JP7431340B2 - High efficiency gasifier and its operating method - Google Patents

High efficiency gasifier and its operating method Download PDF

Info

Publication number
JP7431340B2
JP7431340B2 JP2022547262A JP2022547262A JP7431340B2 JP 7431340 B2 JP7431340 B2 JP 7431340B2 JP 2022547262 A JP2022547262 A JP 2022547262A JP 2022547262 A JP2022547262 A JP 2022547262A JP 7431340 B2 JP7431340 B2 JP 7431340B2
Authority
JP
Japan
Prior art keywords
reaction chamber
efficiency
flow field
nozzle
gasifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022547262A
Other languages
Japanese (ja)
Other versions
JP2023513138A (en
Inventor
麗珍 羅
継業 陶
世森 許
鵬杰 王
永強 任
剛 劉
小宇 李
▲ゆぇん▼ 劉
智 陳
強 樊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huaneng Clean Energy Research Institute
Original Assignee
Huaneng Clean Energy Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huaneng Clean Energy Research Institute filed Critical Huaneng Clean Energy Research Institute
Publication of JP2023513138A publication Critical patent/JP2023513138A/en
Application granted granted Critical
Publication of JP7431340B2 publication Critical patent/JP7431340B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/48Apparatus; Plants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/48Apparatus; Plants
    • C10J3/50Fuel charging devices
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/723Controlling or regulating the gasification process
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2200/00Details of gasification apparatus
    • C10J2200/15Details of feeding means
    • C10J2200/152Nozzles or lances for introducing gas, liquids or suspensions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/093Coal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0959Oxygen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0973Water
    • C10J2300/0976Water as steam
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Air Supply (AREA)
  • Incineration Of Waste (AREA)

Description

本願は、ガス化炉技術の分野に属し、具体的には、高効率ガス化炉及びその作動方法に関する。 TECHNICAL FIELD The present application is in the field of gasifier technology, and specifically relates to a high efficiency gasifier and method of operating the same.

石炭ガス化技術は、石炭のクリーンかつ高効率利用のコア技術であり、進んだクリーンな石炭発電、石炭化学工業、石炭ベースの多連生産などのエネルギーシステムを発展する重要な技術であり、各システムの運転の信頼性及び経済性に重要な影響を与える。現代石炭化学工業プロジェクトの急速な発展による駆動下で、石炭ガス化技術は、大型化、クリーンで高効率、広い石炭種の適応性の方向に発展している。石炭ガス化技術の発展は、百花斉放の局面を呈しているが、現段階では高効率でクリーンな石炭ガス化技術の発展中に、依然として多くの問題が早急に解決されなければならない。 Coal gasification technology is a core technology for the clean and highly efficient use of coal, and is an important technology for developing energy systems such as advanced clean coal power generation, coal chemical industry, and coal-based multiple production. This has a significant impact on the reliability and economics of system operation. Driven by the rapid development of modern coal chemical industry projects, coal gasification technology is developing in the direction of large scale, clean and high efficiency, and wide coal type adaptability. Although the development of coal gasification technology has reached a stage of rapid development, at present, many problems still need to be solved urgently during the development of highly efficient and clean coal gasification technology.

現在、宇宙炉、GSP、シェル炉などのほとんどのガス化炉は、一室一段であり、反応出口の温度が高く、高温ガスを急冷するための大量の循環コールドガスが必要であり、設備が膨大で高価であり、ガス化のエネルギー消費量が高く、効率が低い。 Currently, most gasifiers such as space reactors, GSPs, and shell reactors have one chamber and one stage, and the temperature at the reaction outlet is high, requiring a large amount of circulating cold gas to rapidly cool the high-temperature gas, and the equipment is expensive. It is voluminous and expensive, the energy consumption of gasification is high, and the efficiency is low.

華能の二室二段式乾式微粉炭加圧ガス化技術は、一段目でガス化によって生じた高温ガスが、二段目で吹き付けた微粉炭及び水蒸気とさらにガス化反応を起こし、高温ガスの顕熱をより多くガスの有効な成分に変換し、二段目のガス化吸熱反応を利用してガスの温度を急速に低減させ(「化学的急冷」ともいう)、設備のコストを大幅に削減する。しかしながら、ガス化炉の二段目の反応温度が低く、微粉炭は、二段目で残炭の高い飛灰を発生させるため、ガス化炉全体のコールドガス効率が低くなり、ガス化炉のガス化効率を向上させることは、世界的な課題となっている。 Huanong's two-chamber, two-stage dry pulverized coal pressurized gasification technology causes the high-temperature gas generated by gasification in the first stage to undergo a gasification reaction with the pulverized coal and steam blown in the second stage, resulting in high-temperature gas Converts more of the sensible heat into the effective components of the gas, and uses the second-stage gasification endothermic reaction to rapidly reduce the gas temperature (also called "chemical quenching"), significantly reducing equipment costs. Reduce to. However, the reaction temperature in the second stage of the gasifier is low, and the pulverized coal generates fly ash with high residual coal in the second stage, which reduces the cold gas efficiency of the entire gasifier. Improving gasification efficiency has become a global challenge.

上記問題を解決するために、本願は、ガス化炉の効率を向上させ、ガス化炉の効率的で安定した運転を確保することができる高効率ガス化炉及びその作動方法を提供することを目的とする。 In order to solve the above problems, the present application aims to provide a high-efficiency gasifier and its operating method that can improve the efficiency of the gasifier and ensure efficient and stable operation of the gasifier. purpose.

本願は、以下の技術案によって実現される。 The present application is realized by the following technical proposal.

本願は、高効率ガス化炉を開示し、前記ガス化炉は、ガス化炉本体と、水蒸気流量検出及び制御装置と、酸素流量検出及び制御装置よ、CO及びH質量分率オンラインアナライザと、合成ガス流量検出装置と、過熱蒸気流量検出及び制御装置と、制御システムと、過熱蒸気発生器とを含み、
ガス化炉本体の内部は、基礎反応室及びフローフィールド反応室を含み、基礎反応室がフローフィールド反応室の下方に設けられ、基礎反応室とフローフィールド反応室との間にネッキングが設けられており、基礎反応室内にいくつかの基礎反応室ノズルが設けられており、基礎反応室ノズルに乾式微粉炭、水蒸気及び酸素システムが接続されており、フローフィールド反応室内にいくつかのフローフィールド反応室ノズルが設けられており、フローフィールド反応室ノズルに乾式微粉炭システム及び酸素システムが接続されており、いくつかのフローフィールド反応室ノズルは、同じ角度で斜め下方に偏向し、ネッキングにいくつかの効率向上ノズルが設けられており、効率向上ノズルに水蒸気システムが接続されており、いくつかの効率向上ノズルは、同じ角度で水平方向に偏向し、過熱蒸気発生器がガス化炉本体内に設けられ、過熱蒸気発生器の入り口に高圧蒸気システムが接続されており、過熱蒸気発生器の出口がフローフィールド反応室ノズルに接続されており、ガス化炉本体の上方に急冷ガスノズルが設けられており、
CO及びH質量分率オンラインアナライザ及び合成ガス流量検出装置は、ガス化炉本体の廃熱ボイラの出口に設けられ、水蒸気流量検出及び制御装置は、水蒸気システムと効率向上ノズルとの間の接続配管に設けられ、酸素流量検出及び制御装置は、酸素システムとフローフィールド反応室ノズルとの間の接続配管に設けられ、過熱蒸気流量検出及び制御装置は、過熱蒸気発生器とフローフィールド反応室ノズルとの間の接続配管に設けられ、
水蒸気流量検出及び制御装置、酸素流量検出及び制御装置、CO及びH質量分率オンラインアナライザ、合成ガス流量検出装置、及び過熱蒸気流量検出及び制御装置は、それぞれ制御システムに接続されている。
The present application discloses a high-efficiency gasifier, which includes a gasifier body, a steam flow rate detection and control device, an oxygen flow rate detection and control device, and a CO and H2 mass fraction online analyzer. , a synthesis gas flow rate detection device, a superheated steam flow rate detection and control device, a control system, and a superheated steam generator,
The inside of the gasifier main body includes a basic reaction chamber and a flow field reaction chamber, the basic reaction chamber is provided below the flow field reaction chamber, and a necking is provided between the basic reaction chamber and the flow field reaction chamber. There are several basic reaction chamber nozzles in the basic reaction chamber, dry pulverized coal, steam and oxygen systems are connected to the basic reaction chamber nozzles, and several flow field reaction chambers in the flow field reaction chamber. A dry pulverized coal system and an oxygen system are connected to the flow field reaction chamber nozzles, and some of the flow field reaction chamber nozzles are deflected diagonally downward at the same angle, and some Efficiency-enhancing nozzles are provided, a steam system is connected to the efficiency-enhancing nozzles, several efficiency-enhancing nozzles are horizontally deflected at the same angle, and a superheated steam generator is provided within the gasifier body. A high-pressure steam system is connected to the inlet of the superheated steam generator, the outlet of the superheated steam generator is connected to the flow field reaction chamber nozzle, and a quench gas nozzle is provided above the gasifier body. ,
A CO and H2 mass fraction online analyzer and a syngas flow detection device are installed at the outlet of the waste heat boiler in the gasifier body, and a steam flow detection and control device is installed at the connection between the steam system and the efficiency-enhancing nozzle. The oxygen flow rate detection and control device is provided in the connecting piping between the oxygen system and the flow field reaction chamber nozzle, and the superheated steam flow rate detection and control device is provided in the connection pipe between the superheated steam generator and the flow field reaction chamber nozzle. Provided in the connecting piping between
A water vapor flow detection and control device, an oxygen flow detection and control device, a CO and H 2 mass fraction online analyzer, a syngas flow detection device, and a superheated steam flow detection and control device are each connected to the control system.

