JP7431500B2 - Air conditioner air temperature equalization structure - Google Patents

Air conditioner air temperature equalization structure Download PDF

Info

Publication number
JP7431500B2
JP7431500B2 JP2018228893A JP2018228893A JP7431500B2 JP 7431500 B2 JP7431500 B2 JP 7431500B2 JP 2018228893 A JP2018228893 A JP 2018228893A JP 2018228893 A JP2018228893 A JP 2018228893A JP 7431500 B2 JP7431500 B2 JP 7431500B2
Authority
JP
Japan
Prior art keywords
outside air
baffle plate
air
heating coil
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018228893A
Other languages
Japanese (ja)
Other versions
JP2020091074A (en
Inventor
俊一 冨岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanki Engineering Co Ltd
Original Assignee
Sanki Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanki Engineering Co Ltd filed Critical Sanki Engineering Co Ltd
Priority to JP2018228893A priority Critical patent/JP7431500B2/en
Publication of JP2020091074A publication Critical patent/JP2020091074A/en
Application granted granted Critical
Publication of JP7431500B2 publication Critical patent/JP7431500B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Duct Arrangements (AREA)

Description

本発明は、加熱コイルの下流側に冷却コイルを備えた外気取入空調機において、加熱コイルから冷却コイルに流れる空気の温度分布を均一化するための構造に関する。 The present invention relates to a structure for uniformizing the temperature distribution of air flowing from the heating coil to the cooling coil in an outside air intake air conditioner equipped with a cooling coil downstream of the heating coil.

工場など、室内の温度湿度条件を一定範囲に収める要求がありながら排気が多い建屋用途の空調方式には、室内へ温調した給気を送り込み室内熱負荷を処理した還気を吸い込む循環空調機と、外乱が多く夏期や冬期に熱処理負荷の多い外気と循環空気とを切り離して外気専用に温調を行う外気取入空調機(外気調和機)と、を備える空調方式の場合がある。また、工場などの空調方式では、工程の都合上、室内の外乱にならないよう温度湿度を一定範囲に収めるため、排気と同量の外気を温調して冷却除湿や加熱加湿を行う必要があり、空調機には一年中加熱用蒸気や冷却用冷水を流しておくことが要求される。 Air conditioning systems for buildings such as factories that require indoor temperature and humidity conditions to be kept within a certain range but require a large amount of exhaust air include circulation air conditioners that send temperature-controlled supply air into the room and suck in return air that has processed the indoor heat load. Some air conditioning systems include an outside air intake air conditioner (outside air conditioner) that separately controls the temperature of outside air by separating the outside air, which has a large heat treatment load during the summer and winter months when there are many disturbances, from the circulating air. In addition, in air conditioning systems in factories, it is necessary to temperature-regulate the same amount of outside air as the exhaust air and perform cooling dehumidification and heating humidification in order to keep the temperature and humidity within a certain range to prevent indoor disturbances due to process reasons. Air conditioners are required to run steam for heating and cold water for cooling all year round.

図5は外気取入空調機(外気調和機)の一例を示している。外気取入空調機1は、筐体2内に、外気取入れガラリから取り入れダクトを介して導入する外気Aを浄化するフィルタ3と、取り込んだ外気Aを予熱するための予熱コイル(第一の加熱コイル)4と、該第一の加熱コイル4の下流で外気Aを冷却する冷却コイル5と、該冷却コイル5の下流で外気Aを加熱するための加熱コイル(第二の加熱コイル)6と、気流を作り出すファン7を備えている。また、ここに示した例の場合、第二の加熱コイル6の下流側且つファン7の上流側の位置に蒸気式の加湿器8を備えている。 FIG. 5 shows an example of an outside air intake air conditioner (outside air conditioner). The outside air intake air conditioner 1 includes, in a housing 2, a filter 3 for purifying outside air A introduced from an outside air intake louver through an intake duct, and a preheating coil (first heating coil) for preheating the outside air A taken in. a cooling coil 5 for cooling the outside air A downstream of the first heating coil 4, and a heating coil (second heating coil) 6 for heating the outside air A downstream of the cooling coil 5. , and a fan 7 for generating airflow. In the example shown here, a steam type humidifier 8 is provided downstream of the second heating coil 6 and upstream of the fan 7.

フィルタ3は、例えば一対のロール間にフィルタが張り渡されたロール式のフィルタであり、外気(空気)Aに含まれる塵や埃の除去を行う。ある程度の稼働時間が経過すると目詰まりが生じるので、一方のロールから所定の長さのフィルタシートを繰り出すと共に、それまで使用していたフィルタシートを他方のロールに巻き取り、これを繰り返すことで長期間にわたり大気から取り入れた外気Aが同伴する塵埃の除塵性能を保つようになっている。 The filter 3 is, for example, a roll-type filter in which the filter is stretched between a pair of rolls, and removes dust and dirt contained in the outside air (air) A. After a certain amount of operating time, clogging will occur, so by unwinding a predetermined length of filter sheet from one roll and winding up the filter sheet that was previously being used on the other roll, repeating this process will increase the length of the filter sheet. The dust removal performance of the dust accompanying the outside air A taken in from the atmosphere is maintained over a period of time.

第一および第二の加熱コイル4,6は、熱媒を低圧蒸気とする蒸気コイルであって、金属等の熱伝導性の高い素材で形成されたチューブと、該チューブの外側に設けたフィンにより構成されている。前記チューブは、例えば外気Aの通過方向に対して上下あるいは左右に蛇行しつつ、外気Aの通過方向と交差する面を構成するように配置されており、この内部に加熱された高温(例えば、120℃~140℃程度)の蒸気を導入しつつ外面及び該外面に接触して延設されるフィンに外気Aを接触させることで、外気取入空調機1に取り込んだ外気Aを加熱するようになっている。 The first and second heating coils 4 and 6 are steam coils that use low-pressure steam as a heating medium, and are made of a tube made of a highly thermally conductive material such as metal, and fins provided on the outside of the tube. It is made up of. The tube is arranged to meander vertically or horizontally with respect to the passing direction of the outside air A, for example, and is arranged so as to form a surface that intersects with the passing direction of the outside air A, and a heated high temperature (for example, The outside air A taken into the outside air intake air conditioner 1 is heated by bringing the outside air A into contact with the outer surface and the fins extending in contact with the outside surface while introducing steam at a temperature of about 120° C. to 140° C. It has become.

また、冷却コイル5は、金属等により形成されたチューブと、該チューブの外側に設けたフィンにより構成されている。上下あるいは左右に蛇行する前記チューブの内部に冷水である冷媒を通しつつ、チューブおよびフィンの外面に外気Aを接触させることで、外気取入空調機1に取り込んだ外気Aを冷却するようになっている。 The cooling coil 5 is composed of a tube made of metal or the like and fins provided on the outside of the tube. The outside air A taken into the outside air intake air conditioner 1 is cooled by letting the outside air A come into contact with the outer surfaces of the tubes and fins while passing a refrigerant, which is cold water, through the tubes that meander up and down or left and right. ing.

