JP7426323B2 - Reactor - Google Patents

Reactor Download PDF

Info

Publication number
JP7426323B2
JP7426323B2 JP2020174674A JP2020174674A JP7426323B2 JP 7426323 B2 JP7426323 B2 JP 7426323B2 JP 2020174674 A JP2020174674 A JP 2020174674A JP 2020174674 A JP2020174674 A JP 2020174674A JP 7426323 B2 JP7426323 B2 JP 7426323B2
Authority
JP
Japan
Prior art keywords
fuel
heat
nuclear
section
heat conduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020174674A
Other languages
Japanese (ja)
Other versions
JP2022065896A (en
Inventor
望 村上
道 中里
喬 長谷川
覚 蒲原
康考 原井
忠勝 淀
翔太 小林
昇平 大槻
豊 田中
達男 石黒
浩徳 野口
秀行 工藤
貴史 野田
和弘 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2020174674A priority Critical patent/JP7426323B2/en
Priority to US18/031,766 priority patent/US20230386686A1/en
Priority to PCT/JP2021/034615 priority patent/WO2022080095A1/en
Publication of JP2022065896A publication Critical patent/JP2022065896A/en
Application granted granted Critical
Publication of JP7426323B2 publication Critical patent/JP7426323B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C1/00Reactor types
    • G21C1/32Integral reactors, i.e. reactors wherein parts functionally associated with the reactor but not essential to the reaction, e.g. heat exchangers, are disposed inside the enclosure with the core
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C5/00Moderator or core structure; Selection of materials for use as moderator
    • G21C5/14Moderator or core structure; Selection of materials for use as moderator characterised by shape
    • G21C5/16Shape of its constituent parts
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C15/00Cooling arrangements within the pressure vessel containing the core; Selection of specific coolants
    • G21C15/02Arrangements or disposition of passages in which heat is transferred to the coolant; Coolant flow control devices
    • G21C15/04Arrangements or disposition of passages in which heat is transferred to the coolant; Coolant flow control devices from fissile or breeder material
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C15/00Cooling arrangements within the pressure vessel containing the core; Selection of specific coolants
    • G21C15/02Arrangements or disposition of passages in which heat is transferred to the coolant; Coolant flow control devices
    • G21C15/10Arrangements or disposition of passages in which heat is transferred to the coolant; Coolant flow control devices from reflector or thermal shield
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/30Assemblies of a number of fuel elements in the form of a rigid unit
    • G21C3/36Assemblies of plate-shaped fuel elements or coaxial tubes
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C5/00Moderator or core structure; Selection of materials for use as moderator
    • G21C5/12Moderator or core structure; Selection of materials for use as moderator characterised by composition, e.g. the moderator containing additional substances which ensure improved heat resistance of the moderator
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C11/00Shielding structurally associated with the reactor
    • G21C11/06Reflecting shields, i.e. for minimising loss of neutrons
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C15/00Cooling arrangements within the pressure vessel containing the core; Selection of specific coolants
    • G21C15/24Promoting flow of the coolant
    • G21C15/257Promoting flow of the coolant using heat-pipes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Description

本開示は、原子炉に関する。 TECHNICAL FIELD This disclosure relates to nuclear reactors.

例えば、特許文献1,2には、炉心の燃料が円板状の層に形成された構造が示されている。 For example, Patent Documents 1 and 2 disclose a structure in which fuel in a reactor core is formed in a disk-shaped layer.

特開昭62-17689号公報Japanese Unexamined Patent Publication No. 17689/1989 特開平5-45485号公報Japanese Patent Application Publication No. 5-45485

原子炉においては、核燃料物質の核分裂により放出される核分裂生成物(FP:Fission Product)を原子炉容器内部に保持することと、核燃料物質から構成される原子炉の炉心から熱を効率よく取り出すことが望まれている。 In a nuclear reactor, it is necessary to retain fission products (FP) released by fission of nuclear fuel material inside the reactor vessel, and to efficiently extract heat from the core of the reactor, which is made up of nuclear fuel material. is desired.

本開示は、上述した課題を解決するものであり、核分裂生成物を原子炉容器内部に保持しつつ、炉心から効率よく熱を取り出すことのできる原子炉を提供することを目的とする。 The present disclosure solves the above-mentioned problems, and aims to provide a nuclear reactor that can efficiently extract heat from a reactor core while retaining nuclear fission products inside a reactor vessel.

上述の目的を達成するために、本開示の一態様に係る原子炉は、核燃料物質の表面に被覆部を設けた燃料部と、熱伝導部とを備える。 In order to achieve the above object, a nuclear reactor according to one aspect of the present disclosure includes a fuel part in which a coating part is provided on the surface of nuclear fuel material, and a heat conduction part.

本開示は、核分裂生成物を保持しつつ、炉心から効率よく熱を取り出すことができる。 The present disclosure can efficiently extract heat from a reactor core while preserving fission products.

図1は、実施形態に係る原子炉を用いた原子力発電システムの模式図である。FIG. 1 is a schematic diagram of a nuclear power generation system using a nuclear reactor according to an embodiment. 図2は、実施形態1に係る原子炉を示す模式図である。FIG. 2 is a schematic diagram showing a nuclear reactor according to the first embodiment. 図3は、実施形態1に係る原子炉の断面模式図である。FIG. 3 is a schematic cross-sectional view of the nuclear reactor according to the first embodiment. 図4は、実施形態1に係る原子炉の他の例の断面模式図である。FIG. 4 is a schematic cross-sectional view of another example of the nuclear reactor according to the first embodiment. 図5は、実施形態1に係る原子炉の一部切取拡大模式図である。FIG. 5 is a partially cut-out enlarged schematic diagram of the nuclear reactor according to the first embodiment. 図6は、実施形態1に係る原子炉の一部切取拡大模式図である。FIG. 6 is a partially cut-out enlarged schematic diagram of the nuclear reactor according to the first embodiment. 図7は、実施形態1に係る原子炉の一部切取拡大模式図である。FIG. 7 is a partially cut-out enlarged schematic diagram of the nuclear reactor according to the first embodiment. 図8は、実施形態1に係る原子炉の一部切取拡大模式図である。FIG. 8 is a partially cut-out enlarged schematic diagram of the nuclear reactor according to the first embodiment. 図9は、実施形態1に係る原子炉の燃料部の断面模式図である。FIG. 9 is a schematic cross-sectional view of the fuel section of the nuclear reactor according to the first embodiment. 図10は、実施形態1に係る原子炉の燃料部の模式斜視図である。FIG. 10 is a schematic perspective view of the fuel section of the nuclear reactor according to the first embodiment. 図11は、実施形態1に係る原子炉の燃料部の他の例の模式斜視図である。FIG. 11 is a schematic perspective view of another example of the fuel section of the nuclear reactor according to the first embodiment. 図12は、実施形態1に係る原子炉の燃料部の他の例の模式斜視図である。FIG. 12 is a schematic perspective view of another example of the fuel section of the nuclear reactor according to the first embodiment. 図13は、実施形態1に係る原子炉の核燃料の他の例の断面模式図である。FIG. 13 is a schematic cross-sectional view of another example of the nuclear fuel of the nuclear reactor according to the first embodiment. 図14は、実施形態1に係る原子炉の燃料部の他の例の模式斜視図である。FIG. 14 is a schematic perspective view of another example of the fuel section of the nuclear reactor according to the first embodiment. 図15は、実施形態2に係る原子炉を示す模式図である。FIG. 15 is a schematic diagram showing a nuclear reactor according to the second embodiment. 図16は、実施形態2に係る原子炉の断面模式図である。FIG. 16 is a schematic cross-sectional view of a nuclear reactor according to Embodiment 2. 図17は、実施形態2に係る原子炉の他の形態を示す模式図である。FIG. 17 is a schematic diagram showing another form of the nuclear reactor according to the second embodiment. 図18は、実施形態2に係る原子炉の熱伝導部の拡大模式図である。FIG. 18 is an enlarged schematic diagram of the heat conduction section of the nuclear reactor according to the second embodiment. 図19は、実施形態2に係る原子炉の他の形態を示す模式図である。FIG. 19 is a schematic diagram showing another form of the nuclear reactor according to the second embodiment. 図20は、図18に示す形態の説明図である。FIG. 20 is an explanatory diagram of the form shown in FIG. 18. 図21は、実施形態3に係る原子炉を示す模式図である。FIG. 21 is a schematic diagram showing a nuclear reactor according to Embodiment 3.

以下に、本開示に係る実施形態を図面に基づいて詳細に説明する。なお、この実施形態によりこの発明が限定されるものではない。また、下記実施形態における構成要素には、当業者が置換可能かつ容易なもの、あるいは実質的に同一のものが含まれる。 Embodiments according to the present disclosure will be described in detail below based on the drawings. Note that the present invention is not limited to this embodiment. Furthermore, the constituent elements in the embodiments described below include those that can be easily replaced by those skilled in the art, or those that are substantially the same.

図1は、実施形態に係る原子炉を用いた原子力発電システムの模式図である。図1に示すように、原子力発電システム50は、原子炉容器51と、熱交換器52と、熱伝導部53と、冷媒循環手段54と、タービン55と、発電機56と、冷却器57と、圧縮機58と、を有する。 FIG. 1 is a schematic diagram of a nuclear power generation system using a nuclear reactor according to an embodiment. As shown in FIG. 1, the nuclear power generation system 50 includes a reactor vessel 51, a heat exchanger 52, a heat conduction section 53, a refrigerant circulation means 54, a turbine 55, a generator 56, and a cooler 57. , and a compressor 58.

原子炉容器51は、後述する実施形態の原子炉11(12,13)を有する。原子炉容器51は、内部に原子炉11(12,13)が格納されている。原子炉容器51は、原子炉11(12,13)を密閉状態で格納する。原子炉容器51は、内部に載置する原子炉11(12,13)が格納または取り出せるように、例えば蓋である開閉部が設けられている。原子炉容器51は、原子炉11(12,13)において核分裂反応がおき、内部が高温、高圧になった場合でも、密閉状態を維持することができる。原子炉容器51は、中性子線の遮へい性能を備える材料で形成される。 The reactor vessel 51 has a nuclear reactor 11 (12, 13) of an embodiment described later. The reactor vessel 51 houses the nuclear reactor 11 (12, 13) therein. The reactor vessel 51 stores the nuclear reactor 11 (12, 13) in a sealed state. The reactor vessel 51 is provided with an opening/closing part, such as a lid, so that the reactor 11 (12, 13) placed therein can be stored or taken out. The reactor vessel 51 can maintain a sealed state even when a nuclear fission reaction occurs in the reactor 11 (12, 13) and the inside becomes high temperature and pressure. The reactor vessel 51 is formed of a material that has neutron beam shielding performance.

熱交換器52は、原子炉11(12,13)との間で熱交換を行う。実施形態の熱交換器52は、原子炉容器51の内部に一部配置された熱伝導部53の固体の高熱伝導材料を介して原子炉11(12,13)の熱を回収する。なお、図1で示している熱伝導部53は、後述する熱伝導部3,103,104を総称して模式的に示したものである。 The heat exchanger 52 exchanges heat with the nuclear reactor 11 (12, 13). The heat exchanger 52 of the embodiment recovers the heat of the nuclear reactor 11 (12, 13) via the solid high heat conductive material of the heat conductive part 53 that is partially disposed inside the reactor vessel 51. In addition, the heat conduction part 53 shown in FIG. 1 is a general term for the heat conduction parts 3, 103, and 104 mentioned later, and is schematically shown.

