JP7430859B1 - Floating offshore wind power generation system - Google Patents

Floating offshore wind power generation system Download PDF

Info

Publication number
JP7430859B1
JP7430859B1 JP2023080231A JP2023080231A JP7430859B1 JP 7430859 B1 JP7430859 B1 JP 7430859B1 JP 2023080231 A JP2023080231 A JP 2023080231A JP 2023080231 A JP2023080231 A JP 2023080231A JP 7430859 B1 JP7430859 B1 JP 7430859B1
Authority
JP
Japan
Prior art keywords
wind power
power generation
floating
generation device
floating body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2023080231A
Other languages
Japanese (ja)
Other versions
JP2024024579A (en
Inventor
弘 瀬戸
耀二 中島
Original Assignee
株式会社 セテック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 セテック filed Critical 株式会社 セテック
Application granted granted Critical
Publication of JP7430859B1 publication Critical patent/JP7430859B1/en
Publication of JP2024024579A publication Critical patent/JP2024024579A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Wind Motors (AREA)

Abstract

【課題】風力発電装置の大規模化を考慮し、海深度50~100m以上の海域に適した浮体式洋上風力発電システムを提供する。【解決手段】1基の多角形浮上体10に、風力発電装置1を2台搭載し、その多角形浮上体10の多角形頂点のうち1箇所は海底のアンカーから固定されている固定端浮上部とし、他の頂点は自由端である可動端浮上部4として風下側に追従するものとする。固定端浮上部には電力連係設備を設置する。風力発電装置支持用の支持柱2には垂直隔壁板を設置して風力発電用プロペラ11の後流の乱れの干渉を低減し、さらに隣接するプロペラ11を正逆回転させてプロペラ後流の乱れを抑制する。【選択図】図1[Problem] To provide a floating offshore wind power generation system suitable for sea areas with a sea depth of 50 to 100 meters or more, taking into consideration the increase in the scale of wind power generation devices. [Solution] Two wind power generators 1 are mounted on one polygonal floating body 10, and one of the polygonal vertices of the polygonal floating body 10 is fixed end floating fixed from an anchor on the seabed. , and the other vertices follow the leeward side as the movable end floating portion 4 which is a free end. Power connection equipment will be installed at the fixed end floating section. A vertical bulkhead plate is installed on the support column 2 for supporting the wind power generation device to reduce the interference of turbulence in the wake of the wind power generation propeller 11, and furthermore, the adjacent propeller 11 is rotated in forward and reverse directions to reduce the turbulence in the wake of the propeller. suppress. [Selection diagram] Figure 1

Description

本願発明は洋上風力発電に適用される浮体式の発電装置に関する。具体的には、風力発電装置2台を、浮上体1基に対し、その両端に釣り合う様に搭載して(いわゆる弥次郎兵衛形式)、装置の軽量化と海中深度50~100m程度の海域に適するように構成した浮体式洋上発電システムである。 The present invention relates to a floating power generation device applied to offshore wind power generation. Specifically, two wind power generators are mounted balanced on each end of one floating body (the so-called Yajirobe style), which reduces the weight of the device and allows it to be used at depths of about 50 to 100 meters underwater. This is a floating offshore power generation system configured to suit the requirements of the project.

従来、わが国の電力需要は水力、火力、原子力発電などの大容量電源に依存してきたが、我が国の水力電源は自然地勢により立地適地は開発済みであり、原子力発電は社会的合意性に問題があり、地球環境大気圏のCO2濃度の低減には自然エネルギーの活用が重要課題となってきている。
自然エネルギーの開発における大容量電源として、洋上風力発電が期待される。しかし、発電コストは火力発電の2~3倍になることより、そのコスト低減は緊急課題となっている。
Traditionally, Japan's electricity demand has relied on large-capacity power sources such as hydropower, thermal power, and nuclear power, but Japan's hydropower sources have already been developed in suitable locations due to the natural topography, and nuclear power generation has problems with social consensus. Therefore, the use of natural energy has become an important issue in reducing the CO 2 concentration in the global environment.
Offshore wind power generation is expected to serve as a large-capacity power source in the development of natural energy. However, since the cost of power generation is two to three times that of thermal power generation, reducing the cost has become an urgent issue.

我が国、日本列島沿岸部の大陸棚深度200m以浅の領海は455,000km、日本国土面積377,900kmの1.2倍であるが、排他的経済水域(EEZ)4,480,000kmは11.9倍であり、浮体式洋上風力発電装置が期待される。しかしながら日本列島沿海域は、大陸棚浅海域が少なく海底着床式風力発電の大規模開発は困難であり、浮体式洋上発電装置は浅海部の海底着床式柱状タワー型に比較してコスト高になる。 In Japan, the territorial sea with a continental shelf depth of less than 200 m along the coast of the Japanese archipelago is 455,000 km2 , which is 1.2 times the land area of Japan, which is 377,900 km2 , but the exclusive economic zone (EEZ) of 4,480,000 km2 is 11.9 times larger. Offshore wind power generation equipment is expected. However, in the coastal areas of the Japanese archipelago, there are few shallow waters on the continental shelf, making it difficult to develop large-scale seabed-mounted wind power generation systems. become.

海外では深度20~40mの浅海部での着床式風力発電装置が普及しているが、日本列島周辺沿岸部は浅海部が少なく、海深度50m以上の海域で設置される着床式風力発電はコスト高となることから、海洋浮体式の風力発電装置のコスト低減が求められる。浮体式の洋上風力発電装置に関する先行技術としては、以下の特許文献に記載された発明が存在する。 Overseas, bed-mounted wind power generation equipment installed in shallow sea areas at a depth of 20 to 40 m is popular, but there are few shallow sea areas in the coastal areas around the Japanese archipelago, and bed-mounted wind power generation equipment installed in sea areas with a depth of 50 m or more is common. Since the cost is high, there is a need to reduce the cost of offshore floating wind power generators. As prior art related to floating offshore wind power generators, there are inventions described in the following patent documents.

