JP7430573B2 - Bipolar power storage device - Google Patents

Bipolar power storage device Download PDF

Info

Publication number
JP7430573B2
JP7430573B2 JP2020086526A JP2020086526A JP7430573B2 JP 7430573 B2 JP7430573 B2 JP 7430573B2 JP 2020086526 A JP2020086526 A JP 2020086526A JP 2020086526 A JP2020086526 A JP 2020086526A JP 7430573 B2 JP7430573 B2 JP 7430573B2
Authority
JP
Japan
Prior art keywords
plate
insulating plate
power storage
current collector
main surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020086526A
Other languages
Japanese (ja)
Other versions
JP2021182465A (en
Inventor
竜二 大井手
浩生 植田
純一 飯田
拓 井上
賢志 濱岡
直人 守作
怜史 森岡
素宜 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Toyota Motor Corp
Original Assignee
Toyota Industries Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp, Toyota Motor Corp filed Critical Toyota Industries Corp
Priority to JP2020086526A priority Critical patent/JP7430573B2/en
Publication of JP2021182465A publication Critical patent/JP2021182465A/en
Application granted granted Critical
Publication of JP7430573B2 publication Critical patent/JP7430573B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Mounting, Suspending (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Description

本開示は、バイポーラ型蓄電装置に関する。 The present disclosure relates to a bipolar power storage device.

ハイブリッド電気自動車又は電気自動車などに搭載される電池として、バイポーラ型二次電池が知られている(特許文献1参照)。このバイポーラ型二次電池では、複数個のバイポーラ型電池積層体が積層されて電気的に直列に接続されるとともに、その積層方向の両端に位置する集電体と電池出力を取り出す電極タブとの間に接着部が配置される。各バイポーラ型電池積層体では、複数個のバイポーラ電極が、間に電解質層を介在させて積層されている。この二次電池によれば、接着部により集電体と電極タブとが固定されているので、振動が与えられる環境下で使用された場合でも、バイポーラ型電池積層体と電極タブとの間のズレを抑えることができ、ズレにより発生する電池性能の低下を防止することができる。 Bipolar secondary batteries are known as batteries installed in hybrid electric vehicles, electric vehicles, etc. (see Patent Document 1). In this bipolar type secondary battery, a plurality of bipolar type battery stacks are stacked and electrically connected in series, and a current collector and an electrode tab for taking out the battery output are connected at both ends in the stacking direction. An adhesive portion is placed in between. In each bipolar battery stack, a plurality of bipolar electrodes are stacked with an electrolyte layer interposed therebetween. According to this secondary battery, since the current collector and the electrode tab are fixed by the adhesive part, even when used in an environment where vibrations are applied, there is no difference between the bipolar battery stack and the electrode tab. Misalignment can be suppressed, and deterioration in battery performance caused by misalignment can be prevented.

特開2009-135079号公報Japanese Patent Application Publication No. 2009-135079

ところで、積層された複数のバイポーラ型蓄電モジュールを有するバイポーラ型蓄電装置では、蓄電装置のエネルギー密度又は出力密度を向上させるために、積層されたバイポーラ型蓄電モジュールの積層方向の両端に一対の拘束板を配置し、それら一対の拘束板によって複数のバイポーラ型蓄電モジュールをその積層方向から加圧(拘束)することが考えられている。そして、一対の拘束板間に配置される複数のバイポーラ型蓄電モジュールに安定した拘束荷重を加えるために、拘束板として、例えば、金属製の拘束板が用いられる。金属製の拘束板を用いる場合、積層された複数のバイポーラ型蓄電モジュールの積層方向の両端のそれぞれに配置された電極タブ(集電部材)と拘束板との間には、両部材の短絡を防止するために、例えば、絶縁性樹脂からなる絶縁板が配置される。しかしながら、絶縁性樹脂からなる絶縁板と金属製の集電部材との間の静摩擦係数は、互いに接触配置された金属製の集電部材と金属製の集電体などの2つの金属板間の静摩擦係数に比べて小さい。そのため、バイポーラ型蓄電装置に振動などの外力が加わった場合、2つの金属板の接触部に比べて、樹脂製の絶縁板と金属製の集電部材との間には位置ずれが生じやすいという問題が発生する。 By the way, in a bipolar power storage device having a plurality of stacked bipolar power storage modules, in order to improve the energy density or output density of the power storage device, a pair of restraint plates are provided at both ends of the stacked bipolar power storage modules in the stacking direction. It has been considered to arrange a plurality of bipolar power storage modules and pressurize (restrict) a plurality of bipolar power storage modules from the direction in which they are stacked by a pair of restraining plates. In order to apply a stable restraint load to the plurality of bipolar power storage modules arranged between the pair of restraint plates, for example, a metal restraint plate is used as the restraint plate. When using a metal restraining plate, a short circuit between the restraining plate and the electrode tabs (current collecting members) placed at both ends of the stacked bipolar energy storage modules in the stacking direction must be avoided. To prevent this, for example, an insulating plate made of insulating resin is arranged. However, the coefficient of static friction between an insulating plate made of an insulating resin and a metal current collector is the same as the coefficient of static friction between two metal plates such as a metal current collector and a metal current collector that are placed in contact with each other. It is small compared to the coefficient of static friction. Therefore, when an external force such as vibration is applied to a bipolar power storage device, misalignment is more likely to occur between the resin insulating plate and the metal current collecting member compared to the contact area between two metal plates. A problem occurs.

本開示は、拘束板に隣接配置される絶縁板と集電部材との間の位置ずれの発生が抑制されたバイポーラ型蓄電装置を提供する。 The present disclosure provides a bipolar power storage device in which the occurrence of misalignment between an insulating plate and a current collecting member that are arranged adjacent to a restraining plate is suppressed.

本開示の一側面に係るバイポーラ型蓄電装置は、蓄電モジュールと、積層方向において前記蓄電モジュールを挟み前記蓄電モジュールに拘束荷重を付加する一対の拘束板と、前記一対の拘束板の一方の拘束板と前記蓄電モジュールとの間に配置され、前記蓄電モジュールに電気的に接続された集電部材と、前記一方の拘束板と前記集電部材との間に配置された絶縁板と、前記集電部材と前記絶縁板との間に配置され、前記集電部材と前記絶縁板とを互いに接続する接着部と、を備える。 A bipolar power storage device according to one aspect of the present disclosure includes: a power storage module; a pair of restraint plates that apply a restraining load to the power storage module with the power storage module sandwiched therebetween in a stacking direction; and one restraint plate of the pair of restraint plates. and the electricity storage module and electrically connected to the electricity storage module, an insulating plate arranged between the one restraining plate and the electricity collection member, and the electricity collection member. An adhesive portion is provided between the member and the insulating plate, and connects the current collecting member and the insulating plate to each other.

上記蓄電装置によれば、絶縁板と集電部材とを互いに接着する接着部により、絶縁板と集電部材との間のずれが生じ難い。 According to the power storage device, the adhesive portion that adheres the insulating plate and the current collecting member to each other makes it difficult for the insulating plate and the current collecting member to be misaligned.

前記絶縁板は、前記積層方向に交差する長手方向と、前記積層方向及び前記長手方向に交差する短手方向とに延在しており、前記接着部は、前記長手方向に延在してもよい。この場合、長手方向の大きな外力が蓄電装置に加わった場合であっても、絶縁板と集電部材との間のずれが生じ難い。 The insulating plate extends in a longitudinal direction that intersects the lamination direction and a transverse direction that intersects the lamination direction and the longitudinal direction, and the adhesive portion extends in the longitudinal direction. good. In this case, even if a large external force in the longitudinal direction is applied to the power storage device, misalignment between the insulating plate and the current collecting member is unlikely to occur.

前記絶縁板は樹脂製の射出成形品であり、前記絶縁板は、前記一方の拘束板に対向する第1主面と、前記第1主面とは反対側の第2主面と、を有し、前記絶縁板は、前記第1主面に、前記第1主面から凹状に窪む複数の肉抜き部と、隣り合う前記肉抜き部を仕切るように立設されたリブ部とを有してもよい。この場合、一対の拘束板により積層方向に拘束荷重が加わると、接着部がヒケ内へ移動できる。ヒケ内の接着部により、一方の拘束板と絶縁板との間の接着性を維持できる。 The insulating plate is an injection molded product made of resin, and the insulating plate has a first main surface facing the one restraining plate and a second main surface opposite to the first main surface. The insulating plate has, on the first main surface, a plurality of hollowed out portions that are recessed from the first main surface, and a rib portion that stands upright so as to partition the neighboring hollowed out portions. You may. In this case, when a restraining load is applied in the stacking direction by the pair of restraining plates, the bonded portion can move into the sink. Adhesion between one of the restraining plates and the insulating plate can be maintained by the adhesive portion within the sink.