冷媒循環手段54は、冷媒を循環させる経路であり、熱交換器52と、タービン55と、冷却器57と、圧縮機58と、が接続されている。冷媒循環手段54を流れる冷媒は、熱交換器52、タービン55、冷却器57、圧縮機58の順で流れ、圧縮機58を通過した冷媒は、熱交換器52に供給される。従って、熱交換器52は、熱伝導部53の固体の高熱伝導材料と、冷媒循環手段54を流れる冷媒との間で熱交換を行う。 The refrigerant circulation means 54 is a path for circulating refrigerant, and is connected to the heat exchanger 52, the turbine 55, the cooler 57, and the compressor 58. The refrigerant flowing through the refrigerant circulation means 54 flows through the heat exchanger 52 , the turbine 55 , the cooler 57 , and the compressor 58 in this order, and the refrigerant that has passed through the compressor 58 is supplied to the heat exchanger 52 . Therefore, the heat exchanger 52 performs heat exchange between the solid high heat conductive material of the heat conductive portion 53 and the refrigerant flowing through the refrigerant circulation means 54 .

タービン55は、熱交換器52を通過した冷媒が流入する。タービン55は、加熱された冷媒のエネルギーにより回転される。つまりタービン55は、冷媒のエネルギーを回転エネルギーに変換して、冷媒からエネルギーを吸収する。 The refrigerant that has passed through the heat exchanger 52 flows into the turbine 55 . The turbine 55 is rotated by the energy of the heated refrigerant. In other words, the turbine 55 converts the energy of the refrigerant into rotational energy and absorbs energy from the refrigerant.

発電機56は、タービン55と連結されており、タービン55と一体で回転する。発電機56は、タービン55と回転することで発電する。 The generator 56 is connected to the turbine 55 and rotates together with the turbine 55. The generator 56 generates electricity by rotating with the turbine 55.

冷却器57は、タービン55を通過した冷媒を冷却する。冷却器57は、チラーや冷媒を一時的に液化する場合、復水器等である。 The cooler 57 cools the refrigerant that has passed through the turbine 55. The cooler 57 is a chiller or a condenser when temporarily liquefying the refrigerant.

圧縮機58は、冷媒を加圧するポンプである。 The compressor 58 is a pump that pressurizes the refrigerant.

原子力発電システム50は、原子炉11(12,13)の核燃料の反応で生じた熱を熱伝導部53で熱交換器52に伝える。原子力発電システム50は、熱交換器52において、熱伝導部53の高熱伝導材料の熱で、冷媒循環手段54を流れる冷媒を加熱する。つまり、冷媒は、熱交換器52において熱を吸収する。これにより、原子炉11(12,13)で発生した熱は、冷媒で回収される。冷媒は、圧縮機58で圧縮された後、熱交換器52の通過時に加熱され、圧縮し加熱されたエネルギーでタービン55を回転させる。冷媒は、その後、冷却器57で基準状態まで冷却され、再び圧縮機58に供給される。 The nuclear power generation system 50 transmits heat generated by the reaction of nuclear fuel in the nuclear reactor 11 (12, 13) to the heat exchanger 52 through the heat conduction section 53. In the nuclear power generation system 50 , in the heat exchanger 52 , the refrigerant flowing through the refrigerant circulation means 54 is heated by the heat of the highly thermally conductive material of the heat conductive part 53 . That is, the refrigerant absorbs heat in the heat exchanger 52. Thereby, the heat generated in the nuclear reactor 11 (12, 13) is recovered by the refrigerant. After being compressed by the compressor 58, the refrigerant is heated as it passes through the heat exchanger 52, and the compressed and heated energy rotates the turbine 55. The refrigerant is then cooled down to a reference state in the cooler 57 and supplied to the compressor 58 again.

原子力発電システム50は、以上のように、原子炉11(12,13)から取り出された熱を高熱伝導材料を介し、タービン55を回転する媒体となる冷媒に伝達する。これにより、原子炉11(12,13)と、タービン55を回転する媒体となる冷媒とを隔離することができ、タービン55を回転する媒体が汚染される恐れを低減できる。 As described above, the nuclear power generation system 50 transfers the heat extracted from the nuclear reactor 11 (12, 13) to the refrigerant, which is the medium that rotates the turbine 55, through the highly thermally conductive material. Thereby, the nuclear reactor 11 (12, 13) and the refrigerant that is the medium that rotates the turbine 55 can be isolated, and the possibility that the medium that rotates the turbine 55 will be contaminated can be reduced.

[実施形態1]
図2は、実施形態1に係る原子炉を示す模式図である。図3は、実施形態1に係る原子炉の断面模式図である。図4は、実施形態1に係る原子炉の他の例の断面模式図である。図5は、実施形態1に係る原子炉の一部切取拡大模式図である。図6は、実施形態1に係る原子炉の一部切取拡大模式図である。図7は、実施形態1に係る原子炉の一部切取拡大模式図である。図8は、実施形態1に係る原子炉の一部切取拡大模式図である。図9は、実施形態1に係る原子炉の燃料部の断面模式図である。図10は、実施形態1に係る原子炉の燃料部の模式斜視図である。図11は、実施形態1に係る原子炉の燃料部の他の例の模式斜視図である。図12は、実施形態1に係る原子炉の燃料部の他の例の模式斜視図である。図13は、実施形態1に係る原子炉の核燃料の他の例の断面模式図である。図14は、実施形態1に係る原子炉の燃料部の他の例の模式斜視図である。
[Embodiment 1]
FIG. 2 is a schematic diagram showing a nuclear reactor according to the first embodiment. FIG. 3 is a schematic cross-sectional view of the nuclear reactor according to the first embodiment. FIG. 4 is a schematic cross-sectional view of another example of the nuclear reactor according to the first embodiment. FIG. 5 is a partially cut-out enlarged schematic diagram of the nuclear reactor according to the first embodiment. FIG. 6 is a partially cut-out enlarged schematic diagram of the nuclear reactor according to the first embodiment. FIG. 7 is a partially cut-out enlarged schematic diagram of the nuclear reactor according to the first embodiment. FIG. 8 is a partially cut-out enlarged schematic diagram of the nuclear reactor according to the first embodiment. FIG. 9 is a schematic cross-sectional view of the fuel section of the nuclear reactor according to the first embodiment. FIG. 10 is a schematic perspective view of the fuel section of the nuclear reactor according to the first embodiment. FIG. 11 is a schematic perspective view of another example of the fuel section of the nuclear reactor according to the first embodiment. FIG. 12 is a schematic perspective view of another example of the fuel section of the nuclear reactor according to the first embodiment. FIG. 13 is a schematic cross-sectional view of another example of the nuclear fuel of the nuclear reactor according to the first embodiment. FIG. 14 is a schematic perspective view of another example of the fuel section of the nuclear reactor according to the first embodiment.

図2から図5に示すように、原子炉11は、燃料部(炉心)1と、遮へい部2と、熱伝導部3と、制御機構4と、を含む。 As shown in FIGS. 2 to 5, the nuclear reactor 11 includes a fuel part (core) 1, a shield part 2, a heat conduction part 3, and a control mechanism 4.

燃料部1は、板状に形成された燃料層1Aを有する。燃料層1Aは、実施形態1では、円板状に形成されている。燃料層1Aは、複数設けられ、相互が板面を対向するように並べて配置されている。この複数の燃料層1Aが板面を対向して並ぶ方向を軸方向という場合もある。燃料層1Aは、核燃料物質であるウランを含む。 The fuel part 1 has a fuel layer 1A formed in a plate shape. In the first embodiment, the fuel layer 1A is formed into a disk shape. A plurality of fuel layers 1A are provided and arranged side by side so that their plate surfaces face each other. The direction in which the plurality of fuel layers 1A are lined up with their plate surfaces facing each other is sometimes referred to as the axial direction. The fuel layer 1A contains uranium, which is a nuclear fuel material.

遮へい部2は、燃料部1の周囲を覆うものである。遮へい部2は、例えば、金属ブロックからなり、核燃料から照射される放射線(中性子)を反射することで、燃料部1を覆った外部への放射線の漏洩を防ぐ。遮へい部2は、使用する材料の中性子散乱および中性子吸収の能力に応じて反射体と呼ばれることがある。遮へい部2は、遮へい層2Aを有する。遮へい層2Aは、燃料層1Aの外周面1Aaに沿って燃料層1Aの周囲を覆う板状に形成されている。遮へい層2Aは、板状の両板面に貫通する貫通穴2Aaを有して環状(リング状)に形成されている。遮へい部2は、貫通穴2Aaに燃料層1Aが収容される。 The shielding part 2 covers the periphery of the fuel part 1. The shielding part 2 is made of, for example, a metal block, and prevents the radiation from leaking to the outside that covers the fuel part 1 by reflecting the radiation (neutrons) irradiated from the nuclear fuel. The shielding part 2 may be called a reflector depending on the neutron scattering and neutron absorption capabilities of the material used. The shielding part 2 has a shielding layer 2A. The shielding layer 2A is formed in a plate shape to cover the periphery of the fuel layer 1A along the outer peripheral surface 1Aa of the fuel layer 1A. The shielding layer 2A has a through hole 2Aa penetrating both plate surfaces and is formed in an annular shape (ring shape). In the shielding part 2, the fuel layer 1A is accommodated in the through hole 2Aa.

遮へい部2は、軸方向の両端に設けられた燃料部1を覆うように板状に形成された蓋部2Bを有している。遮へい部2は、各遮へい層2Aおよび各蓋部2Bにより、燃料部1を密閉した内部に収容する。燃料部1を内部に収容するにあたり、内部の酸化を防止する目的から、密閉構造とした内部に例えば窒化ガス等の不活性ガスを充填するとよい。 The shielding part 2 has a lid part 2B formed in a plate shape so as to cover the fuel part 1 provided at both ends in the axial direction. The shielding part 2 accommodates the fuel part 1 in a sealed interior with each shielding layer 2A and each lid part 2B. When housing the fuel part 1 inside, it is preferable to fill the inside of the sealed structure with an inert gas such as nitriding gas, for the purpose of preventing oxidation of the inside.

熱伝導部3は、板状に形成された熱伝導層3Aを有する。熱伝導層3Aは、その板面を燃料層1Aの板面に沿って接触するように軸方向に積層して配置される。熱伝導層3Aは、燃料層1Aおよび遮へい層2Aよりも外径が大きく形成され、燃料層1Aおよび遮へい層2Aの外周に突出する。実施形態1の熱伝導層3Aは、円板状に形成され、燃料層1Aおよび遮へい層2Aの全外周から径方向に突出して設けられる。径方向とは、積層方向(軸方向)に対して直交する方向である。熱伝導層3Aは、燃料部1の燃料層1Aと交互に軸方向に積層され、密閉した遮へい部2の内部から外部に延出して設けられる。また、熱伝導層3Aは、燃料層1Aの核燃料の核分裂反応により生じる熱を遮へい層2Aの外部に固体熱伝導で伝える。熱伝導層3Aは、例えばチタン、ニッケル、銅、グラファイトを用いることができる。グラファイトは、特に、グラフェンを用いることができる。グラフェンは、炭素原子とその結合からできた六角形格子が連続した構造であり、六角形格子の連続した方向を熱の伝達方向とすることで、熱伝達効率を向上できる。熱伝導層3Aは、遮へい層2Aの外部に延出した部分が、原子炉容器51の内部にて冷媒と熱交換可能に設けられている。 The heat conduction part 3 has a heat conduction layer 3A formed in a plate shape. The thermally conductive layer 3A is stacked in the axial direction so that its plate surface contacts the plate surface of the fuel layer 1A. The heat conductive layer 3A is formed to have a larger outer diameter than the fuel layer 1A and the shielding layer 2A, and protrudes to the outer periphery of the fuel layer 1A and the shielding layer 2A. The thermally conductive layer 3A of the first embodiment is formed in a disk shape and is provided so as to protrude in the radial direction from the entire outer periphery of the fuel layer 1A and the shielding layer 2A. The radial direction is a direction perpendicular to the stacking direction (axial direction). The thermally conductive layers 3A are alternately stacked with the fuel layers 1A of the fuel section 1 in the axial direction, and are provided so as to extend from the inside of the sealed shielding section 2 to the outside. Further, the heat conductive layer 3A transmits heat generated by the fission reaction of the nuclear fuel in the fuel layer 1A to the outside of the shield layer 2A by solid heat conduction. For example, titanium, nickel, copper, or graphite can be used for the thermally conductive layer 3A. In particular, graphene can be used as graphite. Graphene has a structure in which a hexagonal lattice made of carbon atoms and their bonds is continuous, and heat transfer efficiency can be improved by setting the direction of continuous hexagonal lattice as the direction of heat transfer. The heat conductive layer 3A is provided so that a portion extending to the outside of the shielding layer 2A can exchange heat with the refrigerant inside the reactor vessel 51.

