JP7435117B2 - Modified polyisocyanate composition - Google Patents

Modified polyisocyanate composition Download PDF

Info

Publication number
JP7435117B2
JP7435117B2 JP2020052110A JP2020052110A JP7435117B2 JP 7435117 B2 JP7435117 B2 JP 7435117B2 JP 2020052110 A JP2020052110 A JP 2020052110A JP 2020052110 A JP2020052110 A JP 2020052110A JP 7435117 B2 JP7435117 B2 JP 7435117B2
Authority
JP
Japan
Prior art keywords
polyisocyanate composition
groups
polyisocyanate
reaction
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020052110A
Other languages
Japanese (ja)
Other versions
JP2021102742A (en
Inventor
優 高橋
健二 堀口
周人 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Publication of JP2021102742A publication Critical patent/JP2021102742A/en
Application granted granted Critical
Publication of JP7435117B2 publication Critical patent/JP7435117B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Polyurethanes Or Polyureas (AREA)
  • Paints Or Removers (AREA)

Description

本発明は、変性ポリイソシアネート組成物に関する。 The present invention relates to modified polyisocyanate compositions.

従来、1,6-ヘキサメチレンジイソアネート(以下HDIという)などの脂肪族イソシアネートや、イソホロンジイソシアネート(以下IPDIという)などの脂環族イソシアネートより誘導される無黄変ポリイソシアネートは、耐候性に優れていることから塗料や接着剤の硬化剤として用いられている。中でもイソシアヌレート結合を含有するポリイソシアネートタイプが化学的、熱的安定性が高く、特に耐候性、耐熱性、耐久性に優れているため、その用途に応じて幅広く使用されている。 Conventionally, non-yellowing polyisocyanates derived from aliphatic isocyanates such as 1,6-hexamethylene diisocyanate (hereinafter referred to as HDI) and alicyclic isocyanates such as isophorone diisocyanate (hereinafter referred to as IPDI) have poor weather resistance. Due to its excellent properties, it is used as a hardening agent for paints and adhesives. Among them, polyisocyanate types containing isocyanurate bonds have high chemical and thermal stability, and are particularly excellent in weather resistance, heat resistance, and durability, and are therefore widely used depending on the purpose.

一方、塗料等に用いる場合、得られる塗膜の強度も必要であることから、特にIPDIから誘導されるポリイソシアヌレートを用いてきた(例えば特許文献1)。 On the other hand, when used in paints and the like, polyisocyanurate derived from IPDI has been particularly used because the strength of the resulting coating film is also required (for example, Patent Document 1).

しかしながら、塗膜の高強度化に伴い、高強度と相反する特性である基材への追従性が損なわれやすく、また、塗膜の擦り傷に対する耐性についても改良が求められている。 However, as the strength of the coating film increases, its conformability to the substrate, which is a property contradictory to high strength, tends to be impaired, and there is also a need for improvement in the resistance of the coating film to scratches.

特開2002-293873号公報Japanese Patent Application Publication No. 2002-293873

本発明は、上記した背景技術に鑑みてなされたものであり、基材追従性、密着性に優れるだけでなく、耐擦り傷性にも優れる硬化塗膜を得ることができるポリイソシアネート組成物、およびこれを硬化剤とした塗料組成物を提供することを目的とする。 The present invention has been made in view of the above-mentioned background art, and provides a polyisocyanate composition that can obtain a cured coating film that not only has excellent substrate followability and adhesion, but also has excellent scratch resistance. The object of the present invention is to provide a coating composition using this as a curing agent.

本発明者らは、検討を重ねた結果、HDIのヌレート型ポリイソシアネート、及びHDIモノマーを含むHDI誘導体と環状基を有する分子量300以下のジオールとのアダクト体を含み、平均官能基数が特定の数値範囲であるポリイソシアネート組成物を用いることで、上記課題が解決できることを見出し、本発明に到達した。 As a result of repeated studies, the present inventors found that the present invention includes HDI nurate-type polyisocyanates and adducts of HDI derivatives containing HDI monomers and diols having a molecular weight of 300 or less having a cyclic group, and has a specific average functional group number. The inventors have discovered that the above problems can be solved by using a polyisocyanate composition within the range specified above, and have arrived at the present invention.

すなわち本発明は、以下の実施形態を含むものである。 That is, the present invention includes the following embodiments.

[1]HDIのヌレート型ポリイソシアネート(A)、及びHDIモノマーを含むHDI誘導体と環状基を有する分子量300以下のジオールとのアダクト体(B)を含むポリイソシアネート組成物であって、ポリイソシアネート組成物中のイソシアヌレート基とウレタン基とのモル比が、イソシアヌレート基/ウレタン基=50/50~95/5であり、ポリイソシアネート組成物中のイソシアヌレート基とウレタン基との合計の割合が、前記ポリイソシアネート組成物におけるイソシアネート基残基中の官能基の合計の75~100モル%であり、かつ、ポリイソシアネート組成物の平均官能基数が3.4~4.4であることを特徴とする、ポリイソシアネート組成物。 [1] A polyisocyanate composition comprising an HDI nurate type polyisocyanate (A) and an adduct (B) of an HDI derivative containing an HDI monomer and a diol having a molecular weight of 300 or less having a cyclic group, the polyisocyanate composition comprising: The molar ratio of isocyanurate groups and urethane groups in the polyisocyanate composition is isocyanurate group/urethane group = 50/50 to 95/5, and the total ratio of isocyanurate groups and urethane groups in the polyisocyanate composition is , 75 to 100 mol% of the total functional groups in isocyanate group residues in the polyisocyanate composition, and the average number of functional groups in the polyisocyanate composition is 3.4 to 4.4. A polyisocyanate composition.

[2]環状基を有する分子量300以下のジオールが水素化ビスフェノールAであることを特徴とする、上記[1]に記載のポリイソシアネート組成物。 [2] The polyisocyanate composition as described in [1] above, wherein the diol having a cyclic group and having a molecular weight of 300 or less is hydrogenated bisphenol A.

[3]モノオールから誘導されたアロファネート基を有するポリイソシアネートを、ポリイソシアネート組成物中に25モル%以下含むことを特徴とする、上記[1]又は[2]に記載のポリイソシアネート組成物。 [3] The polyisocyanate composition as described in [1] or [2] above, wherein the polyisocyanate composition contains 25 mol% or less of a polyisocyanate having an allophanate group derived from a monol.

[4]上記[1]乃至[3]のいずれかに記載のポリイソシアネート組成物とポリオールとからなるポリウレタン樹脂組成物。 [4] A polyurethane resin composition comprising the polyisocyanate composition according to any one of [1] to [3] above and a polyol.

[5]上記[4]に記載のポリウレタン樹脂組成物を含む塗料組成物。 [5] A coating composition comprising the polyurethane resin composition according to [4] above.

[6]上記[5]に記載の塗料組成物から形成された塗膜。 [6] A coating film formed from the coating composition according to [5] above.

[7]上記[6]に記載の塗膜を少なくとも一層含む、複層塗膜。 [7] A multilayer coating film comprising at least one coating film according to [6] above.

本発明のポリイソシアネート組成物は、硬化塗膜の硬度、基材追従性、耐擦り傷性などの塗膜性能に優れるポリイソシアネート組成物、およびこれを硬化剤とした塗料組成物を提供することができる。 The polyisocyanate composition of the present invention can provide a polyisocyanate composition that has excellent coating film performance such as hardness of a cured coating film, followability to a substrate, and scratch resistance, and a coating composition using the polyisocyanate composition as a curing agent. can.

本発明のポリイソシアネート組成物は、HDIのヌレート型ポリイソシアネート(A)、及びHDIモノマーを含むHDI誘導体と環状基を有する分子量300以下のジオールとのアダクト体(B)を含むものである。 The polyisocyanate composition of the present invention contains an HDI nurate polyisocyanate (A) and an adduct (B) of an HDI derivative containing an HDI monomer and a diol having a cyclic group and a molecular weight of 300 or less.

本発明のポリイソシアネート組成物に用いるHDIは、脂肪族ジイソシアネートモノマー(以下、単に脂肪族ジイソシアネートとも言う。)の一種であり、その構造中にベンゼン環を含まないジイソシアネート化合物である。脂肪族ジイソシアネートとしては、HDIの他、テトラメチレンジイソシアネート、ペンタメチレンジイソシアネート、2-メチルペンタン-1,5-ジイソシアネート、3-メチルペンタン-1,5-ジイソシアネート、リジンジイソシアネート、トリオキシエチレンジイソシアネート等を挙げることができる。HDIは単独で使用または他の脂肪族ジイソシアネートと併用してもよく、イソホロンジイソシアネートやノルボルネンジイソシアネートに代表される脂環族ジイソシアネートと併用してもよい。 HDI used in the polyisocyanate composition of the present invention is a type of aliphatic diisocyanate monomer (hereinafter also simply referred to as aliphatic diisocyanate), and is a diisocyanate compound that does not contain a benzene ring in its structure. Examples of aliphatic diisocyanates include, in addition to HDI, tetramethylene diisocyanate, pentamethylene diisocyanate, 2-methylpentane-1,5-diisocyanate, 3-methylpentane-1,5-diisocyanate, lysine diisocyanate, trioxyethylene diisocyanate, etc. be able to. HDI may be used alone or in combination with other aliphatic diisocyanates, or may be used in combination with alicyclic diisocyanates such as isophorone diisocyanate and norbornene diisocyanate.

本発明におけるHDIのヌレート型ポリイソシアネート(A)(以下、(A)成分、又は(A)とも言う。)は、HDIモノマー3分子が環化重合したものである。なお、このヌレート型ポリイソシアネートは、5量化、多量化したイソシアヌレート基を有するポリイソシアネートとなる場合がある。 The HDI nurate type polyisocyanate (A) (hereinafter also referred to as component (A) or (A)) in the present invention is a product obtained by cyclization polymerization of three HDI monomer molecules. Note that this nurate type polyisocyanate may become a polyisocyanate having pentamerized or multimerized isocyanurate groups.

次に、本発明におけるHDIモノマーを含むHDI誘導体(B1)(以下、(B1)成分とも言う。)と、環状基を有する分子量300以下のジオール(B2)(以下、単に(B2)成分とも言う。)とのアダクト体(B)(以下、単に(B)成分、又は(B)とも言う。)について説明する。 Next, an HDI derivative (B1) containing an HDI monomer in the present invention (hereinafter also referred to as component (B1)) and a diol (B2) having a molecular weight of 300 or less having a cyclic group (hereinafter also simply referred to as component (B2)) ) (hereinafter also simply referred to as (B) component or (B)) will be explained.

(B1)成分とは、HDIモノマーと、HDIのヌレート体及びHDIのアロファネート体等のHDI誘導体とを含むものである。 The component (B1) contains an HDI monomer and an HDI derivative such as an HDI nurate and an HDI allophanate.

(B2)成分とは、分子中に芳香環、脂環、複素環等の環状基を有するジオールである。 Component (B2) is a diol having a cyclic group such as an aromatic ring, an alicyclic ring, or a heterocyclic ring in the molecule.

