JP7430470B2 - Inclined sedimentation device - Google Patents

Inclined sedimentation device Download PDF

Info

Publication number
JP7430470B2
JP7430470B2 JP2022015399A JP2022015399A JP7430470B2 JP 7430470 B2 JP7430470 B2 JP 7430470B2 JP 2022015399 A JP2022015399 A JP 2022015399A JP 2022015399 A JP2022015399 A JP 2022015399A JP 7430470 B2 JP7430470 B2 JP 7430470B2
Authority
JP
Japan
Prior art keywords
inclined plate
sedimentation
outflow end
plate
sedimentation device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022015399A
Other languages
Japanese (ja)
Other versions
JP2022123846A (en
Inventor
明彦 笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of JP2022123846A publication Critical patent/JP2022123846A/en
Application granted granted Critical
Publication of JP7430470B2 publication Critical patent/JP7430470B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Description

本発明の傾斜沈降装置は、主に浄水処理施設や産業排水処理施設の重力式沈降槽(以下沈降槽と言う)に使用される。沈降槽は液体中の懸濁物質を重力沈降の原理を利用して、連続的に分離清澄化する設備であり、水平流式と上向流式があり、本発明の傾斜沈降装置は上向流式沈降槽に使用される。表1に水平流式と上向流式の原理図を示す。また、図2に本発明の上向流式傾斜沈降装置の応用例を示す。
水平流式は、被分離水が傾斜装置に水平に流入し、流出して行くが、上向流式は傾斜装置の下方から流入し、上方に流出していく。いずれの方式でも分離された濁質は傾斜装置の下方に沈降して槽底に滞積する。
The inclined sedimentation device of the present invention is mainly used in gravity type sedimentation tanks (hereinafter referred to as sedimentation tanks) in water purification treatment facilities and industrial wastewater treatment facilities. A sedimentation tank is a device that continuously separates and clarifies suspended substances in a liquid using the principle of gravity sedimentation, and there are horizontal flow types and upward flow types. Used in flow-type sedimentation tanks. Table 1 shows the principles of the horizontal flow type and upward flow type. Further, FIG. 2 shows an example of application of the upward flow type inclined sedimentation apparatus of the present invention.
In the horizontal flow type, the water to be separated flows horizontally into the tilting device and flows out, whereas in the upward flow type, the water to be separated flows in from below the tilting device and flows out upward. In either method, the separated suspended solids settle below the tilting device and accumulate at the bottom of the tank.

Figure 0007430470000001
Figure 0007430470000001

傾斜沈降装置は沈降槽を水平に階層に仕切る原理を応用し、懸濁物質が沈降する距離を縮小し、分離に要する時間を短縮する。
したがって沈降槽の大きさをその短縮した割合に応じて縮小させることができ、沈降槽の建設コストの縮減に大きく寄与する。
The inclined sedimentation device applies the principle of horizontally partitioning the sedimentation tank into layers, reducing the distance over which suspended solids settle and reducing the time required for separation.
Therefore, the size of the settling tank can be reduced in proportion to the reduction in size, which greatly contributes to reducing the construction cost of the settling tank.

傾斜沈降装置は沈降分離操作に連続性を持たせるため、懸濁物質が沈降する底面に傾斜をつけ、分離した濁質を転がりや滑りによって装置外に常時排出する。
図5(a)に示すように、底面を高さHに傾斜させた場合の沈降距離はhとなり、沈降性能は傾斜装置がない場合に比べてH/h倍増加する。(非特許文献1)水道設計指針2000 ページ196,19~27行に同様の記述がある。
In order to ensure continuity in the sedimentation separation operation of the inclined sedimentation device, the bottom surface on which the suspended solids settle is sloped, and the separated suspended solids are constantly discharged out of the device by rolling or sliding.
As shown in FIG. 5(a), when the bottom surface is tilted to a height H, the sinking distance is h, and the sinking performance is increased by a factor of H/h compared to the case without a tilting device. (Non-Patent Document 1) A similar description is found on page 196, lines 19-27 of Water Supply Design Guidelines 2000.

傾斜角度は実用的に水平面に対し45度から70度程度が用いられ、60度が最も一般的である。
傾斜した多数の隔壁(以後傾斜隔壁(50)と言う)を一体的に立体構成したものを傾斜沈降装置という。
傾斜沈降装置には前述したように沈降槽内を水平に流れる部分に設置される水平流式と上昇流部分に設置される上向流式がある。本発明の傾斜沈降装置は上向流式傾斜沈降装置A0である。
代表的な例を図1に、またその使用例を図2に示す。なお特許文献1の1/3 第1図にも傾斜沈降装置の代表例が示されている。
The angle of inclination is practically 45 degrees to 70 degrees with respect to the horizontal plane, with 60 degrees being the most common.
An integral three-dimensional structure of a large number of inclined partition walls (hereinafter referred to as inclined partition walls (50)) is called an inclined sedimentation device.
As mentioned above, there are two types of inclined sedimentation devices: the horizontal flow type, which is installed in the horizontal part of the sedimentation tank, and the upward flow type, which is installed in the upward flow part. The inclined sedimentation device of the present invention is an upward flow type inclined sedimentation device A0.
A typical example is shown in Figure 1, and an example of its use is shown in Figure 2. Note that a typical example of an inclined sedimentation device is also shown in FIG. 1, 1/3 of Patent Document 1.

上向流式傾斜沈降装置A0は表1に示す通り、沈降槽の水面下に位置し、装置下方の流入側原水と装置上方の流出側処理水の間に設置される。
上向流式に用いられる傾斜沈降装置は原則1段であり、水平流式のように階層を重ねる多段式はない。
As shown in Table 1, the upflow type sedimentation device A0 is located below the water surface of the settling tank, and is installed between the raw water on the inflow side below the device and the treated water on the outflow side above the device.
The inclined sedimentation device used in the upward flow type basically has one stage, and there is no multi-stage type with stacked layers like the horizontal flow type.

上向流式傾斜沈降装置A0は、さらに表2に示すように傾斜管式と傾斜板式に分別され、傾斜隔壁(50)に傾斜管(60)や傾斜隔壁(50)の幅方向bを細かく仕切って管状とした部材を使用したものを傾斜管沈降装置A10、傾斜隔壁(50)に傾斜した平板(以後傾斜板(51)という)を使用したものを傾斜板沈降装置A20と言い本発明は傾斜板沈降装置である。
傾斜板沈降装置A20には傾斜管沈降装置を構成する側壁(40)は無く、傾斜板(51)の両端はフリーである。
傾斜板は薄い平板であり、剛性強度を増すためにいろいろな形状の補強リブが付いている。平板の大きさは1m四方から幅1m長さ2mなど多数あるが標準的なものは決まっていない。
多数の傾斜板を水平に等間隔に並べて支持枠等に固定し傾斜板沈降装置をなす。各傾斜板の長さLもしくは高さHはすべて同一であり、また上辺(30)と底辺(31)の高さは沈降性能を最大限に発揮するため同一である。
The upflow type inclined sedimentation device A0 is further divided into the inclined pipe type and the inclined plate type as shown in Table 2, and the inclined pipe (60) and the inclined partition wall (50) are provided with finely divided width direction b on the inclined partition wall (50). The device using partitioned tubular members is referred to as the inclined tube settling device A10, and the device using an inclined flat plate (hereinafter referred to as the inclined plate (51)) as the inclined partition wall (50) is referred to as the inclined plate settling device A20. It is an inclined plate sedimentation device.
The inclined plate settling device A20 does not have a side wall (40) that constitutes the inclined tube settling device, and both ends of the inclined plate (51) are free.
The inclined plate is a thin flat plate with reinforcing ribs of various shapes to increase its rigidity. There are many sizes of flat plates, from 1 meter square to 1 meter wide and 2 meters long, but there is no standard size.
A large number of inclined plates are arranged horizontally at equal intervals and fixed to a support frame or the like to form an inclined plate settling device. The length L or height H of each inclined plate is the same, and the heights of the top side (30) and bottom side (31) are the same in order to maximize the sedimentation performance.

