JP7433246B2 - Thermostable isoamylase - Google Patents

Thermostable isoamylase Download PDF

Info

Publication number
JP7433246B2
JP7433246B2 JP2020565167A JP2020565167A JP7433246B2 JP 7433246 B2 JP7433246 B2 JP 7433246B2 JP 2020565167 A JP2020565167 A JP 2020565167A JP 2020565167 A JP2020565167 A JP 2020565167A JP 7433246 B2 JP7433246 B2 JP 7433246B2
Authority
JP
Japan
Prior art keywords
isoamylase
amino acid
mutant
acid sequence
seq
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020565167A
Other languages
Japanese (ja)
Other versions
JPWO2020145288A1 (en
Inventor
将弘 馬場
涼子 佐野
潤 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Godo Shusei KK
Original Assignee
Godo Shusei KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Godo Shusei KK filed Critical Godo Shusei KK
Publication of JPWO2020145288A1 publication Critical patent/JPWO2020145288A1/en
Application granted granted Critical
Publication of JP7433246B2 publication Critical patent/JP7433246B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Cell Biology (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

本発明は、耐熱性が向上した変異イソアミラーゼ、及びその変異イソアミラーゼの製造法に関する。 The present invention relates to a mutant isoamylase with improved heat resistance and a method for producing the mutant isoamylase.

糖化工業において、デンプンやアミロペクチン中のα-1,6-グルコピラノシド結合を加水分解する酵素として、Klebsiella pneumoniaeなどが生産するプルラナーゼ及びイソアミラーゼが知られている。このうち、イソアミラーゼは、デンプン、アミロペクチン、グリコーゲン中のα-1,6-グルコピラノシド結合を加水分解する酵素であり、可逆的な反応が見られないため、他のアミラーゼやグルコアミラーゼなどを使用することで高純度のグルコースやマルトースが生産できることが知られている。イソアミラーゼ生産菌としては、Pseudomonas amyloderamosa(非特許文献1)などが報告されている。 In the saccharification industry, pullulanase and isoamylase produced by Klebsiella pneumoniae and the like are known as enzymes that hydrolyze α-1,6-glucopyranoside bonds in starch and amylopectin. Among these, isoamylase is an enzyme that hydrolyzes α-1,6-glucopyranoside bonds in starch, amylopectin, and glycogen, and since there is no reversible reaction, other amylases or glucoamylases are used. It is known that highly pure glucose and maltose can be produced by this process. Pseudomonas amyloderamosa (Non-Patent Document 1) and the like have been reported as isoamylase-producing bacteria.

しかし、Pseudomonas amyloderamosaなどが生産するイソアミラーゼの至適温度は他のアミラーゼの至適温度よりも低く、産業的に使用するレベルの反応温度帯では併用が困難であった。 However, the optimal temperature of isoamylase produced by Pseudomonas amyloderamosa and the like is lower than that of other amylases, and it has been difficult to use them together in the reaction temperature range of industrial use.

国際公開第2017/204317号International Publication No. 2017/204317

Starch(1996),48:295-300Starch (1996), 48:295-300

このような背景の下、本出願人は、イソアミラーゼのアミノ酸配列の一部を改変することによって耐熱性を向上できることを見出し、先に特許出願している(特許文献1)。耐熱性を向上するべく、新たな変異点を見い出すことが求められた。
従って、本発明の課題は、耐熱性の向上に寄与する別の変異点を見出し、新たなイソアミラーゼ、及びその製造法を提供することにある。
Against this background, the present applicant has discovered that heat resistance can be improved by modifying part of the amino acid sequence of isoamylase, and has previously filed a patent application (Patent Document 1). In order to improve heat resistance, it was necessary to find a new mutation point.
Therefore, an object of the present invention is to find another mutation point that contributes to improved heat resistance, and to provide a new isoamylase and a method for producing the same.

本発明者は、Pseudomonas amyloderamosaなどが生産するイソアミラーゼのアミノ酸配列のうち、後述する特定の位置のアミノ酸を他のアミノ酸に変異させることによって、耐熱性が一層向上した変異イソアミラーゼが得られることを見出し、本発明を完成した。 The present inventor has found that a mutant isoamylase with further improved heat resistance can be obtained by mutating the amino acids at specific positions described below to other amino acids in the amino acid sequence of isoamylase produced by Pseudomonas amyloderamosa and the like. The present invention has been completed.

すなわち、本発明は、以下の[1]~[11]を提供するものである。 That is, the present invention provides the following [1] to [11].