好ましくは、過熱蒸気発生器は、同じ平面内に配置されている蛇行状のベンド管であり、過熱蒸気発生器は、ガス化炉内のフローフィールド反応室ノズルと急冷ガスノズルとの間に水平に設けられる。 Preferably, the superheated steam generator is a serpentine bent pipe arranged in the same plane, and the superheated steam generator is arranged horizontally between the flow field reaction chamber nozzle and the quench gas nozzle in the gasifier. provided.

好ましくは、フローフィールド反応室ノズルの水平方向の偏向角度は、1°~1.5°であり、鉛直方向の偏向角度αは、r×secα≦フローフィールド反応室ノズルの最大射程を満たす。 Preferably, the horizontal deflection angle of the flow field reaction chamber nozzle is between 1° and 1.5°, and the vertical deflection angle α satisfies r×secα≦maximum range of the flow field reaction chamber nozzle.

好ましくは、効率向上ノズルは、偏向角度が1.5°~5°である。 Preferably, the efficiency-enhancing nozzle has a deflection angle of 1.5° to 5°.

好ましくは、いくつかのフローフィールド反応室ノズル、いくつかの効率向上ノズル及びいくつかの基礎反応室ノズルは、いずれも水平方向に均等に配置されている。 Preferably, the number of flow field reaction chamber nozzles, the number of efficiency enhancement nozzles and the number of basic reaction chamber nozzles are all evenly distributed in the horizontal direction.

好ましくは、フローフィールド反応室ノズルと効率向上ノズルとの水平方向の偏向方向が逆である。 Preferably, the horizontal deflection directions of the flow field reaction chamber nozzle and the efficiency enhancing nozzle are opposite.

本願によって開示される上記高効率ガス化炉の作動方法は、
基礎反応室ノズルが乾式微粉炭、水蒸気及び酸素を基礎反応室に噴出して燃焼反応を行い、フローフィールド反応室ノズルが過熱水蒸気及び乾式微粉炭をフローフィールド反応室に噴出して化学的急冷反応を行い、フローフィールド反応室ノズルから噴出される過熱水蒸気を増加させて、コールドガス効率が向上しなくなった場合、フローフィールド反応室ノズルが酸素を噴出して調整するステップであって、フローフィールド反応室ノズルは、斜め下方に偏向して、下向きの強い混合フローフィールドが形成され、効率向上ノズルは、水蒸気を噴出して、基礎反応室からの合成ガスとの混合を促進するステップと、
CO及びH質量分率オンラインアナライザ及び合成ガス流量検出装置によってコールドガス効率のリアルタイム監視を実現してデータを制御システムにフィードバックし、制御システムが、水蒸気流量検出及び制御装置、酸素流量検出及び制御装置、及び過熱蒸気流量検出及び制御装置によって各所の水蒸気、酸素及び過熱蒸気の供給量を制御し、コールドガス効率の制御によってガス化炉の効率を向上させるステップと、を含む。
The method of operating the high-efficiency gasifier disclosed by the present application includes:
The basic reaction chamber nozzle injects dry pulverized coal, steam, and oxygen into the basic reaction chamber to perform a combustion reaction, and the flow field reaction chamber nozzle injects superheated steam and dry pulverized coal into the flow field reaction chamber to perform a chemical quenching reaction. If the cold gas efficiency is not improved by increasing the superheated steam ejected from the flow field reaction chamber nozzle, the step is to adjust the flow field reaction chamber nozzle by ejecting oxygen. the chamber nozzle is deflected obliquely downward to form a strong downward mixing flow field, and the efficiency-enhancing nozzle injects water vapor to promote mixing with the synthesis gas from the base reaction chamber;
A CO and H2 mass fraction online analyzer and a syngas flow detection device provide real-time monitoring of cold gas efficiency and feed back data to the control system, which in turn provides water vapor flow detection and control device, oxygen flow detection and control device. controlling the supply amount of steam, oxygen, and superheated steam at various locations using the apparatus and the superheated steam flow rate detection and control device, and improving the efficiency of the gasifier by controlling the cold gas efficiency.

好ましくは、コールドガス効率Mは、次式によって決定され、
M=(x・F・3044kcal/Nm・4.184kJ/kcal+y・F・2576kcal/Nm・4.184kJ/kcal)/Q
ここで、xは、COのモル分率であり、yは、Hのモル分率であり、Fは、合成ガス流量であり、Qは、石炭の入炉総熱量であり、Q=石炭の受入ベース低位発熱量・微粉炭の受入ベース流量である。
Preferably, the cold gas efficiency M is determined by the following equation:
M=(x・F・3044kcal/Nm 3・4.184kJ/kcal+y・F・2576kcal/Nm 3・4.184kJ/kcal)/Q
Here, x is the mole fraction of CO, y is the mole fraction of H2 , F is the syngas flow rate, Q is the total heating value of coal, and Q = coal This is the receiving base flow rate of lower calorific value and pulverized coal.

好ましくは、フローフィールド反応室ノズルから噴出される過熱水蒸気を増加させて、3min以内にコールドガス効率のフィードバックがない場合、フローフィールド反応室ノズルが酸素を噴出して調整し、酸素量Mが次式によって決定され、
=M×1.05×Z
ここで、Mは酸素量であり、Mは過熱水蒸気量であり、補正係数Zの値は、0.6~0.8である。
Preferably, the superheated steam ejected from the flow field reaction chamber nozzle is increased, and if there is no feedback of cold gas efficiency within 3 min, the flow field reaction chamber nozzle ejects oxygen to adjust the amount of oxygen M2 . Determined by the following formula,
M2 = M3 ×1.05×Z
Here, M 2 is the amount of oxygen, M 3 is the amount of superheated steam, and the value of the correction coefficient Z is 0.6 to 0.8.