Figure 0007430470000002
Figure 0007430470000002

傾斜管式は側壁(40)と傾斜隔壁(50)とで管状に閉じられた傾斜流路(11)を、傾斜板式は側壁(40)を持たず、傾斜板(51)で平行に仕切られた傾斜流路(11)を被分離水が上昇する。
傾斜板(51)が並行して並ぶピッチは一般的に70mmから150mmの範囲で採用される。ピッチが狭いほうが大きな沈降性能が得られ有利だが、濁質による閉塞が心配される。また広くすると沈降性能が劣り、それを補うためには装置を大型化する必要がある。
また、傾斜板(51)は傾斜管(60)に比較して材料の剛性が低く、たわみが出やすいのでピッチを傾斜管(60)並みに狭くすることができない。
The inclined tube type has an inclined channel (11) closed in a tubular shape with a side wall (40) and an inclined partition wall (50), while the inclined plate type has no side wall (40) and is partitioned in parallel by an inclined plate (51). The water to be separated rises through the inclined channel (11).
The pitch at which the inclined plates (51) are arranged in parallel is generally in the range of 70 mm to 150 mm. A narrow pitch is advantageous because it provides greater sedimentation performance, but there are concerns about blockage due to turbidity. Furthermore, if the diameter is widened, the sedimentation performance will deteriorate, and to compensate for this, it is necessary to increase the size of the device.
Furthermore, the material of the inclined plate (51) has lower rigidity than that of the inclined pipe (60) and is easily bent, so the pitch cannot be made as narrow as that of the inclined pipe (60).

公開実用 昭和56-137704号 1/3第1図Published practical application No. 137704, Showa 56, 1/3 Figure 1 特許第6653203号 ペ-ジ(11) 図14Patent No. 6653203 Page (11) Figure 14

水道設計指針2000 ページ194~199「5.5.4傾斜板(管)式沈殿池」、ページ199~202「5.5.5高速凝集沈殿池」平成12年3月31日発行 一般社法日本水道協会Water Supply Design Guidelines 2000 Pages 194-199 "5.5.4 Inclined Plate (Pipe) Type Sedimentation Tank", Pages 199-202 "5.5.5 High Speed Coagulation Sedimentation Tank" Published March 31, 2000 Japan Water Works Association

第1に上向流式傾斜沈降装置A0に発生する閉塞の問題について記述する。 First, the problem of blockage that occurs in the upflow inclined sedimentation apparatus A0 will be described.

上向流式傾斜沈降装置A0を沈降槽B内で長期間運用していると、傾斜沈降装置A0の流出端辺(22)に汚れが付着し流れを阻害して分離性能を著しく低下させる。
汚れの成分の多くは、分離効率を向上させる目的で液中にミョウバン系の凝集剤を投入し、懸濁物質を集塊した数ミリ程度の濁質フロック(3)である。
汚れの付着は、上昇流路内で完全に分離されずに残った微量の濁質フロック(3)が傾斜沈降装置A0の上面において一部が再沈降し流出端(21)に沈着するために発生する。
傾斜板沈降装置A20は、傾斜管沈降装置A10と比較して、隔壁を持たないので、閉塞が発生しにくくなるが、閉塞を完全に防ぐことは出来ない。
When the upward flow type sedimentation device A0 is operated for a long period of time in the sedimentation tank B, dirt adheres to the outflow end (22) of the slope sedimentation device A0, obstructing the flow and significantly reducing the separation performance.
Most of the components of dirt are turbid flocs (3) of several millimeters in size, which are made by adding an alum-based flocculant to the liquid to agglomerate suspended substances in order to improve separation efficiency.
The adhesion of dirt is due to a small amount of turbid flocs (3) remaining without being completely separated in the upflow channel re-sedimenting on the upper surface of the inclined sedimentation device A0 and depositing at the outflow end (21). Occur.
Since the inclined plate settling device A20 does not have a partition wall compared to the inclined tube settling device A10, blockage is less likely to occur, but blockage cannot be completely prevented.

上向流式傾斜沈降装置A0の分離性能を良好に維持するため、装置の定期的な清掃メンテナンスが欠かせない。 In order to maintain good separation performance of the upflow tilted sedimentation device A0, regular cleaning and maintenance of the device is essential.

特に、懸濁物質の性状によっては装置の流出端辺(22)に濁質フロック(3)が沈着堆積し、長期間放置するとマット状の層(以下マット層(4)と言う)を形成して閉塞状態に至ることも数多く報告されている。 In particular, depending on the nature of the suspended solids, suspended flocs (3) may settle and accumulate on the outflow end (22) of the device, and if left for a long period of time, they may form a mat-like layer (hereinafter referred to as mat layer (4)). There have also been many reports of cases in which occlusion has occurred.

図3に傾斜板沈降装置A20が閉塞に至る流出端の挙動を示す模式図を示す。図3(a) は傾斜板流出端の平面図、図3(b)は同じく側断面図である。沈降装置設置初期の状況から、長期運用により濁質フロック(3)の沈着が進んだ状態、そして定期的な清掃無しに長期にわたり放置した結果、マット層(4)が形成され閉塞に至る状態を示す。
閉塞状態が発生すると、傾斜装置に流入する流れが不均一となり、一部に短絡流が生じて、分離効率を著しく低下させる。
FIG. 3 shows a schematic diagram showing the behavior of the outflow end of the inclined plate sedimentation device A20 leading to blockage. FIG. 3(a) is a plan view of the outflow end of the inclined plate, and FIG. 3(b) is a side sectional view of the same. From the initial state of the sedimentation equipment installation, to the state in which turbid flocs (3) have been deposited due to long-term operation, and the state in which a mat layer (4) is formed as a result of being left unused for a long time without regular cleaning, leading to blockage. show.
When a blockage condition occurs, the flow flowing into the tilting device becomes non-uniform, and a short circuit flow occurs in a part, which significantly reduces the separation efficiency.

第2に従来の閉塞防止対策について記述する。 Second, we will describe conventional blockage prevention measures.

上向流式傾斜板沈降装置A20の流出端(21)に沈着した濁質フロック(3)が成長し、マット層(4)が形成されることを防止するため、傾斜流路(11)の拡大が求められる。 In order to prevent the turbid flocs (3) deposited at the outflow end (21) of the upflow type inclined plate sedimentation device A20 from growing and forming a mat layer (4), the inclined flow path (11) is Expansion is required.

例えば傾斜管沈降装置A10の傾斜管(60)の径を50mm角から100mm角に拡大する対策がとられたり、傾斜板沈降装置A20の場合は、傾斜板(51)のピッチ(間隔)を例えば100mmから200mmに拡大する対策がとられる。 For example, measures have been taken to increase the diameter of the inclined pipe (60) of the inclined tube settling device A10 from 50 mm square to 100 mm square, or in the case of the inclined plate settling device A20, the pitch (spacing) of the inclined plates (51) has been changed, for example. Measures will be taken to expand the diameter from 100mm to 200mm.

図4は閉塞防止対策を講じた傾斜板沈降装置A20の流出端側断面模式図である。図4(a)は従来から採用されているピッチpで配列された傾斜隔壁(50)または傾斜板(51)の模式図で、閉塞防止対策前の状態。図4(b)は従来から行われている閉塞防止対策で、傾斜板(51)の間隔pを2倍にした場合の模式図である。図4(c)は本発明の対策を示した模式図である。
傾斜板沈降装置A20の流出端(21)に沈着する濁質フロック(3)は徐々に集塊し、放置するとしだいにマット層(4)を形成する。マット層(4)は脆弱で、対辺の間隔が拡大、すなわち流路断面が拡大すると、マット層の形成途上で層の中央部のひずみεが増し、ひずみεがある限界εmxを超えると濁質フロック(3)同士の結着力を失って破断し、マット層(4)が形成されず、閉塞には至らない。
FIG. 4 is a schematic cross-sectional view of the outflow end side of the inclined plate sedimentation device A20 that takes measures to prevent blockage. FIG. 4(a) is a schematic diagram of inclined partition walls (50) or inclined plates (51) arranged at a pitch p that have been adopted in the past, before taking measures to prevent blockage. FIG. 4(b) is a schematic diagram of a conventional blockage prevention measure in which the interval p between the inclined plates (51) is doubled. FIG. 4(c) is a schematic diagram showing the countermeasure of the present invention.
The turbid flocs (3) deposited at the outflow end (21) of the inclined plate sedimentation device A20 gradually aggregate and form a mat layer (4) if left alone. The mat layer (4) is fragile, and as the distance between the opposite sides increases, that is, the channel cross section expands, the strain ε in the center of the layer increases during the formation of the mat layer, and when the strain ε exceeds a certain limit ε mx , turbidity occurs. The matte flocs (3) lose their cohesion and break, and the mat layer (4) is not formed, resulting in no blockage.