加湿器8は、流通する外気Aに対し加湿を行う装置であり、第二の加熱コイル6を通過した後の外気Aに対して蒸気を噴射し、外気Aの湿度を上昇させるようになっている。 The humidifier 8 is a device that humidifies the circulating outside air A, and is designed to increase the humidity of the outside air A by injecting steam to the outside air A after passing through the second heating coil 6. There is.

夏季等、外気の乾球温度および絶対湿度が高い外気条件下においては、冷却コイル5に冷水を通して冷却するが、外気Aを導入する先の室内の乾球温度条件によってはさらに第二の加熱コイル6に蒸気を熱媒として通しつつ所定温度まで外気Aを加熱してファン7を作動させる(第一の加熱コイル4の運転は、外気温が十分に高ければ不要である)。ファン7の作動により、外気取入れガラリと外気ダクトを介して接続される筐体2の入口開口2aから導入された外気Aは、フィルタ3により塵や埃を除去されたうえで冷却コイル5を通過し、冷却コイル5のチューブ内を流通する冷水と熱交換して冷却される。そして外気Aは、冷却コイル5により外気Aの露点以下に冷却されて冷却コイル表面に外気Aの水分が凝結し、凝結した水分は冷却コイル5の表面に結露する。飽和水蒸気分圧以上の状態で外の系に凝縮して水分が奪われたことにより絶対湿度を下げられた外気Aは、さらに下流側の第二の加熱コイル6を通過し、第二の加熱コイル6のチューブ内を流通する蒸気と熱交換して再び加熱される。こうして、適当な温度および湿度に調和された外気Aは、ファン7から図示しない空調対象の室内等へ供給される。 Under outdoor conditions such as summer when the dry bulb temperature and absolute humidity of the outdoor air are high, cold water is passed through the cooling coil 5 to cool the room, but depending on the dry bulb temperature conditions in the room where the outside air A is introduced, a second heating coil The fan 7 is operated by heating the outside air A to a predetermined temperature while passing steam through the fan 6 as a heating medium (operation of the first heating coil 4 is not necessary if the outside temperature is sufficiently high). Through the operation of the fan 7, outside air A is introduced from the inlet opening 2a of the housing 2, which is connected to the outside air intake louver through the outside air duct, and after removing dust and dirt through the filter 3, it passes through the cooling coil 5. Then, it is cooled by exchanging heat with the cold water flowing through the tube of the cooling coil 5. The outside air A is cooled by the cooling coil 5 to a temperature below the dew point of the outside air A, and moisture in the outside air A condenses on the surface of the cooling coil, and the condensed moisture condenses on the surface of the cooling coil 5. The outside air A, whose absolute humidity has been lowered by condensing in the outside system at a saturated water vapor partial pressure or higher and having moisture taken away, passes through the second heating coil 6 further downstream, and is heated by the second heating coil 6. It exchanges heat with the steam flowing through the tube of the coil 6 and is heated again. In this way, the outside air A that has been adjusted to an appropriate temperature and humidity is supplied from the fan 7 to a room to be air-conditioned (not shown).

また、冬季等、外気温が低い条件下においては、第二の加熱コイル6に加え、予熱コイルである第一の加熱コイル4にも蒸気を通しつつ外気Aを加熱し、下流にある冷却コイル5の冷媒の凍結防止を図りながらファン7を作動させる。冷却コイル5の運転は、外気の絶対湿度が十分に低ければ不要である。だが日差により同じ日に外気温度が上昇し冷却が必要になることがままあり、冷却コイル5の冷媒を抜いてしまうことはできない。ファン7の作動により、筐体2の入口開口2aから導入された外気Aは、フィルタ3により塵や埃を除去されたうえで第一の加熱コイル4を通過し、第一の加熱コイル4のチューブ内を流通する蒸気と熱交換して加熱される。さらに、外気Aは下流側の第二の加熱コイル6を通過し、第二の加熱コイル6のチューブ内を流通する蒸気と熱交換して十分な温度まで加熱される。要求される湿度に対して外気温の絶対湿度が不足している場合には、加湿器8を作動させ、外気Aの湿度を上昇させる。適当な温度および湿度に調和された外気Aは、ファン7から図示しない空調対象の室内等へ供給される。 In addition, under conditions where the outside temperature is low, such as in winter, the outside air A is heated while passing steam through the first heating coil 4, which is a preheating coil, in addition to the second heating coil 6, and the cooling coil located downstream The fan 7 is operated while trying to prevent the refrigerant No. 5 from freezing. Operation of the cooling coil 5 is unnecessary if the absolute humidity of the outside air is sufficiently low. However, due to daily differences, the outside temperature often rises on the same day and cooling becomes necessary, and it is not possible to drain the refrigerant from the cooling coil 5. Through the operation of the fan 7, outside air A introduced from the inlet opening 2a of the housing 2 is filtered to remove dirt and dust by the filter 3, and then passes through the first heating coil 4. It is heated by exchanging heat with the steam flowing inside the tube. Furthermore, the outside air A passes through the second heating coil 6 on the downstream side, exchanges heat with the steam flowing in the tube of the second heating coil 6, and is heated to a sufficient temperature. When the absolute humidity of the outside air temperature is insufficient for the required humidity, the humidifier 8 is activated to increase the humidity of the outside air A. The outside air A, which has been adjusted to an appropriate temperature and humidity, is supplied from the fan 7 to a room to be air-conditioned (not shown).

尚、この種の空調機に関連する技術を記載した文献としては、例えば、下記の特許文献1等がある。 Note that, as a document describing technology related to this type of air conditioner, there is, for example, the following Patent Document 1.

特開2011-174650号公報Japanese Patent Application Publication No. 2011-174650

上述したような外気取入空調機1の運転においては、時季や条件によっては使用されない装置がある。すなわち、十分に外気温が高ければ第一の加熱コイル4の運転は不要であるし、外気温が低い時季は冷却コイル5の運転は行われない。しかしながら、これらの装置は、一日のうちのある時間は使用されない場合があったとしても、天候や低気圧などの移り変わりで一日のうちでも大きく温度湿度が変化する場合がある外気Aを室内の所定の温度湿度に温調する必要上、コイル内の冷媒や熱媒が次の瞬間に流されることがある。これにより時季や条件にかかわらず、たとえ制御弁により流動作動しておらず冷媒や熱媒が停滞していたとしても、第一の加熱コイル4や冷却コイル5を外気Aが通過することになる。 In the operation of the outside air intake air conditioner 1 as described above, some devices may not be used depending on the season or conditions. That is, if the outside temperature is sufficiently high, it is not necessary to operate the first heating coil 4, and when the outside temperature is low, the cooling coil 5 is not operated. However, even if these devices are not used for a certain period of the day, they do not allow outside air A into the room, where the temperature and humidity can change significantly even during the day due to changes in the weather or low pressure. In order to control the temperature to a predetermined temperature and humidity, the refrigerant or heat medium inside the coil may be flowed out at the next moment. This allows outside air A to pass through the first heating coil 4 and cooling coil 5 regardless of the season or conditions, even if the control valve does not operate the flow and the refrigerant or heat medium is stagnant. .