このような環状基を有するジオールとしては、例えばビス(β-ヒドロキシエチル)ベンゼン、ナフタレンジメタノール、シクロヘキサンジオール、水素化ビスフェノールA、シクロヘキサンジメタノール、イソソルビド、2,4-ジヒドロキシピリジン、2,5-ジヒドロキシ-1,4-ジチアン等が挙げられる。なかでも、耐候性の面から脂環族が好ましく、水素化ビスフェノールAが特に好ましい。 Examples of diols having such a cyclic group include bis(β-hydroxyethyl)benzene, naphthalenedimethanol, cyclohexanediol, hydrogenated bisphenol A, cyclohexanedimethanol, isosorbide, 2,4-dihydroxypyridine, 2,5- Examples include dihydroxy-1,4-dithiane. Among these, alicyclics are preferred from the viewpoint of weather resistance, and hydrogenated bisphenol A is particularly preferred.

以上のような(B1)成分と(B2)成分とが反応し、ウレタン結合を生成することで、(B)成分となる。 Component (B1) and component (B2) as described above react to form a urethane bond, resulting in component (B).

本発明におけるポリイソシアネート組成物中のイソシアヌレート基とウレタン基とのモル比は、イソシアネート基/ウレタン基=50/50~95/5であり、好ましくは58/42~92/8である。ポリイソシアネート組成物中のイソシアヌレート基とウレタン基との合計の割合は、ポリイソシアネート組成物におけるイソシアネート基残基中の官能基の合計の75~100モル%であり、75~99モル%が好ましい。また、(A)成分と(B)成分とを含むポリイソシアネート組成物の平均官能基数は、3.4~4.4であり、好ましくは3.5~4.2である。下限値未満の場合は、耐擦り傷性低下の恐れがあり、上限値を超えると作業性の悪化を招く恐れがある。 The molar ratio of isocyanurate groups to urethane groups in the polyisocyanate composition of the present invention is isocyanate groups/urethane groups = 50/50 to 95/5, preferably 58/42 to 92/8. The total proportion of isocyanurate groups and urethane groups in the polyisocyanate composition is 75 to 100 mol%, preferably 75 to 99 mol%, of the total functional groups in the isocyanate group residues in the polyisocyanate composition. . Further, the average number of functional groups of the polyisocyanate composition containing component (A) and component (B) is 3.4 to 4.4, preferably 3.5 to 4.2. If it is less than the lower limit, there is a risk of a decrease in scratch resistance, and if it exceeds the upper limit, there is a risk of deterioration in workability.

ポリイソシアネート組成物中のイソシアヌレート基とウレタン基とのモル比、ポリイソシアネート組成物中のイソシアヌレート基とウレタン基との合計の割合、及びポリイソシアネート組成物の平均官能基数を上記の通りとすることで、高強度、高基材追従性、高耐擦り傷性を有する塗膜を得ることができる。 The molar ratio of isocyanurate groups to urethane groups in the polyisocyanate composition, the total ratio of isocyanurate groups to urethane groups in the polyisocyanate composition, and the average number of functional groups in the polyisocyanate composition are as described above. By doing so, a coating film having high strength, high substrate followability, and high scratch resistance can be obtained.

また、本発明におけるポリイソシアネート組成物には、モノオールから誘導されたアロファネート基を有するポリイソシアネートを含んでよい。アロファネート基を有するポリイソシアネートは、ポリイソシアネート組成物のイソシアネート基残基中の官能基に対してアロファネート基として25モル%以下含むことが好ましい。また、1モル%以上含むことも好適である。前記ポリイソシアネートを含むことで、ポリイソシアネート組成物を低粘度化することができ、塗工時の作業性がより改善される。しかし、25モル%を超えると塗膜の硬度が不足する恐れがある。 Moreover, the polyisocyanate composition in the present invention may contain a polyisocyanate having an allophanate group derived from a monool. The polyisocyanate having allophanate groups preferably contains 25 mol% or less of allophanate groups based on the functional groups in the isocyanate group residues of the polyisocyanate composition. Moreover, it is also suitable to contain 1 mol% or more. By including the polyisocyanate, the viscosity of the polyisocyanate composition can be lowered, and workability during coating is further improved. However, if it exceeds 25 mol%, the hardness of the coating film may be insufficient.

前記アロファネート基を有するポリイソシアネートを得るにあたり、使用できるモノオールとしては、例えば、メタノール、エタノール、プロパノール、n-ブタノール、イソブタノール、n-ペンタノール、2-ペンタノール、n-ヘキサノール、2-ヘキサノール、n-ヘプタノール、n-オクタノール、2-エチルヘキサノール、3,3,5-トリメチル-1-ヘキサノール、n-トリデカノール、2-トリデカノール、2-オクチルドデカノール、ペンタデカノール、パルミチルアルコール、ステアリルアルコール、シクロペンタノール、シクロヘキサノール、メチルシクロヘキサノール、トリメチルシクロヘキサノール、シクロヘキサンメタノール等のモノアルコールが挙げられる。これらの中でも、2-エチルヘキサノール、メタノール、シクロヘキサンメタノールが好ましい。 In obtaining the polyisocyanate having an allophanate group, examples of monools that can be used include methanol, ethanol, propanol, n-butanol, isobutanol, n-pentanol, 2-pentanol, n-hexanol, and 2-hexanol. , n-heptanol, n-octanol, 2-ethylhexanol, 3,3,5-trimethyl-1-hexanol, n-tridecanol, 2-tridecanol, 2-octyldodecanol, pentadecanol, palmityl alcohol, stearyl alcohol , cyclopentanol, cyclohexanol, methylcyclohexanol, trimethylcyclohexanol, cyclohexane methanol, and other monoalcohols. Among these, 2-ethylhexanol, methanol, and cyclohexanemethanol are preferred.

次に、本発明のポリイソシアネート組成物の具体的な製造方法について説明する。 Next, a specific method for producing the polyisocyanate composition of the present invention will be explained.

第1工程では、HDIとモノアルコールとを、水酸基に対してイソシアネート基が過剰になる量を仕込んで、有機溶剤の存在下、又は非存在下、20~120℃でウレタン化反応させてイソシアネート基末端プレポリマーIを製造する。ここで、ウレタン化反応の目安としては、中和滴定法によるイソシアネート基含有量と屈折率上昇値により完結の有無を判断する。 In the first step, HDI and monoalcohol are charged in an amount such that isocyanate groups are in excess of hydroxyl groups, and a urethane reaction is performed at 20 to 120°C in the presence or absence of an organic solvent to form isocyanate groups. Terminal prepolymer I is produced. Here, as a guideline for the urethanization reaction, the presence or absence of completion is determined based on the isocyanate group content and refractive index increase value determined by neutralization titration.

第2工程では、イソシアネート基末端プレポリマーIに触媒を仕込み、有機溶剤の存在下または非存在下、目的とするイソシアネート基含有量、及び分子量になるまで、50~150℃にてイソシアヌレート化およびアロファネート化を行い、イソシアネート基末端プレポリマーIIを製造する。 In the second step, a catalyst is introduced into the isocyanate group-terminated prepolymer I, and the isocyanurate is produced at 50 to 150°C in the presence or absence of an organic solvent until the desired isocyanate group content and molecular weight are achieved. Allophanatization is performed to produce isocyanate group-terminated prepolymer II.

第3工程では、イソシアネート基末端プレポリマーIIに反応停止剤を添加することによって、反応の停止を行う。 In the third step, the reaction is stopped by adding a reaction terminator to the isocyanate group-terminated prepolymer II.

第4工程では、イソシアネート基末端プレポリマーIIに水酸基含有化合物を、水酸基に対してイソシアネート基が過剰になる量を仕込んで、20~150℃でウレタン化反応させてイソシアネート基末端プレポリマーIIIを製造する。ここでウレタン化反応の目安としては、中和滴定法によるイソシアネート基含有量と屈折率上昇値により完結の有無を判断する。また、市販されているヌレート型ポリイソシアネート(例えば、コロネートHXLV(商品名)、東ソー社製。)をHDIと混合したものを、前記イソシアネート基末端プレポリマーIIとして使用することもできる。その場合、第2工程に示した反応停止剤の添加は不要である。 In the fourth step, a hydroxyl group-containing compound is charged into the isocyanate group-terminated prepolymer II in an amount such that the isocyanate groups are in excess of the hydroxyl groups, and a urethane reaction is performed at 20 to 150°C to produce an isocyanate group-terminated prepolymer III. do. Here, as a guideline for the urethanization reaction, whether or not it is completed is determined based on the isocyanate group content and refractive index increase value determined by neutralization titration. Furthermore, a mixture of a commercially available nurate type polyisocyanate (for example, Coronate HXLV (trade name), manufactured by Tosoh Corporation) with HDI can also be used as the isocyanate group-terminated prepolymer II. In that case, the addition of the reaction terminator shown in the second step is not necessary.

これら第1工程~第4工程は、窒素ガス、若しくは、乾燥空気気流下で反応を進行させる。 In these first to fourth steps, the reaction proceeds under a stream of nitrogen gas or dry air.

第5工程では、イソシアネート基末端プレポリマーIIIを薄膜蒸留又は溶剤抽出によって、遊離のHDIの含有量が1質量%未満になるまで除去する。 In the fifth step, the isocyanate group-terminated prepolymer III is removed by thin film distillation or solvent extraction until the free HDI content is less than 1% by mass.

ここで、第2工程における触媒としては、4級アンモニウム塩やカルボン酸金属塩などを用いることができる。 Here, as the catalyst in the second step, a quaternary ammonium salt, a carboxylic acid metal salt, or the like can be used.

