JP7428568B2 - Method for manufacturing piezoelectric element membrane of ultrasonic sensor and ultrasonic sensor - Google Patents

Method for manufacturing piezoelectric element membrane of ultrasonic sensor and ultrasonic sensor Download PDF

Info

Publication number
JP7428568B2
JP7428568B2 JP2020057041A JP2020057041A JP7428568B2 JP 7428568 B2 JP7428568 B2 JP 7428568B2 JP 2020057041 A JP2020057041 A JP 2020057041A JP 2020057041 A JP2020057041 A JP 2020057041A JP 7428568 B2 JP7428568 B2 JP 7428568B2
Authority
JP
Japan
Prior art keywords
ultrasonic sensor
lithium
fired product
molded body
niobium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020057041A
Other languages
Japanese (ja)
Other versions
JP2021155263A (en
Inventor
由季 浅井
貴司 中野
靖彦 水流
裕子 山本
美咲 福山
健太郎 神納
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2020057041A priority Critical patent/JP7428568B2/en
Priority to PCT/JP2021/005886 priority patent/WO2021192744A1/en
Publication of JP2021155263A publication Critical patent/JP2021155263A/en
Application granted granted Critical
Publication of JP7428568B2 publication Critical patent/JP7428568B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/12Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances ceramics
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Analytical Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Inorganic Insulating Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

本開示は、誘電体材料の製造方法及び誘電体材料並びに超音波センサに関する。 The present disclosure relates to a method for manufacturing a dielectric material, a dielectric material, and an ultrasonic sensor.

超音波センサ等に用いられる圧電素子は誘電体材料によって構成されている。キュリー点が高く高温環境での使用に適した誘電体材料として、ニオブ酸リチウム(LiNbO)が知られている。 A piezoelectric element used in an ultrasonic sensor or the like is made of a dielectric material. Lithium niobate (LiNbO 3 ) is known as a dielectric material that has a high Curie point and is suitable for use in high-temperature environments.

特許文献1には、ニオブ酸リチウムから形成された圧電体膜を備えた超音波厚みセンサが開示されている。また、特許文献1には、酸化ニオブ(Nb)及び炭酸リチウム(LiCO)の粉末を、目標とするニオブ酸リチウム組成となるように配合して混合した後焼成することで、ニオブ酸リチウム粉末を得ることが記載されている。 Patent Document 1 discloses an ultrasonic thickness sensor including a piezoelectric film made of lithium niobate. Furthermore, Patent Document 1 discloses that powders of niobium oxide (Nb 2 O 3 ) and lithium carbonate (Li 2 CO 3 ) are blended to have a target lithium niobate composition, mixed, and then fired. , it is described that lithium niobate powder is obtained.

特開2013-197541号公報Japanese Patent Application Publication No. 2013-197541

ところで、炭酸リチウムと酸化ニオブとの混合物を焼成(合成)して得られる生成物(誘電体材料)は、リチウムとニオブのモル比がLi:Nb=1:1の組成を有するニオブ酸リチウム(LiNbO)の含有量が多いほど、分極効率が高いことが知られている。このように分極効率が高い生成物を得るためには、原料の酸化炭酸リチウム粉末と酸化ニオブ粉末とを、リチウムとニオブのモル比がLi:Nb=1:1となるように配合したものを焼成(合成)すればよいと考えられていた。しかし、この場合、期待するほど高い分極効率を有する焼成生成物(誘電体材料)が得られないことが分かった。 By the way, the product (dielectric material) obtained by firing (synthesizing) a mixture of lithium carbonate and niobium oxide is lithium niobate (dielectric material) having a composition in which the molar ratio of lithium and niobium is Li:Nb = 1:1. It is known that the higher the content of LiNbO 3 ), the higher the polarization efficiency. In order to obtain a product with high polarization efficiency, the raw materials lithium oxide carbonate powder and niobium oxide powder are blended so that the molar ratio of lithium and niobium is Li:Nb = 1:1. It was thought that firing (synthesis) would be sufficient. However, in this case, it was found that a fired product (dielectric material) having a polarization efficiency as high as expected could not be obtained.

誘電体材料の分極効率が低い場合、該誘電体材料を分極処理して得られる圧電体の圧電性能が比較的低く、これを用いた超音波センサの感度を良好にすることが難しい。 When the polarization efficiency of a dielectric material is low, the piezoelectric performance of a piezoelectric material obtained by polarizing the dielectric material is relatively low, and it is difficult to improve the sensitivity of an ultrasonic sensor using the piezoelectric material.

上述の事情に鑑みて、本発明の少なくとも一実施形態は、良好な感度を有する超音波センサを作製可能な誘電体材料の製造方法及び誘電体材料並びに超音波センサを提供することを目的とする。 In view of the above circumstances, it is an object of at least one embodiment of the present invention to provide a method for manufacturing a dielectric material, a dielectric material, and an ultrasonic sensor that can produce an ultrasonic sensor with good sensitivity. .

本発明の少なくとも一実施形態に係る誘電体材料の製造方法は、
リチウムのニオブに対するモル比が50/50より大きく56/44以下となるように、炭酸リチウムと酸化ニオブを混合して混合物を得るステップと、
前記混合物を焼成してLiNbOの結晶とLiNbOの結晶とが共存する焼成生成物を得るステップと、
を備える。
A method for manufacturing a dielectric material according to at least one embodiment of the present invention includes:
mixing lithium carbonate and niobium oxide to obtain a mixture such that the molar ratio of lithium to niobium is greater than 50/50 and less than or equal to 56/44;
firing the mixture to obtain a fired product in which LiNbO 3 crystals and Li 3 NbO 4 crystals coexist;
Equipped with.

また、本発明の少なくとも一実施形態に係る誘電体材料は、
LiNbOの結晶とLiNbOの結晶とが共存する。
Further, the dielectric material according to at least one embodiment of the present invention is
LiNbO 3 crystals and Li 3 NbO 4 crystals coexist.

また、本発明の少なくとも一実施形態に係る超音波センサは、
上述の誘電体材料から形成され、電気信号に駆動されて超音波を発生するように構成された圧電素子を備える。
Further, an ultrasonic sensor according to at least one embodiment of the present invention includes:
It includes a piezoelectric element made of the dielectric material described above and configured to generate ultrasonic waves when driven by an electrical signal.

本発明の少なくとも一実施形態によれば、良好な感度を有する超音波センサを作製可能な誘電体材料の製造方法及び誘電体材料並びに超音波センサが提供される。 According to at least one embodiment of the present invention, a method for manufacturing a dielectric material, a dielectric material, and an ultrasonic sensor that can produce an ultrasonic sensor with good sensitivity are provided.

一実施形態に係る超音波センサの概略構成図である。FIG. 1 is a schematic configuration diagram of an ultrasonic sensor according to an embodiment. リチウム及びニオブを含む酸化物(Li-Nb-O系)の状態図の一部を示す図である。1 is a diagram showing a part of a phase diagram of an oxide (Li--Nb--O system) containing lithium and niobium. 原料混合物を焼成して得られる焼成生成物のX線回折チャートの一例である。This is an example of an X-ray diffraction chart of a fired product obtained by firing a raw material mixture. 原料混合物を焼成して得られる焼成生成物のX線回折チャートの一例である。This is an example of an X-ray diffraction chart of a fired product obtained by firing a raw material mixture. 原料混合物におけるリチウムとニオブのモル比と焼結体の分極効率との関係を示すグラフである。It is a graph showing the relationship between the molar ratio of lithium and niobium in the raw material mixture and the polarization efficiency of the sintered body.

以下、添付図面を参照して本発明の幾つかの実施形態について説明する。ただし、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。 Hereinafter, some embodiments of the present invention will be described with reference to the accompanying drawings. However, the dimensions, materials, shapes, relative arrangements, etc. of the components described as the embodiments or shown in the drawings are not intended to limit the scope of the present invention thereto, and are merely illustrative examples. do not have.

