve axons in the ipsilateral internal capsule, ipsilateral cerebral peduncle, and contralateral spinal cord in the L1CAM-expressing vector-injected group and the control group.
 図2から、L1CAM発現ベクター注射群では、皮質脊髄路の要所である内包、大脳脚、及び脊髄のいずれにおいても、移植片由来の神経軸索の数がコントロール群と比較して有意且つ顕著に多いことが示された。特に、コントロール群ではほぼ皆無だった脊髄への軸索伸長が多数認められたことは、驚くべき成果である。 From FIG. 2, in the L1CAM-expressing vector-injected group, the number of graft-derived nerve axons in the internal capsule, the cerebral peduncle, and the spinal cord, which are key points in the corticospinal tract, was significant and significant compared to the control group. It was shown that there were many In particular, it was surprising that many axonal outgrowths into the spinal cord were observed, which was almost non-existent in the control group.
 したがって、細胞移植に先立ってレシピエントの脳にL1CAMを過剰発現させることにより、移植細胞に由来する神経細胞からの軸索伸長を顕著に促進し、脊髄への到達も可能になることが示された。 Therefore, overexpression of L1CAM in the brain of the recipient prior to cell transplantation significantly promotes axonal outgrowth from neurons derived from the transplanted cells and is shown to enable access to the spinal cord. rice field.
[実施例2]
<L1CAM以外の軸索誘導分子を過剰発現させた大脳皮質内の移植片から脊髄までの軸索伸長>
 次に、L1CAM以外の軸索誘導分子を過剰発現させた場合の軸索伸長に対する影響を検証した。
1.実験と方法
<動物>
 動物は、実施例1と同様のものを用いた。
[Example 2]
<Axon extension from a graft in the cerebral cortex overexpressing an axon guidance molecule other than L1CAM to the spinal cord>
Next, the effects on axon elongation when overexpressing axon guidance molecules other than L1CAM were examined.
1. Experiments and Methods <Animals>
The same animals as in Example 1 were used.
<ベクター>
 本実施例で軸索誘導分子の過剰発現に用いたアデノ随伴ウイルス(AAV)ベクター、pAAV[Exp]-CMV>mL1cam[NM_008478.3]/FLAG (Vector ID: VB190707-1042dgs), pAAV[Exp]-CMV>mNtn1[NM_008744.2]:T2A:mCherry:WPRE (Vector ID: VB190108-1270grn), pAAV[Exp]-CMV>mSema3a[NM_001243072.1]:T2A:mCherry:WPRE (Vector ID: VB190108-1271fpe), pAAV[Exp]-CMV>mSema3c[NM_013657.5]:T2A:mCherry:WPRE (Vector ID: VB190108-1273msn)およびpAAV[Exp]-CMV>mCherry:WPRE (Vector ID: VB190114-1227see)は、VectorBuilderにより構築され、AAV9にパッケージされた(rAAV9-L1cam/FLAG、rAAV9-Ntn1-mCherry、rAAV9-Sema3A-mCherry、rAAV9-Sema3C-mCherry、rAAV9-mCherry)。ベクターIDは、Vectorbuilder.comでベクターの詳細情報を検索する際に使用できる。
<Vector>
Adeno-associated virus (AAV) vector, pAAV[Exp]-CMV>mL1cam[NM_008478.3]/FLAG (Vector ID: VB190707-1042dgs), pAAV[Exp] used for overexpression of axon guidance molecules in this example -CMV>mNtn1[NM_008744.2]:T2A:mCherry:WPRE (Vector ID: VB190108-1270grn), pAAV[Exp]-CMV>mSema3a[NM_001243072.1]:T2A:mCherry:WPRE (Vector ID: 0VB121p-00128 ), pAAV[Exp]-CMV>mSema3c[NM_013657.5]:T2A:mCherry:WPRE (Vector ID: VB190108-1273msn) and pAAV[Exp]-CMV>mCherry:WPRE (Vector ID: VB190114-1227see) Built by VectorBuilder and packaged in AAV9 (rAAV9-L1cam/FLAG, rAAV9-Ntn1-mCherry, rAAV9-Sema3A-mCherry, rAAV9-Sema3C-mCherry, rAAV9-mCherry). The vector ID is Vectorbuilder. com to find more information about Vector.
<ベクターの注射>
 塩酸メデトミジン(0.75mg/kg)、ミダゾラム(4mg/kg)、ブトルファノール(5mg/kg)の混合液をマウスの腹腔内に注射して麻酔をかけ、頭部が水平になるように定位装置に固定した。頭皮の正中切開を行い,運動皮質の吻側前肢領域(RFA)(ブレグマから前方1.0mm,外側1.0mm)と運動皮質の尾側前肢領域(CFA)(ブレグマから後方0.5mm,外側1.8mm)を覆う頭蓋骨の2つの小窓をドリル(ミニター株式会社,東京,日本)で穿孔した。そして、0.3μlのrAAVベクター溶液(1.0x1013ゲノムコピー/ml)またはPBSを、33ゲージの滅菌マイクロシリンジ(伊藤製作所、静岡県)を用いて、RFAおよびCFAに1.0mmおよび0.5mmの深さで注入した。
<Vector injection>
Mice were anesthetized by intraperitoneal injection of a mixture of medetomidine hydrochloride (0.75 mg/kg), midazolam (4 mg/kg), and butorphanol (5 mg/kg), and placed in a stereotaxic instrument so that their heads were horizontal. Fixed. A midline scalp incision was made and the rostral forelimb area (RFA) of the motor cortex (1.0 mm anterior to bregma, 1.0 mm lateral) and the caudal forelimb area (CFA) of the motor cortex (0.5 mm posterior to bregma, lateral 1.8 mm) were drilled with a drill (Minitor Co., Ltd., Tokyo, Japan). Then, 0.3 μl of rAAV vector solution (1.0×10 13 genome copies/ml) or PBS was injected into RFA and CFA with 1.0 mm and 0.0 mm using a 33-gauge sterile microsyringe (Ito Seisakusho, Shizuoka, Japan). Implanted at a depth of 5 mm.
<移植>
 移植は、ベクターまたはPBSの注入後、同日または1週間後、2週間後に行った。E14.5 EGFPトランスジェニックマウスの皮質組織を採取し,HBSS(Gibco, Gaithersburg, MD, USA)に移し,移植まで氷上で保存した。組織を吸引し,滅菌した22ゲージの針(Hamilton Company, Reno NV, USA)を用いて,RFAおよびCFA(上述)に1.0mmおよび0.5mmの深さで移植した(0.3μl/site)。
<Transplant>
