JP7422373B2 - Prefabricated ductile energy dissipation shear wall structure - Google Patents

Prefabricated ductile energy dissipation shear wall structure Download PDF

Info

Publication number
JP7422373B2
JP7422373B2 JP2023132091A JP2023132091A JP7422373B2 JP 7422373 B2 JP7422373 B2 JP 7422373B2 JP 2023132091 A JP2023132091 A JP 2023132091A JP 2023132091 A JP2023132091 A JP 2023132091A JP 7422373 B2 JP7422373 B2 JP 7422373B2
Authority
JP
Japan
Prior art keywords
column
concrete
prefabricated
frame
ductile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2023132091A
Other languages
Japanese (ja)
Other versions
JP2023182004A (en
Inventor
云 ▲陳▼
奉超 ▲張▼
▲東▼雷 ▲楊▼
▲海▼▲亮▼ ▲張▼
宏 徐
保平 王
玉博 ▲劉▼
▲偉▼▲嵐▼ ▲陳▼
明 ▲張▼
▲龍▼▲剛▼ 雷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hainan University
Original Assignee
Hainan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hainan University filed Critical Hainan University
Publication of JP2023182004A publication Critical patent/JP2023182004A/en
Application granted granted Critical
Publication of JP7422373B2 publication Critical patent/JP7422373B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2/00Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
    • E04B2/56Load-bearing walls of framework or pillarwork; Walls incorporating load-bearing elongated members
    • E04B2/562Load-bearing walls of framework or pillarwork; Walls incorporating load-bearing elongated members with fillings between the load-bearing elongated members
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/38Connections for building structures in general
    • E04B1/61Connections for building structures in general of slab-shaped building elements with each other
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/92Protection against other undesired influences or dangers
    • E04B1/98Protection against other undesired influences or dangers against vibrations or shocks; against mechanical destruction, e.g. by air-raids
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2/00Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/02Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
    • E04H9/021Bearing, supporting or connecting constructions specially adapted for such buildings
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/14Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate against other dangerous influences, e.g. tornadoes, floods

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Load-Bearing And Curtain Walls (AREA)
  • Vibration Prevention Devices (AREA)
  • Vibration Dampers (AREA)

Description

本発明は土木工学及び建築分野内の耐震壁構造組立の技術分野に関して、より具体的に、組立式延性エネルギー散逸耐震壁構造に関している。 The present invention relates to the technical field of shear wall structure assembly within the civil engineering and architectural fields, and more specifically to prefabricated ductile energy dissipating shear wall structures.

組立式建築は部品工場によるプレハブ生産、現場の組立式取付をモードとし、標準設計、工場生産、組立施工、一体内装及び情報管理を特徴とし、研究開発設計、生産製造、現場組立などの各事業分野を統合して、建築製品の省エネ、環境にやさしく、全サイクル価値最大化の持続可能な発展を実現する新型建築生産方式である。 Prefabricated construction uses prefabricated production at parts factories and on-site assembly installation, and features standard design, factory production, assembly construction, integrated interior design, and information management, and includes research and development design, production manufacturing, and on-site assembly. It is a new building production method that integrates fields to realize sustainable development of building products that are energy-saving, environmentally friendly, and maximize the value of the entire cycle.

研究の発展及び社会の住宅に対する需要の継続的な増加に連れて、プレキャスト組立式耐震壁構造建築は間違いなく建築業の発展の新たなチャンスである。その主な技術の1つとして、耐震壁は、耐風及び耐震の効果を発揮することを主な作用とし、現在、耐震壁部品の間の縦方向接続形態の研究は大きな進歩があったとはいえ、組立式耐震壁構造部品の縦方向接続の従来の接続形態は何れもいくつかの欠陥及び制約を有する。 With the development of research and the continuous increase of social housing demand, precast prefabricated shear wall structure construction is definitely a new opportunity for the development of the construction industry. As one of its main technologies, shear walls have the main function of exhibiting wind and earthquake resistance effects, and although there has been significant progress in research on the vertical connection form between shear wall components, , the conventional connection configurations of longitudinal connections of prefabricated shear wall structural components all have several deficiencies and limitations.

従って、如何に耐震壁の耐震性能を向上して、組立式耐震壁構造部品の縦方向接続の欠陥及び制約を解決するかということは、当業者にとって解決しようとする問題である。 Therefore, how to improve the seismic performance of shear walls and solve the defects and limitations of longitudinal connections of prefabricated shear wall structural components is a problem to be solved by those skilled in the art.

これに鑑みると、上記技術問題を解決するために、本発明は組立式延性エネルギー散逸耐震壁構造を提供する。 In view of this, to solve the above technical problems, the present invention provides a prefabricated ductile energy dissipating shear wall structure.