本明細書において、誘電体材料とは、誘電性を持つ材料のことであり、圧電性を有する材料をも含む概念である。すなわち、圧電素子の作製に用いられる圧電体、分極処理前の焼結体、焼結前の成形体、及び、成形前の焼成生成物は、全て「誘電体材料」に含まれる。 In this specification, a dielectric material refers to a material that has dielectric properties, and is a concept that also includes materials that have piezoelectric properties. That is, the piezoelectric body used for producing the piezoelectric element, the sintered body before polarization treatment, the molded body before sintering, and the fired product before molding are all included in the "dielectric material."

(超音波センサの構成)
図1は、一実施形態に係る誘電体材料により形成される圧電素子を備えた超音波センサの概略構成図である。図1に示す超音波センサ1は、検査対象物30を検査するための超音波センサであり、圧電素子2と、一対の電極4,5と、リード線6,8と、を備えている。超音波センサ1は、検査対象物30(例えば配管)の厚さ(肉厚)を計測するように構成された厚み計測センサであってもよい。
(Configuration of ultrasonic sensor)
FIG. 1 is a schematic configuration diagram of an ultrasonic sensor including a piezoelectric element formed of a dielectric material according to an embodiment. The ultrasonic sensor 1 shown in FIG. 1 is an ultrasonic sensor for inspecting an object to be inspected 30, and includes a piezoelectric element 2, a pair of electrodes 4 and 5, and lead wires 6 and 8. The ultrasonic sensor 1 may be a thickness measurement sensor configured to measure the thickness (wall thickness) of the inspection object 30 (for example, piping).

圧電素子2は膜型形状を有しており、一対の電極4,5に挟まれるように設けられている。すなわち、膜型の圧電素子2は、薄板状の電極5の表面に形成されているとともに、圧電素子2の表面上に他方の電極4が形成されている。なお、超音波センサ1は、一対の電極4,5のうち一方の電極(図示する例では電極5)と検査対象物30との間に設けられる接着剤層(不図示)を介して検査対象物30に取り付けられていてもよい。 The piezoelectric element 2 has a membrane shape and is provided so as to be sandwiched between a pair of electrodes 4 and 5. That is, the membrane-type piezoelectric element 2 is formed on the surface of the thin plate-like electrode 5, and the other electrode 4 is formed on the surface of the piezoelectric element 2. Note that the ultrasonic sensor 1 connects the test object to the test object through an adhesive layer (not shown) provided between one of the pair of electrodes 4 and 5 (electrode 5 in the illustrated example) and the test object 30. It may be attached to the object 30.

一対の電極4,5にはリード線6,8が接続されており、一対の電極4,5を介して、圧電素子2に電気信号(電圧)を印加できるようになっている。圧電素子2は、印加された電気信号に駆動されて超音波を発生し、該超音波を検査対象物30に照射するように構成されている。 Lead wires 6 and 8 are connected to the pair of electrodes 4 and 5, so that an electric signal (voltage) can be applied to the piezoelectric element 2 via the pair of electrodes 4 and 5. The piezoelectric element 2 is configured to be driven by an applied electric signal to generate ultrasonic waves, and to irradiate the object to be inspected 30 with the ultrasonic waves.

このような構成を有する超音波センサ1では、上述のように圧電素子2に電気信号(電圧)を印加して発生させた超音波を検査対象物30に照射するとともに、検査対象物30からの反射波(超音波)を圧電素子2で受信して電位を検出する。そして、圧電素子2で超音波を発信してから反射波を受信するまでの時間と、検査対象物30における音速とに基づいて、検査対象物30の厚さを計測することができる。 In the ultrasonic sensor 1 having such a configuration, as described above, an electric signal (voltage) is applied to the piezoelectric element 2 to generate an ultrasonic wave, which is emitted to the object to be inspected 30, and the object to be inspected 30 is emitted from the object to be inspected. The piezoelectric element 2 receives the reflected waves (ultrasonic waves) and detects the potential. Then, the thickness of the object to be inspected 30 can be measured based on the time from when the piezoelectric element 2 emits an ultrasonic wave to when the reflected wave is received, and the speed of sound in the object to be inspected 30 .

上述の圧電素子2を構成する誘電体材料は、該誘電体材料において、LiNbOの結晶とLiNbOの結晶とが共存する、との特徴を有する。以下、この誘電体材料の製造方法について説明する。 The dielectric material constituting the piezoelectric element 2 described above is characterized in that LiNbO 3 crystals and Li 3 NbO 4 crystals coexist in the dielectric material. A method for manufacturing this dielectric material will be described below.

(誘電体材料の製造方法)
一実施形態に係る誘電体材料の製造方法は、原料粉末である炭酸リチウム(LiCO)粉末及び酸化ニオブ(Nb)粉末を混合した混合物を焼成して焼成生成物(誘電体材料)を得るステップを含む(焼成ステップ)。
一実施形態に係る誘電体材料の製造方法は、上述の焼成生成物を成形して成形体(誘電体材料)を得るステップをさらに含んでもよい(成形ステップ)。
また、一実施形態に係る誘電体材料の製造方法は、上述の成形体を焼成して焼結体(誘電体材料)を得るステップをさらに含んでもよい(焼結ステップ)。
また、一実施形態に係る誘電体材料の製造方法は、上述の焼結体に分極処理を施して圧電体(誘電体材料)を得るステップをさらに含んでもよい(分極ステップ)。
なお、このようにして得られる圧電体を用いて上述の圧電素子2を製造するようにしてもよい。
(Method for manufacturing dielectric material)
A method for manufacturing a dielectric material according to an embodiment includes firing a mixture of lithium carbonate (Li 2 CO 3 ) powder and niobium oxide (Nb 2 O 5 ) powder as raw material powder to produce a fired product (dielectric material). (firing step).
The method for manufacturing a dielectric material according to one embodiment may further include a step of molding the above-described fired product to obtain a molded body (dielectric material) (molding step).
Further, the method for manufacturing a dielectric material according to one embodiment may further include a step of firing the above-described molded body to obtain a sintered body (dielectric material) (sintering step).
Further, the method for manufacturing a dielectric material according to one embodiment may further include a step of subjecting the above-mentioned sintered body to a polarization treatment to obtain a piezoelectric material (dielectric material) (polarization step).
Note that the piezoelectric element 2 described above may be manufactured using the piezoelectric body obtained in this manner.

(焼成ステップ)
焼成ステップでは、原料粉末である炭酸リチウム(LiCO)粉末及び酸化ニオブ(Nb)粉末を規定の配合比となるように混合して混合物を得て、該混合物を焼成する。上述の配合比として、リチウムのニオブに対するモル比が50/50より大きく56/44以下となるように、あるいは、リチウムのニオブに対するモル比が51/49以上56/44以下となるように、炭酸リチウム(LiCO)粉末及び酸化ニオブ(Nb)粉末を混合して混合物を得る。前述の配合比率の混合物を焼成することで、LiNbOの結晶とLiNbOの結晶とが共存する焼成生成物を得ることができる。
(Baking step)
In the firing step, lithium carbonate (Li 2 CO 3 ) powder and niobium oxide (Nb 2 O 5 ) powder, which are raw material powders, are mixed in a prescribed mixing ratio to obtain a mixture, and the mixture is fired. The above-mentioned compounding ratio is such that the molar ratio of lithium to niobium is more than 50/50 and less than 56/44, or the molar ratio of lithium to niobium is more than 51/49 and less than 56/44. Lithium (Li 2 CO 3 ) powder and niobium oxide (Nb 2 O 5 ) powder are mixed to obtain a mixture. By firing a mixture having the above-mentioned mixing ratio, a fired product in which LiNbO 3 crystals and Li 3 NbO 4 crystals coexist can be obtained.

ここで、図2は、リチウム及びニオブを含む酸化物(Li-Nb-O系)の状態図の一部を示す図である。横軸は、酸化物に含まれるリチウムとニオブの全量に対するニオブのモル比を示す。例えば、横軸の数値が46である場合、リチウムのニオブに対するモル比は54/46である。 Here, FIG. 2 is a diagram showing a part of a phase diagram of an oxide (Li--Nb--O system) containing lithium and niobium. The horizontal axis indicates the molar ratio of niobium to the total amount of lithium and niobium contained in the oxide. For example, when the value on the horizontal axis is 46, the molar ratio of lithium to niobium is 54/46.

