JP7424750B2 - Temperature sensor film, conductive film and manufacturing method thereof - Google Patents

Temperature sensor film, conductive film and manufacturing method thereof Download PDF

Info

Publication number
JP7424750B2
JP7424750B2 JP2019020160A JP2019020160A JP7424750B2 JP 7424750 B2 JP7424750 B2 JP 7424750B2 JP 2019020160 A JP2019020160 A JP 2019020160A JP 2019020160 A JP2019020160 A JP 2019020160A JP 7424750 B2 JP7424750 B2 JP 7424750B2
Authority
JP
Japan
Prior art keywords
film
thin film
nickel
temperature
nickel thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019020160A
Other languages
Japanese (ja)
Other versions
JP2020126034A (en
Inventor
幸大 宮本
一裕 中島
智史 安井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2019020160A priority Critical patent/JP7424750B2/en
Priority to CN202080012751.9A priority patent/CN113474626A/en
Priority to KR1020217021371A priority patent/KR20210124210A/en
Priority to PCT/JP2020/002632 priority patent/WO2020162235A1/en
Priority to TW109103518A priority patent/TW202035742A/en
Publication of JP2020126034A publication Critical patent/JP2020126034A/en
Application granted granted Critical
Publication of JP7424750B2 publication Critical patent/JP7424750B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • G01K7/18Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a linear resistance, e.g. platinum resistance thermometer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • G01K7/18Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a linear resistance, e.g. platinum resistance thermometer
    • G01K7/183Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a linear resistance, e.g. platinum resistance thermometer characterised by the use of the resistive element
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • G01K7/18Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a linear resistance, e.g. platinum resistance thermometer
    • G01K7/186Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a linear resistance, e.g. platinum resistance thermometer using microstructures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • G01K7/18Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a linear resistance, e.g. platinum resistance thermometer
    • G01K7/20Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a linear resistance, e.g. platinum resistance thermometer in a specially-adapted circuit, e.g. bridge circuit
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • G01K2007/163Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements provided with specially adapted connectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K2217/00Temperature measurement using electric or magnetic components already present in the system to be measured

Description

本発明は、フィルム基材上にパターニングされた金属薄膜を備える温度センサフィルム、および温度センサフィルムの作製に用いられる導電フィルムに関する。 The present invention relates to a temperature sensor film comprising a patterned metal thin film on a film base material, and a conductive film used for producing the temperature sensor film.

電子機器には多数の温度センサが用いられている。温度センサとしては、熱電対やチップサーミスタが一般的である。熱電対やチップサーミスタ等により、面内の複数箇所の温度を測定する場合は、測定点ごとに温度センサを配置し、それぞれの温度センサをプリント配線基板等に接続する必要があるため、製造プロセスが煩雑となる。また、面内の温度分布を測定するためには基板上に多数のセンサを配置する必要があり、コストアップの要因となる。 Many temperature sensors are used in electronic devices. Thermocouples and chip thermistors are commonly used as temperature sensors. When measuring the temperature at multiple locations within a surface using thermocouples, chip thermistors, etc., it is necessary to place a temperature sensor at each measurement point and connect each temperature sensor to a printed wiring board, etc., which reduces the manufacturing process. becomes complicated. Furthermore, in order to measure the in-plane temperature distribution, it is necessary to arrange a large number of sensors on the substrate, which increases the cost.

特許文献1には、フィルム基材上に金属膜を設け、金属膜をパターニングして、測温抵抗部とリード部を形成した温度センサフィルムが提案されている。金属膜をパターニングする形態では、1層の金属膜から測温抵抗部と、測温抵抗部に接続されたリード部とを形成可能であり、個々の測温センサを配線で接続する作業を必要としない。また、フィルム基材を用いるため、可撓性に優れ、大面積化への対応も容易であるとの利点を有する。 Patent Document 1 proposes a temperature sensor film in which a metal film is provided on a film base material, and the metal film is patterned to form a temperature measuring resistor part and a lead part. In the case of patterning a metal film, it is possible to form a temperature-measuring resistor part and a lead part connected to the temperature-measuring resistor part from one layer of metal film, and it is necessary to connect each temperature-measuring sensor with wiring. I don't. Furthermore, since a film base material is used, it has the advantage of being excellent in flexibility and easily adaptable to large-area applications.

金属膜をパターニングした温度センサでは、リード部を介して測温抵抗部に電圧を印加し、金属の抵抗値が温度により変化する特性を利用して、温度を測定する。温度測定の精度を高めるためには、温度変化に対する抵抗変化の大きい材料が好ましい。特許文献2には、ニッケルは、銅に比べて温度に対する感度(抵抗変化)が約2倍であることが記載されている。 In a temperature sensor in which a metal film is patterned, a voltage is applied to a temperature-measuring resistance section through a lead section, and temperature is measured by utilizing the characteristic that the resistance value of metal changes depending on temperature. In order to improve the accuracy of temperature measurement, it is preferable to use a material that has a large resistance change with respect to temperature changes. Patent Document 2 describes that nickel has about twice the temperature sensitivity (resistance change) as copper.

特開2005-91045号公報Japanese Patent Application Publication No. 2005-91045 特開平7-333073号公報Japanese Patent Application Publication No. 7-333073

ニッケル等の金属は、温度が高いほど抵抗が大きくなる特性(正特性)を示し、バルクのニッケルは、温度上昇に対する抵抗の変化率(抵抗温度係数;TCR)が約6000ppm/℃であることが知られている。一方、金属薄膜は、表面や界面の影響により、バルクの金属とは特性が異なる場合が多い。 Metals such as nickel exhibit the characteristic that the higher the temperature, the higher the resistance (positive characteristic), and bulk nickel has a rate of change in resistance (temperature coefficient of resistance; TCR) of approximately 6000 ppm/°C with respect to temperature rise. Are known. On the other hand, thin metal films often have different properties from those of bulk metal due to the effects of their surfaces and interfaces.

本発明者らが、樹脂フィルム基材上にスパッタ法によりニッケル薄膜を形成し、その特性を評価したところ、抵抗温度係数(TCR)がバルクのニッケルの半分以下であり、温度センサフィルムとして使用するための十分な温度測定精度が得られないことが判明した。また、樹脂フィルム基材上に形成したニッケル薄膜を設けた温度センサフィルムは、使用に伴って抵抗温度係数が大きく変化する場合があった。 The present inventors formed a nickel thin film on a resin film base material by sputtering and evaluated its properties, and found that the temperature coefficient of resistance (TCR) was less than half that of bulk nickel, making it suitable for use as a temperature sensor film. It was found that sufficient temperature measurement accuracy could not be obtained. Further, the temperature coefficient of resistance of a temperature sensor film including a nickel thin film formed on a resin film base material may change significantly with use.

当該課題に鑑み、本発明は、樹脂フィルム基材上に抵抗温度係数の大きい金属薄膜を備える導電フィルム、および温度センサフィルムの提供を目的とする。また、本発明は、金属薄膜の抵抗温度係数の安定性の高い導電性フィルムおよび温度センサフィルムの提供を目的とする。 In view of the above problems, an object of the present invention is to provide a conductive film and a temperature sensor film including a metal thin film having a large temperature coefficient of resistance on a resin film base material. Another object of the present invention is to provide a conductive film and a temperature sensor film in which the temperature coefficient of resistance of a metal thin film is highly stable.

本発明者らは、ニッケル薄膜中の炭素原子量およびニッケル薄膜の結晶性が抵抗温度係数と密接に関連していることを見出し、本発明に至った。 The present inventors have discovered that the amount of carbon atoms in a nickel thin film and the crystallinity of the nickel thin film are closely related to the temperature coefficient of resistance, leading to the present invention.

温度センサ用導電フィルムは、樹脂フィルム基材の一主面上にニッケル薄膜を備える。樹脂フィルム基材上に設けられたニッケル薄膜中の炭素原子濃度は、1.0×1021atm/cm以下が好ましい。ニッケル薄膜は、スパッタ法により形成できる。ニッケル薄膜のX線回折パターンにおける(111)面の回折ピークの半値幅は0.8°以下が好ましい。 A conductive film for a temperature sensor includes a nickel thin film on one main surface of a resin film base material. The carbon atom concentration in the nickel thin film provided on the resin film base material is preferably 1.0×10 21 atm/cm 3 or less. The nickel thin film can be formed by sputtering. The half width of the diffraction peak of the (111) plane in the X-ray diffraction pattern of the nickel thin film is preferably 0.8° or less.

この導電フィルムのニッケル薄膜をパターニングすることにより、温度センサフィルムを形成できる。温度センサフィルムは、樹脂フィルム基材の一主面上にパターニングされたニッケル薄膜を備え、ニッケル薄膜が、測温抵抗部とリード部とにパターニングされている。樹脂フィルム基材の両面にニッケル薄膜を設けてもよい。 By patterning the nickel thin film of this conductive film, a temperature sensor film can be formed. The temperature sensor film includes a nickel thin film patterned on one main surface of a resin film base material, and the nickel thin film is patterned into a temperature sensing resistor portion and a lead portion. A nickel thin film may be provided on both sides of the resin film base material.

測温抵抗部は、温度測定を行う部分に設けられており、細線にパターニングされている。リード部は測温抵抗部よりも大きな線幅にパターニングされており、リード部の一端が測温抵抗部に接続されている。リード部の他端は、外部回路等と接続される。リード部にコネクタを接続し、コネクタを介して外部回路との接続を行ってもよい。 The temperature-measuring resistor section is provided in a portion where temperature is measured, and is patterned into a thin line. The lead portion is patterned to have a larger line width than the resistance temperature measurement portion, and one end of the lead portion is connected to the resistance temperature measurement portion. The other end of the lead portion is connected to an external circuit or the like. A connector may be connected to the lead portion, and connection to an external circuit may be made via the connector.

導電フィルムおよび温度センサフィルムのニッケル薄膜は、比抵抗が1.6×10-5Ω・cm以下であることが好ましい。ニッケル薄膜の抵抗温度係数は3000ppm/℃以上が好ましい。ニッケル薄膜の厚みは20~500nmが好ましい。フィルム基材とニッケル薄膜との間には下地層が設けられていてもよい。下地層の材料としては無機材料が好ましい。 The nickel thin film of the conductive film and temperature sensor film preferably has a specific resistance of 1.6×10 −5 Ω·cm or less. The temperature coefficient of resistance of the nickel thin film is preferably 3000 ppm/°C or more. The thickness of the nickel thin film is preferably 20 to 500 nm. A base layer may be provided between the film base material and the nickel thin film. Inorganic materials are preferred as the material for the underlayer.

フィルム基材上に設けられたニッケル薄膜中の炭素原子濃度が小さいことにより、抵抗温度係数が大きく、温度測定精度の高い温度センサフィルムを形成できる。ニッケル薄膜の(111)面の回折ピークの半値幅が小さいことにより、加熱時の安定性に優れる温度センサフィルムを形成できる。 Since the carbon atom concentration in the nickel thin film provided on the film base material is low, a temperature sensor film with a large resistance temperature coefficient and high temperature measurement accuracy can be formed. Since the half width of the diffraction peak of the (111) plane of the nickel thin film is small, a temperature sensor film with excellent stability during heating can be formed.

導電フィルムの積層構成例を示す断面図である。FIG. 2 is a cross-sectional view showing an example of a laminated structure of conductive films. 導電フィルムの積層構成例を示す断面図である。FIG. 2 is a cross-sectional view showing an example of a laminated structure of conductive films. 温度センサフィルムの平面図である。It is a top view of a temperature sensor film. 温度センサにおける測温抵抗部近傍の拡大図であり、Aは2線式、Bは4線式の形状を示している。It is an enlarged view of the vicinity of the temperature measuring resistor part in the temperature sensor, where A shows a two-wire type and B shows a four-wire type. 実施例の導電フィルムのX線回折パターンである。It is an X-ray diffraction pattern of a conductive film of an example.