ここで、冬季等において、冷却コイル5のチューブ内に冷媒である水が留まったままの状態で外気取入空調機1を運転すると、冷たい外気Aの流れによって熱を奪われた冷却コイル5の内部の水が凍結し、チューブの変形や破損を招く場合がある。こういった事態は無論、冷却コイル5の上流側に位置する第一の加熱コイル4で外気Aを均一に十分に加熱すれば防ぎ得るものではあるが、特に蒸気式の加熱コイルにおいては、過熱蒸気が気体として加熱コイル内に導入されても、過熱蒸気の保有する熱を加熱コイルを介して外気Aに与えると過熱蒸気自身は凝縮して液体の水に相変化する。そして相変化した水は加熱コイル内の下部に重力の作用で溜まることになり、上部には高温の蒸気、下部には低温の水となって相がはっきり分離しがちになる。このため空気の加熱性能に関して部分ごとのばらつきが生じやすいという事情がある。チューブ内を流通する蒸気は、チューブを水平に延長往復させても、鉛直に延長往復させても、ブロック部分を含め熱交換に伴った相変化によって気体の蒸気は密度の大きく異なる液体の水になるので、上下にチューブ内温度差が生じ、また相対温度差の小ささやトラップでの間欠排水により、コイル下部の熱交換率が低下する。とりわけ、チューブが水平左右に蛇行するように配置され、上方から蒸気を導入して下方から抜き出すようになっている場合、加熱コイルの下方における熱交換効率が低くなりがちである。 Here, if the outside air intake air conditioner 1 is operated in a state where water, which is a refrigerant, remains in the tube of the cooling coil 5 in winter, etc., the cooling coil 5 loses heat due to the flow of cold outside air A. The water inside may freeze, causing deformation or damage to the tube. Of course, this kind of situation can be prevented if the outside air A is sufficiently and uniformly heated by the first heating coil 4 located upstream of the cooling coil 5, but especially in steam-type heating coils, overheating Even if the steam is introduced into the heating coil as a gas, when the heat possessed by the superheated steam is applied to the outside air A via the heating coil, the superheated steam itself condenses and undergoes a phase change to liquid water. The phase-changed water then accumulates at the bottom of the heating coil due to the action of gravity, and the phases tend to separate clearly, with high-temperature steam at the top and low-temperature water at the bottom. For this reason, there is a situation in which variations in air heating performance tend to occur from part to part. Whether the steam flowing in the tube is extended horizontally and reciprocated, or vertically extended and reciprocated, the gas vapor changes to liquid water with a greatly different density due to phase changes associated with heat exchange, including the block part. As a result, a temperature difference occurs between the upper and lower tubes, and the heat exchange efficiency at the lower part of the coil decreases due to the small relative temperature difference and intermittent drainage in the trap. In particular, when the tubes are arranged to meander horizontally left and right, and steam is introduced from above and extracted from below, the heat exchange efficiency below the heating coil tends to be low.

よって、図5に示す如き外気取入空調機1を冬季に運転すると、場合によっては第一の加熱コイル4を運転しても、第一の加熱コイル4の下寄りの位置を通過する外気Aに関しては外気温からあまり上昇せず、低い温度のまま冷却コイル5に到達することになる。第一の加熱コイル4への熱量の供給は、例えば第一の加熱コイル4の下流側における外気Aの温度に基づいて蒸気の供給量を調整することによって制御されるが、ここで制御のパラメータとして用いる空気温度の測定点は、多くの場合、下流側から見て第一の加熱コイル4の上下の中央あたりや下流の筐体上面から差し込まれた位置などに設定される。このため、第一の加熱コイル4の下部を通過する外気Aの温度は、外気Aの温度制御に考慮されない。 Therefore, when the outside air intake air conditioner 1 as shown in FIG. 5 is operated in winter, even if the first heating coil 4 is operated, the outside air A passing through the lower position of the first heating coil 4 may The temperature does not rise much from the outside temperature, and reaches the cooling coil 5 at a low temperature. The supply of heat to the first heating coil 4 is controlled, for example, by adjusting the amount of steam supplied based on the temperature of the outside air A downstream of the first heating coil 4. In most cases, the air temperature measurement point used as the heating coil 4 is set at the vertical center of the first heating coil 4 when viewed from the downstream side, or at a position inserted from the upper surface of the downstream casing. Therefore, the temperature of the outside air A passing through the lower part of the first heating coil 4 is not taken into account in the temperature control of the outside air A.

また、冷却コイル5において凍結の発生が懸念されるほど外気温が低い場合には、第一の加熱コイル4の下流側の測定点にて測定される外気Aの温度によらず、第一の加熱コイル4へ導入される蒸気の制御弁を強制的に開放し、冷却コイル5に流れる外気Aの温度を上昇させる方法もあるが、このような制御を行った場合、要求される外気Aの温度に対して過剰な量の熱を第一の加熱コイル4で供給してしまう状態や、筐体2の出口開口2bで所定の温度湿度にするため冷却コイル5で過剰な熱を打ち消す冷媒の冷熱を供給する状態となり、温熱と冷熱の生成エネルギーが非効率的である。 In addition, when the outside temperature is so low that there is a concern that freezing may occur in the cooling coil 5, the first There is also a method of forcibly opening the control valve for the steam introduced into the heating coil 4 to raise the temperature of the outside air A flowing into the cooling coil 5, but when such control is performed, the required amount of outside air A is There may be situations where the first heating coil 4 supplies an excessive amount of heat relative to the temperature, or where the cooling coil 5 cancels out the excess heat in order to maintain a predetermined temperature and humidity at the outlet opening 2b of the housing 2. The state is such that cold heat is supplied, and the energy generated for hot and cold heat is inefficient.

本発明は、斯かる実情に鑑み、簡単な構造でエネルギーの余分な供給を回避しつつ冷却コイルの凍結を効果的に防止し得る空調機内部の予熱セクション後流の空気温度均一化構造を提供しようとするものである。 In view of these circumstances, the present invention provides a structure for equalizing the air temperature downstream of the preheating section inside an air conditioner, which has a simple structure and can effectively prevent freezing of the cooling coil while avoiding excessive supply of energy. This is what I am trying to do.