よって、隣り合う傾斜板の間隔を拡大してマット層(4)の形成を防止する対策が従来からとられている。 Therefore, conventional measures have been taken to prevent the formation of the matte layer (4) by increasing the distance between adjacent inclined plates.

第3に従来の閉塞防止対策の問題点について記述する。 Third, we will discuss the problems with conventional blockage prevention measures.

閉塞防止対策として、傾斜流路(11)を拡大すると傾斜板沈降装置A20が大型化し、製作コストの上昇やしいては傾斜沈降装置A20を収容する沈降槽Bも拡大し建設コストの増大を招くことになる。
また傾斜流路(11)の拡大により、流路内に乱流が発生しやすくなり、分離効率が低下する欠点もある。
As a measure to prevent blockage, enlarging the inclined flow path (11) increases the size of the inclined plate sedimentation device A20, which increases the manufacturing cost and also enlarges the sedimentation tank B that accommodates the inclined sedimentation device A20, leading to an increase in construction costs. It turns out.
Furthermore, the enlargement of the inclined flow path (11) tends to cause turbulence in the flow path, which has the disadvantage of lowering the separation efficiency.

最初に傾斜板沈降装置A20の大型化とその問題点について説明する。 First, the enlargement of the inclined plate sedimentation device A20 and its problems will be explained.

傾斜板沈降装置A20の沈降分離性能は2枚の傾斜板(51)の間隔に反比例して性能が低下する。
すなわち、沈降分離性能は図5(a)に示されるように高さHの2枚の傾斜板(51)間の最深垂線hの数に比例し、H/h倍で示される。閉塞を防ぐために傾斜板(51)の間隔pを2倍の2pにすると図5(b)に示すように分離性能はH/2h倍となり、分離性能は2分の1に減ずる。これを補うためには傾斜隔壁(50)の長さを2倍にしなければならない。
傾斜板(51)の長さLを2倍にすると傾斜板沈降装置A20の高さHは、傾斜角度が60度の場合H=2Lsin60=1.73Lとなり、1.73倍高くなる。この方法では傾斜板沈降装置A20が大きくなり、傾斜板沈降装置A20の製作コストや傾斜板沈降装置A20を収める沈降槽Bの建設コストが大幅に上昇する。
The sedimentation and separation performance of the inclined plate sedimentation device A20 decreases in inverse proportion to the distance between the two inclined plates (51).
That is, as shown in FIG. 5(a), sedimentation separation performance is proportional to the number of deepest perpendicular lines h between two inclined plates (51) of height H, and is expressed as H/h times. If the interval p between the inclined plates (51) is doubled to 2p to prevent blockage, the separation performance will be increased by H/2h times as shown in FIG. 5(b), and the separation performance will be reduced to one-half. In order to compensate for this, the length of the inclined partition wall (50) must be doubled.
If the length L of the inclined plate (51) is doubled, the height H of the inclined plate settling device A20 becomes 1.73 times higher, H=2Lsin60=1.73L when the inclination angle is 60 degrees. In this method, the inclined plate settling device A20 becomes large, and the manufacturing cost of the inclined plate settling device A20 and the construction cost of the settling tank B in which the inclined plate settling device A20 is housed increase significantly.

次に、分離効率の低下について説明する。 Next, the decrease in separation efficiency will be explained.

傾斜流路(11)が拡大することにより、傾斜流路内で乱流が発生し易くなり、分離性能が低下し、分離効率が悪化する。沈降分離性能の効率に大きく影響する整流度はレイノルズ数で表され数値が低いほど整流度が高いことを示す。
沈降分離操作は整流域内であることが絶対条件であり、レイノルズ数は非常に重要な要素である。
By expanding the inclined channel (11), turbulent flow is likely to occur within the inclined channel, resulting in a decrease in separation performance and deterioration in separation efficiency. The degree of rectification, which greatly affects the efficiency of sedimentation separation performance, is expressed by the Reynolds number, and the lower the number, the higher the degree of rectification.
It is an absolute condition that the sedimentation separation operation be performed within a rectified region, and the Reynolds number is a very important factor.

レイノルズ数は流れの整流度を表す無次元の数値で、Re=ρvDe/μ Re:レイノルズ数、ρ:流体密度、v:流体速度、De:濡れ壁面積De=4×断面積/浸辺長、μ:流体粘度、で計算される。沈降分離技術分野ではレイノルズ数500以下が層流域、2,500以上が乱流域とされているが、実例的には200以下が採用されている。 Reynolds number is a dimensionless numerical value that expresses the degree of rectification of flow, Re=ρvD e /μ Re: Reynolds number, ρ: fluid density, v: fluid velocity, D e : wetted wall area D e =4×cross-sectional area/ Calculated by immersion length, μ: fluid viscosity. In the field of sedimentation separation technology, a Reynolds number of 500 or less is considered a laminar region, and a Reynolds number of 2,500 or more is considered a turbulent region, but in practice, a value of 200 or less is used.

傾斜板内の流れの速度を一定とすると、濡れ壁面積がレイノルズ数を変化させる重要なファクターとなる、流路径が小さければ濡れ壁面積Deも小さくなり、レイノルズ数も比例して小さくなる。
傾斜沈降装置に求められるレイノルズ数は、濁質フロック(3)による閉塞の恐れがない条件下で低いほど良く、数10から200程度とされている。
Assuming that the velocity of the flow in the inclined plate is constant, the wetted wall area is an important factor that changes the Reynolds number.If the flow path diameter is small, the wetted wall area D e will also be small, and the Reynolds number will also be proportionally small.
The Reynolds number required for an inclined sedimentation device is said to be from several tens to two hundred, which is preferably as low as possible under conditions where there is no risk of clogging by turbid flocs (3).

閉塞防止対策として、従来技術では、傾斜流路(11)を拡大する対策が取られるが、この方法では、レイノルズ数が増大し沈降分離性能が悪化する欠点がある。
傾斜板沈降装置A20では、傾斜管沈降装置A10と比較して側壁(40)が無くオープンな水路であるため濡れ壁面積Deが大きくなり、レイノルズ数は数倍から数十倍になる。
したがって、隣り合う傾斜板の間隔を拡大することは沈降分離性能を大きく損なう恐れがある。
As a countermeasure to prevent blockage, in the prior art, a measure is taken to enlarge the inclined channel (11), but this method has the disadvantage that the Reynolds number increases and sedimentation separation performance deteriorates.
In the inclined plate sedimentation device A20, compared to the inclined tube sedimentation device A10, there is no side wall (40) and it is an open channel, so the wetted wall area D e is larger, and the Reynolds number is several times to several tens of times larger.
Therefore, increasing the distance between adjacent inclined plates may greatly impair sedimentation separation performance.

傾斜板沈降装置は流路幅が大きいのでレイノルズ数は必然的に大きくならざるを得ず、300程度が一般的である。そのため傾斜板沈降装置の効率は70%程度とされている。
傾斜板沈降装置の場合、閉塞防止対策として水路幅を拡大すると、沈降性能の大幅な低下は避けられない。
Since the inclined plate sedimentation device has a large channel width, the Reynolds number must necessarily be large, and is generally around 300. Therefore, the efficiency of inclined plate sedimentation equipment is estimated to be around 70%.
In the case of inclined plate sedimentation equipment, if the width of the channel is expanded to prevent blockages, a significant drop in sedimentation performance is unavoidable.