前記一方の拘束板及び前記絶縁板の少なくとも一方は、前記一方の拘束板と前記絶縁板との間の位置決めのための位置決め部を有してもよい。この場合、一方の拘束板と絶縁板との間のずれが生じ難い。 At least one of the one restraining plate and the insulating plate may have a positioning portion for positioning between the one restraining plate and the insulating plate. In this case, misalignment between one of the restraining plates and the insulating plate is unlikely to occur.

前記集電部材及び前記絶縁板の少なくとも一方は、前記集電部材と前記絶縁板との間の位置決めのための位置決め部を有してもよい。この場合、集電部材と絶縁板との間のずれが生じ難い。 At least one of the current collecting member and the insulating plate may have a positioning portion for positioning between the current collecting member and the insulating plate. In this case, misalignment between the current collecting member and the insulating plate is unlikely to occur.

本開示によれば、拘束板に隣接配置される絶縁板と集電部材との間の位置ずれの発生が抑制されたバイポーラ型蓄電装置が提供され得る。 According to the present disclosure, it is possible to provide a bipolar power storage device in which the occurrence of misalignment between an insulating plate and a current collecting member that are arranged adjacent to a restraining plate is suppressed.

図1は、本実施形態に係るバイポーラ型蓄電装置の概略斜視図である。FIG. 1 is a schematic perspective view of a bipolar power storage device according to this embodiment. 図2は、図1のバイポーラ型蓄電装置の断面図である。FIG. 2 is a cross-sectional view of the bipolar power storage device of FIG. 1. 図3は、拘束板の上面図である。FIG. 3 is a top view of the restraining plate. 図4は、絶縁板及び接着部の上面図である。FIG. 4 is a top view of the insulating plate and the adhesive portion. 図5は、絶縁板及び接着部の側面図である。FIG. 5 is a side view of the insulating plate and the adhesive portion. 図6は、絶縁板の第1主面に設けられた凸部を示す斜視図である。FIG. 6 is a perspective view showing a convex portion provided on the first main surface of the insulating plate. 図7は、凸部を有する絶縁板及び凸部に嵌合する凹部を有する拘束板を示す断面図である。FIG. 7 is a sectional view showing an insulating plate having a convex portion and a restraining plate having a concave portion that fits into the convex portion. 図8は、正極集電板の上面図である。FIG. 8 is a top view of the positive electrode current collector plate. 図9は、拘束板、絶縁板、接着部及び正極集電板を示す断面図である。FIG. 9 is a cross-sectional view showing the restraining plate, the insulating plate, the adhesive part, and the positive electrode current collector plate. 図10は、絶縁板及び変形例に係る接着部の上面図である。FIG. 10 is a top view of an insulating plate and a bonding part according to a modified example.

以下、添付図面を参照しながら本開示の実施形態が詳細に説明される。図面の説明において、同一又は同等の要素には同一符号が用いられ、重複する説明は省略される。図面には、必要に応じてXYZ直交座標系が示される。 Embodiments of the present disclosure will be described in detail below with reference to the accompanying drawings. In the description of the drawings, the same reference numerals are used for the same or equivalent elements, and redundant description will be omitted. In the drawings, an XYZ orthogonal coordinate system is shown as necessary.

図1は、本実施形態に係るバイポーラ型蓄電装置の概略斜視図である。図2は、図1のバイポーラ型蓄電装置の断面図である。図1及び図2に示されるバイポーラ型蓄電装置10(以下、単に蓄電装置10という)は、例えばフォークリフト、ハイブリッド自動車、及び電気自動車等の各種車両のバッテリとして用いられる。蓄電装置10は、複数(本実施形態では3つ)の蓄電モジュール12を備えるが、単一の蓄電モジュール12を備えてもよい。蓄電モジュール12は、導電性を有する集電体の表面に正極活物質層が形成されてなる正極と、集電体の表面に負極活物質層が形成されてなる負極と、正極と負極の間に配置されたセパレータに電解液が保持されてなる電解質層とを含む発電要素を有する二次電池であって、積層された複数のバイポーラ電極を有するバイポーラ型電池である。蓄電モジュール12は、例えばニッケル水素二次電池又はリチウムイオン二次電池等の二次電池である。以下の説明では、バイポーラ型のニッケル水素二次電池を例示する。 FIG. 1 is a schematic perspective view of a bipolar power storage device according to this embodiment. FIG. 2 is a cross-sectional view of the bipolar power storage device of FIG. 1. Bipolar power storage device 10 (hereinafter simply referred to as power storage device 10) shown in FIGS. 1 and 2 is used as a battery for various vehicles such as forklifts, hybrid vehicles, and electric vehicles. The power storage device 10 includes a plurality of (three in this embodiment) power storage modules 12, but may include a single power storage module 12. The electricity storage module 12 includes a positive electrode formed by forming a positive electrode active material layer on the surface of a conductive current collector, a negative electrode formed by forming a negative electrode active material layer on the surface of the current collector, and an electrode between the positive electrode and the negative electrode. This is a bipolar battery having a power generation element including an electrolyte layer in which an electrolyte is held in a separator disposed in a separator, and a bipolar battery having a plurality of stacked bipolar electrodes. The power storage module 12 is, for example, a secondary battery such as a nickel metal hydride secondary battery or a lithium ion secondary battery. In the following description, a bipolar type nickel-metal hydride secondary battery will be exemplified.

複数の蓄電モジュール12は、それぞれの間に導電板14を介して積層され得る。導電板14は、例えば、良導電性の金属板等で構成される。以下、単に「積層方向」と述べた場合には、当該「積層方向」は複数の蓄電モジュール12の積層方向(Z軸方向)を意味する。積層方向から見て、蓄電モジュール12及び導電板14は、それぞれ、例えば矩形状に形成されている。 A plurality of power storage modules 12 may be stacked with conductive plates 14 interposed therebetween. The conductive plate 14 is made of, for example, a highly conductive metal plate. Hereinafter, when simply referred to as "the stacking direction", the "stacking direction" means the stacking direction (Z-axis direction) of the plurality of power storage modules 12. When viewed from the stacking direction, the power storage module 12 and the conductive plate 14 are each formed into, for example, a rectangular shape.