Transplantation was performed on the same day or 1 week and 2 weeks after vector or PBS injection. Cortical tissue from E14.5 EGFP transgenic mice was harvested, transferred to HBSS (Gibco, Gaithersburg, MD, USA) and stored on ice until transplantation. Tissues were aspirated and implanted (0.3 μl/site) into RFA and CFA (described above) at depths of 1.0 mm and 0.5 mm using sterile 22-gauge needles (Hamilton Company, Reno NV, USA). ).
<統計解析>
 統計解析は,PRISM 9(GraphPad Software)を用いて行った。in vivo実験での比較では,差の有意性は,Kruscal-Wallis検定で判定した(対応なし、ノンパラメトリック)。確率値が<0.05の場合、差は統計的に有意であると判断した。データは、平均値±平均の標準誤差(SEM)で示した。
<Statistical analysis>
Statistical analysis was performed using PRISM 9 (GraphPad Software). For comparisons with in vivo experiments, the significance of differences was determined by the Kruscal-Wallis test (unpaired, nonparametric). Differences were considered statistically significant if the probability value was <0.05. Data are presented as mean±standard error of the mean (SEM).
2.結果
 図4に、CST(同側内包、同側大脳小帯、対側脊髄)におけるGFP神経突起の数に定量的に解析した結果を示す。ホスト脳の皮質脊髄路に軸索誘導分子を強制的に発現させたところ、L1CAMのみが移植片からの軸索伸長を促進した。次に,移植の1週間前に,netrin1,semaphorin3A,semaphorin3C,L1CAM,mCherryの遺伝子を導入したrAAVベクターをそれぞれ運動野に注入した。ドナー細胞は、胎生14日目のGFPトランスジェニックマウスの前頭葉皮質から採取し、移植した。GFP軸索は、ホストのCST(同側の内包、同側の大脳側頭、対側の脊髄)におけるGFP軸索の数を数えると、L1CAM群でのみ、対照群に比べて有意に多かった。他の軸索誘導分子群と対照群の間では、軸索の数に有意な差はなかった。
2. Results FIG. 4 shows the results of quantitative analysis of the number of GFP + neurites in the CST (ipsilateral internal capsule, ipsilateral cerebral zonules, contralateral spinal cord). Upon forced expression of axon guidance molecules in the corticospinal tract of the host brain, only L1CAM promoted axonal outgrowth from the graft. Next, one week before the transplantation, rAAV vectors into which the netrin1, semaphorin3A, semaphorin3C, L1CAM and mCherry genes were introduced were injected into the motor cortex, respectively. Donor cells were harvested from the frontal cortex of GFP transgenic mice on embryonic day 14 and transplanted. GFP + axons were significantly increased only in the L1CAM group compared to the control group when counting the number of GFP + axons in the host's CST (ipsilateral internal capsule, ipsilateral cerebral temporal, contralateral spinal cord). There were many. There was no significant difference in the number of axons between the other axon guidance molecules group and the control group.
 発生段階において軸索反発性に作用するSema3Aは脳皮質の最深部に、誘引性に働くSema3Cはそれよりやや浅層に分布している(D. Bagnard et al., Development: 5043-5053, 1998; Semaphorins act as attractive and repulsive guidance signals during the development of cortical projections.)。また、これらの協調的な発現に加えて、大脳基底核原基からはnetrin-1が拡散し濃度勾配を形成している(C. Metin et al., Development: 5063-5074, 1997; A role for netrin-1 in the guidance of cortical efferents.)。軸索の誘導は、これら因子の複雑な相互作用によってなされているため、netrin1、semaphorin3Aおよびsemaphorin3Cに関しては、少なくとも単一の分子を強制的に発現させるだけでは軸索伸長効果が十分に発揮されなかったと推測される。一方で、軸索伸長には複数の軸索伸長因子の複雑な相互作用によりなされているにもかかわらず、L1CAMだけをホストのCSTに強制的に発現させただけでも軸索誘導効果が認められたことは、驚くべきことであった。 At the developmental stage, Sema3A, which acts on axon repulsion, is distributed in the deepest part of the brain cortex, and Sema3C, which acts on attraction, is distributed in a slightly shallower layer (D. Bagnard et al., Development: 5043-5053, 1998 Semaphorins act as attractive and repulsive guidance signals during the development of cortical projects.). In addition to these coordinated expressions, netrin-1 diffuses from the basal ganglia primordium and forms a concentration gradient (C. Metin et al., Development: 5063-5074, 1997; A role for netrin-1 in the guidance of cortical effects.). Since axon guidance is achieved by the complex interaction of these factors, forced expression of at least a single molecule of netrin1, semaphorin3A, and semaphorin3C did not sufficiently exhibit the axon elongation effect. It is speculated that On the other hand, although axonal outgrowth is mediated by a complex interaction of multiple axonal outgrowth factors, forced expression of L1CAM alone in the host's CST induces an axonal guidance effect. What happened was amazing.
[実施例3]
<L1CAM発現細胞と初代神経細胞との共培養実験>
 In vitroにおいて、L1CAMの同種の結合により神経突起の伸長を促進するか否かについて検証した。
1.実験と方法
<L1CAMを発現するHEK-293細胞のトランスフェクション>
 L1CAM/FLAGをコードするDNAセグメントを、pAAV[Exp]-CMV>mL1cam[NM_008478.3]/FLAG(Vector ID:VB190707-1042dgs)から15bpのオーバーラッププライマー(FOR:tcctaccctcgtaaacaagtttgtacaaaaaagcaggctg(配列番号5)、REV:aactagaaggcacagctacttgtcgtcatcgtctttgtag(配列番号6))を用いてPCR増幅した。TRE3G、TetOn3G、およびピューロマイシン耐性遺伝子(Puro)を含むPiggyBacトランスポゾンプラスミド(VB201202-1242kvw)をオーバーラッププライマーを用いたPCRにより線状化し、L1cam/FLAG PCR産物をIn-Fusion(Clontech, Mountain View, CA, USA)を介してライゲーションした。HEK-293細胞は、10%ウシ胎児血清(FBS)、100U/mlペニシリン、100μg/mlストレプトマイシンを添加したDMEMで培養した。