リチウム(Li)及びニオブ(Nb)を含む酸化物において、Liに対するNbのモル比が50/50以下の領域には、不定比組成のLiNbOが生成する領域(図2の状態図中の領域(a))が含まれる。したがって、原料粉末におけるリチウムとニオブの配合比がこの領域(a)内である場合、焼成生成物においてリチウムとニオブのモル比が1:1の組成を有するLiNbOの生成量が少なくなる。また、リチウムは原子量が小さく、高温での合成時(焼成時)に揮発しやすいため、LiNbO結晶構造から、一部のLi原子が抜けてしまう。このため、仮に、リチウムとニオブのモル比がLi:Nb=1:1(すなわちLiのNbに対するモル比が50/50)の原料混合物を焼成(合成)した場合、焼成生成物においてLiNbO(Li:Nb=1:1の組成の結晶)の含有量が予想外に小さくなると考えられる。 In an oxide containing lithium (Li) and niobium (Nb), a region where the molar ratio of Nb to Li is 50/50 or less is a region in which LiNbO 3 with a non-stoichiometric composition is generated (region in the phase diagram of FIG. 2). (a)) is included. Therefore, when the blending ratio of lithium and niobium in the raw material powder is within this range (a), the amount of LiNbO 3 produced in the fired product having a composition in which the molar ratio of lithium and niobium is 1:1 is reduced. Furthermore, since lithium has a small atomic weight and easily volatizes during high-temperature synthesis (during firing), some Li atoms are removed from the LiNbO 3 crystal structure. Therefore, if a raw material mixture in which the molar ratio of lithium and niobium is Li:Nb=1:1 (that is, the molar ratio of Li to Nb is 50/50) is fired (synthesized), the fired product will contain LiNbO 3 ( It is considered that the content of crystals with a composition of Li:Nb=1:1) becomes unexpectedly small.

焼成生成物におけるLiNbOの含有比率が小さいと分極効率が低くなり、この場合、焼成生成物から得られる焼結体を分極処理して得られる圧電体の圧電性能が比較的低くなる。 If the content ratio of LiNbO 3 in the fired product is low, the polarization efficiency will be low, and in this case, the piezoelectric performance of the piezoelectric body obtained by polarizing the sintered body obtained from the fired product will be relatively low.

一方、図2の状態図において、リチウム(Li)のニオブ(Nb)に対するモル比が50/50よりも大きい領域(b)は、LiNbOの結晶とLiNbOの結晶とが共存する領域である。なお、図2には表れていないが、領域(b)は、リチウム(Li)のニオブ(Nb)に対するモル比が50/50より大きく約75/25以下の範囲(すなわちNb濃度が約25%以上50%未満の範囲)に亘り存在する。 On the other hand, in the phase diagram of FIG. 2, the region (b) where the molar ratio of lithium (Li) to niobium (Nb) is larger than 50/50 is a region where LiNbO 3 crystals and Li 3 NbO 4 crystals coexist. It is. Although not shown in FIG. 2, region (b) is a region where the molar ratio of lithium (Li) to niobium (Nb) is greater than 50/50 and less than or equal to about 75/25 (that is, the Nb concentration is about 25%). 50% or more).

上述の領域(b)内において、LiNbOの結晶とLiNbOの結晶の割合は、リチウムとニオブの比率に応じて決まり、リチウム(Li)のニオブ(Nb)に対するモル比が小さいほど(即ち、Nb濃度が大きいほど)、LiNbOの割合が大きくなる。したがって、リチウム(Li)のニオブ(Nb)に対するモル比が50/50よりも大きく56/44以下の範囲内、あるいは、51/49以上56/44以下の範囲内では、焼成生成物にLiNbO及びLiNbOの結晶が既定の割合で含まれているとともに、LiNbOの結晶の生成量が比較的多い。 Within the above-mentioned region (b), the ratio of LiNbO 3 crystals to Li 3 NbO 4 crystals is determined depending on the ratio of lithium to niobium, and the smaller the molar ratio of lithium (Li) to niobium (Nb), the more ( That is, the larger the Nb concentration), the larger the proportion of LiNbO 3 becomes. Therefore, if the molar ratio of lithium (Li) to niobium (Nb) is greater than 50/50 and less than or equal to 56/44, or within the range of greater than or equal to 51/49 and less than or equal to 56/44, LiNbO 3 is present in the fired product. and Li 3 NbO 4 crystals are included in a predetermined ratio, and the amount of LiNbO 3 crystals produced is relatively large.

なお、図3及び図4は、それぞれ、炭酸リチウム粉末と酸化ニオブ粉末の混合物を焼成して得られた焼成生成物のX線回折チャートの一例である。図3は、混合物におけるリチウムのニオブに対するモル比が51.5/48.5の条件で、図4は、混合物におけるリチウムのニオブに対するモル比が50/50の条件でそれぞれ得られたX線回折チャートである。図3及び図4のチャートにおいて、符号「A」を付したピークは、LiNbO結晶の存在を示すものであり、符号「B」を付したピークは、LiNbO結晶の存在を示すものである。 Note that FIGS. 3 and 4 are examples of X-ray diffraction charts of a fired product obtained by firing a mixture of lithium carbonate powder and niobium oxide powder, respectively. Figure 3 shows the X-ray diffraction results obtained under conditions where the molar ratio of lithium to niobium in the mixture was 51.5/48.5, and Figure 4 shows the X-ray diffraction results obtained under the conditions where the molar ratio of lithium to niobium in the mixture was 50/50. It is a chart. In the charts of FIGS. 3 and 4, the peaks marked with the symbol "A" indicate the presence of LiNbO 3 crystals, and the peaks with the symbol "B" indicate the presence of Li 3 NbO 4 crystals. It is.

図3のX線回折チャートには、LiNbOの結晶の存在を示すピーク(符号Aを付したピーク)とLiNbOの結晶の存在を示すピーク(符号Bを付したピーク)の両方が存在する。したがって、原料混合物におけるリチウムのニオブに対するモル比が51.5/48.5(図2中の領域(b)内)の条件では、焼成によりLiNbOの結晶とLiNbOの結晶の両方が生成されることが示されている。これに対し、図4のX線回折チャートには、LiNbOの結晶の存在を示すピーク(符号Aを付したピーク)は存在するが、LiNbOの結晶の存在を示すピーク(図3参照)は存在しない。したがって、原料混合物におけるリチウムのニオブに対するモル比が50/50(図2中の領域(a)内)の条件では、焼成によりLiNbOの結晶は生成されるがLiNbOの結晶は生成されないことが示されている。 In the X-ray diffraction chart of FIG. 3, there are both a peak indicating the presence of LiNbO 3 crystals (peak with symbol A) and a peak indicating the presence of Li 3 NbO 4 crystals (peak with symbol B). exist. Therefore, under conditions where the molar ratio of lithium to niobium in the raw material mixture is 51.5/48.5 (within region (b) in FIG. 2), both LiNbO 3 crystals and Li 3 NbO 4 crystals are formed by firing. is shown to be generated. On the other hand, in the X-ray diffraction chart of FIG. 4, although there is a peak indicating the presence of LiNbO 3 crystals (the peak with the symbol A), there is a peak indicating the presence of Li 3 NbO 4 crystals (see FIG. ) does not exist. Therefore, under conditions where the molar ratio of lithium to niobium in the raw material mixture is 50/50 (within region (a) in FIG. 2), LiNbO 3 crystals are generated by firing, but Li 3 NbO 4 crystals are not generated. It has been shown that

また、図5は、原料混合物(炭酸リチウム粉末及び酸化ニオブ粉末の混合物)におけるリチウムとニオブのモル比と、該原料混合物の焼成生成物から得られる焼結体の既定温度(室温以上200℃以下の特定の温度)での分極効率との関係を示すグラフである。図5のグラフの横軸は、原料混合物中のリチウムの比率(リチウムとニオブのモル量に対するリチウムのモル量の比)を示し、縦軸は、圧電定数d33を示す。なお、圧電定数d33が大きいほど圧電効率が大きいことを意味する。 In addition, Figure 5 shows the molar ratio of lithium and niobium in the raw material mixture (mixture of lithium carbonate powder and niobium oxide powder) and the predetermined temperature (above room temperature and below 200°C) of the sintered body obtained from the fired product of the raw material mixture. FIG. The horizontal axis of the graph in FIG. 5 shows the ratio of lithium in the raw material mixture (the ratio of the molar amount of lithium to the molar amounts of lithium and niobium), and the vertical axis shows the piezoelectric constant d33. Note that the larger the piezoelectric constant d33, the higher the piezoelectric efficiency.