上記目的を実現するために、本発明は以下の技術案を採用し、
組立式延性エネルギー散逸耐震壁構造であって、
フレーム柱であって、前記フレーム柱の数は少なくとも2本であり、前記フレーム柱の底端は基礎面に固定され、隣り合う2本の前記フレーム柱の対向する側壁には複数の埋め込みアンカプレートが固定されているフレーム柱と、
エネルギー散逸機構であって、前記エネルギー散逸機構の数は複数であり、前記エネルギー散逸機構は対向する2つの前記埋め込みアンカプレートの間に取り外し可能に接続されるエネルギー散逸機構と、
2本の前記フレーム柱の間に固定されるフレーム/接続ビームと、
隣り合う前記フレーム柱の間の隙間内に充填される低強度可撓性充填体と、を含む。
In order to achieve the above object, the present invention adopts the following technical proposal,
A prefabricated ductile energy dissipating shear wall structure,
a frame column, wherein the number of frame columns is at least two, a bottom end of the frame column is fixed to a foundation surface, and a plurality of embedded anchor plates are provided on opposing side walls of two adjacent frame columns; a frame column to which is fixed;
an energy dissipation mechanism, the number of energy dissipation mechanisms being plural, the energy dissipation mechanism being removably connected between two of the opposing embedded anchor plates;
a frame/connection beam fixed between two said frame columns;
and a low-strength flexible filler filled in a gap between the adjacent frame columns.

上記技術案によれば、本発明が提供する組立式延性エネルギー散逸耐震壁構造は縦方向接続を行う場合、相応的なフレーム柱を接続すればよく、また、大きな地震があった時、柱は曲げ変形して、エネルギー散逸機構は、上下にずれる弾塑性変形エネルギー散逸が生じて、地震後、柱は基本的に降伏しなく又は弾性状態にあり、損傷したエネルギー散逸機構を取り外して交換すればよく、伝統の組立式耐震壁の縦方向接続方式より、本発明はより簡単且つ確実であり、優れた耐震性能を備え、地震後、修復及びエネルギー散逸機構の交換がより容易になる。 According to the above technical solution, when the prefabricated ductile energy dissipation shear wall structure provided by the present invention is connected vertically, it is only necessary to connect the corresponding frame columns, and when there is a large earthquake, the columns are With bending deformation, the energy dissipation mechanism shifts up and down.Elasto-plastic deformation energy dissipation occurs, and after the earthquake, the column basically does not yield or is in an elastic state, and if the damaged energy dissipation mechanism is removed and replaced. Compared to the traditional vertical connection method of prefabricated shear walls, the present invention is simpler and more reliable, has better seismic performance, and is easier to repair and replace the energy dissipation mechanism after an earthquake.

好ましくは、上記組立式延性エネルギー散逸耐震壁構造において、前記埋め込みアンカプレートと前記フレーム柱側壁との貼合面には複数本の第1アンカボルトが垂直に固定され、前記第1アンカボルトは前記フレーム柱の内部のコンクリート内に埋め込まれるように固定される。フレーム柱にコンクリートを打設する前、細い鋼線を使用して第1アンカボルトを相応的な位置のフープ筋又は縦筋に固縛して、フレーム柱に埋め込んで、当該過程は工場で完成される。 Preferably, in the prefabricated ductile energy dissipation shear wall structure, a plurality of first anchor bolts are vertically fixed to a bonding surface between the embedded anchor plate and the frame column side wall, and the first anchor bolt is fixed to the bonding surface of the embedded anchor plate and the frame column side wall. It is fixed by being embedded in the concrete inside the frame column. Before pouring concrete into the frame column, the first anchor bolt is secured to the hoop reinforcement or vertical reinforcement at the appropriate position using thin steel wire and embedded in the frame column, and the process is completed at the factory. be done.

好ましくは、上記組立式延性エネルギー散逸耐震壁構造において、前記埋め込みアンカプレートには複数の予備穴が開けられ、前記予備穴内側にはネジが加工され、前記エネルギー散逸機構の両端はボルトによって前記予備穴にネジ締めされて接続される。予備穴のサイズ、位置及び数はエネルギー散逸機構の取付孔に対応すべきであり、アンカプレートのサイズ及び形状もエネルギー散逸機構に対応すべきである。 Preferably, in the prefabricated ductile energy dissipating shear wall structure, a plurality of preliminary holes are drilled in the embedded anchor plate, screws are machined inside the preliminary holes, and both ends of the energy dissipating mechanism are connected to the preliminary holes by bolts. Connected by screwing into the hole. The size, location and number of the reserve holes should correspond to the mounting holes of the energy dissipation mechanism, and the size and shape of the anchor plate should also correspond to the energy dissipation mechanism.

好ましくは、上記組立式延性エネルギー散逸耐震壁構造において、前記エネルギー散逸機構は降伏型ダンパ、屈曲降伏型ダンパ又は他のタイプのダンパであり、隣り合う前記フレーム柱の間の各層には少なくとも1つが設けられるべきである。隣り合う2つのフレーム柱の間のピッチはエネルギー散逸機構によって決定され、十分な取付空間を確保しなければならない。 Preferably, in the prefabricated ductile energy dissipating shear wall structure, the energy dissipating mechanism is a yielding damper, a flexural yielding damper or other type of damper, and each layer between adjacent frame columns has at least one. should be established. The pitch between two adjacent frame columns is determined by the energy dissipation mechanism and must ensure sufficient installation space.