本実施形態では、各蓄電モジュール12は、複数のバイポーラ電極と電解液を保持する複数のセパレータとが交互に積層された電極積層体と、電極積層体の積層方向一端にセパレータを介して配置された負極終端電極と、電極積層体の積層方向他端にセパレータを介して配置された正極終端電極と、を含んで構成されている。セパレータは、互いに隣り合うバイポーラ電極の間に配置される。複数のバイポーラ電極のそれぞれは、集電体と、集電体の一方の面に設けられた正極活物質層と、集電体の他方の面に設けられた負極活物質層とを有する。換言すれば、各バイポーラ電極は、正極活物質層と集電体と負極活物質層とがこの順番に積層配置された構造となっている。積層方向に隣り合う一対のバイポーラ電極は、一方のバイポーラ電極の正極活物質層が、セパレータを挟んで他方のバイポーラ電極の負極活物質層と対向するように積層配置されている。換言すれば、積層方向に隣り合う一対のバイポーラ電極の間には、それぞれ、集電体と正極活物質層とを有する正極と、集電体と負極活物質層とを有する負極と、正極と負極の間に配置されたセパレータに電解液が保持されてなる電解質層と、を含む発電要素が構成されている。各蓄電モジュール12における複数のバイポーラ電極及びセパレータの積層方向は、蓄電装置10における複数の蓄電モジュール12の積層方向と同一である。負極終端電極は、集電体と、集電体の一方の面に設けられた負極活物質層とを有している。負極終端電極は、負極活物質層が形成された面が、セパレータを挟んで積層方向に隣り合うバイポーラ電極の正極活物質層と対向するように配置されている。正極終端電極は、集電体と、集電体の一方の面に設けられた正極活物質層とを有している。正極終端電極は、正極活物質層が形成された面が、セパレータを挟んで積層方向に隣り合うバイポーラ電極の負極活物質層と対向するように配置されている。積層方向に隣り合う電極間にそれぞれ形成される内部空間には、セパレータと電解液とが収容されており、各内部空間は封止部によって封止されている。蓄電モジュール12の積層方向両端面には、集電体が封止部から露出した露出部が設けられている。この露出部に導電板14又は後述する集電板が接触配置されており、蓄電モジュール12は導電板14又は集電板に電気的に接続される。 In the present embodiment, each power storage module 12 includes an electrode stack in which a plurality of bipolar electrodes and a plurality of separators holding an electrolyte are alternately stacked, and a separator arranged at one end in the stacking direction of the electrode stack. A negative terminal electrode, and a positive terminal electrode disposed at the other end of the electrode stack in the stacking direction with a separator interposed therebetween. A separator is placed between adjacent bipolar electrodes. Each of the plurality of bipolar electrodes includes a current collector, a positive electrode active material layer provided on one surface of the current collector, and a negative electrode active material layer provided on the other surface of the current collector. In other words, each bipolar electrode has a structure in which a positive electrode active material layer, a current collector, and a negative electrode active material layer are stacked in this order. A pair of bipolar electrodes adjacent in the stacking direction are stacked such that the positive electrode active material layer of one bipolar electrode faces the negative electrode active material layer of the other bipolar electrode with a separator in between. In other words, between a pair of bipolar electrodes adjacent in the stacking direction, a positive electrode having a current collector and a positive electrode active material layer, a negative electrode having a current collector and a negative electrode active material layer, and a positive electrode. A power generation element is configured including an electrolyte layer in which an electrolyte is held in a separator disposed between negative electrodes. The direction in which the plurality of bipolar electrodes and separators in each power storage module 12 are stacked is the same as the direction in which the plurality of power storage modules 12 in the power storage device 10 are stacked. The negative terminal electrode includes a current collector and a negative active material layer provided on one surface of the current collector. The negative terminal electrode is arranged such that the surface on which the negative active material layer is formed faces the positive active material layer of the bipolar electrode adjacent in the stacking direction with the separator in between. The positive terminal electrode includes a current collector and a positive active material layer provided on one surface of the current collector. The positive terminal electrode is arranged such that the surface on which the positive active material layer is formed faces the negative active material layer of the bipolar electrode adjacent in the stacking direction with the separator in between. A separator and an electrolytic solution are housed in internal spaces formed between electrodes adjacent in the stacking direction, and each internal space is sealed by a sealing part. Exposed portions where the current collector is exposed from the sealing portion are provided on both end faces of the power storage module 12 in the stacking direction. A conductive plate 14 or a current collecting plate to be described later is placed in contact with this exposed portion, and the electricity storage module 12 is electrically connected to the conductive plate 14 or the current collecting plate.

積層された複数の蓄電モジュール12のうち、その積層方向における一端に位置する蓄電モジュール12の外側(図2におけるZ方向下側)には、集電部材としての正極集電板24が配置される。正極集電板24は、例えば、良導電性の金属板等から構成されており、一端に位置する蓄電モジュール12と電気的に接続される。正極集電板24は、第1主面24aと第1主面24aとは反対側の第2主面24bとを有する。第2主面24bは一端に位置する蓄電モジュール12に対向している。正極集電板24は、例えば、積層方向から見て矩形状に形成されている。積層された複数の蓄電モジュール12のうち、その積層方向における他端に位置する蓄電モジュール12の外側(図2におけるZ方向上側)には、集電部材としての負極集電板26が配置される。負極集電板26は、例えば、良導電性の金属板等から構成されており、他端に位置する蓄電モジュール12と電気的に接続される。負極集電板26は、第1主面26aと第1主面26aとは反対側の第2主面26bとを有する。第2主面26bは他端に位置する蓄電モジュール12に対向している。負極集電板26は、例えば、積層方向から見て矩形状に形成されている。正極集電板24及び負極集電板26のそれぞれの厚さは、例えば5mm以下である。導電板14は、隣り合う蓄電モジュール12と電気的に接続される。これにより、複数の蓄電モジュール12が積層方向に直列に接続される。正極集電板24には、積層方向に交差する方向(例えばY軸方向)に突出する正極端子が設けられている。正極端子は、正極集電板24と一体成型されていてもよく、別体として構成された端子部材を正極集電板24に取り付けたものであってもよい。負極集電板26には、正極端子と同じ方向に突出する負極端子が設けられている。負極端子は、負極集電板26と一体成型されていてもよく、別体として構成された端子部材を負極集電板26に取り付けたものであってもよい。これら正極端子及び負極端子を介して、蓄電装置10の充放電が行われる。 Among the plurality of stacked power storage modules 12, a positive electrode current collector plate 24 as a current collecting member is arranged on the outside of the power storage module 12 located at one end in the stacking direction (lower side in the Z direction in FIG. 2). . The positive electrode current collector plate 24 is made of, for example, a highly conductive metal plate, and is electrically connected to the power storage module 12 located at one end. The positive current collector plate 24 has a first main surface 24a and a second main surface 24b opposite to the first main surface 24a. The second main surface 24b faces the power storage module 12 located at one end. The positive electrode current collector plate 24 is, for example, formed in a rectangular shape when viewed from the stacking direction. Among the plurality of stacked power storage modules 12, a negative electrode current collector plate 26 as a current collecting member is arranged on the outside (upper side in the Z direction in FIG. 2) of the power storage module 12 located at the other end in the stacking direction. . The negative electrode current collector plate 26 is made of, for example, a highly conductive metal plate, and is electrically connected to the power storage module 12 located at the other end. The negative electrode current collector plate 26 has a first main surface 26a and a second main surface 26b opposite to the first main surface 26a. The second main surface 26b faces the power storage module 12 located at the other end. The negative electrode current collector plate 26 is, for example, formed in a rectangular shape when viewed from the stacking direction. The thickness of each of the positive electrode current collector plate 24 and the negative electrode current collector plate 26 is, for example, 5 mm or less. Conductive plate 14 is electrically connected to adjacent power storage modules 12 . Thereby, the plurality of power storage modules 12 are connected in series in the stacking direction. The positive electrode current collector plate 24 is provided with a positive electrode terminal that protrudes in a direction (for example, the Y-axis direction) that intersects the stacking direction. The positive electrode terminal may be integrally molded with the positive current collector plate 24, or may be a separately configured terminal member attached to the positive current collector plate 24. The negative electrode current collector plate 26 is provided with a negative electrode terminal that protrudes in the same direction as the positive electrode terminal. The negative electrode terminal may be integrally molded with the negative electrode current collector plate 26, or may be a separately configured terminal member attached to the negative electrode current collector plate 26. Power storage device 10 is charged and discharged via these positive and negative terminals.

導電板14は、蓄電モジュール12において発生した熱を放出するための放熱板としても機能し得る。例えば、導電板14に複数の冷却用流路14aを設け、その複数の冷却用流路14aに冷却媒体(例えば空気等の気体)を流通させることにより、発熱する蓄電モジュール12を効率的に冷却することができる。複数の冷却用流路14aは、それぞれ導電板14の内部を互いに平行に延びる貫通孔として構成されており、例えば積層方向に交差する方向(Y軸方向)に延在している。各冷却用流路14aはX軸方向に延在してもよい。本実施形態では、積層方向から見た導電板14のサイズは蓄電モジュール12よりも小さいが、導電板14のサイズは、蓄電モジュール12と同じサイズであってもよく、また、蓄電モジュール12より大きいサイズであってもよい。 The conductive plate 14 can also function as a heat sink for dissipating heat generated in the power storage module 12. For example, by providing a plurality of cooling channels 14a in the conductive plate 14 and flowing a cooling medium (e.g., gas such as air) through the plurality of cooling channels 14a, the electricity storage module 12 that generates heat can be efficiently cooled. can do. The plurality of cooling channels 14a are each configured as a through hole extending parallel to each other inside the conductive plate 14, and extend, for example, in a direction (Y-axis direction) intersecting the stacking direction. Each cooling channel 14a may extend in the X-axis direction. In this embodiment, the size of the conductive plate 14 as viewed from the stacking direction is smaller than the power storage module 12, but the size of the conductive plate 14 may be the same size as the power storage module 12, or it may be larger than the power storage module 12. It may be the size.