制御機構4は、燃料層1Aの径方向の外側であって、遮へい部2に配置される。実施形態1の制御機構4は、図3に示すように、制御ドラム4Aとして構成されている。制御ドラム4Aは、円筒状であって、いわゆるドラム状に形成されている。制御ドラム4Aは、円筒が原子炉11の軸方向に延びて形成されている。制御ドラム4Aは、遮へい部2および熱伝導部3を軸方向に貫通して設けられている。制御ドラム4Aは、原子炉11の軸方向の周りである周方向に複数(実施形態1では12個)が均等に配置されている。制御ドラム4Aは、円筒の周りに回転が可能に設けられている。制御ドラム4Aは、円筒の外周の一部に中性子吸収体4Aaが設けられている。中性子吸収体4Aaは、少なくとも燃料層1Aの外周面1Aaに向く位置に設けられ、例えば、ボロンカーバイト(BC)を用いることができる。中性子吸収体4Aaは、制御ドラム4Aの回転に伴って回転移動し、炉心である燃料部1の外周面1Aaに対して接近または離隔する。中性子吸収体4Aaが燃料部1に対して接近すると、燃料部1の反応度が下がり、中性子吸収体4Aaが燃料部1に対して離隔すると、燃料部1の反応度が上がる。このように、制御ドラム4Aは、中性子吸収体4Aaを回転により燃料部1に対して接近または離隔することで炉心である燃料部1の反応度を制御でき、燃料部1の炉心温度を制御できる。炉心温度は、熱伝導部3により遮へい部2の外部に取り出される炉心平均温度である。制御ドラム4Aは、その回転を駆動する図示しない駆動部を有する。駆動部は、制御ドラム4Aの中性子吸収体4Aaが燃料部1の内面に対して接近するように回転が付勢されており、制御ドラム4Aとの連結がクラッチ機構などにより絶たれた場合に自動的に中性子吸収体4Aaが燃料部1の外周面1Aaに対して接近するように構成されている。このため、例えば、燃料部1の温度が設定する温度以上となった緊急時に、自動的に中性子吸収体4Aaが燃料部1の内面に対して接近して燃料部1の反応度を下げることができる。 The control mechanism 4 is disposed on the shielding portion 2 on the outside of the fuel layer 1A in the radial direction. The control mechanism 4 of the first embodiment is configured as a control drum 4A, as shown in FIG. The control drum 4A has a cylindrical shape, and is formed in a so-called drum shape. The control drum 4A has a cylindrical shape extending in the axial direction of the nuclear reactor 11. The control drum 4A is provided so as to penetrate the shielding part 2 and the heat conducting part 3 in the axial direction. A plurality of control drums 4A (12 in the first embodiment) are evenly arranged in the circumferential direction around the axial direction of the nuclear reactor 11. The control drum 4A is rotatably provided around a cylinder. The control drum 4A is provided with a neutron absorber 4Aa on a part of the outer periphery of the cylinder. The neutron absorber 4Aa is provided at a position facing at least the outer circumferential surface 1Aa of the fuel layer 1A, and may be made of boron carbide (B 4 C), for example. The neutron absorber 4Aa rotates as the control drum 4A rotates, approaching or separating from the outer circumferential surface 1Aa of the fuel section 1, which is the reactor core. When the neutron absorber 4Aa approaches the fuel section 1, the reactivity of the fuel section 1 decreases, and when the neutron absorber 4Aa moves away from the fuel section 1, the reactivity of the fuel section 1 increases. In this way, the control drum 4A can control the reactivity of the fuel section 1, which is the reactor core, by rotating the neutron absorber 4Aa toward or away from the fuel section 1, and can control the core temperature of the fuel section 1. . The core temperature is the average core temperature extracted to the outside of the shielding part 2 by the heat conduction part 3. The control drum 4A has a drive section (not shown) that drives its rotation. The drive section is biased to rotate so that the neutron absorber 4Aa of the control drum 4A approaches the inner surface of the fuel section 1, and automatically rotates when the connection with the control drum 4A is severed by a clutch mechanism or the like. Specifically, the neutron absorber 4Aa is configured to approach the outer circumferential surface 1Aa of the fuel section 1. Therefore, for example, in an emergency when the temperature of the fuel section 1 exceeds a set temperature, the neutron absorber 4Aa can automatically approach the inner surface of the fuel section 1 to reduce the reactivity of the fuel section 1. can.

なお、制御機構4は、制御ドラム4Aに限らず、図4に示すように、制御棒4Bであってもよい。制御棒4Bは、燃料部1および熱伝導部3を軸方向に貫通して複数設けられている。制御棒4Bは、棒状に形成されている。制御棒4Bは、原子炉11の軸方向に延びて形成されている。制御棒4Bは、軸方向にスライドが可能に設けられている。制御棒4Bは、中性子吸収体により形成されている。中性子吸収体は、例えば、ボロンカーバイト(BC)を用いることができる。制御棒4Bは、スライドによって軸方向に移動し、燃料部1の筒状の内部に挿入され、または燃料部1の筒状の外部に引き抜かれることで、炉心である燃料部1に対して接近または離隔することが可能に設けられている。制御棒4Bが燃料部1に挿入されると、燃料部1の反応度が下がり、制御棒4Bが燃料部1から引き抜かれると、燃料部1の反応度が上がる。このように、制御棒4Bは、中性子吸収体をスライドにより燃料部1に対して挿入または引き抜くことで炉心である燃料部1の反応度を制御でき、燃料部1の炉心温度を制御できる。制御棒4Bは、そのスライドを駆動する図示しない駆動部を有する。駆動部は、制御棒4Bが燃料部1の内面に対して挿入されるようにスライドが付勢されており、制御棒4Bとの連結がクラッチ機構などにより絶たれた場合に自動的に制御棒4Bを燃料部1に挿入する。このため、例えば、燃料部1の温度が設定する温度以上となった緊急時に、自動的に制御棒4Bが燃料部1に挿入して燃料部1の反応度を下げることができる。 Note that the control mechanism 4 is not limited to the control drum 4A, but may be a control rod 4B as shown in FIG. 4. A plurality of control rods 4B are provided to penetrate the fuel part 1 and the heat conduction part 3 in the axial direction. The control rod 4B is formed into a rod shape. The control rod 4B is formed to extend in the axial direction of the nuclear reactor 11. The control rod 4B is provided to be slidable in the axial direction. The control rod 4B is formed of a neutron absorber. For example, boron carbide (B 4 C) can be used as the neutron absorber. The control rods 4B move in the axial direction by sliding and are inserted into the cylindrical interior of the fuel section 1 or pulled out to the cylindrical outside of the fuel section 1, thereby approaching the fuel section 1 that is the reactor core. Or it is provided so that it can be separated. When the control rod 4B is inserted into the fuel section 1, the reactivity of the fuel section 1 decreases, and when the control rod 4B is withdrawn from the fuel section 1, the reactivity of the fuel section 1 increases. In this way, the control rod 4B can control the reactivity of the fuel part 1, which is the reactor core, by sliding the neutron absorber into or out of the fuel part 1, and can control the core temperature of the fuel part 1. The control rod 4B has a drive section (not shown) that drives the slide. The drive section has a slide biased so that the control rod 4B is inserted into the inner surface of the fuel section 1, and when the connection with the control rod 4B is severed by a clutch mechanism or the like, the control rod is automatically inserted. 4B into the fuel part 1. Therefore, for example, in an emergency when the temperature of the fuel section 1 exceeds a set temperature, the control rod 4B can be automatically inserted into the fuel section 1 to lower the reactivity of the fuel section 1.

従って、実施形態1の原子炉11は、燃料部1の核燃料の核分裂反応により生じる熱を、熱伝導部3により固体熱伝導で遮へい部2の外部に取り出すことができる。そして、遮へい部2の外部に取り出された熱は、冷媒に伝達され、タービン55を回転させる。 Therefore, in the nuclear reactor 11 of the first embodiment, the heat generated by the fission reaction of the nuclear fuel in the fuel section 1 can be extracted to the outside of the shielding section 2 by solid heat conduction using the heat conducting section 3 . The heat extracted to the outside of the shielding part 2 is transferred to the refrigerant, causing the turbine 55 to rotate.

実施形態1の原子炉11は、燃料部1の核燃料の熱を熱伝導部3により固体熱伝導で遮へい部2の外部に取り出し(図2矢印参照)、冷媒に熱を伝えることができる。この結果、実施形態1の原子炉11は、放射性物質などの漏えいを防止できる。また、実施形態1の原子炉11は、熱伝導部3が燃料部1の内部および遮へい部2の外部に延出して配置されているため、内部に熱伝導部3がない場合と比べて燃料部1の核燃料の熱の伝熱距離を抑えつつ遮へい部2の外部に取り出すことができる。この結果、実施形態1の原子炉11は、高い出力温度を確保できる。なお、実施形態1の原子炉11は、固体熱伝導で熱を取り出す形態の熱伝導部3を説明したが、例えば、他の熱伝導部として、流体が封入されたヒートパイプを用いる流体熱伝導で熱を取り出す形態を用いてもよい。 In the nuclear reactor 11 of the first embodiment, the heat of the nuclear fuel in the fuel part 1 can be extracted to the outside of the shield part 2 by solid heat conduction through the heat conduction part 3 (see arrow in FIG. 2), and the heat can be transferred to the refrigerant. As a result, the nuclear reactor 11 of the first embodiment can prevent leakage of radioactive substances and the like. In addition, in the nuclear reactor 11 of Embodiment 1, since the heat conduction part 3 is arranged to extend to the inside of the fuel part 1 and the outside of the shielding part 2, compared to the case where there is no heat conduction part 3 inside, the It is possible to take out the heat of the nuclear fuel in the portion 1 to the outside of the shielding portion 2 while suppressing the heat transfer distance. As a result, the nuclear reactor 11 of the first embodiment can ensure a high output temperature. Although the nuclear reactor 11 of Embodiment 1 has been described in which the heat conduction section 3 is configured to take out heat by solid heat conduction, for example, as another heat conduction section, a fluid heat conduction section using a heat pipe in which a fluid is sealed is used. It is also possible to use a form that extracts heat.

また、実施形態1の原子炉11では、燃料部1の燃料層1Aおよび熱伝導部3の熱伝導層3Aが、板状に形成されて板面を対向して交互に重ねて配置され、板状の熱伝導層3Aは、板状の外周部が遮へい部2の外部に延出して配置される。従って、実施形態1の原子炉11は、熱伝導部3が、遮へい部2を貫通して燃料部1の内部および遮へい部2の外部に延出して配置される形態とすることができ、燃料部1の熱を遮へい部2の外部に固体熱伝導で取り出すことができる。なお、燃料層1Aの複数の板状や、熱伝導層3Aの複数の板状は、板厚を変えてもよい。また、熱伝導部3が延出していない遮へい部2の外部を断熱材で覆うことで、熱伝導部3による熱の回収効率を向上できる。 In addition, in the nuclear reactor 11 of the first embodiment, the fuel layer 1A of the fuel section 1 and the heat conductive layer 3A of the heat conductive section 3 are formed in plate shapes and arranged alternately overlapping each other with their plate surfaces facing each other. The heat conductive layer 3</b>A is arranged such that its plate-shaped outer peripheral portion extends outside the shielding portion 2 . Therefore, in the nuclear reactor 11 of Embodiment 1, the heat conduction part 3 can be arranged so as to penetrate the shield part 2 and extend to the inside of the fuel part 1 and the outside of the shield part 2. The heat of the portion 1 can be taken out to the outside of the shielding portion 2 by solid heat conduction. Note that the thickness of the plurality of plate shapes of the fuel layer 1A and the plurality of plate shapes of the heat conductive layer 3A may be changed. Moreover, by covering the outside of the shielding part 2 from which the heat conduction part 3 does not extend with a heat insulating material, the efficiency of heat recovery by the heat conduction part 3 can be improved.