4級アンモニウム塩としては、2-ヒドロキシプロピルトリメチルアンモニウム・オクチル酸塩(DABCO TMR、三共エアープロダクツ社製)や、テトラメチルアンモニウム酢酸塩、テトラブチルチルアンモニウム酢酸塩、テトラメチルアンモニウム炭酸塩、メチルトリエチルアンモニウム炭酸塩、エチルトリメチルアンモニウム炭酸塩、プロピルトリメチルアンモニウム炭酸塩、ブチルトリメチルアンモニウム炭酸塩、ペンチルトリメチルアンモニウム炭酸塩、ヘキシルトリメチルアンモニウム炭酸塩、ヘプチルトリメチルアンモニウム炭酸塩、オクチルトリメチルアンモニウム炭酸塩、ノニルトリメチルアンモニウム炭酸塩、デシルトリメチルアンモニウム炭酸塩、デシルトリメチルアンモニウム炭酸塩、ウンデシルトリメチルアンモニウム炭酸塩、ドデシルトリメチルアンモニウム炭酸塩、トリデシルトリメチルアンモニウム炭酸塩、テトラデシルトリメチルアンモニウム炭酸塩、ヘプタデシルトリメチルアンモニウム炭酸塩、ヘキサデシルトリメチルアンモニウム炭酸塩、オクタデシルトリメチルアンモニウム炭酸塩、(2-ヒドロキシプロピル)トリメチルアンモニウム炭酸塩、ヒドロキシエチルトリメチルアンモニウム炭酸塩、1-メチル1-アザニア-4-メチルピペリジニウム炭酸塩などが挙げられる。また、カルボン酸金属塩としては、例えば酢酸、プロピオン酸、吉草酸、酪酸、ウンデシル酸、カプリン酸、オクチル酸、ミリスチル酸等のカルボン酸の亜鉛塩、スズ塩、ジルコニウム塩等が挙げられ、これらは単独で、または2種以上を組み合わせて用いることができる。 Examples of quaternary ammonium salts include 2-hydroxypropyltrimethylammonium octylate (DABCO TMR, manufactured by Sankyo Air Products), tetramethylammonium acetate, tetrabutylthylammonium acetate, tetramethylammonium carbonate, and methyltriethyl. Ammonium carbonate, ethyltrimethylammonium carbonate, propyltrimethylammonium carbonate, butyltrimethylammonium carbonate, pentyltrimethylammonium carbonate, hexyltrimethylammonium carbonate, heptyltrimethylammonium carbonate, octyltrimethylammonium carbonate, nonyltrimethylammonium carbonate salt, decyltrimethylammonium carbonate, decyltrimethylammonium carbonate, undecyltrimethylammonium carbonate, dodecyltrimethylammonium carbonate, tridecyltrimethylammonium carbonate, tetradecyltrimethylammonium carbonate, heptadecyltrimethylammonium carbonate, hexadecyl Examples include trimethylammonium carbonate, octadecyltrimethylammonium carbonate, (2-hydroxypropyl)trimethylammonium carbonate, hydroxyethyltrimethylammonium carbonate, 1-methyl 1-azania-4-methylpiperidinium carbonate, and the like. Examples of carboxylic acid metal salts include zinc salts, tin salts, and zirconium salts of carboxylic acids such as acetic acid, propionic acid, valeric acid, butyric acid, undecylic acid, capric acid, octylic acid, and myristylic acid. can be used alone or in combination of two or more.

第3工程における反応停止剤としては、触媒を失活させる作用があるものであり、具体的には、リン酸、塩酸等の無機酸、スルホン酸基、スルファミン酸基等を有する有機酸およびこれらのエステル類、アシルハライド等公知の化合物が使用される。これらの反応停止剤は、単独または2種以上を併用することができる。尚、添加時期は、反応終了後、速やかな添加が好ましい。 The reaction terminator in the third step is one that has the effect of deactivating the catalyst, and specifically includes inorganic acids such as phosphoric acid and hydrochloric acid, organic acids having sulfonic acid groups, sulfamic acid groups, etc. Known compounds such as esters and acyl halides are used. These reaction terminators can be used alone or in combination of two or more. As for the timing of addition, it is preferable to add immediately after the completion of the reaction.

また、反応停止剤の添加量は、反応停止剤や使用した触媒の種類によって異なるが、触媒の0.5~10当量となるのが好ましく、0.8~5.0当量が特に好ましい。反応停止剤が下限未満の場合には、得られるポリイソシアネート組成物の貯蔵安定性が低下しやすく、上限を超える場合はポリイソシアネート組成物が着色する恐れがある。 Further, the amount of the reaction terminator added varies depending on the reaction terminator and the type of catalyst used, but is preferably 0.5 to 10 equivalents of the catalyst, particularly preferably 0.8 to 5.0 equivalents. If the amount of the reaction terminator is less than the lower limit, the storage stability of the resulting polyisocyanate composition tends to decrease, and if it exceeds the upper limit, the polyisocyanate composition may be colored.

第1、および第4工程における「イソシアネート基が過剰になる量」とは、原料仕込みの際、有機ジイソシアネートのイソシアネート基とジオールの水酸基とのモル比が、R=イソシアネート基/水酸基で3~100になるように仕込むことが好ましく、R=5~100になるように仕込むことがさらに好ましい。下限未満の場合には、反応生成物の分子量が高くなり、高粘度化及びゲル化が生じる恐れがある。上限を超える場合には、製品収率が下がり、生産性の低下を招く恐れや、十分な塗膜強度が得られない恐れがある。 The "excessive amount of isocyanate groups" in the first and fourth steps means that the molar ratio of isocyanate groups of organic diisocyanate to hydroxyl groups of diol is 3 to 100 (R=isocyanate group/hydroxyl group) when charging raw materials. It is preferable to prepare so that R=5 to 100, and more preferably to prepare so that R=5 to 100. When it is less than the lower limit, the molecular weight of the reaction product becomes high, and there is a possibility that high viscosity and gelation may occur. If the upper limit is exceeded, there is a risk that the product yield will decrease, leading to a decrease in productivity, and that sufficient coating film strength may not be obtained.

また、ウレタン化反応の反応温度は、20~150℃が好ましく、60~130℃がさらに好ましい。尚、ウレタン化反応の際、公知のウレタン化触媒を用いることができる。 Further, the reaction temperature of the urethanization reaction is preferably 20 to 150°C, more preferably 60 to 130°C. In addition, a known urethanization catalyst can be used during the urethanization reaction.

ウレタン化反応の反応時間は、触媒の有無、種類、および温度により異なるが、一般には10時間以内、好ましくは1~5時間で十分である。 The reaction time for the urethanization reaction varies depending on the presence or absence of a catalyst, its type, and temperature, but generally 10 hours or less, preferably 1 to 5 hours is sufficient.

第1~第4工程においては、有機溶媒等を含まずに反応を行う方法や有機溶媒の存在下で反応を行う方法が適宜選ばれる。 In the first to fourth steps, a method in which the reaction is carried out without using an organic solvent or the like or a method in which the reaction is carried out in the presence of an organic solvent is appropriately selected.

有機溶媒の存在下で反応を行う場合には、反応に影響を与えない有機溶媒を用いることが好ましい。有機溶媒としては、例えばオクタン等の脂肪族炭化水素類、シクロヘキサン、メチルシクロヘキサン等の脂環族炭化水素類、メチルイソブチルケトン、シクロヘキサノン等のケトン類、酢酸ブチル、酢酸イソブチル等のエステル類、エチレングリコールエチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、3-メチル-3-メトキシブチルアセテート、エチル-3-エトキシプロピオネート等のグリコールエーテルエステル類、ジオキサン等のエーテル類、ヨウ化メチレン、モノクロロベンゼン等のハロゲン化炭化水素類、N-メチルピロリドン、ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド、ヘキサメチルホスホニルアミド等の極性非プロトン溶媒等が挙げられる。これらの溶媒は単独で、または2種以上を組み合わせて用いることができる。 When the reaction is carried out in the presence of an organic solvent, it is preferable to use an organic solvent that does not affect the reaction. Examples of organic solvents include aliphatic hydrocarbons such as octane, alicyclic hydrocarbons such as cyclohexane and methylcyclohexane, ketones such as methyl isobutyl ketone and cyclohexanone, esters such as butyl acetate and isobutyl acetate, and ethylene glycol. Glycol ether esters such as ethyl ether acetate, propylene glycol monomethyl ether acetate, 3-methyl-3-methoxybutyl acetate, ethyl-3-ethoxypropionate, ethers such as dioxane, halogens such as methylene iodide, monochlorobenzene, etc. Examples include polar aprotic solvents such as hydrogenated hydrocarbons, N-methylpyrrolidone, dimethylformamide, dimethylacetamide, dimethylsulfoxide, and hexamethylphosphonylamide. These solvents can be used alone or in combination of two or more.

反応で使用した有機溶媒は、第5工程における遊離のHDIの除去時に同時に除去される。 The organic solvent used in the reaction is removed at the same time as free HDI is removed in the fifth step.

第5工程は精製工程であり、例えば、10~100Paの高真空下、120~150℃で薄膜蒸留による除去法や有機溶剤による抽出法により、反応混合物中に存在している遊離の未反応のHDIの残留含有率を1質量%以下にする。尚、HDIの残留含有率が上限値を超える場合は、臭気の発生や貯蔵安定性の低下を招く恐れがある。 The fifth step is a purification step. For example, free unreacted substances present in the reaction mixture are removed by thin film distillation or extraction using an organic solvent at 120 to 150°C under a high vacuum of 10 to 100 Pa. The residual content of HDI is 1% by mass or less. It should be noted that if the residual content of HDI exceeds the upper limit, there is a risk of generating odor and decreasing storage stability.

精製して得られたポリイソシアネート組成物は、ポットライフの延長や塗料組成物の一液化を目的として、公知のブロック剤を用いてブロックイソシアネートとすることも可能である。これにより、ブロック化されたポリイソシアネートは、常温時は不活性であるが、加熱することでブロック剤が解離し、再びイソシアネート基が活性化することで、活性水素基と反応する潜在的な機能を付加することができる。 The polyisocyanate composition obtained by purification can be made into a blocked isocyanate using a known blocking agent for the purpose of extending the pot life or making the coating composition one-component. As a result, the blocked polyisocyanate is inactive at room temperature, but when heated, the blocking agent dissociates and the isocyanate group becomes activated again, giving it the potential to react with active hydrogen groups. can be added.

本発明に用いることができるブロック剤としては、活性水素を分子内に1個有する化合物であり、例えば、アルコール系、アルキルフェノール系、フェノール系、活性メチレン、メルカプタン系、酸アミド系、酸イミド系、イミダゾール系、尿素系、オキシム系、アミン系、イミド系、ピラゾール系化合物等を挙げることができる。 Blocking agents that can be used in the present invention include compounds having one active hydrogen in the molecule, such as alcohol-based, alkylphenol-based, phenol-based, active methylene-based, mercaptan-based, acid amide-based, acid imide-based, Examples include imidazole-based, urea-based, oxime-based, amine-based, imide-based, and pyrazole-based compounds.

一連の反応で得られたポリイソシアネート組成物は、ポリオールを配合することによって、本発明のポリウレタン樹脂組成物を得ることができる。 The polyisocyanate composition obtained through a series of reactions can be blended with a polyol to obtain the polyurethane resin composition of the present invention.

ここで、本発明のポリウレタン樹脂組成物に使用されるポリオールとしては、特に限定されるものではなく、イソシアネート基との反応基として活性水素基を含有する化合物であり、ポリエステルポリオール、ポリエーテルポリオール、ポリカーボネートポリオール、ポリオレフィンポリオール、アクリルポリオール、シリコーンポリオール、ヒマシ油系ポリオール、フッ素系ポリオール、2種類以上のポリオールのエステル交換物、及びポリイソシアネートとウレタン化反応した水酸基末端プレポリマー等が好適に用いられ、これらは1種類又は2種類以上の混合物として使用することもできる。 Here, the polyol used in the polyurethane resin composition of the present invention is not particularly limited, and is a compound containing an active hydrogen group as a reactive group with an isocyanate group, such as polyester polyol, polyether polyol, Polycarbonate polyols, polyolefin polyols, acrylic polyols, silicone polyols, castor oil polyols, fluorine polyols, transesterified products of two or more types of polyols, and hydroxyl-terminated prepolymers reacted with polyisocyanates to form urethanes are preferably used, These can also be used singly or as a mixture of two or more.