[Example 3]
<Co-culture experiment of L1CAM-expressing cells and primary neurons>
In vitro, it was examined whether homogenous binding of L1CAM promotes neurite outgrowth.
1. Experiments and methods <Transfection of HEK-293 cells expressing L1CAM>
A DNA segment encoding L1CAM/FLAG was extracted from pAAV[Exp]-CMV>mL1cam[NM_008478.3]/FLAG (Vector ID: VB190707-1042dgs) with a 15 bp overlapping primer (FOR: tcctaccctcgtaaaacaagttgtgtacaaaagcagg, RE NO: 5 :aactagaaggcacagctacttgtcgtcatcgtctttgtag (SEQ ID NO: 6)). A PiggyBac transposon plasmid (VB201202-1242 kvw) containing TRE3G, TetOn3G, and a puromycin resistance gene (Puro) was linearized by PCR with overlapping primers and the L1cam/FLAG PCR product was subjected to In-Fusion (Clontech, Mountain View, CA, USA). HEK-293 cells were cultured in DMEM supplemented with 10% fetal bovine serum (FBS), 100 U/ml penicillin and 100 μg/ml streptomycin.
 HEK-293細胞をPBSでTrypsinにより剥離し、200gで3分間遠心し、上清を捨て、ペレットを1mlのDMEMに再懸濁した。細胞数を測定した後、1×10個のHEK-293細胞を新しい1.5mlの反応チューブに移し、上記の条件で再び遠心分離した。上清を捨て、ペレットを100μl Opti-MEM(登録商標) I(Gibco社)に再懸濁した。1μgのPB Tet-On-L1CAM/FLAGプラスミドと1μgのpCAG-PBase(Transposase)を混合して細胞懸濁液に加え、エレクトロポレーション用キュベット(2mmギャップ、Nepa Gene Co.Ltd., Chiba, Japan)に移した。エレクトロポレーションは、Nucleofector 2b(Lonza, Basel, Switzerland)を用いて、P023プログラムで行った。2日間のインキュベーション後、1μg/mlのPuromycinを加えて選択した。5日間の選択の後、細胞を継代した。 HEK-293 cells were detached by trypsin in PBS, centrifuged at 200 g for 3 minutes, the supernatant discarded and the pellet resuspended in 1 ml DMEM. After counting the cells, 1×10 6 HEK-293 cells were transferred to a new 1.5 ml reaction tube and centrifuged again under the above conditions. The supernatant was discarded and the pellet resuspended in 100 μl Opti-MEM® I (Gibco). A mixture of 1 μg of PB Tet-On-L1CAM/FLAG plasmid and 1 μg of pCAG-PBase (Transposase) was added to the cell suspension and placed in an electroporation cuvette (2 mm gap, Nepa Gene Co. Ltd., Chiba, Japan). ). Electroporation was performed with the P023 program using a Nucleofector 2b (Lonza, Basel, Switzerland). After 2 days of incubation, 1 μg/ml Puromycin was added for selection. After 5 days of selection, cells were passaged.
<ウエスタンブロッティング>
 野生型HEK-293細胞とL1CAM/FLAGを発現したHEK-293細胞を300000細胞/wellで播種し、6ウェルプレートで培養した。コンフルエントになった後、細胞培養プレートを氷上に置き、氷冷したPBSで細胞を洗浄した。PBSを吸引した後、氷冷したRIPAバッファー(150mM塩化ナトリウム、1.0%Triton X-100、0.5%デオキシコール酸ナトリウム、0.1%SDS(ドデシル硫酸ナトリウム)、50mM Tris(pH8.0)、1:100プロテアーゼインヒビターカクテル、蒸留水)(1ウェルあたり0.5mL)を加えた。その後、あらかじめ冷却したマイクロチューブに移し、4℃で30分間静置した。その後、チューブを4℃で20分間、12,000rpmで遠心分離した。上清を回収し、Pierce BCA Protein Assay Kit (Thermo science; REF 23227)と吸光マイクロプレートリーダーを用いて、タンパク質の濃度を測定した。等量のタンパク質(10μg)を、10% 2-メルカプトエタノールを含む2×Laemmili Sample Buffer(Bio-Rad, Hercules, CA, USA)を用いて、95℃で5分間変性させた。その後、サンプルをAny kD Mini-PROTEAN TGX Precast Protein Gels(Bio-Rad)のウェルにロードした。5μLのPrecision Plus Protein WesternC Protein Standards(Bio-Rad)に1μLのStrepTactin-HRP conjugate(Bio-Rad)を加えたものをマーカーとしてロードした。電気泳動はRunning Buffer(10% 10×Tris/Glycine/SDS buffer (Bio-Rad) in DW)を用いて、200V, 0.06A, 300Wで30分間行った。続いて、ブロッティングバッファー(8% 10×Tris/Glycine (Bio-Rad),  20% MeOH, 蒸留水)を用いて、100V, 3.00A, 300W, 90分の条件でエレクトロブロッティングを行い、ゲルをImmun-Blot PVDF Membrane (Bio-Rad)に転写した。膜を5%スキムミルクと0.1% Tween-20を含むトリス緩衝生理食塩水(TBST)で室温で1時間ブロッキングし、一次抗体(rat anti-L1CAM (1:5000, #MAB5674, R&D Systems), mouse anti-β-actin (1:5000, #A2228, Sigma-Aldrich))と4℃で一晩インキュベートした後、西洋ワサビペルオキシダーゼ結合二次抗体(anti-rat IgG-HRP (1:10000, #sc-2006, Santa Cruz), anti-mouse IgG-HRP (1:10000, #ab6820, abcam))と室温で90分インキュベートした。シグナルはPierce ECL Plus Western Blotting Substrate(Thermo Fisher)を用いて検出した。また、画像はImageQuant LAS4000(Cytiva, Tokyo, Jaoan)で取得した。
<Western blotting>