[1]配列番号1で表されるアミノ酸配列からなるイソアミラーゼ、又は配列番号1で表されるアミノ酸配列において1~数個のアミノ酸残基が欠失、置換又は挿入されたアミノ酸配列であって、配列番号1で表されるアミノ酸配列と80%以上の配列同一性を有するアミノ酸配列からなるイソアミラーゼにおいて、D268S、A241T及びM574Vから選ばれる1又は2以上のアミノ酸変異を有するイソアミラーゼ。
[2]前記配列同一性が90%以上である[1]記載のイソアミラーゼ。
[3]さらに、A554P、M277I、A549P及びA580Tから選ばれる1又は2以上のアミノ酸変異を有する[1]又は[2]記載のイソアミラーゼ。
[4]さらに、A554P、M277I、A549P及びA580Tのアミノ酸変異を有する[1]又は[2]記載のイソアミラーゼ。
[5]アミノ酸変異が、A554P/M277I/D268S/A549P/A580T、A554P/M277I/D268S/A549P/A580T/A241T、及びA554P/M277I/D268S/A549P/A580T/A241T/M574Vから選ばれる変異を含む変異である[1]~[4]のいずれか1記載のイソアミラーゼ。
[6][1]~[5]のいずれか1記載のイソアミラーゼをコードする遺伝子。
[7][6]記載の遺伝子を有する組み換えベクター。
[8][7]記載の組み換えベクターで形質転換した形質転換体。
[9][8]記載の形質転換体を培養して、該培養物からイソアミラーゼを採取することを特徴とするイソアミラーゼの製造法。
[10][1]~[5]のいずれか1記載のイソアミラーゼを含有するデンプン糖化用酵素組成物。
[11]さらに、β-アミラーゼ、α-アミラーゼ及びグルコアミラーゼから選ばれる酵素を含有する[10]記載のデンプン糖化用酵素組成物。
[1] An isoamylase consisting of the amino acid sequence represented by SEQ ID NO: 1, or an amino acid sequence in which one to several amino acid residues are deleted, substituted, or inserted in the amino acid sequence represented by SEQ ID NO: 1. , an isoamylase consisting of an amino acid sequence having 80% or more sequence identity with the amino acid sequence represented by SEQ ID NO: 1, which has one or more amino acid mutations selected from D268S, A241T, and M574V.
[2] The isoamylase according to [1], wherein the sequence identity is 90% or more.
[3] The isoamylase according to [1] or [2], further having one or more amino acid mutations selected from A554P, M277I, A549P, and A580T.
[4] The isoamylase according to [1] or [2], further having amino acid mutations of A554P, M277I, A549P, and A580T.
[5] A mutation in which the amino acid mutation includes a mutation selected from A554P/M277I/D268S/A549P/A580T, A554P/M277I/D268S/A549P/A580T/A241T, and A554P/M277I/D268S/A549P/A580T/A241T/M574V The isoamylase according to any one of [1] to [4].
[6] A gene encoding the isoamylase according to any one of [1] to [5].
[7] A recombinant vector having the gene described in [6].
[8] A transformant transformed with the recombinant vector described in [7].
[9] A method for producing isoamylase, which comprises culturing the transformant according to [8] and collecting isoamylase from the culture.
[10] An enzyme composition for starch saccharification containing the isoamylase according to any one of [1] to [5].
[11] The enzyme composition for starch saccharification according to [10], further comprising an enzyme selected from β-amylase, α-amylase, and glucoamylase.

本発明のイソアミラーゼは、ネイティブのイソアミラーゼと比べて耐熱性が2℃以上向上している(一重変異体)。本発明のイソアミラーゼは、この耐熱性を6℃以上向上させることもできる(五重変異体~七重変異体)。そして、本発明のイソアミラーゼの至適温度は他の各種アミラーゼの至適温度と重複する。従って、本発明のイソアミラーゼは、各種アミラーゼと併用してデンプン等に作用させることにより、高純度のグルコースやマルトース等を工業的に有利に生産することができる。本発明において「併用」とは、本発明のイソアミラーゼと、それ以外の1種以上の酵素を混合した状態において、少なくとも2種以上の酵素が活性を示す状態にあることをいう。 The isoamylase of the present invention has improved thermostability by 2°C or more compared to native isoamylase (single mutant). The isoamylase of the present invention can also improve this thermostability by 6°C or more (quintuple to sevenfold mutants). The optimum temperature of the isoamylase of the present invention overlaps with the optimum temperature of other various amylases. Therefore, the isoamylase of the present invention can advantageously industrially produce highly purified glucose, maltose, etc. by acting on starch etc. in combination with various amylases. In the present invention, "combination" refers to a state in which the isoamylase of the present invention and one or more other enzymes are mixed, and at least two or more enzymes exhibit activity.

ネイティブ及び各変異体酵素の熱安定性を示す図である。FIG. 2 is a diagram showing the thermostability of native and each mutant enzyme.

本発明のイソアミラーゼは、配列番号1で表されるアミノ酸配列からなるイソアミラーゼ、又は配列番号1で表されるアミノ酸配列において1~数個のアミノ酸残基が欠失、置換又は挿入されたアミノ酸配列であって、配列番号1で表されるアミノ酸配列と80%以上の配列同一性を有するアミノ酸配列からなるイソアミラーゼにおいて、D268S、A241T及びM574Vから選ばれる1又は2以上のアミノ酸変異を有するイソアミラーゼである。 The isoamylase of the present invention is an isoamylase consisting of the amino acid sequence represented by SEQ ID NO: 1, or an amino acid in which one to several amino acid residues are deleted, substituted, or inserted in the amino acid sequence represented by SEQ ID NO: 1. An isoamylase consisting of an amino acid sequence having 80% or more sequence identity with the amino acid sequence represented by SEQ ID NO: 1, and having one or more amino acid mutations selected from D268S, A241T and M574V. It is amylase.

ここで、配列番号1で表されるアミノ酸配列からなるイソアミラーゼは、非特許文献1に記載された、Pseudomonas amyloderamosaが産生するイソアミラーゼである。このイソアミラーゼには、同一のアミノ酸配列を有する限り、Pseudomonas amyloderamosa由来でないイソアミラーゼが含まれる。また、同一アミノ酸配列を有する限り、ポリペプチドだけでなく、糖ペプチドも含まれる。なお、配列番号1は、成熟タンパク質のアミノ酸配列を示す。 Here, the isoamylase consisting of the amino acid sequence represented by SEQ ID NO: 1 is an isoamylase produced by Pseudomonas amyloderamosa , which is described in Non-Patent Document 1. This isoamylase includes isoamylases that are not derived from Pseudomonas amyloderamosa as long as they have the same amino acid sequence. Furthermore, as long as they have the same amino acid sequence, not only polypeptides but also glycopeptides are included. Note that SEQ ID NO: 1 shows the amino acid sequence of the mature protein.

配列番号1で表されるアミノ酸配列において1~数個のアミノ酸残基が欠失、置換又は挿入されたイソアミラーゼにおける、アミノ酸残基の欠失、置換又は挿入の数は、配列番号1で表されるアミノ酸配列からなるイソアミラーゼと同等の酵素活性を示すものであれば限定されないが、1~20個が好ましく、1~10個がさらに好ましく、1~8個がさらに好ましい。
また、当該欠失、置換又は挿入されたイソアミラーゼと配列番号1のアミノ酸配列との配列同一性は、80%以上が好ましく、85%以上がより好ましく、90%以上がさらに好ましく、95%以上がさらに好ましく、99%以上がさらに好ましい。このような配列の同一性パーセンテージは、基準配列を照会配列として比較するアルゴリズムをもった公開又は市販されているソフトウエアを用いて計算することができる。例として、BLAST、FASTA又はGENETYX(ソフトウエア開発社製)などを用いることができる。
The number of deletions, substitutions, or insertions of amino acid residues in the isoamylase in which one to several amino acid residues have been deleted, substituted, or inserted in the amino acid sequence represented by SEQ ID NO: 1 is as shown in SEQ ID NO: 1. Although there are no limitations as long as the enzymatic activity is equivalent to that of the isoamylase consisting of the amino acid sequence shown in FIG.
Further, the sequence identity between the deleted, substituted or inserted isoamylase and the amino acid sequence of SEQ ID NO: 1 is preferably 80% or more, more preferably 85% or more, even more preferably 90% or more, and 95% or more. is more preferable, and even more preferably 99% or more. The percentage identity of such sequences can be calculated using publicly available or commercially available software with algorithms that compare a reference sequence to a query sequence. For example, BLAST, FASTA, or GENETYX (manufactured by Software Development Co., Ltd.) can be used.