レイノルズ数比較の一例を表3に示す。従来から使用され、また実績の多い水路幅100mmの傾斜板と、閉塞防止対策のために新たに提供された200mmの傾斜板で比較した。
表3の水路幅a100mmとb200mmのレイノルズ数を比較すると、それぞれ308と616となり2倍の開きがある。したがって水路幅を2倍に拡大したことにより、レイノルズ数は大きく増加し層流域を超えて分離効率は大幅に低下する。
従って傾斜流路(11)の拡大による分離性能の大幅な低下は避けられないことが理解される。
Table 3 shows an example of Reynolds number comparison. A comparison was made between a sloped plate with a channel width of 100mm, which has been used in the past and has a good track record, and a sloped plate with a width of 200mm, which is newly provided as a measure to prevent blockage.
Comparing the Reynolds numbers for channel widths a 100 mm and b 200 mm in Table 3, they are 308 and 616, respectively, which is twice as large. Therefore, by doubling the channel width, the Reynolds number increases significantly and the separation efficiency significantly decreases beyond the laminar region.
Therefore, it is understood that a significant decrease in separation performance due to the enlargement of the inclined channel (11) is unavoidable.

Figure 0007430470000003
Figure 0007430470000003

傾斜流路(11)の間隔を変えることなく、閉塞防止対策を備えた傾斜板沈降装置A20が要求され、隣接する傾斜板(51)の流出端(21)に段差zを設けることで、傾斜流路(11)の間隔を大きくする効果と同等以上の成果が得られる方法を発明した。 An inclined plate sedimentation device A20 is required that has measures to prevent blockage without changing the interval between the inclined channels (11), and by providing a step z at the outflow end (21) of the adjacent inclined plate (51), We have invented a method that can achieve results equal to or better than those achieved by increasing the spacing between channels (11).

段差を設けた傾斜沈降装置としてすでに特許文献2が考案されている。 Patent Document 2 has already been devised as an inclined sedimentation device with steps.

特許文献2は、傾斜管沈降装置A10であり、側板(本願では側壁(40)と称している)を有しており、本願の側壁を有しない傾斜板沈降装置A20とは構造が大きく異なる。 Patent Document 2 is an inclined tube settling device A10, which has a side plate (referred to as a side wall (40) in the present application), and is significantly different in structure from the inclined plate settling device A20 of the present application which does not have a side wall.

したがって、閉塞に至る経緯及びその防止対策も異なる。 Therefore, the circumstances leading to the blockage and the preventive measures are also different.

傾斜流路(11)の径を拡大することなく、また分離性能を維持しながら、従来から使用されている傾斜板沈降装置A21の加工組立方法を一部変更し、傾斜板(51)の流出端辺(22)の前後方向交互に段差zを設けることで、濁質フロック(3)による閉塞を防止し、清掃メンテナンスまでの期間を延長させることができ、かつ、分離性能も維持することができる段差付き傾斜板沈降装置A22を提供する。 The process and assembly method of the conventionally used inclined plate sedimentation device A21 has been partially changed to prevent the outflow of the inclined plate (51) without increasing the diameter of the inclined channel (11) and while maintaining separation performance. By providing steps z alternately in the front and rear directions of the edge (22), it is possible to prevent blockage by turbid flocs (3), extend the period until cleaning maintenance, and maintain separation performance. To provide a sloped plate sedimentation device A22 with steps.

特殊な場合を除き濁質フロック(3)の付着は、傾斜板沈降装置A20の流出端(21)に限定して発生するものであるから、傾斜板沈降装置全体に対策を施す必要はなく、流出端(21)に限定して対策を講ずれば良い。 Except in special cases, the adhesion of turbid flocs (3) occurs only at the outflow end (21) of the inclined plate settling device A20, so there is no need to take measures for the entire inclined plate settling device. Measures should be taken only at the outflow end (21).

本発明の基本原理を図4を用いて説明する。図4(a)は従来の傾斜板沈降装置の流出部側断面を模式図化したものである。図4(b)は閉塞防止対策として傾斜板(51)の間隔pを2倍にし、流出端(21)間の距離を拡大したもの、図4(c)は傾斜板(51)の間隔pを維持したまま隣り合う傾斜板(51)の流出端(21)に段差zを設けたものである。
図4(a)の従来の傾斜板沈降装置では、流出端(21)に付着した濁質が成長し、隣り合う濁質塊と合体してマット層(4)が形成され、閉塞が起きている状態、図4(b)は流出端の間隔は、2倍の2pとなり、付着した濁質は、マット層(4)を形成することなく、ひずみ限界εmxを超えて崩壊する。図4(c)は同一高さの流出端間の距離は2pであるのでマット層(4)は形成されないが、下方に段差のある流出端(21)でも濁質の集塊は発生しており、下方の濁質の集塊が上方の濁質の集塊に合体されなければ、マット層(4)は形成されない。
The basic principle of the present invention will be explained using FIG. 4. FIG. 4(a) is a schematic diagram of a side cross section of the outflow section of a conventional inclined plate sedimentation device. Figure 4(b) shows the distance p between the inclined plates (51) doubled and the distance between the outflow ends (21) expanded to prevent blockage, and Figure 4(c) shows the distance p between the inclined plates (51). A step z is provided at the outflow ends (21) of adjacent inclined plates (51) while maintaining the same.
In the conventional inclined plate sedimentation device shown in Fig. 4(a), the suspended solids attached to the outflow end (21) grow and coalesce with adjacent suspended solid masses to form a mat layer (4), causing blockage. In the state shown in FIG. 4(b), the distance between the outflow ends is doubled to 2p, and the attached suspended solids collapse beyond the strain limit ε mx without forming a mat layer (4). In Figure 4(c), the distance between the outflow ends at the same height is 2p, so no matte layer (4) is formed, but turbid agglomeration does not occur even at the outflow end (21), which has a step below. Therefore, the mat layer (4) is not formed unless the lower turbidity aggregate is combined with the upper turbidity aggregate.

この場合、段差zの大きさは、下方の流出端に発生する濁質の集塊が成長して上方の濁質の集塊に接する前に崩壊する必要がある。また、上方の流出端(21)の両端で成長する濁質の集塊が下部の流出端(21)で支えられる形になることも避けなければならない。すなわちひずみ限界εmx以上であることが条件となる。ひずみ限界εmx以下では、両端から成長するマット層(4)が下部の流出端(21)で支えられる形になり、崩壊には至らない。 In this case, the size of the step z must be such that the turbidity agglomerate generated at the lower outflow end grows and collapses before coming into contact with the upper turbidity agglomerate. It must also be avoided that the turbid conglomerates that grow at both ends of the upper outflow end (21) are supported by the lower outflow end (21). In other words, the condition is that the strain limit ε mx or more is exceeded. Below the strain limit ε mx , the mat layer (4) growing from both ends is supported by the lower outflow end (21) and does not collapse.

以上のことから、傾斜板(51)の間隔を拡幅せずに、拡幅した場合と同じ効果が得られることが理解される。 From the above, it is understood that the same effect as when widening the interval between the inclined plates (51) can be obtained without widening the interval.

すなわち、隣接する2つの傾斜流路(11)を一対として、その流路の中間に位置する傾斜板(51)の流出端(21)の高さを、他の対辺の流出端(21)の高さより低くし段差zを設けた段差付き傾斜板沈降装置A22である。 That is, considering two adjacent inclined channels (11) as a pair, the height of the outlet end (21) of the inclined plate (51) located in the middle of the channel is set to the height of the outlet end (21) on the other opposite side. This is a sloped plate sedimentation device A22 with a step, which is lower than the height and provided with a step z.

また、傾斜板(51)のピッチpは保たれているので分離効率を左右するレイノルズ数に変化はなく、性能の低下を招くことも無い。 Furthermore, since the pitch p of the inclined plate (51) is maintained, the Reynolds number, which affects separation efficiency, does not change, and performance does not deteriorate.