本発明は、外気取入空調機に用いる空調機の空気温度均一化構造であって、
前記空調機の筐体内に、
外気ダクトを介して導入した外気を加熱するため、チューブに熱媒の過熱蒸気を流して過熱蒸気の保有する熱を外気に与えると過熱蒸気自身は凝縮して液体の水に相変化し下部に重力の作用で溜まる蒸気コイルとする第一の加熱コイルと、
前記加熱コイルの下流側に備えられ、冷水の流通するチューブを備えて外気を冷却する冷却コイルと、
前記加熱コイルと前記冷却コイルの間の外気の流路の上下のみを遮るよう、外気の流れに直交する同一の面に沿って配置された邪魔板と
を備え、
前記邪魔板を構成する上側の邪魔板および下側の邪魔板は、それぞれ下流側から見て第一の加熱コイルの幅方向全域を遮るだけの幅を有し
前記邪魔板を構成する上側の邪魔板および下側の邪魔板の高さは、前記加熱コイルの高さに対してそれぞれ5%以上15%以下であり、
導入した外気は筐体内を入口開口から出口開口へ至る一方向流れをなしながらも、前記第一の加熱コイルと前記冷却コイルの間の外気の流れは、前記邪魔板により上下を遮られ、部分毎に向きを曲げられ、外気が急縮小急拡大の状態を経て気流の乱れから渦が発生し空気全体が激しくかき乱されることにより混合させられることで、
前記第一の加熱コイルの下方におけると外気との熱交換効率の低さにより前記第一の加熱コイルの直後での外気温度が、流路の上側で高く、下側で低いという分布を解消し、均一化された温度の外気は下流の冷却コイルへ流される
ことを特徴とする空調機の空気温度均一化構造にかかるものである。
The present invention is an air temperature equalization structure for an air conditioner used in an outside air intake air conditioner,
Inside the housing of the air conditioner,
In order to heat the outside air introduced through the outside air duct , superheated steam as a heating medium is passed through the tube and the heat held by the superheated steam is given to the outside air.The superheated steam itself condenses and changes its phase to liquid water, which flows to the bottom of the tube. a first heating coil that is a steam coil that accumulates under the action of gravity;
a cooling coil that is provided downstream of the heating coil and includes a tube through which cold water flows to cool the outside air;
a baffle plate arranged along the same plane orthogonal to the flow of outside air so as to block only the upper and lower sides of the flow path of outside air between the heating coil and the cooling coil,
The upper baffle plate and the lower baffle plate constituting the baffle plate each have a width enough to block the entire width direction of the first heating coil when viewed from the downstream side ,
The heights of the upper baffle plate and the lower baffle plate constituting the baffle plate are each 5% or more and 15% or less of the height of the heating coil,
Although the introduced outside air flows in one direction from the inlet opening to the exit opening within the housing, the flow of outside air between the first heating coil and the cooling coil is blocked from above and below by the baffle plate, and only a portion The direction of the air is bent every time, and the outside air goes through a state of sudden contraction and expansion, and vortices are generated from the turbulence of the airflow, and the whole air is violently disturbed and mixed.
Due to the low heat exchange efficiency between the water and the outside air below the first heating coil, the outside air temperature immediately after the first heating coil no longer has a distribution of being high at the top of the flow path and low at the bottom. The outside air at a uniform temperature is then flowed to the downstream cooling coil.
This invention relates to an air temperature equalization structure for an air conditioner characterized by the following.

本発明の空調機の空気温度均一化構造において、前記上側の邪魔板は、前記筐体の天井に設けられた上部補強材に取付ブラケットを介して固定され、
前記下側の邪魔板は、前記筐体の床面に設けられた下部補強材に取付ブラケットを介して固定されることが好ましい。
In the air temperature equalization structure for an air conditioner according to the present invention, the upper baffle plate is fixed to an upper reinforcing member provided on the ceiling of the casing via a mounting bracket,
It is preferable that the lower baffle plate is fixed to a lower reinforcing member provided on a floor surface of the housing via a mounting bracket .

本発明の空調機の空気温度均一化構造によれば、簡単な構造でエネルギーの余分な供給を回避しつつ冷却コイルの凍結を効果的に防止し得るという優れた効果を奏し得る。 According to the air temperature equalization structure of the air conditioner of the present invention, it is possible to achieve the excellent effect of effectively preventing freezing of the cooling coil while avoiding excessive supply of energy with a simple structure.

本発明の第一実施例による空調機の構成を示す概略断面図である。1 is a schematic cross-sectional view showing the configuration of an air conditioner according to a first embodiment of the present invention. 第一実施例における邪魔板の取付構造を示す分解斜視図である。It is an exploded perspective view showing the attachment structure of the baffle plate in a first example. 第一実施例の空調機の空気温度の均一化性能を実証する試験における空気温度の測定点の配置を説明する斜視図である。FIG. 2 is a perspective view illustrating the arrangement of air temperature measurement points in a test to demonstrate the air temperature uniformity performance of the air conditioner of the first embodiment. 本発明の第二実施例による空調機の構成を示す概略断面図である。FIG. 2 is a schematic cross-sectional view showing the configuration of an air conditioner according to a second embodiment of the present invention. 従来の外気取入型の空調機の構成の一例を示す概略断面図である。FIG. 1 is a schematic cross-sectional view showing an example of the configuration of a conventional outside air intake type air conditioner.

以下、本発明の実施の形態を添付図面を参照して説明する。 Embodiments of the present invention will be described below with reference to the accompanying drawings.

図1、図2は本発明の空調機の空気温度均一化構造を適用した空調機の構成の一例を示しており、図中、図5と同一の符号を付した部分は同一物を表している。 Figures 1 and 2 show an example of the configuration of an air conditioner to which the air temperature equalization structure of the present invention is applied, and in the figures, parts with the same symbols as in Figure 5 represent the same parts. There is.

本第一実施例の基本的な構成は上記従来例(図5参照)と同様であり、図1に示す如く、空調機1の筐体2内に、外気取入れガラリから外気ダクトを介して導入される外気Aを浄化するロール式のフィルタ3、取り込んだ外気Aを予熱するための第一の加熱コイル4、外気Aを冷却する冷却コイル5、外気Aを再加熱するための第二の加熱コイル6、気流を作り出すファン7、蒸気式の加湿器8を備えている。 The basic configuration of the first embodiment is the same as that of the conventional example (see FIG. 5), and as shown in FIG. A roll-type filter 3 for purifying outside air A, a first heating coil 4 for preheating the taken outside air A, a cooling coil 5 for cooling outside air A, and a second heating coil for reheating outside air A. It is equipped with a coil 6, a fan 7 that creates airflow, and a steam-type humidifier 8.

そして、本第一実施例の場合、第一の加熱コイル4の下流側且つ冷却コイル5の上流側の位置に、冷却コイル5へ流れる外気Aの温度を均一化させるための邪魔板9を設置した点を特徴としている。 In the case of the first embodiment, a baffle plate 9 is installed downstream of the first heating coil 4 and upstream of the cooling coil 5 in order to equalize the temperature of the outside air A flowing to the cooling coil 5. It is characterized by the fact that