図1は、温度センサフィルムの形成に用いられる導電フィルムの積層構成例を示す断面図であり、樹脂フィルム基材50の一主面上にニッケル薄膜10を備える。この導電フィルム101のニッケル薄膜をパターニングすることにより、図3の平面図に示す温度センサフィルム110が得られる。 FIG. 1 is a cross-sectional view showing an example of a laminated structure of conductive films used for forming a temperature sensor film, in which a nickel thin film 10 is provided on one main surface of a resin film base material 50. By patterning the nickel thin film of this conductive film 101, a temperature sensor film 110 shown in the plan view of FIG. 3 is obtained.

[導電フィルム]
導電フィルムは、樹脂フィルム基材50の一主面上にニッケル薄膜10を備える、図2に示すように、導電フィルムは、樹脂フィルム基材50とニッケル薄膜10との間に下地層20を備えていてもよい。
[Conductive film]
The conductive film includes a nickel thin film 10 on one main surface of a resin film base material 50. As shown in FIG. 2, the conductive film includes a base layer 20 between the resin film base material 50 and the nickel thin film 10. You can leave it there.

<フィルム基材>
樹脂フィルム基材50は、透明でも不透明でもよい。樹脂材料としては、ポリエチレンテレフタレート等のポリエステル、ポリイミド、ポリオレフィン、ノルボルネン系等の環状ポリオレフィン、ポリカーボネート、ポリエーテルスルフォン、ポリアリレート等が挙げられる。耐熱性、寸法安定性、電気的特性、機械的特性、耐薬品特性等の観点から、ポリイミドまたはポリエステルが好ましい。
<Film base material>
The resin film base material 50 may be transparent or opaque. Examples of the resin material include polyester such as polyethylene terephthalate, polyimide, polyolefin, cyclic polyolefin such as norbornene, polycarbonate, polyether sulfone, polyarylate, and the like. From the viewpoint of heat resistance, dimensional stability, electrical properties, mechanical properties, chemical resistance properties, etc., polyimide or polyester is preferable.

樹脂フィルム基材の厚みは特に限定されないが、一般には、2~500μm程度であり、20~300μm程度が好ましい。樹脂フィルム基材の表面には、易接着層、帯電防止層、ハードコート層等が設けられていてもよい。また、樹脂フィルム基材50の表面には、ニッケル薄膜10(または下地層20)との密着性向上等を目的として、コロナ放電処理、紫外線照射処理、プラズマ処理、スパッタエッチング処理等の処理を施してもよい。 The thickness of the resin film base material is not particularly limited, but is generally about 2 to 500 μm, preferably about 20 to 300 μm. An easily adhesive layer, an antistatic layer, a hard coat layer, etc. may be provided on the surface of the resin film base material. Further, the surface of the resin film base material 50 is subjected to treatments such as corona discharge treatment, ultraviolet irradiation treatment, plasma treatment, and sputter etching treatment for the purpose of improving adhesion with the nickel thin film 10 (or base layer 20). It's okay.

樹脂フィルム基材50のニッケル薄膜10形成面の算術平均粗さRaは、5nm以下が好ましく、3nm以下がより好ましく、2nm以下がさらに好ましい。基材の表面粗さを小さくすることにより、薄膜のカバレッジが良好となり、緻密な膜が形成され、ニッケル薄膜10の比抵抗が小さくなる傾向がある。算術平均粗さRaは、走査型プローブ顕微鏡を用いた1μm四方の観察像から求められる。 The arithmetic mean roughness Ra of the surface of the resin film base material 50 on which the nickel thin film 10 is formed is preferably 5 nm or less, more preferably 3 nm or less, and even more preferably 2 nm or less. By reducing the surface roughness of the base material, the coverage of the thin film becomes better, a dense film is formed, and the specific resistance of the nickel thin film 10 tends to become smaller. The arithmetic mean roughness Ra is determined from an observation image of 1 μm square using a scanning probe microscope.

<ニッケル薄膜>
樹脂フィルム基材50上に設けられるニッケル薄膜10は、温度センサにおける温度測定の中心的な役割を果たす。ニッケル薄膜10をパターニングすることにより、図3に示すように、リード部11および測温抵抗部12が形成される。
<Nickel thin film>
The nickel thin film 10 provided on the resin film base material 50 plays a central role in temperature measurement in the temperature sensor. By patterning the nickel thin film 10, a lead portion 11 and a temperature measuring resistor portion 12 are formed as shown in FIG.

ニッケル薄膜10の炭素原子濃度が1×1021atm/cm以下であることにより、抵抗温度係数(TCR)が大きくなる傾向があり、温度センサフィルムにおける温度測定精度が向上する。ニッケル薄膜10の炭素原子濃度は、8.0×1020atm/cm以下が好ましく、3.0×1020atm/cm以下がより好ましく、1.0×1020atm/cm以下がさらに好ましい。 When the carbon atom concentration of the nickel thin film 10 is 1×10 21 atm/cm 3 or less, the temperature coefficient of resistance (TCR) tends to increase, and the temperature measurement accuracy in the temperature sensor film improves. The carbon atom concentration of the nickel thin film 10 is preferably 8.0×10 20 atm/cm 3 or less, more preferably 3.0×10 20 atm/cm 3 or less, and 1.0×10 20 atm/cm 3 or less More preferred.

ニッケル薄膜10の炭素原子濃度が小さいほどTCRが大きくなる傾向があるため、炭素原子濃度は小さいほど好ましい。ガラス基板上にニッケル薄膜を形成する場合は、炭素原子濃度を1×1018atm/cm程度またはそれ以下に低下させることができる。一方、樹脂フィルム基材上にニッケル薄膜を形成する場合は、樹脂フィルムからの炭素原子の混入が不可避であるため、炭素原子濃度は一般に1.0×1018atm/cm以上である。ニッケル薄膜10の炭素原子濃度は、5.0×1018atm/cm以上または1.0×1019atm/cm以上であってもよい。 Since TCR tends to increase as the carbon atom concentration of the nickel thin film 10 decreases, it is preferable that the carbon atom concentration is as low as possible. When forming a nickel thin film on a glass substrate, the carbon atom concentration can be reduced to about 1×10 18 atm/cm 3 or lower. On the other hand, when a nickel thin film is formed on a resin film base material, the carbon atom concentration is generally 1.0×10 18 atm/cm 3 or more because the incorporation of carbon atoms from the resin film is unavoidable. The carbon atom concentration of the nickel thin film 10 may be 5.0×10 18 atm/cm 3 or more or 1.0×10 19 atm/cm 3 or more.

ニッケル薄膜の炭素原子濃度は、二次イオン質量分析(SIMS)のデプスプロファイル測定により求められ、厚み方向の中央における炭素原子濃度をニッケル薄膜の炭素原子濃度とする。 The carbon atom concentration of the nickel thin film is determined by depth profile measurement using secondary ion mass spectrometry (SIMS), and the carbon atom concentration at the center in the thickness direction is defined as the carbon atom concentration of the nickel thin film.

ニッケル薄膜10の厚みは特に限定されないが、低抵抗化の観点(特に、リード部の抵抗を小さくする観点)から、20nm以上が好ましく、40nm以上がより好ましく、50nm以上がさらに好ましい。一方、成膜時間の短縮およびパターニング精度向上等の観点から、ニッケル薄膜10の厚みは、500nm以下が好ましく、300nm以下がより好ましく、250nm以下がさらに好ましい。 The thickness of the nickel thin film 10 is not particularly limited, but from the viewpoint of reducing resistance (particularly from the viewpoint of reducing the resistance of the lead portion), it is preferably 20 nm or more, more preferably 40 nm or more, and even more preferably 50 nm or more. On the other hand, from the viewpoint of shortening film formation time and improving patterning accuracy, the thickness of the nickel thin film 10 is preferably 500 nm or less, more preferably 300 nm or less, and even more preferably 250 nm or less.

ニッケル薄膜10の温度25℃における比抵抗は、1.6×10-5Ω・cm以下が好ましく、1.5×10-5Ω・cm以下がより好ましい。リード部の抵抗を小さくする観点からは、ニッケル薄膜の比抵抗は小さいほど好ましく、1.2×10-5Ω・cm以下、または1.0×10-5Ω・cm以下であってもよい。ニッケル薄膜中の炭素原子濃度が小さいほど、比抵抗が小さくなる傾向がある。また、ニッケル薄膜の成膜下地となる樹脂フィルム基材50の表面の算術平均粗さRaが小さい場合に、ニッケル薄膜10の比抵抗が小さくなる傾向がある。ニッケル薄膜の比抵抗は小さいほど好ましいが、バルクのニッケルよりも比抵抗を小さくすることは困難であり、一般に比抵抗は7.0×10-6Ω・cm以上である。 The specific resistance of the nickel thin film 10 at a temperature of 25° C. is preferably 1.6×10 −5 Ω·cm or less, more preferably 1.5×10 −5 Ω·cm or less. From the viewpoint of reducing the resistance of the lead portion, the specific resistance of the nickel thin film is preferably as small as possible, and may be 1.2×10 −5 Ω·cm or less, or 1.0×10 −5 Ω·cm or less. . The lower the carbon atom concentration in the nickel thin film, the lower the specific resistance tends to be. Furthermore, when the arithmetic mean roughness Ra of the surface of the resin film base material 50, which is the base for forming the nickel thin film, is small, the specific resistance of the nickel thin film 10 tends to be small. The smaller the specific resistance of the nickel thin film, the better, but it is difficult to make the specific resistance lower than that of bulk nickel, and the specific resistance is generally 7.0×10 −6 Ω·cm or more.

ニッケル薄膜10の抵抗温度係数(TCR)は、3000ppm/℃以上が好ましく、3500ppm/℃以上がより好ましく、4000ppm/℃以上がさらに好ましい。TCRは、温度上昇に対する抵抗の変化率である。ニッケルは、温度上昇に伴って抵抗が線形的に増加する特性(正特性)を有する。正特性を有する材料のTCRは、温度Tにおける抵抗値Rと、温度Tにおける抵抗値Rから、下記式により算出される。
TCR={(R-R)/R}/(T-T
The temperature coefficient of resistance (TCR) of the nickel thin film 10 is preferably 3000 ppm/°C or more, more preferably 3500 ppm/°C or more, and even more preferably 4000 ppm/°C or more. TCR is the rate of change of resistance with increasing temperature. Nickel has a characteristic (positive characteristic) in which resistance increases linearly as temperature rises. The TCR of a material having positive characteristics is calculated from the resistance value R 0 at temperature T 0 and the resistance value R 1 at temperature T 1 using the following formula.
TCR={(R 1 -R 0 )/R 0 }/(T 1 -T 0 )

本明細書では、T=25℃およびT=5℃における抵抗値から算出されるTCRと、T=25℃およびT=45℃における抵抗値から算出されるTCRの平均値をニッケル薄膜のTCRとする。 In this specification, the average value of TCR calculated from the resistance values at T 0 = 25°C and T 1 = 5°C and the TCR calculated from the resistance values at T 0 = 25°C and T 1 = 45°C is used for nickel. This is a thin film TCR.