段差zの大きさは、相対する流出端の距離kがピッチpより大きくなるほど良い。
これを図6の段差zの解析図を用いて説明する。A、B、Cは従来型傾斜板(51)(以後長手傾斜板(51a)という)の流出端、B1は段差のある傾斜板(以後短手傾斜板51bという)の流出端で傾斜流路(11)を直角に切断した形状の位置、B3は同じく短手傾斜板の流出端で、傾斜流路(11)を傾斜角度θで切断した形状の位置、B2の位置はピッチpの2分の1を半径とする円弧が線ABに接する短手傾斜板(51b)上の位置である。
αは長手傾斜板(51a)の流出端から短手傾斜板(51b)の流出端を結んだ直線が長手傾斜板(51a)となす内側の角度をいう。一般的に傾斜板(51)の傾斜角度θは60度であり、Bの位置はα=120度、B1の位置はα=90度、B2の位置はα≒85度、B3の位置はα=θ=60度となる。
流出端A、B、C点における集塊した濁質フロック(マット層)の成長は、A,B間の中間点Mまでを半径とする円で模式的に示される。各円が接した段階でブリッジが発生し閉塞が始まる。
流出端A、B、Cがあり、隔壁のピッチはpである。段差がゼロの場合、流出端間の距離はピッチpであるが、段差がB3に達するまでは、Aを起点とする流出端間k1はピッチpより狭まり、B3より下方では拡大して行く。反対にCを起点とする流出端間k2は段差のないB以降pより拡大して行く。
B3におけるAとの中間点をNとすると、曲線MNは各段差における円がAに最も近い位置を示し、傾斜流路(11)を直角に切断した形状の段差B1点でもっと接近し、傾斜角θで切断した形状の段差B3点のNでMと等しくなり、その後拡大して行く。
The size of the step z is better as the distance k between the opposing outflow ends is greater than the pitch p.
This will be explained using the analysis diagram of the step z in FIG. A, B, and C are the outflow ends of the conventional inclined plate (51) (hereinafter referred to as the longitudinal inclined plate (51a)), and B1 is the outlet end of the stepped inclined plate (hereinafter referred to as the short inclined plate 51b), which is the inclined flow path. (11) is cut at a right angle, B3 is also the outflow end of the short inclined plate, the position of the inclined flow path (11) is cut at an inclination angle θ, and the position B2 is half the pitch p. A circular arc having a radius of 1 is the position on the short inclined plate (51b) that is in contact with the line AB.
α refers to the inner angle that a straight line connecting the outflow end of the longitudinal inclined plate (51a) to the outflow end of the short inclined plate (51b) makes with the longitudinal inclined plate (51a). Generally, the inclination angle θ of the inclined plate (51) is 60 degrees, the position of B is α = 120 degrees, the position of B1 is α = 90 degrees, the position of B2 is α≒85 degrees, and the position of B3 is α =θ=60 degrees.
The growth of aggregated turbid flocs (mat layer) at the outflow ends A, B, and C is schematically shown by a circle whose radius is the midpoint M between A and B. When the circles touch each other, a bridge occurs and occlusion begins.
There are outflow ends A, B, and C, and the pitch of the partition walls is p. When the step is zero, the distance between the outflow ends is pitch p, but until the step reaches B3 , the distance k1 between the outflow ends starting at A becomes narrower than the pitch p, and below B3 it expands. . On the contrary, the distance k2 between the outflow ends starting from C becomes larger than p after B where there is no step.
If the midpoint between B3 and A is N, then the curve MN shows the position where the circle at each step is closest to A, and the circle at each step is closer to point B1, which is a cross section of the inclined flow path (11) at right angles, and the circle is closest to A. The step B of the shape cut at the angle θ becomes equal to M at the three points N, and then expands.

すなわち、Mを起点としてNまでは、流出端間が狭まり段差zが無い場合より閉塞に至りやすいと言え、必要な段差はB3より下方でなければならない。
しかしながら、段差が生じることにより、集塊した濁質フロックのブリッジは弱くなり崩壊しやすくなる機序を考慮するとB1からB3も効果が期待できる、BからB1までの段差は顕著な閉塞防止効果は得られない。
That is, from M to N, it can be said that the space between the outflow ends becomes narrower, leading to blockage more easily than in the case where there is no step z, and the necessary step must be below B3.
However, considering the mechanism in which the bridge of agglomerated turbid flocs becomes weaker and more likely to collapse due to the difference in level, B1 to B3 can be expected to be effective, but the difference in level from B to B1 does not have a significant blockage prevention effect. I can't get it.

図7は、傾斜流路(11)の流出端を水平に切断した形状の流出端AとB、直角に切断した形状のAとB1、傾斜角度θ=60度で切断した形状のAとB3それぞれの位置について集塊する濁質フロック(3a)は図に示すように円状に成長してゆき、その成長外形線を右斜線で示した。
実際には、円の右下下方に濁質が付着することはほとんど認められないが、解析を簡単にするため円で表記した。
Figure 7 shows the outflow ends A and B of the inclined flow path (11) cut horizontally, A and B1 cut at right angles, and A and B3 cut at an inclination angle of 60 degrees. The turbid flocs (3a) that aggregate at each position grow in a circular shape as shown in the figure, and the outline of their growth is shown by diagonal lines on the right.
In reality, it is rarely observed that suspended matter adheres to the lower right corner of the circle, but it is represented as a circle to simplify the analysis.

右斜線の円が重なるとブリッジが生じ閉塞状態に至る。
段差zがB1に達するまでは重なり部分が増して行き、B1より下方では重なり部分が減少に転じ、B3で重なり部分が消滅する。B3以下では近接した集塊フロックが無いので、閉塞には至らない。
しかしながら、B3より下方では、傾斜板(51b)の長さが短くなり、沈降性能の減少が無視できなくなるので推奨されない。
When the circles with diagonal lines on the right overlap, a bridge occurs and a blockage state occurs.
The overlapping portion increases until the step z reaches B1, the overlapping portion begins to decrease below B1, and the overlapping portion disappears at B3. Below B3, there are no adjacent agglomerated flocs, so blockage does not occur.
However, it is not recommended below B3 because the length of the inclined plate (51b) becomes shorter and the decrease in sedimentation performance cannot be ignored.

以上のことから、段差zは、流出端間の拡大を重要視するならB3より下方が良いが、マット層の形成を防止する実質的効果から考察すると、閉塞防止に必要な段差zは、B1以下B3間で十分であると言える。 From the above, it is better to set the step z below B3 if the expansion between the outflow ends is important, but considering the practical effect of preventing the formation of a mat layer, the step z necessary to prevent blockage is B1. It can be said that below B3 is sufficient.

よって、傾斜板(51)の流出側の流路の形状を、交互に効果的な段差を持たせた形状とすることによって、閉塞を防止することができ、流路を90度以下の鋭角から傾斜角θ以上で切断した形状とすることによって閉塞防止効果がある傾斜板沈降装置A22を提供することが出来る。 Therefore, by making the shape of the flow path on the outflow side of the inclined plate (51) into a shape with effective steps alternately, blockage can be prevented, and the flow path can be formed from an acute angle of 90 degrees or less. By having a shape cut at an inclination angle of θ or more, it is possible to provide an inclined plate settling device A22 that has a blockage prevention effect.

B1やB3における段差zは傾斜板(51)のピッチをpとするとB1の段差z(1)は、z(1)=psinθ×cosθ、B3の段差z(3)は、z(3)=2psinθ×cosθとなる。傾斜板の対面距離をdとすると、B1の段差z(1)は、z(1)=dcosθ、B3の段差z(3)は、z(3)=2dcosθとなる。
例えばp=80mmとするとz(1) ≒35mm、z(3)≒70mmとなる。p=150mmとするとz(1) =65mm、z(3)=130mmとなる。
Assuming that the pitch of the inclined plate (51) is p, the step z (1) in B1 and B3 is z (1) = psin θ × cos θ, and the step z (3) in B3 is z (3) = It becomes 2psinθ×cosθ. When the facing distance of the inclined plate is d, the step z (1) of B1 is z (1) = d cos θ, and the step z (3) of B3 is z (3) = 2 d cos θ.
For example, if p = 80 mm, z (1) ≒ 35 mm, z (3) ≒ 70 mm. If p = 150mm, z (1) = 65mm, z (3) = 130mm.