本発明のイソアミラーゼは、D268S、A241T及びM574Vから選ばれる1又は2以上のアミノ酸変異を有するが、耐熱性向上の観点から、さらにA554P、M277I、A549P及びA580Tから選ばれる1又は2以上のアミノ酸変異を有するのが好ましい。本発明における好ましいアミノ酸変異は、D268S、A241T及びM574Vからから選ばれる1又は2以上の変異と、A554P、M277I、A549P及びA580Tの4変異を含む5~7重変異である。 The isoamylase of the present invention has one or more amino acid mutations selected from D268S, A241T, and M574V, and from the viewpoint of improving heat resistance, it further has one or more amino acid mutations selected from A554P, M277I, A549P, and A580T. It is preferable to have a mutation. Preferred amino acid mutations in the present invention are one or more mutations selected from D268S, A241T, and M574V, and quintuple to sevenfold mutations including four mutations: A554P, M277I, A549P, and A580T.

具体的なアミノ酸変異としては、D268S、A241T、M574V、D268S/A241T、D268S/M574V、A241T/M574V、D268S/A241T/M574V、D268S/A554P、D268S/M277I、D268S/A549P、D268S/A580T、A241T/A554P、A241T/M277I、A241T/A549P、A241T/A580T、M574V/A554P、M574V/M277I、M574V/A549P、M574V/A580T、D268S/A554P/M277I、D268S/A554P/A549P、D268S/A554P/A580T、D268S/M277I/A549P、D268S/M277I/A580T、D268S/A549P/A580T、A241T/A554P/M277I、A241T/A554P/A549P、A241T/A554P/A580T、A241T/M277I/A549P、A241T/M277I/A580T、A241T/A549P/A580T、M574V/A554P/M277I、M574V/A554P/A549P、M574V/A554P/A580T、M574V/M277I/A549P、M574V/M277I/A580T、M574V/A549P/A580T、D268S/A554P/M277I/A549P、D268S/A554P/M277I/A580T、D268S/A554P/A549P/A580T、D268S/M277I/A549P/A580T、A241T/A554P/M277I/A549P、A241T/A554P/M277I/A580T、A241T/A554P/A549P/A580T、A241T/M277I/A549P/A580T、M574V/A554P/M277I/A549P、M574V/A554P/M277I/A580T、M574V/A554P/A549P/A580T、M574V/M277I/A549P/A580T、A554P/M277I/D268S/A549P/A580T、A554P/M277I/A549P/A580T/A241T、A554P/M277I/A549P/A580T/M574V、A554P/M277I/D268S/A549P/A580T/A241T、A554P/M277I/D268S/A549P/A580T/M574V、A554P/M277I/A549P/A580T/A241T/M574V、A554P/M277I/D268S/A549P/A580T/A241T/M574V等が挙げられる。
さらに好ましいアミノ酸変異としては、A554P/M277I/D268S/A549P/A580T、A554P/M277I/D268S/A549P/A580T/A241T、A554P/M277I/D268S/A549P/A580T/A241T/M574Vが挙げられる。
Specific amino acid mutations include D268S, A241T, M574V, D268S/A241T, D268S/M574V, A241T/M574V, D268S/A241T/M574V, D268S/A554P, D268S/M277I, D268S/A549P, D268S/A5 80T, A241T/ A554P, A241T/M277I, A241T/A549P, A241T/A580T, M574V/A554P, M574V/M277I, M574V/A549P, M574V/A580T, D268S/A554P/M277I, D268S/A554P/A54 9P, D268S/A554P/A580T, D268S/ M277I/A549P, D268S/M277I/A580T, D268S/A549P/A580T, A241T/A554P/M277I, A241T/A554P/A549P, A241T/A554P/A580T, A241T/M277I/A549P, A24 1T/M277I/A580T, A241T/A549P/ A580T, M574V/A554P/M277I, M574V/A554P/A549P, M574V/A554P/A580T, M574V/M277I/A549P, M574V/M277I/A580T, M574V/A549P/A580T, D268S/A55 4P/M277I/A549P, D268S/A554P/ M277I/A580T, D268S/A554P/A549P/A580T, D268S/M277I/A549P/A580T, A241T/A554P/M277I/A549P, A241T/A554P/M277I/A580T, A241T/A554P/A54 9P/A580T, A241T/M277I/A549P/ A580T, M574V/A554P/M277I/A549P, M574V/A554P/M277I/A580T, M574V/A554P/A549P/A580T, M574V/M277I/A549P/A580T, A554P/M277I/D268S/A54 9P/A580T, A554P/M277I/A549P/ A580T/A241T, A554P/M277I/A549P/A580T/M574V, A554P/M277I/D268S/A549P/A580T/A241T, A554P/M277I/D268S/A549P/A580T/M574V, A554P/M27 7I/A549P/A580T/A241T/M574V, Examples include A554P/M277I/D268S/A549P/A580T/A241T/M574V.
More preferred amino acid mutations include A554P/M277I/D268S/A549P/A580T, A554P/M277I/D268S/A549P/A580T/A241T, and A554P/M277I/D268S/A549P/A580T/A241T/M574V.