好ましくは、上記組立式延性エネルギー散逸耐震壁構造において、前記フレーム柱の底端の外側壁の周囲には被覆鋼板が固定され、前記被覆鋼板の内側壁の間には第2アンカボルトが固定されて接続され、前記第2アンカボルトは前記フレーム柱の内部のコンクリート内に埋め込まれるように固定される。被覆鋼板によって柱脚の圧縮耐荷力及び延性を強化させ、被覆鋼板は第2アンカボルトによって各本のフレーム柱の周囲に緊密に包まれ、フレーム柱にコンクリートを打設する前、細い鋼線を使用して第2アンカボルトを柱のフープ筋又は縦筋に固縛して、柱脚に埋め込んでおり、当該過程は工場で完成されるべきである。 Preferably, in the prefabricated ductile energy dissipating shear wall structure, a coated steel plate is fixed around the outer wall at the bottom end of the frame column, and a second anchor bolt is fixed between the inner walls of the coated steel plate. The second anchor bolt is embedded and fixed in concrete inside the frame column. The coated steel plate strengthens the compressive load-bearing capacity and ductility of the column base. The coated steel plate is tightly wrapped around each frame column by a second anchor bolt, and a thin steel wire is attached to the frame column before concrete is poured. The second anchor bolt is fastened to the hoop or longitudinal reinforcement of the column and embedded in the column base, and this process should be completed at the factory.

好ましくは、上記組立式延性エネルギー散逸耐震壁構造において、前記フレーム柱の柱脚の内部には延性繊維コンクリートが打設され、前記延性繊維コンクリートは鋼繊維コンクリート、ポリエチレン繊維コンクリート又はポリエチレングリコール繊維コンクリート、或いはいくつかの繊維を組み合わせたコンクリートを含む。 Preferably, in the prefabricated ductile energy dissipating shear wall structure, ductile fiber concrete is cast inside the column base of the frame column, and the ductile fiber concrete is steel fiber concrete, polyethylene fiber concrete, or polyethylene glycol fiber concrete, Or it contains concrete combined with several fibers.

好ましくは、上記組立式延性エネルギー散逸耐震壁構造において、前記低強度可撓性充填体はポリウレタン発泡プラスチック、発泡コンクリート、外包石膏ボード又はオートクレーブ気泡コンクリート平板である。 Preferably, in the prefabricated ductile energy dissipating shear wall structure, the low strength flexible filler is polyurethane foam plastic, foam concrete, external gypsum board or autoclaved aerated concrete slab.

好ましくは、上記組立式延性エネルギー散逸耐震壁構造において、前記フレーム柱は鋼管コンクリート柱、形鋼コンクリート柱又は鉄筋コンクリート柱である。 Preferably, in the prefabricated ductile energy dissipating shear wall structure, the frame column is a steel pipe concrete column, a shaped steel concrete column or a reinforced concrete column.

好ましくは、上記組立式延性エネルギー散逸耐震壁構造において、前記フレーム柱は鉄筋コンクリート柱である場合、前記鉄筋コンクリート柱の内部にはフープ筋及び縦筋が埋め込まれるように固定されている。 Preferably, in the prefabricated ductile energy dissipation shear wall structure, when the frame column is a reinforced concrete column, hoop reinforcements and longitudinal reinforcements are embedded and fixed inside the reinforced concrete column.

好ましくは、上記組立式延性エネルギー散逸耐震壁構造において、前記鉄筋コンクリート柱の内部には鋼管が埋め込まれるように固定され、前記鋼管の外側にはスパイラル筋が巻回されて溶接されている。 Preferably, in the prefabricated ductile energy dissipating shear wall structure, a steel pipe is embedded and fixed inside the reinforced concrete column, and spiral reinforcement is wound and welded to the outside of the steel pipe.

上記の技術案から分かるように、従来技術に対して、本発明は組立式延性エネルギー散逸耐震壁構造を開示して提供し、以下の有益な効果を具備する:
1、本発明が提供する組立式延性エネルギー散逸耐震壁構造によれば、プレキャスト作業は何れも工場内で完成され、工場によるプレキャストが完成した後、施工現場に搬送されて組み立てられ、従来の組立式耐震壁の縦方向接続に存在する欠陥及び制約をよく解決する。
2、本発明によれば、大きな地震後、柱は基本的に降伏しなく又は弾性状態にあり、損傷したエネルギー散逸機構を取り外して交換すればよく、組立式建築の地震後の修復能力を大幅に向上する。
3、本発明の現場操作が簡単であり、施工速度が速く、施工効率が高く、連結点構造設計が大幅に簡略化され、工場によるプレキャストを便利にして交換及び取り外しを容易にする。
4、本発明が提供する組立式耐震壁の縦方向接続方式は、伝統の組立式耐震壁の縦方向接続方式と異なり、具体的に、当該組立式延性エネルギー散逸耐震壁が縦方向接続を行う場合、相応的なフレーム柱を接続すればよく、接続の速度及び品質は何れも大幅に向上する。
As can be seen from the above technical solution, compared to the prior art, the present invention discloses and provides a prefabricated ductile energy dissipating shear wall structure, which has the following beneficial effects:
1. According to the prefabricated ductile energy dissipating shear wall structure provided by the present invention, all precast work is completed in the factory, and after the precast is completed by the factory, it is transported to the construction site and assembled, and the conventional assembly is performed. The defects and constraints existing in the longitudinal connection of type shear walls are well resolved.
2. According to the present invention, after a large earthquake, the columns basically do not yield or are in an elastic state, and the damaged energy dissipation mechanism can be removed and replaced, greatly improving the post-earthquake repair ability of prefabricated buildings. improve.
3. The field operation of the present invention is simple, the construction speed is fast, the construction efficiency is high, the connecting point structure design is greatly simplified, and the factory precasting is convenient and easy to replace and remove.
4. The vertical connection method of prefabricated shear walls provided by the present invention is different from the traditional longitudinal connection method of prefabricated shear walls, specifically, the prefabricated ductile energy dissipation shear walls perform vertical connection. In this case, it is only necessary to connect the corresponding frame columns, and both the speed and quality of the connection are significantly improved.