蓄電装置10は、積層された、複数の蓄電モジュール12、複数の導電板14、正極集電板24及び負極集電板26を積層方向に拘束する拘束部材16を備える。拘束部材16は、一対の拘束板17,18と、拘束板17,18同士を連結する複数の連結部材19とを備える。拘束板17と拘束板18とは、単一の連結部材19によって連結されてもよい。一対の拘束板17,18は、積層方向において複数の蓄電モジュール12を挟む。拘束板17,18は、積層方向に各蓄電モジュール12に拘束荷重を付加する。複数の連結部材19は、各拘束板17,18の縁部に接続されている。 Power storage device 10 includes a restraining member 16 that restrains a plurality of stacked power storage modules 12, a plurality of conductive plates 14, a positive current collector plate 24, and a negative current collector plate 26 in the stacking direction. The restraint member 16 includes a pair of restraint plates 17 and 18 and a plurality of connecting members 19 that connect the restraint plates 17 and 18 to each other. The restraining plate 17 and the restraining plate 18 may be connected by a single connecting member 19. A pair of restraint plates 17 and 18 sandwich the plurality of power storage modules 12 in the stacking direction. The restraining plates 17 and 18 apply a restraining load to each power storage module 12 in the stacking direction. A plurality of connecting members 19 are connected to the edges of each restraining plate 17, 18.

拘束板17は、第1主面17aと第1主面17aとは反対側の第2主面17bとを有する。拘束板17の第2主面17bの側に、積層された複数の蓄電モジュール12が設けられている。拘束板17の第1主面17aは蓄電装置10の外面となっている。拘束板18は、第1主面18aと第1主面18aとは反対側の第2主面18bとを有する。拘束板18の第2主面18bの側に、積層された複数の蓄電モジュール12が設けられている。拘束板18の第1主面18aは蓄電装置10の外面となっている。拘束板17の第2主面17bと拘束板18の第2主面18bとは、積層方向において互いに対向している。拘束板17と拘束板18は積層方向から見て矩形状に形成されている。各拘束板17,18は、それらの間に挟まれる蓄電モジュール12の面内方向(図2のX軸方向)の各部分に均一な拘束荷重を付加することができるように、例えば、鉄又はアルミニウム等の剛性の高い金属材料によって構成される。 The restraint plate 17 has a first main surface 17a and a second main surface 17b opposite to the first main surface 17a. A plurality of stacked power storage modules 12 are provided on the second main surface 17b side of the restraining plate 17. The first main surface 17a of the restraining plate 17 serves as the outer surface of the power storage device 10. The restraint plate 18 has a first main surface 18a and a second main surface 18b opposite to the first main surface 18a. A plurality of stacked power storage modules 12 are provided on the second main surface 18b side of the restraining plate 18. The first main surface 18a of the restraint plate 18 is the outer surface of the power storage device 10. The second main surface 17b of the restraint plate 17 and the second main surface 18b of the restraint plate 18 face each other in the stacking direction. The restraint plate 17 and the restraint plate 18 are formed into a rectangular shape when viewed from the stacking direction. Each of the restraining plates 17 and 18 is made of, for example, iron or metal so that a uniform restraining load can be applied to each part of the power storage module 12 sandwiched therebetween in the in-plane direction (X-axis direction in FIG. 2). Constructed from a highly rigid metal material such as aluminum.

拘束板17には、積層方向に拘束板17を貫通する複数の貫通孔H1が設けられている。拘束板18には、積層方向に拘束板18を貫通する複数の貫通孔H2が設けられている。複数の連結部材19のそれぞれは、積層方向に延在している軸部を含むボルト19aと当該ボルト19aに螺合されるナット19bとを有している。貫通孔H1,H2のそれぞれにボルト19aの軸部が挿通されている。ボルト19aの頭部は拘束板17の第1主面17a上に配置され、ボルト19aのネジ先は拘束板18の第1主面18aから突出している。ボルト19aのネジ先にはナット19bが螺合されている。ナット19bは、拘束板18の第1主面18a上に配置されている。 The restraint plate 17 is provided with a plurality of through holes H1 that penetrate the restraint plate 17 in the stacking direction. The restraint plate 18 is provided with a plurality of through holes H2 that penetrate the restraint plate 18 in the stacking direction. Each of the plurality of connecting members 19 has a bolt 19a including a shaft extending in the stacking direction and a nut 19b screwed onto the bolt 19a. The shaft portion of the bolt 19a is inserted into each of the through holes H1 and H2. The head of the bolt 19a is arranged on the first main surface 17a of the restraint plate 17, and the threaded tip of the bolt 19a projects from the first main surface 18a of the restraint plate 18. A nut 19b is screwed onto the threaded end of the bolt 19a. The nut 19b is arranged on the first main surface 18a of the restraint plate 18.

拘束板17と負極集電板26との間には、両部材の短絡を防止するために、例えば絶縁性を有する樹脂製の絶縁板22が配置される。拘束板18と正極集電板24との間には、両部材の短絡を防止するために、例えば絶縁性を有する樹脂製の絶縁板22が配置される。絶縁板22は、例えばポリプロピレン等の樹脂を含む。絶縁板22は例えば射出成形品である。拘束板17,18にそれぞれ隣接配置されている絶縁板22は、積層方向から見て、例えば矩形状に形成されている。積層方向から見て絶縁板22のサイズは導電板14よりも大きくなっている。絶縁板22は、各拘束板17,18に対向する第1主面22aと、第1主面22aとは反対側の第2主面22bとを有する。 An insulating plate 22 made of, for example, an insulating resin is disposed between the restraint plate 17 and the negative electrode current collector plate 26 in order to prevent a short circuit between the two members. An insulating plate 22 made of, for example, an insulating resin is arranged between the restraint plate 18 and the positive electrode current collector plate 24 in order to prevent short circuits between the two members. The insulating plate 22 includes, for example, resin such as polypropylene. The insulating plate 22 is, for example, an injection molded product. The insulating plates 22 arranged adjacent to the restraining plates 17 and 18 are formed, for example, in a rectangular shape when viewed from the stacking direction. The size of the insulating plate 22 is larger than the conductive plate 14 when viewed from the stacking direction. The insulating plate 22 has a first main surface 22a facing each of the restraining plates 17 and 18, and a second main surface 22b opposite to the first main surface 22a.

蓄電装置10は正極集電板24又は負極集電板26と絶縁板22とを互いに接続する接着部23を備える。接着部23は、正極集電板24又は負極集電板26と絶縁板22との間に配置される。接着部23は、例えば変成シリコーン等のシール材又は接着剤を含む。積層方向における接着部23の厚さは、例えば1mm以下である。接着部23は、正極集電板24又は負極集電板26と絶縁板22との間に配置される。本実施形態では、接着部23は絶縁板22の全面を覆うようには設けられていないため、絶縁板22の第2主面22bは、接着部23を介して正極集電板24の第1主面24a又は負極集電板26の第1主面26aに対向する部分と、接着部23を介さずに正極集電板24の第1主面24a又は負極集電板26の第1主面26aに対向する部分とを有している。 The power storage device 10 includes an adhesive portion 23 that connects the positive current collector plate 24 or the negative current collector plate 26 and the insulating plate 22 to each other. The adhesive portion 23 is arranged between the positive current collector plate 24 or the negative current collector plate 26 and the insulating plate 22 . The adhesive portion 23 includes, for example, a sealing material such as modified silicone or an adhesive. The thickness of the adhesive portion 23 in the lamination direction is, for example, 1 mm or less. The adhesive portion 23 is arranged between the positive current collector plate 24 or the negative current collector plate 26 and the insulating plate 22 . In this embodiment, the adhesive portion 23 is not provided so as to cover the entire surface of the insulating plate 22, so the second main surface 22b of the insulating plate 22 is connected to the first main surface of the positive electrode current collector plate 24 via the adhesive portion 23. The main surface 24a or the first main surface 26a of the negative electrode current collector plate 26 and the first main surface 24a of the positive electrode current collector plate 24 or the first main surface of the negative electrode current collector plate 26 without using the adhesive part 23. 26a.