特開2010-216273号公報Japanese Patent Application Publication No. 2010-216273 特開2017-8807号公報JP 2017-8807 Publication 特表2005-5042057号公報Special Publication No. 2005-5042057 特開2004-2511397号公報Japanese Patent Application Publication No. 2004-2511397 特表2017-5215977号公報Special table 2017-5215977 publication

前述した先行技術文献のうち、各特許文献に記載されている発明の特徴を以下に記す。
(特許文献1)
特許文献1記載の発明は、「浮体式洋上風力発電装置の基礎構造」に関し、風力発電装置1台を洋上設置するために、洋上に浮かぶ円筒型浮体を基礎構造とし、円筒型浮体を中心としてその外周部に補助的円筒浮体を配置・連結して搖動対策とする方式である。
一方、本願に係る洋上風力発電システムでは、浮上体1組に発電装置を2台設置する方式であることから、構成が基本的に相異する。
(特許文献2)
特許文献2記載の発明は、「浮体式洋上風力発電装置」に関するもので、洋上発電装置を支持する発電装置用浮体部を、洋上に固定された繋留浮体部に連結して洋上設置する方式である。
一方、本願に係る洋上風力発電システムでは、発電装置用の浮上体と繋留浮体部とは一体構造であるため、その構造は基本的に相異する。
(特許文献3)
特許文献3記載の発明は、「浮体式洋上風力発電設備」に関するもので、同発明では風力発電装置を支持する浮体、1点係留機構等を有し、当該浮体に3つの半潜水型カラム部材を相互に連結して、それらの頂点が三角形をなすよう平面上に配置され、カラム部材の1つが前記の1点係留機構に係留される構成である。
これに対し、本願に係る洋上風力発電システムは、浮上体の形状は問わない構成であり、仮に浮上体の形状を平面視多角形とした場合は、浮上体の頂点の1点を固定端浮上部とし、浮上体を構成する他の頂点は、風下側の自由端となる可動端浮上部として一体化した構造で、且つ当該浮上体1組に風力発電装置2台を搭載した方式であり、基本的な構造が相異している。
(特許文献4)
特許文献4記載の発明は、「浮楊式水上風力発電装置」に関するが、当該方式は環状浮体の中心部に風力発電装置1台を搭載し、環状中心を固定点として風向制御したもので、垂直尾翼を風向追従性に利用している。
一方、本願に係る洋上風力発電システムでは、浮上体の形状は限定しておらず、仮に浮上体として多角形浮上体を採用した場合、三角形又は四角形などの多角形外周部の頂点の1点を風上側の固定端浮上部としたものである。また、垂直尾翼は風向追従性としての機能に加え、プロペラ後流域の乱れから隣接プロペラへの干渉を避ける隔壁板としての機能を備え、文献4記載の発明と技術的な構成が相異している。
(特許文献5)
特許文献5記載の発明は、「風力発電・回転半潜水型風力発電用ラフト及びその建設方法」についてのもので、当該方式は三角形ラフトの各頂点に3台の風力発電装置を搭載したものである。
一方、本願に係る洋上風力発電システムでは平面視三角形などからなる浮上体に風力発電装置用の支持柱(タワー部)を立設して、この支持柱に風力発電装置2台を設置しており、基本構造が相異する。
Among the prior art documents mentioned above, the features of the invention described in each patent document are described below.
(Patent Document 1)
The invention described in Patent Document 1 relates to a "foundation structure of a floating offshore wind power generation device," and in order to install one wind power generation device offshore, a cylindrical floating body floating on the ocean is used as the basic structure, and the cylindrical floating body is the center. In this method, an auxiliary cylindrical floating body is arranged and connected to the outer periphery as a countermeasure against rocking.
On the other hand, in the offshore wind power generation system according to the present application, two power generation devices are installed in one set of floating bodies, so the configuration is fundamentally different.
(Patent Document 2)
The invention described in Patent Document 2 relates to a "floating offshore wind power generation device," which is a system in which a floating section for a power generating device that supports an offshore power generating device is connected to a moored floating section fixed on the ocean and installed on the ocean. be.
On the other hand, in the offshore wind power generation system according to the present application, the floating body for the power generation device and the tethered floating body part have an integral structure, so their structures are fundamentally different.
(Patent Document 3)
The invention described in Patent Document 3 relates to a "floating offshore wind power generation facility," which has a floating body that supports a wind power generator, a one-point mooring mechanism, etc., and has three semi-submersible column members on the floating body. are arranged on a plane so that their apexes form a triangle, and one of the column members is moored to the one-point mooring mechanism.
On the other hand, the offshore wind power generation system according to the present application is configured such that the shape of the floating body does not matter; if the shape of the floating body is a polygon in plan view, one point of the apex of the floating body is fixed end floating. The other apexes constituting the floating body have an integrated structure as a movable end floating part that becomes the free end on the leeward side, and two wind power generators are mounted on one set of the floating body, The basic structure is different.
(Patent Document 4)
The invention described in Patent Document 4 relates to a "floating floating wind power generation device." This system is one in which one wind power generation device is mounted at the center of a ring-shaped floating body, and the wind direction is controlled using the center of the ring as a fixed point. The tail is used to follow wind direction.
On the other hand, in the offshore wind power generation system according to the present application, the shape of the floating body is not limited, and if a polygonal floating body is adopted as the floating body, one point of the outer periphery of a polygon such as a triangle or a quadrangle. This is a fixed end floating part on the windward side. Furthermore, in addition to the function of following the wind direction, the vertical tail has the function of a bulkhead plate that prevents interference with adjacent propellers from turbulence in the trailing region of the propeller, which is different in technical configuration from the invention described in Document 4. There is.
(Patent Document 5)
The invention described in Patent Document 5 relates to a "raft for wind power generation/rotating semi-submersible wind power generation and its construction method", and the method is a triangular raft with three wind power generators mounted at each apex. be.
On the other hand, in the offshore wind power generation system according to the present application, a support column (tower part) for the wind power generation device is erected on a floating body having a triangular shape in plan view, and two wind power generation devices are installed on this support column. , the basic structure is different.

洋上風力発電装置では、風力発電用のプロペラ、発電機、ハブなどの発電機器に基本的な差異はないが、当該機器の洋上設置には次の課題を有する。
(課題1)
洋上の風力発電は海深30~40m以内であれば海底に風力発電装置の柱状タワー底部を着床し、柱状タワー部を海面上に突出させタワー頂部に設置する方式は海外にて普及しているが、海深30~40m以上になると海底着床式はコスト高になる課題を有する。
Although there is no fundamental difference in the power generating equipment such as propellers, generators, hubs, etc. for wind power generation in offshore wind power generation equipment, there are the following issues in installing the equipment offshore.
(Assignment 1)
For offshore wind power generation, if the sea depth is within 30 to 40 meters, the bottom part of the wind power generator's columnar tower is placed on the seabed, and the columnar tower part is protruded above the sea surface and installed at the top of the tower. This method is popular overseas. However, when the sea depth exceeds 30 to 40 meters, the cost of the submarine-based system becomes high.