本発明の実施例又は従来技術の技術案をより明らかに説明するために、以下、実施例又は従来技術の記載の必要な図面を簡単に紹介し、明らかに、以下に記載の図面は本発明の実施例に過ぎず、当業者にとって、進歩性に値する労働をしないことを前提として、提供された図面に基づいて他の図面を取得できる。 In order to more clearly explain the embodiments of the present invention or the technical solutions of the prior art, the following will briefly introduce the necessary drawings of the embodiments or the description of the prior art, and it is clear that the drawings described below are of the present invention. The drawings are only examples, and a person skilled in the art can derive other drawings based on the drawings provided without any effort worthy of inventive step.

本発明が提供する組立式延性エネルギー散逸耐震壁構造の構造模式図である。1 is a structural schematic diagram of a prefabricated ductile energy dissipating shear wall structure provided by the present invention; FIG. 本発明が提供する組立式延性エネルギー散逸耐震壁構造におけるA柱の埋め込みアンカプレート箇所の断面模式図である。FIG. 2 is a schematic cross-sectional view of the embedded anchor plate portion of the A column in the prefabricated ductile energy dissipation shear wall structure provided by the present invention. 本発明が提供する組立式延性エネルギー散逸耐震壁構造におけるA柱の埋め込みアンカプレート箇所の側面図である。FIG. 3 is a side view of the embedded anchor plate location of the A column in the prefabricated ductile energy dissipating shear wall structure provided by the present invention. 本発明が提供する組立式延性エネルギー散逸耐震壁構造におけるB柱の埋め込みアンカプレート箇所の断面模式図である。FIG. 2 is a schematic cross-sectional view of a buried anchor plate location of a B pillar in the prefabricated ductile energy dissipation shear wall structure provided by the present invention. 本発明が提供する組立式延性エネルギー散逸耐震壁構造における各柱脚箇所の断面図である。FIG. 3 is a cross-sectional view of each column base in the prefabricated ductile energy dissipating shear wall structure provided by the present invention. 本発明が提供する組立式延性エネルギー散逸耐震壁構造における各柱脚箇所の平面図である。FIG. 3 is a plan view of each column base in the prefabricated ductile energy dissipating shear wall structure provided by the present invention. 図1の断面1―1の断面図である。2 is a sectional view taken along section 1-1 in FIG. 1. FIG. 図1の断面2―2の断面図である。FIG. 2 is a sectional view taken along section 2-2 in FIG. 1;

以下、本発明の実施例の図面を結合して、本発明の実施例の技術案を明らか且つ完全に記載し、明らかに、記載される実施例は全ての実施例ではなく、本発明の一部の実施例に過ぎない。本発明の実施例に基づいて、当業者が進歩性に値する労働をしないことを前提として取得した他の全ての実施例は何れも本発明の保護範囲に属する。 Below, the drawings of the embodiments of the present invention are combined to clearly and completely describe the technical solutions of the embodiments of the present invention, and it is obvious that the described embodiments are not all embodiments, but only some of the embodiments of the present invention. This is just an example of the section. All other embodiments obtained by a person skilled in the art based on the embodiments of the present invention without any effort worthy of inventive step shall fall within the protection scope of the present invention.

図1~図8を参照し、本発明の実施例は組立式延性エネルギー散逸耐震壁構造を開示し、
組立式延性エネルギー散逸耐震壁構造は、
フレーム柱3であって、フレーム柱3の数は少なくとも2本であり、フレーム柱3の底端は基礎面に固定され、隣り合う2本のフレーム柱3の対向する側壁には複数の埋め込みアンカプレート2が固定されているフレーム柱3と、
エネルギー散逸機構6であって、エネルギー散逸機構6の数は複数であり、対向する2つの埋め込みアンカプレート2の間に取り外し可能に接続されるエネルギー散逸機構6と、
2本のフレーム柱3の間に固定されるフレーム/接続ビーム1と、
隣り合うフレーム柱3の間の隙間内に充填される低強度可撓性充填体5と、を含む。
1 to 8, an embodiment of the present invention discloses a prefabricated ductile energy dissipating shear wall structure,
Prefabricated ductile energy dissipating shear wall structure is
The frame columns 3 are at least two in number, the bottom ends of the frame columns 3 are fixed to the foundation surface, and the opposing side walls of the two adjacent frame columns 3 are provided with a plurality of embedded anchors. a frame column 3 to which the plate 2 is fixed;
an energy dissipation mechanism 6, the number of energy dissipation mechanisms 6 being plural, the energy dissipation mechanism 6 being removably connected between two opposing embedded anchor plates 2;
a frame/connection beam 1 fixed between two frame columns 3;
A low-strength flexible filler 5 is included, which is filled into the gap between adjacent frame columns 3.

上記技術案をさらに最適化するために、埋め込みアンカプレート2とフレーム柱3側壁との貼合面には複数本の第1アンカボルト7が垂直に固定され、第1アンカボルト7はフレーム柱3の内部のコンクリート内に埋め込まれるように固定される。 In order to further optimize the above technical proposal, a plurality of first anchor bolts 7 are vertically fixed to the bonding surface between the embedded anchor plate 2 and the side wall of the frame column 3, and the first anchor bolts 7 are attached to the side wall of the frame column 3. It is embedded and fixed in the concrete inside.