本発明の変異イソアミラーゼは、配列番号1で表されるアミノ酸配列からなるイソアミラーゼ、又は配列番号1で表されるアミノ酸配列において1~数個のアミノ酸残基が欠失、置換又は挿入されたアミノ酸配列であって、配列番号1で表されるアミノ酸配列と80%以上の配列同一性を有するアミノ酸配列からなるイソアミラーゼにおいて、D268S、A241T及びM574Vから選ばれる1又は2以上をアミノ酸変異することにより構築した遺伝子を用いて製造することができる。 The mutant isoamylase of the present invention is an isoamylase consisting of the amino acid sequence represented by SEQ ID NO: 1, or one to several amino acid residues are deleted, substituted, or inserted in the amino acid sequence represented by SEQ ID NO: 1. In an isoamylase consisting of an amino acid sequence having 80% or more sequence identity with the amino acid sequence represented by SEQ ID NO: 1, one or more amino acids selected from D268S, A241T and M574V are mutated. It can be produced using a gene constructed by.

本発明の変異イソアミラーゼを製造するための遺伝子は、前記の変異イソアミラーゼをコードする塩基配列を有する遺伝子であり、例えば前記の配列番号1で示されるアミノ酸配列をコードする遺伝子において、置換すべきアミノ酸配列をコードする塩基配列を、所望のアミノ酸残基をコードする塩基に置換することにより構築することができる。このような部位特異的塩基配列置換のための種々の方法は、当該技術分野においてよく知られており、例えば適切に設計されたプライマーを用いるPCRによって行うことができる。あるいは、改変型のアミノ酸配列をコードする遺伝子を全合成してもよい。 The gene for producing the mutant isoamylase of the present invention is a gene having a nucleotide sequence encoding the mutant isoamylase, for example, in the gene encoding the amino acid sequence shown in SEQ ID NO: 1, which should be replaced. It can be constructed by substituting a base sequence encoding an amino acid sequence with a base encoding a desired amino acid residue. Various methods for such site-specific base sequence substitution are well known in the art, and can be performed, for example, by PCR using appropriately designed primers. Alternatively, a gene encoding a modified amino acid sequence may be totally synthesized.

このようにして得た遺伝子を適当な発現ベクターに挿入し、これを適当な宿主(例えば大腸菌)に形質転換する。外来性蛋白質を発現させるための多くのベクター・宿主系が当該技術分野において知られている。変異イソアミラーゼ遺伝子を組み込むための発現ベクターとしては、プラスミドベクターが挙げられ、例えば大腸菌用としてはpET-14b、pBR322等が挙げられる。枯草菌用としては、pUB110等が挙げられる。糸状菌用としては、pPTRI等が挙げられる。また、酵母用としては、pRS403等が挙げられる。 The gene thus obtained is inserted into an appropriate expression vector, and this is transformed into an appropriate host (eg, E. coli). Many vector-host systems for expressing foreign proteins are known in the art. Examples of expression vectors for incorporating the mutant isoamylase gene include plasmid vectors, such as pET-14b and pBR322 for E. coli. Examples for Bacillus subtilis include pUB110. Examples for filamentous fungi include pPTRI. Further, examples for yeast include pRS403 and the like.

得られた組み換えプラスミドは、大腸菌、枯草菌、カビ、酵母、放線菌、酢酸菌、シュードモナス属菌等の微生物に形質転換し、当該形質転換体を培養すれば、本発明変異イソアミラーゼが得られる。当該形質転換体は、変異イソアミラーゼ遺伝子をプラスミドのまま保持しても良いし、ゲノム内に取り込んでも良い。 The obtained recombinant plasmid is transformed into microorganisms such as Escherichia coli, Bacillus subtilis, mold, yeast, actinomycetes, acetic acid bacteria, Pseudomonas bacteria, etc., and the transformant is cultured to obtain the mutant isoamylase of the present invention. . The transformant may retain the mutant isoamylase gene as a plasmid or may incorporate it into the genome.

本発明のイソアミラーゼは、Pseudomonas amyloderamosaなどが生産するイソアミラーゼに比べて耐熱性が2℃以上向上しており、かつ至適pH、イソアミラーゼ活性等はPseudomonas amyloderamosaなどが生産するイソアミラーゼと同等である。特に、本発明のイソアミラーゼは、この耐熱性を6℃以上向上させることも可能である(五重変異体~七重変異体)。従って、デンプンに、β-アミラーゼ、α-アミラーゼ、グルコアミラーゼなどから選ばれる酵素と、本発明イソアミラーゼとを作用させれば、高純度のグルコースやマルトースが容易に得られる。ここで、β-アミラーゼとしては、GODO-GBA2(合同酒精株式会社)、オプチマルトBBA(ダニスコジャパン株式会社)、β-アミラーゼL/R(ナガセケムテックス株式会社)、ハイマルトシンGL(エイチビィアイ株式会社)等を用いることができる。また、α-アミラーゼとしては、例えば、クライスターゼT10(大和化成株式会社)を用いることができる。グルコアミラーゼとしては、例えば、グルクザイム(天野エンザイム株式会社)、GODO-ANGH(合同酒精株式会社)を用いることができる。 The isoamylase of the present invention has improved heat resistance by 2°C or more compared to isoamylase produced by Pseudomonas amyloderamosa , etc., and has the same optimum pH, isoamylase activity, etc. as the isoamylase produced by Pseudomonas amyloderamosa , etc. be. In particular, the isoamylase of the present invention can improve this thermostability by 6°C or more (quintuple to sevenfold mutants). Therefore, highly pure glucose or maltose can be easily obtained by allowing an enzyme selected from β-amylase, α-amylase, glucoamylase, etc., and the isoamylase of the present invention to act on starch. Here, examples of β-amylase include GODO-GBA2 (Godo Shusei Co., Ltd.), Optimalt BBA (Danisco Japan Co., Ltd.), β-amylase L/R (Nagase ChemteX Co., Ltd.), Hymaltocin GL (HBI Co., Ltd.), etc. can be used. Furthermore, as the α-amylase, for example, clystase T10 (Daiwa Kasei Co., Ltd.) can be used. As glucoamylase, for example, gluczyme (Amano Enzyme Co., Ltd.) and GODO-ANGH (Godo Shusei Co., Ltd.) can be used.