Wild-type HEK-293 cells and HEK-293 cells expressing L1CAM/FLAG were seeded at 300,000 cells/well and cultured in a 6-well plate. After becoming confluent, the cell culture plate was placed on ice and the cells were washed with ice-cold PBS. After aspirating PBS, ice-cold RIPA buffer (150 mM sodium chloride, 1.0% Triton X-100, 0.5% sodium deoxycholate, 0.1% SDS (sodium dodecyl sulfate), 50 mM Tris (pH 8.0). 0), 1:100 protease inhibitor cocktail, distilled water) (0.5 mL per well) was added. Then, it was transferred to a precooled microtube and allowed to stand at 4°C for 30 minutes. The tubes were then centrifuged at 12,000 rpm for 20 minutes at 4°C. The supernatant was collected and the protein concentration was measured using the Pierce BCA Protein Assay Kit (Thermoscience; REF 23227) and an absorbance microplate reader. Equal amounts of protein (10 μg) were denatured with 2× Laemmili Sample Buffer (Bio-Rad, Hercules, Calif., USA) containing 10% 2-mercaptoethanol at 95° C. for 5 minutes. Samples were then loaded into wells of Any kD Mini-PROTEAN TGX Precast Protein Gels (Bio-Rad). 5 μL of Precision Plus Protein WesternC Protein Standards (Bio-Rad) plus 1 μL of StrepTactin-HRP conjugate (Bio-Rad) was loaded as a marker. Electrophoresis was performed using a running buffer (10% 10×Tris/Glycine/SDS buffer (Bio-Rad) in DW) at 200 V, 0.06 A, 300 W for 30 minutes. Subsequently, using a blotting buffer (8% 10×Tris/Glycine (Bio-Rad), 20% MeOH, distilled water), electroblotting was performed under the conditions of 100 V, 3.00 A, 300 W, 90 minutes, and the gel was Transferred to Immun-Blot PVDF Membrane (Bio-Rad). The membrane was blocked with Tris-buffered saline (TBST) containing 5% skimmed milk and 0.1% Tween-20 for 1 hour at room temperature and treated with a primary antibody (rat anti-L1CAM (1:5000, #MAB5674, R&D Systems), After overnight incubation at 4° C. with mouse anti-β-actin (1:5000, #A2228, Sigma-Aldrich)), horseradish peroxidase-conjugated secondary antibody (anti-rat IgG-HRP (1:10000, #sc -2006, Santa Cruz), anti-mouse IgG-HRP (1:10000, #ab6820, abcam)) for 90 minutes at room temperature. Signals were detected using Pierce ECL Plus Western Blotting Substrate (Thermo Fisher). Images were also acquired with an ImageQuant LAS4000 (Cytiva, Tokyo, Jaoan).
<In vitroアッセイ>
 In vitroアッセイでは、コラーゲン(COSMO)コートした96ウェルプレートの各ウェルに10,000個のHEK-293(PB-L1Cam/Flag)細胞を播種し、37℃でインキュベートした。ドキシサイクリン(100ng/mL)を培地に加えてTet-On遺伝子の発現を誘導し、実験全体を通して保持した。細胞がコンフルエントな単層を形成した後、100ng/mLのマイトマイシンを添加し、その後37℃で2時間インキュベートすることで増殖を停止させた。EGFPトランスジェニックマウスの胎生14日目の皮質神経細胞を採取し,Neuron Dissociation Solutions(富士フイルム和光純薬株式会社,大阪)を用いて酵素的に解離させ,10%FBS(Merck)を添加したNeuron Culture Medium(富士フイルム和光純薬株式会社)に懸濁した。そして、この神経細胞を、上記の培養HEK細胞上に10,000個/cmの密度で播種した。ネガティブコントロールとして,L1CAMの同一分子間結合を阻害することが知られている抗L1CAM mAb 5G3を1:200で培地に添加した(Balaianら,2000;Wolterinkら,2010)。IncuCyte S3を用いて12時間ごとに画像を取得し、IncuCyte Neurotrackソフトウエアを用いてGFP陽性の神経突起の長さを自動的に測定した。実験は各群4wellずつ、4回繰り返した。
<In vitro assay>
For the in vitro assay, 10,000 HEK-293 (PB-L1Cam/Flag) cells were seeded into each well of collagen (COSMO) coated 96-well plates and incubated at 37°C. Doxycycline (100 ng/mL) was added to the medium to induce expression of the Tet-On gene and maintained throughout the experiment. After the cells formed a confluent monolayer, growth was stopped by adding 100 ng/mL mitomycin followed by incubation at 37° C. for 2 hours. EGFP transgenic mouse cortical nerve cells on day 14 of embryonic development were collected, enzymatically dissociated using Neuron Dissociation Solutions (Fujifilm Wako Pure Chemical Industries, Ltd., Osaka), and 10% FBS (Merck) was added to Neuron. It was suspended in Culture Medium (Fuji Film Wako Pure Chemical Industries, Ltd.). Then, these nerve cells were seeded on the above cultured HEK cells at a density of 10,000 cells/cm 2 . As a negative control, anti-L1CAM mAb 5G3, known to inhibit the same intermolecular binding of L1CAM, was added to the medium at 1:200 (Balaian et al., 2000; Wolterink et al., 2010). Images were acquired every 12 hours using an IncuCyte S3 and GFP-positive neurite length was automatically measured using the IncuCyte Neurotrack software. The experiment was repeated 4 times with 4 wells for each group.
2.結果
 図6に、ウエスタンブロッティングの結果を示す。本実施例で作製した細胞において、目的タンパクであるL1CAMが発現していることが確認された。また、図7にIn vitroアッセイの結果を、図8にHEK-L1上の初代ニューロンの神経突起の長さの時間変化を定量的に分析した結果を示す。共培養2日目において、L1CAMを発現させたHEK細胞(DOX)上の神経細胞の軸索は発現させなかった細胞上のものよりも長く伸展した。阻害因子である5G3を添加させると、L1CAMの発現に関わらず軸索の伸長が阻害された。
2. Results FIG. 6 shows the results of Western blotting. It was confirmed that the target protein L1CAM was expressed in the cells prepared in this example. In addition, FIG. 7 shows the results of the in vitro assay, and FIG. 8 shows the results of quantitative analysis of temporal changes in neurite length of primary neurons on HEK-L1. On day 2 of co-culture, the axons of neurons on HEK cells (DOX) expressing L1CAM elongated longer than those on cells not expressing L1CAM. Addition of the inhibitor 5G3 inhibited axonal outgrowth regardless of L1CAM expression.