上記技術案をさらに最適化するために、埋め込みアンカプレート2には複数の予備穴9が開けられ、予備穴9内側にはネジが加工され、エネルギー散逸機構6の両端はボルト8によって予備穴9にネジ締めされて接続される。 In order to further optimize the above technical proposal, a plurality of preliminary holes 9 are drilled in the embedded anchor plate 2, screws are machined inside the preliminary holes 9, and both ends of the energy dissipation mechanism 6 are connected to the preliminary holes 9 by bolts 8. It is connected by tightening the screws.

上記技術案をさらに最適化するために、エネルギー散逸機構6は剪断降伏型又は屈曲降伏型ダンパである。 In order to further optimize the above technical solution, the energy dissipation mechanism 6 is a shear yield type or flexural yield type damper.

上記技術案をさらに最適化するために、フレーム柱3の底端の外側壁の周囲には被覆鋼板4が固定され、被覆鋼板4の内側壁の間には第2アンカボルト13が固定されて接続され、第2アンカボルト13はフレーム柱3の内部のコンクリート内に埋め込まれるように固定される。 In order to further optimize the above technical proposal, a coated steel plate 4 is fixed around the outer wall of the bottom end of the frame column 3, and a second anchor bolt 13 is fixed between the inner walls of the coated steel plate 4. The second anchor bolt 13 is fixed so as to be embedded in the concrete inside the frame column 3.

上記技術案をさらに最適化するために、フレーム柱3の柱脚の内部には延性繊維コンクリート12が打設され、延性繊維コンクリート12は鋼繊維コンクリート、ポリエチレン繊維コンクリート又はポリエチレングリコール繊維コンクリート、或いはいくつかの繊維を組み合わせたコンクリートを含む。 In order to further optimize the above technical solution, ductile fiber concrete 12 is poured inside the column base of the frame column 3, and the ductile fiber concrete 12 is made of steel fiber concrete, polyethylene fiber concrete or polyethylene glycol fiber concrete, or any number of ductile fiber concretes. Contains concrete that combines fibers.

上記技術案をさらに最適化するために、低強度可撓性充填体5はポリウレタン発泡プラスチック、発泡コンクリート、外包石膏ボード又はオートクレーブ気泡コンクリート平板である。 In order to further optimize the above technical solution, the low strength flexible filling body 5 is polyurethane foamed plastic, foamed concrete, external plasterboard or autoclaved aerated concrete slab.

上記技術案をさらに最適化するために、フレーム柱3は鋼管コンクリート柱、形鋼コンクリート柱又は鉄筋コンクリート柱である。 In order to further optimize the above technical solution, the frame column 3 is a steel pipe concrete column, a shaped steel concrete column or a reinforced concrete column.

本実施例が提供するフレーム柱3が鉄筋コンクリート柱である場合、鉄筋コンクリート柱の内部にはフープ筋11及び縦筋10が埋め込まれるように固定されている。 When the frame column 3 provided in this embodiment is a reinforced concrete column, hoop reinforcements 11 and vertical reinforcements 10 are embedded and fixed inside the reinforced concrete column.

上記技術案をさらに最適化するために、鉄筋コンクリート柱の内部には鋼管14が埋め込まれるように固定され、鋼管14の外側にはスパイラル筋が巻回されて溶接される。 In order to further optimize the above technical solution, a steel pipe 14 is embedded and fixed inside the reinforced concrete column, and a spiral reinforcement is wound and welded on the outside of the steel pipe 14.

本実施例が提供する組立式延性エネルギー散逸耐震壁構造のプレキャスト作業は工場で完成され、工場は、相応的なフレーム/接続ビーム1及びフレーム柱3をプレキャストして、フレーム柱3に埋め込まれた第1アンカボルト7、埋め込みアンカプレート2、第2アンカボルト13及び被覆鋼板4をプレキャストすればよく、他の組立及び充填などの作業は何れも施工現場で完成される。その過程は以下の通り、まず、工場は提供された設計図に従って、必要なフレーム柱3、フレーム/接続ビーム1、フレーム柱3上の相応的な位置の埋め込み対象となる第1アンカボルト7、埋め込みアンカプレート2、第2アンカボルト13及び被覆鋼板4を何れも予め埋め込んでおり、埋め込みアンカプレート2の一方はフレーム/接続ビーム1に設けられ、他方は前の埋め込みアンカプレート2の下方の所定距離に設けられ、ニーズに応じて順に増えて、柱脚には延性繊維コンクリートが打設される。製造が完成した後、施工現場に搬送されて組み立てられ、施工現場で、まず、各層のフレーム/接続ビーム1とフレーム柱3とを組み立てから、ボルト8を使用して交換可能なエネルギー散逸機構6を隣り合う2本のフレーム柱3における予備の埋め込みアンカプレート2に取り付け、最後、隣り合う2つのフレーム柱3の間の空隙に低強度可撓性材料を充填する。 The precasting work of the prefabricated ductile energy dissipating shear wall structure provided by this example was completed in a factory, and the factory precast the corresponding frame/connection beam 1 and frame column 3 and embedded it into the frame column 3. The first anchor bolt 7, the embedded anchor plate 2, the second anchor bolt 13, and the coated steel plate 4 may be precast, and other assembly and filling operations can be completed at the construction site. The process is as follows: First, according to the provided design drawings, the factory will install the necessary frame columns 3, frame/connection beams 1, first anchor bolts 7 to be embedded at corresponding positions on the frame columns 3, The embedded anchor plate 2, the second anchor bolt 13 and the coated steel plate 4 are all embedded in advance, one of the embedded anchor plates 2 is provided in the frame/connection beam 1, and the other is provided at a predetermined position below the previous embedded anchor plate 2. The column bases are installed at distances, increasing in number according to needs, and ductile fiber concrete is poured into the column bases. After the manufacturing is completed, it is transported to the construction site and assembled, and at the construction site, the frame/connection beam 1 and frame column 3 of each layer are first assembled, and then the energy dissipation mechanism 6, which is replaceable using bolts 8, is assembled. is attached to the spare embedded anchor plate 2 on two adjacent frame columns 3, and finally, the gap between the two adjacent frame columns 3 is filled with a low-strength flexible material.