(課題2)
浮体式洋上発電方式は強風時に浮上体の搖動防止が課題となる。搖動対策として浮上体を単一円筒の半潜水浮体方式(スパー型)とした場合、潜水部の重錘を海中深部に設置することで搖動復元力を大きくし得るが、その際は、柱状タワーの重錘部深度は発電装置の海面上高さに対し、海面からの深度は1.3~1.5倍になり、例えば5MW級の発電装置を1台設置する場合は、海深度120m程度になる。
(Assignment 2)
The problem with floating offshore power generation systems is preventing the floating structure from shaking during strong winds. If the floating body is a single cylindrical semi-submersible floating body (spar type) as a countermeasure against rocking, the restoring force of the rocking motion can be increased by installing the weight of the submersible part deep under the sea. The depth of the weight part from the sea surface is 1.3 to 1.5 times the height of the power generation device above the sea surface.For example, when installing one 5MW class power generation device, the depth is about 120 meters.

本願発明は風力発電装置の大規模化を考慮し、海深度50~100m以上の海域に適した浮体式洋上風力発電システムを提供する。なお、用語末尾の符号は後述する説明全体の共通符号であり参考のため付記する。 The present invention provides a floating offshore wind power generation system suitable for sea areas with a sea depth of 50 to 100 meters or more, taking into consideration the scale-up of wind power generation devices. Note that the numeral at the end of the term is a common numeral throughout the explanation to be described later, and is added for reference.

本願発明は、前述の課題の解決策として洋上の風力発電装置2台を1組の浮上体に設置して、浮上体の浮上面積と海深度を考慮した搖動対策と、コスト低減とを同時に達成し得る浮体式洋上風力発電システムに関する。
請求項1記載の発明は、洋上における平面視多角形の頂点となる位置に、浮力を備える複数の浮上部(3,4,4)を設けるとともに、これらの各浮上部(3,4,4)との間を、それぞれ連結部材(5)によって接続することにより多角形浮上体(10)を形成し、
前記多角形浮上体(10)に、タワー状の塔体として形成された支持柱(2)の脚部を接続することにより、該支持柱(2)を該多角形浮上体(10)に搭載・立設して、該支持柱(2)と該多角形浮上体(10)とを一体化し、
前記支持柱(2)の上部に、風力発電装置(1,1)支持用の柱状部を設け、該柱状部は左右方向へ延出する一対の片持支持部(21A,21B)を備え、これらの一対の片持支持部(21A,21B)風力発電装置(1,1)を各1台(計2台)設置するとともに、
前記支持柱(2)と片持支持部(21A,21B)との間に、前記風力発電装置(1,1)の垂直荷重を負担する風力発電装置引張索(22,22)を左右一対設置して固縛し、
前記複数の浮上部(3,4,4)のうち、頂点の一点である固定端浮上部(3)は海上の略所定位置に保持され、他の頂点を可動端浮上部(4,4)とすることにより、前記固定端浮上部(3)を風上側へ位置させる一方、該可動端浮上部(4,4)を風下側へ自由端として追従する構成として、風力発電装置(1,1)個別の風向制御を不要とすることを特徴としている。
As a solution to the above-mentioned problem, the present invention installs two offshore wind power generators on a set of floating bodies, and simultaneously achieves measures against rocking that take into account the floating area of the floating body and sea depth, and cost reduction. Regarding a possible floating offshore wind power generation system.
The invention according to claim 1 provides a plurality of floating parts (3, 4, 4) having buoyancy at positions that are the vertices of a polygon in plan view on the ocean , and each of these floating parts (3, 4, 4). ) are connected by connecting members (5) to form a polygonal floating body (10),
The support column (2) is mounted on the polygonal floating body (10) by connecting the legs of the support column (2) formed as a tower body to the polygonal floating body (10).・Integrate the support column (2) and the polygonal floating body (10) by erecting it,
A columnar part for supporting the wind power generator (1, 1) is provided on the upper part of the support column (2), and the columnar part includes a pair of cantilever support parts (21A, 21B) extending in the left-right direction, One wind power generation device (1, 1) each (two in total) is installed on these pair of cantilever support parts (21A, 21B),
A pair of left and right wind power generator tension cables (22, 22) that bear the vertical load of the wind power generator (1, 1) are installed between the support column (2) and the cantilever support part (21A, 21B). and tie it down,
Among the plurality of floating parts (3, 4, 4), the fixed end floating part (3), which is one of the apexes, is held at approximately a predetermined position on the sea , and the other apexes are connected to the movable end floating parts (4, 4). By doing so, the fixed end floating section (3) is positioned on the windward side, while the movable end floating section (4, 4) follows the windward end as a free end on the leeward side. ) It is characterized by eliminating the need for individual wind direction control.

請求項2記載の発明は、上記1項において、前記風力発電装置(1,1)支持用の支持柱(2)に垂直隔壁板(23)を取り付け、該垂直隔壁板(23)により、隣接する2台の前記風力発電装置(1,1)の風力発電用プロペラ(11,11)の後流乱れによる干渉の回避機能を付与するとともに、並びに固定端浮上部(3)を風上側へ位置させて風に対し前記風力発電装置(1,1)の風力発電用プロペラ(11,11)を正対させる風向追従性の向上機能を付与し、
同時に前記風力発電装置(1,1)における風力発電用プロペラ(11,11)は、各々正逆回転制御して隣接プロペラ(11,11)への後流乱れの干渉を抑制したこと特徴としている。
The invention according to claim 2 is, in the above-mentioned item 1, a vertical partition plate (23) is attached to the support column (2) for supporting the wind power generator (1, 1), and the vertical partition plate (23) allows the adjacent In addition to providing a function to avoid interference due to wake turbulence of the wind power generation propellers (11, 11) of the two wind power generation devices (1, 1), and positioning the fixed end floating part (3) to the windward side. and a wind direction followability improvement function that causes the wind power generation propellers (11, 11) of the wind power generation device (1, 1) to directly face the wind.
At the same time, the wind power generation propellers (11, 11) in the wind power generation device (1, 1) are each controlled to rotate in forward and reverse directions to suppress interference of wake turbulence with adjacent propellers (11, 11). .