拘束板17の第2主面17bは、絶縁板22及び接着部23を介して負極集電板26に突き当てられ、拘束板18の第2主面18bは、絶縁板22及び接着部23を介して正極集電板24に突き当てられている。この状態で、拘束板17,18は、互いに連結部材19によって連結されている。これにより、絶縁板22、負極集電板26、正極集電板24、導電板14及び蓄電モジュール12が挟持されてユニット化されると共に、積層方向に拘束荷重が付加される。 The second main surface 17b of the restraint plate 17 is abutted against the negative electrode current collector plate 26 via the insulating plate 22 and the adhesive part 23, and the second main surface 18b of the restraint plate 18 is abutted against the insulating plate 22 and the adhesive part 23. It is abutted against the positive electrode current collector plate 24 through it. In this state, the restraining plates 17 and 18 are connected to each other by the connecting member 19. As a result, the insulating plate 22, the negative current collector plate 26, the positive current collector plate 24, the conductive plate 14, and the power storage module 12 are sandwiched and formed into a unit, and a restraining load is applied in the stacking direction.

拘束板17は拘束板18と同様の構造を有しているが、以下では拘束板18を例として説明する。以下、図3~図9を参照しながら拘束板18、絶縁板22、接着部23及び正極集電板24について詳細に説明する。 Although the restraining plate 17 has the same structure as the restraining plate 18, the restraining plate 18 will be explained below as an example. Hereinafter, the restraining plate 18, the insulating plate 22, the adhesive portion 23, and the positive current collector plate 24 will be explained in detail with reference to FIGS. 3 to 9.

図3に示されるように、拘束板18は、複数の連結部材19とそれぞれ係合する複数の係合部分32を有する。本実施形態では、複数(例えば5つ)の係合部分32が、拘束板18の長手方向(Y軸方向)に延在する各縁に沿って、例えば等間隔に配列される。各係合部分32に貫通孔H2が設けられている。 As shown in FIG. 3, the restraining plate 18 has a plurality of engaging portions 32 that engage with the plurality of connecting members 19, respectively. In this embodiment, a plurality of (for example, five) engaging portions 32 are arranged, for example, at equal intervals along each edge extending in the longitudinal direction (Y-axis direction) of the restraining plate 18. Each engaging portion 32 is provided with a through hole H2.

拘束板18は、複数のリブ部38と、複数の肉薄部39とを有する。拘束板18の第2主面18bにおいて、所望の部分に第2主面18bから凹状に窪むように肉抜きして形成される肉薄部39を設けることで、肉薄部39で挟まれたリブ部38が形成される。複数のリブ部38は、X軸方向に延在する複数のリブ部38と、Y軸方向に延在する複数のリブ部38と、X軸方向及びY軸方向の両方に交差する斜め方向に延在する複数のリブ部38とを含む。斜め方向に延在する各リブ部38は、2つの係合部分32同士を繋ぐ。複数の肉薄部39のそれぞれは、複数のリブ部38によって画定されている。積層方向において、各肉薄部39の厚さは、各リブ部38の厚さ及び各係合部分32の厚さよりも薄い。本実施形態では、各リブ部38における最小厚みは、15mm以上25mm以下である。各肉薄部39における最小厚みは、2mm以上7mm以下である。各係合部分32における最小厚みは、7mm超20mm以下である。 The restraint plate 18 has a plurality of rib parts 38 and a plurality of thin parts 39. The rib portion 38 sandwiched between the thin portions 39 is provided in a desired portion of the second main surface 18b of the restraining plate 18 by providing a thin portion 39 formed by cutting out the thickness so as to be recessed in a concave shape from the second main surface 18b. is formed. The plurality of rib portions 38 include a plurality of rib portions 38 extending in the X-axis direction, a plurality of rib portions 38 extending in the Y-axis direction, and a plurality of rib portions 38 extending in the diagonal direction intersecting both the X-axis direction and the Y-axis direction. A plurality of extending rib portions 38 are included. Each rib portion 38 extending diagonally connects the two engaging portions 32 to each other. Each of the plurality of thin parts 39 is defined by a plurality of rib parts 38. In the stacking direction, the thickness of each thin portion 39 is thinner than the thickness of each rib portion 38 and the thickness of each engaging portion 32. In this embodiment, the minimum thickness of each rib portion 38 is 15 mm or more and 25 mm or less. The minimum thickness of each thin portion 39 is 2 mm or more and 7 mm or less. The minimum thickness of each engaging portion 32 is greater than 7 mm and less than or equal to 20 mm.

拘束板18は、拘束板18と絶縁板22との間の位置決めのための複数(例えば6つ)の位置決め部18pを有してもよい。本実施形態において、各位置決め部18pは、肉薄部39と同様の深さを有する窪みである。 The restraining plate 18 may have a plurality of (for example, six) positioning parts 18p for positioning between the restraining plate 18 and the insulating plate 22. In this embodiment, each positioning portion 18p is a recess having the same depth as the thin portion 39.

図4に示されるように、絶縁板22は、積層方向に交差する長手方向(Y軸方向)と、積層方向及び長手方向に交差する短手方向(X軸方向)とに延在している。接着部23は、絶縁板22の長手方向に延在している。絶縁板22は、長手方向の両端において短手方向に沿った縁部22eと、長手方向において縁部22e間に配置された中央部22dとを有する。長手方向において、各縁部22eの長さは、絶縁板22の長さの1/3以下であってもよい。接着部23は、中央部22dおよび各縁部22eに配置される。本実施形態では、複数の接着部23が、絶縁板22の短手方向に間隔を空けて配置されている。各接着部23は、絶縁板22の長手方向において、一方の縁部22eから中央部22dを通って他方の縁部22eまで延在している。 As shown in FIG. 4, the insulating plate 22 extends in a longitudinal direction (Y-axis direction) that intersects the lamination direction and in a transverse direction (X-axis direction) that intersects the lamination direction and the longitudinal direction. . The adhesive portion 23 extends in the longitudinal direction of the insulating plate 22. The insulating plate 22 has edges 22e along the widthwise direction at both longitudinal ends, and a center portion 22d disposed between the edges 22e in the lengthwise direction. In the longitudinal direction, the length of each edge 22e may be 1/3 or less of the length of the insulating plate 22. The adhesive portion 23 is arranged at the center portion 22d and each edge portion 22e. In this embodiment, the plurality of adhesive parts 23 are arranged at intervals in the lateral direction of the insulating plate 22. Each adhesive portion 23 extends in the longitudinal direction of the insulating plate 22 from one edge 22e through the center portion 22d to the other edge 22e.

図4及び図5に示されるように、絶縁板22は、第1主面22a及び第2主面22bを有する板状部分22sを有する。板状部分22sの第2主面22bが蓄電モジュール12に拘束荷重を付与する拘束領域に相当する。第2主面22bにおいて接着部23が設けられる面積の割合は、拘束荷重に応じて決定され、例えば70%以上である。 As shown in FIGS. 4 and 5, the insulating plate 22 has a plate-shaped portion 22s having a first main surface 22a and a second main surface 22b. The second main surface 22b of the plate-shaped portion 22s corresponds to a restraint area that applies a restraint load to the power storage module 12. The ratio of the area of the second main surface 22b where the adhesive portion 23 is provided is determined depending on the restraint load, and is, for example, 70% or more.

絶縁板22は、拘束板18と絶縁板22との間の位置決めのための複数(例えば6つ)の位置決め部22pを有してもよい。本実施形態において、各位置決め部22pは、各位置決め部18pと嵌合する突起である。各位置決め部22pは、第1主面22aに設けられる。矩形状の第1主面22aの長手方向に延在する各縁に沿って、複数の位置決め部22pが配列される。なお、拘束板18の各位置決め部18pが突起である場合、各位置決め部22pは、各位置決め部18pと嵌合する窪みであってもよい。 The insulating plate 22 may have a plurality of (for example, six) positioning parts 22p for positioning between the restraining plate 18 and the insulating plate 22. In this embodiment, each positioning part 22p is a protrusion that fits into each positioning part 18p. Each positioning portion 22p is provided on the first main surface 22a. A plurality of positioning parts 22p are arranged along each edge extending in the longitudinal direction of the rectangular first main surface 22a. In addition, when each positioning part 18p of the restraint plate 18 is a protrusion, each positioning part 22p may be a recess that fits into each positioning part 18p.

図6及び図7に示されるように、各位置決め部22pは、例えば潰しリブである。各位置決め部22pは、互いに離間して配置された第1リブ22p1及び第2リブ22p2を有する。第1リブ22p1及び第2リブ22p2は、窪みである位置決め部18p内に圧入されると、図7に示されるように、位置決め部18pに押圧されることによって互いに近づくように変形する。その結果、絶縁板22は拘束板18に位置決めされる。 As shown in FIGS. 6 and 7, each positioning portion 22p is, for example, a crushing rib. Each positioning portion 22p has a first rib 22p1 and a second rib 22p2 that are spaced apart from each other. When the first rib 22p1 and the second rib 22p2 are press-fitted into the positioning part 18p, which is a recess, as shown in FIG. 7, they are deformed so as to approach each other by being pressed by the positioning part 18p. As a result, the insulating plate 22 is positioned on the restraining plate 18.