本実施例が提供する組立式延性エネルギー散逸耐震壁構造によれば、大きな地震の時、柱は曲げ変形して、エネルギー散逸機構6は、上下にずれる弾塑性変形エネルギー散逸が生じて、地震後、柱は基本的に降伏しなく又は弾性状態にあり、損傷したエネルギー散逸機構6を取り外して交換すればよく、その具体的な交換方法は以下の通り、即ち、地震後、損傷したエネルギー散逸機構6のボルト8及び損傷したエネルギー散逸機構6を全部的に取り外して、新しい同じエネルギー散逸機構6及びボルト8を相応的な位置に取り付ければよい。 According to the prefabricated ductile energy dissipation shear wall structure provided by this embodiment, when a large earthquake occurs, the columns bend and deform, and the energy dissipation mechanism 6 undergoes elastoplastic deformation energy dissipation that shifts vertically, and after the earthquake. , the column basically does not yield or is in an elastic state, and the damaged energy dissipation mechanism 6 only needs to be removed and replaced, and the specific replacement method is as follows: After the earthquake, the damaged energy dissipation mechanism 6 The bolts 8 of 6 and the damaged energy dissipation mechanism 6 may be completely removed and new and identical energy dissipation mechanisms 6 and bolts 8 may be installed in corresponding positions.

本明細書において各実施例に対して漸進方式で記載し、各実施例は主に他の実施例との相違点を説明し、各実施例の間の同様又は類似の部分について互いに参照すればよい。実施例が開示した装置に対して、実施例が開示した方法に対応するため、その記載は簡単であり、関連するところについて、方法部分の説明を参照すればよい。 Each embodiment will be described in this specification in a progressive manner, and each embodiment will mainly describe the differences from other embodiments, and the same or similar parts between each embodiment will be referred to with each other. good. Since the apparatus disclosed in the embodiment corresponds to the method disclosed in the embodiment, the description thereof is simple, and the description of the method portion may be referred to for related parts.

開示された実施例に対する上記説明によって、当業者は本発明を実現し又は使用できる。これらの実施例に対する多種の補正は当業者にとって自明であり、本明細書に定義された一般的な原理は本発明の精神又は範囲から逸脱しない場合、他の実施例において実現されることができる。従って、本発明は本明細書に記載されたこれらの実施例に限定されず、本明細書が開示した原理及び新規特点と一致する最も幅広い範囲に合う。 The above description of the disclosed embodiments is used to enable any person skilled in the art to make or use the present invention. Various modifications to these embodiments will be obvious to those skilled in the art, and the general principles defined herein can be implemented in other embodiments without departing from the spirit or scope of the invention. . Accordingly, this invention is not limited to these embodiments described herein, but is accorded the widest scope consistent with the principles and novel features disclosed herein.

1 フレーム/接続ビーム
2 埋め込みアンカプレート
3 フレーム柱
4 被覆鋼板
5 低強度可撓性充填体
6 エネルギー散逸機構
7 第1アンカボルト
8 ボルト
9 予備穴
10 縦筋
11 フープ筋;
12 延性繊維コンクリート;
13 第2アンカボルト;
14 鋼管。
1 Frame/Connection Beam 2 Embedded Anchor Plate 3 Frame Column 4 Covered Steel Plate 5 Low Strength Flexible Filler 6 Energy Dissipation Mechanism 7 First Anchor Bolt 8 Bolt 9 Preliminary Hole 10 Vertical Reinforcement 11 Hoop Reinforcement;
12 Ductile fiber concrete;
13 Second anchor bolt;
14 Steel pipe.

Claims (7)