また、実施形態1の原子炉11では、図6に示すように、熱伝導部3は、各熱伝導層3Aの遮へい部2の外部に延出する部分に切込3Bが複数形成されているとよい。切込3Bは、遮へい部2の外面から遠ざかるように径方向に延びて形成され、遮へい部2の外周に沿うように、熱伝導部3の外周に複数並んで形成されている。即ち、熱伝導部3は、遮へい部2の外部に延出する部分であって、熱交換器52で熱交換を行うため冷媒循環手段54を循環する冷媒と熱交換を行う部分に、切込3Bにより冷媒を通過させる隙間が形成される。従って、実施形態1の原子炉11は、熱伝導部3で取り出した熱を冷媒に伝達する効率を高められる。 In addition, in the nuclear reactor 11 of the first embodiment, as shown in FIG. 6, the heat conduction section 3 has a plurality of cuts 3B formed in the portion of each heat conduction layer 3A that extends to the outside of the shielding section 2. Good. The cuts 3</b>B are formed to extend in the radial direction away from the outer surface of the shielding part 2 , and are formed in plural lines on the outer periphery of the heat conductive part 3 along the outer periphery of the shielding part 2 . That is, the heat conduction part 3 is a part extending to the outside of the shielding part 2, and has a cut in the part that exchanges heat with the refrigerant circulating in the refrigerant circulation means 54 in order to perform heat exchange in the heat exchanger 52. 3B forms a gap through which the refrigerant passes. Therefore, the nuclear reactor 11 of the first embodiment can improve the efficiency of transmitting the heat extracted by the heat conduction section 3 to the refrigerant.

遮へい部2の外面から遠ざかるように径方向に延びて形成された熱伝導部3において、取り出す熱は、燃料部1に近い径方向内側が高く、燃料部1から遠い径方向外側が低くなる。例えば、図6において、遮へい部2の外面から遠ざかるように径方向に延びて形成された熱伝導部3において、仮想線Lにより径方向に二つの領域に分けた場合、仮想線Lよりも径方向内側が径方向外側よりも取り出した熱の温度が高い。このため、熱伝導部3において、冷媒と熱交換を行うにあたり、冷媒を先に仮想線Lよりも径方向外側に通過させ、その後に戻して仮想線Lよりも径方向内側に通過させてから、冷媒を熱交換器52に送り出す。このようにすれば、熱伝導部3で取り出した熱を冷媒に伝達する効率を高められる。 In the heat conduction part 3 formed to extend in the radial direction away from the outer surface of the shielding part 2, the heat extracted is high on the radial inside near the fuel part 1 and low on the radial outside far from the fuel part 1. For example, in FIG. 6, when the heat conduction part 3 formed to extend in the radial direction away from the outer surface of the shielding part 2 is divided into two regions in the radial direction by an imaginary line L, the diameter is smaller than the imaginary line L. The temperature of the extracted heat is higher on the inside in the radial direction than on the outside in the radial direction. Therefore, when performing heat exchange with the refrigerant in the heat conduction section 3, the refrigerant is first passed radially outward from the imaginary line L, and then returned to pass radially inward from the imaginary line L. , delivers the refrigerant to the heat exchanger 52. In this way, the efficiency of transmitting the heat taken out by the heat conduction section 3 to the refrigerant can be increased.

また、実施形態1の原子炉11では、図7に示すように、熱伝導部3は、各熱伝導層3Aの遮へい部2の外部に延出する部分に、冷媒を流通する伝熱管3Cが貫通されているとよい。伝熱管3Cは、遮へい部2の外周に沿うように、熱伝導部3の外周に複数並んで形成されている。即ち、熱伝導部3は、遮へい部2の外部に延出する部分であって、熱交換器52で熱交換を行うため冷媒循環手段54を循環する冷媒と熱交換を行う部分に、冷媒を流通する伝熱管3Cが貫通されている。従って、実施形態1の原子炉11は、熱伝導部3で取り出した熱を伝熱管3Cを介して冷媒に伝達する。また、実施形態1の原子炉11は、熱伝導部3で取り出した熱を伝熱管3Cで間接的に冷媒に伝達するため、放射線の遮へい性を維持できる。 In addition, in the nuclear reactor 11 of the first embodiment, as shown in FIG. 7, the heat transfer section 3 includes a heat transfer tube 3C through which a refrigerant flows in a portion of each heat transfer layer 3A extending outside the shielding section 2. It is good if it is penetrated. A plurality of heat exchanger tubes 3</b>C are formed along the outer periphery of the heat conductive part 3 so as to extend along the outer periphery of the shielding part 2 . That is, the heat conduction part 3 is a part extending to the outside of the shielding part 2, in which the refrigerant is exchanged with the refrigerant circulating in the refrigerant circulation means 54 in order to perform heat exchange in the heat exchanger 52. The circulating heat exchanger tube 3C is penetrated. Therefore, the nuclear reactor 11 of the first embodiment transfers the heat extracted by the heat transfer section 3 to the refrigerant via the heat transfer tube 3C. In addition, the nuclear reactor 11 of the first embodiment indirectly transfers the heat extracted by the heat conduction section 3 to the refrigerant through the heat transfer tube 3C, so that radiation shielding performance can be maintained.

例えば、図7において、遮へい部2の外面から遠ざかるように径方向に延びて形成された熱伝導部3において、仮想線Lにより径方向に二つの領域に分けた場合、仮想線Lよりも径方向内側が径方向外側よりも取り出した熱の温度が高い。このため、伝熱管3Cは、径方向に複数配置し、仮想線Lよりも径方向内側に配置された内側伝熱管3Caと、仮想線Lよりも径方向外側に配置された外側伝熱管3Cbとを含む。そして、熱伝導部3において、冷媒と熱交換を行うにあたり、冷媒を先に外側伝熱管3Cbに流通させ、その後に戻して内側伝熱管3Caに流通させてから、冷媒を熱交換器52に送り出す。このようにすれば、熱伝導部3で取り出した熱を冷媒に伝達する効率を高められる。 For example, in FIG. 7, when the heat conduction part 3 that is formed to extend in the radial direction away from the outer surface of the shielding part 2 is divided into two regions in the radial direction by an imaginary line L, the diameter is smaller than that of the imaginary line L. The temperature of the extracted heat is higher on the inside in the radial direction than on the outside in the radial direction. Therefore, a plurality of heat exchanger tubes 3C are arranged in the radial direction, with an inner heat exchanger tube 3Ca disposed radially inward from the imaginary line L, and an outer heat exchanger tube 3Cb disposed radially outward from the imaginary line L. including. When performing heat exchange with the refrigerant in the heat conduction section 3, the refrigerant is first passed through the outer heat exchanger tube 3Cb, then returned and passed through the inner heat exchanger tube 3Ca, and then sent out to the heat exchanger 52. . In this way, the efficiency of transmitting the heat taken out by the heat conduction section 3 to the refrigerant can be increased.

また、実施形態1の原子炉11では、図8に示すように、熱伝導部3において、各熱伝導層3Aは、燃料部1の燃料層1Aと重なる軸方向に複数の板材3Dを重ねて板状に形成されているとよい。熱伝導部3は、例えばグラフェンを用いることができるが、グラフェンは、炭素原子とその結合からできた六角形格子が連続した構造であり、六角形格子の連続した方向で熱の伝達性が高い。このグラフェンをシート状の板材3Dとすることで、六角形格子が板材3Dの面に沿って連続する。そして、この板材3Dを軸方向に重ねて板状に形成する。すると、熱伝導部3は、板材3Dの面に沿って径方向に熱の伝達性が高くなる。このため、熱伝導部3は、遮へい部2の外部に径方向に延出する部分に対して熱の伝達性が高くなる。この結果、実施形態1の原子炉11は、熱伝導部3で取り出した熱を冷媒に伝達する効率を高められる。 In addition, in the nuclear reactor 11 of the first embodiment, as shown in FIG. Preferably, it is formed into a plate shape. For example, graphene can be used for the heat conduction part 3. Graphene has a structure in which a hexagonal lattice made of carbon atoms and their bonds is continuous, and has high heat conductivity in the continuous direction of the hexagonal lattice. . By using this graphene as the sheet-like plate material 3D, the hexagonal lattice is continuous along the surface of the plate material 3D. Then, the plate materials 3D are stacked in the axial direction to form a plate shape. Then, the heat conduction part 3 has high heat transferability in the radial direction along the surface of the plate material 3D. Therefore, the thermally conductive portion 3 has high heat transferability to the portion extending in the radial direction to the outside of the shielding portion 2. As a result, the nuclear reactor 11 of the first embodiment can improve the efficiency of transmitting the heat extracted by the heat conduction section 3 to the refrigerant.

また、実施形態1の原子炉11において、図9に示すように、燃料部1の燃料層1Aは、核燃料1Abと、被覆部1Acとを有する。核燃料1Abは、例えば、ウランの粉末を板状(円板状)に焼き固めて形成することができる。被覆部1Acは、核燃料1Abの表面全体を覆うように設けられている。被覆部1Acは、金属または炭素化合物からなり、核燃料1Abの核分裂により放出される核分裂生成物(FP)の放出を抑えるように保持するものである。 Further, in the nuclear reactor 11 of the first embodiment, as shown in FIG. 9, the fuel layer 1A of the fuel section 1 includes a nuclear fuel 1Ab and a covering section 1Ac. The nuclear fuel 1Ab can be formed, for example, by baking uranium powder into a plate shape (disk shape). The covering portion 1Ac is provided to cover the entire surface of the nuclear fuel 1Ab. The covering part 1Ac is made of a metal or a carbon compound, and is held so as to suppress the release of fission products (FP) released by nuclear fission of the nuclear fuel 1Ab.

このように、実施形態1の原子炉11では、核燃料1Abの表面に被覆部1Acを設けた燃料部1と、上述した熱伝導部3とを備える構成である。従って、実施形態1の原子炉11は、核分裂生成物を保持しつつ、熱伝導部3により炉心である燃料部1の核燃料1Abから効率よく熱を取り出すことができる。 As described above, the nuclear reactor 11 of the first embodiment is configured to include the fuel section 1 in which the coating section 1Ac is provided on the surface of the nuclear fuel 1Ab, and the heat conduction section 3 described above. Therefore, the nuclear reactor 11 of the first embodiment can efficiently extract heat from the nuclear fuel 1Ab of the fuel section 1, which is the reactor core, by the heat conduction section 3 while retaining the fission products.