邪魔板9は、図1、図2に示す如く、外気Aの流路に対し、上部と下部とをそれぞれ遮る形で配置される。上部の邪魔板9aと下部の邪魔板9bは、それぞれ入口開口2aから出口開口2bへ至る外気Aの流れに直交するように配置され、互いに同一の面に沿って配置されている(尚、ここで「外気Aの流れに直交するような配置」「同一の面に沿った配置」とは、上下の邪魔板9a,9bが外気Aの流れ方向に対し正確に直交していること、また、互いに正確に面一をなしていることを必ずしも意味しない。邪魔板9a,9bは、後述するような外気Aの流れを曲げる作用を好適に発揮できればよく、それぞれのなす面の向きが外気Aの流れに直交する向きから多少ずれていたり、互いのなす面が多少不一致であったりしても問題はない)。筐体2によって形成される外気Aの流路は、図2に示す如く方形の断面形状を有しており、この流路に配置される第一の加熱コイル4は、全体として薄い直方体状の形状をなしている。上部および下部の邪魔板9a,9bは、それぞれ下流側から見て第一の加熱コイル4の幅方向全域を遮るだけの幅を有している。邪魔板9a,9bの高さは、それぞれ第一の加熱コイル4の高さに対して5%以上50%以下であり、より好適には3%以上25%以下、更に好適には5%以上15%以下である。この数値幅が好適であるのは、邪魔板9a,9bの高さ方向の寸法が小さすぎると後述する空気温度の均一化の効果が小さくなる一方、寸法が大きすぎると外気Aの流通にあたって圧力損失が過大になってしまうからである。 As shown in FIGS. 1 and 2, the baffle plate 9 is arranged so as to block the upper and lower parts of the flow path of the outside air A. The upper baffle plate 9a and the lower baffle plate 9b are arranged so as to be perpendicular to the flow of outside air A from the inlet opening 2a to the outlet opening 2b, and are arranged along the same plane. "Arrangement perpendicular to the flow of outside air A" and "arrangement along the same plane" mean that the upper and lower baffle plates 9a, 9b are exactly orthogonal to the flow direction of outside air A, and This does not necessarily mean that the baffles 9a and 9b are exactly flush with each other.The baffle plates 9a and 9b only need to suitably exhibit the effect of bending the flow of the outside air A, as will be described later, and the direction of their respective surfaces is such that the direction of the outside air A is There is no problem even if the direction is slightly deviated from the direction perpendicular to the flow, or if the surfaces formed by each other are slightly inconsistent). The flow path for outside air A formed by the casing 2 has a rectangular cross-sectional shape as shown in FIG. It has a shape. The upper and lower baffle plates 9a, 9b each have a width sufficient to block the entire widthwise area of the first heating coil 4 when viewed from the downstream side. The height of the baffle plates 9a, 9b is 5% or more and 50% or less of the height of the first heating coil 4, more preferably 3% or more and 25% or less, and still more preferably 5% or more. It is 15% or less. This numerical range is preferable because if the dimension in the height direction of the baffle plates 9a and 9b is too small, the effect of equalizing the air temperature, which will be described later, will be reduced, while if the dimension is too large, the pressure will be This is because the loss will be excessive.

上側の邪魔板9aは、第一の加熱コイル4の下流側に、下流側から見て第一の加熱コイル4の上端部を覆うように配置され、下側の邪魔板9bは、第一の加熱コイル4の下流側に、下流側から見て第一の加熱コイル4の下端部を覆うように配置される。上側の邪魔板9aの設置にあたっては、例えば図2に示す如く、筐体2の天井に流路方向に沿って設けられた上部補強材10に対し、直角三角形状の取付ブラケット11の底辺にあたる一辺を固定し、別の一辺に上側の邪魔板9aを固定すれば良い。また、下側の邪魔板9bの設置にあたっては、筐体2の床面に流路方向に沿って設けられた下部補強材12に対し、直角三角形状の取付ブラケット11の底辺にあたる一辺を固定し、別の一辺に下側の邪魔板9bを固定すれば良い。上部補強材10や下部補強材12に対する取付ブラケット11の固定や、取付ブラケット11に対する邪魔板9の固定は、例えば図示しないボルト等の締結を用いて行うことができるが、その他にも溶接や接着剤等によって行っても良い。尚、ここに説明した邪魔板9a,9bの固定方式は一例であって、外気Aの流路に対して適当な面をなすよう各邪魔板9を配置できる限り、この他にも種々の固定方式を採用し得ることは勿論である。 The upper baffle plate 9a is arranged on the downstream side of the first heating coil 4 so as to cover the upper end of the first heating coil 4 when viewed from the downstream side, and the lower baffle plate 9b is arranged on the downstream side of the first heating coil 4. It is arranged downstream of the heating coil 4 so as to cover the lower end of the first heating coil 4 when viewed from the downstream side. When installing the upper baffle plate 9a, for example, as shown in FIG. , and fix the upper baffle plate 9a to another side. In addition, when installing the lower baffle plate 9b, one side corresponding to the bottom of the right triangular mounting bracket 11 is fixed to the lower reinforcing member 12 provided on the floor of the housing 2 along the flow path direction. , the lower baffle plate 9b may be fixed to another side. The mounting bracket 11 can be fixed to the upper reinforcing member 10 and the lower reinforcing member 12, and the baffle plate 9 can be fixed to the mounting bracket 11 by, for example, using bolts (not shown), but other methods can also be used, such as welding or gluing. This may also be done using a drug or the like. The method of fixing the baffle plates 9a and 9b described here is just one example, and various fixing methods may be used as long as each baffle plate 9 can be arranged so as to form an appropriate surface with respect to the flow path of the outside air A. Of course, any other method may be adopted.

ここで、一般的な空調機においては、加熱コイルと、その下流側の冷却コイルとの間に、作業員が点検や整備を行うためのスペースが設けられていることが多い。したがって、本第一実施例の如き邪魔板9は、第一の加熱コイル4と冷却コイル5の間に容易に設置することができるし、既存の空調機であっても同様の邪魔板を容易に取り付けることができる。また、邪魔板9や取付ブラケット11といった部材は単純な構造で良いので、設置にあたって点検整備用のスペースを大きく侵食してしまうことはなく、点検や整備の作業に支障を来す心配はない。 Here, in general air conditioners, a space is often provided between the heating coil and the cooling coil on the downstream side for workers to perform inspection and maintenance. Therefore, the baffle plate 9 as in the first embodiment can be easily installed between the first heating coil 4 and the cooling coil 5, and a similar baffle plate can be easily installed even in an existing air conditioner. It can be attached to. Further, since the members such as the baffle plate 9 and the mounting bracket 11 may have a simple structure, the space for inspection and maintenance will not be greatly encroached on when installed, and there is no fear of hindering inspection and maintenance work.