なお、段差zの大きさは、懸濁物質の性状や傾斜装置の設置状況等により選定され、粘着性が弱く小型の濁質フロック(3)であればわずかの段差で効果があり、粘着性が強く大型の濁質フロック(3)であれば大きい段差を必要とする。
傾斜板沈降装置として代表的な傾斜角度60度、p=80mmの場合、z(1)=35mm、z(3)=70mmとなり、35~70mmの間で適宜採用される。濁質フロックの性状に粘着性が懸念される場合は、d=100mmとして、z(1)=50mmからz(3)=100mmの間で採用される。
The size of the step z is selected depending on the properties of the suspended solids and the installation situation of the tilting device.If the adhesiveness is weak and the turbid flocs (3) are small, a small step will be effective; If it is a strong and large turbid floc (3), a large step is required.
When the tilt angle is 60 degrees and p = 80 mm, which is typical for a tilted plate settling device, z (1) = 35 mm, z (3) = 70 mm, and a value between 35 and 70 mm is adopted as appropriate. If there is a concern about stickiness in the properties of suspended flocs, a value between z (1) =50 mm and z (3) =100 mm is adopted with d = 100 mm.

しかしながら一方、傾斜板(51)の一部の長さ、もしくは高さを欠くため、沈降性能の若干の低下は数値上免れない。そこで、沈降性能低下の割合を計算して比較してみる。 However, on the other hand, since the inclined plate (51) lacks a part of the length or height, a slight decrease in sedimentation performance cannot be avoided numerically. Therefore, let's calculate and compare the rate of decline in sedimentation performance.

図8に沈降性能を確定する原理図を示す。図8において、ピッチpで連続して並ぶ傾斜板(51)の上端を長さl、もしくは高さzだけ交互に欠いた構造とする。すなわち流出端(21)にピッチp方向の交互に段差zを設けた構造である。
例えば、傾斜板(51)の傾斜角度θを60度、傾斜板対面間隔dを70mm、傾斜板高さHを800mmとすると、ピッチp=70/sin60≒80mm、隔壁長L=H/sin60≒920mmとなる。
傾斜板(51)の欠くべき高さzを、直角切断形状時の35mmと60度切断形状時の70mmとする。これを傾斜板(51)の切欠く長さlに置き換えると40mmから80mmとなる。
これは傾斜隔壁(50)長さL=920mmの4.3%から8.7%になるが、段差zは傾斜板(51)数の半分に限定されるので、影響は2.2%から4.4%である。
したがって傾斜板(51)をlだけ欠いたことによる沈降性能の低下は2.2%から4.4%であり、これに傾斜板沈降装置の効率70%を加味すれば、1%~2%となり機能上の分離性能に及ぼす影響はほとんど無視することができる。
Figure 8 shows a diagram of the principle for determining sedimentation performance. In FIG. 8, the upper ends of the inclined plates (51) arranged continuously at a pitch p are alternately cut by a length l or a height z. That is, it has a structure in which steps z are provided alternately in the pitch p direction at the outflow end (21).
For example, if the inclination angle θ of the inclined plate (51) is 60 degrees, the face-to-face distance d of the inclined plate is 70 mm, and the inclined plate height H is 800 mm, the pitch p=70/sin60≒80 mm, and the partition wall length L=H/sin60≒ It will be 920mm.
The required height z of the inclined plate (51) is 35 mm in the right angle cut shape and 70 mm in the 60 degree cut shape. If this is replaced with the length l of the notch of the inclined plate (51), it becomes 40 mm to 80 mm.
This becomes 8.7% from 4.3% of the length L of the inclined partition wall (50) = 920 mm, but since the step z is limited to half the number of inclined plates (51), the influence is from 2.2% to 4.4%.
Therefore, the decrease in sedimentation performance due to the lack of the inclined plate (51) by l is 2.2% to 4.4%, and if the efficiency of the inclined plate settling device of 70% is taken into account, it becomes 1% to 2%, which is a functional The effect on separation performance is almost negligible.

傾斜板沈降装置の効率は、装置の形式により異なり、計算上求められた沈降性能の70~90%程度とされている。
国内の水道施設設計指針である
ペ-ジ196 ,7~16行では、傾斜板沈降装置の効率への言及は無いが、設計基準内にゆとりを持たせ、効率は収められているので、特に効率について言及されていない。類似文献の旧基準では傾斜板式沈降装置70%、傾斜管式沈降装置90%としたものがある。
The efficiency of inclined plate settling equipment varies depending on the type of equipment, and is said to be around 70 to 90% of the calculated settling performance.
This is the domestic water facility design guideline.
On page 196, lines 7 to 16, there is no mention of the efficiency of the inclined plate sedimentation device, but the efficiency is included within the design standards, so there is no particular mention of efficiency. Old standards in similar documents set 70% for inclined plate sedimentation equipment and 90% for inclined pipe sedimentation equipment.

さて、段差による沈降分離性能の低下は無視できるとしたが、分離性能の数値的合一性を求めるならば、傾斜沈降装置の高さを2.2%から4.4%高くする必要がある。しかし傾斜沈降装置の加工誤差に取り込まれる範囲内であり、段差zを設けることによる製作コストの上昇にはほとんど影響しない。
Now, we assumed that the decrease in sedimentation separation performance due to the difference in level can be ignored, but if we are looking for numerical consistency in separation performance, it is necessary to increase the height of the inclined sedimentation device by 2.2% to 4.4%. However, this is within the range that is included in the processing error of the inclined sedimentation device, and has little effect on the increase in manufacturing costs due to the provision of the step z.

本発明の傾斜板沈降装置A22は、従来行われていた傾斜板(51)の傾斜流路(11)を拡大する方法に代わり、傾斜板(51)の交互にわずかな段差zを設けることにより、効果的な閉塞防止対策がなされ、長期間の使用に耐え、かつメンテナンスの容易な傾斜沈降装置を提供する。 The inclined plate sedimentation device A22 of the present invention uses a method in which the inclined plates (51) are alternately provided with slight steps z, instead of the conventional method of enlarging the inclined channels (11) of the inclined plates (51). To provide an inclined sedimentation device that takes effective anti-clogging measures, can withstand long-term use, and is easy to maintain.

従来型の傾斜板沈降装置A21は、沈降装置の性能を最大限発揮させるため傾斜板の上辺(30)と底辺(31)の高さを同一にしているが、本発明の傾斜板沈降装置A22は上辺の高さに交互に段差を設けている。
有効な段差を設けることにより、濁質フロック(3)の集塊によるマット状の閉塞状態が忌避され長期にわたり運転を継続することができる。
段差を設けることにより沈降性能は1%程度減少するが、傾斜板の高さが増すごとにその影響は縮小し無視できる。
したがって沈降装置の大きさを従来と変えないでよい。
The conventional inclined plate settling device A21 has the top side (30) and bottom side (31) of the inclined plate at the same height in order to maximize the performance of the settling device, but the inclined plate settling device A22 of the present invention has alternating steps in the height of the upper side.
By providing an effective level difference, a mat-like blockage state due to agglomeration of turbid flocs (3) can be avoided and operation can be continued for a long period of time.
Although the sedimentation performance decreases by about 1% by providing a step, this effect decreases and can be ignored as the height of the inclined plate increases.
Therefore, the size of the sedimentation device does not need to be changed from the conventional one.

本発明の効果として最も強調されるのは、沈降分離効率に影響を与えるレイノルズ数が低く保たれ、沈降分離性能がそのまま維持されることにある。
さらに、従来のように傾斜流路(11)の拡大による傾斜板沈降装置A22の大型化は不要となり、傾斜板沈降装置A22を収容する沈降槽Bの容積は最小限に維持できるので、沈降槽Bの建設コストの増大も避けられる。
また、本発明の傾斜沈降装置A22の製造コストは、段差zをつけるために特別な工程を必要とせず、製造コストは従来と変わらない。
The most emphasized effect of the present invention is that the Reynolds number, which affects sedimentation separation efficiency, is kept low and sedimentation separation performance is maintained as is.
Furthermore, it is no longer necessary to increase the size of the inclined plate settling device A22 by expanding the inclined flow path (11) as in the past, and the volume of the settling tank B that accommodates the inclined plate settling device A22 can be kept to a minimum. Increase in construction costs for B can also be avoided.
Further, the manufacturing cost of the inclined sedimentation device A22 of the present invention does not require any special process to form the step z, and the manufacturing cost is the same as that of the conventional method.