具体的に、実施形態1の原子炉11では、燃料部1は、板状に形成された核燃料1Abの表面に被覆部1Acが設けられた燃料層1Aを構成する。熱伝導部3は、板状に形成された熱伝導層3Aを構成し、燃料層1Aの被覆部1Acに面して積層して設けられる。即ち、燃料部1と、熱伝導部3とは、燃料層1Aの被覆部1Acに面して熱伝導層3Aが積層して設けられており、被覆部1Acに面して熱伝導部3と燃料部1とが積層して設けられている。従って、実施形態1の原子炉11は、共に板状に形成された燃料層1Aおよび熱伝導層3Aの積層構造により、燃料部1の核燃料1Abから効率よく熱を取り出すことができる。また、実施形態1の原子炉11は、板状に形成された核燃料1Abの表面に被覆部1Acが設けられた燃料層1Aを構成することで、多数のペレット状の核燃料の表面に被覆部を設けることと比較して、被覆部1Acを設ける表面積を低減でき、燃料充填率を向上できる。なお、板状に形成された核燃料1Abの表面に被覆部1Acが設けられた燃料層1Aは、制御機構4が制御棒4Bの場合、制御棒4Bを貫通する穴の内面にも被覆部1Acが設けられる。 Specifically, in the nuclear reactor 11 of the first embodiment, the fuel section 1 constitutes a fuel layer 1A in which a coating section 1Ac is provided on the surface of a nuclear fuel 1Ab formed in a plate shape. The heat conductive part 3 constitutes a heat conductive layer 3A formed in a plate shape, and is provided in a laminated manner facing the covering part 1Ac of the fuel layer 1A. That is, the fuel part 1 and the heat conductive part 3 are provided with a heat conductive layer 3A stacked on each other facing the covering part 1Ac of the fuel layer 1A, and a heat conducting part 3 and the heat conducting part 3 facing the covering part 1Ac. The fuel portion 1 is provided in a stacked manner. Therefore, the nuclear reactor 11 of the first embodiment can efficiently extract heat from the nuclear fuel 1Ab of the fuel section 1 due to the laminated structure of the fuel layer 1A and the heat conductive layer 3A, both of which are formed in a plate shape. In addition, the nuclear reactor 11 of the first embodiment has a fuel layer 1A in which a covering part 1Ac is provided on the surface of the nuclear fuel 1Ab formed in a plate shape, thereby providing a covering part on the surface of a large number of pellet-shaped nuclear fuels. Compared to the case where the covering portion 1Ac is provided, the surface area on which the covering portion 1Ac is provided can be reduced, and the fuel filling rate can be improved. In addition, in the fuel layer 1A in which the covering part 1Ac is provided on the surface of the nuclear fuel 1Ab formed in a plate shape, when the control mechanism 4 is a control rod 4B, the covering part 1Ac is also provided on the inner surface of the hole penetrating the control rod 4B. provided.

また、具体的に、実施形態1の原子炉11では、図10から図12に示すように、燃料部1は、燃料層1Aをなす核燃料1Abが、複数のブロック状の核燃料部材1Bとして構成され、各核燃料部材1Bを図9に示すように板状に纏めた表面に被覆部1Acが設けられる。図10では、ブロック状の核燃料部材1Bが矩形状に形成されて端部を互いに接触できるように並べられた例を示している。図11では、ブロック状の核燃料部材1Bが三角形状に形成されて端部を互いに接触できるように並べられた例を示している。図12では、ブロック状の核燃料部材1Bが六角形状に形成されて端部を互いに接触できるように並べられた例を示している。このように、図10から図12に示す形態は、平たく形成されたブロック状の各核燃料部材1Bが、板状に並べられ核燃料1Abを構成している。従って、実施形態1の原子炉11は、複数のブロック状の核燃料部材1Bにより核燃料1Abを構成し、これを纏めて被覆部1Acを設けることで、図2から図5や図9に示すような板状の燃料部1を容易に製造できる。 Moreover, specifically, in the nuclear reactor 11 of Embodiment 1, as shown in FIGS. 10 to 12, in the fuel section 1, the nuclear fuel 1Ab forming the fuel layer 1A is configured as a plurality of block-shaped nuclear fuel members 1B. As shown in FIG. 9, a covering portion 1Ac is provided on the surface of each nuclear fuel member 1B assembled into a plate shape. FIG. 10 shows an example in which block-shaped nuclear fuel members 1B are formed into rectangular shapes and arranged so that their ends can touch each other. FIG. 11 shows an example in which block-shaped nuclear fuel members 1B are formed in a triangular shape and arranged so that their ends can touch each other. FIG. 12 shows an example in which block-shaped nuclear fuel members 1B are formed in a hexagonal shape and arranged so that their ends can touch each other. In this manner, in the embodiments shown in FIGS. 10 to 12, each flat block-shaped nuclear fuel member 1B is arranged in a plate shape to constitute a nuclear fuel 1Ab. Therefore, in the nuclear reactor 11 of the first embodiment, a nuclear fuel 1Ab is configured by a plurality of block-shaped nuclear fuel members 1B, and by collectively providing a covering part 1Ac, the reactor 11 can be configured as shown in FIGS. 2 to 5 and 9. The plate-shaped fuel section 1 can be easily manufactured.

また、具体的に、実施形態1の原子炉11では、図13に示すように、燃料部1は、粒子状に形成された核燃料1Abの表面に被覆部1Acが設けられた核燃料部材1Cを有している。そして、図14に示すように、核燃料部材1Cは、熱伝導部3’を母材として複数纏めて構成されている。熱伝導部3’は、例えばチタン、ニッケル、銅、グラファイトを用いることができる。グラファイトは、特に、グラフェンを用いることができる。核燃料部材1Cは、例えば、直径1mmとされ、被覆部1Acは、例えば、セラミックスであることが好ましい。従って、実施形態1の原子炉11は、熱伝導部3’を母材として核燃料部材1Cを複数纏めた燃料部1を構成することで、核分裂生成物を保持しつつ、熱伝導部3により炉心である燃料部1の核燃料1Abから効率よく熱を取り出すことができる。また、実施形態1の原子炉11は、図14に示す燃料部1において、図2から図5に示すような板状の燃料層1Aとして形成することができる。また、実施形態1の原子炉11は、図14に示す燃料部1において、図10から図12に示すようなブロック状の核燃料部材1Bとし、その表面の被覆部1Acを省略して形成することができる。また、実施形態1の原子炉11は、図14に示す燃料部1において、図2に示すような板状の燃料層1Aとして形成することができ、板状の熱伝導部3(熱伝導層3A)が積層して設けられる構成とする。即ち、熱伝導部3’を母材として核燃料部材1Cを複数纏めた燃料部1、および熱伝導部3’とは別の熱伝導部(熱伝導部3(熱伝導層3A))は、互いに板状に形成されて積層して設けられる。これにより、炉心である燃料部1の核燃料1Abから効率よく熱を取り出す効果を顕著に得ることができる。なお、実施形態1の原子炉11は、図14に示す燃料部1において板状の燃料層として形成し、熱伝導部3’とは別の熱伝導部を有さず、当該燃料層だけを複数積層する構成としてもよい。 Specifically, in the nuclear reactor 11 of Embodiment 1, as shown in FIG. 13, the fuel part 1 includes a nuclear fuel member 1C in which a coating part 1Ac is provided on the surface of nuclear fuel 1Ab formed in the form of particles. are doing. As shown in FIG. 14, the nuclear fuel member 1C is composed of a plurality of heat conductive parts 3' as a base material. For example, titanium, nickel, copper, or graphite can be used for the heat conductive part 3'. In particular, graphene can be used as graphite. It is preferable that the nuclear fuel member 1C has a diameter of, for example, 1 mm, and the covering portion 1Ac is made of, for example, ceramics. Therefore, in the nuclear reactor 11 of the first embodiment, by configuring the fuel part 1 in which a plurality of nuclear fuel members 1C are assembled using the heat conduction part 3' as a base material, the heat conduction part 3 is able to hold the nuclear fission products while the reactor core Heat can be efficiently extracted from the nuclear fuel 1Ab of the fuel section 1. Moreover, the nuclear reactor 11 of Embodiment 1 can be formed as a plate-shaped fuel layer 1A as shown in FIGS. 2 to 5 in the fuel section 1 shown in FIG. 14. Furthermore, in the nuclear reactor 11 of the first embodiment, the fuel part 1 shown in FIG. 14 is formed by using a block-shaped nuclear fuel member 1B as shown in FIGS. 10 to 12, and omitting the coating part 1Ac on the surface thereof. I can do it. Moreover, the nuclear reactor 11 of Embodiment 1 can be formed as a plate-shaped fuel layer 1A as shown in FIG. 2 in the fuel part 1 shown in FIG. 3A) are provided in a stacked manner. That is, the fuel part 1, which is made up of a plurality of nuclear fuel members 1C using the heat conductive part 3' as a base material, and the heat conductive part (thermal conductive part 3 (thermal conductive layer 3A)) different from the heat conductive part 3' are mutually It is formed into a plate shape and is provided in a laminated manner. Thereby, it is possible to significantly obtain the effect of efficiently extracting heat from the nuclear fuel 1Ab of the fuel section 1, which is the reactor core. In addition, the nuclear reactor 11 of Embodiment 1 is formed as a plate-shaped fuel layer in the fuel part 1 shown in FIG. A structure in which a plurality of layers are stacked may be used.

また、具体的に、実施形態1の原子炉11では、熱伝導部3(熱伝導層3A)は、固体熱伝導により燃料部1の熱を外部に伝える。従って、実施形態1の原子炉11は、放射線の漏えいを抑制しつつ熱を取り出すことができ、高い出力温度を確保できる。 Moreover, specifically, in the nuclear reactor 11 of Embodiment 1, the heat conduction part 3 (heat conduction layer 3A) transmits the heat of the fuel part 1 to the outside by solid heat conduction. Therefore, the nuclear reactor 11 of Embodiment 1 can extract heat while suppressing leakage of radiation, and can ensure a high output temperature.

また、実施形態1の原子炉11の構成においては、燃料部1は、核燃料1Abの配置密度を均等とした場合、外周部分よりも中央部分の温度が高くなる。実施形態1の原子炉11は、燃料部1の径方向である外周側に熱を取り出す構成であり、熱を取り出しやすくするには、核燃料1Abの温度分布を均等にすることが好ましい。このため、実施形態1の原子炉11は、燃料部1において、核燃料1Abの配置密度を、外周部分よりも中央部分を低くすることで、燃料部1の温度分布を均等にし、熱を取り出しやすくすることができる。 Further, in the configuration of the nuclear reactor 11 of the first embodiment, when the arrangement density of the nuclear fuels 1Ab is made uniform, the temperature of the central portion of the fuel section 1 is higher than that of the outer peripheral portion. The nuclear reactor 11 of Embodiment 1 is configured to extract heat toward the outer peripheral side in the radial direction of the fuel section 1, and in order to facilitate the extraction of heat, it is preferable to equalize the temperature distribution of the nuclear fuel 1Ab. Therefore, in the nuclear reactor 11 of Embodiment 1, the arrangement density of the nuclear fuel 1Ab in the fuel part 1 is made lower in the central part than in the outer peripheral part, thereby making the temperature distribution of the fuel part 1 uniform and making it easier to extract heat. can do.

[実施形態2]
図15は、実施形態2に係る原子炉を示す模式図である。図16は、実施形態2に係る原子炉の断面模式図である。図17は、実施形態2に係る原子炉の他の形態を示す模式図である。図18は、実施形態2に係る原子炉の熱伝導部の拡大模式図である。図19は、実施形態2に係る原子炉の他の形態を示す模式図である。図20は、図18に示す形態の説明図である。
[Embodiment 2]
FIG. 15 is a schematic diagram showing a nuclear reactor according to the second embodiment. FIG. 16 is a schematic cross-sectional view of a nuclear reactor according to Embodiment 2. FIG. 17 is a schematic diagram showing another form of the nuclear reactor according to the second embodiment. FIG. 18 is an enlarged schematic diagram of the heat conduction section of the nuclear reactor according to the second embodiment. FIG. 19 is a schematic diagram showing another form of the nuclear reactor according to the second embodiment. FIG. 20 is an explanatory diagram of the form shown in FIG. 18.

図15および図16に示すように、原子炉12は、燃料部(炉心)101と、遮へい部102と、熱伝導部103と、を含む。また、原子炉12は、図には明示しないが、実施形態1で説明した制御機構4を含む。 As shown in FIGS. 15 and 16, the nuclear reactor 12 includes a fuel section (core) 101, a shield section 102, and a heat conduction section 103. Although not explicitly shown in the drawings, the nuclear reactor 12 also includes the control mechanism 4 described in the first embodiment.