好ましくは、各所の乾式微粉炭、酸素及び水蒸気量は、シミュレーション状況及び経験に基づいて供給されて初期反応を行い、制御システムによって酸素及び水蒸気の量を制御し、ここで、効率向上ノズルによる水蒸気の初期噴出流量は、フローフィールド反応室内の総水蒸気量の1/5である。 Preferably, the amount of dry pulverized coal, oxygen and water vapor at each location is supplied based on the simulation situation and experience to perform the initial reaction, and the amount of oxygen and water vapor is controlled by the control system, where the amount of water vapor is controlled by the efficiency-enhancing nozzle. The initial jetting flow rate is 1/5 of the total amount of water vapor in the flow field reaction chamber.

本願は、従来技術に比べて、以下の有益な技術的効果を有する。
本願によって開示される高効率ガス化炉は、メイン反応発生室として基礎反応室に基礎反応室ノズルが設けられ、フローフィールド反応室にフローフィールド反応室ノズルが設けられ、過熱水蒸気及び乾式微粉炭を噴出することによって、化学的急冷反応を起こし、合成ガスの顕熱を吸収し、合成ガスを物理的に冷却する一方、フローフィールド反応室内の反応k(化学反応速度定数)値を増加させ、石炭と水蒸気との吸熱反応を強化し、過熱水蒸気を増やしてもコールドガス効率を向上させることができない場合、酸素を噴出することによって、微粉炭と反応してCOを生成し、炭素の転化率を向上させることができる一方、酸素と乾式微粉炭との反応が発熱反応であり、熱量は、微粉炭と水との吸熱反応を促進することができる。基礎反応室とフローフィールド反応室との間にネッキングが設けられることで、基礎反応室のスラグ付着率を向上させることができ、基礎反応室及びフローフィールド反応室のネッキングに水蒸気を噴出する効率向上ノズルが設けられ、ネッキングでの流速が大きいため、高速の合成ガスは、水蒸気をばらばらにしてそれと均一に混合する。効率向上ノズルは、合成ガス中の水分含有量を増加させ、フローフィールド反応室の擾乱を強化し、水蒸気と微粉炭との混合を促進する一方、合成ガスの顕熱を吸収し、合成ガスを物理的に冷却する。いくつかのフローフィールド反応室ノズルは、斜め下方に偏向し、下向きの強い混合フローフィールドが形成され、効率向上ノズルは、水平方向に偏向し、基礎反応室からの合成ガスとの混合を促進し、フローフィールド反応室ノズルと効率向上ノズルとの組み合わせにより、強い混合反応場が形成され、水蒸気と微粉炭との混合が促進され、反応k値が増加し、ガス化炉の効率が向上する。各所に設けられる検出及び制御装置によって制御システムがガス化炉の各所への供給量を正確に制御し、フィードバックに基づいて適時に調整し、ガス化炉の効率的で安定した運転を確保することができる。
The present application has the following beneficial technical effects compared to the prior art.
The high-efficiency gasifier disclosed by the present application has a basic reaction chamber as a main reaction generation chamber with a basic reaction chamber nozzle, a flow field reaction chamber with a flow field reaction chamber nozzle, and superheated steam and dry pulverized coal. The injection causes a chemical quenching reaction, absorbs the sensible heat of the synthesis gas, and physically cools the synthesis gas, while increasing the reaction k (chemical reaction rate constant) value in the flow field reaction chamber, and If the cold gas efficiency cannot be improved by strengthening the endothermic reaction between carbon dioxide and steam and increasing the amount of superheated steam, blowing out oxygen will react with the pulverized coal to produce CO and increase the carbon conversion rate. On the other hand, the reaction between oxygen and dry pulverized coal is an exothermic reaction, and the amount of heat can promote the endothermic reaction between pulverized coal and water. By providing a necking between the basic reaction chamber and the flow field reaction chamber, it is possible to improve the slag adhesion rate in the basic reaction chamber, and improve the efficiency of spouting steam to the necking of the basic reaction chamber and the flow field reaction chamber. Due to the presence of the nozzle and the high flow rate at the necking, the high velocity synthesis gas breaks up the water vapor and mixes homogeneously with it. The efficiency-enhancing nozzle increases the moisture content in the syngas, enhances the disturbance in the flow field reaction chamber, and promotes the mixing of water vapor and pulverized coal, while absorbing the sensible heat of the syngas and increasing the Physically cool down. Some flow field reaction chamber nozzles are deflected diagonally downward, forming a strong downward mixing flow field, and efficiency-enhancing nozzles are deflected horizontally, promoting mixing with the syngas from the base reaction chamber. , the combination of the flow field reaction chamber nozzle and the efficiency-enhancing nozzle forms a strong mixing reaction field, promoting the mixing of steam and pulverized coal, increasing the reaction k value, and improving the efficiency of the gasifier. Through the detection and control devices installed at various locations, the control system accurately controls the supply amount to each location of the gasifier, and makes timely adjustments based on feedback to ensure efficient and stable operation of the gasifier. I can do it.

さらに、過熱蒸気発生器は、同じ平面内に配置されている蛇行状のベンド管を採用し、熱交換効率が高い。 Furthermore, the superheated steam generator employs meandering bent pipes arranged in the same plane, resulting in high heat exchange efficiency.

さらに、フローフィールド反応室ノズルの偏向角度の設定により、形成されたフローフィールドが互いに干渉し、下向きの強い混合フローフィールドを形成することを保証することができる。 Moreover, the setting of the deflection angle of the flow field reaction chamber nozzle can ensure that the formed flow fields interfere with each other and form a strong downward mixing flow field.

さらに、効率向上ノズルの偏向角度の設定により、基礎反応室からの合成ガスとの混合効果を向上させることができる。 Furthermore, by setting the deflection angle of the efficiency-enhancing nozzle, it is possible to improve the mixing effect with the synthesis gas from the basic reaction chamber.

さらに、いくつかのフローフィールド反応室ノズル、いくつかの効率向上ノズル及びいくつかの基礎反応室ノズルは、いずれも水平方向に均等に配置されており、ガス化炉の各所の反応が均一であることを保証する。 Furthermore, some flow field reaction chamber nozzles, some efficiency improvement nozzles, and some basic reaction chamber nozzles are all evenly arranged in the horizontal direction, so that the reaction in each part of the gasifier is uniform. I guarantee that.

さらに、フローフィールド反応室ノズルと効率向上ノズルとの水平方向の偏向方向が逆であり、混合効果を向上させ、反応度を向上させることができる。 Furthermore, the horizontal deflection directions of the flow field reaction chamber nozzle and the efficiency-enhancing nozzle are opposite, which can improve the mixing effect and improve the reactivity.

本願によって開示される上記の高効率ガス化炉の作動方法は、コールドガス効率を水蒸気や酸素と連動制御し、水蒸気を添加し、フローフィールド反応室の酸素を調整することによって、コールドガス効率が理想値に達するようにし、全過程は、フローフィールド反応室の水蒸気及び酸素量を正確に制御し、コールドガス効率を向上させ、ガス化効率を正確に制御し、省エネと効率向上の目的を達成することができる。 The method of operating the high-efficiency gasifier disclosed by the present application controls the cold gas efficiency in conjunction with water vapor and oxygen, adds water vapor, and adjusts the oxygen in the flow field reaction chamber, thereby increasing the cold gas efficiency. To reach the ideal value, the whole process accurately controls the water vapor and oxygen amount in the flow field reaction chamber, improves the cold gas efficiency, accurately controls the gasification efficiency, and achieves the purpose of energy saving and efficiency improvement. can do.