そして、本発明の傾斜板沈降装置A22は美観的にも優れている。
傾斜板沈降装置流出端辺(22)に確認される汚れは美観を損なうが、本発明の傾斜板沈降装置A22の流出端辺(22)の数は2分の1に減ずるので、大幅に改善される。
図9に傾斜板沈降装置A20の流出端辺(22)の上面パターン図を示す。(a)は従来の傾斜板沈降装置A21の上面パターン図で区画数が多く、 (b) は段差をつけた本考案の傾斜板沈降装置A22の上面パターン図で区画数は2分の1に減少している。
The inclined plate sedimentation device A22 of the present invention is also aesthetically superior.
Dirt found on the outflow edge (22) of the inclined plate settling device spoils the aesthetic appearance, but this is a significant improvement as the number of outflow edges (22) of the inclined plate settling device A22 of the present invention is reduced to one half. be done.
FIG. 9 shows a top pattern diagram of the outflow edge (22) of the inclined plate sedimentation device A20. (a) is a top pattern diagram of the conventional inclined plate sedimentation device A21, which has a large number of compartments, and (b) is a top pattern diagram of the inclined plate sedimentation device A2 of the present invention, which has a step, and the number of compartments is halved. is decreasing.

発明の傾斜板沈降装置組立斜視図An assembled perspective view of the inclined plate sedimentation device of the invention 水平流式傾斜沈降装置と上向流式傾斜沈降装置の原理図Principle diagram of horizontal flow type inclined sedimentation device and upward flow type inclined sedimentation device 上向流式傾斜沈降装置使用例の沈降槽側断面模式図Schematic cross-sectional diagram of the sedimentation tank side in an example of using an upflow type inclined sedimentation device 傾斜板沈降装置の流出端における閉塞防止対策比較図Comparison diagram of measures to prevent blockage at the outflow end of inclined plate sedimentation equipment 傾斜沈降装置原理図Principle diagram of inclined sedimentation device 段差zの解析図Analysis diagram of step z マット層形成防止のメカニズムを示す流出端の平面と側断面模式図Plane and side cross-sectional schematic diagrams of the outflow end showing the mechanism of preventing matte layer formation 沈降性能計算図Sedimentation performance calculation diagram 傾斜板沈降装置の上端面パターン図Upper end pattern diagram of inclined plate sedimentation device

本発明の基本形態は、複数の長手傾斜板(51a)と短手傾斜板(51b)が傾斜板下辺、流入端(20)の高さを同じくして交互に等間隔で並んだ段差付き傾斜板沈降装置A22である。これにより、傾斜板上辺、流出端辺(22)の高さに段差zが生じ、交互に凸凹を繰り返す。 The basic form of the present invention is a stepped slope in which a plurality of longitudinal inclined plates (51a) and short inclined plates (51b) are alternately arranged at equal intervals with the lower sides of the inclined plates and the inflow end (20) having the same height. This is plate sedimentation device A22. As a result, a step z is created in the height of the top side of the inclined plate and the outflow end side (22), and the unevenness is repeated alternately.

段差zは、長手傾斜板(51a)の流出端(21)高さから下方に設定され、その大きさは等間隔で並ぶ傾斜板(51)のピッチにより異なる。
長手傾斜板(51a)の流出端(21)と短手傾斜板(51b)の流出端(21)を直線で結び、長手傾斜板(51a)となす角度αで規定される。
角度αは、濁質フロック(3)の性状により選択され、粘着性がほとんど認められなければα=90度以下の鋭角、粘着性が認められる場合はα=θ(傾斜角度)が望ましい。
なお、いずれの傾斜板(51a,51b)の下端は傾斜装置の高さに合わせて水平である。
The step z is set downward from the height of the outflow end (21) of the longitudinal inclined plate (51a), and its size varies depending on the pitch of the inclined plates (51) arranged at equal intervals.
The outflow end (21) of the longitudinal inclined plate (51a) and the outflow end (21) of the short inclined plate (51b) are connected with a straight line, and it is defined by the angle α formed with the longitudinal inclined plate (51a).
The angle α is selected depending on the properties of the turbid floc (3), and it is preferable that α = an acute angle of 90 degrees or less if little stickiness is observed, and α = θ (inclined angle) if stickiness is observed.
Note that the lower ends of both of the tilting plates (51a, 51b) are horizontal in accordance with the height of the tilting device.

段差付き傾斜板沈降装置A22を構成する部材の材料は、一般的にPVC樹脂、PET樹脂、ABS樹脂などのプラスチック材が使用され、特殊な場合にはステンレス材など耐食性に強い材料が使用される。
なお、これら部材の組立方法は、ピッチに合わせて、ボルトやビスで接合、挟み込み、接着、溶着、嵌合など様々な方法が用いられる。
Generally, plastic materials such as PVC resin, PET resin, and ABS resin are used for the materials that make up the stepped inclined plate sedimentation device A22, and in special cases, highly corrosion-resistant materials such as stainless steel are used. .
Note that various methods are used to assemble these members, such as joining with bolts or screws, sandwiching, adhesion, welding, and fitting, depending on the pitch.

以上いずれの方式でも、段差zを生じさせるための加工および組立は極めて簡単で、従来の製作方法がそのまま踏襲でき、製作コストの増大もない。 In any of the above methods, the processing and assembly for creating the step z are extremely simple, and the conventional manufacturing method can be followed as is, and there is no increase in manufacturing cost.

さて、上述では傾斜板沈降装置単体の場合で基本説明したが、実際には沈降槽の構造は大型で多数の単体を平面的に並べて使用される。ただし並べ方に限定はない。
傾斜板沈降装置A20の設置方法は、上方からの吊り下げ、もしくは装置下部に設置された桁の上に並べられる方法がとられる。
多数の傾斜板(50)を複合化、モジュール化することにより傾斜装置を自立した構造として、強度を保ち傾斜板沈降装置の設置を容易にする方法もある。
Now, the basic explanation above has been given using a single inclined plate sedimentation device, but in reality, the structure of a sedimentation tank is large and a large number of single units are used by arranging them in a plane. However, there is no limit to how they can be arranged.
The inclined plate settling device A20 is installed by hanging from above or by arranging it on a girder installed at the bottom of the device.
There is also a method of making the tilting device an independent structure by compositing and modularizing a large number of tilting plates (50), thereby maintaining strength and making the installation of the tilting plate settling device easier.

図1に本発明による段差付き傾斜板沈降装置A22の組立斜視図を示す。
長手傾斜板(51a)と短手傾斜板(51b)を交互に配列し、段差zを設ける。
FIG. 1 shows an assembled perspective view of a stepped inclined plate settling device A22 according to the present invention.
The longitudinal inclined plates (51a) and the shorter inclined plates (51b) are arranged alternately to provide a step z.

段差zは、長手傾斜板の流出端(21)から短手傾斜板の流出端(21)を結ぶ直線が長手傾斜板(51a)となす内側の角度αが鋭角となる段差とする。
しかしながら、濁質フロック(3)の性状により閉塞が発生しやすい場合は、より大きな段差が要求され、傾斜角θが最も推奨される。
The step z is such that the inner angle α between the straight line connecting the outflow end (21) of the longitudinal inclined plate and the outflow end (21) of the short inclined plate and the longitudinal inclined plate (51a) is an acute angle.
However, if blockage is likely to occur due to the properties of the turbid flocs (3), a larger step is required, and the angle of inclination θ is most recommended.

段差を設けることにより手前の長手傾斜板(51a)から短手傾斜板(51b)を乗り越えた次の長手傾斜板(51a)までのピッチは倍に拡大し閉塞防止に大きく寄与する。
しかしながら、長手傾斜板(51a) と短手傾斜板(51b)のピッチは変わらないので沈降槽における沈降性能は維持される。
By providing the step, the pitch from the front longitudinal inclined plate (51a) to the next longitudinal inclined plate (51a) that has climbed over the short inclined plate (51b) is doubled, which greatly contributes to prevention of blockage.
However, since the pitch of the longitudinal inclined plate (51a) and the shorter inclined plate (51b) remains unchanged, the sedimentation performance in the sedimentation tank is maintained.