図5のグラフから、原料混合物におけるリチウムのニオブに対するモル比が50/50を超える領域(横軸のLi比が50よりも大きい領域;図2中の領域(b)内)では、該モル比が50/50以下の領域(横軸のLi比が50以下の領域;図2中の領域(b)内)よりもd33が大きく、焼結体の圧電効率が高いことがわかる。特に、上述のモル比(Li/Nb)が51/49以上56/44以下の範囲内において、d33が特に大きく、圧電効率も特に高いことがわかる。 From the graph of FIG. 5, in the region where the molar ratio of lithium to niobium in the raw material mixture exceeds 50/50 (region where the Li ratio on the horizontal axis is greater than 50; region (b) in FIG. 2), the molar ratio It can be seen that d33 is larger than the region where Li ratio is 50/50 or less (region where the Li ratio on the horizontal axis is 50 or less; region (b) in FIG. 2), and the piezoelectric efficiency of the sintered body is high. In particular, it can be seen that when the above-mentioned molar ratio (Li/Nb) is within the range of 51/49 or more and 56/44 or less, d33 is particularly large and the piezoelectric efficiency is also particularly high.

上述の実施形態では、リチウム(Li)のニオブ(Nb)に対するモル比が50/50よりも大きく56/44以下となるように、あるいは上述のモル比が51/49以上56/44以下となるように、原料粉末(炭酸リチウム粉末及び酸化ニオブ粉末)を混合して得られる混合物を焼成(合成)する。その結果、LiNbO結晶とLiNbO結晶が既定の割合で共存し、かつ、LiNbO(LiとNbのモル比がLi:Nb=1:1)の含有率が比較的高い焼成生成物が得られ、すなわち、分極効率が比較的高い焼成生成物が得られる。したがって、この焼成生成物を用いることで圧電性能の良好な圧電体を得ることができ、また、この圧電体を用いて良好な感度を有する超音波センサを作製することができる。 In the above-described embodiment, the molar ratio of lithium (Li) to niobium (Nb) is greater than 50/50 and less than or equal to 56/44, or the above-mentioned molar ratio is greater than or equal to 51/49 and less than or equal to 56/44. The mixture obtained by mixing raw material powders (lithium carbonate powder and niobium oxide powder) is fired (synthesized). As a result, a fired product in which LiNbO 3 crystals and Li 3 NbO 4 crystals coexist in a predetermined ratio and has a relatively high content of LiNbO 3 (the molar ratio of Li and Nb is Li:Nb=1:1) is obtained. is obtained, that is, a fired product with relatively high polarization efficiency is obtained. Therefore, by using this fired product, a piezoelectric body with good piezoelectric performance can be obtained, and an ultrasonic sensor with good sensitivity can be manufactured using this piezoelectric body.

原料粉末の混合物を焼成する温度は、例えば、950℃以上1140℃以下の範囲内であってもよい。このように高温条件で焼成をすることにより、原料である炭酸リチウムと酸化ニオブとの反応を促進して、LiNbO結晶とLiNbO結晶とが共存する焼成生成物を効率的に得ることができる。 The temperature at which the raw material powder mixture is fired may be, for example, in the range of 950°C or higher and 1140°C or lower. By performing the firing under high temperature conditions in this way, the reaction between the raw materials lithium carbonate and niobium oxide is promoted, and a fired product in which LiNbO 3 crystals and Li 3 NbO 4 crystals coexist can be efficiently obtained. Can be done.

(成形ステップ)
成形体を得るステップでは、例えば、焼成ステップで得られた焼成生成物と、バインダ用ゾルとを混錬することでスラリーを調製し、該スラリーを膜状に成形して、膜状の成形体を得るようにしてもよい。なお、膜状の成形体から得られる圧電体を含む薄型の超音波センサは、柔軟性に優れるため、湾曲した表面を有する計測対象物(例えば配管)の厚さ計測に適している。また、このような薄型の超音波センサは、計測対象物に常時設置しやすいため、計測対象物の継続的な計測が容易となり、あるいは計測精度の経時的なばらつきを抑制することができる。
(molding step)
In the step of obtaining a molded body, for example, a slurry is prepared by kneading the fired product obtained in the firing step and a binder sol, and the slurry is formed into a film shape to obtain a film-like molded product. You may also obtain Note that a thin ultrasonic sensor including a piezoelectric body obtained from a film-like molded body has excellent flexibility and is therefore suitable for measuring the thickness of a measurement object (for example, a pipe) having a curved surface. In addition, such a thin ultrasonic sensor is easy to always install on a measurement target object, so it is easy to continuously measure the measurement target object, or it is possible to suppress variations in measurement accuracy over time.

上述のスラリーの調製は、焼成生成物にバインダ用ゾルを加えて、ロールミル又はボールミル等を用いて混錬することによって行ってもよい。また、更にロータリーエバポレータなどを用いて、脱泡処理すると同時に脱溶剤処理(溶剤の揮発除去)を行い、所定粘度のスラリーとするようにしてもよい。スラリーの粘度は、膜状の成形体の形成に適した粘度としてもよく、例えば、1500mPa・s以上20000mPa・s以下であってもよい。 The above slurry may be prepared by adding a binder sol to the fired product and kneading it using a roll mill, a ball mill, or the like. Furthermore, a rotary evaporator or the like may be used to perform a desolvent treatment (volatization removal of the solvent) at the same time as the defoaming treatment to obtain a slurry of a predetermined viscosity. The viscosity of the slurry may be a viscosity suitable for forming a film-like molded body, and may be, for example, 1,500 mPa·s or more and 20,000 mPa·s or less.

バインダ用ゾルとして、誘電体物質を構成する金属のアルコキシドやカルボン酸塩の混合液を用いてもよい。例えば、誘電体物質であるPTZ(チタン酸ジルコン酸鉛)を構成する金属のアルコキシド及びカルボン酸塩である、チタンブトキシド、ジルコニウムブトキシド、及び、酢酸鉛の混合液を、バインダ用ゾルとして用いてもよい。このようなバインダ用ゾルを用いることで、後続の焼結ステップでの焼結時に、ゾルの一部が誘電体物質(例えばチタン酸ジルコン酸鉛)を形成し、これがバインダとしての役割を果たす。また、この誘電体物質は、焼成後の分極ステップで分極処理を行うことで、ニオブ酸リチウムと同様に分極され圧電性能を示す。よって、得られる圧電体の圧電性能の向上に寄与し得る。 As the binder sol, a liquid mixture of metal alkoxides and carboxylates constituting the dielectric substance may be used. For example, a mixed solution of titanium butoxide, zirconium butoxide, and lead acetate, which are metal alkoxides and carboxylates constituting the dielectric material PTZ (lead zirconate titanate), may be used as a binder sol. good. By using such a binder sol, during sintering in the subsequent sintering step, a portion of the sol forms a dielectric material (eg, lead zirconate titanate), which acts as a binder. Further, this dielectric material is polarized in the same way as lithium niobate by performing polarization treatment in a polarization step after firing, and exhibits piezoelectric performance. Therefore, it can contribute to improving the piezoelectric performance of the piezoelectric body obtained.