TCRが大きいほど、温度変化に対する抵抗の変化が大きく、温度センサフィルムにおける温度測定精度が向上する。そのため、ニッケル薄膜のTCRは大きいほど好ましいが、バルクのニッケルよりもTCRを大きくすることは困難であり、ニッケル薄膜のTCRは一般に6000ppm/℃以下である。 The larger the TCR, the greater the change in resistance with respect to temperature changes, and the greater the temperature measurement accuracy in the temperature sensor film. Therefore, the TCR of the nickel thin film is preferably as large as possible, but it is difficult to make the TCR larger than that of bulk nickel, and the TCR of the nickel thin film is generally 6000 ppm/°C or less.

上述の通り、ニッケル薄膜中の炭素原子量を小さくすることにより、TCRが増加する傾向がある。炭素原子濃度を小さくすることによりTCRが増大する理由は定かではないが、ニッケル薄膜中に混入した炭素原子によるキャリア散乱が、TCRに影響を及ぼしていると推定される。 As mentioned above, TCR tends to increase by reducing the amount of carbon atoms in the nickel thin film. Although it is not clear why the TCR increases by reducing the carbon atom concentration, it is presumed that carrier scattering by carbon atoms mixed in the nickel thin film affects the TCR.

物質の抵抗値は、物質中のキャリア密度とキャリア移動度の影響を受け、キャリア密度が小さく、キャリア移動度が小さいほど抵抗が大きくなる。ニッケル等の金属は自由電子が豊富に存在するため、キャリア密度の影響は小さく、キャリア移動度が抵抗を支配する要因となる。キャリア移動度に影響を及ぼす要因として、格子振動によるキャリア散乱と、不純物や格子欠陥によるキャリアの散乱が挙げられる。 The resistance value of a substance is influenced by the carrier density and carrier mobility in the substance, and the lower the carrier density and carrier mobility, the higher the resistance. Since metals such as nickel have an abundance of free electrons, the influence of carrier density is small, and carrier mobility is a factor that dominates resistance. Factors that affect carrier mobility include carrier scattering due to lattice vibration and carrier scattering due to impurities and lattice defects.

温度上昇に伴って格子振動(熱振動)が大きくなり、自由電子の移動が妨げられるため、キャリア移動度が小さくなる。そのため、正特性を示す材料は、室温付近において、温度上昇に伴って抵抗が線形的に増大する。一方、不純物や格子欠陥によるキャリアの散乱は、格子振動によるキャリア散乱に比べて、温度の影響が小さい。不純物や格子欠陥に起因するキャリアの散乱が増加すると、格子振動に起因するキャリア散乱の比率、およびそれに伴う抵抗の変化が小さくなり、TCRが小さくなると考えられる。 As the temperature rises, lattice vibrations (thermal vibrations) increase and the movement of free electrons is hindered, resulting in a decrease in carrier mobility. Therefore, in materials exhibiting positive characteristics, the resistance increases linearly as the temperature rises near room temperature. On the other hand, carrier scattering due to impurities or lattice defects is less affected by temperature than carrier scattering due to lattice vibration. It is thought that as carrier scattering due to impurities and lattice defects increases, the ratio of carrier scattering due to lattice vibrations and the resulting change in resistance decrease, leading to a decrease in TCR.

ニッケル薄膜中には、炭素の他にも、水素、酸素、窒素等の不純物が含まれているが、炭素(C4-のイオン半径:2.60Å)は、水素(Hのイオン半径:1.54Å)、酸素(O2-のイオン半径:1.35Å)および窒素(N3-のイオン半径:1.46Å)に比べてイオン半径が大きい。そのため、ニッケル薄膜中に含まれている炭素はキャリアの散乱因子となりやすく、炭素量の増加に伴って不純物や格子欠陥に起因するキャリア散乱が増大し、抵抗の温度依存が小さくなることが、TCRを低下させる原因になると考えられる。 In addition to carbon, the nickel thin film contains impurities such as hydrogen, oxygen, and nitrogen. Carbon (C 4 - ionic radius: 2.60 Å) is hydrogen (H - ionic radius: The ionic radius is larger than that of oxygen (O 2- ionic radius: 1.35 Å) and nitrogen (N 3- ionic radius: 1.46 Å). Therefore, carbon contained in the nickel thin film tends to become a carrier scattering factor, and as the amount of carbon increases, carrier scattering due to impurities and lattice defects increases, and the temperature dependence of resistance becomes smaller. This is thought to be the cause of a decrease in

ニッケル薄膜は、CuKα線(波長:1.541Å)をX線源とするX線回折パターンにおいて、2θ=43°付近に、面心立方格子の(111)面の回折ピークを示す。ニッケルの(111)面の回折ピークの半値幅は0.8°以下が好ましく、0.6°以下がより好ましく、0.4°以下がさらに好ましい。ニッケルの(111)面の回折ピークの半値幅は、0.35°以下または0.30°以下であってもよい。ニッケルの(111)面の回折ピークの半値幅は、0.10°以上、0.15°以上、または0.20°以上であってもよい。 The nickel thin film exhibits a diffraction peak of the (111) plane of the face-centered cubic lattice around 2θ=43° in an X-ray diffraction pattern using CuKα rays (wavelength: 1.541 Å) as an X-ray source. The half width of the diffraction peak of the (111) plane of nickel is preferably 0.8° or less, more preferably 0.6° or less, and even more preferably 0.4° or less. The half width of the diffraction peak of the (111) plane of nickel may be 0.35° or less or 0.30° or less. The half width of the diffraction peak of the (111) plane of nickel may be 0.10° or more, 0.15° or more, or 0.20° or more.

ニッケル薄膜10の(111)面回折ピークの半値幅が小さいほど、TCRが大きくなる傾向がある。ニッケル薄膜中の炭素原子濃度が小さいほど、X線回折ピークの半値幅が小さくなる傾向がある。不純物元素としての炭素原子はニッケル薄膜の結晶成長の阻害要因となるため、炭素原子濃度が小さい方結晶性が高く、TCRが大きくなると考えられる。また、結晶性が高い方が、欠陥によるキャリア散乱が少ないことも、TCRの向上に寄与していると考えられる。 The smaller the half width of the (111) plane diffraction peak of the nickel thin film 10, the larger the TCR tends to be. The lower the carbon atom concentration in the nickel thin film, the smaller the half width of the X-ray diffraction peak tends to be. Since carbon atoms as an impurity element inhibit crystal growth of the nickel thin film, it is thought that the lower the carbon atom concentration, the higher the crystallinity and the higher the TCR. It is also believed that the higher the crystallinity, the less carrier scattering due to defects, which contributes to the improvement in TCR.

ニッケル薄膜10の(111)面回折ピークの半値幅が0.4°以下の場合に、加熱信頼性が向上する傾向があり、高温環境に長時間曝された場合の抵抗値およびTCRの変化が小さい導電フィルムが得られる。X線回折ピークの半値幅は、結晶子の大きさと相関があり、半値幅が小さいほど結晶子が大きく、結晶がより成長していることを示す。X線回折ピークの半値幅が小さい場合に、加熱信頼性が向上する推定理由として、加熱環境下での結晶性の変化が小さいことが挙げられる。 When the half-value width of the (111) plane diffraction peak of the nickel thin film 10 is 0.4° or less, heating reliability tends to improve, and changes in resistance value and TCR when exposed to a high temperature environment for a long time are A small conductive film is obtained. The half-width of the X-ray diffraction peak is correlated with the size of the crystallite, and the smaller the half-width, the larger the crystallite, indicating that the crystal is growing more. One of the presumed reasons why the heating reliability is improved when the half width of the X-ray diffraction peak is small is that the change in crystallinity under the heating environment is small.

ニッケルの(111)面回折ピークの半値幅が1°程度の場合は、結晶性が低く、ニッケル薄膜を加熱しても結晶がほとんど成長しないため、加熱による抵抗変化は小さい。(111)面回折ビークの半値幅が0.8°程度の場合は、未成長の結晶子が多く含まれており、加熱により結晶子が成長してニッケル薄膜が低抵抗化することが、抵抗変化の原因であると推定される。一方、(111)面回折ビークの半値幅が0.4°以下であれば、結晶子が既に十分に成長しているため、加熱による結晶成長および結晶成長に伴う抵抗変化が生じ難く、信頼性に優れると考えられる。 When the half-width of the (111) plane diffraction peak of nickel is about 1°, the crystallinity is low and hardly any crystals grow even if the nickel thin film is heated, so the change in resistance due to heating is small. If the half-value width of the (111) plane diffraction peak is about 0.8°, it means that there are many ungrown crystallites, and the crystallites grow by heating and the resistance of the nickel thin film decreases. It is presumed that this is the cause of the change. On the other hand, if the half-width of the (111) plane diffraction peak is 0.4° or less, the crystallites have already grown sufficiently, so crystal growth due to heating and resistance change due to crystal growth are unlikely to occur, and reliability is improved. It is considered to be excellent in

ニッケル薄膜10の表面の算術平均粗さRaは、例えば、1~20nm程度である。ニッケル薄膜の結晶成長に伴って、表面の算術平均粗さRaが大きくなる傾向がある。ニッケル薄膜表面のRaは、2nm以上または3nm以上であってもよい。ニッケル薄膜10の表面の算術平均粗さは、基材表面の算術平均粗さよりも大きいことが好ましい。 The arithmetic mean roughness Ra of the surface of the nickel thin film 10 is, for example, about 1 to 20 nm. As the crystal growth of the nickel thin film increases, the arithmetic mean roughness Ra of the surface tends to increase. Ra of the surface of the nickel thin film may be 2 nm or more or 3 nm or more. The arithmetic mean roughness of the surface of the nickel thin film 10 is preferably larger than the arithmetic mean roughness of the base material surface.

<ニッケル薄膜の形成方法>
ニッケル薄膜の形成方法としては、膜厚均一性に優れた薄膜を成膜できることから、スパッタ法が好ましい。特に。ロールトゥロールスパッタ装置を用い、長尺の樹脂フィルム基材を長手方向に連続的に移動させながら成膜を行うことにより、導電フィルムの生産性が高められる。
<Method for forming nickel thin film>
As a method for forming the nickel thin film, a sputtering method is preferable because a thin film with excellent film thickness uniformity can be formed. especially. By using a roll-to-roll sputtering device to form a film while continuously moving a long resin film base material in the longitudinal direction, the productivity of the conductive film can be increased.

スパッタ装置内にロール状のフィルム基材を装填後、スパッタ成膜の開始前に、スパッタ装置内を排気して、フィルム基材から発生する有機ガス等の不純物を取り除いた雰囲気とすることが好ましい。事前に装置内およびフィルム基材中のガスを除去することにより、ニッケル薄膜中の炭素原子濃度が低減する傾向がある。スパッタ成膜開始前のスパッタ装置内の真空度(到達真空度)は、例えば、1×10-2Pa以下であり、5×10-3Pa以下が好ましく、1×10-3Pa以下がより好ましく、5×10-4Pa以下がさらに好ましく、5×10-5Pa以下が特に好ましい。 After loading the roll-shaped film base material into the sputtering equipment and before starting sputtering film formation, it is preferable to exhaust the inside of the sputtering equipment to create an atmosphere in which impurities such as organic gas generated from the film base material are removed. . By removing the gas in the device and film substrate in advance, the carbon atom concentration in the nickel thin film tends to be reduced. The vacuum degree (ultimate vacuum degree) in the sputtering apparatus before starting sputter film formation is, for example, 1×10 −2 Pa or less, preferably 5×10 −3 Pa or less, and more preferably 1×10 −3 Pa or less. It is preferably 5×10 −4 Pa or less, more preferably 5×10 −5 Pa or less, and particularly preferably 5×10 −5 Pa or less.