<ポリエステルポリオール>
ポリエステルポリオールとしては、例えばフタル酸、イソフタル酸、テレフタル酸、ナフタレンジカルボン酸、コハク酸、酒石酸、シュウ酸、マロン酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、グルタコン酸、アゼライン酸、セバシン酸、1,4-シクロヘキシルジカルボン酸、α-ハイドロムコン酸、β-ハイドロムコン酸、α-ブチル-α-エチルグルタル酸、α,β-ジエチルサクシン酸、マレイン酸、フマル酸等のジカルボン酸またはこれらの無水物等の1種類以上と、エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,8-オクタンジオール、1,9-ノナンジオール、3-メチル-1,5-ペンタンジオール、3,3-ジメチロールヘプタン、ジエチレングリコール、ジプロピレングリコール、ネオペンチルグリコール、シクロヘキサン-1,4-ジオール、シクロヘキサン-1,4-ジメタノール、ダイマー酸ジオール、ビスフェノールAのエチレンオキサイドやプロピレンオキサイド付加物、ビス(β-ヒドロキシエチル)ベンゼン、キシリレングリコール、グリセリン、トリメチロールプロパン、ペンタエリスリトール等の分子量500以下の低分子ポリオール類の1種類以上との縮重合反応から得られるものを挙げることができる。また、ε-カプロラクトン、アルキル置換ε-カプロラクトン、δ-バレロラクトン、アルキル置換δ-バレロラクトン等の環状エステル(いわゆるラクトン)モノマーの開環重合から得られるラクトン系ポリエステルポリオール等を挙げることができる。更に、低分子ポリオールの一部をヘキサメチレンジアミン、イソホロンジアミン、モノエタノールアミン等の低分子ポリアミンや低分子アミノアルコールに代えて得られるポリエステル-アミドポリオールを使用することもできる。
<Polyester polyol>
Examples of polyester polyols include phthalic acid, isophthalic acid, terephthalic acid, naphthalene dicarboxylic acid, succinic acid, tartaric acid, oxalic acid, malonic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, glutaconic acid, azelaic acid, and sebacic acid. , 1,4-cyclohexyldicarboxylic acid, α-hydromuconic acid, β-hydromuconic acid, α-butyl-α-ethylglutaric acid, α,β-diethylsuccinic acid, maleic acid, fumaric acid, etc., or dicarboxylic acids such as these. and one or more types of anhydrides of ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 1, 5-pentanediol, 1,6-hexanediol, 1,8-octanediol, 1,9-nonanediol, 3-methyl-1,5-pentanediol, 3,3-dimethylolheptane, diethylene glycol, dipropylene glycol , neopentyl glycol, cyclohexane-1,4-diol, cyclohexane-1,4-dimethanol, dimer acid diol, ethylene oxide and propylene oxide adducts of bisphenol A, bis(β-hydroxyethyl)benzene, xylylene glycol, Examples include those obtained from a polycondensation reaction with one or more types of low-molecular polyols having a molecular weight of 500 or less, such as glycerin, trimethylolpropane, and pentaerythritol. Also included are lactone-based polyester polyols obtained from ring-opening polymerization of cyclic ester (so-called lactone) monomers such as ε-caprolactone, alkyl-substituted ε-caprolactone, δ-valerolactone, and alkyl-substituted δ-valerolactone. Furthermore, a polyester-amide polyol obtained by replacing a part of the low-molecular polyol with a low-molecular polyamine such as hexamethylene diamine, isophorone diamine, or monoethanolamine or a low-molecular amino alcohol can also be used.

<ポリエーテルポリオール>
ポリエーテルポリオールとしては、例えばエチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,8-オクタンジオール、1,9-ノナンジオール、3-メチル-1,5-ペンタンジオール、3,3-ジメチロールヘプタン、ジエチレングリコール、ジプロピレングリコール、ネオペンチルグリコール、シクロヘキサン-1,4-ジオール、シクロヘキサン-1,4-ジメタノール、ダイマー酸ジオール、ビスフェノールA、ビス(β-ヒドロキシエチル)ベンゼン、キシリレングリコール、グリセリン、トリメチロールプロパン、ペンタエリスリトール等の低分子ポリオール類、またはエチレンジアミン、プロピレンジアミン、トルエンジアミン、メタフェニレンジアミン、ジフェニルメタンジアミン、キシリレンジアミン等の低分子ポリアミン類等のような活性水素基を2個以上、好ましくは2~3個有する化合物を開始剤として、エチレンオキサイド、プロピレンオキサイド、ブチレンオキサイド等のようなアルキレンオキサイド類を付加重合させることによって得られるポリエーテルポリオール、或いはメチルグリシジルエーテル等のアルキルグリシジルエーテル類、フェニルグリシジルエーテル等のアリールグリシジルエーテル類、テトラヒドロフラン等の環状エーテルモノマーを開環重合することで得られるポリエーテルポリオールを挙げることができる。
<Polyether polyol>
Examples of polyether polyols include ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, and 1,5-pentanediol. Diol, 1,6-hexanediol, 1,8-octanediol, 1,9-nonanediol, 3-methyl-1,5-pentanediol, 3,3-dimethylolheptane, diethylene glycol, dipropylene glycol, neopentyl Glycol, cyclohexane-1,4-diol, cyclohexane-1,4-dimethanol, dimer acid diol, bisphenol A, bis(β-hydroxyethyl)benzene, xylylene glycol, glycerin, trimethylolpropane, pentaerythritol, etc. A compound having two or more active hydrogen groups, preferably two to three, such as molecular polyols or low molecular polyamines such as ethylenediamine, propylene diamine, toluenediamine, metaphenylene diamine, diphenylmethane diamine, and xylylene diamine. As an initiator, polyether polyols obtained by addition polymerization of alkylene oxides such as ethylene oxide, propylene oxide, butylene oxide, etc., or alkyl glycidyl ethers such as methyl glycidyl ether, and aryl glycidyl ethers such as phenyl glycidyl ether. and polyether polyols obtained by ring-opening polymerization of cyclic ether monomers such as tetrahydrofuran and the like.

<ポリカーボネートポリオール>
ポリカーボネートポリオールとしては、例えばエチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,8-オクタンジオール、1,9-ノナンジオール、3-メチル-1,5-ペンタンジオール、3,3-ジメチロールヘプタン、ジエチレングリコール、ジプロピレングリコール、ネオペンチルグリコール、シクロヘキサン-1,4-ジオール、シクロヘキサン-1,4-ジメタノール、ダイマー酸ジオール、ビスフェノールAのエチレンオキサイドやプロピレンオキサイド付加物、ビス(β-ヒドロキシエチル)ベンゼン、キシリレングリコール、グリセリン、トリメチロールプロパン、ペンタエリスリトール等の低分子ポリオールの1種類以上と、ジメチルカーボネート、ジエチルカーボネート等のジアルキルカーボネート類、エチレンカーボネート、プロピレンカーボネート等のアルキレンカーボネート類、ジフェニルカーボネート、ジナフチルカーボネート、ジアントリルカーボネート、ジフェナントリルカーボネート、ジインダニルカーボネート、テトラヒドロナフチルカーボネート等のジアリールカーボネート類との脱アルコール反応や脱フェノール反応から得られるものを挙げることができる。
<Polycarbonate polyol>
Examples of polycarbonate polyols include ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, and 1,5-pentanediol. , 1,6-hexanediol, 1,8-octanediol, 1,9-nonanediol, 3-methyl-1,5-pentanediol, 3,3-dimethylolheptane, diethylene glycol, dipropylene glycol, neopentyl glycol , cyclohexane-1,4-diol, cyclohexane-1,4-dimethanol, dimer acid diol, ethylene oxide and propylene oxide adducts of bisphenol A, bis(β-hydroxyethyl)benzene, xylylene glycol, glycerin, trimethylol One or more types of low-molecular polyols such as propane and pentaerythritol, dialkyl carbonates such as dimethyl carbonate and diethyl carbonate, alkylene carbonates such as ethylene carbonate and propylene carbonate, diphenyl carbonate, dinaphthyl carbonate, dianthryl carbonate, and diphenylene carbonate. Examples include those obtained from a dealcoholization reaction or dealcoholization reaction with diaryl carbonates such as nanthryl carbonate, diindanyl carbonate, and tetrahydronaphthyl carbonate.

また、ポリカーボネートポリオールとポリエステルポリオールと低分子ポリオールとのエステル交換反応により得られたポリオールも好適に用いることができる。 Furthermore, polyols obtained by transesterification of polycarbonate polyols, polyester polyols, and low-molecular-weight polyols can also be suitably used.

<ポリオレフィンポリオール>
ポリオレフィンポリオールとしては、例えば水酸基を2個以上有するポリブタジエン、水素添加ポリブタジエン、ポリイソプレン、水素添加ポリイソプレン等を挙げることができる。
<Polyolefin polyol>
Examples of the polyolefin polyol include polybutadiene having two or more hydroxyl groups, hydrogenated polybutadiene, polyisoprene, and hydrogenated polyisoprene.

<アクリルポリオール>
アクリルポリオールとしては、アクリル酸エステル及び/又はメタクリル酸エステル〔以下(メタ)アクリル酸エステルという〕と、反応点となりうる少なくとも分子内に1個以上の水酸基を有するアクリル酸ヒドロキシ化合物及び/又はメタクリル酸ヒドロキシ化合物〔以下(メタ)アクリル酸ヒドロキシ化合物という〕と、重合開始剤とを熱エネルギーや紫外線または電子線などの光エネルギー等を使用し、アクリルモノマーを共重合したものを挙げることができる。
<Acrylic polyol>
Acrylic polyols include acrylic esters and/or methacrylic esters [hereinafter referred to as (meth)acrylic esters], and acrylic acid hydroxy compounds and/or methacrylic acid having at least one or more hydroxyl groups in the molecule that can serve as reaction sites. Examples include those obtained by copolymerizing a hydroxy compound [hereinafter referred to as a (meth)acrylic acid hydroxy compound] and a polymerization initiator with an acrylic monomer using thermal energy or light energy such as ultraviolet rays or electron beams.