本発明のイソアミラーゼは、糖化用のイソアミラーゼとして使用することが好ましく、デンプン糖化用のイソアミラーゼとして使用することがさらに好ましい。
本発明のイソアミラーゼは、必要により他の1種以上の酵素と混合したデンプン糖化用酵素組成物とすることも好ましい。他の1種以上の酵素は、上述したβ-アミラーゼ、α-アミラーゼ、グルコアミラーゼから選択することができる。
The isoamylase of the present invention is preferably used as an isoamylase for saccharification, and more preferably used as an isoamylase for starch saccharification.
It is also preferable that the isoamylase of the present invention is mixed with one or more other enzymes as necessary to form an enzyme composition for starch saccharification. The other one or more enzymes can be selected from the above-mentioned β-amylases, α-amylases, and glucoamylases.

反応は、例えば、アミラーゼ等のデンプン糖化酵素に本発明のイソアミラーゼを添加し、当該デンプン糖化酵素と当該イソアミラーゼが作用するpH、温度条件にて混合撹拌することにより行なわれる。本発明方法によれば、高純度のグルコースやマルトースを工業的に有利に製造することができる。 The reaction is carried out, for example, by adding the isoamylase of the present invention to a starch saccharifying enzyme such as amylase, and mixing and stirring under pH and temperature conditions where the starch saccharifying enzyme and the isoamylase act. According to the method of the present invention, highly purified glucose and maltose can be industrially advantageously produced.

次に実施例を挙げて本発明をより詳細に説明するが、本発明は何らこれに限定されるものではない。 EXAMPLES Next, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited thereto.

実施例1(イソアミラーゼの部位特異的変異導入)
Pseudomonas amyloderamosaゲノムを鋳型としてプライマーPSTPIA-F(AAACTGCAGATGAAGTGCCCAAAGATTCTC(配列番号2))及びHINDPIA-R(CCCAAGCTTCTACTTGGAGATCAACAGCAG(配列番号3))を用いて耐酸性イソアミラーゼ遺伝子配列を含む約2.3kbの断片を取得した。この断片を制限酵素Pst I及びHind IIIで消化し、pHSG398(タカラバイオ株式会社)を制限酵素Pst I及びHind IIIで消化した約2.2kbの断片と連結することにより、p-PIを取得した。ネイティブの耐酸性イソアミラーゼの発現プラスミドであるプラスミドp-PIに部位特異的変異導入を行い、一重変異体(D268S)発現プラスミドp-PID268Sを取得した。同様に一重変異体(A241T)発現プラスミドp-PIA241T、一重変異体(M574V)発現プラスミドp-PIM574V、五重変異体(A554P/M277I/D268A/A549P/A580T)発現プラスミドp-PI5Mを取得した。また、p-PI5Mに部位特異的変異導入を行い、最適化 五重変異体(A554P/M277I/D268S/A549P/A580T)発現プラスミドp-PI5Ms、六重変異体(A554P/M277I/D268S/A549P/A580T/A241T)発現プラスミドp-PI6M、七重変異体(A554P/M277I/D268S/A549P/A580T/A241T/M574V)発現プラスミドp-PI7Mを取得した。
Example 1 (site-directed mutagenesis of isoamylase)
An approximately 2.3 kb fragment containing the acid-resistant isoamylase gene sequence was obtained using the Pseudomonas amyloderamosa genome as a template and primers PSTPIA-F (AAACTGCAGATGAAGTGCCCAAAGATTCTC (SEQ ID NO: 2)) and HINDPIA-R (CCCAAGCTTCTACTTGGAGATCAACAGCAG (SEQ ID NO: 3)). . This fragment was digested with restriction enzymes Pst I and Hind III, and p-PI was obtained by ligating it with an approximately 2.2 kb fragment obtained by digesting pHSG398 (Takara Bio Inc.) with restriction enzymes Pst I and Hind III. . Site-directed mutagenesis was performed on plasmid p-PI, which is an expression plasmid for native acid-resistant isoamylase, to obtain a single mutant (D268S) expression plasmid p-PID268S. Similarly, a single mutant (A241T) expression plasmid p-PIA241T, a single mutant (M574V) expression plasmid p-PIM574V, and a quintuple mutant (A554P/M277I/D268A/A549P/A580T) expression plasmid p-PI5M were obtained. In addition, site-directed mutagenesis was introduced into p-PI5M, and optimization was performed. A580T/A241T) expression plasmid p-PI6M and heptad mutant (A554P/M277I/D268S/A549P/A580T/A241T/M574V) expression plasmid p-PI7M were obtained.