このように、外気Aの流路に対して上下にそれぞれ邪魔板9a,9bを設置すると、第一の加熱コイル4を通過した外気Aのうち、流路の上側を流れる外気Aは上側の邪魔板9aに衝突して流れの向きを下方に曲げられ、流路の下側を流れる外気Aは下側の邪魔板9bに衝突して流れの向きを上方に曲げられる。上下に向きを変えられた流れ同士は、流路の中央部において衝突し、中央部を流れてきた外気Aと混ざり合うことになる。つまり、邪魔板9a,9bによって空調機1の空気流れ方向の断面で急激に流路面積が狭まりその後急激に拡がる急縮小急拡大の状況が発生する。このような形状の流路では流れる空気流において流路抵抗が発生するが、空気流が筐体の断面積により制限されている面速がある程度の範囲で一定である邪魔板の上流では、動圧がある程度の範囲で一定であり且つ静圧が少ない状況であったところ、邪魔板9a,9bに空気流がぶつかることになる急縮小部分で動圧が静圧に転換されたのち、流路の中央部で面速が上昇して静圧の一部が動圧に転換され、急拡大部分では速くなった動圧が急激に遅くなることで更に動圧(転換圧力)の一部が再度静圧に転換されるという圧力変動が生じる。このとき急縮小急拡大部分では気流の乱れから渦が発生し空気全体が激しくかき乱され、温度差による層を成すような分かれた流れを混合することとなる。この渦の発生エネルギーで全圧は少し消費される代わりに非常に良好に混合されることとなる。 In this way, when the baffle plates 9a and 9b are installed above and below the flow path of the outside air A, the outside air A flowing above the flow path out of the outside air A that has passed through the first heating coil 4 is blocked by the upper baffle. The flow direction is bent downward by colliding with the plate 9a, and the outside air A flowing below the flow path collides with the lower baffle plate 9b and the flow direction is bent upward. The vertically directed flows collide with each other at the center of the flow path, and mix with the outside air A flowing through the center. In other words, a situation of rapid contraction and expansion occurs in which the flow path area is suddenly narrowed in the cross section of the air conditioner 1 in the air flow direction due to the baffles 9a and 9b, and then rapidly expanded. In a flow path with such a shape, flow path resistance occurs in the flowing air, but upstream of the baffle where the air flow is limited by the cross-sectional area of the casing and the surface velocity is constant within a certain range, the movement When the pressure was constant within a certain range and the static pressure was low, the dynamic pressure was converted to static pressure at the rapidly contracting part where the airflow collided with the baffle plates 9a and 9b, and then the flow path In the center of the area, the surface velocity increases and part of the static pressure is converted to dynamic pressure, and in the rapidly expanding part, the fast dynamic pressure suddenly slows down, and a part of the dynamic pressure (conversion pressure) is converted again. Pressure fluctuations occur that are converted into static pressure. At this time, in the sudden contraction/expansion part, a vortex is generated due to the turbulence of the airflow, and the entire air is violently disturbed, and the separated flows forming layers due to temperature differences are mixed. The energy generated by this vortex consumes a little of the total pressure, but results in very good mixing.

上に説明したように、第一の加熱コイル4を稼働させる場合、該第一の加熱コイル4においては、位置によって外気Aとの熱交換効率にばらつきが生じやすく、その結果、加熱コイル4を通過した外気Aに、通過する位置によって温度の不均一が発生する。すなわち、加熱コイル4の直後における外気Aの温度は、おおむね流路の上側で高く、下側で低いという分布を示しがちである。ところが、本第一実施例の如く邪魔板9により部分毎に外気Aの流れの向きを曲げ、混合させれば、均一化された温度の外気Aが下流の冷却コイル5へ流れ込むことになる。 As explained above, when the first heating coil 4 is operated, the heat exchange efficiency with the outside air A tends to vary depending on the position of the first heating coil 4, and as a result, the heating coil 4 Temperature non-uniformity occurs in the passing outside air A depending on the position through which it passes. That is, the temperature of the outside air A immediately after the heating coil 4 tends to exhibit a distribution in which it is generally higher on the upper side of the flow path and lower on the lower side. However, if the flow direction of the outside air A is bent and mixed in each section by the baffle plate 9 as in the first embodiment, the outside air A having a uniform temperature will flow into the downstream cooling coil 5.

ここで、第一の加熱コイル4は、加熱された蒸気の流通するチューブを備えた蒸気コイルとして構成されているので、チューブ内を流通する蒸気は、チューブを水平に延長往復させても、鉛直に延長往復させても、ブロック部分を含め熱交換に伴った相変化によって気体の蒸気とは密度の大きく異なる液体の水になる。そして重力により上下にチューブ内温度差が熱媒の相とともに生じ、熱媒と外気Aとの相対温度差の小ささや、トラップでの間欠排水で熱媒の水が停滞することがあるため、コイル下部の熱交換率が下がって上述の如き温度むらが生じやすい。しかしながら下流側に邪魔板9を備えることで、簡便且つ効果的に外気Aの温度を均一化することができる。 Here, the first heating coil 4 is configured as a steam coil equipped with a tube through which heated steam flows, so that even if the tube is extended horizontally and reciprocated, the steam flowing inside the tube is Even if the water is reciprocated for an extended period of time, the phase change associated with heat exchange, including the block part, will result in liquid water with a density significantly different from that of gaseous vapor. Then, due to gravity, a temperature difference occurs between the upper and lower tubes along with the phase of the heating medium, and the water in the heating medium may stagnate due to the small relative temperature difference between the heating medium and the outside air A, or due to intermittent drainage in the trap. The heat exchange rate in the lower part decreases, and the above-mentioned temperature unevenness tends to occur. However, by providing the baffle plate 9 on the downstream side, the temperature of the outside air A can be made uniform simply and effectively.

本第一実施例の空調機1に関し、冷却コイル5に流れ込む外気Aの温度分布を検証する実証試験を行った。図3は、この実証試験において外気Aの温度を測定した測定点の位置を示している(同じ測定点の位置を、図1にも破線にて示している)。本実証試験では、邪魔板9の下流側且つ冷却コイル5の上流側の合計9箇所に測定点13(13a~13i)を設定した。9箇所の測定点13は、外気Aの流通方向に直交する同一平面上に、流通方向に関して上中下の3段に、それぞれ中央および左右の3箇所ずつ配置した。ファン7と第一の加熱コイル4を作動させ、外気Aの温度を測定した。外気温が9.8℃の条件下において、各測定点13にて測定された外気Aの温度は下記表1の通りである。

Figure 0007431500000001

Regarding the air conditioner 1 of the first embodiment, a demonstration test was conducted to verify the temperature distribution of the outside air A flowing into the cooling coil 5. FIG. 3 shows the positions of measurement points at which the temperature of outside air A was measured in this demonstration test (the positions of the same measurement points are also shown in FIG. 1 by broken lines). In this demonstration test, measurement points 13 (13a to 13i) were set at a total of nine locations downstream of the baffle plate 9 and upstream of the cooling coil 5. The nine measurement points 13 were arranged on the same plane perpendicular to the flow direction of the outside air A, in three stages at the top, middle and bottom in the flow direction, and three points each on the center and left and right sides. The fan 7 and the first heating coil 4 were operated, and the temperature of the outside air A was measured. The temperature of the outside air A measured at each measurement point 13 under the condition that the outside air temperature is 9.8° C. is as shown in Table 1 below.
Figure 0007431500000001

導入された9.8℃の外気は、第一の加熱コイル4を通過することで加温され、下流側の冷却コイル5に流れ込む前の段階で、中段では30℃程度の温度が、上段では33℃前後の温度が、それぞれ測定された。下段においては外気Aの温度は最低でも15.4℃を示し、中段では外気温に対して20℃程度加温されている運転条件において、下段でも外気温に対し5℃以上高い温度が保たれていた。すなわち、邪魔板9の作用により外気Aが撹拌された結果、第一の加熱コイル4の下流側における温度分布が均一化され、外気温で流入した外気Aの一部がほぼ外気温のままで冷却コイル5に流れ込むような事態は改善されたと言える。 The introduced outside air at 9.8°C is heated by passing through the first heating coil 4, and before flowing into the cooling coil 5 on the downstream side, the temperature is about 30°C in the middle stage and the temperature in the upper stage. Temperatures of around 33°C were measured in each case. In the lower stage, the temperature of outside air A is at least 15.4°C, and in the middle stage, under operating conditions where the temperature is about 20°C higher than the outside temperature, the temperature in the lower stage is maintained at least 5°C higher than the outside temperature. was. That is, as a result of the outside air A being stirred by the action of the baffle plate 9, the temperature distribution on the downstream side of the first heating coil 4 is made uniform, and a part of the outside air A that has flowed in at the outside temperature remains almost at the outside temperature. It can be said that the situation where the water flows into the cooling coil 5 has been improved.