<(メタ)アクリル酸エステル>
(メタ)アクリル酸エステルとしては、例えば炭素数1~20のアルキルエステルを挙げることができる。このような(メタ)アクリル酸エステルとしては、例えば(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸ブチル、(メタ)アクリル酸ペンチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸-2-エチルヘキシル、(メタ)アクリル酸オクチル、(メタ)アクリル酸ノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ドデシル等の(メタ)アクリル酸アルキルエステル;シクロヘキシル(メタ)アクリレート等の(メタ)アクリル酸の脂環属アルコールとのエステル;(メタ)アクリル酸フェニル、(メタ)アクリル酸ベンジル等の(メタ)アクリル酸アリールエステル等を挙げることができる。このような(メタ)アクリル酸エステルは単独または2種類以上組み合わせて使用しても良い。
<(meth)acrylic acid ester>
Examples of (meth)acrylic esters include alkyl esters having 1 to 20 carbon atoms. Examples of such (meth)acrylic esters include methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, butyl (meth)acrylate, pentyl (meth)acrylate, and (meth)acrylate. ) Alkyl (meth)acrylates such as hexyl acrylate, 2-ethylhexyl (meth)acrylate, octyl (meth)acrylate, nonyl (meth)acrylate, decyl (meth)acrylate, and dodecyl (meth)acrylate. Esters; esters of (meth)acrylic acid with alicyclic alcohols such as cyclohexyl (meth)acrylate; (meth)acrylic acid aryl esters such as phenyl (meth)acrylate and benzyl (meth)acrylate; can. Such (meth)acrylic esters may be used alone or in combination of two or more.

<(メタ)アクリル酸ヒドロキシ化合物>
(メタ)アクリル酸ヒドロキシ化合物としては、例えばポリイソシアネートとの反応点となりうる少なくとも分子内に1個以上の水酸基を有しており、具体的には、2-ヒドロキシエチルアクリレート、2-ヒドロキシプロピルアクリレート、4-ヒドロキシブチルアクリレート、3-ヒドロキシ-2,2-ジメチルプロピルアクリレート、ペンタエリスリトールトリアクリレート等のアクリル酸ヒドロキシ化合物等が挙げられる。また、2-ヒドロキシエチルメタクリレート、2-ヒドロキシプロピルメタクリレート、4-ヒドロキシブチルメタクリレート、3-ヒドロキシ-2,2-ジメチルプロピルメタクリレート、ペンタエリスリトールトリメタクリレート等のメタクリル酸ヒドロキシ化合物が挙げられる。これら(メタ)アクリル酸ヒドロキシ化合物は、単独または2種以上を組み合わせて使用しても良い。
<(meth)acrylic acid hydroxy compound>
(Meth)acrylic acid hydroxy compounds have at least one hydroxyl group in the molecule that can serve as a reaction site with polyisocyanate, and specifically, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, etc. , 4-hydroxybutyl acrylate, 3-hydroxy-2,2-dimethylpropyl acrylate, pentaerythritol triacrylate, and other hydroxy acrylic compounds. Also included are methacrylic acid hydroxy compounds such as 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, 4-hydroxybutyl methacrylate, 3-hydroxy-2,2-dimethylpropyl methacrylate, and pentaerythritol trimethacrylate. These (meth)acrylic acid hydroxy compounds may be used alone or in combination of two or more.

<シリコーンポリオール>
シリコーンポリオールとしては、例えばγ-メタクリロキシプロピルトリメトキシシラン等を重合したビニル基含有シリコーン化合物、及び分子中に少なくとも1個の末端水酸基を有する、α,ω-ジヒドロキシポリジメチルシロキサン、α,ω-ジヒドロキシポリジフェニルシロキサン等のポリシロキサンを挙げることができる。
<Silicone polyol>
Examples of silicone polyols include vinyl group-containing silicone compounds obtained by polymerizing γ-methacryloxypropyltrimethoxysilane, α,ω-dihydroxypolydimethylsiloxane, α,ω- Mention may be made of polysiloxanes such as dihydroxypolydiphenylsiloxane.

<ヒマシ油系ポリオール>
ヒマシ油系ポリオールとしては、例えばヒマシ油脂肪酸とポリオールとの反応により得られる線状または分岐状ポリエステルポリオールが挙げられる。また、脱水ヒマシ油、一部分を脱水した部分脱水ヒマシ油、水素を付加させた水添ヒマシ油も使用することができる。
<Castor oil-based polyol>
Examples of castor oil-based polyols include linear or branched polyester polyols obtained by reacting castor oil fatty acids with polyols. Furthermore, dehydrated castor oil, partially dehydrated castor oil that is partially dehydrated, and hydrogenated castor oil that has hydrogen added thereto can also be used.

<フッ素系ポリオール>
フッ素系ポリオールとしては、例えば必須成分として含フッ素モノマーとヒドロキシ基を有するモノマーとの共重合反応により得られる線状または分岐状のポリオールを挙げることができる。ここで、含フッ素モノマーとしては、フルオロオレフィンであることが好ましく、例えば、テトラフルオロエチレン、クロロトリフルオロエチレン、トリクロロフルオロエチレン、ヘキサフルオロプロピレン、フッ化ビニリデン、フッ化ビニル、トリフルオロメチルトリフルオロエチレンが挙げられる。また、ヒドロキシル基を有するモノマーとしては、例えば、ヒドロキシエチルビニルエーテル、4-ヒドロキシブチルビニルエーテル、シクロヘキサンジオールモノビニルエーテル等のヒドロキシアルキルビニルエーテル、2-ヒドロキシエチルアリルエーテル等のヒドロキシアルキルアリルエーテル、ヒドロキシアルキルクロトン酸ビニル等のヒドロキシル基含有カルボン酸ビニル又はアリルエステル等のヒドロキシル基を有するモノマーが挙げられる。
<Fluorine polyol>
Examples of the fluorine-based polyol include linear or branched polyols obtained by a copolymerization reaction of a fluorine-containing monomer and a monomer having a hydroxyl group as an essential component. Here, the fluorine-containing monomer is preferably a fluoroolefin, such as tetrafluoroethylene, chlorotrifluoroethylene, trichlorofluoroethylene, hexafluoropropylene, vinylidene fluoride, vinyl fluoride, trifluoromethyltrifluoroethylene. can be mentioned. Examples of monomers having a hydroxyl group include hydroxyalkyl vinyl ethers such as hydroxyethyl vinyl ether, 4-hydroxybutyl vinyl ether, and cyclohexanediol monovinyl ether, hydroxyalkyl allyl ethers such as 2-hydroxyethyl allyl ether, and hydroxyalkyl vinyl crotonate. Monomers having hydroxyl groups such as hydroxyl group-containing vinyl carboxylates or allyl esters may be mentioned.

また、ポリオールは、1分子中の活性水素基数(平均官能基数)が1.9~6.0であることが好ましい。活性水素基数が下限値未満の場合には、塗膜物性が低下する恐れがある。また、上限値を超える場合には、密着性が低下する恐れがある。 Further, the polyol preferably has a number of active hydrogen groups (average number of functional groups) in one molecule of 1.9 to 6.0. If the number of active hydrogen groups is less than the lower limit, the physical properties of the coating film may deteriorate. Moreover, when the upper limit is exceeded, there is a possibility that the adhesion may be reduced.

また、ポリオールの数平均分子量は、250~50000の範囲にあることが好ましい。下限値未満の場合には、密着性低下の恐れがあり、上限値を超えると低極性有機溶剤に対する溶解性の低下や密着性低下を招く恐れがある。 Further, the number average molecular weight of the polyol is preferably in the range of 250 to 50,000. If it is less than the lower limit, there is a risk of a decrease in adhesion, and if it exceeds the upper limit, there is a risk of a decrease in solubility in low polar organic solvents and a decrease in adhesiveness.

また、本発明のポリウレタン樹脂組成物は、塗料組成物として好適に用いることができる。塗料組成物中のポリイソシアネート組成物と、ポリオールとの配合の割合は、特に限定するものではないが、イソシアネート組成物中のイソシアネート基とポリオール中の水酸基のモル比が、R=イソシアネート基/水酸基で0.5~2.5となるように配合することが好ましい。下限値未満の場合には水酸基が過剰になり、密着性の低下を招く恐れがある。また、架橋密度が低下し耐久性の低下や塗膜の機械的強度が低下する恐れがある。上限値を超える場合にはイソシアネート基が過剰になり、空気中の水分と反応し、塗膜の膨れやこれに伴う密着性の低下を生じる恐れがある。 Moreover, the polyurethane resin composition of the present invention can be suitably used as a coating composition. The ratio of the polyisocyanate composition and the polyol in the coating composition is not particularly limited, but the molar ratio of the isocyanate group in the isocyanate composition to the hydroxyl group in the polyol is R = isocyanate group/hydroxyl group. It is preferable to mix so that the ratio is 0.5 to 2.5. If it is less than the lower limit, there will be an excess of hydroxyl groups, which may lead to a decrease in adhesion. Furthermore, the crosslinking density may decrease, leading to a decrease in durability and mechanical strength of the coating film. When the upper limit is exceeded, the isocyanate group becomes excessive and reacts with moisture in the air, which may cause blistering of the coating film and a concomitant decrease in adhesion.

また、希釈溶剤として使用する有機溶剤としては、例えばアセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類、酢酸エチル、酢酸ブチル、酢酸セロソルブ等のエステル類、ブタノール、イソプロピルアルコール等のアルコール類、トルエン、キシレン、シクロヘキサン、ミネラルスピリット、ナフサ等の炭化水素類等からなる群から、目的及び用途に応じて適宜選択して使用することができる。これらの溶剤は単独で用いてもよく、2種以上を併用してもよい。 Examples of organic solvents used as diluting solvents include ketones such as acetone, methyl ethyl ketone, and methyl isobutyl ketone, esters such as ethyl acetate, butyl acetate, and cellosolve acetate, alcohols such as butanol and isopropyl alcohol, toluene, and xylene. , cyclohexane, mineral spirits, naphtha, and other hydrocarbons, depending on the purpose and use. These solvents may be used alone or in combination of two or more.

また、塗料組成物は、ポットライフ、硬化条件、及び作業条件等を考慮し、適宜公知のウレタン化触媒を用いることができる。具体的には、ジブチル錫ジアセテート、ジブチル錫ジラウレート、ジオクチル錫ジラウレート等の有機金属化合物や、トリエチレンジアミンやトリエチルアミン等の有機アミンやその塩を選択して用いる。これらの触媒は、単独または2種以上併用することができる。 Further, the coating composition may appropriately use a known urethanization catalyst in consideration of pot life, curing conditions, working conditions, and the like. Specifically, organic metal compounds such as dibutyltin diacetate, dibutyltin dilaurate, and dioctyltin dilaurate, organic amines such as triethylenediamine and triethylamine, and salts thereof are selected and used. These catalysts can be used alone or in combination of two or more.

また、塗料組成物の硬化条件としては、特に限定されるものではないが、硬化温度が-5~120℃、湿度が10~95%RH、養生時間が0.5~168時間であることが好ましい。 Further, the curing conditions for the coating composition are not particularly limited, but the curing temperature is -5 to 120°C, the humidity is 10 to 95% RH, and the curing time is 0.5 to 168 hours. preferable.