燃料部101は、全体として柱状に形成されている。実施形態2では、燃料部101は、ほぼ円柱状に形成されている。この柱状の延びる方向を軸方向という場合もある。また、軸方向に直交する方向を径方向と言う場合もある。燃料部101は、核燃料であるウランを含む。 The fuel portion 101 is formed into a columnar shape as a whole. In the second embodiment, the fuel portion 101 is formed into a substantially cylindrical shape. The direction in which this columnar shape extends is sometimes referred to as the axial direction. Further, the direction perpendicular to the axial direction is sometimes referred to as the radial direction. The fuel portion 101 contains uranium, which is nuclear fuel.

遮へい部102は、燃料部101の周囲を覆うものである。遮へい部102は、金属ブロックからなり、核燃料から照射される放射線(中性子)を反射することで、燃料部101を覆った外部への放射線の漏洩を防ぐ。遮へい部102は、使用する材料の中性子散乱および中性子吸収の能力に応じて反射体と呼ばれることがある。 The shielding part 102 covers the periphery of the fuel part 101. The shielding part 102 is made of a metal block and prevents radiation from leaking to the outside of the fuel part 101 by reflecting radiation (neutrons) irradiated from the nuclear fuel. The shield 102 may be referred to as a reflector depending on the neutron scattering and neutron absorption capabilities of the material used.

遮へい部102は、実施形態2では、燃料部101に柱形状の全外周を囲むように筒状に形成された胴体102Aと、胴体102Aの両端を塞ぐ各蓋体102Bと、を含む。なお、遮へい部102は、燃料部101を内部に収容するにあたり、内部の酸化を防止する目的から、密閉構造とした内部に例えば窒化ガス等の不活性ガスを充填するとよい。 In the second embodiment, the shielding part 102 includes a body 102A formed in a cylindrical shape so as to surround the entire outer periphery of the columnar shape of the fuel part 101, and lid bodies 102B that close both ends of the body 102A. In addition, when the shielding part 102 accommodates the fuel part 101 therein, it is preferable to fill the inside of the shielding part 102 with an inert gas such as nitriding gas in order to prevent oxidation of the inside.

熱伝導部103は、軸方向に延びる棒状に形成されている。熱伝導部103は、遮へい部102を貫通し、当該遮へい部102が覆う燃料部101の内部に挿入されることで、燃料部101の内部および遮へい部102の外部に延出して配置されている。熱伝導部103は、燃料部101の核燃料の核分裂反応により生じる熱を遮へい部102の外部に固体熱伝導で伝える。熱伝導部103は、例えばチタン、ニッケル、銅、グラファイトを用いることができる。グラファイトは、特に、グラフェンを用いることができる。熱伝導部103の遮へい部102の外部に延出した部分は、原子炉容器51の内部にて冷媒と熱交換可能に設けられている。 The heat conduction portion 103 is formed into a rod shape extending in the axial direction. The heat conduction part 103 penetrates the shielding part 102 and is inserted into the inside of the fuel part 101 covered by the shielding part 102, so that it extends to the inside of the fuel part 101 and the outside of the shielding part 102. . The heat conduction section 103 transmits heat generated by the fission reaction of the nuclear fuel in the fuel section 101 to the outside of the shielding section 102 by solid heat conduction. For example, titanium, nickel, copper, or graphite can be used for the heat conduction part 103. In particular, graphene can be used as graphite. A portion of the heat conduction portion 103 extending outside the shielding portion 102 is provided to be able to exchange heat with the refrigerant inside the reactor vessel 51.

制御機構4は、実施形態1で説明した図3で示す制御ドラム4Aとして構成できる。制御ドラム4Aは、遮へい部102に配置される。制御ドラム4Aの詳細構成は実施形態1で説明したものであり、ここでは説明を省略する。また、制御機構4は、実施形態1で説明した図4で示す制御棒4Bとして構成できる。制御棒4Bは、燃料部1において熱伝導部103と平行に軸方向に延びて配置される。制御棒4Bの詳細構成は実施形態1で説明したものであり、ここでは説明を省略する。 The control mechanism 4 can be configured as the control drum 4A shown in FIG. 3 described in the first embodiment. The control drum 4A is arranged in the shielding part 102. The detailed configuration of the control drum 4A is the same as described in the first embodiment, and the explanation will be omitted here. Further, the control mechanism 4 can be configured as the control rod 4B shown in FIG. 4 described in the first embodiment. The control rod 4B is arranged in the fuel section 1 so as to extend in the axial direction parallel to the heat conduction section 103. The detailed configuration of the control rod 4B has been explained in the first embodiment, and the explanation will be omitted here.

従って、実施形態2の原子炉12は、燃料部101の核燃料の核分裂反応により生じる熱を、熱伝導部103により固体熱伝導で遮へい部2の外部に取り出すことができる。そして、遮へい部102の外部に取り出された熱は、冷媒に伝達され、タービン55を回転させる。 Therefore, in the nuclear reactor 12 of the second embodiment, the heat generated by the fission reaction of the nuclear fuel in the fuel section 101 can be extracted to the outside of the shielding section 2 by solid heat conduction using the heat conduction section 103. The heat extracted to the outside of the shielding part 102 is transferred to the refrigerant, causing the turbine 55 to rotate.

実施形態2の原子炉12は、燃料部101の核燃料の熱を熱伝導部103により固体熱伝導で遮へい部102の外部に取り出し(図15矢印参照)、冷媒に熱を伝えることができる。この結果、実施形態2の原子炉12は、放射性物質などの漏えいを防止できる。また、実施形態2の原子炉12は、熱伝導部103が燃料部101の内部および遮へい部102の外部に延出して配置されているため、燃料部101の核燃料の熱の伝熱距離を抑えつつ遮へい部102の外部に取り出すことができる。この結果、実施形態2の原子炉12は、高い出力温度を確保できる。なお、実施形態2の原子炉12は、固体熱伝導で熱を取り出す形態の熱伝導部103を説明したが、例えば、他の熱伝導部として、流体が封入されたヒートパイプを用いる流体熱伝導で熱を取り出す形態を用いてもよい。 In the nuclear reactor 12 of the second embodiment, the heat of the nuclear fuel in the fuel section 101 can be extracted to the outside of the shielding section 102 by solid heat conduction through the heat conduction section 103 (see arrow in FIG. 15), and the heat can be transferred to the refrigerant. As a result, the nuclear reactor 12 of the second embodiment can prevent leakage of radioactive substances and the like. In addition, in the nuclear reactor 12 of the second embodiment, the heat conduction section 103 is arranged to extend inside the fuel section 101 and outside the shielding section 102, so that the heat transfer distance of the nuclear fuel in the fuel section 101 is suppressed. It can be taken out of the shielding part 102 at the same time. As a result, the nuclear reactor 12 of the second embodiment can ensure a high output temperature. Although the nuclear reactor 12 of Embodiment 2 has been described as having a heat conduction section 103 that takes out heat by solid heat conduction, for example, another heat conduction section may be a fluid heat conduction section using a heat pipe filled with fluid. It is also possible to use a form that extracts heat.

また、実施形態2の原子炉12では、図17に示すように、熱伝導部103は、燃料部101を貫通し、遮へい部102の軸方向の反対側の各外部に延出して配置されていてもよい。即ち、図17に示す原子炉12は、熱伝導部103が遮へい部102の両蓋体102Bを貫通して軸方向に延び、遮へい部102の反対側の各外部にて配置される。従って、実施形態2の原子炉12は、燃料部101の熱を遮へい部102の反対側の各外部に固体熱伝導で取り出すことができる(図17矢印参照)。 Further, in the nuclear reactor 12 of the second embodiment, as shown in FIG. 17, the heat conduction part 103 is arranged to penetrate the fuel part 101 and extend to the outside on the opposite side of the shielding part 102 in the axial direction. It's okay. That is, in the nuclear reactor 12 shown in FIG. 17, the heat conduction part 103 extends in the axial direction through both lids 102B of the shielding part 102, and is arranged at each outside on the opposite side of the shielding part 102. Therefore, the nuclear reactor 12 of the second embodiment can take out the heat of the fuel section 101 to the outside on the opposite side of the shielding section 102 by solid heat conduction (see arrows in FIG. 17).

また、実施形態2の原子炉12では、図18に示すように、熱伝導部103は、棒状の延在方向に連続する板材103Dを重ねて棒状に形成されているとよい。熱伝導部103は、例えばグラフェンを用いることができるが、グラフェンは、炭素原子とその結合からできた六角形格子が連続した構造であり、六角形格子の連続した方向で熱の伝達性が高い。このグラフェンをシート状の板材103Dとすることで、六角形格子が板材103Dの面に沿って連続する。そして、この板材103Dを重ねて棒状に形成する。すると、熱伝導部103は、板材103Dの面に沿って棒状の延在方向である軸方向に熱の伝達性が高くなる。このため、熱伝導部103は、遮へい部102の外部に軸方向に延出する部分に対して熱の伝達性が高くなる。この結果、実施形態2の原子炉12は、熱伝導部103で取り出した熱を冷媒に伝達する効率を高められる。 Further, in the nuclear reactor 12 of the second embodiment, as shown in FIG. 18, the heat conduction part 103 is preferably formed into a bar shape by stacking continuous plate members 103D in the extending direction of the bar shape. For example, graphene can be used for the heat conduction part 103. Graphene has a structure in which a hexagonal lattice made of carbon atoms and their bonds is continuous, and has high heat conductivity in the continuous direction of the hexagonal lattice. . By using this graphene as the sheet-like plate material 103D, the hexagonal lattice is continuous along the surface of the plate material 103D. Then, the plate materials 103D are stacked to form a bar shape. Then, the thermally conductive portion 103 has high heat transferability in the axial direction, which is the direction in which the rod shape extends along the surface of the plate material 103D. Therefore, the thermally conductive portion 103 has high heat transferability with respect to the portion extending in the axial direction to the outside of the shielding portion 102. As a result, the nuclear reactor 12 of the second embodiment can improve the efficiency of transmitting the heat extracted by the heat conduction section 103 to the refrigerant.

また、実施形態2の原子炉12では、図19、図20に示すように、熱伝導部103が延出されていない遮へい部102の外部に取り付けられる別の熱伝導部104を含むとよい。実施形態2において、熱伝導部103が延出されていない遮へい部102とは、胴体102Aであり、この胴体102Aの外部に別の熱伝導部104を取り付ける。別の熱伝導部104は、図19、図20に示すように、遮へい部102の胴体102Aの周りを囲むリング状に形成され、軸方向に複数並んで取り付ける。また、図には明示しないが、別の熱伝導部104は、軸方向に延びる板状に形成され、遮へい部102の胴体102Aの周りを囲むように複数並んで取り付けられてもよい。別の熱伝導部104は、例えばチタン、ニッケル、銅、グラファイトを用いることができる。グラファイトは、特に、グラフェンを用いることができる。別の熱伝導部104を設けることにより、熱伝導部103が延出されていない遮へい部102の外部からも熱を取り出せる(図19矢印参照)。この別の熱伝導部104が取り出した熱は、実施形態1において図6、図7を参照して説明したように、冷媒と熱交換を行うにあたり、冷媒を先に径方向外側に通過させ、その後に戻して径方向内側に通過させてから、冷媒を熱交換器52に送り出す。 Furthermore, as shown in FIGS. 19 and 20, the nuclear reactor 12 of the second embodiment may include another heat conduction section 104 attached to the outside of the shielding section 102 from which the heat conduction section 103 is not extended. In the second embodiment, the shielding part 102 from which the heat conductive part 103 is not extended is the body 102A, and another heat conductive part 104 is attached to the outside of the body 102A. As shown in FIGS. 19 and 20, another heat conduction section 104 is formed in a ring shape surrounding the body 102A of the shielding section 102, and is attached in plural in the axial direction. Further, although not clearly shown in the drawings, a plurality of other heat conductive sections 104 may be formed in a plate shape extending in the axial direction, and may be attached in plural so as to surround the body 102A of the shielding section 102. For example, titanium, nickel, copper, or graphite can be used for the other heat conductive part 104. In particular, graphene can be used as graphite. By providing another heat conduction part 104, heat can also be extracted from the outside of the shielding part 102 from which the heat conduction part 103 is not extended (see arrow in FIG. 19). As described with reference to FIGS. 6 and 7 in the first embodiment, the heat taken out by this other heat conduction section 104 is exchanged with the refrigerant by first passing the refrigerant outward in the radial direction. After that, the refrigerant is returned and passed radially inward, and then the refrigerant is delivered to the heat exchanger 52 .