ニッケル薄膜のスパッタ成膜には、金属Niターゲットを用い、アルゴン等の不活性ガスを導入しながら成膜が行われる。ニッケル薄膜の成膜条件は特に限定されないが、フィルム基材からの有機ガス等に起因する炭素の混入を低減するように成膜条件を選択することが好ましい。ニッケル薄膜中の炭素量を低減する方法としては、(1)前述のように、スパッタ成膜前に真空下でフィルム基材を処理して、フィルム基材中の有機ガス等を除去する;(2)スパッタ成膜時のフィルム基材へのダメージを低減する;(3)フィルム基材上に下地層を設け、フィルム基材からの有機ガス等を遮断する、等が挙げられる。 Sputter deposition of a nickel thin film is performed using a metal Ni target while introducing an inert gas such as argon. Although the film-forming conditions for the nickel thin film are not particularly limited, it is preferable to select the film-forming conditions so as to reduce the contamination of carbon caused by organic gas etc. from the film base material. As a method for reducing the amount of carbon in the nickel thin film, (1) as mentioned above, treat the film base material under vacuum before sputtering to remove organic gases, etc. in the film base material; 2) Reducing damage to the film base material during sputter film formation; (3) Providing a base layer on the film base material to block organic gas etc. from the film base material.

スパッタ成膜時のフィルム基材へのダメージを低減する方法としては、成膜時の基板温度を低くする、放電パワー密度を低くする等が挙げられる。例えば、フィルム基材上に直接ニッケル薄膜を形成する場合は、フィルム基材からの有機ガスの発生を抑制する観点から、基板温度は80℃以下が好ましく、60℃以下がより好ましく、50℃以下がさらに好ましい。 Examples of methods for reducing damage to the film base material during sputter film formation include lowering the substrate temperature during film formation and lowering the discharge power density. For example, when forming a nickel thin film directly on a film base material, the substrate temperature is preferably 80°C or less, more preferably 60°C or less, and 50°C or less, from the viewpoint of suppressing the generation of organic gas from the film base material. is even more preferable.

後述のように、フィルム基材に下地層を設け、その上にニッケル薄膜を形成する場合は、基板温度が高温でも、下地層がフィルム基材からの有機ガス等を遮断する作用を有する。そのため、ニッケル薄膜の成膜時の基板温度は、フィルム基材が耐熱性を有する範囲で適宜設定可能である。また、基板温度が高いほど、ニッケル薄膜の結晶性が高められ、(111)面の回折ピークの半値幅が小さくなる傾向がある。そのため、フィルム基材上に下地層を設け、その上にニッケル薄膜を形成する場合の基板温度は、30℃以上が好ましく、50℃以上がより好ましく、70℃以上がさらに好ましい。基板温度は、100℃以上、120℃以上、または130℃以上であってもよい。 As described later, when a base layer is provided on a film base material and a nickel thin film is formed thereon, the base layer has the effect of blocking organic gas etc. from the film base material even if the substrate temperature is high. Therefore, the substrate temperature during the formation of the nickel thin film can be appropriately set within a range where the film base material has heat resistance. Furthermore, the higher the substrate temperature, the higher the crystallinity of the nickel thin film, and the half width of the diffraction peak of the (111) plane tends to become smaller. Therefore, when a base layer is provided on a film base material and a nickel thin film is formed thereon, the substrate temperature is preferably 30°C or higher, more preferably 50°C or higher, and even more preferably 70°C or higher. The substrate temperature may be 100°C or higher, 120°C or higher, or 130°C or higher.

フィルム基材の脆化防止等の観点から、基板温度は-30℃以上が好ましい。プラズマ放電を安定させつつ、フィルム基材へのダメージを抑制する観点から、放電パワー密度は、0.1~5.0W/cmが好ましく、1.0~3.5W/cmがより好ましい。 From the viewpoint of preventing embrittlement of the film base material, the substrate temperature is preferably −30° C. or higher. From the viewpoint of suppressing damage to the film base material while stabilizing plasma discharge, the discharge power density is preferably 0.1 to 5.0 W/cm 2 , more preferably 1.0 to 3.5 W/cm 2. .

<下地層>
図2に示すように、樹脂フィルム基材50上に下地層20を設け、その上にニッケル薄膜10を形成することにより、ニッケル薄膜10成膜時の樹脂フィルム基材50へのプラズマダメージを抑制できる。また、下地層20を設けることにより、樹脂フィルム基材50から発生する水分や有機ガス等を遮断して、ニッケル薄膜10への炭素原子の混入を抑制できる。また、下地層20上にニッケル薄膜10を形成することにより、ニッケル薄膜の結晶成長が促進される傾向がある。
<Base layer>
As shown in FIG. 2, by providing the base layer 20 on the resin film base material 50 and forming the nickel thin film 10 thereon, plasma damage to the resin film base material 50 is suppressed when the nickel thin film 10 is formed. can. Further, by providing the base layer 20, it is possible to block moisture, organic gas, etc. generated from the resin film base material 50, and to suppress the incorporation of carbon atoms into the nickel thin film 10. Further, by forming the nickel thin film 10 on the base layer 20, crystal growth of the nickel thin film tends to be promoted.

ニッケル薄膜への炭素の混入を抑制する観点から、下地層20は無機材料であることが好ましい。下地層20は導電性でも絶縁性でもよい。下地層20が導電性の無機材料(無機導電体)である場合は、温度センサフィルムの作製時にニッケル薄膜10とともに下地層20をパターニングすればよい。下地層20が絶縁性の無機材料(無機誘電体)である場合、下地層20はパターニングしてもよく、パターニングしなくてもよい。 From the viewpoint of suppressing the incorporation of carbon into the nickel thin film, the base layer 20 is preferably made of an inorganic material. Underlayer 20 may be conductive or insulating. When the base layer 20 is made of a conductive inorganic material (inorganic conductor), the base layer 20 may be patterned together with the nickel thin film 10 when producing the temperature sensor film. When the base layer 20 is made of an insulating inorganic material (inorganic dielectric), the base layer 20 may or may not be patterned.

無機材料としては、Si,Ge,Sn,Pb,Al,Ga,In,Tl,As,Sb,Bi,Se,Te,Mg,Ca,Sr,Ba,Sc,Y,Ti,Zr,Hf,V,Nb,Ta,Cr,Mo,W,Mn,Tc,Re,Fe,Ru,Os,Co,Rh,Ir,Pd,Pt,Cu,Ag,Au,Zn,Cd等の金属元素または半金属元素、およびこれらの合金、窒化物、酸化物、窒酸化物等が挙げられる。下地層が酸化物である場合、下地層の材料は酸化ニッケルでもよい。樹脂フィルム基材およびニッケル薄膜の両方に対する密着性に優れ、かつニッケル薄膜への炭素混入抑制効果が高く、ニッケル薄膜の結晶成長を促進できることから、下地層の材料としては、シリコンまたは酸化シリコンが好ましい。下地層として、シリコン層の上に酸化シリコン層を形成してもよい。 Inorganic materials include Si, Ge, Sn, Pb, Al, Ga, In, Tl, As, Sb, Bi, Se, Te, Mg, Ca, Sr, Ba, Sc, Y, Ti, Zr, Hf, V , Nb, Ta, Cr, Mo, W, Mn, Tc, Re, Fe, Ru, Os, Co, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, etc. metallic elements or metalloid elements , and their alloys, nitrides, oxides, nitride oxides, and the like. When the underlayer is an oxide, the material of the underlayer may be nickel oxide. Silicon or silicon oxide is preferable as the material for the underlayer because it has excellent adhesion to both the resin film base material and the nickel thin film, has a high effect of suppressing carbon incorporation into the nickel thin film, and can promote crystal growth of the nickel thin film. . A silicon oxide layer may be formed on the silicon layer as the base layer.

下地層は複数の層を含んでいてもよい。例えば、下地層として無機導電体の上に無機誘電体を形成し、その上にニッケル薄膜を形成してもよい。この形態では、ニッケル薄膜に誘電体層が接しているため、温度センサフィルムの作製時に、下地層20をパターニングする必要がない。 The base layer may include multiple layers. For example, an inorganic dielectric material may be formed on an inorganic conductor as a base layer, and a nickel thin film may be formed thereon. In this embodiment, since the dielectric layer is in contact with the nickel thin film, there is no need to pattern the base layer 20 when producing the temperature sensor film.

下地層の厚みは特に限定されない。フィルム基材へのプラズマダメージの低減、およびフィルム基材からのアウトガスの遮断効果を高める観点から、下地層の厚みは、1nm以上が好ましく、3nm以上がより好ましく、5nm以上がさらに好ましい。生産性向上や材料コスト低減の観点から、下地層の厚みは200nm以下が好ましく、100nm以下がより好ましく、50nm以下がさらに好ましい。下地層20が複数層からなる場合は、合計厚みが上記範囲であることが好ましい。 The thickness of the base layer is not particularly limited. From the viewpoint of reducing plasma damage to the film base material and enhancing the effect of blocking outgas from the film base material, the thickness of the base layer is preferably 1 nm or more, more preferably 3 nm or more, and even more preferably 5 nm or more. From the viewpoint of improving productivity and reducing material costs, the thickness of the base layer is preferably 200 nm or less, more preferably 100 nm or less, and even more preferably 50 nm or less. When the base layer 20 consists of multiple layers, it is preferable that the total thickness is within the above range.

下地層20の形成方法は特に限定されず、ドライコーティング、ウェットコーティングのいずれも採用し得る。スパッタ法によりニッケル薄膜を形成する場合は、生産性の観点から、下地層20もスパッタ法により形成することが好ましい。 The method for forming the base layer 20 is not particularly limited, and either dry coating or wet coating may be employed. When forming the nickel thin film by sputtering, from the viewpoint of productivity, it is preferable that the base layer 20 is also formed by sputtering.

スパッタ法による下地層の形成条件は特に限定されず、材料の種類等に応じて適宜設定すればよい。酸化物薄膜の形成には、金属ターゲットを用いてもよく、酸化物ターゲットを用いてもよい。成膜速度が大きいことから、酸化物薄膜は、金属ターゲットを用いた反応性スパッタにより形成することが好ましい。 Conditions for forming the base layer by sputtering are not particularly limited, and may be appropriately set depending on the type of material and the like. A metal target or an oxide target may be used to form the oxide thin film. The oxide thin film is preferably formed by reactive sputtering using a metal target because the film formation rate is high.

下地層の成膜条件や特性が、下地層上に形成されるニッケル薄膜の結晶性に影響を与える場合がある。例えば、下地層としてシリコン層と酸化シリコン層を形成する場合、これらの下地層をスパッタ成膜する際の磁場が強い(磁束密度が大きい)ほど、その上に形成されるニッケル薄膜の(111)面のピーク半値幅が小さくなる傾向がある。下地層をスパッタ法により成膜する際のターゲット表面の磁束密度は、20mT以上が好ましく、35mT以上がより好ましく、45mT以上がさらに好ましく、55mT以上が特に好ましい。 The film formation conditions and characteristics of the underlayer may affect the crystallinity of the nickel thin film formed on the underlayer. For example, when forming a silicon layer and a silicon oxide layer as underlayers, the stronger the magnetic field (larger the magnetic flux density) when sputtering these underlayers, the more the (111) There is a tendency for the half-value width of the peak of the surface to become smaller. The magnetic flux density on the target surface when forming the underlayer by sputtering is preferably 20 mT or more, more preferably 35 mT or more, even more preferably 45 mT or more, and particularly preferably 55 mT or more.