本願の全体的な概略構成図である。FIG. 1 is an overall schematic configuration diagram of the present application. 本願の過熱蒸気発生器の概略平面図である。FIG. 1 is a schematic plan view of a superheated steam generator of the present application. 本願のフローフィールド反応室ノズルの偏向角度の概略図である。FIG. 2 is a schematic diagram of the deflection angle of the flow field reaction chamber nozzle of the present application. 本願の効率向上ノズルの設定位置の概略平面図である。FIG. 3 is a schematic plan view of the setting position of the efficiency-enhancing nozzle of the present application.

以下、図面と組み合わせて本願をさらに詳しく説明し、その内容は、本願を限定するものではなく、本願を説明するものである。 Hereinafter, the present application will be described in more detail in conjunction with the drawings, the content of which is intended to explain the present application without limiting it.

図1に示すように、本願の高効率ガス化炉は、廃熱ボイラ入り口温度測定装置4と、水蒸気流量検出及び制御装置5と、酸素流量検出及び制御装置6と、CO及びH質量分率オンライアナライザ7と、合成ガス流量検出装置8と、過熱蒸気流量検出及び制御装置9と、制御システム10と、過熱蒸気発生器11と、を含む。 As shown in FIG. 1, the high-efficiency gasifier of the present application includes a waste heat boiler inlet temperature measurement device 4, a steam flow rate detection and control device 5, an oxygen flow rate detection and control device 6, and a CO and H2 mass fraction. It includes a rate online analyzer 7 , a synthesis gas flow rate detection device 8 , a superheated steam flow rate detection and control device 9 , a control system 10 , and a superheated steam generator 11 .

ガス化炉本体の内部は、基礎反応室及びフローフィールド反応室を含み、基礎反応室がフローフィールド反応室の下方に設けられ、基礎反応室とフローフィールド反応室との間にネッキングが設けられており、基礎反応室内にいくつかの基礎反応室ノズル3が設けられており、基礎反応室ノズル3に乾式微粉炭、水蒸気及び酸素システムが接続されており、フローフィールド反応室内にいくつかのフローフィールド反応室ノズル1が設けられており、フローフィールド反応室ノズル1に乾式微粉炭システム及び酸素システムが接続されており、いくつかのフローフィールド反応室ノズル1は、同じ角度で斜め下方に偏向し、図3に示すように、好ましくは、フローフィールド反応室ノズル1の水平方向の偏向角度は、1°~1.5°であり、鉛直方向の偏向角度αは、r×secα≦フローフィールド反応室ノズル1の最大射程を満たす。ネッキングにいくつかの効率向上ノズル2が設けられており、効率向上ノズル2に水蒸気システムが接続されており、いくつかの効率向上ノズル2は、同じ角度で水平方向に偏向し、好ましくは、図4に示すように、効率向上ノズル2は、偏向角度が1.5°~5°である。好ましくは、フローフィールド反応室ノズル1と効率向上ノズル2との水平方向の偏向方向が逆である。好ましくは、いくつかのフローフィールド反応室ノズル1、いくつかの効率向上ノズル2及びいくつかの基礎反応室ノズル3は、いずれも水平方向に均等に配置されている。 The inside of the gasifier main body includes a basic reaction chamber and a flow field reaction chamber, the basic reaction chamber is provided below the flow field reaction chamber, and a necking is provided between the basic reaction chamber and the flow field reaction chamber. There are several basic reaction chamber nozzles 3 in the basic reaction chamber, dry pulverized coal, steam and oxygen systems are connected to the basic reaction chamber nozzles 3, and several flow fields in the flow field reaction chamber. A reaction chamber nozzle 1 is provided, a dry pulverized coal system and an oxygen system are connected to the flow field reaction chamber nozzle 1, and several flow field reaction chamber nozzles 1 are deflected diagonally downward at the same angle, As shown in FIG. 3, preferably, the horizontal deflection angle of the flow field reaction chamber nozzle 1 is 1° to 1.5°, and the vertical deflection angle α is r×secα≦flowfield reaction chamber Satisfies the maximum range of nozzle 1. A number of efficiency-enhancing nozzles 2 are provided in the necking, a steam system is connected to the efficiency-enhancing nozzles 2, and several efficiency-enhancing nozzles 2 are horizontally deflected at the same angle, preferably as shown in FIG. 4, the efficiency-enhancing nozzle 2 has a deflection angle of 1.5° to 5°. Preferably, the horizontal deflection directions of the flow field reaction chamber nozzle 1 and the efficiency enhancing nozzle 2 are opposite. Preferably, several flow field reaction chamber nozzles 1, several efficiency-enhancing nozzles 2 and several basic reaction chamber nozzles 3 are all evenly distributed in the horizontal direction.

過熱蒸気発生器11がガス化炉本体内に設けられ、過熱蒸気発生器11の入り口に高圧蒸気システムが接続されており、過熱蒸気発生器11の出口がフローフィールド反応室ノズル1に接続されており、図2に示すように、好ましくは、過熱蒸気発生器11は、同じ平面内に配置されている蛇行状のベンド管であり、過熱蒸気発生器11は、ガス化炉内のフローフィールド反応室ノズル1と急冷ガスノズルとの間に水平に設けられる。ガス化炉本体の上方に急冷ガスノズルが設けられている。 A superheated steam generator 11 is provided in the gasifier main body, a high pressure steam system is connected to the inlet of the superheated steam generator 11, and an outlet of the superheated steam generator 11 is connected to the flow field reaction chamber nozzle 1. As shown in FIG. 2, preferably, the superheated steam generator 11 is a serpentine bent pipe arranged in the same plane, and the superheated steam generator 11 is connected to a flow field reaction in the gasifier. It is installed horizontally between the chamber nozzle 1 and the quenching gas nozzle. A quenching gas nozzle is provided above the gasifier body.

好ましくは、廃熱ボイラ入り口温度測定装置4は、ガス化炉本体の廃熱ボイラの入り口に設けられ、システムの正常運転を監視できる。CO及びH質量分率オンラインアナライザ7及び合成ガス流量検出装置8は、ガス化炉本体の廃熱ボイラの出口に設けられ、水蒸気流量検出及び制御装置5は、水蒸気システムと効率向上ノズル2との間の接続配管に設けられ、酸素流量検出及び制御装置6は、酸素システムとフローフィールド反応室ノズル1との間の接続配管に設けられ、過熱蒸気流量検出及び制御装置9は、過熱蒸気発生器11とフローフィールド反応室ノズル1との間の接続配管に設けられ、
廃熱ボイラ入り口温度測定装置4、水蒸気流量検出及び制御装置5、酸素流量検出及び制御装置6、CO及びH質量分率オンラインアナライザ7、合成ガス流量検出装置8、及び過熱蒸気流量検出及び制御装置9は、それぞれ制御システム10に接続されている。
Preferably, the waste heat boiler inlet temperature measuring device 4 is provided at the inlet of the waste heat boiler of the gasifier main body, so that the normal operation of the system can be monitored. The CO and H2 mass fraction online analyzer 7 and the synthesis gas flow rate detection device 8 are installed at the outlet of the waste heat boiler of the gasifier main body, and the steam flow rate detection and control device 5 is connected to the steam system and the efficiency improvement nozzle 2. The oxygen flow rate detection and control device 6 is provided in the connection pipe between the oxygen system and the flow field reaction chamber nozzle 1, and the superheated steam flow rate detection and control device 9 is provided in the connection pipe between the oxygen system and the flow field reaction chamber nozzle 1. provided in the connecting pipe between the vessel 11 and the flow field reaction chamber nozzle 1,
Waste heat boiler inlet temperature measurement device 4, steam flow rate detection and control device 5, oxygen flow rate detection and control device 6, CO and H2 mass fraction online analyzer 7, synthesis gas flow rate detection device 8, and superheated steam flow rate detection and control device The devices 9 are each connected to a control system 10.