また、実施形態2の原子炉12では、熱伝導部103は、棒状の延在方向に連続する板材103Dを重ねて棒状に形成された形態において、棒状の周面をなす板材103Dの端103Daを、遮へい部102の外部に取り付けた別の熱伝導部104に向けて配置されているとよい。図18に示すような棒状の延在方向に連続する板材103Dの面を重ねて棒状に形成された熱伝導部103は、棒状の周面をなす板材103Dの端103Daが、板材103Dの面に沿って反対方向に向いている。そして、この棒状の周面をなす板材103Dの端103Daを、図20に矢印で示すように、遮へい部102の外部に取り付けた別の熱伝導部104に向けて配置する。上述したように、熱伝導部103は、板材103Dの面に沿って熱の伝達性が高くなる。このため、板材103Dの面に沿って反対方向に向く端103Daを別の熱伝導部104に向けることで、別の熱伝導部104に対して熱の伝達性が高くなる。この結果、実施形態2の原子炉12は、熱伝導部103で取り出した熱を別の熱伝導部104で効率よく取り出せるため、冷媒に伝達する効率を高められる。 In addition, in the nuclear reactor 12 of the second embodiment, the heat conduction part 103 is formed into a rod shape by overlapping the plate materials 103D that are continuous in the extending direction of the rod shape. , it is preferable that the heat conducting part 104 be disposed toward another heat conducting part 104 attached to the outside of the shielding part 102. As shown in FIG. 18, the heat conduction part 103 is formed into a rod shape by overlapping the surfaces of the plate material 103D that are continuous in the extending direction of the rod shape. facing in the opposite direction. Then, the end 103Da of the plate material 103D forming the rod-shaped peripheral surface is arranged toward another heat conductive part 104 attached to the outside of the shielding part 102, as shown by the arrow in FIG. As described above, the thermally conductive portion 103 has high heat transferability along the surface of the plate material 103D. Therefore, by directing the end 103Da facing in the opposite direction along the surface of the plate material 103D toward another heat conduction section 104, the heat transferability to the other heat conduction section 104 is increased. As a result, in the nuclear reactor 12 of the second embodiment, the heat extracted by the heat conduction section 103 can be efficiently extracted by another heat conduction section 104, so that the efficiency of transferring the heat to the refrigerant can be increased.

このような実施形態2の原子炉12において、燃料部101は、図には明示しないが、実施形態1の燃料部1と同様に、核燃料と、被覆部とを有する。核燃料は、例えば、ウランの粉末を柱状(円柱状)に焼き固めて形成することができる。被覆部は、核燃料の表面全体を覆うように設けられている。被覆部は、金属または炭素化合物からなり、核燃料の核分裂により放出される核分裂生成物(FP)の放出を抑えるように保持するものである。 In the nuclear reactor 12 of the second embodiment, the fuel part 101 includes nuclear fuel and a covering part, like the fuel part 1 of the first embodiment, although not clearly shown in the drawings. Nuclear fuel can be formed, for example, by burning uranium powder into a columnar shape. The covering portion is provided to cover the entire surface of the nuclear fuel. The covering portion is made of a metal or a carbon compound, and is intended to hold so as to suppress the release of fission products (FP) released by nuclear fission of nuclear fuel.

このように、実施形態2の原子炉12は、核燃料の表面に被覆部を設けた燃料部101と、上述した熱伝導部103とを備える構成である。従って、実施形態2の原子炉12は、核分裂生成物を保持しつつ、熱伝導部103により炉心である燃料部1の核燃料から効率よく熱を取り出すことができる。また、実施形態2の原子炉12は、柱状に形成された核燃料の表面に被覆部が設けられた燃料部1を構成することで、多数のペレット状の核燃料の表面に被覆部を設けることと比較して、被覆部を設ける表面積を低減でき、燃料充填率を向上できる。なお、柱状に形成された核燃料の表面に被覆部が設けられた燃料部1は、制御機構4が制御棒4Bの場合、制御棒4Bを貫通する穴の内面にも被覆部が設けられる。 In this way, the nuclear reactor 12 of the second embodiment is configured to include the fuel section 101 in which the surface of the nuclear fuel is provided with a coating section, and the above-mentioned heat conduction section 103. Therefore, the nuclear reactor 12 of the second embodiment can efficiently extract heat from the nuclear fuel in the fuel section 1, which is the reactor core, by the heat conduction section 103 while retaining the fission products. In addition, the nuclear reactor 12 of the second embodiment has a fuel section 1 in which a coating is provided on the surface of a nuclear fuel formed in a columnar shape, so that the coating can be provided on the surface of a large number of pellet-shaped nuclear fuel. In comparison, the surface area on which the covering portion is provided can be reduced, and the fuel filling rate can be improved. In addition, in the fuel part 1 in which a coating is provided on the surface of the nuclear fuel formed in a columnar shape, when the control mechanism 4 is a control rod 4B, a coating is also provided on the inner surface of a hole passing through the control rod 4B.

また、実施形態2の原子炉12では、燃料部101は、図には明示しないが、実施形態1の燃料部1と同様に、核燃料が、複数のブロック状の核燃料部材として構成され、各核燃料部材を柱状に纏めた表面に被覆部が設けられてもよい。従って、実施形態2の原子炉12は、複数のブロック状の核燃料部材により核燃料を構成し、これを纏めて被覆部を設けることで、一塊の柱状の燃料部101を容易に製造できる。 Further, in the nuclear reactor 12 of the second embodiment, although not shown in the drawings, the nuclear fuel is configured as a plurality of block-shaped nuclear fuel members in the fuel part 101, similar to the fuel part 1 of the first embodiment, and each nuclear fuel A covering portion may be provided on the surface of the members gathered together in a columnar shape. Therefore, in the nuclear reactor 12 of the second embodiment, the nuclear fuel is composed of a plurality of block-shaped nuclear fuel members, and by collectively providing the covering portion, it is possible to easily manufacture a single columnar fuel portion 101.

また、実施形態2の原子炉12では、燃料部101は、図には明示しないが、実施形態1の燃料部1と同様に、粒子状に形成された核燃料の表面に被覆部が設けられた核燃料部材を有し、この核燃料部材が、熱伝導部を母材として複数纏めて構成されていてもよい。従って、実施形態2の原子炉12は、熱伝導部を母材として核燃料部材を複数纏めた燃料部101を構成することで、核分裂生成物を保持しつつ、熱伝導部により炉心である燃料部101の核燃料から効率よく熱を取り出すことができる。また、実施形態2の原子炉12は、熱伝導部を母材として核燃料部材を複数纏めた燃料部101において、ブロック状の核燃料部材とし、その表面の被覆部を省略して形成することができる。また、実施形態2の原子炉12は、熱伝導部を母材として核燃料部材を複数纏めた燃料部101において、棒状に形成された上述の熱伝導部103が設けられる構成とすることで、炉心である燃料部101の核燃料から効率よく熱を取り出す効果を顕著に得ることができる。 In addition, in the nuclear reactor 12 of the second embodiment, the fuel part 101 has a coating part provided on the surface of the nuclear fuel formed in the form of particles, similar to the fuel part 1 of the first embodiment, although it is not shown in the drawings. It may have a nuclear fuel member, and this nuclear fuel member may be composed of a plurality of heat conductive parts as a base material. Therefore, in the nuclear reactor 12 of Embodiment 2, by configuring the fuel part 101 in which a plurality of nuclear fuel members are assembled using a heat conductive part as a base material, the fuel part which is a reactor core is held by the heat conductive part while retaining nuclear fission products. Heat can be extracted efficiently from 101 nuclear fuel. Further, in the nuclear reactor 12 of the second embodiment, in the fuel part 101 in which a plurality of nuclear fuel members are collected using a heat conductive part as a base material, the nuclear fuel member can be formed in the form of a block, and the covering part on the surface thereof may be omitted. . In addition, the nuclear reactor 12 of the second embodiment has a structure in which the above-described heat conductive part 103 formed in a rod shape is provided in the fuel part 101 in which a plurality of nuclear fuel members are gathered together using a heat conductive part as a base material. The effect of efficiently extracting heat from the nuclear fuel of the fuel section 101 can be significantly obtained.

また、実施形態2の原子炉12では、熱伝導部103は、固体熱伝導により燃料部101の熱を外部に伝える。従って、実施形態2の原子炉12は、固体熱伝導により燃料部101の熱を外部に伝えることで、放射線の漏えいを抑制しつつ熱を取り出すことができ、高い出力温度を確保できる。 Furthermore, in the nuclear reactor 12 of the second embodiment, the heat conduction section 103 transmits the heat of the fuel section 101 to the outside by solid heat conduction. Therefore, the nuclear reactor 12 of the second embodiment can extract heat while suppressing radiation leakage by transmitting the heat of the fuel part 101 to the outside through solid heat conduction, and can ensure a high output temperature.

また、実施形態2の原子炉12において、上述したように、熱伝導部103は、棒状に形成されて燃料部101に軸方向に延在し遮へい部102の蓋体102Bを貫通して配置されている。この構成において、取り出す熱は、燃料部101の配置密度を均等とした場合、外周部分よりも中央部分の温度が高くなる。このため、熱伝導部103において、冷媒と熱交換を行うにあたり、冷媒を先に径方向外側の熱伝導部103の部分を通過させ、その後に径方向内側の熱伝導部103の部分を通過させてから、冷媒を熱交換器52に送り出す。このようにすれば、熱伝導部103で取り出した熱を冷媒に伝達する効率を高められる。また、燃料部101の配置密度を均等とした場合、外周部分よりも中央部分の温度が高くなるが、中央部分では面積が少なく熱を取り出す効率が低下するため、中央部分の熱伝導部103の密度が高くなるように、燃料部101の中央部分で棒状の熱伝導部103を太くしたり、配置間隔を近づけたりしてもよい。また、面積の大きい燃料部101の外周部分で燃料部101の配置密度を高くすれば、面積の大きい部分で熱を取り出す効率を高めることができる。この場合は、燃料部101の外周部分で熱伝導部103の密度が高くなるように、燃料部101の外周部分で棒状の熱伝導部103を太くしたり、配置間隔を近づけたりしてもよい。 In addition, in the nuclear reactor 12 of the second embodiment, as described above, the heat conduction part 103 is formed in a rod shape, extends in the axial direction in the fuel part 101, and is arranged to penetrate the lid 102B of the shielding part 102. ing. In this configuration, when the arrangement density of the fuel portions 101 is made uniform, the temperature of the heat taken out is higher in the central portion than in the outer peripheral portion. Therefore, when exchanging heat with the refrigerant in the heat conduction section 103, the refrigerant is first passed through the radially outer portion of the heat conduction section 103, and then passed through the radially inner portion of the heat conduction section 103. After that, the refrigerant is sent to the heat exchanger 52. In this way, the efficiency of transmitting the heat extracted by the heat conduction section 103 to the refrigerant can be increased. Furthermore, when the arrangement density of the fuel part 101 is made uniform, the temperature in the central part becomes higher than that in the outer peripheral part, but the area in the central part is small and the efficiency of extracting heat decreases. In order to increase the density, the rod-shaped heat conductive portions 103 may be made thicker in the central portion of the fuel portion 101 or arranged closer together. Further, by increasing the arrangement density of the fuel portion 101 in the outer peripheral portion of the fuel portion 101 having a large area, it is possible to increase the efficiency of extracting heat in the portion having a large area. In this case, the rod-shaped heat conductive parts 103 may be made thicker in the outer peripheral part of the fuel part 101 or arranged closer together so that the density of the heat conductive parts 103 is higher in the outer peripheral part of the fuel part 101. .