図4及び図5に示されるように、絶縁板22は、正極集電板24と絶縁板22との間の位置決めのための位置決め部22qを有してもよい。本実施形態において、絶縁板22は、絶縁板22の拘束領域の角部に対応する位置に位置決め部22qを有する。各位置決め部22qは、例えば突起である。各位置決め部22qは、絶縁板22の第2主面22bに設けられる。なお、矩形状の拘束領域の4つの角部のうち2つの角部に設けられた位置決め部22qに加えて、残りの2つの角部のうちの1つに別の位置決め部22rを設けてもよい。位置決め部22rは、例えば突起である。 As shown in FIGS. 4 and 5, the insulating plate 22 may have a positioning portion 22q for positioning between the positive electrode current collector plate 24 and the insulating plate 22. In this embodiment, the insulating plate 22 has positioning portions 22q at positions corresponding to corners of the restraining area of the insulating plate 22. Each positioning portion 22q is, for example, a protrusion. Each positioning portion 22q is provided on the second main surface 22b of the insulating plate 22. In addition to the positioning parts 22q provided at two of the four corners of the rectangular restraint area, another positioning part 22r may be provided at one of the remaining two corners. good. The positioning portion 22r is, for example, a protrusion.

図8に示されるように、正極集電板24は、正極集電板24と絶縁板22との間の位置決めのための位置決め部24qを有してもよい。本実施形態において、正極集電板24は、絶縁板22の位置決め部22qに対応する位置に、それぞれ位置決め部24qを有する。各位置決め部24qは、例えば位置決め部22qと嵌合するように形成された切り欠き部または窪みである。なお、矩形状の拘束領域の4つの角部のうち2つの角部に設けられた位置決め部24qに加えて、残りの2つの角部のうちの1つに別の位置決め部24rを設けてもよい。位置決め部24rは、例えば位置決め部22rと嵌合するように形成された切り欠き部または窪みである。各位置決め部24q,24rが突起であり、各位置決め部22q,22rが位置決め部24q,24rと嵌合する切り欠き部または窪みであってもよい。 As shown in FIG. 8, the positive electrode current collector plate 24 may have a positioning portion 24q for positioning between the positive electrode current collector plate 24 and the insulating plate 22. In this embodiment, the positive electrode current collector plate 24 has positioning portions 24q at positions corresponding to the positioning portions 22q of the insulating plate 22, respectively. Each positioning portion 24q is, for example, a notch or a depression formed to fit with the positioning portion 22q. In addition to the positioning parts 24q provided at two of the four corners of the rectangular restraint area, another positioning part 24r may be provided at one of the remaining two corners. good. The positioning portion 24r is, for example, a notch or a depression formed to fit with the positioning portion 22r. Each of the positioning parts 24q and 24r may be a projection, and each of the positioning parts 22q and 22r may be a notch or a recess that fits into the positioning parts 24q and 24r.

図9に示されるように、絶縁板22は、拘束板18のリブ部38に対応するように、第1主面22aに複数のリブ部22uを有してもよい。絶縁板22の第1主面22aの側には、所望の部分に第1主面22aから凹状に窪むように肉抜きされた肉抜き部を設けることで、隣り合う肉抜き部を仕切るように立設されたリブ部22uが形成される。すなわち、リブ部22uは絶縁板22の板厚が厚い部分である。絶縁板22の第1主面22aにリブ部22uを設けることで、絶縁板22の第2主面22bにはリブ部22uと対応する位置に若干のヒケ22v(凹部)が発生する。絶縁板22と正極集電板24との間には、シール材又は接着剤を含む接着部23が設けられているので、絶縁板22のヒケ22vはそれらシール材又は接着剤により埋められることになる。 As shown in FIG. 9, the insulating plate 22 may have a plurality of rib portions 22u on the first main surface 22a so as to correspond to the rib portions 38 of the restraint plate 18. On the side of the first principal surface 22a of the insulating plate 22, a hollowed portion is provided at a desired portion so as to be hollowed out in a concave shape from the first principal surface 22a, so that adjacent hollowed portions are separated. A rib portion 22u is formed. That is, the rib portion 22u is a thicker portion of the insulating plate 22. By providing the rib portion 22u on the first main surface 22a of the insulating plate 22, a slight sink mark 22v (recess) is generated on the second main surface 22b of the insulating plate 22 at a position corresponding to the rib portion 22u. Since an adhesive portion 23 containing a sealant or adhesive is provided between the insulating plate 22 and the positive current collector plate 24, the sink 22v of the insulating plate 22 is filled with the sealant or adhesive. Become.

上記蓄電装置10によれば、絶縁板22と正極集電板24とを互いに接着する接着部23により、絶縁板22と正極集電板24との間のずれ(積層方向に交差する方向のずれ)が生じ難い。同様に、絶縁板22と負極集電板26とを互いに接着する接着部23により、絶縁板22と負極集電板26との間のずれが生じ難い。よって、例えば振動等の外力が蓄電装置10に加わった場合であっても、上記ずれが生じ難い。したがって、ずれによる部材同士の干渉及び短絡を抑制できる。さらに、正極集電板24及び負極集電板26の反りが接着部23により矯正される。 According to the power storage device 10 described above, the adhesive portion 23 that adheres the insulating plate 22 and the positive electrode current collector plate 24 to each other prevents the deviation between the insulating plate 22 and the positive electrode current collector plate 24 (the deviation in the direction crossing the stacking direction). ) is unlikely to occur. Similarly, the adhesive portion 23 that adheres the insulating plate 22 and the negative current collector plate 26 to each other makes it difficult for the insulating plate 22 and the negative current collector plate 26 to be misaligned. Therefore, even if an external force such as vibration is applied to power storage device 10, the above-mentioned deviation is unlikely to occur. Therefore, interference and short circuit between members due to misalignment can be suppressed. Furthermore, the warpage of the positive electrode current collector plate 24 and the negative electrode current collector plate 26 is corrected by the adhesive portion 23.

接着部23が絶縁板22の長手方向に延在していると、長手方向の大きな外力が蓄電装置10に加わった場合であっても、絶縁板22と正極集電板24との間のずれ及び絶縁板22と負極集電板26との間のずれが生じ難い。 If the adhesive portion 23 extends in the longitudinal direction of the insulating plate 22, even if a large external force in the longitudinal direction is applied to the power storage device 10, the gap between the insulating plate 22 and the positive electrode current collector plate 24 will be avoided. Also, misalignment between the insulating plate 22 and the negative electrode current collector plate 26 is unlikely to occur.

絶縁板22がリブ部22uを有する場合、一対の拘束板17,18により積層方向に拘束荷重が加わると、接着部23がヒケ22v内へ移動できる。ヒケ22v内の接着部23により、各拘束板17,18と絶縁板22との間の接着性を維持できる。 When the insulating plate 22 has the rib portion 22u, when a restraining load is applied in the stacking direction by the pair of restraining plates 17 and 18, the adhesive portion 23 can move into the sink 22v. Adhesion between each restraint plate 17, 18 and the insulating plate 22 can be maintained by the adhesive portion 23 in the sink 22v.

拘束板18が位置決め部18pを有し、絶縁板22が位置決め部22pを有する場合、拘束板18と絶縁板22との間のずれが生じ難い。拘束板17が位置決め部18pと同様の位置決め部を有し、絶縁板22が位置決め部22pを有する場合、拘束板17と絶縁板22との間のずれが生じ難い。また、各拘束板17,18と絶縁板22とをユニット化できる。 When the restraining plate 18 has the positioning part 18p and the insulating plate 22 has the positioning part 22p, displacement between the restraining plate 18 and the insulating plate 22 is unlikely to occur. When the restraining plate 17 has a positioning part similar to the positioning part 18p and the insulating plate 22 has a positioning part 22p, misalignment between the restraining plate 17 and the insulating plate 22 is unlikely to occur. Moreover, each of the restraining plates 17 and 18 and the insulating plate 22 can be made into a unit.