上記の高効率ガス化炉の作動方法は、以下のことを含む。
各所の乾式微粉炭、酸素及び水蒸気量は、シミュレーション状況及び経験に基づいて供給されて初期反応を行い、制御システム10によって酸素及び水蒸気の量を制御し、効率向上ノズル2による水蒸気の初期噴出流量は、フローフィールド反応室内の総水蒸気量の1/5である。
The method of operating the high-efficiency gasifier described above includes the following.
The amount of dry pulverized coal, oxygen and steam at each location is supplied based on simulation conditions and experience to perform an initial reaction, the amount of oxygen and steam is controlled by the control system 10, and the initial jet flow rate of steam is controlled by the efficiency improving nozzle 2. is 1/5 of the total amount of water vapor in the flow field reaction chamber.

基礎反応室ノズル3が乾式微粉炭、水蒸気及び酸素を基礎反応室に噴出して燃焼反応を行い、フローフィールド反応室ノズル1が過熱水蒸気及び乾式微粉炭をフローフィールド反応室に噴出して化学的急冷反応を行い、フローフィールド反応室ノズル1から噴出される過熱水蒸気を増加させて、コールドガス効率が向上しなくなった場合、フローフィールド反応室ノズル1が酸素を噴出して調整し、フローフィールド反応室ノズル1は、斜め下方に偏向して、下向きの強い混合フローフィールドが形成され、効率向上ノズル2は、水蒸気を噴出して、基礎反応室からの合成ガスとの混合を促進し、
CO及びH質量分率オンラインアナライザ7及び合成ガス流量検出装置8によってコールドガス効率のリアルタイム監視を実現してデータを制御システム10にフィードバックし、制御システム10が、水蒸気流量検出及び制御装置5、酸素流量検出及び制御装置6、過熱蒸気流量検出及び制御装置9によって各所の水蒸気、酸素及び過熱蒸気の供給量を制御し、コールドガス効率の制御によってガス化炉の効率を向上させる。
The basic reaction chamber nozzle 3 injects dry pulverized coal, steam and oxygen into the basic reaction chamber to perform a combustion reaction, and the flow field reaction chamber nozzle 1 injects superheated steam and dry pulverized coal into the flow field reaction chamber to perform a chemical reaction. If the cold gas efficiency is no longer improved by performing a rapid cooling reaction and increasing the superheated steam ejected from the flow field reaction chamber nozzle 1, the flow field reaction chamber nozzle 1 will eject oxygen to adjust the flow field reaction. The chamber nozzle 1 is deflected obliquely downward to form a strong downward mixing flow field, and the efficiency-enhancing nozzle 2 jets water vapor to promote mixing with the synthesis gas from the base reaction chamber,
A CO and H2 mass fraction online analyzer 7 and a syngas flow detection device 8 provide real-time monitoring of cold gas efficiency and feed back data to a control system 10, which controls the water vapor flow detection and control device 5, The oxygen flow rate detection and control device 6 and the superheated steam flow rate detection and control device 9 control the supply amounts of steam, oxygen, and superheated steam at various locations, and improve the efficiency of the gasifier by controlling the cold gas efficiency.

コールドガス効率Mは、次式によって決定され、
M=(x・F・3044kcal/Nm・4.184kJ/kcal+y・F・2576kcal/Nm・4.184kJ/kcal)/Q
ここで、xは、COのモル分率であり、yは、Hのモル分率であり、Fは、合成ガス流量であり、Qは、石炭の入炉総熱量であり、Q=石炭の受入ベース低位発熱量・微粉炭の受入ベース流量である。
The cold gas efficiency M is determined by the following formula:
M=(x・F・3044kcal/Nm 3・4.184kJ/kcal+y・F・2576kcal/Nm 3・4.184kJ/kcal)/Q
Here, x is the mole fraction of CO, y is the mole fraction of H2 , F is the syngas flow rate, Q is the total heating value of coal, and Q = coal This is the receiving base flow rate of lower calorific value and pulverized coal.

フローフィールド反応室ノズル1から噴出される過熱水蒸気を増加させて、3min以内にコールドガス効率のフィードバックがない場合、フローフィールド反応室ノズル1が酸素を噴出して調整し、酸素量Mが次式によって決定され、
=M×1.05×Z
ここで、Mは酸素量であり、Mは過熱水蒸気量であり、補正係数Zの値は、0.6~0.8であり、主にガス化炉での副反応を考慮する。
If the superheated steam ejected from the flow field reaction chamber nozzle 1 is increased and there is no feedback of the cold gas efficiency within 3 min, the flow field reaction chamber nozzle 1 ejects oxygen to adjust the amount of oxygen M2 . determined by the formula,
M2 = M3 ×1.05×Z
Here, M 2 is the amount of oxygen, M 3 is the amount of superheated steam, and the value of the correction coefficient Z is 0.6 to 0.8, mainly considering side reactions in the gasifier.

以下に、具体的な一実施例と組み合わせて本願の効果をさらに詳しく説明する。 Below, the effects of the present application will be explained in more detail in combination with a specific example.

2000t/dの二段式乾式微粉炭加圧ガス化炉は、微粉炭の受入ベース低位発熱量が14.92MJ/kgである。 The 2000 t/d two-stage dry type pulverized coal pressurized gasifier has a receiving base lower heating value of pulverized coal of 14.92 MJ/kg.

シミュレーション及び実験を経て、ガス化炉の初期値は以下のデータである。
基礎反応室には、4つの基礎反応室ノズル3が設けられ、各基礎反応室ノズル3に18854kg/hで乾式微粉炭、15200kg/hで酸素、1638kg/hで水蒸気が添加され、
フローフィールド反応室には、2つのフローフィールド反応室ノズル1が設けられ、各フローフィールド反応室ノズル1に5938kg/hで乾式微粉炭、1697kg/hで過熱水蒸気が添加され、各フローフィールド反応室ノズル1は、時計回りに水平方向に1.5°、下方に10°偏向し、ガス化炉の半径は1.7mであり、ノズルの最大射程は1.73mであり、偏向角度αが10°と算出される。
After simulation and experiment, the initial value of the gasifier is the following data.
The basic reaction chamber is provided with four basic reaction chamber nozzles 3, and to each basic reaction chamber nozzle 3, dry pulverized coal is added at 18,854 kg/h, oxygen is added at 15,200 kg/h, and steam is added at 1,638 kg/h.
The flow field reaction chamber is provided with two flow field reaction chamber nozzles 1, and dry pulverized coal is added at a rate of 5938 kg/h and superheated steam is added at a rate of 1697 kg/h to each flow field reaction chamber nozzle 1. Nozzle 1 is deflected clockwise horizontally by 1.5° and downward by 10°, the radius of the gasifier is 1.7 m, the maximum range of the nozzle is 1.73 m, and the deflection angle α is 10 It is calculated as °.

ガス化炉のネッキングには、2つの効率向上ノズル2が設けられ、効率向上ノズル2は、反時計回りに1.5°偏向し、水蒸気流量が339.4kg/hである。 The necking of the gasifier is provided with two efficiency-enhancing nozzles 2, which are deflected counterclockwise by 1.5° and have a water vapor flow rate of 339.4 kg/h.

初期状態では、ガス化炉のコールドガス効率は82%であり、CO及びH質量分率オンラインアナライザ7、及び合成ガス流量検出装置8の数値を経て、制御システム10においてコールドガス効率をリアルタイムに算出する。 In the initial state, the cold gas efficiency of the gasifier is 82%, and the cold gas efficiency is measured in real time in the control system 10 through the values of the CO and H 2 mass fraction online analyzer 7 and the synthesis gas flow rate detection device 8. calculate.