組立式延性エネルギー散逸耐震壁構造であって、
フレーム柱(3)であって、前記フレーム柱(3)の数は少なくとも2本であり、前記フレーム柱(3)の底端は基礎面に固定され、隣り合う2本の前記フレーム柱(3)の対向する側壁には複数の埋め込みアンカプレート(2)が固定されており、前記埋め込みアンカプレート(2)には複数の予備穴(9)が開けられ、前記予備穴(9)内側にはネジが加工されており、前記埋め込みアンカプレート(2)と前記フレーム柱(3)側壁との貼合面には複数本の第1アンカボルト(7)が垂直に固定され、前記第1アンカボルト(7)は前記フレーム柱(3)の内部のコンクリート内に埋め込まれるように固定される、前記フレーム柱(3)と、
前記フレーム柱(3)の底端の外側壁の周囲に固定された被覆鋼板(4)であって、前記被覆鋼板(4)の内側壁の間には第2アンカボルト(13)が固定されて接続され、前記第2アンカボルト(13)は前記フレーム柱(3)の内部のコンクリート内に埋め込まれるように固定される、前記被覆鋼板(4)と、
エネルギー散逸機構(6)であって、前記エネルギー散逸機構(6)の数は複数であり、前記エネルギー散逸機構(6)は対向する2つの前記埋め込みアンカプレート(2)の間に取り外し可能に接続され、前記エネルギー散逸機構(6)の両端はボルト(8)によって前記予備穴(9)にネジ締めされて接続される、前記エネルギー散逸機構(6)と、
2本の前記フレーム柱(3)の間に固定されるフレーム/接続ビーム(1)と、
隣り合う前記フレーム柱(3)の間の隙間内に充填される低強度可撓性充填体(5)と、を含み、
前記低強度可撓性充填体(5)、前記エネルギー散逸機構(6)、及び前記フレーム/接続ビーム(1)は、地面から低い順に配置されていることを特徴とする組立式延性エネルギー散逸耐震壁構造。
A prefabricated ductile energy dissipating shear wall structure,
A frame column (3), the number of the frame columns (3) is at least two, a bottom end of the frame column (3) is fixed to a foundation surface, and two adjacent frame columns (3) ), a plurality of embedded anchor plates (2) are fixed to the opposing side walls of the embedded anchor plate (2), a plurality of preliminary holes (9) are bored in the embedded anchor plate (2), and a plurality of preliminary holes (9) are formed inside the preliminary holes (9). A plurality of first anchor bolts (7) are fixed perpendicularly to the bonding surface between the embedded anchor plate (2) and the side wall of the frame column (3), and the first anchor bolts (7) the frame column (3) is embedded and fixed in concrete inside the frame column (3);
A coated steel plate (4) is fixed around the outer wall at the bottom end of the frame column (3), and a second anchor bolt (13) is fixed between the inner walls of the coated steel plate (4). the coated steel plate (4), the second anchor bolt (13) being embedded and fixed in concrete inside the frame column (3);
energy dissipation mechanisms (6), wherein the number of energy dissipation mechanisms (6) is plural, said energy dissipation mechanisms (6) being removably connected between two opposing said embedded anchor plates (2); the energy dissipation mechanism (6), wherein both ends of the energy dissipation mechanism (6) are screwed and connected to the preliminary hole (9) by bolts (8);
a frame/connection beam (1) fixed between two said frame columns (3);
a low-strength flexible filler (5) filled in the gap between the adjacent frame columns (3) ,
The low-strength flexible packing (5), the energy dissipation mechanism (6), and the frame/connection beam (1) are arranged in ascending order from the ground. wall structure.
前記エネルギー散逸機構(6)は剪断降伏型又は屈曲降伏型ダンパであることを特徴とする請求項1に記載の組立式延性エネルギー散逸耐震壁構造。 The prefabricated ductile energy dissipating shear wall structure according to claim 1, characterized in that the energy dissipating mechanism (6) is a shear yield type or flexural yield type damper. 前記フレーム柱(3)の柱脚の内部には延性繊維コンクリート(12)が打設され、前記延性繊維コンクリート(12)は鋼繊維コンクリート、ポリエチレン繊維コンクリート又はポリエチレングリコール繊維コンクリート、或いはいくつかの繊維を組み合わせたコンクリートを含むことを特徴とする請求項1に記載の組立式延性エネルギー散逸耐震壁構造。 Ductile fiber concrete (12) is cast inside the column base of the frame column (3), and the ductile fiber concrete (12) is steel fiber concrete, polyethylene fiber concrete or polyethylene glycol fiber concrete, or some fiber concrete. 2. The prefabricated ductile energy dissipating shear wall structure of claim 1, comprising concrete in combination with. 前記低強度可撓性充填体(5)はポリウレタン発泡プラスチック、発泡コンクリート、外包石膏ボード又はオートクレーブ気泡コンクリート平板であることを特徴とする請求項1に記載の組立式延性エネルギー散逸耐震壁構造。 The prefabricated ductile energy dissipating shear wall structure according to claim 1, characterized in that the low strength flexible filler (5) is polyurethane foam plastic, foam concrete, external gypsum board or autoclaved aerated concrete slab. 前記フレーム柱(3)は鋼管コンクリート柱、形鋼コンクリート柱又は鉄筋コンクリート柱であることを特徴とする請求項1~4の何れか1項に記載の組立式延性エネルギー散逸耐震壁構造。 The prefabricated ductile energy dissipating shear wall structure according to any one of claims 1 to 4, wherein the frame column (3) is a steel pipe concrete column, a shaped steel concrete column, or a reinforced concrete column. 前記フレーム柱(3)が鉄筋コンクリート柱である場合、前記鉄筋コンクリート柱の内部にはフープ筋(11)及び縦筋(10)が埋め込まれるように固定されていることを特徴とする請求項5に記載の組立式延性エネルギー散逸耐震壁構造。 When the frame column (3) is a reinforced concrete column, a hoop reinforcement (11) and a vertical reinforcement (10) are embedded and fixed inside the reinforced concrete column. Prefabricated ductile energy dissipating shear wall structure. 前記鉄筋コンクリート柱の内部には鋼管(14)が埋め込まれるように固定され、前記鋼管(14)の外側にはスパイラル筋が巻回されて溶接されていることを特徴とする請求項6に記載の組立式延性エネルギー散逸耐震壁構造。 7. A steel pipe (14) is embedded and fixed inside the reinforced concrete column, and a spiral reinforcement is wound around and welded to the outside of the steel pipe (14). Prefabricated ductile energy dissipating shear wall structure.
JP2023132091A 2022-06-13 2023-08-14 Prefabricated ductile energy dissipation shear wall structure Active JP7422373B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210664555.0 2022-06-13
CN202210664555.0A CN115045417B (en) 2022-06-13 2022-06-13 Assembled ductile power consumption shear wall structure