本発明によって得られた塗料組成物には、必要に応じて、例えば、2,6-ジ-tert-ブチル-4-メチルフェノール等の酸化防止剤、紫外線吸収剤、顔料、染料、溶剤、難燃剤、加水分解抑制剤、潤滑剤、可塑剤、充填材、帯電防止剤、分散剤、触媒、貯蔵安定剤、界面活性剤、レベリング剤等の添加剤を適宜配合することができる。 The coating composition obtained by the present invention may contain, for example, antioxidants such as 2,6-di-tert-butyl-4-methylphenol, ultraviolet absorbers, pigments, dyes, solvents, Additives such as a refractor, a hydrolysis inhibitor, a lubricant, a plasticizer, a filler, an antistatic agent, a dispersant, a catalyst, a storage stabilizer, a surfactant, a leveling agent, etc. can be blended as appropriate.

また、本発明によって得られた塗料組成物は、スプレー、刷毛、浸漬、コーター等の公知の方法により被着体の表面上に塗布され、塗膜を形成する。 Further, the coating composition obtained according to the present invention is applied onto the surface of an adherend by a known method such as spraying, brushing, dipping, or using a coater to form a coating film.

ここで被着体は特に限定されるものではなく、ステンレス、リン酸処理鋼、亜鉛鋼、鉄、銅、アルミニウム、真鍮、ガラス、スレート、アクリル樹脂、ポリカーボネート樹脂、ポリエチレンテレフタレート樹脂、ポリエチレンナフタレート樹脂、ポリブチレンフタレート樹脂、ポリスチレン樹脂、AS樹脂、ABS樹脂、ポリカーボネート-ABS樹脂、6-ナイロン樹脂、6,6-ナイロン樹脂、MXD6ナイロン樹脂、ポリ塩化ビニル樹脂、ポリビニルアルコール樹脂、ポリウレタン樹脂、フェノール樹脂、メラミン樹脂、ポリアセタール樹脂、塩素化ポリオレフィン樹脂、ポリオレフィン樹脂、ポリアミド樹脂、ポリエーテルエーテルケトン樹脂、ポリフェニレンスルフィド樹脂、NBR樹脂、クロロプレン樹脂、SBR樹脂、SEBS樹脂などの素材で成形された被着体、コロナ放電処理やその他表面処理を施されたポリエチレン、ポリプロピレン等のオレフィン樹脂、または前記被着体表面に中間形成となりうる塗膜層が形成された被着体を用いることができる。 The adherends here are not particularly limited, and include stainless steel, phosphate-treated steel, zinc steel, iron, copper, aluminum, brass, glass, slate, acrylic resin, polycarbonate resin, polyethylene terephthalate resin, and polyethylene naphthalate resin. , polybutylene phthalate resin, polystyrene resin, AS resin, ABS resin, polycarbonate-ABS resin, 6-nylon resin, 6,6-nylon resin, MXD6 nylon resin, polyvinyl chloride resin, polyvinyl alcohol resin, polyurethane resin, phenolic resin , adherends molded from materials such as melamine resin, polyacetal resin, chlorinated polyolefin resin, polyolefin resin, polyamide resin, polyether ether ketone resin, polyphenylene sulfide resin, NBR resin, chloroprene resin, SBR resin, SEBS resin, etc. An olefin resin such as polyethylene or polypropylene that has been subjected to corona discharge treatment or other surface treatment, or an adherend on which a coating layer that can be formed as an intermediate layer is formed on the surface of the adherend can be used.

被着体表層に形成される塗膜の膜厚は、リコート性や耐久性に優れるため、被着体に少なくとも10μmの膜厚を形成すれば良い。膜厚が10μm未満である場合には耐久性が低下し、衝撃により塗膜の破れ等を生じる恐れがある。 Since the coating film formed on the surface layer of the adherend has excellent recoatability and durability, it is sufficient to form the coating film on the adherend to a thickness of at least 10 μm. If the film thickness is less than 10 μm, the durability will decrease and there is a risk that the coating film will break due to impact.

また、複層塗膜を作成する際、下層に使用する樹脂としては、例えばエポキシ、アルキド、メラミン、アクリル、ウレタン等の樹脂を用いることができ、水性樹脂であることが好ましい。複層塗膜の膜厚は特に限定されるものではないが、少なくとも乾燥塗膜として10μmの膜厚を形成することが好ましい。ここでいう複層塗膜とは、前記下層に用いる樹脂をスプレー、浸漬、コーター等の公知の方法により被着体の表面に塗布して塗膜層を少なくとも一層形成し、その上に本発明のポリイソシアネート組成物を含む塗料組成物をスプレー、浸漬、コーター等の公知の方法により塗布して形成された二層以上の塗膜層を有する塗膜である。 Furthermore, when creating a multilayer coating film, the resin used for the lower layer may be, for example, epoxy, alkyd, melamine, acrylic, urethane, or the like, and preferably is a water-based resin. Although the thickness of the multilayer coating film is not particularly limited, it is preferable to form a film thickness of at least 10 μm as a dry coating film. The multi-layer coating here refers to the resin used for the lower layer being applied to the surface of the adherend by a known method such as spraying, dipping, or coater to form at least one coating layer, and then the present invention A coating film having two or more coating layers formed by applying a coating composition containing a polyisocyanate composition according to a known method such as spraying, dipping, or using a coater.

以下、実施例に基づいて本発明を更に詳細に説明するが、本発明は、これら実施例に限定されるものではない。なお、実施例における%表記は特に断りのない限り質量基準である。 Hereinafter, the present invention will be explained in more detail based on Examples, but the present invention is not limited to these Examples. Note that percentages in the examples are based on mass unless otherwise specified.

<ポリイソシアネート組成物の合成>
<実施例1>
攪拌機、温度計、冷却管、および窒素ガス導入管を備えた容量1リットルの四つ口フラスコに、HDI(東ソー社製、NCO含量:49.9質量%)を976.5g、2-エチルヘキサノール(オクタノール(商品名)、KHネオケム社製。以下、2-EHOHという)を1.0g仕込み、これを60℃に加熱し、イソシアヌレート化及びアロファネート化触媒であるトリメチルオクチルアンモニウムメチル炭酸塩(2-エチルヘキサノール10%希釈)1gを添加し、60℃にて表1に示す所定の反応転化率に達するまで反応させた後、反応停止剤である酸性リン酸エステル(JP-508(商品名)、城北化学工業社製。以下、JP-508という。)0.2gを添加し、60℃で1時間停止反応を行い、反応生成物C-1を得た。続いて、得られたC-1に、水素化ビスフェノールA(商品名、丸善石油化学社製。以下、HBPAという。)を21.5g仕込み、これらを撹拌しながら120℃に加熱し、所定の反応転化率に達するまでウレタン化反応させ反応生成物D-1を得た。D-1から、薄膜蒸留(条件:140℃,0.04kPa)により過剰のHDIを除去し、計算官能基数3.7であるポリイソシアネート組成物P-1を450g得た。
<Synthesis of polyisocyanate composition>
<Example 1>
In a 1-liter four-necked flask equipped with a stirrer, thermometer, cooling tube, and nitrogen gas introduction tube, 976.5 g of HDI (manufactured by Tosoh Corporation, NCO content: 49.9% by mass) and 2-ethylhexanol were added. (Octanol (trade name), manufactured by KH Neochem Co., Ltd., hereinafter referred to as 2-EHOH) was charged at 1.0 g, and heated to 60°C. - Ethylhexanol 10% dilution) was added, and the reaction was carried out at 60°C until the predetermined reaction conversion rate shown in Table 1 was reached. , manufactured by Johoku Kagaku Kogyo Co., Ltd. (hereinafter referred to as JP-508)) was added thereto, and the reaction was stopped at 60° C. for 1 hour to obtain reaction product C-1. Subsequently, 21.5 g of hydrogenated bisphenol A (trade name, manufactured by Maruzen Petrochemical Co., Ltd., hereinafter referred to as HBPA) was added to the obtained C-1, and the mixture was heated to 120°C with stirring to give a predetermined amount of The urethanization reaction was carried out until the reaction conversion rate was reached to obtain a reaction product D-1. Excess HDI was removed from D-1 by thin film distillation (conditions: 140° C., 0.04 kPa) to obtain 450 g of polyisocyanate composition P-1 having a calculated functional group number of 3.7.

P-1のNCO含量は20.3%であり、25℃における粘度は約6,500mPa・sであった。P-1を、H-NMR測定したところ、イソシアヌレート基、ウレタン基、およびアロファネート基のモル比率は90/9/1であった。 The NCO content of P-1 was 20.3%, and the viscosity at 25° C. was about 6,500 mPa·s. When P-1 was measured by 1 H-NMR, the molar ratio of isocyanurate groups, urethane groups, and allophanate groups was 90/9/1.

<NMR:イソシアヌレート基、ウレタン基、アロファネート基含有量の測定>
(1)測定装置:ECX400M(日本電子社製、H-NMR)
(2)測定温度:23℃
(3)試料濃度:0.1g/1ml
(4)積算回数:16
(5)緩和時間:5秒
(6)溶剤:重水素ジメチルスルホキシド
(7)化学シフト基準:重水素ジメチルスルホキシド中のメチル基の水素原子シグナル(2.5ppm)
(8)評価方法:3.7ppm付近のイソシアヌレート基の窒素原子に隣接したメチレン基の水素原子のシグナルと、7.0ppm付近のウレタン基の窒素原子に結合した水素原子のシグナルと、8.5ppm付近のアロファネート基の窒素原子に接合した水素原子のシグナルの面積比から結合基の含有量を測定。
<NMR: Measurement of isocyanurate group, urethane group, allophanate group content>
(1) Measuring device: ECX400M (manufactured by JEOL Ltd., 1H -NMR)
(2) Measurement temperature: 23℃
(3) Sample concentration: 0.1g/1ml
(4) Number of accumulations: 16
(5) Relaxation time: 5 seconds (6) Solvent: Deuterium dimethyl sulfoxide (7) Chemical shift standard: Hydrogen atom signal of methyl group in deuterium dimethyl sulfoxide (2.5 ppm)
(8) Evaluation method: Signal of the hydrogen atom of the methylene group adjacent to the nitrogen atom of the isocyanurate group around 3.7 ppm, signal of the hydrogen atom bonded to the nitrogen atom of the urethane group around 7.0 ppm, 8. The content of the bonding group was measured from the area ratio of the signal of the hydrogen atom bonded to the nitrogen atom of the allophanate group at around 5 ppm.

<実施例2~4>
表1に示す仕込比にて実施例1と同様の方法で、ポリイソシアネート組成物P-2~4を得た。
<Examples 2 to 4>
Polyisocyanate compositions P-2 to P-4 were obtained in the same manner as in Example 1 using the charging ratios shown in Table 1.