初期状態では、フローフィールド反応室の各フローフィールド反応室ノズル1が過熱水蒸気量を増加させ、コールドガス効率が3min以内に反応がない場合、制御システム10は酸素流量検出及び制御装置6をオンにし、計算によりフローフィールド反応室に酸素を比例的に添加し、コールドガス効率を最適な位置に調整する。 In the initial state, each flow field reaction chamber nozzle 1 of the flow field reaction chamber increases the amount of superheated steam, and if the cold gas efficiency has no reaction within 3 min, the control system 10 turns on the oxygen flow detection and control device 6. , add oxygen proportionally to the flow field reaction chamber by calculation and adjust the cold gas efficiency to the optimal position.

ガス化炉で扱われる主な反応は次のとおりである。
1、水蒸気転化反応
C+HO=CO+H-131KJ/mol
2、水性ガスシフト反応
CO+HO=CO+H+42KJ/mol
3、部分酸化反応
C+0.5O=CO+111KJ/mol
4、完全酸化(燃焼)反応
C+O=CO+394KJ/mol
5、メタン化反応
CO+2H=CH+74KJ/mol
6、Boudouard反応
C+CO=2CO+172KJ/mol
The main reactions handled in the gasifier are as follows.
1. Steam conversion reaction C+H 2 O=CO+H 2 -131KJ/mol
2. Water gas shift reaction CO+H 2 O=CO 2 +H 2 +42KJ/mol
3. Partial oxidation reaction C+0.5O 2 =CO 2 +111KJ/mol
4. Complete oxidation (combustion) reaction C+O 2 =CO 2 +394KJ/mol
5. Methanation reaction CO+2H 2 =CH 4 +74KJ/mol
6. Boudouard reaction C+CO 2 =2CO+172KJ/mol

上記は、本願の実施形態における一部のみであり、本願では一部の用語が使用されているが、他の用語が使用される可能性を排除するものではない。これらの用語は、単に本願の本質を説明及び解釈するために使用されるものであり、これらの用語を追加的な制限のいずれかと解釈することは、本願の精神に反する。上記の説明は、理解を容易にするために、実施例のみで本願の内容をさらに説明するものであるが、本願の実施形態がこれに限定されるものではなく、本願に基づいてなされた技術的拡張又は再創造は、いずれも本願によって保護される。 The above is only a part of the embodiments of this application, and although some terms are used in this application, this does not exclude the possibility that other terms may be used. These terms are used merely to describe and interpret the essence of this application, and it is contrary to the spirit of this application to interpret these terms as any additional limitations. In order to facilitate understanding, the above description further explains the contents of the present application using examples only, but the embodiments of the present application are not limited thereto, and the embodiments of the present application are not limited to these examples, and the embodiments of the present application are not limited to these examples, and the embodiments of the present application are not limited to these examples. Any extension or re-creation of this invention is protected by this application.

1 フローフィールド反応室ノズル
2 効率向上ノズル
3 基礎反応室ノズル
4 廃熱ボイラ入り口温度測定装置
5 水蒸気流量検出及び制御装置
6 酸素流量検出及び制御装置
7 CO及びH2質量分率オンライアナライザ
8 合成ガス流量検出装置
9 過熱蒸気流量検出及び制御装置
10 制御システム
11 過熱蒸気発生器
1 Flow field reaction chamber nozzle 2 Efficiency improvement nozzle 3 Basic reaction chamber nozzle 4 Waste heat boiler inlet temperature measurement device 5 Steam flow rate detection and control device 6 Oxygen flow rate detection and control device 7 CO and H2 mass fraction online analyzer 8 Synthesis gas flow rate Detection device 9 Superheated steam flow rate detection and control device 10 Control system 11 Superheated steam generator

Claims (10)