本願の請求項1に記載の発明によれば、浮体式洋上風力発電において1組の浮上体(10)に2台の風力発電装置を、いわゆる玩具の弥次郎兵衛のように、釣り合う様に搭載することが可能であることから、海深度50~100m以上においても適用可能であり、力学的バランスに優れ、洋上での安定性向上を図ることができる。
また、請求項2及び3に記載の発明によれば、浮上体(10)の海底からの錨アンカーにより設置されている頂点の1点である固定端浮上部(3)を、電力ケーブル引込部とし、且つ、洋上からの陸上部への送電端として風力発電装置2台分の電力連係設備(変圧器・開閉器)を設置することができる。
さらに、請求項2及び3に記載の発明によれば、風力発電装置それぞれ毎の風向制御設備は不要となり、イニシャルコスト及びランニングコストの低減に寄与しうる。
According to the invention recited in claim 1 of the present application, in floating offshore wind power generation, two wind power generation devices are mounted on one set of floating bodies (10) in a balanced manner like a so-called toy Yajirobei. Therefore, it can be applied even at sea depths of 50 to 100 meters or more, has excellent mechanical balance, and can improve stability at sea.
Further, according to the invention described in claims 2 and 3, the fixed end floating part (3), which is one point of the apex installed by the anchor from the seabed of the floating body (10), is connected to the power cable lead-in part. In addition, power interconnection equipment (transformers and switches) for two wind power generators can be installed as a power transmission end from the ocean to the land area.
Furthermore, according to the inventions described in claims 2 and 3, wind direction control equipment for each wind power generation device is not required, which can contribute to reducing initial costs and running costs.

本願発明に係る洋上風力発電システムの第一の実施例を示した図で、風向に対して直角方向から視た立面図である。1 is a diagram illustrating a first embodiment of an offshore wind power generation system according to the present invention, and is an elevational view seen from a direction perpendicular to the wind direction. 同じく、本願発明に係る洋上風力発電システムの第一の実施例を示す図で、風向に対して平行に視た立面図である。Similarly, it is a diagram showing the first embodiment of the offshore wind power generation system according to the present invention, and is an elevational view viewed parallel to the wind direction. 同じく、本願発明に係る洋上風力発電システムの第一の実施例を示す図で、その平面図である。Similarly, it is a diagram showing the first embodiment of the offshore wind power generation system according to the present invention, and is a plan view thereof. 同じく、本願発明に係る洋上風力発電システムにおける第一の実施例の要部を示す図で、固定端浮上部が、海中に設置されている状態を示す断面図である。Similarly, it is a diagram showing main parts of the first embodiment of the offshore wind power generation system according to the present invention, and is a sectional view showing a state in which the fixed end floating section is installed in the sea. 同じく、本願発明に係る洋上風力発電システムにおける第一の実施例の要部を示す図で、図4における洋上風力発電システムのX―X´線に沿った矢視断面図である。Similarly, it is a diagram showing main parts of the first embodiment of the offshore wind power generation system according to the present invention, and is a sectional view taken along the line XX' of the offshore wind power generation system in FIG. 4. 同じく、本願発明に係る洋上風力発電システムにおける第一の実施例の要部を示す図で、可動端浮上部の平面図である。Similarly, it is a diagram showing the main parts of the first embodiment of the offshore wind power generation system according to the present invention, and is a plan view of the movable end floating section. 本願発明に係る洋上風力発電システムの第二の実施例を示した図で、風向に対して直角方向から視た立面図である。FIG. 2 is a diagram showing a second embodiment of the offshore wind power generation system according to the present invention, and is an elevational view seen from a direction perpendicular to the wind direction.

以下、添付図面にしたがって本願発明に係る洋上風力発電システムについて、詳細に説明する。
(第一の実施例)
第一の実施例に係る洋上風力発電システムにおける特徴は、「浮上体」として平面視多角形の多角形浮上体10を用い、当該多角形浮上体10に風力発電装置2台を搭載するとともに、当該多角形浮上体10の頂点のうち、一点は固定端アンカー連結鎖(34)及び固定端アンカー海底錨アンカー部(35)を介して海底に連結することにより、海上の略所定位置に保持される固定端浮上部3とし、他の頂点は風向により風下側に追従する自由端となる可動端浮上部4,4として構成したことである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The offshore wind power generation system according to the present invention will be described in detail below with reference to the accompanying drawings.
(First example)
The characteristics of the offshore wind power generation system according to the first embodiment are that a polygonal floating body 10 having a polygonal shape in plan view is used as the “floating body”, two wind power generation devices are mounted on the polygonal floating body 10, and One point among the vertices of the polygonal floating object 10 is connected to the seabed via a fixed end anchor connection chain (34) and a fixed end anchor submarine anchor anchor part (35), thereby being held at approximately a predetermined position on the sea. The fixed end floating part 3 is configured as a fixed end floating part 3, and the other vertices are configured as movable end floating parts 4, which are free ends that follow the leeward side depending on the wind direction.

図1は、第一の実施例の洋上風力発電システムについて、風向に対して直角方向から視た立面図、図2は風向きに対して平行な方向から視た立面図、図3は平面図である。これらの図に示されるように、本実施例の洋上風力発電システムは、それぞれ浮力を備えた固定端浮上部3,可動端浮上部4,4を備えるとともに、これらの浮上部3,4,4との間を、連結部材5,5,5によって接続されることにより、図3に示されるように、平面視三角形状の多角形浮上体10を構成している。 Figure 1 is an elevational view of the offshore wind power generation system of the first embodiment, viewed from a direction perpendicular to the wind direction, Figure 2 is an elevational view viewed from a direction parallel to the wind direction, and Figure 3 is a plan view. It is a diagram. As shown in these figures, the offshore wind power generation system of this embodiment includes a fixed end floating section 3 and a movable end floating section 4, 4 each having buoyancy, and these floating sections 3, 4, 4. By connecting them with the connecting members 5, 5, 5, a polygonal floating body 10 having a triangular shape in plan view is constructed, as shown in FIG.