<実施例5>
攪拌機、温度計、冷却管、および窒素ガス導入管を備えた容量1リットルの四つ口フラスコに、HDIを934.8g、メタノール(新日鉄住金化学社製)を3.3g仕込み、これを60℃に加熱し、イソシアヌレート化及びアロファネート化触媒であるトリメチルオクチルアンモニウムメチル炭酸塩(2-エチルヘキサノール10%希釈)1gを添加し、60℃にて表1に示す所定の反応転化率に達するまで反応させた後、JP-508を0.2g添加し、60℃で1時間停止反応を行い、反応生成物C-5を得た。続いて、得られたC-5に、HBPAを61.9g仕込み、これらを撹拌しながら120℃に加熱し、所定の反応転化率に達するまでウレタン化反応させ反応生成物D-5を得た。D-5から、薄膜蒸留(条件:140℃,0.04kPa)により過剰のHDIを除去し、計算官能基数3.6であるポリイソシアネート組成物P-5を475g得た。
<Example 5>
934.8 g of HDI and 3.3 g of methanol (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.) were placed in a 1-liter four-necked flask equipped with a stirrer, thermometer, cooling tube, and nitrogen gas introduction tube, and the mixture was heated at 60°C. 1 g of trimethyloctylammonium methyl carbonate (diluted with 2-ethylhexanol 10%), which is an isocyanurate and allophanate catalyst, was added, and the reaction was continued at 60°C until the predetermined reaction conversion rate shown in Table 1 was reached. After this, 0.2 g of JP-508 was added and the reaction was terminated at 60° C. for 1 hour to obtain reaction product C-5. Subsequently, 61.9 g of HBPA was charged into the obtained C-5, and the mixture was heated to 120° C. with stirring to undergo a urethane reaction until a predetermined reaction conversion rate was reached to obtain a reaction product D-5. . Excess HDI was removed from D-5 by thin film distillation (conditions: 140° C., 0.04 kPa) to obtain 475 g of polyisocyanate composition P-5 having a calculated functional group number of 3.6.

P-5のNCO含量は18.5%であり、25℃における粘度は約14,000mPa・sであった。P-5を、H-NMR測定したところ、イソシアヌレート基、ウレタン基、およびアロファネート基のモル比率は65/25/10であった。 The NCO content of P-5 was 18.5%, and the viscosity at 25° C. was about 14,000 mPa·s. When P-5 was measured by 1 H-NMR, the molar ratio of isocyanurate groups, urethane groups, and allophanate groups was 65/25/10.

<実施例6~7、17>
表1、表5に示す仕込比にて実施例5と同様の方法で、ポリイソシアネート組成物P-6~7、P-14を得た。
<Examples 6-7, 17>
Polyisocyanate compositions P-6 to P-7 and P-14 were obtained in the same manner as in Example 5 using the charging ratios shown in Tables 1 and 5.

<実施例8>
攪拌機、温度計、冷却管、および窒素ガス導入管を備えた容量1リットルの四つ口フラスコに、HDIを965.5g、シクロヘキサンメタノール(関東化学社製)を11.9g仕込み、これを60℃に加熱し、イソシアヌレート化及びアロファネート化触媒であるトリメチルオクチルアンモニウムメチル炭酸塩(2-エチルヘキサノール10%希釈)1gを添加し、60℃にて表1に示す所定の反応転化率に達するまで反応させた後、JP-508を0.2g添加し、60℃で1時間停止反応を行い、反応生成物C-8を得た。続いて、得られたC-8に、HBPAを21.5g仕込み、これらを撹拌しながら120℃に加熱し、所定の反応転化率に達するまでウレタン化反応させ反応生成物D-8を得た。D-8から、薄膜蒸留(条件:140℃,0.04kPa)により過剰のHDIを除去し、計算官能基数3.6であるポリイソシアネート組成物P-8を484g得た。
<Example 8>
965.5 g of HDI and 11.9 g of cyclohexane methanol (manufactured by Kanto Kagaku Co., Ltd.) were placed in a 1-liter four-necked flask equipped with a stirrer, thermometer, cooling tube, and nitrogen gas introduction tube, and the mixture was heated at 60°C. 1 g of trimethyloctylammonium methyl carbonate (diluted with 2-ethylhexanol 10%), which is an isocyanurate and allophanate catalyst, was added, and the reaction was continued at 60°C until the predetermined reaction conversion rate shown in Table 1 was reached. After this, 0.2 g of JP-508 was added and the reaction was stopped at 60° C. for 1 hour to obtain reaction product C-8. Subsequently, 21.5 g of HBPA was charged into the obtained C-8, and the mixture was heated to 120° C. while stirring, and the urethane reaction was carried out until a predetermined reaction conversion rate was reached to obtain a reaction product D-8. . Excess HDI was removed from D-8 by thin film distillation (conditions: 140° C., 0.04 kPa) to obtain 484 g of polyisocyanate composition P-8 having a calculated functional group number of 3.6.

P-8のNCO含量は19.6%であり、25℃における粘度は約6,300mPa・sであった。P-8を、H-NMR測定したところ、イソシアヌレート基、ウレタン基、およびアロファネート基のモル比率は82/8/10であった。 The NCO content of P-8 was 19.6%, and the viscosity at 25°C was about 6,300 mPa·s. When P-8 was measured by 1 H-NMR, the molar ratio of isocyanurate groups, urethane groups, and allophanate groups was 82/8/10.

<実施例18>
表1に示す仕込比にて実施例8と同様の方法で、ポリイソシアネート組成物P-15を得た。
<Example 18>
Polyisocyanate composition P-15 was obtained in the same manner as in Example 8 using the charging ratio shown in Table 1.

<比較例1~2>
表1に示す仕込比にて実施例1と同様の方法で、ポリイソシアネート組成物P-9~10を得た。
<Comparative Examples 1-2>
Polyisocyanate compositions P-9 to 10 were obtained in the same manner as in Example 1 using the charging ratios shown in Table 1.

<比較例3>
表1に示す仕込比にて実施例5と同様の方法で、ポリイソシアネート組成物P-11を得た。
<Comparative example 3>
Polyisocyanate composition P-11 was obtained in the same manner as in Example 5 using the charging ratio shown in Table 1.

<比較例4>
コロネートHK:HDIポリイソシアヌレート(商品名:コロネートHK。東ソー社製)を用いた。
<Comparative example 4>
Coronate HK: HDI polyisocyanurate (trade name: Coronate HK, manufactured by Tosoh Corporation) was used.

<比較例5>
T1890:IPDIポリイソシアヌレート(商品名:VESTANAT T1890/100。EVONIK社製)を用いた。
<Comparative example 5>
T1890: IPDI polyisocyanurate (trade name: VESTANAT T1890/100, manufactured by EVONIK) was used.

<比較例11>
コロネートHXLV:HDIポリイソシアヌレート(商品名:コロネートHXLV。東ソー社製)を用いた。
<Comparative example 11>
Coronate HXLV: HDI polyisocyanurate (trade name: Coronate HXLV, manufactured by Tosoh Corporation) was used.

<二液塗料組成物の調製(1)>
評価用塗料配合液は表3、4に示すように、ポリオールとポリイソシアネート組成物とをR(イソシアネート基/水酸基のモル比)=1.0になるように配合し、更に有機溶剤で固形分が50%になるように、塗料組成物(S-1~S-13)を調製した(配合量の単位はg)。ポリオールには、アクリルポリオール(商品名:アクリディック49-394-IM、水酸基価:25mgKOH/g、固形分:50%、DIC社製)を使用し、有機溶剤には酢酸ブチルを使用した。
<Preparation of two-component coating composition (1)>
As shown in Tables 3 and 4, the coating composition for evaluation was prepared by blending a polyol and a polyisocyanate composition so that R (molar ratio of isocyanate groups/hydroxyl groups) = 1.0, and further reducing the solid content with an organic solvent. Coating compositions (S-1 to S-13) were prepared so that the amount was 50% (the unit of blending amount is g). Acrylic polyol (trade name: Acridic 49-394-IM, hydroxyl value: 25 mgKOH/g, solid content: 50%, manufactured by DIC) was used as the polyol, and butyl acetate was used as the organic solvent.

<二液塗料組成物の調製(2)>
評価用塗料配合液は表6に示すように、ポリオールとポリイソシアネート組成物とをR(イソシアネート基/水酸基のモル比)=1.2になるように配合し、更に有機溶剤で固形分が25%になるように、塗料組成物(S-14~20)を調製した(配合量の単位はg)。ポリオールには、アクリルポリオール(商品名:アクリディック49-394-IM、水酸基価:25mgKOH/g、固形分:50%、DIC社製)を使用し、有機溶剤には酢酸ブチルを使用した。
<Preparation of two-component coating composition (2)>
As shown in Table 6, the coating composition for evaluation was prepared by blending a polyol and a polyisocyanate composition so that R (molar ratio of isocyanate groups/hydroxyl groups) = 1.2, and further adding an organic solvent to reduce the solid content to 25%. Coating compositions (S-14 to S-20) were prepared in such a manner that the amount was in g. Acrylic polyol (trade name: Acridic 49-394-IM, hydroxyl value: 25 mgKOH/g, solid content: 50%, manufactured by DIC) was used as the polyol, and butyl acetate was used as the organic solvent.

<塗装方法及び単層塗膜試験片の作成>
調製した塗料組成物S-1~S-13を、鋼板(JIS G3141、商品名:SPCC-SB、処理方法:PF-1077、パルテック社製)にアプリケーターを用い、乾燥後の膜厚約20μmになるように塗布した。その後、温度23℃、相対湿度50%の環境下で1時間乾燥後、80℃の乾燥機中で12時間加熱処理を行い、続いて温度23℃、相対湿度50%の環境下で24時間養生し、コーティング塗膜を得た。
<Coating method and preparation of single layer coating test piece>
The prepared coating compositions S-1 to S-13 were applied to a steel plate (JIS G3141, product name: SPCC-SB, treatment method: PF-1077, manufactured by Paltech) using an applicator to give a film thickness of about 20 μm after drying. I applied it to make it look like this. Thereafter, after drying for 1 hour at a temperature of 23°C and a relative humidity of 50%, heat treatment was performed for 12 hours in an 80°C dryer, and then curing for 24 hours at a temperature of 23°C and a relative humidity of 50%. A coating film was obtained.

<塗装方法及び複層塗膜試験片の作成>
鋼板(JIS G3141、商品名:SPCC-SB、処理方法:PF-1077、パルテック社製)に水系アクリルエマルジョン(商品名:バーノックWE-303、DIC社製、ガラス転移温度15℃)を乾燥膜厚が20μmになるようにスプレー塗装した。次に50℃の乾燥機中で1時間加熱処理を行い、上記で得られた評価用塗料配合液(S-14~20)を乾燥膜厚が25μmになるようにスプレー塗装した。その後、温度23℃、相対湿度50%の環境下で1時間乾燥後、80℃の乾燥機中で12時間加熱処理を行い、続いて温度23℃、相対湿度50%の環境下で24時間養生し、コーティング塗膜を得た。
<Coating method and preparation of multilayer coating test piece>
Aqueous acrylic emulsion (product name: Burnock WE-303, manufactured by DIC Corporation, glass transition temperature: 15°C) was applied to a steel plate (JIS G3141, product name: SPCC-SB, treatment method: PF-1077, manufactured by Pultech) to a dry film thickness. It was spray-painted so that the thickness was 20 μm. Next, heat treatment was performed in a dryer at 50° C. for 1 hour, and the evaluation coating compositions (S-14 to S-20) obtained above were spray coated to a dry film thickness of 25 μm. Thereafter, after drying for 1 hour at a temperature of 23°C and a relative humidity of 50%, heat treatment was performed for 12 hours in an 80°C dryer, and then curing for 24 hours at a temperature of 23°C and a relative humidity of 50%. A coating film was obtained.