高効率ガス化炉であって、
ガス化炉本体と、水蒸気流量検出及び制御装置(5)と、酸素流量検出及び制御装置(6)と、CO及びH質量分率オンラインアナライザ(7)と、合成ガス流量検出装置(8)と、過熱蒸気流量検出及び制御装置(9)と、制御システム(10)と、過熱蒸気発生器(11)と、を含み、
ガス化炉本体の内部は、基礎反応室及びフローフィールド反応室を含み、基礎反応室がフローフィールド反応室の下方に設けられ、基礎反応室とフローフィールド反応室との間にガス化炉本体内に向かって延在するネッキングが設けられており、基礎反応室内にいくつかの基礎反応室ノズル(3)が設けられており、基礎反応室ノズル(3)に乾式微粉炭、水蒸気及び酸素システムが接続されており、フローフィールド反応室内にいくつかのフローフィールド反応室ノズル(1)が設けられており、フローフィールド反応室ノズル(1)に乾式微粉炭システム及び酸素システムが接続されており、いくつかのフローフィールド反応室ノズル(1)は、同じ角度で斜め下方に偏向し、ネッキングにいくつかの効率向上ノズル(2)が設けられており、効率向上ノズル(2)に水蒸気システムが接続されており、いくつかの効率向上ノズル(2)は、前記ネッキングの延在方向を水平方向の基準とすると、同じ角度で水平方向に偏向し、過熱蒸気発生器(11)がガス化炉本体内に設けられ、過熱蒸気発生器(11)の入り口に高圧蒸気システムが接続されており、過熱蒸気発生器(11)の出口がフローフィールド反応室ノズル(1)に接続されており、ガス化炉本体の上方に急冷ガスノズルが設けられており、
CO及びH質量分率オンラインアナライザ(7)及び合成ガス流量検出装置(8)は、ガス化炉本体の廃熱ボイラの出口に設けられ、水蒸気流量検出及び制御装置(5)は、水蒸気システムと効率向上ノズル(2)との間の接続配管に設けられ、酸素流量検出及び制御装置(6)は、酸素システムとフローフィールド反応室ノズル(1)との間の接続配管に設けられ、過熱蒸気流量検出及び制御装置(9)は、過熱蒸気発生器(11)とフローフィールド反応室ノズル(1)との間の接続配管に設けられ、
水蒸気流量検出及び制御装置(5)、酸素流量検出及び制御装置(6)、CO及びH質量分率オンラインアナライザ(7)、合成ガス流量検出装置(8)、及び過熱蒸気流量検出及び制御装置(9)は、それぞれ制御システム(10)に接続されている、
ことを特徴とする高効率ガス化炉。
A high-efficiency gasifier,
Gasifier main body, steam flow rate detection and control device (5), oxygen flow rate detection and control device (6), CO and H 2 mass fraction online analyzer (7), and synthesis gas flow rate detection device (8) , a superheated steam flow rate detection and control device (9), a control system (10), and a superheated steam generator (11),
The inside of the gasifier main body includes a basic reaction chamber and a flow field reaction chamber, the basic reaction chamber is provided below the flow field reaction chamber, and the inside of the gasifier main body is provided between the basic reaction chamber and the flow field reaction chamber. A necking is provided extending towards the base chamber, and a number of base reaction chamber nozzles (3) are provided in the base reaction chamber, into which dry pulverized coal, steam and oxygen systems are connected. A number of flow field reaction chamber nozzles (1) are provided in the flow field reaction chamber, a dry pulverized coal system and an oxygen system are connected to the flow field reaction chamber nozzle (1), and several flow field reaction chamber nozzles (1) are connected. The flow field reaction chamber nozzle (1) is deflected diagonally downward at the same angle and is provided with several efficiency-enhancing nozzles (2) in the necking, to which a water vapor system is connected. Some of the efficiency-enhancing nozzles (2) are deflected horizontally at the same angle when the extension direction of the necking is taken as a horizontal reference, and the superheated steam generator (11) is located inside the gasifier main body. A high-pressure steam system is connected to the inlet of the superheated steam generator (11), and the outlet of the superheated steam generator (11) is connected to the flow field reaction chamber nozzle (1). A quenching gas nozzle is installed above the main body.
The CO and H2 mass fraction online analyzer (7) and the synthesis gas flow rate detection device (8) are installed at the outlet of the waste heat boiler of the gasifier main body, and the steam flow rate detection and control device (5) is installed at the outlet of the waste heat boiler of the gasifier main body, and the steam flow rate detection and control device (5) is installed at the outlet of the waste heat boiler of the gasifier main body. and the efficiency-enhancing nozzle (2), and an oxygen flow detection and control device (6) is provided in the connecting pipe between the oxygen system and the flow field reaction chamber nozzle (1), and an oxygen flow detection and control device (6) is provided in the connecting pipe between the oxygen system and the flow field reaction chamber nozzle (1), A steam flow rate detection and control device (9) is provided in the connecting pipe between the superheated steam generator (11) and the flow field reaction chamber nozzle (1),
Water vapor flow rate detection and control device (5), oxygen flow rate detection and control device (6), CO and H2 mass fraction online analyzer (7), syngas flow rate detection device (8), and superheated steam flow rate detection and control device (9) are each connected to the control system (10),
A high-efficiency gasifier characterized by:
過熱蒸気発生器(11)は、同じ平面内に配置されている蛇行状のベンド管であり、過熱蒸気発生器(11)は、ガス化炉内のフローフィールド反応室ノズル(1)と急冷ガスノズルとの間に水平に設けられる、
ことを特徴とする請求項1に記載の高効率ガス化炉。
The superheated steam generator (11) is a meandering bent pipe arranged in the same plane, and the superheated steam generator (11) is connected to the flow field reaction chamber nozzle (1) and the quench gas nozzle in the gasifier. installed horizontally between
The high-efficiency gasifier according to claim 1, characterized in that:
フローフィールド反応室ノズル(1)の水平方向の偏向角度は、1°~1.5°であり、鉛直方向の偏向角度αは、r×secα≦フローフィールド反応室ノズル(1)の最大射程を満たし、前記rはガス化炉の半径である
ことを特徴とする請求項1に記載の高効率ガス化炉。
The horizontal deflection angle of the flow field reaction chamber nozzle (1) is 1° to 1.5°, and the vertical deflection angle α is r×secα≦maximum firing range of the flow field reaction chamber nozzle (1). and r is the radius of the gasifier ,
The high-efficiency gasifier according to claim 1, characterized in that:
効率向上ノズル(2)の水平方向の偏向角度が1.5°~5°である、
ことを特徴とする請求項1に記載の高効率ガス化炉。
The horizontal deflection angle of the efficiency-enhancing nozzle (2) is 1.5° to 5°;
The high-efficiency gasifier according to claim 1, characterized in that:
いくつかのフローフィールド反応室ノズル(1)、いくつかの効率向上ノズル(2)及びいくつかの基礎反応室ノズル(3)は、いずれも水平方向に均等に配置されている、
ことを特徴とする請求項1に記載の高効率ガス化炉。
A number of flow field reaction chamber nozzles (1), a number of efficiency-enhancing nozzles (2) and a number of base reaction chamber nozzles (3) are all evenly distributed in the horizontal direction,
The high-efficiency gasifier according to claim 1, characterized in that:
フローフィールド反応室ノズル(1)と効率向上ノズル(2)との水平方向の偏向方向が逆である、
ことを特徴とする請求項1に記載の高効率ガス化炉。
the horizontal deflection directions of the flow field reaction chamber nozzle (1) and the efficiency enhancing nozzle (2) are opposite;
The high-efficiency gasifier according to claim 1, characterized in that:
請求項1~6のいずれかに記載の高効率ガス化炉の作動方法であって、
基礎反応室ノズル(3)が乾式微粉炭、水蒸気及び酸素を基礎反応室に噴出して燃焼反応を行い、フローフィールド反応室ノズル(1)が過熱水蒸気及び乾式微粉炭をフローフィールド反応室に噴出して化学的急冷反応を行い、フローフィールド反応室ノズル(1)から噴出される過熱水蒸気を増加させて、コールドガス効率が向上しなくなった場合、フローフィールド反応室ノズル(1)が酸素を噴出して調整するステップであって、フローフィールド反応室ノズル(1)は、斜め下方に偏向して、下向きの強い混合フローフィールドが形成され、効率向上ノズル(2)は、水蒸気を噴出して、基礎反応室からの合成ガスとの混合を促進するステップと、
CO及びH質量分率オンラインアナライザ(7)及び合成ガス流量検出装置(8)によってコールドガス効率のリアルタイム監視を実現してデータを制御システム(10)にフィードバックし、制御システム(10)が、水蒸気流量検出及び制御装置(5)、酸素流量検出及び制御装置(6)及び過熱蒸気流量検出及び制御装置(9)によって各所の水蒸気、酸素及び過熱蒸気の供給量を制御し、コールドガス効率の制御によってガス化炉の効率を向上させるステップと、を含む、
ことを特徴とする高効率ガス化炉の作動方法。
A method for operating a high-efficiency gasifier according to any one of claims 1 to 6, comprising:
The basic reaction chamber nozzle (3) injects dry pulverized coal, steam, and oxygen into the basic reaction chamber to perform a combustion reaction, and the flow field reaction chamber nozzle (1) injects superheated steam and dry pulverized coal into the flow field reaction chamber. When the cold gas efficiency is no longer improved by increasing the superheated steam ejected from the flow field reaction chamber nozzle (1) by performing a chemical quenching reaction, the flow field reaction chamber nozzle (1) ejects oxygen. The flow field reaction chamber nozzle (1) is deflected obliquely downward to form a strong downward mixing flow field, and the efficiency improvement nozzle (2) is configured to eject water vapor, promoting mixing with synthesis gas from the base reaction chamber;
A CO and H2 mass fraction online analyzer (7) and a syngas flow detector (8) provide real-time monitoring of cold gas efficiency and feed back data to the control system (10), which The water vapor flow rate detection and control device (5), oxygen flow rate detection and control device (6), and superheated steam flow rate detection and control device (9) control the supply amount of water vapor, oxygen, and superheated steam at various locations, and improve cold gas efficiency. improving the efficiency of the gasifier by controlling;
A method of operating a high-efficiency gasifier characterized by the following.
コールドガス効率Mは、次式によって決定され、
M=(x・F・3044kcal/Nm・4.184kJ/kcal+y・F・2576kcal/Nm・4.184kJ/kcal)/Q
xは、COのモル分率であり、yは、Hのモル分率であり、Fは、合成ガス流量であり、Qは、石炭の入炉総熱量であり、Q=石炭の受入ベース低位発熱量・微粉炭の受入ベース流量である、
ことを特徴とする請求項7に記載の高効率ガス化炉の作動方法。
The cold gas efficiency M is determined by the following formula:
M=(x・F・3044kcal/Nm 3・4.184kJ/kcal+y・F・2576kcal/Nm 3・4.184kJ/kcal)/Q
x is the mole fraction of CO, y is the mole fraction of H2 , F is the syngas flow rate, Q is the total heat input of coal, and Q = receiving base of coal The receiving base flow rate of lower calorific value/pulverized coal is
8. The method of operating a high-efficiency gasifier according to claim 7.
フローフィールド反応室ノズル(1)から噴出される過熱水蒸気を増加させて、3min以内にコールドガス効率のフィードバックがない場合、フローフィールド反応室ノズル(1)が酸素を噴出して調整し、酸素量Mが次式によって決定され、
=M×1.05×Z
は酸素量であり、Mは過熱水蒸気量であり、補正係数Zの値は、0.6~0.8である、
ことを特徴とする請求項7に記載の高効率ガス化炉の作動方法。
If the superheated steam ejected from the flow field reaction chamber nozzle (1) is increased and there is no feedback of the cold gas efficiency within 3 min, the flow field reaction chamber nozzle (1) will eject oxygen to adjust the amount of oxygen. M2 is determined by the following formula,
M2 = M3 ×1.05×Z
M 2 is the amount of oxygen, M 3 is the amount of superheated steam, and the value of the correction coefficient Z is 0.6 to 0.8.
8. The method of operating a high-efficiency gasifier according to claim 7.
各所の乾式微粉炭、酸素及び水蒸気量は、シミュレーション状況及び経験に基づいて供給されて初期反応を行い、制御システム(10)によって酸素及び水蒸気の量を制御し、効率向上ノズル(2)による水蒸気の初期噴出流量は、フローフィールド反応室内の総水蒸気量の1/5である、
ことを特徴とする請求項7に記載の高効率ガス化炉の作動方法。
The amount of dry pulverized coal, oxygen and steam at each location is supplied based on the simulation situation and experience to perform the initial reaction, the amount of oxygen and steam is controlled by the control system (10), and the amount of steam is controlled by the efficiency improving nozzle (2). The initial jetting flow rate is 1/5 of the total amount of water vapor in the flow field reaction chamber.
8. The method of operating a high-efficiency gasifier according to claim 7.
JP2022547262A 2021-01-09 2021-08-23 High efficiency gasifier and its operating method Active JP7431340B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN202110027196.3A CN112831352B (en) 2021-01-09 2021-01-09 Efficient gasification furnace and working method thereof
CN202110027196.3 2021-01-09
PCT/CN2021/113995 WO2022148022A1 (en) 2021-01-09 2021-08-23 Efficient gasifier and working method thereof