Publications (2)

Publication Number Publication Date
JP2023182004A JP2023182004A (en) 2023-12-25
JP7422373B2 true JP7422373B2 (en) 2024-01-26

Family

ID=83162213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023132091A Active JP7422373B2 (en) 2022-06-13 2023-08-14 Prefabricated ductile energy dissipation shear wall structure

Country Status (2)

Country Link
JP (1) JP7422373B2 (en)
CN (1) CN115045417B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015117535A (en) 2013-12-19 2015-06-25 大和ハウス工業株式会社 Bearing wall
CN105220891A (en) 2015-09-21 2016-01-06 华东交通大学 A kind of reinforced concrete frame seismic reinforcing structure and Shockproof reinforcing method thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102852244B (en) * 2012-04-27 2014-10-29 中国矿业大学 Detachable self-resetting type energy-dissipation coupling beam
CN104452961A (en) * 2014-12-08 2015-03-25 上海应用技术学院 Rural low-rise assembled damping building structure system
ITUB20153496A1 (en) * 2015-09-09 2017-03-09 Univ Degli Studi G Dannunzio Chieti Pescara Construction system with supporting frame in reinforced concrete or in steel integrated with wooden infill panels.
CN107299641A (en) * 2017-06-02 2017-10-27 中国建筑股份有限公司 A kind of assembled heel join node and its construction method
CN107460954A (en) * 2017-09-21 2017-12-12 中国建筑股份有限公司 A kind of post-tensioned prestressing assembling concrete frame energy dissipation component system and construction method
CN108374489B (en) * 2018-05-04 2023-07-21 中国建筑股份有限公司 Assembled concrete column foot joint structure and construction method thereof
CN111395574A (en) * 2020-03-31 2020-07-10 海南大学 Assembled self-resetting energy dissipation shear wall
CN113482190A (en) * 2021-07-08 2021-10-08 清华大学 Coupled energy dissipation and shock absorption structure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015117535A (en) 2013-12-19 2015-06-25 大和ハウス工業株式会社 Bearing wall
CN105220891A (en) 2015-09-21 2016-01-06 华东交通大学 A kind of reinforced concrete frame seismic reinforcing structure and Shockproof reinforcing method thereof

Also Published As

Publication number Publication date
CN115045417A (en) 2022-09-13
CN115045417B (en) 2023-06-06
JP2023182004A (en) 2023-12-25

Similar Documents

Publication Publication Date Title
CN106968365B (en) A kind of anti-buckling steel plate shear force wall of assembled for taking into account load and energy consumption
CN108824818B (en) Construction method of assembled concrete filled steel tube frame-shear wall structure system
CN103397696B (en) Shatter-proof, prefabricated steel bar girder shear wall Temperature Variation In Buildings of Mixed Structures thing
CN203475598U (en) Shock-proof prefabricated building of steel bar truss shearing wall composite structure
CN113863532B (en) Vertical connecting node of concrete shear wall and manufacturing and mounting method thereof
CN108589969B (en) Combined assembly type shear wall with vertical ECC energy consumption belt and manufacturing method thereof
CN104878836A (en) Prefabricated house and construction method thereof
CN204645253U (en) A kind of prefabricated house
CN111749364A (en) Assembly type composite wall based on C-shaped steel and construction method thereof
JP7422373B2 (en) Prefabricated ductile energy dissipation shear wall structure
CN110924426A (en) Bottom-expanding cup-mouth type connecting structure and method for reinforced concrete column and foundation
CN110653918A (en) Construction method for synchronously pouring large-span corrugated steel inclined web precast beam with toothed block on top and bottom plates by post-tensioning method
CN110894744A (en) Truss wallboard for manufacturing shear wall, shear wall manufactured by using truss wallboard and manufacturing method of shear wall
CN212336419U (en) Assembled composite wall based on steel pipe
CN215926271U (en) Precast concrete beam column connected node structure
CN202338051U (en) Internal-mold type reinforced concrete ribbed-beam composite floor
CN111749366A (en) Steel pipe-based fabricated composite wall and construction method thereof
CN109267805B (en) Assembly node for connecting rubber support with upper and lower structures and construction method
CN111962953A (en) Steel tube concrete column-H-shaped steel beam-steel support-pi-shaped connecting piece combined side column middle node and manufacturing method
CN112343232A (en) Combined floor slab, building and construction method
CN111255074A (en) Prefabricated column-steel beam hybrid frame structure and construction method thereof
CN206090965U (en) Cast -in -place composite wall
CN110670758A (en) Fabricated steel structure building based on fiber reinforced clad wood substrate and construction method
CN212772980U (en) Assembled composite wall based on C shaped steel
CN212927239U (en) Steel pipe concrete column-H steel beam-support-Pi-shaped combined corner column bottom node

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230814

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231006

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20231006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240105

R150 Certificate of patent or registration of utility model

Ref document number: 7422373

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150