なお、本実施例における連結部材5,5,5は、水中沈下型の部材を使用しているが、これに限らず水上に浮かぶ浮体型の部材を使用することも可能である。可動端浮上部4,4には、その下方位置に浮体水中部51及び浮体水中重錘部52が設けられ、可動端浮上部4,4の安定性を向上させることによって波浪などの影響を少なくしている。 Although the connecting members 5, 5, 5 in this embodiment are submerged members, they are not limited to this, and it is also possible to use floating members that float on water. The movable end floating parts 4, 4 are provided with a floating body underwater part 51 and a floating body underwater weight part 52 at their lower positions, and by improving the stability of the movable end floating parts 4, 4, the influence of waves etc. is reduced. are doing.

図1~図3に示されるように、固定端浮上部3,可動端浮上部4,4、連結部材5,5,5を具備して構成される多角形浮上体10には、風力発電装置を支持する十字型の塔体である支持柱2が搭載・立設されている。この風力発電装置支持柱2は、トラス部材を組み合わせてなるタワー状の支持柱であり、中央の鉛直方向の柱状部には、左右方向へ延出する一対の片持支持部(風力発電装置支持梁)21A,21Bが設けられている。これらの一対の片持支持部21A,21Bの端部に、発電量が同出力の風力発電装置1,1を各1台ずつ設置することで釣り合いを図り、いわゆる玩具の弥次郎兵衛(ヤジロベエ)の原理を適用する結果となって、安定性の向上に寄与している。 As shown in FIGS. 1 to 3, a polygonal floating body 10 comprising a fixed end floating section 3, movable end floating sections 4, 4, and connecting members 5, 5, 5 includes a wind power generator. A support column 2, which is a cross-shaped tower body, is mounted and erected. This wind power generation device support column 2 is a tower-shaped support column formed by combining truss members, and the central vertical column has a pair of cantilever support portions (wind power generation device support) extending in the left and right direction. beams) 21A and 21B are provided. At the ends of these pair of cantilever supports 21A and 21B, wind power generators 1 and 1 each with the same power output are installed to achieve balance, creating a so-called toy Yajirobee. As a result of applying this principle, it contributes to improved stability.

また、風力発電装置1,1が支持されている部分と、柱状部の上端との間には、安定化部材としての風力発電装置引張索22,22を張設して固縛しており、2台の風力発電装置1,1の設置部分を補強しつつ、重量バランスをくずすことなく設置することが可能になっている。即ち、安定化部材である風力発電装置引張索22,22は、風力発電装置1,1の垂直荷重の一部を負担するため、系全体の力学的なバランスを向上させる機能を備えている。 Further, between the part where the wind power generators 1, 1 are supported and the upper end of the columnar part , wind power generator tension cables 22, 22 as stabilizing members are stretched and secured. It is now possible to install the two wind power generators 1, 1 without losing their weight balance while reinforcing the installation parts. That is, the wind power generator tension cables 22, 22, which are stabilizing members, bear a part of the vertical load of the wind power generators 1, 1, and thus have a function of improving the dynamic balance of the entire system.

本実施例では風に対する抵抗を少なくするという点を考慮し、金属製のワイヤロープを風力発電装置引張索22,22に用いているが、他の適用可能な部材として、張力が調節可能なターンバックルを備えた棒鋼など、海上での使用を考慮した耐食性・耐風力性を備えた鋼材を用いることも可能である。 In this embodiment, metal wire ropes are used for the wind power generator tension cables 22, 22 in consideration of reducing wind resistance, but other applicable members include wire ropes with adjustable tension. It is also possible to use steel materials with corrosion resistance and wind resistance that are suitable for use at sea, such as steel bars with buckles.

さらに、図2及び図3にも示されるように、タワー状に形成された支持柱2の脚部は、各下端が多角形浮上体10の固定端浮上部3、及び可動端浮上部4,4上に設置支持されている。これによって支持柱2は、多角形浮上体10と一体化されて堅牢性・剛性が向上した構造となり、耐波性、耐風力性が確保される。 Furthermore, as shown in FIGS. 2 and 3, the lower ends of the support column 2 formed in a tower shape are connected to the fixed end floating section 3 of the polygonal floating body 10, the movable end floating section 4, It is installed and supported on 4. As a result, the support column 2 is integrated with the polygonal floating body 10, resulting in a structure with improved robustness and rigidity, ensuring wave resistance and wind resistance.

風力発電装置1,1における、各々の風力発電用プロペラ11,11は、発電時に正逆回転させるように制御し、隣接するプロペラ11,11への後流乱れの干渉を抑制するようになっている。 Each of the wind power generation propellers 11, 11 in the wind power generation devices 1, 1 is controlled to rotate in forward and reverse directions during power generation, and interference of wake turbulence on the adjacent propellers 11, 11 is suppressed. There is.

図4は、海中における固定端浮上部3の設置状態を示す断面図、図5は固定端浮上部3の平面断面図である。
図4に示されるように、固定端浮上部3は、浮力を備える固定端回転浮上部31、固定端静止浮上部32を具備し、固定端静止浮上部32の側面には固定端アンカー連結鎖34の上端部が取り付けられ、その下端部が海底に設置された固定端アンカー海底固定部35と接続され、これにより固定端浮上部3は洋上の一定位置に保持されている。
図5にも示されるように、固定端静止浮上部32の上部には、固定端回転浮上部31が、固定端回転軸ベアリング33を介して上方より嵌合した形で、固定端静止浮上部32に対し相対的に回転可能に設けられている。
FIG. 4 is a sectional view showing how the fixed end floating section 3 is installed in the sea, and FIG. 5 is a plan sectional view of the fixed end floating section 3.
As shown in FIG. 4, the fixed end floating section 3 includes a fixed end rotating floating section 31 and a fixed end stationary floating section 32 that have buoyancy. The upper end of the anchor 34 is attached, and the lower end thereof is connected to a fixed-end anchor submarine fixing part 35 installed on the seabed, thereby holding the fixed-end floating part 3 at a fixed position on the ocean.
As shown in FIG. 5, the fixed end rotating floating section 31 is fitted onto the upper part of the fixed end stationary floating section 32 from above via the fixed end rotating shaft bearing 33. It is rotatably provided relative to 32.