Publications (2)

Publication Number Publication Date
JP2023513138A JP2023513138A (en) 2023-03-30
JP7431340B2 true JP7431340B2 (en) 2024-02-14

Family

ID=75929343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022547262A Active JP7431340B2 (en) 2021-01-09 2021-08-23 High efficiency gasifier and its operating method

Country Status (3)

Country Link
JP (1) JP7431340B2 (en)
CN (1) CN112831352B (en)
WO (1) WO2022148022A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112831352B (en) * 2021-01-09 2021-09-07 中国华能集团清洁能源技术研究院有限公司 Efficient gasification furnace and working method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001139303A (en) 1999-11-04 2001-05-22 Hitachi Ltd Method and device for producing hydrogen/carbon monoxide mixed gas, and fuel/power combination plant provided with the device
JP2010100690A (en) 2008-10-22 2010-05-06 Mitsubishi Heavy Ind Ltd Coal gasification furnace
JP2012193306A (en) 2011-03-17 2012-10-11 Mitsubishi Heavy Ind Ltd Hydrocarbon feedstock gasification furnace
JP2013227397A (en) 2012-04-25 2013-11-07 Electric Power Dev Co Ltd Gasification system

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2236115T3 (en) * 1994-12-01 2005-07-16 Mitsubishi Jukogyo Kabushiki Kaisha FIXED MILK GASIFICATION OVENS AND PROCEDURE TO GASIFY ORGANIC WASTE.
JP4085239B2 (en) * 2002-02-12 2008-05-14 株式会社日立製作所 Gasification method and gasification apparatus
CN200952001Y (en) * 2006-07-25 2007-09-26 西安热工研究院有限公司 Dry coal powder pressing gasification chilling apparatus
AU2011242111B2 (en) * 2010-04-16 2013-11-07 Nippon Steel & Sumikin Engineering Co., Ltd. Operational method for coal gasification reaction furnace and coal gasification reaction furnace
CN203668324U (en) * 2013-12-25 2014-06-25 河南金土地煤气工程有限公司 Two-section type entrained-bed biomass gasification device
CN203807410U (en) * 2014-04-23 2014-09-03 中国华能集团清洁能源技术研究院有限公司 Pressurized gasification device for dry powder
CN204455022U (en) * 2015-02-04 2015-07-08 中国五环工程有限公司 Slag circulation of vital energy in the wrong direction flowing water Quench vapourizing furnace
CN106675600B (en) * 2015-11-09 2020-05-01 神华集团有限责任公司 Coal gasification hydrogen production method
FI127670B (en) * 2016-07-18 2018-11-30 Raute Oyj A gasifier and a method for adjusting an operation of a gasifier
CN207062207U (en) * 2017-07-05 2018-03-02 中国华能集团清洁能源技术研究院有限公司 A kind of dry powder pressurized-gasification furnace with tower useless Cooker structure
CN107674711A (en) * 2017-11-13 2018-02-09 中国华能集团清洁能源技术研究院有限公司 A kind of the dry coal powder pressure gasifying stove and method of work of band screen formula radiation waste pot
CN109401798A (en) * 2018-12-13 2019-03-01 中国华能集团清洁能源技术研究院有限公司 A kind of double circle of contact double-section dry coal powder pressurized-gasification furnaces and its gasification process
CN110240943B (en) * 2019-07-02 2020-06-05 西北化工研究院有限公司 Process and device for preparing synthesis gas by combined feeding
CN112831352B (en) * 2021-01-09 2021-09-07 中国华能集团清洁能源技术研究院有限公司 Efficient gasification furnace and working method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001139303A (en) 1999-11-04 2001-05-22 Hitachi Ltd Method and device for producing hydrogen/carbon monoxide mixed gas, and fuel/power combination plant provided with the device
JP2010100690A (en) 2008-10-22 2010-05-06 Mitsubishi Heavy Ind Ltd Coal gasification furnace
JP2012193306A (en) 2011-03-17 2012-10-11 Mitsubishi Heavy Ind Ltd Hydrocarbon feedstock gasification furnace
JP2013227397A (en) 2012-04-25 2013-11-07 Electric Power Dev Co Ltd Gasification system

Also Published As

Publication number Publication date
WO2022148022A1 (en) 2022-07-14
CN112831352B (en) 2021-09-07
JP2023513138A (en) 2023-03-30
CN112831352A (en) 2021-05-25

Similar Documents

Publication Publication Date Title
US9481839B2 (en) Hot oxygen nozzle and uses thereof in gasifiers
KR101287222B1 (en) Process for reforming exhaust gas from metallurgical furnace, process for cooling the exhaust gas, and apparatuses for both processes
FI94462C (en) Medium heated thermochemical reactor and associated process
US7229483B2 (en) Generation of an ultra-superheated steam composition and gasification therewith
EP0400740B1 (en) Coal gasification reactor
US9487715B2 (en) Coal gasifier
JP7431340B2 (en) High efficiency gasifier and its operating method
CN107090311A (en) High efficient heat recovery carries flow gasification stove
CN105154140B (en) A kind of method and apparatus for the multistage air-flow bed coal-gasification for coupling high temperature shift
CN110951506B (en) Gasification furnace and gasification method thereof
Meng et al. Energy and exergy analyses of an intensified char gasification process
CN203741280U (en) Intermediate temperature reaction device
EP2940106A1 (en) Pneumatic conveying dryer for carbon fuel
Abaimov et al. Investigation of steam-air-blown two-stage entrained-flow gasification of mechanoactivated coal
KR20170010805A (en) Combustion of lithium at different temperatures and pressures and with gas surpluses using porous tubes as burners
JP2009513481A (en) Steam generating apparatus and method
CN203602566U (en) Carbon-containing substance gasifying device
US20210062683A1 (en) Carbon-Based Fuel Gasification Power Generation System
Laugwitz et al. New frontiers and challenges in gasification technologies
CN201043170Y (en) Up run high temperature coal gas chilling device
JP4954609B2 (en) Coke oven gas sensible heat recovery method
Du et al. Numerical study on coal gasification in Texaco entrained-flow coal gasifier
KR20230067743A (en) Combined system of coal-gasifier and blast-furnace using water-free coal and method using the same
KR101785552B1 (en) Removed by adsorption device for synthesis gas quench
JP2018044037A (en) Tar reformer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240201

R150 Certificate of patent or registration of utility model

Ref document number: 7431340

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150