成形ステップで膜状の成形体を作製する場合、該成形体の膜厚は60μm以上80μm以下であってもよい。膜状成形体の膜厚を60μm以上とすることで、この膜状成形体を用いた超音波センサによる検出精度を良好なものとすることができる。また、膜状成形体の膜厚を80μm以下とすることで、膜状成形体の柔軟性が適度なものとなり、例えば、湾曲した表面を有する検査対象物に適切に超音波センサを設置することができる。 When a film-like molded body is produced in the molding step, the film thickness of the molded body may be 60 μm or more and 80 μm or less. By setting the film thickness of the film-like molded body to 60 μm or more, the detection accuracy of an ultrasonic sensor using this film-like molded body can be improved. In addition, by setting the film thickness of the film-like molded body to 80 μm or less, the flexibility of the film-like molded body becomes appropriate, so that, for example, an ultrasonic sensor can be appropriately installed on an inspection target having a curved surface. Can be done.

また、成形ステップで膜状の成形体を作製する場合、上述のスラリーをスプレー塗布することにより、あるいは、上述のスラリーを用いてスクリーン印刷又はステンシル印刷をすることにより、基板(例えば、薄板状の電極5;図1参照)上にスラリーの膜を形成し、この膜を乾燥させることにより、膜状の成形体を得るようにしてもよい。 In addition, when producing a film-like molded body in the molding step, the above-mentioned slurry can be spray-coated, or the above-mentioned slurry can be used to perform screen printing or stencil printing to produce a film-like molded body (for example, a thin plate-like molded body). A film-like molded body may be obtained by forming a film of slurry on the electrode 5 (see FIG. 1) and drying this film.

幾つかの実施形態では、成形ステップの前(成形体を得る前、あるいは、スラリーを調製する前)に、焼成生成物の平均粒子径を2μm以上5μm以下に調整するようにしてもよい。 In some embodiments, the average particle size of the fired product may be adjusted to 2 μm or more and 5 μm or less before the molding step (before obtaining the molded body or preparing the slurry).

成形体を得る前の焼成生成物の平均粒子径が10μm以上であれば、粒子の比表面積が大きすぎず、したがって、後続の焼結ステップでの焼結時における揮発成分(ゾル等)の揮発による収縮の影響を低減できるため、割れが起こりにくくなる。また、上述の平均粒子径が40μm以下であれば、粒子の比表面積が小さすぎず、したがって、バインダ成分(ゾル等)との接触面積を確保しやすくなり、バインダ成分のバインダとしての効果が得られやすくなるため、焼結時に割れが起こりにくくなる。よって、上述の実施形態によれば、割れの生じていない焼結体が得られやすくなり、焼結体の品質を良好なものとすることができる。 If the average particle diameter of the fired product before obtaining the molded body is 10 μm or more, the specific surface area of the particles is not too large, and therefore volatile components (sol, etc.) can be evaporated during sintering in the subsequent sintering step. This reduces the impact of shrinkage caused by cracks, making it less likely that cracks will occur. Furthermore, if the above-mentioned average particle diameter is 40 μm or less, the specific surface area of the particles is not too small, so it becomes easy to secure a contact area with the binder component (sol, etc.), and the binder component can be effective as a binder. This makes it easier for cracks to occur during sintering. Therefore, according to the above-described embodiment, a crack-free sintered body can be easily obtained, and the quality of the sintered body can be made good.

なお、本明細書において、「平均粒子径」は、レーザー回折・散乱法によって求めた粒度分布における積算値50%での粒子径(D50)を意味する。 In addition, in this specification, "average particle diameter" means the particle diameter (D50) at 50% of the integrated value in the particle size distribution determined by laser diffraction/scattering method.

また、幾つかの実施形態では、成形ステップの前(成形体を得る前、あるいは、スラリーを調製する前)に、焼成生成物の粒度分布を、D50が2μm以上5μm以下、となるように調整するようにしてもよい。焼成生成物の粒度分布を上述の範囲内とすることで、成形体を焼結するときの割れや剥がれを効果的に抑制することができる。また、特に、膜状の成形体及び焼結物を得る場合、焼結物の柔軟性を適度なものとすることができる。 In some embodiments, before the molding step (before obtaining a molded body or preparing a slurry), the particle size distribution of the fired product is adjusted so that D50 is 2 μm or more and 5 μm or less. You may also do so. By setting the particle size distribution of the fired product within the above range, cracking and peeling during sintering of the molded body can be effectively suppressed. Moreover, especially when obtaining a film-like molded body and a sintered product, the flexibility of the sintered product can be made appropriate.

なお、上述のD50は、レーザー回折・散乱法によって求めた粒度分布における積算値50%での粒子径を意味する。 In addition, the above-mentioned D50 means the particle diameter at 50% of the integrated value in the particle size distribution determined by the laser diffraction/scattering method.

(焼結ステップ)
焼結ステップでは、成形ステップで得られた成形体を、例えば600℃以上700℃以下の温度で焼結するようにしてもよい。成形体を焼結することで、粒子同士が接着されて焼き固められ、焼結体が得られる。
(Sintering step)
In the sintering step, the molded body obtained in the molding step may be sintered at a temperature of, for example, 600° C. or higher and 700° C. or lower. By sintering the molded body, the particles are bonded to each other and baked and solidified, and a sintered body is obtained.

(分極ステップ)
分極ステップでは、焼結ステップで得られた焼結体に分極処理を施すことにより圧電体を得る。分極処理は、焼結体に一対の電極(例えば図1参照)を設け、これらの電極間に電圧を印加することにより行うことができる。
(Polarization step)
In the polarization step, a piezoelectric body is obtained by subjecting the sintered body obtained in the sintering step to polarization treatment. The polarization treatment can be performed by providing a pair of electrodes (see, for example, FIG. 1) on the sintered body and applying a voltage between these electrodes.

上述の焼成ステップで得られた焼成生成物から得られた焼結体は、分極効率が比較的高い。したがって、このような焼結体に分極処理を施すことにより、効率的に圧電体を得ることができる。また、比較的低い電圧及び電流で適切に分極させることが可能であるため、仮に高電圧を印加した場合に破損しやすい膜状の焼結物であっても、適切に分極処理を行うことができる。よって、分極処理により得られる圧電体を用いることで、良好な感度を有する超音波センサを作製することができる。 The sintered body obtained from the fired product obtained in the above-mentioned firing step has a relatively high polarization efficiency. Therefore, by subjecting such a sintered body to polarization treatment, a piezoelectric body can be efficiently obtained. In addition, since it is possible to polarize appropriately with relatively low voltage and current, even if it is a film-like sintered material that is easily damaged when high voltage is applied, it is possible to polarize it appropriately. can. Therefore, by using a piezoelectric material obtained by polarization treatment, an ultrasonic sensor having good sensitivity can be manufactured.

上記各実施形態に記載の内容は、例えば以下のように把握される。 The contents described in each of the above embodiments can be understood as follows, for example.

(1)本発明の少なくとも一実施形態に係る誘電体材料の製造方法は、
リチウムのニオブに対するモル比が50/50より大きく56/44以下となるように、炭酸リチウムと酸化ニオブを混合して混合物を得るステップと、
前記混合物を焼成してLiNbOの結晶とLiNbOの結晶とが共存する焼成生成物を得るステップと、
を備える。
(1) A method for manufacturing a dielectric material according to at least one embodiment of the present invention includes:
mixing lithium carbonate and niobium oxide to obtain a mixture such that the molar ratio of lithium to niobium is greater than 50/50 and less than or equal to 56/44;
firing the mixture to obtain a fired product in which LiNbO 3 crystals and Li 3 NbO 4 crystals coexist;
Equipped with.

リチウム(Li)及びニオブ(Nb)を含む酸化物において、Liに対するNbのモル比が50/50以下の領域には、不定比組成のLiNbOが生成する領域が含まれる。また、リチウムは原子量が小さく、高温での合成時(焼成時)に揮発しやすい。このため、仮に、リチウムとニオブのモル比がLi:Nb=1:1(すなわちLiのNbに対するモル比が50/50)の原料混合物を焼成(合成)した場合、焼成生成物においてLiNbO(Li:Nb=1:1の組成の結晶)の含有量が予想外に小さくなると考えられる。 In an oxide containing lithium (Li) and niobium (Nb), a region where the molar ratio of Nb to Li is 50/50 or less includes a region where LiNbO 3 having a non-stoichiometric composition is generated. In addition, lithium has a small atomic weight and easily volatizes during synthesis (calcination) at high temperatures. Therefore, if a raw material mixture in which the molar ratio of lithium and niobium is Li:Nb=1:1 (that is, the molar ratio of Li to Nb is 50/50) is fired (synthesized), the fired product will contain LiNbO 3 ( It is considered that the content of crystals with a composition of Li:Nb=1:1) becomes unexpectedly small.