<加熱処理>
ニッケル薄膜を成膜後に、加熱処理を実施してもよい。フィルム基材上にニッケル薄膜を備える導電フィルムを加熱することにより、ニッケルの結晶性が高められ、これに伴って(111)面のピーク半値幅が小さくなり、熱安定性が向上する傾向がある。加熱処理を行う場合、加熱温度は80℃以上が好ましく、100℃以上がより好ましく、120℃以上がさらに好ましい。加熱温度の上限は、フィルム基材の耐熱性を考慮して定めればよく、一般には200℃以下または180℃以下である。ポリイミドフィルム等の高耐熱性フィルム基板を用いる場合、加熱温度は上記範囲を上回っていてもよい。加熱時間は1分以上が好ましく、5分以上がより好ましく、10分以上がさらに好ましい。加熱処理を行うタイミングは、ニッケル薄膜を成膜後であれば特に限定されない。例えば、ニッケル薄膜をパターニング後に加熱処理を実施してもよい。
<Heat treatment>
A heat treatment may be performed after forming the nickel thin film. By heating a conductive film comprising a thin nickel film on a film base material, the crystallinity of nickel is increased, and the half-value width of the peak of the (111) plane tends to become smaller and the thermal stability tends to improve. . When performing heat treatment, the heating temperature is preferably 80°C or higher, more preferably 100°C or higher, and even more preferably 120°C or higher. The upper limit of the heating temperature may be determined in consideration of the heat resistance of the film base material, and is generally 200°C or lower or 180°C or lower. When using a highly heat-resistant film substrate such as a polyimide film, the heating temperature may exceed the above range. The heating time is preferably 1 minute or more, more preferably 5 minutes or more, and even more preferably 10 minutes or more. The timing of the heat treatment is not particularly limited as long as it is after the nickel thin film is formed. For example, heat treatment may be performed after patterning the nickel thin film.

[温度センサフィルム]
導電フィルムのニッケル薄膜10をパターニングすることにより、温度センサフィルムが形成される。図3に示すように、温度センサフィルムにおいて、ニッケル薄膜は、配線状に形成されたリード部11と、リード部11の一端に接続された測温抵抗部12を有する。リード部11の他端は、コネクタ19に接続されている。
[Temperature sensor film]
A temperature sensor film is formed by patterning the nickel thin film 10 of the conductive film. As shown in FIG. 3, in the temperature sensor film, the nickel thin film has a lead portion 11 formed in the shape of a wire, and a temperature measuring resistor portion 12 connected to one end of the lead portion 11. The other end of the lead portion 11 is connected to a connector 19.

測温抵抗部12は、温度センサとして作用する領域であり、リード部11を介して測温抵抗部12に電圧を印加し、その抵抗値から温度を算出することにより温度測定が行われる。温度センサフィルム110の面内に複数の測温抵抗部を設けることにより、複数個所の温度を同時に測定できる。例えば、図3に示す形態では、面内の5箇所に測温抵抗部12が設けられている。 The temperature-measuring resistor section 12 is a region that acts as a temperature sensor, and temperature measurement is performed by applying a voltage to the temperature-measuring resistor section 12 via the lead section 11 and calculating the temperature from the resistance value. By providing a plurality of temperature-measuring resistance sections within the plane of the temperature sensor film 110, temperatures at a plurality of locations can be measured simultaneously. For example, in the form shown in FIG. 3, the temperature measuring resistance sections 12 are provided at five locations within the plane.

図4Aは、2線式の温度センサにおける測温抵抗部近傍の拡大図である。測温抵抗部12は、ニッケル薄膜が細線状にパターニングされたセンサ配線122,123により形成されている。センサ配線は、複数の縦電極122が、その端部で横配線123を介して連結されてヘアピン状の屈曲部を形成し、つづら折れ状のパターンを有している。 FIG. 4A is an enlarged view of the vicinity of a temperature-measuring resistor in a two-wire temperature sensor. The temperature measuring resistor section 12 is formed by sensor wirings 122 and 123 in which a nickel thin film is patterned into thin lines. The sensor wiring has a serpentine pattern in which a plurality of vertical electrodes 122 are connected at their ends via horizontal wiring 123 to form a hairpin-shaped bent part.

測温抵抗部12のパターン形状を形成する細線の線幅が小さく(断面積が小さく)、測温抵抗部12のセンサ配線の一端121aから他端121bまでの線長が大きいほど、2点間の抵抗が大きく、温度変化に伴う抵抗変化量も大きいため、温度測定精度が向上する。図4に示すようなつづら折れ状の配線パターンとすることにより、測温抵抗部12の面積が小さく、かつセンサ配線の長さ(一端121aから他端121bまでの線長)を大きくできる。なお、温度測定部のセンサ配線のパターン形状は図4に示すような形態に限定されず、らせん状等のパターン形状でもよい。 The smaller the line width (smaller cross-sectional area) of the thin wire forming the pattern shape of the resistance temperature sensor section 12 and the larger the line length from one end 121a of the sensor wiring of the resistance temperature sensor section 12 to the other end 121b, the greater the distance between two points. Since the resistance is large and the amount of resistance change due to temperature change is also large, temperature measurement accuracy is improved. By using a zigzag wiring pattern as shown in FIG. 4, the area of the temperature sensing resistor section 12 can be reduced and the length of the sensor wiring (line length from one end 121a to the other end 121b) can be increased. Note that the pattern shape of the sensor wiring of the temperature measuring section is not limited to the shape shown in FIG. 4, but may be a spiral pattern or the like.

センサ配線122(縦配線)の線幅、および隣接する配線間の距離(スペース幅)は、フォトリソグラフィーのパターニング精度に応じて設定すればよい。線幅およびスペース幅は、一般には1~150μm程度である。センサ配線の断線を防止する観点から、線幅は3μm以上が好ましく、5μm以上が好ましい。抵抗変化を大きくして温度測定精度を高める観点から、線幅は100μm以下が好ましく、70μm以下がより好ましい。同様の観点から、スペース幅は3~100μmが好ましく、5~70μmがより好ましい。 The line width of the sensor wiring 122 (vertical wiring) and the distance between adjacent wirings (space width) may be set according to the patterning accuracy of photolithography. The line width and space width are generally about 1 to 150 μm. From the viewpoint of preventing disconnection of the sensor wiring, the line width is preferably 3 μm or more, and preferably 5 μm or more. From the viewpoint of increasing resistance change and improving temperature measurement accuracy, the line width is preferably 100 μm or less, more preferably 70 μm or less. From the same viewpoint, the space width is preferably 3 to 100 μm, more preferably 5 to 70 μm.

測温抵抗部12のセンサ配線の両端121a,121bは、それぞれ、リード部11a、11bの一端に接続されている。2本のリード部11a,11bは、わずかな隙間を隔てて対向する状態で、細長のパターン状に形成されており、リード部の他端は、コネクタ19に接続されている。リード部は、十分な電流容量を確保するために、測温抵抗部12のセンサ配線よりも広幅に形成されている。リード部11a,11bの幅は、例えば0.5~10mm程度である。リード部の線幅は、測温抵抗部12のセンサ配線122の線幅の3倍以上が好ましく、5倍以上がより好ましく、10倍以上がさらに好ましい。 Both ends 121a and 121b of the sensor wiring of the temperature measuring resistance section 12 are connected to one end of the lead sections 11a and 11b, respectively. The two lead portions 11a and 11b are formed in an elongated pattern while facing each other with a slight gap therebetween, and the other ends of the lead portions are connected to the connector 19. The lead portion is formed wider than the sensor wiring of the temperature measuring resistor portion 12 in order to ensure sufficient current capacity. The width of the lead portions 11a and 11b is, for example, about 0.5 to 10 mm. The line width of the lead portion is preferably 3 times or more, more preferably 5 times or more, and even more preferably 10 times or more the line width of the sensor wiring 122 of the temperature-measuring resistance section 12.

コネクタ19には複数の端子が設けられており、複数のリード部は、それぞれ異なる端子に接続されている。コネクタ19は外部回路と接続されており、リード部11aとリード部11bの間に電圧を印加することにより、リード部11a、測温抵抗部12およびリード部11bに電流が流れる。所定電圧を印加した際の電流値、または電流が所定値となるように電圧を印加した際の印加電圧から抵抗値が算出される。得られた抵抗値と、予め求められている温度との関係式、または抵抗値と温度の関係を記録したテーブル等に基づいて、抵抗値から温度が算出される。 The connector 19 is provided with a plurality of terminals, and the plurality of lead portions are connected to different terminals, respectively. The connector 19 is connected to an external circuit, and by applying a voltage between the lead portion 11a and the lead portion 11b, a current flows through the lead portion 11a, the temperature measuring resistor portion 12, and the lead portion 11b. The resistance value is calculated from the current value when a predetermined voltage is applied or the applied voltage when a voltage is applied so that the current becomes a predetermined value. The temperature is calculated from the resistance value based on a relational expression between the obtained resistance value and the temperature determined in advance, or a table recording the relationship between the resistance value and the temperature.

ここで求められる抵抗値は、測温抵抗部12の抵抗に加えて、リード部11aおよびリード部11bの抵抗も含んでいるが、測温抵抗部12の抵抗は、リード部11a,11bの抵抗に比べて十分に大きいため、求められる測定値は、測温抵抗部12の抵抗とみなしてよい。なお、リード部の抵抗による影響を低減する観点から、リード部を4線式としてもよい。 The resistance value determined here includes the resistance of the lead portions 11a and 11b in addition to the resistance of the resistance temperature sensing portion 12. Since the measured value is sufficiently larger than , the measured value may be regarded as the resistance of the temperature measuring resistor section 12. In addition, from the viewpoint of reducing the influence of the resistance of the lead part, the lead part may be of a four-wire type.

図4Bは、4線式の温度センサにおける測温抵抗部近傍の拡大図である。測温抵抗部12のパターン形状は、図4Aと同様である。4線式では、1つの測温抵抗部12に4本のリード部11a1,11a2,11b1,11b2が接続されている。リード部11a1,11b1は電圧測定用リードであり、リード部11a2,11b2は電流測定用リードである。電圧測定用リード11a1および電流測定用リード11a2は、測温抵抗部12のセンサ配線の一端121aに接続されており、電圧測定用リード11b1および電流測定用リード11b2は、測温抵抗部12のセンサ配線の他端121bに接続されている。4線式では、リード部の抵抗を除外して測温抵抗部12のみの抵抗値を測定できるため、より誤差の少ない測定が可能となる。2線式および4線式以外に、3線式を採用してもよい。 FIG. 4B is an enlarged view of the vicinity of a temperature-measuring resistor in a four-wire temperature sensor. The pattern shape of the temperature measuring resistor section 12 is the same as that in FIG. 4A. In the four-wire type, four lead parts 11a1, 11a2, 11b1, and 11b2 are connected to one temperature-measuring resistance part 12. The lead parts 11a1 and 11b1 are voltage measurement leads, and the lead parts 11a2 and 11b2 are current measurement leads. The voltage measurement lead 11a1 and the current measurement lead 11a2 are connected to one end 121a of the sensor wiring of the resistance temperature measurement section 12, and the voltage measurement lead 11b1 and the current measurement lead 11b2 are connected to the sensor wiring of the resistance temperature measurement section 12. It is connected to the other end 121b of the wiring. In the four-wire system, the resistance value of only the temperature-measuring resistor section 12 can be measured by excluding the resistance of the lead section, so that measurement with fewer errors is possible. In addition to the 2-wire system and the 4-wire system, a 3-wire system may be adopted.