段差zの実用上の1例を示す。傾斜板の傾斜角度を60度、ピッチは概略75mmから150mm程度が採用され、ピッチをp=80mmとすると、段差zは35mmから70mmの間で選択される。 A practical example of step z is shown. The inclination angle of the inclined plate is 60 degrees, the pitch is approximately 75 mm to 150 mm, and when the pitch is p = 80 mm, the step z is selected between 35 mm and 70 mm.

以上、傾斜板沈降装置A21の支持枠に対面して固定された傾斜板(51)2枚を一対として、その一方の傾斜板(51)の流出端(21)の高さを、他の傾斜板(51)の流出端(21)の高さより低くし、交互に段差zを設けた傾斜板沈降装置A22を提供する。
As described above, the two inclined plates (51) fixed facing the support frame of the inclined plate settling device A21 are considered as a pair, and the height of the outflow end (21) of one inclined plate (51) is set to the height of the outflow end (21) of the other inclined plate. To provide an inclined plate sedimentation device A22 in which the height of the plate (51) is lower than that of the outflow end (21) and steps z are provided alternately.

B 沈降槽、C 集水装置、A0 上向流式傾斜沈降装置、A10 傾斜管沈降装置、A20 傾斜板沈降装置、A21 在来傾斜板沈降装置、A22 段差付き傾斜板沈降装置

h 沈降距離、H 傾斜隔壁高さ、L 傾斜隔壁長さ、l 切欠き長さ、p 傾斜隔壁ピッチ、b 傾斜隔壁の幅、d 傾斜隔壁の対面距離または傾斜管径、ε ひずみ、εmx 限界ひずみ、z 段差、θ 傾斜隔壁または傾斜管の傾斜角、α 長手傾斜板の流出端と短手傾斜板の流出端を直線で結んだ内側の角度

3 濁質フロック、4 マット層、11 傾斜流路、20 流入端、21 流出端、22 流出端辺、23 流入側、24 流出側、30 傾斜板上辺、31 傾斜板底辺、33 上面、40 側壁、50 傾斜隔壁、51 傾斜板、51a 長手傾斜板、51b 短手傾斜板、53 波板傾斜板、60 傾斜管、70 傾斜板支持枠
B Sedimentation tank, C Water collection device, A0 Upward flow inclined sedimentation device, A10 Inclined tube sedimentation device, A20 Inclined plate sedimentation device, A21 Conventional inclined plate sedimentation device, A22 Stepped inclined plate sedimentation device

h Settling distance, H Height of inclined bulkhead, L Length of inclined bulkhead, l Notch length, p Pitch of inclined bulkhead, b Width of inclined bulkhead, d Face-to-face distance of inclined bulkhead or inclined pipe diameter, ε Strain, ε mx limit Strain, z Step, θ Inclination angle of inclined bulkhead or inclined pipe, α Inner angle connecting the outflow end of the longitudinal inclined plate and the outflow end of the short inclined plate with a straight line

3 Suspended floc, 4 Mat layer, 11 Inclined channel, 20 Inflow end, 21 Outflow end, 22 Outflow end, 23 Inflow side, 24 Outflow side, 30 Inclined plate top side, 31 Inclined plate bottom side, 33 Top surface, 40 Side wall , 50 inclined bulkhead, 51 inclined plate, 51a longitudinal inclined plate, 51b short inclined plate, 53 corrugated inclined plate, 60 inclined pipe, 70 inclined plate support frame

Claims (1)

水面下にある多数の傾斜隔壁が水平に等間隔で並んで傾斜流路を構成し、傾斜流路の側面は仕切りが無くフリーであり、傾斜隔壁は平板状の傾斜板で構成され、対面する2枚の傾斜板を一対とし、その一方の流出端高さを他方の流出端高さより低くし、交互に段差を設け、高いほうの傾斜板の流出端から低いほうの傾斜板の流出端を結んだ直線が高いほうの傾斜板となす内側の角度が90度以下、60度以上となるようにしたことを特徴とする、上向流式沈降槽に使用される傾斜板沈降装置。

A large number of inclined partition walls below the water surface are lined up horizontally at equal intervals to form an inclined flow path, and the sides of the inclined flow path are free without partitions, and the inclined partition walls are composed of flat plate-shaped inclined plates that face each other. A pair of two inclined plates is made, the height of the outflow end of one is lower than the height of the outflow end of the other, steps are provided alternately, and the outflow end of the lower inclined plate is extended from the outflow end of the higher inclined plate. An inclined plate sedimentation device used in an upward flow sedimentation tank , characterized in that the inner angle between the connected straight lines and the higher inclined plate is 90 degrees or less and 60 degrees or more .

JP2022015399A 2021-02-12 2022-02-03 Inclined sedimentation device Active JP7430470B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021020579 2021-02-12
JP2021020579A JP7045608B1 (en) 2021-02-12 2021-02-12 Tilt settling device

Publications (2)

Publication Number Publication Date
JP2022123846A JP2022123846A (en) 2022-08-24
JP7430470B2 true JP7430470B2 (en) 2024-02-13

Family

ID=81255871

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2021020579A Active JP7045608B1 (en) 2021-02-12 2021-02-12 Tilt settling device
JP2022015399A Active JP7430470B2 (en) 2021-02-12 2022-02-03 Inclined sedimentation device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2021020579A Active JP7045608B1 (en) 2021-02-12 2021-02-12 Tilt settling device

Country Status (1)

Country Link
JP (2) JP7045608B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012110876A (en) 2010-11-29 2012-06-14 Toshiaki Ochiai Slant plate for flocculation formation and flocculation sedimentation treatment tank adopting the slant plate for flocculation formation

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52125771U (en) * 1976-03-23 1977-09-24
JP4926206B2 (en) * 2009-05-18 2012-05-09 磯村豊水機工株式会社 Inclined tube unit and manufacturing method thereof
JP2020059026A (en) * 2020-01-27 2020-04-16 メタウォーター株式会社 Inclined settling accelerating device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012110876A (en) 2010-11-29 2012-06-14 Toshiaki Ochiai Slant plate for flocculation formation and flocculation sedimentation treatment tank adopting the slant plate for flocculation formation

Also Published As

Publication number Publication date
JP2022123846A (en) 2022-08-24
JP7045608B1 (en) 2022-04-01
JP2022123335A (en) 2022-08-24

Similar Documents

Publication Publication Date Title
CN101558012B (en) Method of flocculating sedimentation treatment
WO2008061455A1 (en) Horizontal-tube sedimentation-separation apparatus
CN103301658B (en) Efficient micro-resistance pulsating vortex sedimentation device
CN103285630B (en) Water distribution uniformity evenly receives the inclined-plate clarifying basin of water
CN204637628U (en) By liquid flow-guiding type downspout
JP5990908B2 (en) Cross-flow sedimentation basin
JP7430470B2 (en) Inclined sedimentation device
JPH0693962B2 (en) Upflow inclined plate sedimentation device
RU2346722C2 (en) Lamellar module and decantation unit with lamellae arranged, in particular vertically
CN102553309A (en) Multi-layer lattice precipitation separating device for V-shaped pipe
JP5196571B2 (en) Sedimentation device
CN206688300U (en) The horizontal tube module of herringbone
CN112912154B (en) Inclined plate for clarification tank and inclined plate-shaped module for clarification tank
CN210438466U (en) Adaptation device and water treatment pool
CN205473041U (en) Vehicle scouring table wastewater recovery handles pond
KR100658144B1 (en) Lamella modules and fast sedimentation device therewith
CN108144330B (en) Three-dimensional inclined plate purification device and sedimentation tank with same
Fujisaki Enhancement of settling tank capacity using a new type of tube settler
CN208356184U (en) The difunctional heavy sliding purification device of cross type and the sedimentation basin with the purification device
CN219196188U (en) Water-saving sand-returning wastewater drainage canal of filter tank system
CN216106369U (en) High-efficient sewage treatment system
JP7102929B2 (en) Drainer
CN219941879U (en) Sedimentation tank
CN215712206U (en) Water distribution device and water treatment tank
Khudhur Abbas Al‐Amshawee et al. Multilayered membrane spacer: does it enhance solution mixing?

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230725

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230811

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240118

R150 Certificate of patent or registration of utility model

Ref document number: 7430470

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250