この点、上記(1)の方法によれば、リチウム(Li)のニオブ(Nb)に対するモル比が50/50よりも大きく56/44以下となるように原料(炭酸リチウム及び酸化ニオブ)を混合して得られる混合物を焼成(合成)するようにしたので、LiNbO結晶とLiNbO結晶が既定の割合で共存し、かつ、LiNbO(LiとNbのモル比がLi:Nb=1:1)の含有率が比較的高い焼成生成物(誘電体材料)を得ることができ、すなわち、分極効率が比較的高い焼成生成物(誘電体材料)を得ることができる。よって、該焼成生成物(誘電体材料)を用いることで圧電性能の良好な圧電体を得ることができ、また、この圧電体を用いて良好な感度を有する超音波センサを作製することができる。 In this regard, according to method (1) above, the raw materials (lithium carbonate and niobium oxide) are mixed so that the molar ratio of lithium (Li) to niobium (Nb) is greater than 50/50 and less than 56/44. Since the resulting mixture is fired (synthesized), LiNbO 3 crystals and Li 3 NbO 4 crystals coexist in a predetermined ratio, and LiNbO 3 (the molar ratio of Li and Nb is Li:Nb=1). A fired product (dielectric material) having a relatively high content of :1) can be obtained, that is, a fired product (dielectric material) having a relatively high polarization efficiency can be obtained. Therefore, by using the fired product (dielectric material), a piezoelectric body with good piezoelectric performance can be obtained, and an ultrasonic sensor with good sensitivity can be produced using this piezoelectric body. .

(2)幾つかの実施形態では、上記(1)の方法において、
前記混合物を得るステップでは、リチウムのニオブに対するモル比が51/49以上となるように、炭酸リチウムと酸化ニオブを混合して前記混合物を得る。
(2) In some embodiments, in the method of (1) above,
In the step of obtaining the mixture, the mixture is obtained by mixing lithium carbonate and niobium oxide such that the molar ratio of lithium to niobium is 51/49 or more.

上記(2)の方法によれば、リチウムのニオブに対するモル比が51/49以上となるように、原料(炭酸リチウム及び酸化ニオブ)の混合物を得るようにしたので、LiNbO結晶とLiNbO結晶が既定の割合で共存し、かつ、LiNbO(LiとNbのモル比がLi:Nb=1:1)の含有率が比較的高い焼成生成物をより確実に得ることができる。よって、良好な感度を有する超音波センサが得られやすくなる。 According to method (2) above, a mixture of raw materials (lithium carbonate and niobium oxide) is obtained such that the molar ratio of lithium to niobium is 51/49 or more, so LiNbO 3 crystals and Li 3 NbO It is possible to more reliably obtain a fired product in which the four crystals coexist in a predetermined ratio and have a relatively high content of LiNbO 3 (the molar ratio of Li and Nb is Li:Nb=1:1). Therefore, it becomes easier to obtain an ultrasonic sensor with good sensitivity.

(3)幾つかの実施形態では、上記(1)又は(2)の方法において、
前記誘電体材料の製造方法は、
前記焼成生成物を成形して成形体を得るステップと、
前記成形体を焼結して焼結体を得るステップと、
を備える。
(3) In some embodiments, in the method (1) or (2) above,
The method for manufacturing the dielectric material includes:
a step of molding the fired product to obtain a molded body;
Sintering the molded body to obtain a sintered body;
Equipped with.

上記(3)の方法によれば、上記(1)の方法で得られる焼成生成物(誘電体材料)の成形体を焼結させて焼結体(セラミック;誘電体材料)が得られるので、該焼結体から得られる圧電素子を用いることで、良好な感度を有する超音波センサを作製することができる。 According to the method (3) above, a sintered body (ceramic; dielectric material) is obtained by sintering the compact of the fired product (dielectric material) obtained by the method (1) above. By using a piezoelectric element obtained from the sintered body, an ultrasonic sensor having good sensitivity can be manufactured.

(4)幾つかの実施形態では、上記(3)の方法において、
前記成形体を得るステップでは、前記焼成生成物と、バインダ用ゾルとを混錬して得られるスラリーを膜状に成形して前記成形体を得る。
(4) In some embodiments, in the method of (3) above,
In the step of obtaining the molded body, the slurry obtained by kneading the fired product and the binder sol is formed into a film shape to obtain the molded body.

上記(4)の方法によれば、焼成生成物(誘電体材料)とバインダ用ゾルとを含むスラリーから膜状の成形体を得るようにしたので、該成形体の焼結物から得られる膜状の圧電素子を用いて、薄型の超音波センサを作製することができる。
また、上述の焼成生成物(誘電体材料)は分極効率が比較的高いので、比較的低い電圧及び電流で適切に分極させることが可能である。このため、上記(4)の方法によれば、仮に高電圧を印加した場合に破損しやすい膜状の焼結物(誘電体材料)であっても、適切に分極処理を行うことができる。
According to the method (4) above, since a film-like molded body is obtained from a slurry containing a fired product (dielectric material) and a binder sol, a film obtained from a sintered product of the molded body is A thin ultrasonic sensor can be manufactured using a piezoelectric element like this.
Further, since the above-mentioned fired product (dielectric material) has a relatively high polarization efficiency, it is possible to appropriately polarize it with a relatively low voltage and current. Therefore, according to the method (4) above, even if the film-like sintered material (dielectric material) is easily damaged when a high voltage is applied, polarization treatment can be performed appropriately.

(5)幾つかの実施形態では、上記(3)又は(4)の方法において、
前記誘電体材料の製造方法は、
前記成形体を得る前に、前記焼成生成物の平均粒子径を2μm以上5μm以下に調整するステップを備える。
(5) In some embodiments, in the method (3) or (4) above,
The method for manufacturing the dielectric material includes:
Before obtaining the molded body, the method includes a step of adjusting the average particle size of the fired product to 2 μm or more and 5 μm or less.

上記(5)の方法によれば、成形体を得る前の焼成生成物(誘電体材料)の平均粒子径を10μm以上としたので、粒子の比表面積が大きすぎず、したがって、焼結時における揮発成分(ゾル等)の揮発による収縮の影響を低減できるため、割れが起こりにくくなる。また、上記(5)の方法によれば、上述の平均粒子径を40μm以下としたので、粒子の比表面積が小さすぎず、したがって、バインダ成分(ゾル等)との接触面積を確保しやすくなり、バインダ成分のバインダとしての効果が得られやすくなるため、焼結時に割れが起こりにくくなる。よって、上記(5)の方法によれば、割れの生じていない焼結体が得られやすくなり、焼結体(誘電体材料)の品質を良好なものとすることができる。 According to the method (5) above, since the average particle diameter of the fired product (dielectric material) before obtaining the molded body is set to 10 μm or more, the specific surface area of the particles is not too large, and therefore, during sintering. Since the effect of shrinkage due to volatilization of volatile components (sol, etc.) can be reduced, cracks are less likely to occur. In addition, according to method (5) above, since the average particle diameter is set to 40 μm or less, the specific surface area of the particles is not too small, and therefore, it is easy to secure the contact area with the binder component (sol, etc.). Since the binder component becomes more effective as a binder, cracks are less likely to occur during sintering. Therefore, according to the method (5) above, a crack-free sintered body can be easily obtained, and the quality of the sintered body (dielectric material) can be made good.