実施例2(酵素の生成)
ネイティブ耐酸性イソアミラーゼ発現プラスミドp-PI、一重変異体(D268S)発現プラスミドp-PID268S、一重変異体(A241T)発現プラスミドp-PIA241T、一重変異体(M574V)発現プラスミドp-PIM574V、五重変異体(A554P/M277I/D268A/A549P/A580T)発現プラスミドp-PI5M、最適化 五重変異体(A554P/M277I/D268S/A549P/A580T)発現プラスミドp-PI5Ms、六重変異体(A554P/M277I/D268S/A549P/A580T/A241T)発現プラスミドp-PI6M、七重変異体(A554P/M277I/D268S/A549P/A580T/A241T/M574V)発現プラスミドp-PI7Mにより大腸菌DH5α株を形質転換し、それぞれのイソアミラーゼを生産する大腸菌株を取得した。これらの大腸菌を30μg/mLのクロラムフェニコールを含むLB培地(酵母エキス 0.5%、トリプトン1.0%、塩化ナトリウム 0.5%、IPTG 0.1mM pH7.2)で、30℃3日培養し、培養液1Lを得た。超音波により菌体を破砕後、遠心分離(10,000g、10分間)を行い、上清をUF濃縮(旭化成社製 AIPモジュール)により、1,000U/mLとなるように濃縮した。これらを0.2μmのポアサイズの膜で除菌することにより、ネイティブ耐酸性イソアミラーゼ、一重変異体(D268S)イソアミラーゼ、一重変異体(A241T)イソアミラーゼ、一重変異体(M574V)イソアミラーゼ、五重変異体(A554P/M277I/D268A/A549P/A580T)イソアミラーゼ、最適化 五重変異体(A554P/M277I/D268S/A549P/A580T)イソアミラーゼ、六重変異体(A554P/M277I/D268S/A549P/A580T/A241T)イソアミラーゼ、七重変異体(A554P/M277I/D268S/A549P/A580T/A241T/M574V)イソアミラーゼの酵素溶液とした。
Example 2 (Enzyme production)
Native acid-resistant isoamylase expression plasmid p-PI, single mutant (D268S) expression plasmid p-PID268S, single mutant (A241T) expression plasmid p-PIA241T, single mutant (M574V) expression plasmid p-PIM574V, quintuple mutant (A554P/M277I/D268A/A549P/A580T) expression plasmid p-PI5M, optimized Quintuplet mutant (A554P/M277I/D268S/A549P/A580T) expression plasmid p-PI5Ms, sextuple mutant (A554P/M277I/ D268S/A549P/A580T/A241T) expression plasmid p-PI6M, heptad mutant (A554P/M277I/D268S/A549P/A580T/A241T/M574V) expression plasmid p-PI7M was used to transform E. coli DH5α strain, and each isoamylase We obtained an E. coli strain that produces . These E. coli were incubated at 30°C in LB medium (yeast extract 0.5%, tryptone 1.0%, sodium chloride 0.5%, IPTG 0.1mM pH 7.2) containing 30 μg/mL chloramphenicol. The cells were cultured for 1 day to obtain 1 L of culture solution. After crushing the bacterial cells with ultrasound, centrifugation (10,000 g, 10 minutes) was performed, and the supernatant was concentrated to 1,000 U/mL using UF concentration (AIP module manufactured by Asahi Kasei Corporation). By sterilizing these with a membrane with a pore size of 0.2 μm, native acid-resistant isoamylase, single mutant (D268S) isoamylase, single mutant (A241T) isoamylase, single mutant (M574V) isoamylase, and five Double mutant (A554P/M277I/D268A/A549P/A580T) isoamylase, optimized Quintuplet mutant (A554P/M277I/D268S/A549P/A580T) isoamylase, sextuple mutant (A554P/M277I/D268S/A549P/ An enzyme solution of A580T/A241T) isoamylase and a 7-fold mutant (A554P/M277I/D268S/A549P/A580T/A241T/M574V) isoamylase were prepared.

実施例3(各変異体の熱安定性向上)
実施例2で調製した各酵素溶液を40℃、50℃、55℃、57.5℃、60℃、62.5℃、65℃に10分間保ったのちに氷冷し、残存活性を測定した。各温度における残存活性のプロットより作成された近似式を用いて残存活性が50%になる温度を算出し、この温度をネイティブ耐酸性イソアミラーゼと比較した場合に、増加する度合いを耐熱化度とした。七重変異体のアミノ酸配列を配列番号4に示す。
Example 3 (Improvement of thermal stability of each mutant)
Each enzyme solution prepared in Example 2 was kept at 40°C, 50°C, 55°C, 57.5°C, 60°C, 62.5°C, and 65°C for 10 minutes, cooled on ice, and residual activity was measured. . The temperature at which the residual activity becomes 50% is calculated using an approximate formula created from a plot of the residual activity at each temperature, and when this temperature is compared with that of the native acid-resistant isoamylase, the degree of increase is defined as the degree of thermostability. did. The amino acid sequence of the heptad mutant is shown in SEQ ID NO: 4.

<活性測定方法>
イソアミラーゼの活性測定法は、以下のとおりである。
0.5%ワキシーコーンスターチ溶液0.35mLに、0.5Mの酢酸緩衝液(pH4.5)0.1mLを混合し、適時希釈した酵素液を0.1mL加え、45℃で15分間反応させる。その後、0.1N HClにて5倍希釈したヨード溶液(0.05Mヨウ素を含む0.5Mヨウ化カリウム溶液)0.5mLを加えて酵素反応を止め、10mLの水を加えて十分に撹拌した後、分光光度計を用いて610nmで測定する。酵素活性の単位は、上記条件下で1分間に0.01吸光度を増加する酵素量を1単位とした。
その結果、図1及び表1に示すように、一重変異体(D268S)で約2.9℃、一重変異体(A241T)で約2.1℃、一重変異体(M574V)で約3.4℃、五重変異体(A554P/M277I/D268A/A549P/A580T)で約6.0℃、最適化五重変異体(A554P/M277I/D268S/A549P/A580T)で約6.8℃、六重変異体(A554P/M277I/D268S/A549P/A580T/A241T)で約7.1℃、七重変異体(A554P/M277I/D268S/A549P/A580T/A241T/M574V)で約8.2℃の耐熱化度の向上が確認された。
<Activity measurement method>
The method for measuring the activity of isoamylase is as follows.
Mix 0.1 mL of 0.5 M acetate buffer (pH 4.5) with 0.35 mL of 0.5% waxy corn starch solution, add 0.1 mL of appropriately diluted enzyme solution, and react at 45° C. for 15 minutes. Thereafter, 0.5 mL of an iodine solution (0.5 M potassium iodide solution containing 0.05 M iodine) diluted 5 times with 0.1 N HCl was added to stop the enzyme reaction, and 10 mL of water was added and thoroughly stirred. Afterwards, it is measured at 610 nm using a spectrophotometer. The unit of enzyme activity was defined as the amount of enzyme that increases the absorbance by 0.01 per minute under the above conditions.
As a result, as shown in Figure 1 and Table 1, the single mutant (D268S) was approximately 2.9°C, the single mutant (A241T) was approximately 2.1°C, and the single mutant (M574V) was approximately 3.4°C. °C, about 6.0°C for the quintuple mutant (A554P/M277I/D268A/A549P/A580T), and about 6.8°C for the optimized quintuple mutant (A554P/M277I/D268S/A549P/A580T), sextuplet. The degree of heat resistance is approximately 7.1°C for the mutant (A554P/M277I/D268S/A549P/A580T/A241T) and approximately 8.2°C for the heptad mutant (A554P/M277I/D268S/A549P/A580T/A241T/M574V). improvement was confirmed.