 以上のことより、マウスだけでなくヒトにおいても、さらには神経細胞以外の細胞であっても、L1CAMは、少なくとも同一分子間結合を介して軸索伸長効果を発揮することが示された。すなわち、実施例1で示された軸索伸長現象は、細胞の種類や細胞の由来となる動物種には依存せず、細胞がL1CAMを発現しているか否かが重要なポイントであることが示された。したがって、生体由来の細胞だけでなく、多能性幹細胞から分化誘導した細胞(例:大脳神経/前駆細胞)であっても、L1CAMを発現していれば同様に軸索伸長効果が期待できる。一方で、5G3により、L1CAMの発現に関わらず軸索の伸長が阻害されたことから、L1CAMによる軸索伸長促進には同一分子間結合以外のメカニズムが働いていることが示唆される。 From the above, it was shown that L1CAM exerts an axon elongation effect through at least the same intermolecular bond not only in mice but also in humans, and even in cells other than neurons. That is, the axon elongation phenomenon shown in Example 1 does not depend on the cell type or the animal species from which the cells are derived, and the important point is whether or not the cells express L1CAM. shown. Therefore, not only cells derived from a living body but also cells induced to differentiate from pluripotent stem cells (eg, cerebral nerve/progenitor cells) can similarly be expected to exhibit an axonal elongation effect if they express L1CAM. On the other hand, 5G3 inhibited axonal elongation regardless of the expression of L1CAM, suggesting that a mechanism other than the same intermolecular bond works in promoting axonal elongation by L1CAM.
[実施例4]
<電子顕微鏡によるL1CAMの発現観察>
 軸索伸長効果のメカニズムを探索するため、電子顕微鏡により、移植片を移植したホスト脳におけるL1CAMの発現を観察した。
1.実験と方法
 AAV-L1CAM/FLAGの脳皮質注射1週間後に移植を行った。E14.5 EGFPトランスジェニックマウス(胎仔)から大脳皮質組織を採取し、組織を吸い上げて、前記ベクター注射を行ったマウスの前記注射部位(当該RFA及びCFA中のそれぞれ1.0mm、0.5mmの深さのところ)に、滅菌した22ゲージの注射針(Hamilton、米国)を用いて0.3μlずつ移植した。3ヶ月後に脳標本を採取、包埋、凍結後35μmで脳切片を作成した。脳切片をPBSで2回洗浄し、0.3% Hと0.4% Photo-Flo (Kodak, Rochester, NY, USA)を含むPBSで15分間インキュベートした。PBSで10分間3回洗浄した後、切片をPBS中の2%スキムミルク(BD Biosciences)で室温で1時間ブロックし、PBS中の2%スキムミルク中のウサギ抗GFP抗体(1:1000、#598、Medical and Biological Laboratories Company Limited)で4℃、一晩インキュベートした。PBSで10分間3回洗浄した後、切片をPBS中の2%スキムミルク中のビオチン結合ヤギ抗ラビットIgG抗体と室温で2時間インキュベートし、PBSで10分間3回洗浄した。その後,avidin-biotin complex(vector laboratories inc, Burlingame, CA, USA)を用いて室温で1時間反応させた。10分間PBSで3回洗浄した後,0.02% 3,3’-Diaminobenzidine, tetrahydrochloride (DAB-4HCl; DOJINDO, Kumamoto, Japan)と 0.0002% H in 50mM Tris-HCl, pH 7.6 で20分室温で反応させた。脱水後、エポキシ樹脂に包埋し、ウルトラミクロトーム(EM UC6; Leica Biosystems)で厚さ70nmの超薄切片に切断した。PBSで洗浄後、2%スキムミルクで5分間ブロッキングした。次に、切片を一次抗体(ウサギ抗GFP抗体(1:1000、#598、MBL International)、ラット抗L1CAM抗体(1:30、#MAB5674、R&D Systems, Inc)、マウス抗FLAG M2抗体(1:30、#F1804、Sigma-Aldrich)と4℃、一晩反応させた。切片をPBSで洗浄(7回、各1分)し、二次抗体(ビオチン結合ヤギ抗ウサギIgG抗体(1:1000; #BA-1000, Vector laboratories, Burlingame, CA, USA), ヤギ抗ラットIgG(25nm Gold)(1:30; #ab41513, Abcam), ヤギ抗マウスIgG(10nm Gold)(1:30, #ab39619, Abcam)と室温で2時間反応させた。その後,PBSで希釈した2% Glutaraldehydeで15分間固定し,蒸留水で洗浄した。切片は酢酸ウラニルとクエン酸鉛で染色し、電子顕微鏡(JEM1400Flash, JEOL Ltd., Tokyo, Japan)を用いて観察した。TEMは京都大学大学院医学研究科附属解剖学研究センター電子顕微鏡研究部で実施した。
[Example 4]
<Observation of expression of L1CAM by electron microscope>
To explore the mechanism of the axonal outgrowth effect, we observed the expression of L1CAM in the graft-implanted host brain by electron microscopy.
1. Experiments and Methods Transplantation was performed one week after brain cortical injection of AAV-L1CAM/FLAG. Cerebral cortex tissue was collected from E14.5 EGFP transgenic mice (fetuses), the tissue was sucked up, and the injection site of the vector-injected mouse (1.0 mm and 0.5 mm in the RFA and CFA, respectively). depth) were implanted in 0.3 μl aliquots using a sterile 22-gauge needle (Hamilton, USA). After 3 months, brain specimens were collected, embedded, and frozen to prepare brain sections at 35 μm. Brain sections were washed twice with PBS and incubated for 15 minutes with PBS containing 0.3% H 2 O 2 and 0.4% Photo-Flo (Kodak, Rochester, NY, USA). After washing with PBS three times for 10 minutes, sections were blocked with 2% skim milk in PBS (BD Biosciences) for 1 hour at room temperature and treated with rabbit anti-GFP antibody (1:1000, #598, #598, 2% skim milk in PBS). (Medical and Biological Laboratories Company Limited) at 4° C. overnight. After washing 3 times with PBS for 10 minutes, sections were incubated with biotin-conjugated goat anti-rabbit IgG antibody in 2% skimmed milk in PBS for 2 hours at room temperature and washed 3 times with PBS for 10 minutes. Then, avidin-biotin complex (vector laboratories inc, Burlingame, Calif., USA) was used to react at room temperature for 1 hour. After washing three times with PBS for 10 minutes, 0.02% 3,3′-Diaminobenzidine, tetrahydrochloride (DAB-4HCl; DOJINDO, Kumamoto, Japan) and 0.0002% H 2 O 2 in 50 mM Tris-HCl, pH 7. .6 for 20 minutes at room temperature. After dehydration, they were embedded in epoxy resin and cut into ultrathin sections with a thickness of 70 nm with an ultramicrotome (EM UC6; Leica Biosystems). After washing with PBS, blocking was performed with 2% skim milk for 5 minutes. Sections were then treated with primary antibodies (rabbit anti-GFP antibody (1:1000, #598, MBL International), rat anti-L1CAM antibody (1:30, #MAB5674, R&D Systems, Inc), mouse anti-FLAG M2 antibody (1:1000, #MAB5674, R&D Systems, Inc). 