さらに、図4において固定端浮上部3における固定端静止浮上部32の内部には、可捻電線62が上下方向に挿通され、その下端の電力ケーブルヘッド61を介して電力ケーブル6と接続されている。電力ケーブル6は、風力発電装置によって発電された電力の送電線となって陸上の送電施設と接続されている。
また、固定端浮上部3には、風力発電装置2台の出力を一括して外部に送電するための電力連係設備36が設置されている。
Further, in FIG. 4, a twistable electric wire 62 is inserted vertically into the inside of the fixed end stationary floating section 32 of the fixed end floating section 3, and is connected to the power cable 6 via the power cable head 61 at the lower end. There is. The power cable 6 serves as a power transmission line for the power generated by the wind power generator and is connected to a power transmission facility on land.
Furthermore, a power linking facility 36 is installed in the fixed end floating section 3 to collectively transmit the output of the two wind power generators to the outside.

風向により可捻電線62は捻れを生じるが、捻じれ解消のため、図6に示されるように、連結部材5,5が接続されている可動端浮上部4の一つに設置した、捻じれ復元用水中推進スクリュー41により、固定端浮上部3、可動端浮上部4,4を、電力ケーブル62の捻じれ方向の反対方向に回転移動させて、その捻じれを解消させる。つまり、捻じれ復元用水中推進スクリュー41は正逆回転し得るものとし、運用時に固定端浮上部3、可動端浮上部4,4からなる多角形浮上体10を、電力ケーブル62の捻れ方向と逆回転させることによって捩れを復元させる。 The twistable electric wire 62 is twisted depending on the wind direction, but in order to eliminate the twist, as shown in FIG. The restoring underwater propulsion screw 41 rotates the fixed end floating section 3 and the movable end floating sections 4, 4 in a direction opposite to the twisting direction of the power cable 62, thereby eliminating the twisting. In other words, the underwater propulsion screw 41 for torsion restoration is capable of forward and reverse rotation, and during operation, the polygonal floating body 10 consisting of the fixed end floating section 3 and the movable end floating section 4, 4 is rotated in the twisting direction of the power cable 62. The twist is restored by rotating it in the opposite direction.

このように構成した浮体式の洋上風力発電システムの実施設計例を示す。以下の設計例は2.5MW×2台=5MW級の浮体式洋上発電装置を利用している。

洋上発電設備
・定格出力 2.5MW×2台=5MW
・浮体構成 多角形浮上体:円形浮体(固定端及び可動端浮上部~三角形配置
連結部材:辺長50m、水中トラス構造
・柱状塔体部(風力発電装置支持柱)
上部:浮体部鋼製中空円筒構造、十字構成による水平梁両端部に発電装置設置 下部:鋼製トラス構造、垂直隔壁板設置
・定格風速 12m/秒
・カットイン風速 3.5m/秒、カットアウト風速25m/秒
・ロ-タ直径 90m
・プロペラブレード 3枚
・プロペラ配置 ダウンウインド(発電機風下側設置)
・発電機駆動方式 ダイレクトドライブ(プロペラ軸直結)
・発電機型式 横軸永久磁石励磁同期発電機
・海底固定部 三角形浮上体の固定端アンカー部6箇所
An example of a practical design of a floating offshore wind power generation system configured in this way will be shown. The design example below uses 2.5MW x 2 units = 5MW class floating offshore power generation equipment.

Offshore power generation equipment/Rated output 2.5MW x 2 units = 5MW
・Floating body configuration Polygonal floating body: Circular floating body (fixed end and movable end floating part ~ triangular arrangement
Connecting member: Side length 50m, underwater truss structure, columnar tower body (wind power generation equipment support column)
Upper part: Floating body steel hollow cylindrical structure, power generation equipment installed at both ends of horizontal beams with cross configuration Lower part: Steel truss structure, vertical bulkhead plates installed, rated wind speed 12 m/s, cut-in wind speed 3.5 m/s, cut-out wind speed 25m/sec・Rotor diameter 90m
・3 propeller blades ・Propeller arrangement downwind (generator installed on the leeward side)
・Generator drive method Direct drive (directly connected to propeller shaft)
・Generator type: Horizontal axis permanent magnet excitation synchronous generator

(第二の実施例)
本願発明に係る洋上風力発電システムの第二の実施例は以下のように構成されている。第二の実施例に係る洋上風力発電システムは、「浮上体」として、単一円筒型(スパー型)浮上体7を用いている点が、第一の実施例と相違する。
以下の説明にて前述した第一の実施例と同様な部材には同一の符号を付し、その詳細な説明を省略する。
(Second example)
A second embodiment of the offshore wind power generation system according to the present invention is configured as follows. The offshore wind power generation system according to the second embodiment differs from the first embodiment in that a single cylindrical (spar type) floating body 7 is used as the "floating body".
In the following description, members similar to those in the first embodiment described above are given the same reference numerals, and detailed description thereof will be omitted.

図7は第二の実施例の洋上風力発電システムを示した図で、風向に対して直角方向から視た立面図である。
同図に示される洋上風力発電システムでは、単一円筒型浮上体7及び、該単一円筒型浮上体7に立設して支持される十字型の風力発電装置支持柱2を備え、これらの浮上体7及び風力発電装置支持柱2は2基の風力発電装置1,1を支えるための強度を備えている。
また、単一円筒型浮上体7は、その下方位置に浮体水中部71及び浮体水中重錘部72が設けられている。
スパー型の浮上体は、構造がシンプルで製造が容易でコスト的に安価である一方、浅い海域での設置にやや不向きであるという面があるが、システムの設計に際しては設置される海域や発電出力などを考慮して最適な浮上体を選択する。
FIG. 7 is a diagram showing the offshore wind power generation system of the second embodiment, and is an elevational view viewed from a direction perpendicular to the wind direction.
The offshore wind power generation system shown in the figure includes a single cylindrical floating body 7 and a cross-shaped wind power generation device support column 2 that is erected and supported by the single cylindrical floating body 7. The floating body 7 and the wind power generator support column 2 have the strength to support the two wind power generators 1, 1.
Further, the single cylindrical floating body 7 is provided with a floating body underwater part 71 and a floating body underwater weight part 72 at a lower position.
Although spar-type floating bodies have a simple structure, are easy to manufacture, and are inexpensive, they are somewhat unsuitable for installation in shallow waters; Select the optimal floating object considering output etc.