実施例4(デンプンの糖化)
デンプンの糖化として、還元糖遊離試験を行った。10mM酢酸緩衝液(pH4.5)に溶性デンプンを30%(重量/重量)となるように加温溶解し、(1)0.05mg/mLに溶解したグルコアミラーゼ(和光純薬株式会社製)を30%溶性デンプン1gあたり20mg及び五重変異体イソアミラーゼを30%溶性デンプン1gあたり125U添加したもの、(2)グルコアミラーゼを30%溶性デンプン1gあたり20mg及び六重変異体イソアミラーゼを30%溶性デンプン1gあたり125U添加したもの、(3)グルコアミラーゼを30%溶性デンプン1gあたり20mg及び七重変異体イソアミラーゼを30%溶性デンプン1gあたり125U添加したものそれぞれを55℃、60℃、62.5℃で16時間反応させた。
100℃、5分間加熱し反応を停止させ、生成した還元糖量について、以下に示すDNS法にて測定した。
Example 4 (Saccharification of starch)
As for starch saccharification, a reducing sugar release test was conducted. Dissolve soluble starch in 10 mM acetate buffer (pH 4.5) by heating to a concentration of 30% (weight/weight), and (1) glucoamylase (manufactured by Wako Pure Chemical Industries, Ltd.) dissolved at 0.05 mg/mL. (2) glucoamylase at 20 mg/g of 30% soluble starch and quintuple mutant isoamylase at 125 U/g of 30% soluble starch; (2) glucoamylase at 20 mg/g of 30% soluble starch and 30% sextuple mutant isoamylase; (3) 20 mg of glucoamylase per 1 g of 30% soluble starch and 125 U of 7-fold mutant isoamylase per 1 g of 30% soluble starch were added at 55°C, 60°C, and 62.5°C, respectively. The reaction was carried out at ℃ for 16 hours.
The reaction was stopped by heating at 100° C. for 5 minutes, and the amount of reducing sugar produced was measured by the DNS method shown below.

<測定方法(DNS法)>
還元糖量の測定法は、以下のとおりである。
DNS(3,5-ジニトロサリチル酸)溶液1.5mLに、適時希釈したサンプル液を0.5mL加えた後に撹拌し、沸騰水中で5分間反応させる。水冷後、4mLの水を加えて十分に撹拌した後、分光光度計を用いて540nmで測定する。還元糖量はグルコース溶液を用いて作製した検量線より算出した。DNS溶液は、1%DNS溶液4400mLに4.5%水酸化ナトリウム溶液を1500mLとロッセル塩1275g溶解した後、別に調製したフェノール溶液(1%フェノール、2.44%水酸化ナトリウム)を345mLと、炭酸水素ナトリウムを34.5g加えて撹拌溶解し、2日間暗所保存後、ろ紙にて濾過したものを使用した。
その結果を表2に示した。五重変異体イソアミラーゼを用いた55℃反応において得られた還元糖量を100%としたとき、六重変異体イソアミラーゼを用いた際は102%、七重変異体イソアミラーゼを用いた際は102%に向上した。また、60℃反応においては、五重変異体イソアミラーゼでは100%と変化がないのに対して、六重変異体イソアミラーゼを用いた際は102%、七重変異体イソアミラーゼでは105%に向上した。さらに、62.5℃反応においては、五重変異体イソアミラーゼでは98%に低下したのに対して、六重変異体イソアミラーゼを用いた際は99%、七重変異体イソアミラーゼでは99%であった。したがって、五重変異体イソアミラーゼに比べて、六重変異体又は七重変異体イソアミラーゼを使用した場合の方が明らかに還元糖生成量の向上が認められた。さらに、55℃から60℃の温度上昇に伴って五重変異体イソアミラーゼは枝切り効果に変化が無いのに対し、六重変異体又は七重変異体イソアミラーゼは枝切り効果が向上し、歩留りの向上が認められたことから、変異による熱安定性効果が確認された。
<Measurement method (DNS method)>
The method for measuring the amount of reducing sugar is as follows.
Add 0.5 mL of the appropriately diluted sample solution to 1.5 mL of DNS (3,5-dinitrosalicylic acid) solution, stir, and react in boiling water for 5 minutes. After cooling with water, 4 mL of water is added and stirred thoroughly, followed by measurement at 540 nm using a spectrophotometer. The amount of reducing sugar was calculated from a calibration curve prepared using a glucose solution. The DNS solution was prepared by dissolving 1500 mL of 4.5% sodium hydroxide solution and 1275 g of Rosselle's salt in 4400 mL of 1% DNS solution, then adding 345 mL of a separately prepared phenol solution (1% phenol, 2.44% sodium hydroxide), 34.5 g of sodium hydrogen carbonate was added and dissolved with stirring, stored in the dark for 2 days, filtered through filter paper, and used.
The results are shown in Table 2. When the amount of reducing sugar obtained in the 55°C reaction using the 5-fold mutant isoamylase is taken as 100%, when the 6-fold mutant isoamylase is used, it is 102%, and when the 7-fold mutant isoamylase is used, it is 102%. This has improved to 102%. In addition, in the 60°C reaction, the 5-fold mutant isoamylase showed no change at 100%, while the 6-fold mutant isoamylase improved to 102%, and the 7-fold mutant isoamylase improved to 105%. did. Furthermore, in the reaction at 62.5°C, the rate decreased to 98% with the 5-fold mutant isoamylase, 99% with the 6-fold mutant isoamylase, and 99% with the 7-fold mutant isoamylase. there were. Therefore, compared to the five-fold mutant isoamylase, it was clearly observed that the amount of reducing sugar produced was improved when the six-fold or seven-fold mutant isoamylase was used. Furthermore, as the temperature increases from 55°C to 60°C, the debranching effect of the 5-fold mutant isoamylase does not change, whereas the debranching effect of the 6-fold or 7-fold mutant isoamylase improves and the yield increases. Since an improvement in the temperature was observed, the thermostability effect of the mutation was confirmed.