30, #F1804, Sigma-Aldrich) overnight at 4° C. Sections were washed with PBS (7 times, 1 min each) and treated with secondary antibody (biotin-conjugated goat anti-rabbit IgG antibody (1:1000; #BA-1000, Vector laboratories, Burlingame, Calif., USA), goat anti-rat IgG (25 nm Gold) (1:30; #ab41513, Abcam), goat anti-mouse IgG (10 nm Gold) (1:30, #ab39619, Abcam) for 2 hours at room temperature, then fixed with 2% glutaraldehyde diluted with PBS for 15 minutes, washed with distilled water, stained with uranyl acetate and lead citrate, and subjected to an electron microscope (JEM1400 Flash, JEOL). Ltd., Tokyo, Japan) TEM was performed at the Electron Microscopy Research Department, Center for Anatomy, Graduate School of Medicine, Kyoto University.
2.結果
 図9に、移植片を移植したホスト脳の顕微鏡写真を示す。ホスト脳の髄鞘上にL1CAMが発現すること、移植片由来の軸索はホスト脳の軸索の髄鞘の外側を走行することが示された。
2. Results FIG. 9 shows photomicrographs of host brains in which the grafts were implanted. It was shown that L1CAM is expressed on the myelin sheath of the host brain and that the graft-derived axons run outside the myelin sheath of the axons of the host brain.
[実施例5]
<L1CAMを発現するニューロンの誘導>
 最後に、移植する細胞の候補となる、L1CAMを発現する神経細胞をヒトiPS細胞から誘導した。
1.実験と方法
 細胞株として、S17を用いた。ヒトiPS細胞(センダイウイルスベクターCytoTune 2.0LGを用いて樹立)の維持培養は、iMatrix-511 silkでコーティングした6ウェルプレート上で、StemFit培地中で行った。96ウェルプレートに細胞を移す前日(day -1)に、StemFitのC液除去培地に5μM SB431542を添加したもので培地交換を行った。翌日以降 (day 0)、文献 (Sakaguchi et al, 2019, Stem Cell Reports)に記載の方法でDay 18まで分化誘導を行った。Day 18に、96ウェルプレートから90-mmディッシュにオルガノイドを移し、分化後半培地 (DMEM-F12/GlutaMAX、1x N2 supplement、1% CD Lipid Concentrate、1% Penicilin/Streptomycin、0.1% Amphotericin B)で、20% O条件下でOrbital Shakerによる振盪培養を行った。培地交換は3-4日ごとに実施した。分化誘導39日目に、オルガノイドを4%パラホルムアルデヒドで固定し、蛍光免疫染色により評価を実施した。
[Example 5]
<Induction of neurons expressing L1CAM>
Finally, neural cells expressing L1CAM, which are candidates for cells to be transplanted, were induced from human iPS cells.
1. Experiments and Methods S17 was used as a cell line. Human iPS cells (established using Sendai virus vector CytoTune 2.0LG) were maintained in StemFit medium on 6-well plates coated with iMatrix-511 silk. On the day before the cells were transferred to the 96-well plate (day -1), the medium was replaced with StemFit's C-fluid-free medium supplemented with 5 μM SB431542. From the next day (day 0), differentiation was induced until Day 18 by the method described in the literature (Sakaguchi et al, 2019, Stem Cell Reports). On Day 18, transfer the organoids from the 96-well plate to a 90-mm dish and add late differentiation medium (DMEM-F12/GlutaMAX, 1x N2 supplement, 1% CD Lipid Concentrate, 1% Penicilin/Streptomycin, 0.1% Amphotericin B) Shaking culture was performed with an Orbital Shaker under 20% O 2 conditions at . Medium changes were performed every 3-4 days. On day 39 of differentiation induction, organoids were fixed with 4% paraformaldehyde and evaluated by fluorescent immunostaining.
2.結果
 図10に、分化後39日目の大脳オルガノイドの免疫染色の結果を示す。発生段階における、皮質板(cortical plate)(Ctip2陽性、Pax6陰性)に相当する部位にL1CAMの発現が認められる。このように、L1CAMを発現していてかつCtip2も発現している細胞は、ヒトの治療に好適に用いることができる。
2. Results FIG. 10 shows the results of immunostaining of cerebral organoids 39 days after differentiation. Expression of L1CAM is observed at a site corresponding to the cortical plate (Ctip2-positive, Pax6-negative) at the developmental stage. Thus, cells expressing L1CAM and also expressing Ctip2 can be suitably used for human therapy.
 本発明により、障害された神経経路(例えば皮質脊髄路)を再構築することが可能になる。 The present invention makes it possible to reconstruct damaged neural pathways (eg, corticospinal pathway).
 本出願は、日本で出願された特願2021-078918(出願日:2021年5月7日)を基礎としており、その内容は本明細書に全て包含されるものである。 This application is based on Japanese Patent Application No. 2021-078918 (filing date: May 7, 2021) filed in Japan, the contents of which are all incorporated herein.