(6)幾つかの実施形態では、上記(3)乃至(5)の何れかの方法において、
前記誘電体材料の製造方法は、
前記成形体を得る前に、前記焼成生成物の粒度分布を、D50が2μm以上5μm以下となるように調整するステップを備える。
(6) In some embodiments, in any of the methods (3) to (5) above,
The method for manufacturing the dielectric material includes:
Before obtaining the molded body, the method includes a step of adjusting the particle size distribution of the fired product so that D50 is 2 μm or more and 5 μm or less.

上記(6)の方法によれば、焼成生成物が上述の粒度分布を有するため、成形体を焼結するときの割れや剥がれを抑制することができる。また、特に、膜状の成形体及び焼結物を得る場合、焼結物の柔軟性を適度なものとすることができる。 According to the method (6) above, since the fired product has the above-mentioned particle size distribution, cracking and peeling when sintering the molded body can be suppressed. Moreover, especially when obtaining a film-like molded body and a sintered product, the flexibility of the sintered product can be made appropriate.

(7)幾つかの実施形態では、上記(3)乃至(6)の何れかの方法において、
前記誘電体材料の製造方法は、
前記焼結体に分極処理を施すステップをさらに備える。
(7) In some embodiments, in any of the methods (3) to (6) above,
The method for manufacturing the dielectric material includes:
The method further includes a step of subjecting the sintered body to polarization treatment.

上記(7)の方法によれば、分極効率が比較的高い焼結体に分極処理を施すようにしたので、効率的に圧電体を得ることができる。また、比較的低い電圧及び電流で適切に分極させることが可能であるため、仮に高電圧を印加した場合に破損しやすい膜状の焼結物であっても、適切に分極処理を行うことができる。よって、分極処理により得られる圧電体(誘電体材料)を用いることで、良好な感度を有する超音波センサを作製することができる。 According to the method (7) above, since the polarization treatment is performed on a sintered body with relatively high polarization efficiency, a piezoelectric body can be efficiently obtained. In addition, since it is possible to polarize appropriately with relatively low voltage and current, even if it is a film-like sintered material that is easily damaged when high voltage is applied, it is possible to polarize it appropriately. can. Therefore, by using a piezoelectric material (dielectric material) obtained by polarization treatment, an ultrasonic sensor having good sensitivity can be manufactured.

(8)本発明の少なくとも一実施形態に係る誘電体材料は、
LiNbOの結晶とLiNbOの結晶とが共存する。
(8) The dielectric material according to at least one embodiment of the present invention is
LiNbO 3 crystals and Li 3 NbO 4 crystals coexist.

上記(8)の構成を有する誘電体材料は、LiNbOの結晶とLiNbOの結晶とが共存するリチウム/ニオブのモル比領域(濃度領域)のリチウム/ニオブ酸化物であるから、この誘電体材料において、LiNbO(Li:Nb=1:1)の結晶が不定比で生成されるのではなく、LiNbO結晶とLiNbO結晶が既定の割合で共存する。すなわち、上記(8)の構成を有する誘電体材料には、LiNbOが既定の割合で確実に含有されるため、この誘電体材料は、比較的高い分極効率を有する。よって、この誘電体材料(焼成生成物、成形体、焼結体又は圧電体等)を用いることで、良好な感度を有する超音波センサを作製することができる。 The dielectric material having the structure (8) above is a lithium/niobium oxide in a lithium/niobium molar ratio region (concentration region) in which LiNbO 3 crystals and Li 3 NbO 4 crystals coexist. In the dielectric material, LiNbO 3 (Li:Nb=1:1) crystals are not generated in a non-stoichiometric ratio, but LiNbO 3 crystals and Li 3 NbO 4 crystals coexist in a predetermined ratio. That is, since the dielectric material having the configuration (8) above reliably contains LiNbO 3 at a predetermined ratio, this dielectric material has relatively high polarization efficiency. Therefore, by using this dielectric material (fired product, molded body, sintered body, piezoelectric body, etc.), an ultrasonic sensor having good sensitivity can be manufactured.

(9)本発明の少なくとも一実施形態に係る超音波センサ(1)は、
上記(8)に記載の誘電体材料から形成され、電気信号に駆動されて超音波を発生するように構成された圧電素子(2)を備える。
(9) The ultrasonic sensor (1) according to at least one embodiment of the present invention includes:
The piezoelectric element (2) is formed from the dielectric material described in (8) above and is configured to generate ultrasonic waves when driven by an electric signal.

上記(9)の構成によれば、比較的高い分極効率を有する誘電体材料により圧電素子を形成するようにしたので、該圧電素子を備えた良好な感度を有する超音波センサを作製することができる。 According to the configuration (9) above, since the piezoelectric element is formed of a dielectric material having relatively high polarization efficiency, it is possible to produce an ultrasonic sensor equipped with the piezoelectric element and having good sensitivity. can.

以上、本発明の実施形態について説明したが、本発明は上述した実施形態に限定されることはなく、上述した実施形態に変形を加えた形態や、これらの形態を適宜組み合わせた形態も含む。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and also includes forms in which modifications are made to the above-described embodiments and forms in which these forms are appropriately combined.

本明細書において、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
また、本明細書において、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
また、本明細書において、一の構成要素を「備える」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
In this specification, expressions expressing relative or absolute arrangement such as "in a certain direction", "along a certain direction", "parallel", "perpendicular", "center", "concentric", or "coaxial" are used. shall not only strictly represent such an arrangement, but also represent a state in which they are relatively displaced with a tolerance or an angle or distance that allows the same function to be obtained.
For example, expressions such as "same,""equal," and "homogeneous" that indicate that things are in an equal state do not only mean that things are exactly equal, but also have tolerances or differences in the degree to which the same function can be obtained. It also represents the existing state.
In addition, in this specification, expressions expressing shapes such as a square shape or a cylindrical shape do not only mean shapes such as a square shape or a cylindrical shape in a strict geometric sense, but also within the range where the same effect can be obtained. , shall also represent shapes including uneven parts, chamfered parts, etc.
Furthermore, in this specification, the expressions "comprising,""including," or "having" one component are not exclusive expressions that exclude the presence of other components.

1 超音波センサ
2 圧電素子
4 電極
5 電極
6 リード線
8 リード線
30 検査対象物
1 Ultrasonic sensor 2 Piezoelectric element 4 Electrode 5 Electrode 6 Lead wire 8 Lead wire 30 Inspection object

Claims (6)