ニッケル薄膜のパターニング方法は特に限定されない。パターニングが容易であり、精度が高いことからフォトリソグラフィー法によりパターニングを行うことが好ましい。フォトリソグラフィーでは、ニッケル薄膜の表面に、上記のリード部および測温抵抗部の形状に対応するエッチングレジストを形成し、エッチングレジストが形成されていない領域のニッケル薄膜をウェットエッチングにより除去した後、エッチングレジストを剥離する。ニッケル薄膜のパターニングは、レーザ加工等のドライエッチングにより実施することもできる。 The method of patterning the nickel thin film is not particularly limited. It is preferable to perform patterning by photolithography because patterning is easy and has high precision. In photolithography, an etching resist is formed on the surface of the nickel thin film in a manner corresponding to the shape of the lead part and the temperature sensing resistor part, and after removing the nickel thin film in areas where the etching resist is not formed by wet etching, etching is performed. Peel off the resist. Patterning of the nickel thin film can also be performed by dry etching such as laser processing.

上記の実施形態では、樹脂フィルム基材50上に、スパッタ法等によりニッケル薄膜10を形成し、ニッケル薄膜をパターニングすることにより、基板面内に、複数のリード部および測温抵抗部を形成できる。この温度センサフィルムのリード部11の端部にコネクタ19を接続することにより、温度センサ素子が得られる。この実施形態では、複数の測温抵抗部にリード部が接続されており、複数のリード部を1つのコネクタ19と接続すればよい。そのため、面内の複数個所の温度を測定可能な温度センサ素子を簡便に形成できる。 In the above embodiment, by forming the nickel thin film 10 on the resin film base material 50 by sputtering or the like and patterning the nickel thin film, a plurality of lead parts and temperature measuring resistance parts can be formed within the substrate surface. . By connecting the connector 19 to the end of the lead portion 11 of this temperature sensor film, a temperature sensor element is obtained. In this embodiment, lead parts are connected to a plurality of temperature measuring resistance parts, and it is sufficient to connect the plurality of lead parts to one connector 19. Therefore, a temperature sensor element capable of measuring temperatures at multiple locations within a plane can be easily formed.

上記の実施形態では、フィルム基材の一方の主面上にニッケル薄膜を設けたが、フィルム基材の両面にニッケル薄膜を設けてもよい。また、フィルム基材の一方の主面上にニッケル薄膜を設け、他方の主面には別の材料からなる薄膜を設けてもよい。 In the above embodiment, the nickel thin film was provided on one main surface of the film base material, but the nickel thin film may be provided on both sides of the film base material. Alternatively, a nickel thin film may be provided on one main surface of the film base material, and a thin film made of another material may be provided on the other main surface.

温度センサフィルムのリード部と外部回路との接続方法は、コネクタを介した形態に限定されない。例えば、温度センサフィルム上に、リード部に電圧を印加して抵抗を測定するためのコントローラを設けてもよい。また、リード部と外部回路からのリード配線とを、コネクタを介さずに半田付け等により接続してもよい。 The method of connecting the lead portion of the temperature sensor film and the external circuit is not limited to the method using a connector. For example, a controller may be provided on the temperature sensor film to apply a voltage to the lead portion and measure the resistance. Further, the lead portion and the lead wiring from the external circuit may be connected by soldering or the like without using a connector.

温度センサフィルムは、フィルム基材上に薄膜が設けられた簡素な構成であり、生産性に優れるとともに、加工が容易であり、曲面への適用も可能である。また、ニッケル薄膜の炭素量が少なく、TCRが大きいため、より精度の高い温度測定を実現可能である。 The temperature sensor film has a simple structure in which a thin film is provided on a film base material, and has excellent productivity, is easy to process, and can be applied to curved surfaces. Furthermore, since the nickel thin film has a small amount of carbon and a high TCR, it is possible to achieve more accurate temperature measurement.

以下に、実施例を挙げて本発明をより詳細に説明するが、本発明は以下の実施例に限定されるものではない。 EXAMPLES The present invention will be explained in more detail with reference to examples below, but the present invention is not limited to the following examples.

[評価方法]
<炭素含有量>
四重極型二次イオン質量分析装置(アルバック・ファイ製「PHI ADEPT-1010」)を用い、一次イオン種:Cs、加速エネルギー:2.0keV、ラスタ領域:300μm×300μm、検出領域:100μm×100μmの条件で、二次イオン質量分析(SIMS)により、導電フィルムの表面(ニッケル層の表面)から深さ方向の濃度分布(デプスプロファイル)を測定した。Ni濃度が1×1019atm/cm以上の領域をNi層として、その厚み方向の中央における炭素原子の濃度を、ニッケル層の炭素含有量とした。
[Evaluation method]
<Carbon content>
Using a quadrupole secondary ion mass spectrometer (“PHI ADEPT-1010” manufactured by ULVAC-PHI), primary ion species: Cs + , acceleration energy: 2.0 keV, raster area: 300 μm x 300 μm, detection area: 100 μm. The concentration distribution in the depth direction (depth profile) from the surface of the conductive film (the surface of the nickel layer) was measured by secondary ion mass spectrometry (SIMS) under the condition of ×100 μm. The region where the Ni concentration was 1×10 19 atm/cm 3 or more was defined as the Ni layer, and the concentration of carbon atoms at the center in the thickness direction was defined as the carbon content of the nickel layer.

<比抵抗>
温度25℃、相対湿度50%の環境下で、抵抗率計(三菱ケミカルアナリテック製「ロレスタGP MCP-T610」)を用い、四探針法により表面抵抗を測定し、表面抵抗と厚みとの積からニッケル層の比抵抗を算出した。ニッケル層の厚みは、透過型電子顕微鏡(日立ハイテク製、「HF-2000」)により、断面観察を行って測定した。
<Specific resistance>
The surface resistance was measured using a resistivity meter (Loresta GP MCP-T610 manufactured by Mitsubishi Chemical Analytic Tech) under an environment of a temperature of 25°C and a relative humidity of 50% by the four-probe method, and the relationship between surface resistance and thickness was determined. The specific resistance of the nickel layer was calculated from the product. The thickness of the nickel layer was measured by observing the cross section using a transmission electron microscope (manufactured by Hitachi High-Tech, "HF-2000").

<表面形状>
原子間力顕微鏡(Bruker製「Dimension3100」)を用い、下記の条件によりニッケル層の三次元表面形状を測定し、長さ1μmの粗さ曲線を抽出し、JIS B0601に準じて、算術平均粗さRaを算出した。
コントローラ:NanoscopeV
測定モード:タッピングモード
カンチレバー:Si単結晶
測定視野:1μm×1μm
<Surface shape>
Using an atomic force microscope (Dimension 3100 manufactured by Bruker), the three-dimensional surface shape of the nickel layer was measured under the following conditions, a roughness curve with a length of 1 μm was extracted, and the arithmetic mean roughness was calculated according to JIS B0601. Ra was calculated.
Controller: Nanoscope V
Measurement mode: Tapping mode Cantilever: Si single crystal Measurement field of view: 1μm x 1μm

<X線回折>
粉末X線回折装置(リガク製「RINT-2000」)を用い、下記の条件で、out-of-plane法により、X線回折測定を実施し、得られたX線回折パターンから、2θ=43°付近の回折ピーク(Ni(fcc)の(111)面回折ピーク)の半値幅を求めた。
X線源:CuKα線(波長:1.541Å)、40KV、40mA
光学系:並行ビーム光学系
発散スリット:0.05mm
受光スリット:ソーラースリット
<X-ray diffraction>
Using a powder X-ray diffraction device (Rigaku "RINT-2000"), X-ray diffraction measurements were carried out by the out-of-plane method under the following conditions, and from the obtained X-ray diffraction pattern, 2θ = 43 The half-width of the diffraction peak near the angle ((111) plane diffraction peak of Ni (fcc)) was determined.
X-ray source: CuKα ray (wavelength: 1.541 Å), 40 KV, 40 mA
Optical system: Parallel beam optical system Divergence slit: 0.05mm
Light receiving slit: solar slit

<抵抗温度係数(TCR)>
(温度センサフィルムの作製)
導電フィルムを、10mm×200mmのサイズにカットし、レーザーパターニングにより、ニッケル層を線幅30μmのストライプ形状にパターン加工して、図4Aに示す形状の測温抵抗部を形成した。パターニングに際しては、全体の配線抵抗が約10kΩ、測温抵抗部の抵抗がリード部の抵抗の30倍となるように、パターンの長さを調整し、温度センサフィルムを作製した。
<Temperature coefficient of resistance (TCR)>
(Preparation of temperature sensor film)
The conductive film was cut into a size of 10 mm x 200 mm, and the nickel layer was patterned into a stripe shape with a line width of 30 μm by laser patterning to form a temperature measuring resistor section having the shape shown in FIG. 4A. During patterning, the length of the pattern was adjusted so that the overall wiring resistance was about 10 kΩ and the resistance of the temperature-measuring resistor part was 30 times the resistance of the lead part, and a temperature sensor film was produced.

(抵抗温度係数の測定)
小型の加熱冷却オーブンで、温度センサフィルムの測温抵抗部を5℃、25℃、45℃とした。リード部の一方の先端と他方の先端をテスタに接続し、定電流を流し電圧を読み取ることにより、それぞれの温度における2端子抵抗を測定した。5℃および25℃の抵抗値から計算したTCRと、25℃、45℃の抵抗値から計算したTCRの平均値を、ニッケル層のTCRとした。
(Measurement of temperature coefficient of resistance)
The temperature measuring resistance portion of the temperature sensor film was set to 5°C, 25°C, and 45°C in a small heating and cooling oven. The two-terminal resistance at each temperature was measured by connecting one tip and the other tip of the lead portion to a tester, flowing a constant current, and reading the voltage. The average value of the TCR calculated from the resistance values at 5°C and 25°C and the TCR calculated from the resistance values at 25°C and 45°C was taken as the TCR of the nickel layer.

<加熱耐久試験>
TCRを測定後の温度センサフィルムを80℃の熱風オーブンに投入し、240時間後および500時間後にオーブンから取り出して、5℃、25℃および45℃での2端子抵抗を測定し、TCRを算出した。TCRおよび25℃の抵抗値に関して、初期値(オーブン投入前)から変化率を求めた
<Heating durability test>
After measuring TCR, the temperature sensor film was placed in a hot air oven at 80°C, and after 240 hours and 500 hours, it was taken out of the oven and the two-terminal resistance was measured at 5°C, 25°C, and 45°C, and TCR was calculated. did. Regarding TCR and resistance value at 25°C, the rate of change was determined from the initial value (before putting it in the oven).

[比較例1]
ロールトゥロールスパッタ装置内に、厚み150μmのポリエチレンテレフタレート(PET)フィルム(表面の算術平均粗さRa:1.6nm)のロールをセットし、スパッタ装置内を到達真空度が5.0×10-3Paとなるまで排気した後、アルゴンを導入し、基板温度150℃、圧力0.3Pa、パワー密度5.6W/cmの条件でDCスパッタ成膜を行い、PETフィルム上に厚み70nmのNi層を備える導電フィルムを作製した。Ni層の形成には、金属ニッケルターゲットを用いた。ニッケルターゲット表面の磁束密度は100mTであった。
[Comparative example 1]
A roll of polyethylene terephthalate (PET) film (surface arithmetic mean roughness Ra: 1.6 nm) with a thickness of 150 μm was set in a roll-to-roll sputtering device, and the degree of vacuum reached within the sputtering device was 5.0×10 After evacuating to a pressure of 3 Pa, argon was introduced, and DC sputtering was performed under the conditions of a substrate temperature of 150°C, a pressure of 0.3 Pa, and a power density of 5.6 W/cm 2 to form a 70 nm thick Ni film on the PET film. A conductive film comprising layers was prepared. A metallic nickel target was used to form the Ni layer. The magnetic flux density on the surface of the nickel target was 100 mT.