Figure 0007433246000001
Figure 0007433246000001

Figure 0007433246000002
Figure 0007433246000002

Claims (10)

配列番号1で表されるアミノ酸配列からなるイソアミラーゼ、又は配列番号1で表されるアミノ酸配列において1~数個のアミノ酸残基が欠失、置換又は挿入されたアミノ酸配列であって、配列番号1で表されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列からなるイソアミラーゼにおいて、D268S、A241T及びM574Vから選ばれる1又は2以上のアミノ酸変異を有するイソアミラーゼ。 An isoamylase consisting of the amino acid sequence represented by SEQ ID NO: 1, or an amino acid sequence in which one to several amino acid residues are deleted, substituted, or inserted in the amino acid sequence represented by SEQ ID NO: 1, and SEQ ID NO: An isoamylase consisting of an amino acid sequence having 90 % or more sequence identity with the amino acid sequence represented by 1, which has one or more amino acid mutations selected from D268S, A241T and M574V. さらに、A554P、M277I、A549P及びA580Tから選ばれる1又は2以上のアミノ酸変異を有する請求項記載のイソアミラーゼ。 The isoamylase according to claim 1 , further having one or more amino acid mutations selected from A554P, M277I, A549P and A580T. さらに、A554P、M277I、A549P及びA580Tのアミノ酸変異を有する請求項記載のイソアミラーゼ。 The isoamylase according to claim 1 , further having amino acid mutations A554P, M277I, A549P and A580T. アミノ酸変異が、A554P/M277I/D268S/A549P/A580T、A554P/M277I/D268S/A549P/A580T/A241T、及びA554P/M277I/D268S/A549P/A580T/A241T/M574Vから選ばれる変異を含む変異である請求項1~のいずれか1項記載のイソアミラーゼ。 A claim that the amino acid mutation is a mutation selected from A554P/M277I/D268S/A549P/A580T, A554P/M277I/D268S/A549P/A580T/A241T, and A554P/M277I/D268S/A549P/A580T/A241T/M574V The isoamylase according to any one of items 1 to 3 . 請求項1~のいずれか1項記載のイソアミラーゼをコードする遺伝子。 A gene encoding the isoamylase according to any one of claims 1 to 4 . 請求項記載の遺伝子を有する組み換えベクター。 A recombinant vector comprising the gene according to claim 5 . 請求項記載の組み換えベクターで形質転換した形質転換体。 A transformant transformed with the recombinant vector according to claim 6 . 請求項記載の形質転換体を培養して、該培養物からイソアミラーゼを採取することを特徴とするイソアミラーゼの製造法。 A method for producing isoamylase, which comprises culturing the transformant according to claim 7 and collecting isoamylase from the culture. 請求項1~のいずれか1項記載のイソアミラーゼを含有するデンプン糖化用酵素組成物。 An enzyme composition for starch saccharification containing the isoamylase according to any one of claims 1 to 4 . さらに、β-アミラーゼ、α-アミラーゼ及びグルコアミラーゼから選ばれる酵素を含有する請求項記載のデンプン糖化用酵素組成物。 The enzyme composition for starch saccharification according to claim 9 , further comprising an enzyme selected from β-amylase, α-amylase, and glucoamylase.
JP2020565167A 2019-01-09 2020-01-08 Thermostable isoamylase Active JP7433246B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2019002159 2019-01-09
JP2019002159 2019-01-09
PCT/JP2020/000255 WO2020145288A1 (en) 2019-01-09 2020-01-08 Heat-resistant isoamylase

Publications (2)

Publication Number Publication Date
JPWO2020145288A1 JPWO2020145288A1 (en) 2021-11-25
JP7433246B2 true JP7433246B2 (en) 2024-02-19

Family

ID=71521675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020565167A Active JP7433246B2 (en) 2019-01-09 2020-01-08 Thermostable isoamylase

Country Status (3)

Country Link
JP (1) JP7433246B2 (en)
AR (1) AR117781A1 (en)
WO (1) WO2020145288A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002519054A (en) 1998-07-02 2002-07-02 ノボザイムス アクティーゼルスカブ Starch debranching enzyme
WO2017204317A1 (en) 2016-05-27 2017-11-30 合同酒精株式会社 Heat resistant isoamylase

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002519054A (en) 1998-07-02 2002-07-02 ノボザイムス アクティーゼルスカブ Starch debranching enzyme
WO2017204317A1 (en) 2016-05-27 2017-11-30 合同酒精株式会社 Heat resistant isoamylase

Also Published As

Publication number Publication date
AR117781A1 (en) 2021-08-25
WO2020145288A1 (en) 2020-07-16
JPWO2020145288A1 (en) 2021-11-25

Similar Documents

Publication Publication Date Title
EP2825643B1 (en) Variant alpha amylases with enhanced activity on starch polymers
JP3025627B2 (en) Liquefied alkaline α-amylase gene
JP4199422B2 (en) Polypeptide
EP2290060A1 (en) Alpha-amylase variants
JPH04500756A (en) Bacterial mutant α-amylase with high stability to heat, acid and/or alkali
JP6505240B2 (en) Method of producing and using truncated pullulanase
CN110423737B (en) Heat-resistant alpha-amylase derived from geobacillus stearothermophilus and application thereof
CN114317498A (en) Alpha-transglucosidase mutant and application thereof
JP7433246B2 (en) Thermostable isoamylase
JP6615338B2 (en) Thermostable isoamylase
US11104909B2 (en) α-amylase variant and use thereof
JP3025625B2 (en) Alkaline pullulanase gene having alkaline α-amylase activity
US11913053B2 (en) Application of trehalase in fermentative production
CN107603965B (en) Acid amylase mutant with improved thermal stability as well as preparation method and application thereof
US10647970B2 (en) L-type amylase variant and use thereof
JP6585078B2 (en) Thermostable isoamylase
KR101014802B1 (en) Method for producing glucose using debranching enzyme complex
JP4372986B2 (en) Alkaline pullulanase
KR102312806B1 (en) Amylases having resistance to starch decomposition activity derived from Bifidobacterium genus and uses thereof
WO2020213604A1 (en) NOVEL β-AMYLASE AND METHOD FOR UTILIZATION AND PRODUCTION THEREOF
CN113528487A (en) Method for improving heat stability of xylanase through iterative saturation mutation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240206

R150 Certificate of patent or registration of utility model

Ref document number: 7433246

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150