超音波センサの圧電素子膜の製造方法であって、
リチウムのニオブに対するモル比が51/49より大きく56/44以下となるように、炭酸リチウムと酸化ニオブを混合して混合物を得るステップと、
前記混合物を焼成してLiNbOの結晶とLiNbOの結晶とが共存する焼成生成物を得るステップと、
前記LiNbOの結晶と前記LiNbOの結晶とが共存する前記焼成生成物を含む膜に対して分極処理を施して前記圧電素子膜を得るステップと、
を備える超音波センサの圧電素子膜の製造方法。
A method for manufacturing a piezoelectric element membrane for an ultrasonic sensor, the method comprising:
mixing lithium carbonate and niobium oxide to obtain a mixture such that the molar ratio of lithium to niobium is greater than 51/49 and less than or equal to 56/44;
firing the mixture to obtain a fired product in which LiNbO 3 crystals and Li 3 NbO 4 crystals coexist;
obtaining the piezoelectric element film by performing a polarization treatment on a film containing the fired product in which the LiNbO 3 crystal and the Li 3 NbO 4 crystal coexist;
A method for manufacturing a piezoelectric element film for an ultrasonic sensor comprising:
前記混合物を得るステップでは、リチウムのニオブに対するモル比が51/49以上となるように、炭酸リチウムと酸化ニオブを混合して前記混合物を得る
請求項1に記載の超音波センサの圧電素子膜の製造方法。
In the step of obtaining the mixture, lithium carbonate and niobium oxide are mixed so that the molar ratio of lithium to niobium is 51/49 or more. Production method.
前記焼成生成物を成形して成形体を得るステップと、
前記成形体を焼結して前記膜としての焼結体を得るステップと、
を備える
請求項1又は2に記載の超音波センサの圧電素子膜の製造方法。
a step of molding the fired product to obtain a molded body;
Sintering the molded body to obtain a sintered body as the film;
A method for manufacturing a piezoelectric element film for an ultrasonic sensor according to claim 1 or 2, comprising:
前記成形体を得るステップでは、前記焼成生成物と、バインダ用ゾルとを混錬して得られるスラリーを膜状に成形して前記成形体を得る
請求項3に記載の超音波センサの圧電素子膜の製造方法。
The piezoelectric element of the ultrasonic sensor according to claim 3, wherein in the step of obtaining the molded body, the slurry obtained by kneading the fired product and a binder sol is formed into a film shape to obtain the molded body. Membrane manufacturing method.
前記成形体を得る前に、前記焼成生成物の平均粒子径を2μm以上5μm以下に調整するステップを備える
請求項3又は4に記載の超音波センサの圧電素子膜の製造方法。
5. The method for manufacturing a piezoelectric element film for an ultrasonic sensor according to claim 3, further comprising the step of adjusting an average particle diameter of the fired product to 2 μm or more and 5 μm or less before obtaining the molded body.
前記成形体を得る前に、前記焼成生成物の粒度分布を、D50が2μm以上5μm以下となるように調整するステップを備える
請求項3乃至5の何れか一項に記載の超音波センサの圧電素子膜の製造方法。
The piezoelectric ultrasonic sensor according to any one of claims 3 to 5, comprising a step of adjusting the particle size distribution of the fired product so that D50 is 2 μm or more and 5 μm or less before obtaining the molded body. Method of manufacturing element film.
JP2020057041A 2020-03-27 2020-03-27 Method for manufacturing piezoelectric element membrane of ultrasonic sensor and ultrasonic sensor Active JP7428568B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020057041A JP7428568B2 (en) 2020-03-27 2020-03-27 Method for manufacturing piezoelectric element membrane of ultrasonic sensor and ultrasonic sensor
PCT/JP2021/005886 WO2021192744A1 (en) 2020-03-27 2021-02-17 Dielectric material production method, dielectric material, and ultrasonic sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020057041A JP7428568B2 (en) 2020-03-27 2020-03-27 Method for manufacturing piezoelectric element membrane of ultrasonic sensor and ultrasonic sensor

Publications (2)

Publication Number Publication Date
JP2021155263A JP2021155263A (en) 2021-10-07
JP7428568B2 true JP7428568B2 (en) 2024-02-06

Family

ID=77892498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020057041A Active JP7428568B2 (en) 2020-03-27 2020-03-27 Method for manufacturing piezoelectric element membrane of ultrasonic sensor and ultrasonic sensor

Country Status (2)

Country Link
JP (1) JP7428568B2 (en)
WO (1) WO2021192744A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115745606B (en) * 2022-11-24 2024-02-27 先导薄膜材料(广东)有限公司 Preparation method of lithium-rich lithium niobate powder

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003298132A (en) 2002-04-04 2003-10-17 Hitachi Metals Ltd Piezoelectric actuator and liquid discharge head
JP2013197541A (en) 2012-03-22 2013-09-30 Mitsubishi Heavy Ind Ltd Manufacturing method of ultrasonic thickness sensor
JP2014029810A (en) 2012-07-31 2014-02-13 Toyota Motor Corp All-solid-state battery and method for manufacturing the same
JP2015053236A (en) 2013-09-09 2015-03-19 国立大学法人名古屋大学 Method of manufacturing electrode body, and electrode body
WO2018070072A1 (en) 2016-10-12 2018-04-19 国立研究開発法人産業技術総合研究所 Stress light-emitting material, stress light-emitter, and use of stress light-emitting material
JP2020009756A (en) 2018-06-27 2020-01-16 住友金属鉱山株式会社 Positive electrode active material for lithium ion secondary battery and manufacturing method thereof, positive electrode for lithium ion secondary battery, and lithium ion secondary battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003298132A (en) 2002-04-04 2003-10-17 Hitachi Metals Ltd Piezoelectric actuator and liquid discharge head
JP2013197541A (en) 2012-03-22 2013-09-30 Mitsubishi Heavy Ind Ltd Manufacturing method of ultrasonic thickness sensor
JP2014029810A (en) 2012-07-31 2014-02-13 Toyota Motor Corp All-solid-state battery and method for manufacturing the same
JP2015053236A (en) 2013-09-09 2015-03-19 国立大学法人名古屋大学 Method of manufacturing electrode body, and electrode body
WO2018070072A1 (en) 2016-10-12 2018-04-19 国立研究開発法人産業技術総合研究所 Stress light-emitting material, stress light-emitter, and use of stress light-emitting material
JP2020009756A (en) 2018-06-27 2020-01-16 住友金属鉱山株式会社 Positive electrode active material for lithium ion secondary battery and manufacturing method thereof, positive electrode for lithium ion secondary battery, and lithium ion secondary battery

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Kamal SINGH,X-ray induced dielectric properties of stoichiometrically varied lithium niobate single crystals,Solid State Ionics,1988年,Vol.31 No.2,p.139-146
島田志郎ら,LiNbO3の生成反応と焼結,北海道大学工学部研究報告,1978年,No.91,Page.95-102

Also Published As

Publication number Publication date
JP2021155263A (en) 2021-10-07
WO2021192744A1 (en) 2021-09-30

Similar Documents

Publication Publication Date Title
Chen et al. PZT ceramics fabricated based on stereolithography for an ultrasound transducer array application
JP5217997B2 (en) Piezoelectric ceramic, vibrator and ultrasonic motor
Zhu et al. (100)-Textured KNN-based thick film with enhanced piezoelectric property for intravascular ultrasound imaging
Li et al. High piezoelectricity of Eu 3+-doped Pb (Mg 1/3 Nb 2/3) O 3–0.25 PbTiO 3 transparent ceramics
Yan et al. Lead-free BNT composite film for high-frequency broadband ultrasonic transducer applications
US9548439B2 (en) Porosity control in piezoelectric films
JP7428568B2 (en) Method for manufacturing piezoelectric element membrane of ultrasonic sensor and ultrasonic sensor
Nelo et al. Upside-down composites: fabricating piezoceramics at room temperature
Lau et al. KNN/BNT composite lead-free films for high-frequency ultrasonic transducer applications
JPH07297461A (en) Piezoelectric ceramics-polymer composite material and its manufacture
Zhao et al. Structural and electrical properties of sodium bismuth titanate based 0–3 composite lead-free ferroelectric thick films
US8410664B2 (en) Method for changing ultrasound wave frequency by using the acoustic matching layer
Chan et al. Piezoelectric ceramic fibre/epoxy 1-3 composites for high-frequency ultrasonic transducer applications
US20210305493A1 (en) Method of manufacturing dielectric film
JP3629285B2 (en) Production method of piezoelectric ceramic
He et al. Effects of CuO additive on properties of high-performance (Ba0. 85Ca0. 15)(Ti0. 9Zr0. 1) O3 piezoceramics obtained by vat photopolymerization
JP2014041973A (en) Method of manufacturing oxide-based piezoelectric material powder for ultrasonic thickness sensor, oxide-based piezoelectric material powder, method of manufacturing ultrasonic thickness sensor, and ultrasonic thickness sensor
JP2627480B2 (en) Oxide piezoelectric material
JPS5948969A (en) Oxide piezoelectric material
Mariani et al. Additive manufacturing of piezoelectric niobium-doped lead zirconate titanate (PZT-N) by binder jetting. Crystals 2023; 13: 883
JP2019046970A (en) Method for manufacturing ultrasonic thickness sensor
Yamashita et al. High dielectric constant and large electromechanical coupling factor relaxor-based piezoelectric ceramics
Kobayashi et al. Effects of Powder Phase Properties on Pb (Zr, Ti) O3/Pb (Zr, Ti) O3 Sol-Gel Composites
Khatua et al. A high performance piezoelectric–triboelectric hybrid energy harvester by synergistic design
Kuscer et al. Electrophoretic deposition of lead-zirconate-titanate perovskite thick films with low sintering temperature

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240125

R150 Certificate of patent or registration of utility model

Ref document number: 7428568

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150