<塗膜評価>
塗膜評価は、表3、4、6に示す塗料組成物を上記塗装方法で作製したコーティング塗膜を用い、押込み硬度評価、基材追従性評価、耐擦り傷性評価にて実施した。
<Coating film evaluation>
The coating film evaluation was carried out using a coating film prepared using the coating compositions shown in Tables 3, 4, and 6 by the above-mentioned coating method, and evaluated by indentation hardness evaluation, substrate followability evaluation, and scratch resistance evaluation.

<押込み硬度評価、および評価基準>
ISO 14577に準じて、下記の条件で押込み硬度評価を行った。結果を表3、4、6に示す。評価A、Bであれば良好と言える。
試験装置:フィッシャースコープHM2000(フィッシャー・インストルメンツ社製)
圧子:ビッカースダイヤモンド
試験荷重:5mN
試験温度:25℃
・80N/mm以上:(評価)A
・50N/mm以上~80N/mm未満:(評価)B
・50N/mm未満:(評価)C。
<Indentation hardness evaluation and evaluation criteria>
According to ISO 14577, indentation hardness was evaluated under the following conditions. The results are shown in Tables 3, 4 and 6. A rating of A or B is considered good.
Test equipment: Fischerscope HM2000 (manufactured by Fischer Instruments)
Indenter: Vickers diamond Test load: 5mN
Test temperature: 25℃
・80N/mm 2 or more: (Evaluation) A
・50N/mm 2 or more - 80N/mm less than 2 : (Evaluation) B
・Less than 50N/mm 2 : (Evaluation) C.

<基材追従性評価、および評価基準>
JIS K5600-5-3に準じて、耐おもり落下性による基材追従性試験を実施した。結果を表3、4に示す。評価A、Bであれば良好と言える。
・100cm:(評価)A
・90cm以上~100cm未満:(評価)B
・90cm未満:(評価)C。
<Base material followability evaluation and evaluation criteria>
In accordance with JIS K5600-5-3, a substrate followability test was conducted based on weight drop resistance. The results are shown in Tables 3 and 4. A rating of A or B is considered good.
・100cm: (Evaluation) A
・More than 90cm to less than 100cm: (Evaluation) B
・Less than 90cm: (Evaluation) C.

<耐擦り傷性評価、および評価基準>
ガーゼを5枚重ねにし、学振形摩耗試験機(摩擦試験機II形)(安田精機製作所製)を用い、500g荷重にて200往復摩耗試験を実施した。塗膜の試験面を、走査型白色干渉顕微鏡(日立ハイテクサイエンス製)にて観察し、摩耗痕深さを測定した。結果を表3、4に示す。評価Aであれば良好と言える。
・30nm未満:(評価)A
・30~50nm:(評価)B
・50nm以上:(評価)C
<Abrasion resistance evaluation and evaluation criteria>
Five layers of gauze were stacked, and a 200-reciprocal abrasion test was conducted at a load of 500 g using a Gakushin type abrasion tester (friction tester type II) (manufactured by Yasuda Seiki Seisakusho). The test surface of the coating film was observed using a scanning white interference microscope (manufactured by Hitachi High-Tech Science), and the depth of the wear scar was measured. The results are shown in Tables 3 and 4. If the rating is A, it can be said to be good.
・Less than 30 nm: (Evaluation) A
・30-50nm: (Evaluation) B
・50 nm or more: (Evaluation) C

Claims (7)

ヘキサメチレンジイソシアネートのヌレート型ポリイソシアネート(A)、及びヘキサメチレンジイソシアネートモノマーを含むヘキサメチレンジイソシアネート誘導体と環状基を有する分子量300以下のジオールとのアダクト体(B)を含むポリイソシアネート組成物であって、
ポリイソシアネート組成物中のイソシアヌレート基とウレタン基とのモル比が、イソシアヌレート基/ウレタン基=50/50~95/5であり、
ポリイソシアネート組成物中のイソシアヌレート基とウレタン基との合計の割合が、前記ポリイソシアネート組成物におけるイソシアネート基が反応して生成した官能基の合計の75~100モル%であり、かつ、
ポリイソシアネート組成物の平均イソシアネート基数が3.4~4.4であることを特徴とする、ポリイソシアネート組成物。
A polyisocyanate composition comprising a nurate polyisocyanate (A) of hexamethylene diisocyanate, and an adduct (B) of a hexamethylene diisocyanate derivative containing a hexamethylene diisocyanate monomer and a diol having a molecular weight of 300 or less having a cyclic group,
The molar ratio of isocyanurate groups to urethane groups in the polyisocyanate composition is isocyanurate groups/urethane groups = 50/50 to 95/5,
The total proportion of isocyanurate groups and urethane groups in the polyisocyanate composition is 75 to 100 mol% of the total of functional groups generated by reaction of isocyanate groups in the polyisocyanate composition, and
A polyisocyanate composition characterized in that the average number of isocyanate groups in the polyisocyanate composition is 3.4 to 4.4.
環状基を有する分子量300以下のジオールが水素化ビスフェノールAであることを特徴とする、請求項1に記載のポリイソシアネート組成物。 2. The polyisocyanate composition according to claim 1, wherein the diol having a cyclic group and having a molecular weight of 300 or less is hydrogenated bisphenol A. モノオールから誘導されたアロファネート基を有するポリイソシアネートを、ポリイソシアネート組成物中に25モル%以下含むことを特徴とする、請求項1又は2に記載のポリイソシアネート組成物。 The polyisocyanate composition according to claim 1 or 2, characterized in that the polyisocyanate composition contains 25 mol% or less of a polyisocyanate having an allophanate group derived from a monol. 請求項1乃至3のいずれかに記載のポリイソシアネート組成物とポリオールとからなるポリウレタン樹脂組成物。 A polyurethane resin composition comprising the polyisocyanate composition according to any one of claims 1 to 3 and a polyol. 請求項4に記載のポリウレタン樹脂組成物を含む塗料組成物。 A coating composition comprising the polyurethane resin composition according to claim 4. 請求項5に記載の塗料組成物から形成された塗膜。 A coating film formed from the coating composition according to claim 5. 請求項6に記載の塗膜を少なくとも一層含む、複層塗膜。 A multilayer coating film comprising at least one coating film according to claim 6.
JP2020052110A 2019-12-25 2020-03-24 Modified polyisocyanate composition Active JP7435117B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019234271 2019-12-25
JP2019234271 2019-12-25

Publications (2)

Publication Number Publication Date
JP2021102742A JP2021102742A (en) 2021-07-15
JP7435117B2 true JP7435117B2 (en) 2024-02-21

Family

ID=76754854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020052110A Active JP7435117B2 (en) 2019-12-25 2020-03-24 Modified polyisocyanate composition

Country Status (1)

Country Link
JP (1) JP7435117B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006016430A (en) 2004-06-30 2006-01-19 Asahi Kasei Chemicals Corp Coating composition
JP2018021151A (en) 2016-08-05 2018-02-08 東ソー株式会社 Ultraviolet absorber-resistant polyurethane composition, and coating material prepared with the composition
JP2019163428A (en) 2018-03-20 2019-09-26 東ソー株式会社 Polyisocyanate composition and coating composition including the same
WO2019181798A1 (en) 2018-03-20 2019-09-26 東ソー株式会社 Polyisocyanate composition and coating composition using same
JP2019199551A (en) 2018-05-17 2019-11-21 東ソー株式会社 Polyisocyanate composition and coating composition using the same
JP2019218437A (en) 2018-06-18 2019-12-26 東ソー株式会社 Polyisocyanate composition and coating composition using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006016430A (en) 2004-06-30 2006-01-19 Asahi Kasei Chemicals Corp Coating composition
JP2018021151A (en) 2016-08-05 2018-02-08 東ソー株式会社 Ultraviolet absorber-resistant polyurethane composition, and coating material prepared with the composition
JP2019163428A (en) 2018-03-20 2019-09-26 東ソー株式会社 Polyisocyanate composition and coating composition including the same
WO2019181798A1 (en) 2018-03-20 2019-09-26 東ソー株式会社 Polyisocyanate composition and coating composition using same
JP2019199551A (en) 2018-05-17 2019-11-21 東ソー株式会社 Polyisocyanate composition and coating composition using the same
JP2019218437A (en) 2018-06-18 2019-12-26 東ソー株式会社 Polyisocyanate composition and coating composition using the same

Also Published As

Publication number Publication date
JP2021102742A (en) 2021-07-15

Similar Documents

Publication Publication Date Title
JP6428208B2 (en) Coating composition, self-healing type coating film using the composition
JP6281280B2 (en) Allophanate / isocyanurate-forming catalyst, polyisocyanate composition using the catalyst, method for producing the composition, and two-component coating composition using the composition
JP2006335954A (en) Blocked polyisocyanate composition and one-component coating composition
US11718765B2 (en) Polyurethane coating comprising isosorbide
CN108623779B (en) Polyurethane resin, aqueous polyurethane resin dispersion, method for producing same, use thereof, and cured product thereof
JP2020079411A (en) Polyisocyanate mixture, coating composition, and coating film
US11492440B2 (en) Clearcoat compositions and methods of forming clearcoat compositions
JP7293762B2 (en) Polyisocyanate composition and coating composition using the same
WO2023190307A1 (en) Butane diisocyanate derivative, method for producing butane diisocyanate derivative, polyisocyanate composition, polyurethane resin forming composition, coating composition and coating film
JP6840939B2 (en) Polyisocyanate composition and coating composition using it
JP7435117B2 (en) Modified polyisocyanate composition
JP2018002972A (en) Polyisocyanate composition and coating composition using the same
JP7243051B2 (en) Polyisocyanate composition and coating composition using the same
JP7159613B2 (en) Polyisocyanate composition and coating composition using the same
JP7354578B2 (en) Polyisocyanate composition and coating composition using the same
WO2019181798A1 (en) Polyisocyanate composition and coating composition using same
JP7259204B2 (en) Polyisocyanate composition and coating composition using the same
JP6840991B2 (en) Polyisocyanate composition and coating composition using it
WO2021256254A1 (en) Modified polyisocyanate composition and coating composition using same
JP7069653B2 (en) Polyisocyanate composition and two-component paint composition using it
WO2017094883A1 (en) Polyisocyanate composition and coating composition using same
JP2010053238A (en) Polyisocyanate composition and two-pack coating composition using the same
JP6926489B2 (en) Method for producing modified organic polyisocyanate
WO2024202990A1 (en) Surface smoothing agent for polyurethane coating film, composition, curing agent, polyurethane resin-forming composition, coating composition, and coating film
WO2022210289A1 (en) Coating material composition, kit, coating film, and coating film forming method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231017

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240122

R151 Written notification of patent or utility model registration

Ref document number: 7435117

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151