絶縁板22が位置決め部22q,22rを有し、正極集電板24が位置決め部24q,24rを有する場合、正極集電板24と絶縁板22との間のずれが生じ難い。負極集電板26が位置決め部24q,24rと同様の位置決め部を有し、絶縁板22が位置決め部22q,22rを有する場合、負極集電板26と絶縁板22との間のずれが生じ難い。また、正極集電板24又は負極集電板26と絶縁板22とをユニット化できる。 When the insulating plate 22 has the positioning parts 22q and 22r, and the positive electrode current collector plate 24 has the positioning parts 24q and 24r, misalignment between the positive electrode current collector plate 24 and the insulating plate 22 is unlikely to occur. When the negative electrode current collector plate 26 has positioning parts similar to the positioning parts 24q and 24r, and the insulating plate 22 has the positioning parts 22q and 22r, misalignment between the negative electrode current collector plate 26 and the insulating plate 22 is unlikely to occur. . Further, the positive current collector plate 24 or the negative current collector plate 26 and the insulating plate 22 can be made into a unit.

蓄電装置10は、以下のように製造され得る。まず、拘束板18の第2主面18b上に絶縁板22を載置する。このとき、絶縁板22の位置決め部22pを拘束板18の位置決め部18pに合わせる。次に、絶縁板22の第2主面22b上に、例えばディスペンサ等を用いて接着部23の材料を塗布した後、正極集電板24の位置決め部24qを絶縁板22の位置決め部22qに合わせる。正極集電板24が位置決め部24rを有し、絶縁板22が位置決め部22rを有する場合、位置決め部24rを位置決め部22rに合わせてもよい。例えば、まず、正極集電板24の位置決め部24rを絶縁板22の位置決め部22rに合わせた後、位置決め部22r,24rを中心として正極集電板24を回転させて、正極集電板24の位置決め部24qを絶縁板22の位置決め部22qに合わせる。次に、正極集電板24を絶縁板22に押し付けることによって、接着部23の材料を押し広げる。これにより、正極集電板24と絶縁板22とが接着部23により接続される。そのため、正極集電板24の反りが矯正されるので、正極集電板24と絶縁板22との間の位置決め精度が向上する。 Power storage device 10 may be manufactured as follows. First, the insulating plate 22 is placed on the second main surface 18b of the restraining plate 18. At this time, the positioning portion 22p of the insulating plate 22 is aligned with the positioning portion 18p of the restraining plate 18. Next, after applying the material for the adhesive part 23 onto the second main surface 22b of the insulating plate 22 using, for example, a dispenser, the positioning part 24q of the positive electrode current collector plate 24 is aligned with the positioning part 22q of the insulating plate 22. . When the positive electrode current collector plate 24 has the positioning part 24r and the insulating plate 22 has the positioning part 22r, the positioning part 24r may be aligned with the positioning part 22r. For example, first, after aligning the positioning portion 24r of the positive electrode current collector plate 24 with the positioning portion 22r of the insulating plate 22, the positive electrode current collector plate 24 is rotated about the positioning portions 22r, 24r, and the positive electrode current collector plate 24 is The positioning portion 24q is aligned with the positioning portion 22q of the insulating plate 22. Next, by pressing the positive electrode current collector plate 24 against the insulating plate 22, the material of the adhesive portion 23 is spread out. Thereby, the positive electrode current collector plate 24 and the insulating plate 22 are connected by the adhesive portion 23. Therefore, since the warpage of the positive electrode current collector plate 24 is corrected, the positioning accuracy between the positive electrode current collector plate 24 and the insulating plate 22 is improved.

同様に、拘束板17の第2主面17b上に絶縁板22を載置し、接着部23の材料を塗布した後、負極集電板26を絶縁板22に押し付ける。これにより、負極集電板26と絶縁板22とが接着部23により接続される。そのため、負極集電板26の反りが矯正されるので、負極集電板26と絶縁板22との間の位置決め精度が向上する。 Similarly, the insulating plate 22 is placed on the second main surface 17b of the restraining plate 17, and after applying the material for the adhesive portion 23, the negative electrode current collector plate 26 is pressed against the insulating plate 22. Thereby, the negative electrode current collector plate 26 and the insulating plate 22 are connected by the adhesive portion 23. Therefore, since the warpage of the negative electrode current collector plate 26 is corrected, the positioning accuracy between the negative electrode current collector plate 26 and the insulating plate 22 is improved.

蓄電モジュール12及び導電板14を正極集電板24上に積み重ねた後、拘束板17、絶縁板22、接着部23及び負極集電板26を含むユニットを、負極集電板26が下方を向くように反転させて蓄電モジュール12上に載置する。ユニットを反転させる際に、接着部23によって、負極集電板26の落下を抑制できる。その後、複数の連結部材19を用いて拘束板17,18同士を連結する。 After the power storage module 12 and the conductive plate 14 are stacked on the positive current collector plate 24, the unit including the restraint plate 17, the insulating plate 22, the adhesive part 23, and the negative current collector plate 26 is placed so that the negative current collector plate 26 faces downward. Then, turn it upside down and place it on the electricity storage module 12. When the unit is reversed, the adhesive portion 23 can prevent the negative electrode current collector plate 26 from falling. Thereafter, the restraining plates 17 and 18 are connected to each other using a plurality of connecting members 19.

図10は、絶縁板及び変形例に係る接着部の上面図である。図10に示される接着部123は、積層方向から見て枠状であること以外は接着部23と同じ構成を備える。接着部123は、積層方向から見て例えば矩形のリング形状を有する。接着部123は、絶縁板22の長手方向及び短手方向に延在している。接着部123は、絶縁板22の第2主面22bにおいて、一方の縁部22eから中央部22dを通って他方の縁部22eまで長手方向に延在する一対の長辺部123aと、両方の縁部22eにおいて短手方向に延在する一対の短辺部123bとを有する。接着部123は、一対の長辺部123aを有していなくてもよい。 FIG. 10 is a top view of an insulating plate and a bonding part according to a modified example. The adhesive part 123 shown in FIG. 10 has the same configuration as the adhesive part 23 except that it has a frame shape when viewed from the stacking direction. The adhesive portion 123 has, for example, a rectangular ring shape when viewed from the stacking direction. The adhesive portion 123 extends in the longitudinal direction and the lateral direction of the insulating plate 22. The adhesive portion 123 has a pair of long sides 123a extending longitudinally from one edge 22e through the center 22d to the other edge 22e on the second main surface 22b of the insulating plate 22; The edge 22e has a pair of short sides 123b extending in the lateral direction. The adhesive part 123 does not need to have the pair of long sides 123a.

図10に示される接着部123を備える蓄電装置においても、上述の蓄電装置10と同様の作用効果が得られる。さらに、絶縁板22の第2主面22b(XY平面)における任意の方向に大きな外力が加わった場合であっても、絶縁板22と正極集電板24との間のずれ及び絶縁板22と負極集電板26との間のずれが生じ難い。 The same effects as those of the above-described power storage device 10 can also be obtained in the power storage device including the adhesive portion 123 shown in FIG. 10 . Furthermore, even if a large external force is applied in any direction on the second main surface 22b (XY plane) of the insulating plate 22, the deviation between the insulating plate 22 and the positive current collector plate 24 and the Misalignment with the negative electrode current collector plate 26 is unlikely to occur.

以上、本開示の好適な実施形態について詳細に説明されたが、本開示は上記実施形態に限定されない。 Although the preferred embodiments of the present disclosure have been described in detail above, the present disclosure is not limited to the above embodiments.

例えば、本実施形態では、拘束板18及び絶縁板22が位置決め部18p及び位置決め部22pをそれぞれ有しているが、拘束板18及び絶縁板22のいずれか一方のみが位置決め部を有してもよい。例えば、絶縁板22が位置決め部22pを有していない場合、絶縁板22全体が拘束板18の位置決め部(窪み)に嵌合してもよい。また、拘束板18が位置決め部18pを有していない場合、拘束板18全体が絶縁板22の位置決め部22p(窪み)に嵌合してもよい。 For example, in the present embodiment, the restraining plate 18 and the insulating plate 22 have the positioning part 18p and the positioning part 22p, respectively, but only one of the restraining plate 18 and the insulating plate 22 may have the positioning part. good. For example, if the insulating plate 22 does not have the positioning part 22p, the entire insulating plate 22 may fit into the positioning part (recess) of the restraining plate 18. Further, when the restraining plate 18 does not have the positioning part 18p, the entire restraining plate 18 may fit into the positioning part 22p (indentation) of the insulating plate 22.