[実施形態3]
図21は、実施形態3に係る原子炉を示す模式図である。
[Embodiment 3]
FIG. 21 is a schematic diagram showing a nuclear reactor according to Embodiment 3.

実施形態3の原子炉13は、上述した実施形態1の原子炉11の構成と、実施形態2の原子炉12の構成とを組み合わせている。よって、原子炉11および原子炉12の構成と同等の構成には同一の符号を付して説明を省略する。 The nuclear reactor 13 of the third embodiment combines the configuration of the nuclear reactor 11 of the first embodiment and the configuration of the nuclear reactor 12 of the second embodiment described above. Therefore, the same components as those of the nuclear reactor 11 and the nuclear reactor 12 are designated by the same reference numerals, and the description thereof will be omitted.

実施形態3の原子炉13は、実施形態1の原子炉11の燃料部1と、遮へい部2と、熱伝導部(第一熱伝導部)3と、実施形態2の原子炉12の熱伝導部(第二熱伝導部)103と、を含む。また、原子炉13は、図には明示しないが、実施形態1で説明した制御機構4(制御ドラム4A、制御棒4B)を含む。 The nuclear reactor 13 of the third embodiment includes the fuel section 1, the shielding section 2, the heat conduction section (first heat conduction section) 3 of the nuclear reactor 11 of the first embodiment, and the heat conduction of the nuclear reactor 12 of the second embodiment. (second heat conduction part) 103. Although not explicitly shown in the drawings, the nuclear reactor 13 also includes the control mechanism 4 (control drum 4A, control rod 4B) described in the first embodiment.

即ち、原子炉13は、燃料部1の燃料層1Aおよび熱伝導部3の熱伝導層3Aに、熱伝導部103が挿入される穴が形成されている。 That is, in the nuclear reactor 13, a hole is formed in the fuel layer 1A of the fuel part 1 and the heat conductive layer 3A of the heat conductive part 3, into which the heat conductive part 103 is inserted.

実施形態3の原子炉13は、熱伝導部は、板状に形成されて燃料層1Aと積層して配置される第一熱伝導部3と、棒状に形成されて燃料層1Aおよび第一熱伝導部3が重なる軸方向に延在して配置される第二熱伝導部103と、を含む。従って、実施形態3の原子炉13は、第一熱伝導部3および第二熱伝導部103が、遮へい部2を貫通して燃料部1の内部および遮へい部2の外部に延出して配置される形態とすることができ、燃料部1の熱を遮へい部2の外部に固体熱伝導で取り出すことができる。 In the nuclear reactor 13 of Embodiment 3, the heat conduction parts include a first heat conduction part 3 which is formed in a plate shape and is arranged in a stacked manner with the fuel layer 1A, and a first heat conduction part 3 which is formed in a rod shape and is stacked on the fuel layer 1A and the first heat conduction part 3. A second heat conductive part 103 is arranged extending in the axial direction overlapping with the conductive part 3. Therefore, in the nuclear reactor 13 of Embodiment 3, the first heat conduction part 3 and the second heat conduction part 103 are disposed so as to penetrate the shield part 2 and extend to the inside of the fuel part 1 and the outside of the shield part 2. The heat of the fuel part 1 can be taken out to the outside of the shielding part 2 by solid heat conduction.

そして、実施形態3の原子炉13では、上述した実施形態1の原子炉11および実施形態2の原子炉12と同様の構成により、実施形態1および実施形態2と同様の作用効果を得られる。 The reactor 13 of the third embodiment has the same configuration as the reactor 11 of the first embodiment and the reactor 12 of the second embodiment described above, so that the same effects as those of the first and second embodiments can be obtained.

1 燃料部
1A 燃料層
1Aa 外周面
1Ab 核燃料
1Ac 被覆部
1B 核燃料部材
1C 核燃料部材
2 遮へい部
2A 遮へい層
2Aa 貫通穴
2B 蓋部
3 熱伝導部(第一熱伝導部)
3A 熱伝導層
3B 切込
3C 伝熱管
3Ca 内側伝熱管
3Cb 外側伝熱管
3D 板材
4 制御機構
4A 制御ドラム
4Aa 中性子吸収体
4B 制御棒
11,12,13 原子炉
50 原子力発電システム
51 原子炉容器
52 熱交換器
53 熱伝導部
54 冷媒循環手段
55 タービン
56 発電機
57 冷却器
58 圧縮機
101 燃料部
102 遮へい部
102A 胴体
102B 蓋体
103 熱伝導部(第二熱伝導部)
103D 板材
103Da 端
104 熱伝導部
1 Fuel part 1A Fuel layer 1Aa Outer peripheral surface 1Ab Nuclear fuel 1Ac Coating part 1B Nuclear fuel member 1C Nuclear fuel member 2 Shielding part 2A Shielding layer 2Aa Through hole 2B Lid part 3 Heat conduction part (first heat conduction part)
3A Heat conductive layer 3B Notch 3C Heat transfer tube 3Ca Inner heat transfer tube 3Cb Outer heat transfer tube 3D Plate material 4 Control mechanism 4A Control drum 4Aa Neutron absorber 4B Control rod 11, 12, 13 Reactor 50 Nuclear power generation system 51 Reactor vessel 52 Heat Exchanger 53 Heat conduction section 54 Refrigerant circulation means 55 Turbine 56 Generator 57 Cooler 58 Compressor 101 Fuel section 102 Shielding section 102A Body 102B Lid body 103 Heat conduction section (second heat conduction section)
103D Plate material 103Da End 104 Heat conduction part

Claims (5)

核燃料の表面に被覆部を設けた燃料部と、熱伝導部とを備え
前記被覆部に面して前記熱伝導部と前記燃料部とが積層して設けられ、前記熱伝導部が前記燃料部の外周から突出して設けられる、原子炉。
Comprising a fuel part in which a coating part is provided on the surface of nuclear fuel, and a heat conduction part ,
A nuclear reactor, wherein the heat conduction part and the fuel part are stacked and provided facing the covering part, and the heat conduction part is provided so as to protrude from an outer periphery of the fuel part .
前記燃料部は、前記核燃料が複数のブロック状の核燃料部材により構成され、ブロック状の各前記核燃料部材を纏めた表面に前記被覆部が設けられる、請求項に記載の原子炉。 2. The nuclear reactor according to claim 1 , wherein the nuclear fuel in the fuel part is composed of a plurality of block-shaped nuclear fuel members, and the coating part is provided on a surface of the block-shaped nuclear fuel members. 粒子状に形成された核燃料の表面に被覆部が設けられた核燃料部材を有し、当該核燃料部材が熱伝導部を母材として複数纏めて構成される燃料部を備え、
前記燃料部および別の熱伝導部は、互いに板状に形成されて積層して設けられる、原子炉。
It has a nuclear fuel member in which a coating part is provided on the surface of nuclear fuel formed in the form of particles, and the nuclear fuel member has a fuel part that is composed of a plurality of heat conductive parts as a base material,
A nuclear reactor, wherein the fuel part and another heat conduction part are formed into plate shapes and are stacked on top of each other.
粒子状に形成された核燃料の表面に被覆部が設けられた核燃料部材を有し、当該核燃料部材が熱伝導部を母材として複数纏めて構成される燃料部を備え、
記燃料部および別の熱伝導部は、互いに板状に形成されて積層して設けられ、前記別の熱伝導部が前記燃料部の外周から突出して設けられる、原子炉。
It has a nuclear fuel member in which a coating part is provided on the surface of nuclear fuel formed in the form of particles, and the nuclear fuel member has a fuel part that is composed of a plurality of heat conductive parts as a base material,
A nuclear reactor, wherein the fuel part and another heat conduction part are formed into plate shapes and are stacked on top of each other , and the another heat conduction part is provided to protrude from an outer periphery of the fuel part .
前記熱伝導部は、固体熱伝導により前記燃料部の熱を外部に伝える、請求項1からのいずれか1項に記載の原子炉。 The nuclear reactor according to any one of claims 1 to 4 , wherein the heat conduction section transmits the heat of the fuel section to the outside by solid heat conduction.
JP2020174674A 2020-10-16 2020-10-16 Reactor Active JP7426323B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020174674A JP7426323B2 (en) 2020-10-16 2020-10-16 Reactor
US18/031,766 US20230386686A1 (en) 2020-10-16 2021-09-21 Nuclear reactor
PCT/JP2021/034615 WO2022080095A1 (en) 2020-10-16 2021-09-21 Nuclear reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020174674A JP7426323B2 (en) 2020-10-16 2020-10-16 Reactor

Publications (2)

Publication Number Publication Date
JP2022065896A JP2022065896A (en) 2022-04-28
JP7426323B2 true JP7426323B2 (en) 2024-02-01

Family

ID=81208013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020174674A Active JP7426323B2 (en) 2020-10-16 2020-10-16 Reactor

Country Status (3)

Country Link
US (1) US20230386686A1 (en)
JP (1) JP7426323B2 (en)
WO (1) WO2022080095A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000284084A (en) 1999-03-31 2000-10-13 Japan Atom Energy Res Inst Fuel rod for high temperature gas reactor
JP2017534864A (en) 2014-10-17 2017-11-24 トール エナジー エーエス Fuel assemblies for nuclear boiling water reactors

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000284084A (en) 1999-03-31 2000-10-13 Japan Atom Energy Res Inst Fuel rod for high temperature gas reactor
JP2017534864A (en) 2014-10-17 2017-11-24 トール エナジー エーエス Fuel assemblies for nuclear boiling water reactors

Also Published As

Publication number Publication date
WO2022080095A1 (en) 2022-04-21
JP2022065896A (en) 2022-04-28
US20230386686A1 (en) 2023-11-30

Similar Documents

Publication Publication Date Title
CN110211709B (en) Heat pipe type alkali metal conversion integrated reactor
WO2021067901A1 (en) Integrated in-vessel neutron shield
JP7209574B2 (en) Nuclear power generation system and reactor unit
CN113314240B (en) Space stack thermal management system and working method
CN109859859B (en) Non-convection heat exchange integral module type subminiature space reactor core based on tungsten heat conduction
US20230317306A1 (en) Heat pipe networks for heat removal, such as heat removal from nuclear reactors, and associated systems and methods
JP7426323B2 (en) Reactor
JP7386100B2 (en) Reactor
ATE8545T1 (en) HIGH TEMPERATURE REACTOR.
WO2022075023A1 (en) Nuclear reactor
JP6702546B2 (en) Blanket for fusion reactor and its supporting structure
CN110310748B (en) Thermoelectric conversion integrated reactor additionally provided with turbine
WO2021171689A1 (en) Nuclear reactor and control method for nuclear reactor
RU2510652C1 (en) Nuclear reactor
WO2022271433A2 (en) Fuel-moderator inversion for safer nuclear reactors
CN112289473A (en) Thermoacoustic power generation system
US20240079153A1 (en) Thermal bridge
RU2757160C2 (en) Nuclear reactor
WO2022075058A1 (en) Nuclear reactor unit and cooling method for nuclear reactor unit
CN113436757B (en) Modular solid-state reactor core with temperature equalization structure
Benenati et al. Low activity aluminum blanket
US20240021327A1 (en) Heat pipe fuel element and fission reactor incorporating same, particularly having phyllotaxis spacing pattern of heat pipe fuel elements, and method of manufacture
WO2013117949A1 (en) High efficiency radioisotope thermodynamic electrical generator
Bullis et al. A Solid Breeder Blanket and Power Conversion System for the Mirror Advanced Reactor Study (MARS)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240122

R150 Certificate of patent or registration of utility model

Ref document number: 7426323

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150