尚、このような邪魔板による撹拌構造は、本第一実施例に説明したような外気取入空調機1とは異なる構成にも適用することができる。例えば図4に第二実施例として示す如く、第一の加熱コイル4と冷却コイル5の間に加湿器14(ここでは、流路途中に設置したパイプ等の表面に水を滴下し、外気Aの通過に伴って気化させる型式の加湿器を想定している)を配置した構成に対しても、第一の加熱コイル4の下流側に邪魔板9を設置すれば同様の作用効果を得ることができる。すなわち、加熱コイルの下流側に冷却コイルが配置された構成であれば型式を問わず、前記加熱コイルと前記冷却コイルの間に上記邪魔板9の如き邪魔板を設置することで、加熱コイルを通過した空気を撹拌して温度を均一化することが可能である。更に外気取入空調機1を内調機(室内循環型)として、還気の一部を排気し同量を外気として導入する空調機に適用しても良い。 Incidentally, such a stirring structure using a baffle plate can also be applied to a configuration different from the outside air intake air conditioner 1 as described in the first embodiment. For example, as shown in the second embodiment in FIG. Even for a configuration in which a humidifier (which vaporizes air as it passes) is installed, the same effect can be obtained by installing a baffle plate 9 on the downstream side of the first heating coil 4. Can be done. That is, regardless of the type of structure in which the cooling coil is arranged downstream of the heating coil, by installing a baffle plate such as the baffle plate 9 between the heating coil and the cooling coil, the heating coil can be cooled. It is possible to stir the air passing through to equalize the temperature. Furthermore, the outside air intake air conditioner 1 may be an internal air conditioner (indoor circulation type), and may be applied to an air conditioner that exhausts part of the return air and introduces the same amount as outside air.

以上のように、上記各実施例においては、導入した外気Aを加熱するため、チューブに熱媒の蒸気を流して蒸気コイルとする第一の加熱コイル4と、前記加熱コイル4の下流側に備えられ、冷媒の流通するチューブを備えて外気Aを冷却する冷却コイル5と、前記加熱コイル4と前記冷却コイル5の間の外気Aの流路の上下を遮るよう、外気Aの流れに直交する同一の面に沿って配置された邪魔板9a,9bとを備えている。こうすることで、邪魔板9により部分毎に外気Aの流れの向きを曲げて混合させ、均一化された温度の外気Aを下流の冷却コイル5へ流すことができる。 As described above, in each of the above embodiments, in order to heat the introduced outside air A, there is a first heating coil 4 which flows heat medium vapor through a tube to form a steam coil, and a downstream side of the heating coil 4. A cooling coil 5 that is provided with a tube through which a refrigerant flows to cool the outside air A, and a cooling coil 5 that is perpendicular to the flow of the outside air A so as to block the upper and lower sides of the flow path of the outside air A between the heating coil 4 and the cooling coil 5. baffle plates 9a and 9b arranged along the same plane. By doing so, the flow direction of the outside air A can be bent and mixed in each section by the baffle plate 9, and the outside air A having a uniform temperature can be allowed to flow to the downstream cooling coil 5.

上記各実施例の空調機の空気温度均一化構造において、邪魔板9を構成する上側の邪魔板9aおよび下側の邪魔板9bの高さは、加熱コイル4の高さに対してそれぞれ5%以上50%以下とすることができる。このようにすると、5%の場合外気Aの下方だけを持ち上げるように縮小拡大すると、持ち上げた外気Aが、その上部の暖かい気流にぶつけることができる。一方、50%直近の場合外気Aの面速が急激に2倍速になってすぐに1倍速になることで渦が多数生じるが、この面速差なら圧力損失が数十Paであり、ファン動力に多大な影響を与えることがないと共に、通常の筐体長さで外気Aが急拡大しきらない問題も防止できる速度域なので、特に効果的に外気Aの温度を均一化することができる。 In the air temperature equalization structure of the air conditioner of each of the above embodiments, the heights of the upper baffle plate 9a and the lower baffle plate 9b constituting the baffle plate 9 are each 5% of the height of the heating coil 4. It can be set to 50% or less. In this way, in the case of 5%, if the outside air A is scaled down and expanded so as to lift only the lower part, the lifted outside air A can collide with the warm airflow above. On the other hand, in the case of 50%, the surface speed of the outside air A suddenly doubles and then quickly becomes 1x, creating many vortices, but with this surface speed difference, the pressure loss is several tens of Pa, and the fan power Since this is a speed range that does not have a large effect on the temperature of the outside air A and also prevents the problem of the outside air A not expanding rapidly with a normal housing length, the temperature of the outside air A can be made uniform particularly effectively.

上記各実施例の空調機の空気温度均一化構造において、加熱コイル4と冷却コイル5の間の外気Aの流路が邪魔板9a,9bにより上下を遮られ、外気Aが急縮小急拡大の状態を経て渦を多く発生することができ、このようにすると、蒸気コイルである加熱コイル4を備えた外気取入空調機1において、効果的に外気Aの温度を均一化することができる。 In the air temperature equalization structure of the air conditioner of each of the above embodiments, the flow path of the outside air A between the heating coil 4 and the cooling coil 5 is blocked from above and below by the baffles 9a and 9b, so that the outside air A does not suddenly contract or expand rapidly. Depending on the state, many vortices can be generated, and in this way, the temperature of the outside air A can be effectively uniformized in the outside air intake air conditioner 1 equipped with the heating coil 4 which is a steam coil.

上記各実施例の空調機の空気温度均一化構造は、外気取入空調機(外気調和機)1に用いると、取り込んだ外気Aの温度を容易且つ好適に均一化することができる。 When the air temperature equalization structure of the air conditioner of each of the above embodiments is used in the outside air intake air conditioner (outside air conditioner) 1, it is possible to easily and suitably equalize the temperature of the outside air A taken in.

したがって、上記実施例によれば、簡単な構造でエネルギーの余分な供給を回避しつつ冷却コイルの凍結を効果的に防止し得る。 Therefore, according to the above embodiment, freezing of the cooling coil can be effectively prevented while avoiding unnecessary supply of energy with a simple structure.

尚、本発明の空調機の空気温度均一化構造は、上述の実施例にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。 It should be noted that the air temperature equalization structure of the air conditioner of the present invention is not limited to the above-described embodiments, and it goes without saying that various changes can be made without departing from the gist of the present invention.