なお、本発明が適用される第一及び第二の実施例では、2基の風力発電装置1,1を使用していることから、例えば5MW級の発電装置とするには2.5MW級の装置を2台設置する形になる。これに対し、大型の発電装置を1台設置する場合は、風車が大型化してブレードのロータ直径が大きくなるとともに重量が増加し、発電装置の発電機主軸と連結されるプロペラ支持構造は片持のため、当該発電機主軸に強度上の課題を惹起するが、2台の発電装置を用いることで小型化を図ることができることから、装置本体の過度な大型化を回避することが可能になる。 In the first and second embodiments to which the present invention is applied, two wind power generators 1 and 1 are used, so for example, a 5MW class power generator requires a 2.5MW class power generator. Two devices will be installed. On the other hand, when installing one large power generation device, the wind turbine becomes larger and the rotor diameter of the blades increases, which increases the weight, and the propeller support structure connected to the generator main shaft of the power generation device is cantilevered. This poses problems regarding the strength of the main shaft of the generator, but since it can be made smaller by using two generators, it is possible to avoid excessively increasing the size of the equipment itself. .

以上、説明したように、本願発明の洋上風力発電システムによれば、浮上体はTLP型、セミサブ型、バージ型の浮上体など、様々な形態の洋上風力発電へ対応することができる。 As described above, according to the offshore wind power generation system of the present invention, the floating body can be used in various forms of offshore wind power generation, such as TLP type, semi-sub type, and barge type floating bodies.

本願発明の浮体式の洋上風力発電システムでは、浮上体1基に対して風力発電装置を2台、いわゆる弥次郎兵衛形の配置として重量バランスを取り、中深海部における搖動対策を図ると同時にコスト削減が達成される。本願発明は電力事業分野に利用可能性を有する。また、本願発明は洋上における浮上体の形状は問わないので、様々な型式の洋上風力発電システムに対応することができる。 In the floating offshore wind power generation system of the present invention, two wind power generators are installed for one floating body in a so-called Yajirobe-shaped arrangement to achieve weight balance, and at the same time take measures against rocking in mid-deep sea areas and reduce costs. reduction is achieved. The present invention has applicability in the electric power business field. Further, since the present invention does not care about the shape of the floating body on the ocean, it can be applied to various types of offshore wind power generation systems.

洋上風力発電装置群を構成する部材番号の説明
1 :風力発電装置
10:多角形浮上体
11:風力発電用プロペラ
2 :風力発電装置支持柱
21A,21B:片持支持部(風力発電装置支持梁)
22:風力発電装置引張索(安定化部材)
23:支持柱取付け垂直隔壁板
3 :固定端浮上部
31:固定端回転浮上部
32:固定端静止浮上部
33:固定端回転軸ベアリング
34:固定端アンカー連結鎖
35:固定端アンカー海底錨アンカー部
36:電力連係設備
4 :可動端浮上部
41:捻じれ復元用水中推進スクリュー
5 :連結部材
51:浮体水中部
52:浮体水中重錘部
6 :電力ケーブル
61:電力ケーブルヘッド
62:可捻電線
7 :単一円筒型浮上体
71:浮体水中部
72:浮体水中重錘部
Explanation of component numbers constituting the offshore wind power generation device group 1: Wind power generation device 10: Polygonal floating body 11: Wind power generation propeller 2: Wind power generation device support columns 21A, 21B: Cantilever support part (wind power generation device support beam) )
22: Wind power generator tension cable (stabilizing member)
23: Support column attached vertical bulkhead plate 3: Fixed end floating section 31: Fixed end rotating floating section 32: Fixed end stationary floating section 33: Fixed end rotating shaft bearing 34: Fixed end anchor connecting chain 35: Fixed end anchor submarine anchor anchor Part 36: Power connection equipment 4: Movable end floating section
41: Underwater propulsion screw for twist recovery 5: Connecting member 51: Floating body underwater part 52: Floating body underwater weight part 6: Power cable 61: Power cable head 62: Twistable electric wire 7: Single cylindrical floating body 71: Floating body underwater part
72: Floating underwater weight part

Claims (2)

洋上における平面視多角形の頂点となる位置に、浮力を備える複数の浮上部を設けるとともに、これらの各浮上部との間を、それぞれ連結部材によって接続することにより多角形浮上体を形成し、
前記多角形浮上体に、タワー状の塔体として形成された支持柱の脚部を接続することにより、該支持柱を該多角形浮上体に搭載・立設して、該支持柱と該多角形浮上体とを一体化し、
前記支持柱の上部に、風力発電装置支持用の柱状部を設け、該柱状部は左右方向へ延出する一対の片持支持部を備え、これらの一対の片持支持部風力発電装置を各1台(計2台)設置するとともに、
前記支持柱と片持支持部との間に、前記風力発電装置の垂直荷重を負担する風力発電装置引張索を左右一対設置して固縛し、
前記複数の浮上部のうち、頂点の一点である固定端浮上部は海上の略所定位置に保持され、他の頂点を可動端浮上部とすることにより、前記固定端浮上部を風上側へ位置させる一方、該可動端浮上部を風下側へ自由端として追従する構成として、風力発電装置個別の風向制御を不要としたことを特徴とする洋上風力発電システム。
A polygonal floating body is formed by providing a plurality of floating parts with buoyancy at the vertices of a polygon in plan view on the ocean , and connecting these floating parts with respective connecting members,
By connecting the legs of a support column formed as a tower body to the polygonal floating body, the support column is mounted and erected on the polygonal floating body, and the support column and the polygon are connected to each other. Integrate with the square floating body,
A columnar part for supporting the wind power generation device is provided on the upper part of the support column, and the columnar part is provided with a pair of cantilever support parts extending in the left-right direction, and the wind power generation device is mounted on these pair of cantilever support parts. In addition to installing one of each (total of two),
A pair of left and right wind power generation device tension cables that bear the vertical load of the wind power generation device are installed and secured between the support column and the cantilever support part,
Among the plurality of floating parts, the fixed end floating part, which is one point at the apex, is held at a substantially predetermined position on the sea , and by setting the other apexes as movable end floating parts, the fixed end floating part is positioned to the windward side. An offshore wind power generation system characterized in that the movable end floating section follows the movable end as a free end to the leeward side, thereby eliminating the need for individual wind direction control of the wind power generation device.
前記風力発電装置支持用の支持柱に垂直隔壁板を取り付け、該垂直隔壁板により、隣接する2台の前記風力発電装置の風力発電用プロペラの後流乱れによる干渉の回避機能を付与するとともに、並びに固定端浮上部を風上側へ位置させて風に対し前記風力発電装置の風力発電用プロペラを正対させる風向追従性の向上機能を付与し、
同時に前記風力発電装置における風力発電用プロペラは、各々正逆回転制御して隣接プロペラへの後流乱れの干渉を抑制したことを特徴とする請求項1に記載の洋上風力発電システム。
A vertical partition plate is attached to the support column for supporting the wind power generation device , and the vertical partition plate provides a function of avoiding interference due to wake disturbance of wind power generation propellers of two adjacent wind power generation devices, and Also, a fixed end floating part is positioned on the windward side to provide a wind direction followability improvement function that allows the wind power generation propeller of the wind power generation device to directly face the wind,
2. The offshore wind power generation system according to claim 1, wherein the wind power generation propellers in the wind power generation device are each controlled to rotate in forward and reverse directions to suppress interference of wake turbulence with adjacent propellers.
JP2023080231A 2022-07-27 2023-05-15 Floating offshore wind power generation system Active JP7430859B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022119419 2022-07-27
JP2022119419 2022-07-27