Claims (19)

  1.  軸索伸長誘導タンパク質、該タンパク質をコードする核酸、又は該タンパク質をコードするDNAを発現可能に含むベクターを有効成分として含む第1製剤を含む、障害された神経経路を再構築するための医薬キット。 A pharmaceutical kit for reconstructing damaged neural pathways, comprising a first formulation containing, as an active ingredient, an axonal outgrowth-inducing protein, a nucleic acid encoding the protein, or a vector capable of expressing the DNA encoding the protein. .
  2.  前記神経経路が、皮質脊髄路又はその他の神経経路である、請求項1に記載の医薬キット。 The pharmaceutical kit according to claim 1, wherein the neural pathway is the corticospinal pathway or other neural pathway.
  3.  第1製剤が、神経経路障害をもつ患者の該障害部位又はその近傍に投与される、請求項1または2に記載の医薬キット。 The pharmaceutical kit according to claim 1 or 2, wherein the first formulation is administered to a patient with a neural pathway disorder at or near the site of the disorder.
  4.  神経細胞及び/又はその前駆細胞を含む細胞集団を含む第2製剤をさらに含む、請求項1~3のいずれか1項に記載の医薬キット。 The pharmaceutical kit according to any one of claims 1 to 3, further comprising a second preparation containing a cell population containing nerve cells and/or their progenitor cells.
  5.  前記第2製剤が、大脳皮質細胞及び/又はその前駆細胞を含む細胞集団を含む、請求項4に記載の医薬キット。 The pharmaceutical kit according to claim 4, wherein the second preparation contains a cell population containing cerebral cortical cells and/or their progenitor cells.
  6.  前記細胞集団が、多能性幹細胞由来又は体性幹細胞由来である、請求項4又は5に記載の医薬キット。 The pharmaceutical kit according to claim 4 or 5, wherein the cell population is derived from pluripotent stem cells or somatic stem cells.
  7.  前記多能性幹細胞が、人工多能性幹(iPS)細胞又は胚性幹(ES)細胞である、請求項6に記載の医薬キット。 The pharmaceutical kit according to claim 6, wherein the pluripotent stem cells are induced pluripotent stem (iPS) cells or embryonic stem (ES) cells.
  8.  前記軸索伸長誘導タンパク質が、L1CAM、ネトリン(Netrin)ファミリー、セマフォリン(Semaphorin)ファミリー、スリット(Slit)ファミリー、エフリン(Ephrin)ファミリー、モルフォゲン及び神経栄養因子からなる群から選択される少なくとも1つの軸索ガイダンス因子である、請求項1~7のいずれか1項に記載の医薬キット。 At least one of the axon outgrowth-inducing proteins selected from the group consisting of L1CAM, Netrin family, Semaphorin family, Slit family, Ephrin family, morphogens and neurotrophic factors The pharmaceutical kit according to any one of claims 1 to 7, which is an axonal guidance factor.
  9.  前記軸索伸長誘導タンパク質が、L1CAMである、請求項1~7のいずれか1項に記載の医薬キット。 The pharmaceutical kit according to any one of claims 1 to 7, wherein the axonal outgrowth-inducing protein is L1CAM.
  10.  前記タンパク質又は前記核酸が、薬物送達システムに含まれている、請求項1~9のいずれか1項に記載の医薬キット。 The pharmaceutical kit according to any one of claims 1 to 9, wherein said protein or said nucleic acid is contained in a drug delivery system.
  11.  前記ベクターが、ウイルスベクターである、請求項1~10のいずれか1項に記載の医薬キット。 The pharmaceutical kit according to any one of claims 1 to 10, wherein the vector is a viral vector.
  12.  前記ウイルスベクターが、アデノ随伴ウイルス(AAV)ベクターである、請求項11に記載の医薬キット。 The pharmaceutical kit according to claim 11, wherein said viral vector is an adeno-associated virus (AAV) vector.
  13.  L1CAMをコードするDNAを含むAAVベクターを含む第1製剤と、iPS細胞由来又は体性幹細胞由来の前記細胞集団を含む第2製剤とを含む、請求項4~12のいずれか1項に記載の医薬キット。 The first preparation containing an AAV vector containing DNA encoding L1CAM, and the second preparation containing the cell population derived from iPS cells or somatic stem cells, according to any one of claims 4 to 12. medicine kit.
  14.  請求項1~13のいずれか1項に記載の医薬キットの第1製剤を、神経経路障害をもつ患者の該障害部位又はその近傍に投与することを含む、前記患者において障害された神経経路を再構築するための方法。 comprising administering the first formulation of the pharmaceutical kit according to any one of claims 1 to 13 to a patient with a neural pathway disorder at or near the site of the disorder, treating a damaged neural pathway in the patient. A way to rebuild.
  15.  前記医薬キットの第2製剤を前記患者の前記障害部位又はその近傍に移植することをさらに含む、請求項14に記載の方法。 15. The method of claim 14, further comprising implanting the second formulation of the pharmaceutical kit at or near the lesion site in the patient.
  16.  請求項1~13のいずれか1項に記載の医薬キットの第1製剤を、皮質脊髄路障害をもつ患者の大脳皮質運動野に投与することを含む、前記患者において障害された皮質脊髄路を再構築するための方法。 Corticospinal tract impaired in a patient, comprising administering the first formulation of the pharmaceutical kit according to any one of claims 1 to 13 to the corticospinal motor area of a patient with corticospinal tract disorder. A way to rebuild.
  17.  前記医薬キットの第2製剤を前記患者の大脳皮質の前記障害部位又はその近傍に移植することをさらに含む、請求項16に記載の方法。 17. The method of claim 16, further comprising implanting the second formulation of the pharmaceutical kit into or near the lesion site in the cerebral cortex of the patient.
  18.  前記皮質脊髄路障害が、頭部外傷又は脳血管障害を原因とする障害である、請求項16又は17に記載の方法。 The method according to claim 16 or 17, wherein the corticospinal tract disorder is a disorder caused by head trauma or cerebrovascular accident.
  19.  前記患者がヒトである、請求項14~18のいずれか1項に記載の方法。 The method according to any one of claims 14 to 18, wherein the patient is human.
PCT/JP2022/019484 2021-05-07 2022-05-02 Drug kit and method for rebuilding damaged neural pathways WO2022234843A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023518693A JPWO2022234843A1 (en) 2021-05-07 2022-05-02