4 加熱コイル(第一の加熱コイル)
5 冷却コイル
9 邪魔板
9a 邪魔板(上側の邪魔板)
9b 邪魔板(下側の邪魔板)
A 外気
4 Heating coil (first heating coil)
5 Cooling coil 9 Baffle plate 9a Baffle plate (upper baffle plate)
9b Baffle plate (lower baffle plate)
A Outside air

Claims (2)

外気取入空調機に用いる空調機の空気温度均一化構造であって、
前記空調機の筐体内に、
外気ダクトを介して導入した外気を加熱するため、チューブに熱媒の過熱蒸気を流して過熱蒸気の保有する熱を外気に与えると過熱蒸気自身は凝縮して液体の水に相変化し下部に重力の作用で溜まる蒸気コイルとする第一の加熱コイルと、
前記加熱コイルの下流側に備えられ、冷水の流通するチューブを備えて外気を冷却する冷却コイルと、
前記加熱コイルと前記冷却コイルの間の外気の流路の上下のみを遮るよう、外気の流れに直交する同一の面に沿って配置された邪魔板と
を備え、
前記邪魔板を構成する上側の邪魔板および下側の邪魔板は、それぞれ下流側から見て第一の加熱コイルの幅方向全域を遮るだけの幅を有し
前記邪魔板を構成する上側の邪魔板および下側の邪魔板の高さは、前記加熱コイルの高さに対してそれぞれ5%以上15%以下であり、
導入した外気は筐体内を入口開口から出口開口へ至る一方向流れをなしながらも、前記第一の加熱コイルと前記冷却コイルの間の外気の流れは、前記邪魔板により上下を遮られ、部分毎に向きを曲げられ、外気が急縮小急拡大の状態を経て気流の乱れから渦が発生し空気全体が激しくかき乱されることにより混合させられることで、
前記第一の加熱コイルの下方におけると外気との熱交換効率の低さにより前記第一の加熱コイルの直後での外気温度が、流路の上側で高く、下側で低いという分布を解消し、均一化された温度の外気は下流の冷却コイルへ流される
ことを特徴とする空調機の空気温度均一化構造。
An air temperature equalization structure for an air conditioner used in an outside air intake air conditioner,
Inside the housing of the air conditioner,
In order to heat the outside air introduced through the outside air duct , superheated steam as a heating medium is passed through the tube and the heat held by the superheated steam is given to the outside air.The superheated steam itself condenses and changes its phase to liquid water, which flows to the bottom of the tube. a first heating coil that is a steam coil that accumulates under the action of gravity;
a cooling coil that is provided downstream of the heating coil and includes a tube through which cold water flows to cool the outside air;
a baffle plate arranged along the same plane orthogonal to the flow of outside air so as to block only the upper and lower sides of the flow path of outside air between the heating coil and the cooling coil,
The upper baffle plate and the lower baffle plate constituting the baffle plate each have a width sufficient to block the entire width direction of the first heating coil when viewed from the downstream side ,
The heights of the upper baffle plate and the lower baffle plate constituting the baffle plate are each 5% or more and 15% or less of the height of the heating coil,
Although the introduced outside air flows in one direction from the inlet opening to the exit opening within the housing, the flow of outside air between the first heating coil and the cooling coil is blocked from above and below by the baffle plate, and only a portion The direction of the air is bent every time, and the outside air goes through a state of sudden contraction and expansion, and vortices are generated from the turbulence of the airflow, and the whole air is violently disturbed and mixed.
Due to the low heat exchange efficiency between the water and the outside air below the first heating coil, the outside air temperature immediately after the first heating coil no longer has a distribution of being high at the top of the flow path and low at the bottom. The outside air at a uniform temperature is then flowed to the downstream cooling coil.
The air temperature equalization structure of the air conditioner is characterized by:
前記上側の邪魔板は、前記筐体の天井に設けられた上部補強材に取付ブラケットを介して固定され、
前記下側の邪魔板は、前記筐体の床面に設けられた下部補強材に取付ブラケットを介して固定されることを特徴とする請求項1に記載の空調機の空気温度均一化構造。
The upper baffle plate is fixed to an upper reinforcing member provided on the ceiling of the casing via a mounting bracket,
The air temperature equalization structure for an air conditioner according to claim 1 , wherein the lower baffle plate is fixed to a lower reinforcing member provided on the floor of the housing via a mounting bracket .
JP2018228893A 2018-12-06 2018-12-06 Air conditioner air temperature equalization structure Active JP7431500B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018228893A JP7431500B2 (en) 2018-12-06 2018-12-06 Air conditioner air temperature equalization structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018228893A JP7431500B2 (en) 2018-12-06 2018-12-06 Air conditioner air temperature equalization structure

Publications (2)

Publication Number Publication Date
JP2020091074A JP2020091074A (en) 2020-06-11
JP7431500B2 true JP7431500B2 (en) 2024-02-15

Family

ID=71012656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018228893A Active JP7431500B2 (en) 2018-12-06 2018-12-06 Air conditioner air temperature equalization structure

Country Status (1)

Country Link
JP (1) JP7431500B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000121261A (en) 1998-10-16 2000-04-28 Hitachi Plant Eng & Constr Co Ltd Air heater
JP2018132233A (en) 2017-02-14 2018-08-23 伸和コントロールズ株式会社 Air conditioner

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5568609U (en) * 1978-11-07 1980-05-12
JPS6170330A (en) * 1984-09-11 1986-04-11 Takenaka Komuten Co Ltd Air conditioner for cold district
JP3404167B2 (en) * 1995-03-16 2003-05-06 トリニティ工業株式会社 Air conditioner

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000121261A (en) 1998-10-16 2000-04-28 Hitachi Plant Eng & Constr Co Ltd Air heater
JP2018132233A (en) 2017-02-14 2018-08-23 伸和コントロールズ株式会社 Air conditioner

Also Published As

Publication number Publication date
JP2020091074A (en) 2020-06-11

Similar Documents

Publication Publication Date Title
Sugarman HVAC fundamentals
US6213867B1 (en) Venturi type air distribution system
US6658874B1 (en) Advanced, energy efficient air conditioning, dehumidification and reheat method and apparatus
KR100242758B1 (en) Airconditioner
JPH0684822B2 (en) Indirect air conditioner
US11287166B2 (en) Evaporative cooling system for an HVAC system
EP2402693A2 (en) Induced draft cooling tower
JP2000274993A (en) Heat exchange device and heat extraction method
JP2000274977A (en) Heat-exchanging device and heat extraction method
JP5043158B2 (en) Air source heat pump air conditioner
EP3699502B1 (en) Air conditioner
JP6151409B2 (en) Heat pump type heat source device
US20190257532A1 (en) Indoor unit for air-conditioning apparatus and air-conditioning apparatus
JP2010159928A (en) Air conditioner
KR200463037Y1 (en) Air Conditioning System
JP7431500B2 (en) Air conditioner air temperature equalization structure
JP3422020B2 (en) All season air conditioner
US11448418B2 (en) Undulated surface enhancement of diffuser blades for linear bar diffuser
US3441082A (en) Air conditioning unit
JP2002156148A (en) Humidifying method for air conditioning
CN210718371U (en) Drying machine
JP5511595B2 (en) Air conditioner and outside air cooling operation method
JP5013576B2 (en) Air conditioner for painting booth
JPH04222363A (en) Room heat exchanger for heat pump air conditioner
US20230003414A1 (en) Displacement ventilation systems and methods

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220524

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220722

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230131

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230320

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230531

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231115

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20231124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240202

R150 Certificate of patent or registration of utility model

Ref document number: 7431500

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150