また、本実施形態では、絶縁板22及び正極集電板24が位置決め部22q,22r及び位置決め部24q,24rをそれぞれ有しているが、絶縁板22及び正極集電板24のいずれか一方のみが位置決め部を有してもよい。同様に、絶縁板22及び負極集電板26のいずれか一方のみが位置決め部を有してもよい。例えば、絶縁板22が位置決め部22q,22rを有していない場合、絶縁板22全体が正極集電板24又は負極集電板26の位置決め部(窪み)に嵌合してもよい。また、正極集電板24又は負極集電板26が位置決め部を有していない場合、正極集電板24又は負極集電板26全体が絶縁板22の位置決め部(窪み)に嵌合してもよい。 Further, in this embodiment, the insulating plate 22 and the positive electrode current collector plate 24 each have the positioning parts 22q, 22r and the positioning parts 24q, 24r, but only one of the insulating plate 22 and the positive electrode current collector plate 24 has the positioning parts 22q, 22r and 24q, 24r. may have a positioning part. Similarly, only one of the insulating plate 22 and the negative current collector plate 26 may have a positioning portion. For example, when the insulating plate 22 does not have the positioning parts 22q and 22r, the entire insulating plate 22 may fit into the positioning part (indentation) of the positive current collector plate 24 or the negative current collector plate 26. In addition, if the positive current collector plate 24 or the negative current collector plate 26 does not have a positioning part, the entire positive current collector plate 24 or negative current collector plate 26 fits into the positioning part (indentation) of the insulating plate 22. Good too.

10…バイポーラ型蓄電装置、12…蓄電モジュール、17,18…拘束板、18p,22p,22q,22r,24q,24r…位置決め部、22…絶縁板、22a…第1主面、22b…第2主面、22u…リブ部、23,123…接着部、24…正極集電板(集電部材)、26…負極集電板(集電部材)。 DESCRIPTION OF SYMBOLS 10... Bipolar power storage device, 12... Energy storage module, 17, 18... Restriction plate, 18p, 22p, 22q, 22r, 24q, 24r... Positioning part, 22... Insulating plate, 22a... First principal surface, 22b... Second Main surface, 22u... Rib part, 23, 123... Adhesive part, 24... Positive electrode current collector plate (current collector member), 26... Negative electrode current collector plate (current collector member).

Claims (5)

蓄電モジュールと、
積層方向において前記蓄電モジュールを挟み前記蓄電モジュールに拘束荷重を付加する一対の拘束板と、
前記一対の拘束板の一方の拘束板と前記蓄電モジュールとの間に配置され、前記蓄電モジュールに電気的に接続された集電部材と、
前記一方の拘束板と前記集電部材との間に配置された絶縁板と、
前記集電部材と前記絶縁板との間に配置され、前記集電部材と前記絶縁板とを互いに接続する接着部と、
を備え
前記絶縁板は樹脂製の射出成形品である、バイポーラ型蓄電装置。
A power storage module,
a pair of restraint plates that sandwich the power storage module in a stacking direction and apply a restraint load to the power storage module;
a current collecting member disposed between one of the pair of restraint plates and the power storage module and electrically connected to the power storage module;
an insulating plate disposed between the one restraining plate and the current collecting member;
an adhesive part disposed between the current collecting member and the insulating plate and connecting the current collecting member and the insulating plate to each other;
Equipped with
In the bipolar power storage device , the insulating plate is an injection molded product made of resin .
前記絶縁板は、前記積層方向に交差する長手方向と、前記積層方向及び前記長手方向に交差する短手方向とに延在しており、
前記接着部は、前記長手方向に延在している、請求項1に記載のバイポーラ型蓄電装置。
The insulating plate extends in a longitudinal direction that intersects the lamination direction and a transverse direction that intersects the lamination direction and the longitudinal direction,
The bipolar power storage device according to claim 1, wherein the adhesive portion extends in the longitudinal direction.
記絶縁板は、前記一方の拘束板に対向する第1主面と、前記第1主面とは反対側の第2主面と、を有し、
前記絶縁板は、前記第1主面に、前記第1主面から凹状に窪む複数の肉抜き部と、隣り合う前記肉抜き部を仕切るように立設されたリブ部とを有する、請求項1又は2に記載のバイポーラ型蓄電装置。
The insulating plate has a first main surface facing the one restraining plate, and a second main surface opposite to the first main surface,
The insulating plate has, on the first main surface, a plurality of hollowed out parts that are recessed from the first main surface, and a rib part that stands upright so as to partition the neighboring hollowed out parts. Item 2. The bipolar power storage device according to item 1 or 2.
前記一方の拘束板及び前記絶縁板の少なくとも一方は、前記一方の拘束板と前記絶縁板との間の位置決めのための位置決め部を有する、請求項1~3のいずれか一項に記載のバイポーラ型蓄電装置。 The bipolar according to any one of claims 1 to 3, wherein at least one of the one restraining plate and the insulating plate has a positioning portion for positioning between the one restraining plate and the insulating plate. Type electricity storage device. 前記集電部材及び前記絶縁板の少なくとも一方は、前記集電部材と前記絶縁板との間の位置決めのための位置決め部を有する、請求項1~4のいずれか一項に記載のバイポーラ型蓄電装置。 The bipolar type power storage according to any one of claims 1 to 4, wherein at least one of the current collecting member and the insulating plate has a positioning portion for positioning between the current collecting member and the insulating plate. Device.
JP2020086526A 2020-05-18 2020-05-18 Bipolar power storage device Active JP7430573B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020086526A JP7430573B2 (en) 2020-05-18 2020-05-18 Bipolar power storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020086526A JP7430573B2 (en) 2020-05-18 2020-05-18 Bipolar power storage device

Publications (2)

Publication Number Publication Date
JP2021182465A JP2021182465A (en) 2021-11-25
JP7430573B2 true JP7430573B2 (en) 2024-02-13

Family

ID=78606684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020086526A Active JP7430573B2 (en) 2020-05-18 2020-05-18 Bipolar power storage device

Country Status (1)

Country Link
JP (1) JP7430573B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009135079A (en) 2007-11-01 2009-06-18 Nissan Motor Co Ltd Bipolar type secondary battery, battery pack connecting a plurality of bipolar type secondary batteries, and vehicle mounting those batteries
WO2021095551A1 (en) 2019-11-13 2021-05-20 株式会社豊田自動織機 Electrical storage device
JP2021111505A (en) 2020-01-09 2021-08-02 株式会社豊田自動織機 Battery case

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009135079A (en) 2007-11-01 2009-06-18 Nissan Motor Co Ltd Bipolar type secondary battery, battery pack connecting a plurality of bipolar type secondary batteries, and vehicle mounting those batteries
WO2021095551A1 (en) 2019-11-13 2021-05-20 株式会社豊田自動織機 Electrical storage device
JP2021111505A (en) 2020-01-09 2021-08-02 株式会社豊田自動織機 Battery case

Also Published As

Publication number Publication date
JP2021182465A (en) 2021-11-25

Similar Documents

Publication Publication Date Title
JP3594023B2 (en) Battery module
CN106025120B (en) Electricity storage module
CN112272886B (en) Battery assembly
US20120040226A1 (en) Battery Module
US20120115011A1 (en) Battery module having battery cell holder
US20130280585A1 (en) Battery stack
JP6681436B2 (en) Power storage module
JP7297365B2 (en) Battery modules and battery packs containing the same
JP2015060690A (en) Battery laminate and battery pack
WO2020166182A1 (en) Battery module
US20220344743A1 (en) Battery Pack and Device Including the Same
CN113178656A (en) Battery module
JP2023537015A (en) Battery modules and battery packs containing the same
CN115939488A (en) Electrode assembly, and secondary battery module including the same
CN116097507A (en) Battery module and battery pack including the same
JP2022550522A (en) Battery pack and manufacturing method thereof
JP6681435B2 (en) Power storage module
JP7430573B2 (en) Bipolar power storage device
CN113270692B (en) Solid battery monomer and solid battery module
JP2019194966A (en) Power storage device
CN116457983A (en) Battery module and battery pack including the same
CN115395127A (en) Battery unit
CN114762179A (en) Electricity storage module
US20230253645A1 (en) Battery module and battery pack including the same
US20230238639A1 (en) Battery pack

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221003

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240131

R150 Certificate of patent or registration of utility model

Ref document number: 7430573

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150