[実施例1]
基板温度を0℃に変更したこと以外は、比較例1と同様にして導電フィルムを作製した。
[Example 1]
A conductive film was produced in the same manner as Comparative Example 1 except that the substrate temperature was changed to 0°C.

[実施例2]
PETフィルム上に、下地層として、厚み5nmのシリコン層、および厚み10nmの酸化シリコン層を順にスパッタ成膜し、その上に比較例1と同条件でNi層を形成し、PETフィルム上に、Si層(5nm)、SiO層(10nm)、Ni層(70nm)を備える導電フィルムを作製した。Si層およびSiO層の形成には、BドープSiターゲットを用いた。Si層は、スパッタガスとしてアルゴンを導入し、基板温度150℃、圧力0.3Pa、パワー密度1.0W/cmの条件でDCスパッタにより成膜した。SiO層は、スパッタガスとしてのアルゴンに加えて反応性ガスとして酸素を導入し(O/Ar=1.0)、基板温度150℃、圧力0.3Pa、パワー密度1.8W/cmの条件でDCスパッタにより成膜した。Siターゲット表面の磁束密度は100mTであった。
[Example 2]
On the PET film, a silicon layer with a thickness of 5 nm and a silicon oxide layer with a thickness of 10 nm were sequentially formed by sputtering as a base layer, and a Ni layer was formed thereon under the same conditions as in Comparative Example 1, and on the PET film, A conductive film including a Si layer (5 nm), two SiO layers (10 nm), and a Ni layer (70 nm) was produced. A B-doped Si target was used to form the Si layer and the SiO 2 layer. The Si layer was formed by DC sputtering under conditions of a substrate temperature of 150° C., a pressure of 0.3 Pa, and a power density of 1.0 W/cm 2 by introducing argon as a sputtering gas. For the SiO 2 layer, in addition to argon as a sputtering gas, oxygen was introduced as a reactive gas (O 2 /Ar=1.0), the substrate temperature was 150°C, the pressure was 0.3 Pa, and the power density was 1.8 W/cm 2 The film was formed by DC sputtering under the following conditions. The magnetic flux density on the surface of the Si target was 100 mT.

[実施例3]
ニッケル層の厚みを140nmに変更したこと以外は、実施例2と同様にして導電フィルムを作製した。
[Example 3]
A conductive film was produced in the same manner as in Example 2, except that the thickness of the nickel layer was changed to 140 nm.

[実施例4]
Si層およびSiO層形成時のマグネットを変更し、Siターゲット表面の磁束密度30mTで成膜を実施した。また、各層の成膜時の基板温度を75℃に変更し、ニッケル層の厚みを160nmに変更した。これらの変更以外は実施例2と同様にして導電フィルムを作製した。
[Example 4]
The magnet used when forming the Si layer and the SiO 2 layer was changed, and film formation was performed at a magnetic flux density of 30 mT on the surface of the Si target. Further, the substrate temperature during film formation of each layer was changed to 75° C., and the thickness of the nickel layer was changed to 160 nm. A conductive film was produced in the same manner as in Example 2 except for these changes.

[実施例5]
実施例4の導電フィルムを、155℃の熱風オーブン中で60分加熱して、導電フィルムを作製した。
[Example 5]
The conductive film of Example 4 was heated in a hot air oven at 155° C. for 60 minutes to produce a conductive film.

[実施例6]
実施例2において、Si層形成時のマグネットを変更し、Siターゲット表面の磁束密度30mTで成膜を実施した。実施例6では酸化シリコン層を形成せず、シリコン層上にニッケル層を形成し、PETフィルム上に、Si層(5nm)およびNi層(70nm)を備える導電フィルムを作製した。
[Example 6]
In Example 2, the magnet used when forming the Si layer was changed, and the film was formed at a magnetic flux density of 30 mT on the surface of the Si target. In Example 6, a nickel layer was formed on the silicon layer without forming a silicon oxide layer, and a conductive film including a Si layer (5 nm) and a Ni layer (70 nm) on a PET film was produced.

[実施例1~6および比較例1の評価結果]
実施例1~6および比較例1の導電フィルムの積層構成および製造条件(基板温度、下地層の構成および成膜時の磁束密度、ニッケル層の膜厚、成膜後の加熱処理条件)、ならびにニッケル層の特性(炭素含有量、TCRおよび比抵抗)の評価結果を表1に示す。
[Evaluation results of Examples 1 to 6 and Comparative Example 1]
Laminated structure and manufacturing conditions of the conductive films of Examples 1 to 6 and Comparative Example 1 (substrate temperature, base layer structure and magnetic flux density during film formation, nickel layer thickness, heat treatment conditions after film formation), and Table 1 shows the evaluation results of the properties of the nickel layer (carbon content, TCR, and specific resistance).

Figure 0007424750000001
Figure 0007424750000001

PETフィルム基材上に基板温度150℃でニッケル層を成膜した比較例1では、炭素量が1×1021atm/cmを超えており、TCRは3000ppm/℃を下回っていた。一方、基板温度を0℃とした実施例1では、ニッケル層中の炭素量が減少し、TCRが増加していた。実施例1では、低温でスパッタ成膜を実施したことにより、PETフィルム基材からの有機ガスの発生量が低減し、ニッケル層に取り込まれる炭素量が減少して、TCRが増加したと考えられる。 In Comparative Example 1, in which a nickel layer was formed on a PET film base material at a substrate temperature of 150° C., the carbon content exceeded 1×10 21 atm/cm 3 and the TCR was below 3000 ppm/° C. On the other hand, in Example 1 where the substrate temperature was 0° C., the amount of carbon in the nickel layer decreased and the TCR increased. In Example 1, it is thought that by performing sputtering film formation at a low temperature, the amount of organic gas generated from the PET film base material was reduced, the amount of carbon incorporated into the nickel layer was reduced, and the TCR was increased. .

PETフィルム基材上に下地層を形成し、その上にニッケル層を成膜した実施例2~6では、実施例1に比べてさらに炭素量が減少しており、これに伴ってTCRが増加していた。これらの結果から、ニッケル層を成膜する際の成膜条件の調整や、下地層の形成により、フィルム基材からニッケル層への炭素の混入量が低減し、これに伴ってTCRの大きいニッケル層を形成できることが分かる。 In Examples 2 to 6, in which a base layer was formed on the PET film base material and a nickel layer was formed on it, the carbon content was further reduced compared to Example 1, and the TCR increased accordingly. Was. These results show that by adjusting the film forming conditions when forming the nickel layer and forming the base layer, the amount of carbon mixed in from the film base material to the nickel layer can be reduced, and as a result, nickel with a large TCR can be reduced. It can be seen that layers can be formed.

[実施例7]
実施例3の導電フィルムを、155℃の熱風オーブン中で60分加熱して、導電フィルムを作製した。
[Example 7]
The conductive film of Example 3 was heated in a hot air oven at 155° C. for 60 minutes to produce a conductive film.

[実施例8]
実施例4の導電フィルムを、155℃の熱風オーブン中で60分加熱して、導電フィルムを作製した。
[Example 8]
The conductive film of Example 4 was heated in a hot air oven at 155° C. for 60 minutes to produce a conductive film.

[実施例1~8および比較例1の評価結果]
実施例1~8および比較例1の導電フィルムの積層構成および製造条件、ニッケル層の特性(算術平均粗さRa、Ni(111)面回折ピークの半値幅、およびTCR)、ならびに加熱耐久試験後のTCRの変化率を表2に示す。また、実施例4および実施例7の導電フィルムのX線回折パターンを図5に示す。
[Evaluation results of Examples 1 to 8 and Comparative Example 1]
Laminated structure and manufacturing conditions of the conductive films of Examples 1 to 8 and Comparative Example 1, characteristics of the nickel layer (arithmetic mean roughness Ra, half width of Ni (111) surface diffraction peak, and TCR), and after heating durability test Table 2 shows the rate of change in TCR. Moreover, the X-ray diffraction patterns of the conductive films of Example 4 and Example 7 are shown in FIG.

Figure 0007424750000002
Figure 0007424750000002

PETフィルム基材上に基板温度150℃でニッケル層を成膜した比較例1では、ニッケルの(111)面ピークの半値幅が1°を超えていたのに対して、基板温度を0℃とした実施例1では、比較例1に比べて半値幅が小さく、TCRが増加していた。実施例1では、炭素の混入量が減少したことにより、ニッケルの結晶化が促進されたものと考えられる。 In Comparative Example 1, in which a nickel layer was formed on a PET film base material at a substrate temperature of 150°C, the half width of the (111) plane peak of nickel exceeded 1°; In Example 1, the half width was smaller than in Comparative Example 1, and the TCR was increased. In Example 1, it is considered that the crystallization of nickel was promoted due to the reduction in the amount of carbon mixed in.

PETフィルム基材上に下地層を形成し、その上にニッケル層を成膜した実施例2~8では、実施例1に比べてさらにニッケルの(111)面ピークの半値幅が小さく、これに伴ってTCRが増加していた。 In Examples 2 to 8, in which a base layer was formed on the PET film base material and a nickel layer was formed on it, the half width of the (111) plane peak of nickel was smaller than in Example 1. Accordingly, TCR increased.

実施例4の温度センサフィルムでは、加熱耐久試験後に抵抗値が10%以上低下し、TCRも大幅に変化しており、加熱安定性が十分といえるものではなかった。実施例4と同条件で作製した導電フィルムを155℃で15分加熱処理した実施例8では、実施例4に比べて、Raが大きくなり、ニッケルの(111)面ピークの半値幅が小さくなっていた。実施例8の温度センサフィルムは、比較例4に比べて加熱耐久試験後の抵抗の変化が小さく、安定性が向上していた。155℃での加熱時間を60分に変更した実施例5では、実施例8よりもさらにニッケルの(111)面ピークの半値幅が小さくなり、加熱耐久試験後の抵抗の変化が小さくなっていた。 In the temperature sensor film of Example 4, the resistance value decreased by 10% or more after the heating durability test, the TCR also changed significantly, and the heating stability could not be said to be sufficient. In Example 8, in which a conductive film produced under the same conditions as Example 4 was heat-treated at 155°C for 15 minutes, Ra was larger and the half-width of the (111) plane peak of nickel was smaller than in Example 4. was. The temperature sensor film of Example 8 had a smaller change in resistance after the heating durability test than Comparative Example 4, and had improved stability. In Example 5, in which the heating time at 155°C was changed to 60 minutes, the half width of the (111) plane peak of nickel was even smaller than in Example 8, and the change in resistance after the heating durability test was smaller. .

これらの結果から、ニッケル層を成膜後に加熱処理を実施することにより、ニッケルの結晶子のサイズが大きくなり、低抵抗化および高TCR化が図られるとともに、加熱安定性が向上することが分かる。 These results show that heat treatment after forming a nickel layer increases the size of nickel crystallites, lowers resistance and increases TCR, and improves heating stability. .