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-078918 2021-05-07
JP2021078918 2021-05-07

Publications (1)

Publication Number Publication Date
WO2022234843A1 true WO2022234843A1 (en) 2022-11-10

Family

ID=83932734

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/019484 WO2022234843A1 (en) 2021-05-07 2022-05-02 Drug kit and method for rebuilding damaged neural pathways

Country Status (2)

Country Link
JP (1) JPWO2022234843A1 (en)
WO (1) WO2022234843A1 (en)

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
CHEN JIAN, WU JUNFANG, APOSTOLOVA IVAYLA, SKUP MALGORZATA, IRINTCHEV ANDREY, KÜGLER SEBASTIAN, SCHACHNER MELITTA: "Adeno-associated virus-mediated L1 expression promotes functional recovery after spinal cord injury", BRAIN, OXFORD UNIVERSITY PRESS, GB, vol. 130, no. 4, 1 April 2007 (2007-04-01), GB , pages 954 - 969, XP093000787, ISSN: 0006-8950, DOI: 10.1093/brain/awm049 *
KAJIKAWA KEITA, IMAIZUMI KENT, SHINOZAKI MUNEHISA, SHIBATA SHINSUKE, SHINDO TOMOKO, KITAGAWA TAKAHIRO, SHIBATA REO, KAMATA YASUHIR: "Cell therapy for spinal cord injury by using human iPSC-derived region-specific neural progenitor cells", MOLECULAR BRAIN, vol. 13, no. 1, 1 December 2020 (2020-12-01), XP093000781, DOI: 10.1186/s13041-020-00662-w *
NAGOSHI NARIHITO, OKANO HIDEYUKI, NAKAMURA MASAYA: "Regenerative therapy for spinal cord injury using iPSC technology", INFLAMMATION AND REGENERATION, vol. 40, no. 1, 1 December 2020 (2020-12-01), XP093000783, DOI: 10.1186/s41232-020-00149-0 *
OKUBO TOSHIKI, IWANAMI AKIO, KOHYAMA JUN, ITAKURA GO, KAWABATA SOYA, NISHIYAMA YUICHIRO, SUGAI KEIKO, OZAKI MASAHIRO, IIDA TSUYOSH: "Pretreatment with a γ-Secretase Inhibitor Prevents Tumor-like Overgrowth in Human iPSC-Derived Transplants for Spinal Cord Injury", STEM CELL REPORTS, CELL PRESS, UNITED STATES, vol. 7, no. 4, 1 October 2016 (2016-10-01), United States , pages 649 - 663, XP093000784, ISSN: 2213-6711, DOI: 10.1016/j.stemcr.2016.08.015 *
PŁATEK RAFAŁ, GRYCZ KAMIL, WIĘCKOWSKA ANGELIKA, CZARKOWSKA-BAUCH JULITA, SKUP MAŁGORZATA: "L1 Cell Adhesion Molecule Overexpression Down Regulates Phosphacan and Up Regulates Structural Plasticity-Related Genes Rostral and Caudal to the Complete Spinal Cord Transection", JOURNAL OF NEUROTRAUMA., M.A. LIEBERT, NEW YORK, NY., US, vol. 37, no. 3, 1 February 2020 (2020-02-01), US , pages 534 - 554, XP093000789, ISSN: 0897-7151, DOI: 10.1089/neu.2018.6103 *
SERAFINI T, ET AL.: "THE NETRINS DEFINE A FAMILY OF AXON OUTGROWTH-PROMOTING PROTEINS HOMOLOGOUS TO C. ELEGANS UNC-6", CELL, ELSEVIER, AMSTERDAM NL, vol. 78, no. 03, 12 August 1994 (1994-08-12), Amsterdam NL , pages 409 - 424, XP000941993, ISSN: 0092-8674, DOI: 10.1016/0092-8674(94)90420-0 *
TSUCHIMOCHI, RYOSUKE ET AL.: "O8-5 Promotion of cell transplantation effect by forced expression of axon guidance factor in the host brain", THE 21ST ANNUAL MEETING OF THE JAPAN SOCIETY OF MOLECULAR NEUROSURGERY; SEPTEMBER 24-25, 2021, JAPAN SOCIETY OF MOLECULAR NEUROSURGERY, JP, 24 September 2021 (2021-09-24) - 25 September 2021 (2021-09-25), JP, pages 68, XP009541025 *

Also Published As

Publication number Publication date
JPWO2022234843A1 (en) 2022-11-10

Similar Documents

Publication Publication Date Title
US11167044B2 (en) Regenerating functional neurons for treatment of disease in the nervous system
Heinrich et al. Directing astroglia from the cerebral cortex into subtype specific functional neurons
JP2022084697A (en) Methods and compositions for treating neural degeneration
Wang et al. Transplantation of neurotrophin-3-expressing bone mesenchymal stem cells improves recovery in a rat model of spinal cord injury
Pettingill et al. Schwann cells genetically modified to express neurotrophins promote spiral ganglion neuron survival in vitro
Deponti et al. The low-affinity receptor for neurotrophins p75NTR plays a key role for satellite cell function in muscle repair acting via RhoA
Qiu et al. Donor mesenchymal stem cell-derived neural-like cells transdifferentiate into myelin-forming cells and promote axon regeneration in rat spinal cord transection
Luo et al. Promoting survival, migration, and integration of transplanted Schwann cells by over‐expressing polysialic acid
Kouroupi et al. Lentivirus‐mediated expression of insulin‐like growth factor‐I promotes neural stem/precursor cell proliferation and enhances their potential to generate neurons
Rooney et al. Neurotrophic factor–expressing mesenchymal stem cells survive transplantation into the contused spinal cord without differentiating into neural cells
Shi et al. ERK1/2 pathway-mediated differentiation of IGF-1-transfected spinal cord-derived neural stem cells into oligodendrocytes
Lundquist et al. Knockdown of astrocytic monocarboxylate transporter 4 in the motor cortex leads to loss of dendritic spines and a deficit in motor learning
US9649358B2 (en) Methods for use of neural stem cell compositions for treatment of central nervous system lesions
EP3662915B1 (en) Mesenchymal stem cells and immunogens for use in inducing acquired immunological tolerance
US10744162B2 (en) Genetically modified muscle cells which express neurotrophic factors
WO2022234843A1 (en) Drug kit and method for rebuilding damaged neural pathways
EP4151724A1 (en) Method for inducing glial cells transdifferentiation into functional neurons, and application thereof
US20240173356A1 (en) Extracellular Vesicles From Human Induced Pluroptent Stem Cells
KR102594254B1 (en) Factor for direct Conversion into motor neuron
Li et al. Neurotrophine-3 may contribute to neuronal differentiation of mesenchymal stem cells through the activation of the bone morphogenetic protein pathway
WO2018223119A1 (en) Engineered cells, and methods of using the same
US20230270818A1 (en) Tcf7l2 mediated remyelination in the brain
US20150125432A1 (en) Human Persistent Fetal Vasculature Neural Progenitors for Transplantation in the Inner Retina
Bhagwat et al. Neurogenesis: Gene-Based Strategies for Treating Ischemic Stroke
JP2023503282A (en) Improved in vivo reprogramming system and cell transformation method using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22798947

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023518693

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22798947

Country of ref document: EP

Kind code of ref document: A1