Publications (2)

Publication Number Publication Date
JP7430859B1 true JP7430859B1 (en) 2024-02-14
JP2024024579A JP2024024579A (en) 2024-02-22

Family

ID=89852690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023080231A Active JP7430859B1 (en) 2022-07-27 2023-05-15 Floating offshore wind power generation system

Country Status (1)

Country Link
JP (1) JP7430859B1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004251139A (en) 2003-02-18 2004-09-09 Central Res Inst Of Electric Power Ind Floating type water-wind power generating system
JP2005504205A (en) 2001-03-08 2005-02-10 石川島播磨重工業株式会社 Floating offshore wind power generation facility
JP2009030586A (en) 2006-10-10 2009-02-12 Teruo Kinoshita Sea windmill pump device, windmill pump artificial fisheries, and mooring type wind power station
US20110074155A1 (en) 2010-12-03 2011-03-31 Scholte-Wassink Harmut Floating offshore wind farm, a floating offshore wind turbine and a method for positioning a floating offshore wind turbine
JP2012025272A (en) 2010-07-23 2012-02-09 Ihi Marine United Inc Floating body structure working system, floating body structure, working ship and floating body structure working method
WO2012035610A1 (en) 2010-09-14 2012-03-22 株式会社Winpro Floating natural energy utilization device and power generator assembly utilizing floating natural energy
JP2013513068A (en) 2009-12-07 2013-04-18 ヘキコン アーベー Floating power generation facility
US20150240442A1 (en) 2012-10-03 2015-08-27 Técnica Y Proyectos, S. A. Gravity-Based Foundation System for the Installation of Offshore Wind Turbines and Method for the Installation of an Offshore Wind Turbine Foundation System
JP2017521597A (en) 2014-07-08 2017-08-03 カルロス ウォン, Raft for wind power generation / rotation / semi-submersible wind power generation and its construction method
JP2019082135A (en) 2017-10-30 2019-05-30 三菱重工業株式会社 Wind power generator

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005504205A (en) 2001-03-08 2005-02-10 石川島播磨重工業株式会社 Floating offshore wind power generation facility
JP2004251139A (en) 2003-02-18 2004-09-09 Central Res Inst Of Electric Power Ind Floating type water-wind power generating system
JP2009030586A (en) 2006-10-10 2009-02-12 Teruo Kinoshita Sea windmill pump device, windmill pump artificial fisheries, and mooring type wind power station
JP2013513068A (en) 2009-12-07 2013-04-18 ヘキコン アーベー Floating power generation facility
JP2012025272A (en) 2010-07-23 2012-02-09 Ihi Marine United Inc Floating body structure working system, floating body structure, working ship and floating body structure working method
WO2012035610A1 (en) 2010-09-14 2012-03-22 株式会社Winpro Floating natural energy utilization device and power generator assembly utilizing floating natural energy
US20110074155A1 (en) 2010-12-03 2011-03-31 Scholte-Wassink Harmut Floating offshore wind farm, a floating offshore wind turbine and a method for positioning a floating offshore wind turbine
US20150240442A1 (en) 2012-10-03 2015-08-27 Técnica Y Proyectos, S. A. Gravity-Based Foundation System for the Installation of Offshore Wind Turbines and Method for the Installation of an Offshore Wind Turbine Foundation System
JP2017521597A (en) 2014-07-08 2017-08-03 カルロス ウォン, Raft for wind power generation / rotation / semi-submersible wind power generation and its construction method
JP2019082135A (en) 2017-10-30 2019-05-30 三菱重工業株式会社 Wind power generator

Also Published As

Publication number Publication date
JP2024024579A (en) 2024-02-22

Similar Documents

Publication Publication Date Title
JP4743953B2 (en) Floating wind power generator and its installation method
JP5760133B2 (en) Column-stabilized offshore platform with water entrapment plate and asymmetric mooring system for offshore wind turbine support
JP5244822B2 (en) Floating device for generating energy from water streams
CA2453401C (en) Plant, generator and propeller element for generating energy from watercurrents
JP4123936B2 (en) Floating offshore wind power generation facility
JP6510227B2 (en) Wind power system
US20170218919A1 (en) Wind tracing, rotational, semi-submerged raft for wind power generation and a construction method thereof
JP6396427B2 (en) Floating wind turbine structure
US8937395B2 (en) Ocean floor mounting of wave energy converters
JP2008542630A (en) Float wind turbine equipment
JP2008095702A (en) Offshore wind turbine, wind turbine, and wind energy conversion system
JP2004251139A (en) Floating type water-wind power generating system
JP7202551B1 (en) Floating offshore wind power generator
JP2015515578A (en) Wind turbine on a floating support stabilized by a raised anchoring system
JP7430859B1 (en) Floating offshore wind power generation system
CN218594530U (en) Floating offshore wind turbine floating body and steel bearing platform stress construction structure
WO2019190387A1 (en) A floating vertical axis wind turbine with peripheral water turbine assemblies and a method of operating such
JP2023106292A (en) Floating body of ocean wind power generator
KR20140120152A (en) Floating Platform of Floating Offshore Wind Turbine
JPS6240551B2 (en)
KR101840705B1 (en) Multiple vertical axis tidal generators and combined power generation using it
JP2020084813A (en) Floating type offshore wind power generation system
JP2022117496A (en) Offshore wind power generation system
US11878778B1 (en) Self elevating articulated lightweight floating tower
CN217074735U (en) Floating platform and multi-fan power generation system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230523

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20230523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230713

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240109

R150 Certificate of patent or registration of utility model

Ref document number: 7430859

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150