基板温度を高めた実施例2および実施例3では、実施例4に比べてニッケルの(111)面ピークの半値幅が小さく、加熱安定性が向上していた。実施例2および実施例3では、下地層成膜時の磁束密度が高いことも、(111)面ピークの半値幅減少(結晶性向上)に寄与していると考えられる。実施例3と同条件で作製した導電フィルムを155℃で60分加熱処理した実施例7では、実施例3に比べて、ニッケルの(111)面ピークの半値幅が小さくなり、加熱安定性が向上していた。実施例3では成膜直後の段階(加熱処理未実施)において、既にニッケルの(111)面のピーク半値幅が十分に小さいため、加熱処理による安定性向上効果(実施例7における安定性向上効果)は、実施例4と実施例8との対比の場合ほど顕著ではなかった。 In Examples 2 and 3 in which the substrate temperature was raised, the half width of the (111) plane peak of nickel was smaller than in Example 4, and the heating stability was improved. In Examples 2 and 3, it is thought that the high magnetic flux density during the formation of the underlayer also contributed to the reduction in the half-width of the (111) plane peak (improved crystallinity). In Example 7, in which a conductive film produced under the same conditions as Example 3 was heat-treated at 155°C for 60 minutes, the half width of the (111) plane peak of nickel was smaller than in Example 3, and the heating stability was improved. It was improving. In Example 3, the half-value width of the peak of the (111) plane of nickel is already sufficiently small immediately after film formation (heat treatment not performed), so the stability improvement effect due to heat treatment (stability improvement effect in Example 7) ) was not as pronounced as in the comparison between Example 4 and Example 8.

下地層としてSi層のみを形成し、Si層上にニッケル層を形成した実施例6においても、ニッケルの(111)面のピーク半値幅が小さく、温度センサフィルムが優れた加熱安定性を有していた。 Even in Example 6 in which only a Si layer was formed as the base layer and a nickel layer was formed on the Si layer, the peak half width of the (111) plane of nickel was small, and the temperature sensor film had excellent heating stability. was.

以上の結果から、ニッケル層のX線回折ピーク幅の小さい導電フィルムは、TCRが高く、かつ高温環境に長時間暴露された場合でも抵抗およびTCRの変化率が小さく、温度センサフィルムとして有用であるといえる。 From the above results, a conductive film whose nickel layer has a small X-ray diffraction peak width has a high TCR and a small rate of change in resistance and TCR even when exposed to a high temperature environment for a long time, and is useful as a temperature sensor film. It can be said.

50 フィルム基材
20 下地層
10 ニッケル薄膜
11 リード部
12 測温抵抗部
122,123 センサ配線
19 コネクタ
101,102 導電フィルム
110 温度センサフィルム
50 Film base material 20 Base layer 10 Nickel thin film 11 Lead portion 12 Temperature-measuring resistance portion 122, 123 Sensor wiring 19 Connector 101, 102 Conductive film 110 Temperature sensor film

Claims (8)

樹脂フィルム基材の一主面上にニッケル薄膜を備え、
前記ニッケル薄膜はスパッタ膜であり、X線回折パターンにおいて、ニッケルの(111)面の回折ピークの半値幅が0.8°以下である、温度センサ用導電フィルム。
A thin nickel film is provided on one main surface of a resin film base material,
The conductive film for a temperature sensor, wherein the nickel thin film is a sputtered film, and in an X-ray diffraction pattern, the half width of the diffraction peak of the (111) plane of nickel is 0.8° or less.
前記ニッケル薄膜中の炭素原子濃度が1.0×1021atm/cm以下である、請求項に記載の温度センサ用導電フィルム。 The conductive film for a temperature sensor according to claim 1 , wherein the carbon atom concentration in the nickel thin film is 1.0×10 21 atm/cm 3 or less. 前記ニッケル薄膜の比抵抗が1.6×10-5Ω・cm以下である、請求項1または2に記載の温度センサ用導電フィルム。 3. The conductive film for a temperature sensor according to claim 1 , wherein the nickel thin film has a specific resistance of 1.6×10 −5 Ω·cm or less. 前記ニッケル薄膜の抵抗温度係数が3000ppm/℃以上である、請求項1~のいずれか1項に記載の温度センサ用導電フィルム。 The conductive film for a temperature sensor according to any one of claims 1 to 3 , wherein the nickel thin film has a temperature coefficient of resistance of 3000 ppm/°C or more. 前記ニッケル薄膜の厚みが、20~500nmである、請求項1~のいずれか1項に記載の温度センサ用導電フィルム。 The conductive film for a temperature sensor according to any one of claims 1 to 4 , wherein the nickel thin film has a thickness of 20 to 500 nm. 前記樹脂フィルム基材と前記ニッケル薄膜の間に無機下地層を備える、請求項1~のいずれか1項に記載の導電フィルム。 The conductive film according to any one of claims 1 to 5 , comprising an inorganic underlayer between the resin film base material and the nickel thin film. 請求項1~のいずれか1項に記載の導電フィルムを製造する方法であって、
前記ニッケル薄膜をスパッタ法により成膜する、導電フィルムの製造方法。
A method for manufacturing the conductive film according to any one of claims 1 to 6 , comprising:
A method for producing a conductive film, comprising forming the nickel thin film by a sputtering method.
樹脂フィルム基材の一主面上にパターニングされたニッケル薄膜を備え、
前記ニッケル薄膜が、細線にパターニングされており温度測定に用いられる測温抵抗部と、前記測温抵抗部に接続され、前記測温抵抗部よりも大きな線幅にパターニングされているリード部とにパターニングされており、
前記ニッケル薄膜はスパッタ膜であり、X線回折パターンにおいて、ニッケルの(111)面の回折ピークの半値幅が0.8°以下であり、炭素原子濃度が1.0×1021atm/cm以下である、温度センサフィルム。
Equipped with a patterned nickel thin film on one main surface of the resin film base material,
The nickel thin film is patterned into a thin line and is used for temperature measurement, and a lead part is connected to the temperature-measuring resistor part and is patterned to have a larger line width than the temperature-measuring resistor part. It is patterned,
The nickel thin film is a sputtered film, and in the X-ray diffraction pattern, the half width of the diffraction peak of the (111) plane of nickel is 0.8° or less, and the carbon atom concentration is 1.0×10 21 atm/cm 3 Below is a temperature sensor film.
JP2019020160A 2019-02-06 2019-02-06 Temperature sensor film, conductive film and manufacturing method thereof Active JP7424750B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019020160A JP7424750B2 (en) 2019-02-06 2019-02-06 Temperature sensor film, conductive film and manufacturing method thereof
CN202080012751.9A CN113474626A (en) 2019-02-06 2020-01-24 Temperature sensor film, conductive film and manufacturing method thereof
KR1020217021371A KR20210124210A (en) 2019-02-06 2020-01-24 Temperature sensor film, conductive film and manufacturing method thereof
PCT/JP2020/002632 WO2020162235A1 (en) 2019-02-06 2020-01-24 Temperature sensor film, electrically conductive film, and method for producing same
TW109103518A TW202035742A (en) 2019-02-06 2020-02-05 Temperature sensor film, electrically conductive film, and method for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019020160A JP7424750B2 (en) 2019-02-06 2019-02-06 Temperature sensor film, conductive film and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2020126034A JP2020126034A (en) 2020-08-20
JP7424750B2 true JP7424750B2 (en) 2024-01-30

Family

ID=71947626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019020160A Active JP7424750B2 (en) 2019-02-06 2019-02-06 Temperature sensor film, conductive film and manufacturing method thereof

Country Status (5)

Country Link
JP (1) JP7424750B2 (en)
KR (1) KR20210124210A (en)
CN (1) CN113474626A (en)
TW (1) TW202035742A (en)
WO (1) WO2020162235A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7424785B2 (en) * 2019-10-01 2024-01-30 日東電工株式会社 Temperature sensor film, conductive film and manufacturing method thereof
JP2022065482A (en) * 2020-10-15 2022-04-27 ジオマテック株式会社 Thin film thermocouple element, temperature measuring element, and method for manufacturing thin film thermocouple element
CN114527523A (en) * 2022-01-11 2022-05-24 长春理工大学 Processing method of lens with real-time temperature measurement function

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000258258A (en) 1999-03-09 2000-09-22 Wako Denshi Kk Temperature sensor and its manufacture
JP2006078478A (en) 2004-08-12 2006-03-23 Komatsu Ltd Film temperature sensor and substrate for temperature measurement
JP2007232669A (en) 2006-03-03 2007-09-13 Tokyo Univ Of Agriculture & Technology Temperature sensor and its manufacturing method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03212903A (en) * 1990-01-18 1991-09-18 Onoda Cement Co Ltd Manufacture of thin film temperature measuring resistor
JPH07333073A (en) * 1994-06-07 1995-12-22 Casio Comput Co Ltd Temperature sensor and temperature measuring device using the same
JP3716606B2 (en) * 1998-03-26 2005-11-16 松下電工株式会社 Thin film thermistor and manufacturing method thereof
JP3733962B2 (en) 2003-09-12 2006-01-11 山里産業株式会社 Thin film resistance thermometer sheet
JP2011066070A (en) * 2009-09-15 2011-03-31 Idemitsu Kosan Co Ltd Polycrystalline thin film, deposition method of the same, and thin film transistor
JP5543907B2 (en) * 2010-12-24 2014-07-09 日東電工株式会社 Transparent conductive film and method for producing the same
JP5896160B2 (en) * 2012-09-28 2016-03-30 三菱マテリアル株式会社 Temperature sensor
JP2014177663A (en) * 2013-03-13 2014-09-25 Kochi Univ Of Technology Transparent conductive zinc oxide thin film
JP2018154520A (en) * 2017-03-16 2018-10-04 住友金属鉱山株式会社 Thick film resistor composition having positive temperature coefficient of resistance, thick film resistor paste using the same, thick film resistor, and temperature sensor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000258258A (en) 1999-03-09 2000-09-22 Wako Denshi Kk Temperature sensor and its manufacture
JP2006078478A (en) 2004-08-12 2006-03-23 Komatsu Ltd Film temperature sensor and substrate for temperature measurement
JP2007232669A (en) 2006-03-03 2007-09-13 Tokyo Univ Of Agriculture & Technology Temperature sensor and its manufacturing method

Also Published As

Publication number Publication date
CN113474626A (en) 2021-10-01
KR20210124210A (en) 2021-10-14
WO2020162235A1 (en) 2020-08-13
JP2020126034A (en) 2020-08-20
TW202035742A (en) 2020-10-01

Similar Documents

Publication Publication Date Title
WO2020162235A1 (en) Temperature sensor film, electrically conductive film, and method for producing same
US20160211059A1 (en) Metal nitride material for thermistor, method for producing same, and film type thermistor sensor
US20150061820A1 (en) Metal nitride material for thermistor, method for producing same, and film type thermistor sensor
US9842675B2 (en) Metal nitride material for thermistor, method for producing same, and film type thermistor sensor
US10304597B2 (en) Metal nitride material for thermistor, method for producing same, and film type thermistor sensor
JP7345341B2 (en) Conductive film, conductive film roll and manufacturing method thereof, and temperature sensor film
EP4040126A1 (en) Electroconductive film, method for manufacturing same, temperature sensor film, and method for manufacturing same
JP7424785B2 (en) Temperature sensor film, conductive film and manufacturing method thereof
JP7374589B2 (en) Temperature sensor film, conductive film and manufacturing method thereof
EP4040127A1 (en) Electroconductive film and temperature sensor film
US20240003762A1 (en) Strain sensor, functional film, and method for manufacturing same
WO2022092207A1 (en) Laminated film, and method for manufacturing strain sensor
WO2022092202A1 (en) Multilayer film, method for producing second multilayer film, and method for producing strain sensor

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20200731

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230221

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240118

R150 Certificate of patent or registration of utility model

Ref document number: 7424750

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150